WO2023198646A1 - Dispositif de mesure du rayonnement electromagnetique d'un objet rayonnant - Google Patents

Dispositif de mesure du rayonnement electromagnetique d'un objet rayonnant Download PDF

Info

Publication number
WO2023198646A1
WO2023198646A1 PCT/EP2023/059320 EP2023059320W WO2023198646A1 WO 2023198646 A1 WO2023198646 A1 WO 2023198646A1 EP 2023059320 W EP2023059320 W EP 2023059320W WO 2023198646 A1 WO2023198646 A1 WO 2023198646A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiating object
film
camera
thermosensitive film
radiation
Prior art date
Application number
PCT/EP2023/059320
Other languages
English (en)
Inventor
Nicolas CAPET
Daniel PROST
Original Assignee
Anyfields
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anyfields filed Critical Anyfields
Publication of WO2023198646A1 publication Critical patent/WO2023198646A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • G01R29/105Radiation diagrams of antennas using anechoic chambers; Chambers or open field sites used therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • G01R29/0885Sensors; antennas; probes; detectors using optical probes, e.g. electro-optical, luminescent, glow discharge, or optical interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0429Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using polarisation elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/58Photometry, e.g. photographic exposure meter using luminescence generated by light

Definitions

  • the invention relates to a device for measuring the electromagnetic radiation of a radiating object, in particular at radio or microwave frequencies, such as an antenna.
  • a radiating object such as an antenna, a radio telephone, a microwave transceiver, a microwave device, an induction device, etc.
  • document W020200351193 proposes a device for measuring the performance of a radiating object in at least two different frequency bands.
  • This device comprises an external housing forming an external chamber provided with radio frequency reflecting walls, an internal chamber provided with radio frequency absorbing walls in which the radiating object tested is housed, a first arrangement of test antennas housed in the external chamber to enable measurement in a first frequency band and a second test antenna arrangement arranged within the internal chamber to enable measurement in the second frequency band.
  • This device therefore makes it possible to measure the performance of the radiating object in a reflecting radio frequency environment by the first arrangement of test antennas and to measure the performance in an essentially anechoic radio frequency environment by the second arrangement of test antennas. .
  • This solution does not make it possible to characterize the electromagnetic radiation of an antenna radiating object, it only makes it possible to measure the performance of the radiating object in predetermined frequency bands.
  • this solution is complex to implement and requires the use of two sets of test antennas.
  • the inventors therefore sought to develop a simpler integrated device which allows the characterization of a radiating object and the reconstruction of the radiation diagram.
  • the invention aims to provide a device for measuring, characterizing and visualizing the electromagnetic radiation of a radiating object.
  • the invention aims in particular to provide such a measuring device which allows the measurement, characterization and visualization of the radiation of the object for various frequencies.
  • the invention aims in particular to provide such a measuring device which does not require the use of complex components and whose number of components is limited.
  • the invention aims in particular to provide such a measuring device which can be used without major difficulties by anyone, without particular technical knowledge of the operation of the antennas.
  • the invention also aims to provide, in at least one embodiment, a portable device for measuring and characterizing the electromagnetic radiation of a radiating object.
  • the invention relates to a device for measuring the electromagnetic radiation of a radiating object comprising:
  • - means for moving in the longitudinal direction of said radiating object inside the sealed box between a position, called proximal, and a position, called distal,
  • thermosensitive to the electromagnetic field housed in said waterproof box and extending in a plane perpendicular to said longitudinal direction in the vicinity of said proximal position
  • thermosensitive film housed at a longitudinal end of said waterproof box, opposite said radiating object to be measured with respect to the thermosensitive film, and configured to acquire images of said thermosensitive film, said thermosensitive film being arranged at the focal distance of said camera,
  • thermosensitive film means for processing said images acquired by said camera configured to provide a map of the electromagnetic field captured by said thermosensitive film.
  • thermosensitive film heats up on contact with the electromagnetic radiation of the radiating object. This heating is imaged by the camera, then detected and characterized by the image processing means.
  • the thermosensitive film can be sensitive to either the magnetic field or the electric field.
  • the heat-sensitive film is arranged at the focal length of the camera.
  • the device according to the invention makes it possible to test any type of radiating object that can be housed in the waterproof box, thus eliminating the need to resort to an anechoic or reverberant chamber of the solutions of the prior art.
  • the device according to the invention makes it possible to obtain images of the field radiated by a radio frequency and/or microwave source without any particular precautions. Such a device can therefore be used in a classroom, a design office and generally in any room not specifically designed for electromagnetic radiation.
  • radio waves designate electromagnetic waves whose frequencies are between 3Hz and 300 MHz
  • microwaves designate electromagnetic waves whose frequencies are between 300 MHz and 300 GHz.
  • the device according to the invention is an integrated device which does not require any external equipment other than a source of energy for the electrical supply of the radiant source, the camera, the image processing means and the means longitudinal displacement of the radiating object.
  • this source of electrical energy is formed by a rechargeable battery housed in a compartment adjacent to the waterproof housing.
  • the device according to the invention has the particularity of allowing longitudinal movement of the radiating object relative to the thermosensitive film (for example by motorized means) between a distal position distant from the thermosensitive film and a proximal position close to the film thermosensitive, which makes it possible to measure the electromagnetic radiation of the radiating object in different planes located at different distances from the thermosensitive film.
  • the device according to the invention thus makes it possible, using image processing means, to produce a 3D reconstruction of the near field in amplitude.
  • amplitude measurements in two distinct planes make it possible to algorithmically reconstruct the phase of the field at any point of the antenna aperture, and thus to reconstruct the radiation diagram of this antenna.
  • the camera is equipped with an image acquisition sensor in the visible range and the device further comprises a monochromatic light source housed in said box and oriented towards the thermosensitive film so as to be able to illuminate it, the latter being coated with a layer of fluorescent material.
  • the device is equipped with a camera equipped with a CCD or CMOS sensor in the visible.
  • This camera is equipped with an optical filter adapted to the wavelength of the fluorescent light emitted by the thermosensitive film covered with a fluorophore.
  • a light source housed in the box illuminates the heat-sensitive film.
  • the fluorescent material must be a fluorophore which emits in the visible range (approximately 400 nm to 800 nm) and whose fluorescence intensity depends on temperature.
  • the material used is Rhodamine B whose maximum fluorescence intensity is around 600 nm at room temperature when subjected to light of wavelength 470 nm and sees this intensity drop strongly (around 2%/°C) with the rise in its temperature.
  • the difference between the wavelengths received by the excitation and fluorescence facilitates the measurement, because the filtering on the camera will eliminate the reflection on the film of the emitted light, without loss of useful signal.
  • the camera is a camera equipped with an infrared sensor.
  • the camera directly acquires the heating of the thermosensitive film.
  • thermosensitive film used is either weakly conductive (for measuring the electric field) or insulating and with magnetic losses (for measuring the magnetic field).
  • the film heats up (typically in a range of 0.01 to 10°C).
  • This heating is directly recorded by the infrared camera (for the infrared version), or is responsible for a variation in the fluorescence intensity (for the fluorescence version) recorded by the camera in the visible region.
  • the measuring device further comprises a filter arranged between the radiating object to be measured and the thermosensitive film, this filter being configured to filter a component of the electromagnetic field so as to allow measurement of the other components of the electromagnetic radiation of the radiating object to be measured.
  • a filter is interposed between the radiating object and the thermosensitive film.
  • This filter takes for example the form of a second thin film, of the conductive grid, absorbent grid or particular pattern type.
  • This filter allows only unfiltered components to pass through the thermosensitive film.
  • We can thus carry out a cross polarization measurement for example.
  • the right/left character can also be obtained with a filter film using the appropriate patterns, in particular polarization selective surfaces (known by the acronym PSS).
  • thermosensitive film is removably mounted inside said waterproof box.
  • the type of thermosensitive film used determines the type of field (electric or magnetic) that can be measured.
  • a weakly conductive film is used.
  • an insulating film with magnetic losses is used.
  • This removable assembly can be of any type. It can for example be a frame on which the film is placed, this frame being housed in guide rails on the internal walls of the box facing each other.
  • thermosensitive film is an anisotropic film making it possible to determine the direction of the field and its spatial variation or its rate of ellipticity as a function of the polarization of the field radiated by said measured object.
  • the anisotropic film comprises a network of patterns making it possible to determine the spatial variation of the amplitude and the direction of the field (in linear polarization), or the spatial variation of the amplitude and the rate of ellipticity (in circular polarization) of the radiated field by said radiating object.
  • Such an anisotropic film is a film presenting particular patterns (parallel bands, stars with 3 or more branches) which makes it possible to determine, in addition to the amplitude, the polarization of the electric field, including the rate of ellipcity in the case of circular polarization. With such a pattern network, one can further determine the in-plane spatial distribution of these amplitudes and polarizations.
  • said means for modulating the radiation of said radiating object comprise a microcontroller, a synthesizer and a radio frequency or microwave amplifier housed in a dedicated compartment.
  • This variant makes it possible to power and control the radiating object.
  • said means for modulating the radiation of said radiating object comprise: a shutter screen arranged between said radiating object and said thermosensitive film, said shutter screen being configured to be able to pass from a state, called transparent, in in which the radiation from said radiating object can reach said thermosensitive film, in a state, called opaque, in which said screen prevents said radiation from said radiating object from reaching said thermosensitive film, control electronics configured to control said shutter screen between the state opaque and the transparent state and vice versa.
  • the shutter screen placed in front of the thermosensitive film ensures low frequency modulation of the object by opening and closing at the aforementioned frequency of a few tenths to a few Hz.
  • the shutter can be obtained by electrical means or mechanical.
  • a mechanical shutter is for example made up of two parallel grids, each masking 50% of the thermosensitive film, one oscillating laterally over a distance equal to the pitch of the grid, allowing 50% opening (superimposed grids) or closing (grids offset by one step).
  • the electric shutter can be a liquid crystal or plasma film (the intermittent ignition of which ensures the alternation of opacity/transparency).
  • the means for moving the radiating object in the longitudinal direction comprise a rail along which the radiating object can slide and an electric motor for moving the object on the rail.
  • the device In addition to the longitudinal movement of the object, it can also be planned to provide the device with means for pivoting the radiating object on itself to modify the angular aperture of the field measurement.
  • the box sealed against electromagnetic radiation is formed of a box having an internal wall covered with microwave absorbers.
  • These absorbers are configured to avoid any reflection of the electromagnetic field and to attenuate the emission of the field towards the outside of the waterproof box.
  • the invention also relates to a measuring device characterized in combination by all or part of the characteristics mentioned above or below.
  • FIG. 1 is a schematic perspective view of a measuring device according to one embodiment of the invention equipped with an infrared camera, the view further comprising a cut-away allowing the elements present in the measuring device to be viewed
  • FIG. 2 is a schematic perspective view of the device of Figure 1 in which the radiating object has been moved relative to the thermosensitive film
  • FIG. 3 is a schematic perspective view of a measuring device according to another embodiment of the invention equipped with a camera in the visible range and a source of emitting fluorescent light, the view comprising in addition a cut-out allowing the elements present in the measuring device to be viewed,
  • FIG. 4 is a schematic perspective view of the device of Figure 3 in which the radiating object has been moved relative to the thermosensitive film
  • FIG. 5 is a schematic perspective view of a measuring device according to another embodiment of the invention equipped with an additional filter arranged between the radiating object and the thermosensitive film, the view further comprising a cut-off allowing visualize the elements present in the measuring device,
  • FIG. 6 is a schematic perspective view of a measuring device according to one embodiment of the invention on which the cover of the device can be observed in the open position, the view further comprising a cut-away allowing the elements present in the measuring device.
  • the longitudinal direction corresponds to the main direction of the measuring device along which the radiating object can move.
  • the vertical direction is the direction defined by gravity.
  • the transverse direction is the direction perpendicular to the longitudinal direction and the vertical direction.
  • Figures 1 and 2 illustrate a device for measuring the electromagnetic radiation of a radiating object 10, such as an antenna according to a first embodiment.
  • the device comprises a sealed box 20 formed of a lower housing 20a and a cover 20b, shown in Figure 6, mounted hingedly on the lower housing 20a.
  • the radiating object 10 is mounted on a sliding rail 12 which forms the means of movement in the longitudinal direction L of the radiating object 10.
  • the radiating object 10 can be moved along the longitudinal direction L between a position, called proximal, represented schematically in Figures 1 and 3 and a position, called distal, represented schematically in Figures 2 and 4.
  • This movement can be obtained by motorized means (not shown in the figures) such as an electric motor driving the radiating object 10 along the rail 12.
  • the measuring device also includes means 13 for modulating the radiation of the radiating object. These means are for example housed in a specific compartment 15 arranged at a first longitudinal end of the waterproof box 20.
  • the measuring device also comprises a thermosensitive film 14 to the electromagnetic field housed in the waterproof box 20 and extending transversely in the vicinity of the proximal position, that is to say it extends in a plane perpendicular to said longitudinal direction.
  • the measuring device also includes a camera 16 housed at a second longitudinal end of the waterproof box 20, opposite the radiating object 10 to be measured with respect to the thermosensitive film 14.
  • the measuring device finally comprises a computer 18 forming the means for processing the images acquired by the camera 16.
  • This computer 18 includes software routines configured to provide a map of the electromagnetic field captured by the thermosensitive film 14.
  • the camera 16 is an infrared camera configured to be able to directly acquire the heating of the thermosensitive film.
  • the camera 16 is a camera in the visible domain and the camera is configured to be able to acquire the fluorescent light emitted by the thermosensitive film 14 covered with a fluorophore.
  • the device further comprises a light source 17 which illuminates the thermosensitive film 14.
  • the camera 16 is provided with an optical filter adapted to the wavelength of the fluorescent light emitted by the thermosensitive film covered with the fluorophore.
  • the material which covers the thermosensitive film can for example be Rhodamine B whose maximum fluorescence intensity is around 600 nm at room temperature when subjected to light of wavelength 470 nm.
  • the principle of the invention is based on the interaction of the film 14 with the field radiated by the radiating object 10.
  • thermosensitive film 14 is either weakly conductive (for measuring the electric field), or insulating and with magnetic losses (for measuring the magnetic field). Thus, under the effect of the field, the film heats up (typically in a range of 0.01 to 10°C). This heating is directly recorded by the infrared camera (for the embodiment of Figures 1 and 2), or is responsible for a variation in the fluorescence intensity (for the embodiment of Figures 3 and 4), which is recorded by camera 16.
  • the radiation from the radiating object 10 causes heating of the film 14 (which is a thin film, that is to say of a very small thickness compared to the thickness of the skin and the wavelength: the field and the temperature are assumed to be constant in the thickness of the film) proportional to the absorbed power density according to the following formula:
  • e represents the thickness of the film 14 and h is a convection coefficient.
  • the absorbed power density is given by the following equation: where f represents the frequency of the radiation, the conductivity of the film 14, its permittivity (imaginary component), and p its magnetic permeability (imaginary component).
  • the measuring device For measuring the electric field, the measuring device is equipped with an “electrically lossy” film, that is to say with low permittivity and negligible permeability, but non-zero conductivity.
  • an “electrically lossy” film that is to say with low permittivity and negligible permeability, but non-zero conductivity.
  • the measuring device For measuring the magnetic field, the measuring device is equipped with a “magnetic loss” film, that is to say with high permeability, but negligible conductivity and permittivity. Thus, only the second component of the previous equation is taken into account and the power is proportional to the square of the magnetic field.
  • the computer 18 includes software routines configured to reconstruct, from the thermal images acquired by the camera 16, the mapping of the amplitude of the field (electric or magnetic) in the plane (Oxy) of the film, from the square root of the heating and with a coefficient k of proportionality which depends only on the film.
  • the software means are programmed to calculate the following amplitudes: for a film with electrical losses, for a fim with magnetic losses, ⁇ H(x, y)
  • the image processing means 18 are configured to reconstruct, from the optical images acquired by the camera 16, the mapping of the amplitude of the field ( electric or magnetic) in the (Oxy) plane of the film, from the square root of the fluorescence intensity (signal received by the camera) and with a coefficient g.
  • fluorescence decreases with temperature; fluorescence in the absence of a field (“cold”) gives an intensity lo, which is therefore lowered by the field (through the variation in temperature of the film that it induces) to Ifl uo .
  • the processing means 18 include, for example, software means programmed to calculate the amplitudes: for a film with electrical losses, for a film with electrical losses, ⁇ H(x, y)
  • the thermosensitive film 14 depends on the type of measurement to be carried out. This film is preferably mounted in a removable manner in the waterproof box 20 so that it can be easily installed/replaced depending on the type of measurement to be carried out.
  • a weakly conductive thin film 14 is used, consisting of a composite material based on an electrically insulating matrix and electrically conductive particles.
  • This surface impedance is adjusted according to the concentration of particles in the insulating matrix and the thickness of the layer of absorbent material.
  • a carbon-filled polyimide (Kapton) a few tens of microns thick is an example of a film that can be used.
  • a composite material based on an electrically insulating matrix and magnetic particles is used.
  • the density of ferromagnetic particles must remain sufficiently low in order to limit the absorption and therefore the disturbance caused to the field that we wish to measure.
  • polymer matrix films containing iron particles (10 to 20% by volume fraction) are perfectly usable.
  • neutral films (electrically and magnetically) on which a solution containing magnetic nanoparticles is deposited, with a concentration and thickness adapted to the measurement.
  • the measuring device also preferably comprises a compartment 15 housing the means for modulating the radiation of the radiating object 12.
  • modulation means depend on the type of radiating object whose radiation we are seeking to measure.
  • the measuring device according to the invention can have a transient mode and a Low Frequency modulation mode.
  • a low frequency modulation (from a few tenths of Hz to a few Hz) of the source , associated with filtering of the recorded images (synchronous detection) makes it possible to eliminate the aforementioned thermal phenomena, i.e. conduction in the film and convection with the ambient air.
  • this synchronous demodulation makes it possible to improve the signal-to-noise ratio and the measurement dynamics.
  • the thickness of the film is of the order of a hundred microns or less.
  • T - 2/T
  • C corresponds to the heat capacity (in J/kg/K)
  • p is the density (in kg/m 3 )
  • h is a convection coefficient in (W/m 2 /K)
  • e is the thickness of the film in m.
  • the modulation system is arranged to apply a temporal sequence of modulation of the electromagnetic radiation to which the film is exposed.
  • the synchronous detection system is arranged to filter the intensities captured in successive images of the surface of the film, in accordance with the temporal modulation sequence. This can be done during the measurement or after complete recording, by fast Fourier transform (FFT) for example.
  • FFT fast Fourier transform
  • a shutter placed in front of the sensor film and controlled in opening/closing makes it possible to recreate the modulation (all or nothing), which allows measurement by detection synchronous and returns to the previous case.
  • the mechanical shutter can be, for example, made up of two parallel grids, each masking 50% of the film, one oscillating laterally over a distance equal to the pitch of the grid, allowing opening to 50% (superimposed grids) or closing (grids offset by one step).
  • the electric shutter can be a liquid crystal or plasma film (the intermittent ignition of which ensures the alternation of opacity/transparency).
  • the device according to the invention makes it possible to move the radiating object 10 along the longitudinal rail 12.
  • the device according to the invention therefore makes it possible to measure the electromagnetic radiation of the radiating object 10 in different planes located at different distances from the thermosensitive film 14.
  • the device according to the invention thus makes it possible, by the image processing means 18, to carry out a 3D reconstruction of the near field in amplitude.
  • FIG. 5 illustrates a variant embodiment of the measuring device in which a filter 19 is arranged between the radiating object 10 to be measured and the thermosensitive film 14.
  • This filter is configured to filter a component of the electromagnetic field so as to allow a measurement other components of the electromagnetic radiation of the object to be measured.
  • This filter 19 is for example formed of a thin film of the conductive grid or absorbent grid type or particular patterns, in particular polarization selective surfaces (PSS). It allows only the unfiltered components to pass onto the thermosensitive film 14.
  • PSS polarization selective surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

L'invention concerne un dispositif de mesure du rayonnement électromagnétique d'un objet rayonnant (10) comprenant : un caisson (20) étanche logeant ledit objet rayonnant (10); des moyens de déplacement (12) selon une direction longitudinale (L) dudit objet rayonnant (10);un film thermosensible (14) logé dans ledit caisson (20); une caméra (16) logée à une extrémité longitudinale dudit caisson (20) étanche, à l'opposée dudit objet rayonnant (10) à mesurer par rapport au film thermosensible (14), et configurée pour faire l'acquisition d'images dudit film thermosensible; des moyens de traitement (18) desdits images configurés pour fournir une cartographie du champ électromagnétique dudit objet rayonnant (10) capté par ledit film thermosensible (4).

Description

DESCRIPTION
TITRE DE L’INVENTION : DISPOSITIF DE MESURE DU RAYONNEMENT ELECTROMAGNETIQUE D’UN OBJET RAYONNANT
Domaine technique de l’invention
L’invention concerne un dispositif de mesure du rayonnement électromagnétique d’un objet rayonnant, en particulier aux fréquences radioélectriques ou microondes, telle qu’une antenne.
Arrière-plan technologique
Il est souvent nécessaire de connaître le rayonnement électromagnétique d’un objet rayonnant, telle qu’une antenne, un radiotéléphone, un émetteur- récepteur hyperfréquence, un dispositif micro-onde, un dispositif à induction, etc.
Pour ce faire, le document W020200351193 propose un dispositif de mesure des performances d’un objet rayonnant dans au moins deux bandes de fréquences différentes. Ce dispositif comprend un boitier externe formant une chambre externe pourvue de parois réfléchissantes de radiofréquences, une chambre interne pourvue de parois absorbantes de radiofréquences dans laquelle est logée l’objet rayonnant testé, un premier agencement d’antennes d’essai logé dans la chambre externe pour permettre la mesure dans une première bande de fréquences et un second agencement d’antennes d’essai agencé à l’intérieur de la chambre interne pour permettre la mesure dans la seconde bande de fréquence.
Ce dispositif permet donc de mesurer les performances de l’objet rayonnant dans un environnement de radiofréquences réfléchissant par le premier agencement d'antennes d'essai et la mesure des performances dans un environnement radiofréquence essentiellement anéchoïque par le second agencement d'antennes d'essai.
Cette solution ne permet pas de caractériser le rayonnement électromagnétique d’un objet rayonnant antenne, elle permet uniquement de mesurer les performances de l’objet rayonnant dans des bandes de fréquences prédéterminées. En outre, cette solution est complexe à mettre en œuvre et nécessite l’utilisation de deux ensembles d’antennes d’essai.
Les inventeurs ont donc cherché à développer un dispositif intégré plus simple et qui permet la caractérisation d’un objet rayonnant et la reconstitution du diagramme de rayonnement.
Objectifs de l’invention
L’invention vise à fournir un dispositif de mesure, de caractérisation et de visualisation du rayonnement électromagnétique d’un objet rayonnant.
L’invention vise en particulier à fournir un tel dispositif de mesure qui permette la mesure, la caractérisation et la visualisation du rayonnement de l’objet pour des fréquences variées.
L’invention vise en particulier à fournir un tel dispositif de mesure qui ne nécessite pas l’utilisation de composants complexes et dont le nombre de composants est limité.
L’invention vise en particulier à fournir un tel dispositif de mesure qui puisse être utilisé sans difficultés majeures par quiconque, sans connaissance technique particulière du fonctionnement des antennes.
L’invention vise aussi à fournir, dans au moins un mode de réalisation, un dispositif manuportable de mesure et de caractérisation du rayonnement électromagnétique d’un objet rayonnant.
Exposé de l’invention
Pour ce faire, l’invention concerne un dispositif de mesure du rayonnement électromagnétique d’un objet rayonnant comprenant :
- un caisson étanche au rayonnement électromagnétique s’étendant le long d’une direction longitudinale équipé d’une ouverture adaptée pour permettre le logement dudit objet rayonnant à mesurer dans ledit caisson,
- des moyens de modulation du rayonnement dudit objet rayonnant.
Le dispositif selon l’invention est caractérisé en ce qu’il comprend en outre :
- des moyens de déplacement selon la direction longitudinale dudit objet rayonnant à l’intérieur du caisson étanche entre une position, dite proximale, et une position, dite distale,
- un film thermosensible au champ électromagnétique logé dans ledit caisson étanche et s’étendant dans un plan perpendiculaire à ladite direction longitudinale au voisinage de ladite position proximale,
- une caméra logée à une extrémité longitudinale dudit caisson étanche, à l’opposée dudit objet rayonnant à mesurer par rapport au film thermosensible, et configurée pour faire l’acquisition d’images dudit film thermosensible, ledit film thermosensible étant agencé à la distance focale de ladite caméra,
- des moyens de traitement desdites images acquises par ladite caméra configurés pour fournir une cartographie du champ électromagnétique capté par ledit film thermosensible.
Le dispositif selon l’invention permet ainsi de mesurer le champ électromagnétique d’un objet rayonnant et d’en fournir une cartographie. En particulier et selon l’invention, le film thermosensible, s’échauffe au contact du rayonnement électromagnétique de l’objet rayonnant. Cet échauffement est imagé par la caméra, puis détecté et caractérisé par les moyens de traitement d’images. Le film thermosensible peut être sensible soit au champ magnétique, soit au champ électrique. Le film thermosensible est agencé à la distance focale de la caméra.
Le dispositif selon l’invention permet de tester tout type d’objet rayonnant pouvant être logé dans le caisson étanche, supprimant ainsi le besoin de recourir à une chambre anéchoïde ou réverbérante des solutions de l’art antérieur. En particulier, le dispositif selon l’invention permet d’obtenir des images du champ rayonné par une source radiofréquence et/ou microonde sans précaution particulière. Un tel dispositif peut donc être utilisé dans une salle de classe, un bureau d’études et de manière générale dans n'importe quelle pièce non spécifiquement conçue pour le rayonnement électromagnétique.
Dans tout le texe et conformément aux usages, il est considéré que les ondes radioélectriques (ou ondes hertziennes) désignent les ondes électromagnétiques dont les fréquences sont comprises entre 3Hz et 300 MHz et les microondes (ou ondes hyperfréquences) désignent les ondes électromagnétiques dont les fréquences sont comprises entre 300 MHz et 300 GHz.
Le dispositif selon l’invention est un dispositif intégré qui ne nécessite aucun équipement externe si ce n’est une source d’énergie pour l’alimentation électrique de la source rayonnante, de la caméra, des moyens de traitement d’images et des moyens de déplacement longitudinal de l’objet rayonnant. Selon une variante avantageuse, cette source d’énergie électrique est formée par une batterie rechargeable logée dans un compartiment adjacent au boitier étanche.
En outre, le dispositif selon l’invention présente la particularité de permettre un déplacement longitudinal de l’objet rayonnant par rapport au film thermosensible (par exemple par des moyens motorisés) entre une position distale éloignée du film thermosensible et une position proximale proche du film thermosensible, ce qui permet de mesurer le rayonnement électromagnétique de l’objet rayonnant dans différents plans situés à différentes distances du film thermosensible. Le dispositif selon l’invention permet ainsi, par les moyens de traitement d’images, de réaliser une reconstitution 3D du champ proche en amplitude.
En outre et dans le cas d’une antenne, des mesures d’amplitude en deux plans distincts permettent de reconstruire algorithmiquement la phase du champ en tout point de l’ouverture de l’antenne, et ainsi de reconstituer le diagramme de rayonnement de cette antenne.
Selon un mode de réalisation avantageux, la caméra est équipée d’un capteur d’acquisition d’images dans le domaine du visible et le dispositif comprend en outre une source lumineuse monochromatique logée dans ledit caisson et orientée vers le film thermosensible de manière à pouvoir l’illuminer, ce dernier étant revêtu d’une couche d’un matériau fluorescent.
Selon cette variante de réalisation, le dispositif est équipé d’une caméra équipée d’un capteur CCD ou CMOS dans le visible. Cette caméra est munie d’un filtre optique adapté à la longueur d’onde de la lumière fluorescente émise par le film thermosensible recouvert d’un fluorophore. En outre, une source lumineuse logée dans le caisson illumine le film thermosensible. Le matériau fluorescent doit être un fluorophore qui émet dans le domaine du visible (approximativement 400 nm à 800 nm) et dont l’intensité de fluorescence dépend de la température. Selon un mode de réalisation, le matériau utilisé est la Rhodamine B dont l’intensité maximale de fluorescence se situe autour de 600 nm à la température ambiante lorsqu’elle est soumise à une lumière de longueur d’onde 470 nm et voit cette intensité baisser fortement (environ 2%/°C) avec l’élévation de sa température. La différence entre les longueurs d’ondes reçues par l’excitation et de fluorescence facilite la mesure, car le filtrage sur la caméra permettra d’éliminer la réflexion sur le film de la lumière émise, sans perte de signal utile.
Bien entendu, d’autres matériaux à la fois fluorescents et thermosensibles peuvent être utilisés sans remettre en cause le principe de ce mode avantageux de réalisation.
Selon un deuxième mode de réalisation, la caméra est une caméra équipée d’un capteur infrarouge.
Dans ce cas, la caméra fait directement l’acquisition de réchauffement du film thermosensible.
Quelle que soit le type de caméra utilisée (infrarouge ou visible), le film thermosensible utilisé est soit faiblement conducteur (pour la mesure du champ électrique), soit isolant et à pertes magnétiques (pour la mesure du champ magnétique). Ainsi, sous l’effet du champ électromagnétique de l’objet rayonnant, le film s’échauffe (typiquement dans une gamme de 0,01 à 10°C).
Cet échauffement est directement enregistré par la caméra infrarouge (pour la version infrarouge), ou bien est responsable d’une variation de l’intensité de fluorescence (pour la version fluorescence) enregistrée par la caméra dans le domaine du visible.
De façon avantageuse, le dispositif de mesure comprend en outre un filtre agencé entre l’objet rayonnant à mesurer et le film thermosensible, ce filtre étant configuré pour filtrer une composante du champ électromagnétique de manière à permettre une mesure des autres composantes du rayonnement électromagnétique de l’objet rayonnant à mesurer.
Ainsi et selon cette variante avantageuse, un filtre est interposé entre l’objet rayonnant et le film thermosensible. Ce filtre prend par exemple la forme d’un second film mince, du type grille conductrice, grille absorbante ou motifs particuliers. Ce filtre permet de laisser passer sur le film thermosensible uniquement les composantes non filtrées. On peut ainsi réaliser une mesure de polarisation croisée par exemple. Dans le cas d’une polarisation circulaire, le caractère droite/gauche peut également être obtenu avec un film filtre utilisant les motifs adéquats, en particulier des surfaces sélectives en polarisation (connues sous l’acronyme PSS).
Selon une variante avantageuse de l’invention, le film thermosensible est monté de manière amovible à l’intérieur dudit caisson étanche.
Cette variante permet de changer facilement et rapidement le type de film. En particulier, et selon l’invention, le type de film thermosensible utilisé détermine le type de champ (électrique ou magnétique) que l’on peut mesurer. Pour la mesure du champ électrique, on utilise un film faiblement conducteur. Pour la mesure du champ magnétique, on utilise un film isolant et à pertes magnétiques.
Ce montage amovible peut être de tout type. Il peut par exemple s’agir d’un cadre sur lequel le film est placé, ce cadre étant logé dans des glissières de guidage sur les parois internes du caisson en regard l’une de l’autre.
Selon un mode de réalisation particulier de l’invention, le film thermosensible est un film anisotrope permettant de déterminer la direction du champ et sa variation spatiale ou son taux d’ellipticité en fonction de la polarisation du champ rayonné par ledit objet mesurer.
Selon cette variante avantageuse, le film anisotrope comprend un réseau de motifs permettant de déterminer la variation spatiale de l’amplitude et de la direction du champ (en polarisation linéaire), ou bien la variation spatiale de l’amplitude et du taux d’ellipticité (en polarisation circulaire) du champ rayonné par ledit objet rayonnant.
Un tel film anisotrope est un film présentant des motifs particuliers (bandes parallèles, étoiles à 3 branches ou plus) qui permet de déterminer, outre l’amplitude, la polarisation du champ électrique, y compris le taux d’ellipcité dans le cas d’une polarisation circulaire. Avec un tel réseau de motifs, on peut en outre déterminer la distribution spatiale dans le plan de ces amplitudes et polarisations.
Selon une variante de l’invention, lesdits moyens de modulation du rayonnement dudit objet rayonnant comprennent un microcontrôleur, un synthétiseur et un amplificateur radiofréquence ou microondes logés dans un compartiment dédié.
Cette variante permet d’alimenter et de piloter l’objet rayonnant.
Selon une autre variante de l’invention, lesdits moyens de modulation du rayonnement dudit objet rayonnant comprennent : un écran obturateur agencé entre ledit objet rayonnant et ledit film thermosensible, ledit écran obturateur étant configuré pour pouvoir passer d’un état, dit transparent, dans lequel le rayonnement dudit objet rayonnant peut atteindre ledit film thermosensible, à un état, dit opaque, dans lequel ledit écran empêche ledit rayonnement dudit objet rayonnant d’atteindre ledit film thermosensible, une électronique de commande configuré pour piloter ledit écran obturateur entre l’état opaque et l’état transparent et inversement.
Cette variante permet de mesurer les champs des objets non coopératifs. L’écran obturateur placé devant le film thermosensible permet d’assurer la modulation basse fréquence de l’objet en s’ouvrant et se fermant à la fréquence susmentionnée de quelques dixièmes à quelques Hz. L’obturation peut être obtenue par des moyens électriques ou mécaniques. Un obturateur mécanique est par exemple constitué de deux grilles parallèles et masquant chacune 50% du film thermosensible, l’une oscillant latéralement sur une distance égale au pas de la grille, permettant une ouverture à 50% (grilles superposées) ou fermeture (grilles décalées d’un pas). L’obturateur électrique peut être un film à cristaux liquides ou à plasma (dont l’allumage intermittent assure l’alternance opacité/ transparence).
De façon avantageuse, les moyens de déplacement de l’objet rayonnant selon la direction longitudinale comprennent un rail le long duquel l’objet rayonnant peut coulisser et un moteur électrique de déplacement de l’objet sur le rail.
D’autres moyens de déplacement de l’objet rayonnant entre la position proximale et la position distale peuvent être mis en œuvre sans changer l’objet et le résultat de l’invention.
Outre, le déplacement longitudinal de l’objet, il peut également être prévu de doter le dispositif de moyens de pivotement de l’objet rayonnant sur lui-même pour modifier l’ouverture angulaire de la mesure du champ.
Avantageusement et selon l’invention, le caisson étanche au rayonnement électromagnétique est formé d’un caisson présentant une paroi interne recouverte d’absorbants microondes.
Ces absorbants sont configurés pour éviter toute réflexion du champ électromagnétique et pour atténuer l’émission du champ vers l’extérieur du caisson étanche.
L’invention concerne également un dispositif de mesure caractérisé en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci- après.
Liste des figures
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre uniquement non limitatif et qui se réfère aux figures annexées dans lesquelles :
[Fig. 1] est une vue schématique en perspective d’un dispositif de mesure selon un mode de réalisation de l’invention équipé d’une caméra infrarouge, la vue comprenant en outre un arraché permettant de visualiser les éléments présents dans le dispositif de mesure, [Fig. 2] est une vue schématique en perspective du dispositif de la figure 1 sur laquelle l’objet rayonnant a été déplacé par rapport au film thermosensible,
[Fig. 3] est une vue schématique en perspective d’un dispositif de mesure selon un autre mode de réalisation de l’invention équipé d’une caméra dans le domaine visible et d’une source d’émission d’une lumière fluorescente, la vue comprenant en outre un arraché permettant de visualiser les éléments présents dans le dispositif de mesure,
[Fig. 4] est une vue schématique en perspective du dispositif de la figure 3 sur laquelle l’objet rayonnant a été déplacé par rapport au film thermosensible,
[Fig. 5] est une vue schématique en perspective d’un dispositif de mesure selon un autre mode de réalisation de l’invention équipé d’un filtre additionnelle agencé entre l’objet rayonnant et le film thermosensible, la vue comprenant en outre un arraché permettant de visualiser les éléments présents dans le dispositif de mesure,
[Fig. 6] est une vue schématique en perspective d’un dispositif de mesure selon un mode de réalisation de l’invention sur laquelle on peut observer le couvercle du dispositif en position ouverte, la vue comprenant en outre un arraché permettant de visualiser les éléments présents dans le dispositif de mesure.
Description détaillée d’un mode de réalisation de l’invention
Sur les figures, les échelles et les proportions ne sont pas strictement respectées et ce, à des fins d’illustration et de clarté. Dans toute la description détaillée qui suit en référence aux figures, sauf indication contraire, chaque élément du dispositif de mesure et décrit tel qu’il est agencé lorsqu’un objet rayonnant est logé dans le caisson étanche du dispositif de mesure. Cette configuration est notamment représentée sur la figure 1.
En outre, les éléments identiques, similaires ou analogues sont désignés par les mêmes références dans toutes les figures. Enfin, les termes longitudinal, transversal et vertical sont utilisés à titre non limitatif en référence au trièdre L, T, V tel que représenté sur la figure 1. La direction longitudinale correspond à la direction principale du dispositif de mesure le long de laquelle peut se déplacer l’objet rayonnant. La direction verticale est la direction définie par la gravité. La direction transversale est la direction perpendiculaire à la direction longitudinale et à la direction verticale.
Les figures 1 et 2 illustrent un dispositif de mesure du rayonnement électromagnétique d’un objet rayonnant 10, telle qu’une antenne selon un premier mode de réalisation.
Selon ce mode de réalisation, le dispositif comprend un caisson 20 étanche formé d’un boitier inférieur 20a et d’un couvercle 20b, représenté sur la figure 6, monté articulé sur le boitier inférieur 20a.
L’objet rayonnant 10 est monté sur un rail coulissant 12 qui forme les moyens de déplacement selon la direction longitudinale L de l’objet rayonnant 10.
L’objet rayonnant 10 peut être déplacé le long de la direction longitudinale L entre une position, dite proximale, représentée schématiquement sur les figures 1 et 3 et une position, dite distale, représentée schématiquement sur les figures 2 et 4.
Ce déplacement peut être obtenu par des moyens motorisés (non représentés sur les figures) tels qu’un moteur électrique entraînant l’objet rayonnant 10 le long du rail 12.
Le dispositif de mesure comprend également des moyens 13 de modulation du rayonnement de l’objet rayonnant. Ces moyens sont par exemple logés dans un compartiment 15 spécifique agencé à une première extrémité longitudinale du caisson étanche 20.
Le dispositif de mesure comprend également un film thermosensible 14 au champ électromagnétique logé dans le caisson étanche 20 et s’étendant transversalement au voisinage de la position proximale, c’est-à-dire qu’il s’étend dans un plan perpendiculaire à ladite direction longitudinale.
Le dispositif de mesure comprend également une caméra 16 logée à une seconde extrémité longitudinale du caisson étanche 20, à l’opposé de l’objet rayonnant 10 à mesurer par rapport au film thermosensible 14.
Le dispositif de mesure comprend enfin un ordinateur 18 formant les moyens de traitement des images acquises par la caméra 16. Cet ordinateur 18 comprend des routines logicielles configurées pour fournir une cartographie du champ électromagnétique capté par le film thermosensible 14.
Dans le mode de réalisation des figures 1 et 2, la caméra 16 est une caméra infrarouge configurée pour pouvoir faire directement l’acquisition de réchauffement du film thermosensible.
Dans le mode de réalisation des figures 3 et 4, la caméra 16 est une caméra dans le domaine visible et la caméra est configurée pour pouvoir faire l’acquisition de la lumière fluorescente émise par le film thermosensible 14 recouvert d’un fluorophore. Pour ce faire, le dispositif comprend en outre, une source de lumière 17 qui illumine le film thermosensible 14. Dans ce cas, la caméra 16 est munie d’un filtre optique adapté à la longueur d’onde de la lumière fluorescente émise par le film thermosensible recouvert du fluorophore. Le matériau qui recouvre le film thermosensible peut par exemple être de la Rhodamine B dont l’intensité maximale de fluorescence se situe autour de 600 nm à la température ambiante lorsqu’elle est soumise à une lumière de longueur d’onde 470 nm.
Quel que soit le mode de réalisation, le principe de l’invention repose sur l’interaction du film 14 avec le champ rayonné par l’objet rayonnant 10.
Ce film thermosensible 14 est soit faiblement conducteur (pour la mesure du champ électrique), soit isolant et à pertes magnétiques (pour la mesure du champ magnétique). Ainsi, sous l’effet du champ, le film s’échauffe (typiquement dans une gamme de 0,01 à 10°C). Cet échauffement est directement enregistré par la caméra infrarouge (pour le mode de réalisation des figures 1 et 2), ou bien est responsable d’une variation de l’intensité de fluorescence (pour le mode de réalisation des figures 3 et 4), qui est enregistrée par la caméra 16.
Le rayonnement de l’objet rayonnant 10 provoque réchauffement du film 14 (qui est un film mince, c’est-à-dire d’une épaisseur très faible devant l’épaisseur de peau et la longueur d’onde : le champ et la température sont supposés constants dans l’épaisseur du film) proportionnel à la densité de puissance absorbée suivant la formule suivante :
. „ _ Pgbs. e
2h où e représente l’épaisseur du film 14 et h est un coefficient de convection. La densité de puissance absorbée est donnée par l’équation suivante :
Figure imgf000014_0001
où f représente la fréquence du rayonnement, cria conductivité du film 14, s‘ ’ sa permittivité (composante imaginaire), et p” sa perméabilité magnétique (composante imaginaire).
Pour la mesure du champ électrique, le dispositif de mesure est équipé d’un film « à pertes électriques », c’est-à-dire à faible permittivité et perméabilité négligeable, mais conductivité non nulle. Ainsi, seule la première composante de l’équation précédente est prise en compte et la puissance est proportionnelle au carré du champ électrique.
Pour la mesure du champ magnétique, le dispositif de mesure est équipé d’un film « à pertes magnétiques », c’est-à-dire à forte perméabilité, mais conductivité et permittivité négligeable. Ainsi, seule la seconde composante de l’équation précédente est prise en compte et la puissance est proportionnelle au carré du champ magnétique.
Ainsi, pour le mode de réalisation des figures 1 et 2 (caméra infrarouge), l’ordinateur 18 comprend des routines logicielles configurées pour reconstruire, à partir des images thermiques acquises par la caméra 16, la cartographie de l’amplitude du champ (électrique ou magnétique) dans le plan (Oxy) du film, à partir de la racine carrée de l’échauffement et avec un coefficient k de proportionnalité qui ne dépend que du film. Les moyens logiciels sont programmés pour calculer les amplitudes suivantes : pour un film à pertes électriques,
Figure imgf000014_0002
pour un fim à pertes magnétiques, \H(x, y) | =
Figure imgf000014_0003
Pour le mode de réalisation des figures 3 et 4 (caméra visible et fluorescence), les moyens de traitement 18 d’images sont configurés pour reconstruire, à partir des images optiques acquises par la caméra 16, la cartographie de l’amplitude du champ (électrique ou magnétique) dans le plan (Oxy) du film, à partir de la racine carrée de l’intensité de fluorescence (signal reçu par la caméra) et avec un coefficient g. En général la fluorescence décroit avec la température ; la fluorescence en l’absence de champ (« à froid ») donne une intensité lo, qui est donc abaissée par le champ (par le truchement de la variation de température du film qu’il induit) en Ifluo. Les moyens de traitement 18 comprennent par exemple des moyens logiciels programmés pour calculer les amplitudes : pour un film à pertes électriques,
Figure imgf000015_0001
pour un film à pertes électriques, \H(x, y)
Figure imgf000015_0002
Comme indiqué précédemment, le film thermosensible 14 dépend du type de mesure à effectuer. Ce film est de préférence monté de manière amovible dans le caisson étanche 20 pour pouvoir être aisément installé/remplacé en fonction du type de mesure à effectuer.
Pour la mesure de l’amplitude du champ électrique (E) de l’objet rayonnant 10, on utilise un film mince 14 faiblement conducteur, constitué d’un matériau composite à base d’une matrice électriquement isolante et de particules électriquement conductrices. La charge particulaire électriquement conductrice doit être ajustée de façon à ce que le matériau absorbant présente une « faible » impédance de surface (=résistivité/épaisseur), c’est-à-dire une impédance de surface comprise entre 500 et 3000 Q, afin qu’il n’absorbe qu’une partie seulement du champ électrique. Cette impédance de surface est ajustée en fonction de la concentration de particules dans la matrice isolante et de l’épaisseur de la couche de matériau absorbant. Un polyimide (Kapton) chargé Carbone de quelques dizaines de microns d’épaisseur est un exemple de film pouvant être utilisé.
Pour la mesure de champ magnétique, on utilise un matériau composite à base d’une matrice électriquement isolante et de particules magnétiques. La densité de particules ferromagnétiques doit rester suffisamment faible afin de limiter l’absorption et donc la perturbation apportée sur le champ que l’on souhaite mesurer. Dans la pratique, des films à matrice polymère contenant des particules de fer (10 à 20 % en fraction volumique) sont parfaitement utilisables. On peut aussi envisager des films neutres (électriquement et magnétiquement) sur lesquels une solution contenant des nanoparticules magnétiques est déposée, avec une concentration et une épaisseur adaptées à la mesure.
Le dispositif de mesure comprend également de préférence un compartiment 15 logeant les moyens de modulation du rayonnement de l’objet rayonnant 12.
Ces moyens de modulation dépendent du type d’objet rayonnant dont on cherche à mesure le rayonnement.
En particulier, le dispositif de mesure selon l’invention peut présenter un mode transitoire et un mode de modulation Basse Fréquence.
Dans le cadre d’un phénomène transitoire rapide (ne mettant pas en œuvre de phénomènes thermiques complexes telles que conduction, convection etc.), l’enregistrement direct des images permet une interprétation électromagnétique et la transcription en champ.
Dans le cadre d’une alimentation harmonique continue de la source (CW), soit son mode usuel s’il s’agit d’une antenne par exemple, une modulation basse fréquence (de quelques dixièmes de Hz à quelques Hz) de la source, associée à un filtrage des images enregistrées (détection synchrone) permet d’éliminer les phénomènes thermiques susmentionnés, soit la conduction dans le film et la convection avec l’air ambiant. En outre cette démodulation synchrone permet d’améliorer le rapport signal sur bruit et la dynamique de mesure. En effet, l’épaisseur du film est de l’ordre de la centaine de microns ou inférieur. Avec des caractéristiques typiques du Kapton (mesure de E) ou bien d’un film à matrice polymère (mesure de H), les constantes de temps thermiques r des films, données par la formule suivante, sont de quelques secondes: pCe
T = -2/T où C correspond à la capacité calorifique (en J/kg/K), p est la masse volumique (en kg/m3), h est un coefficient de convection en (W/m2/K) et e est l’épaisseur du film en m.
L’équilibre convectif est atteint en quelques secondes (le film monte en température selon une loi exponentielle en (1 - e t/T) et se stabilise), mais la modulation BF ne lui en laisse pas le temps. Ainsi l’élévation de température est minorée, et linéarisable (par exemple en triangle pour une modulation carrée - tout ou rien - de la source).
Ainsi le système de modulation est agencé pour appliquer une séquence temporelle de modulation du rayonnement électromagnétique auquel le film est exposé. Le système de détection synchrone est agencé pour filtrer les intensités saisies dans des images successives de la surface du film, conformément à la séquence temporelle de modulation. Cela peut être réalisé au cours de la mesure ou bien après l’enregistrement complet, par transformée de Fourrier rapide (FFT) par exemple.
Dans le cas où la source rayonnante ne peut pas être contrôlée, un obturateur (mécanique ou électrique) placé devant le film capteur et piloté en ouverture/fermeture permet de recréer la modulation (en tout ou rien), ce qui permet la mesure par détection synchrone et ramène au cas précédent. L’obturateur mécanique peut être, par exemple, constitué de deux grilles parallèles et masquant chacune 50% du film, l’une oscillant latéralement sur une distance égale au pas de la grille, permettant une ouverture à 50% (grilles superposées) ou fermeture (grilles décalées d’un pas). L’obturateur électrique peut être un film à cristaux liquides ou à plasma (dont l’allumage intermittent assure l’alternance opaci té/ transparence).
Le dispositif selon l’invention permet de déplacer l’objet rayonnant 10 le long du rail longitudinale 12.
Le dispositif selon l’invention permet donc de mesurer le rayonnement électromagnétique de l’objet rayonnant 10 dans différents plans situés à différentes distances du film thermosensible 14. Le dispositif selon l’invention permet ainsi, par les moyens de traitement 18 d’images, de réaliser une reconstitution 3D du champ proche en amplitude.
En particulier, dans le cas d’une antenne, des mesures d’amplitude en deux plans distincts permettent d’obtenir la phase du champ en tout point de l’ouverture de l’antenne, et ainsi la reconstitution du diagramme de rayonnement de cette antenne. Pour ce faire, les moyens de traitement d’images peuvent mettre en œuvre par des moyens logiciels la méthode connue sous la dénomination anglaise de « Planar Near-Field/Far Field Phase Retrieval ». La figure 5 illustre une variante de réalisation du dispositif de mesure dans lequel un filtre 19 est agencé entre l’objet rayonnant 10 à mesurer et le film thermosensible 14. Ce filtre est configuré pour filtrer une composante du champ électromagnétique de manière à permettre une mesure des autres composantes du rayonnement électromagnétique de l’objet à mesurer. Ce filtre 19 est par exemple formé d’un film mince du type grille conductrice ou grille absorbante ou motifs particuliers, notamment des surfaces sélectives en polarisation (PSS). Il permet de ne laisser passer sur le film thermosensible 14 que les composantes non filtrées.

Claims

REVENDICATIONS
1. Dispositif de mesure du rayonnement électromagnétique d’un objet rayonnant (10) comprenant : un caisson (20) étanche au rayonnement électromagnétique s’étendant le long d’une direction longitudinale (L) équipé d’une ouverture adaptée pour permettre le logement dudit objet rayonnant (10) à mesurer dans ledit caisson, des moyens de modulation (13) du rayonnement dudit objet rayonnant, caractérisé en ce qu’il comprend en outre : des moyens de déplacement (12) selon la direction longitudinale (L) dudit objet rayonnant (10) à l’intérieur du caisson (20) étanche entre une position, dite proximale, et une position, dite distale, un film thermosensible (14) au champ électromagnétique logé dans ledit caisson (20) étanche et s’étendant dans un plan perpendiculaire à ladite direction longitudinale au voisinage de ladite position proximale, une caméra (16) logée à une extrémité longitudinale dudit caisson (20) étanche, à l’opposée dudit objet rayonnant (10) à mesurer par rapport au film thermosensible (14), et configurée pour faire l’acquisition d’images dudit film thermosensible, ledit film thermosensible (14) étant agencé à la distance focale de ladite caméra (16), des moyens de traitement (18) desdits images acquises par ladite caméra (16) configurés pour fournir une cartographie du champ électromagnétique dudit objet rayonnant (10) capté par ledit film thermosensible (4).
2. Dispositif selon la revendication 1, caractérisé en ce que ladite caméra (16) est équipée d’un capteur d’acquisition d’images dans le domaine du visible et en ce qu’il comprend en outre une source lumineuse (17) monochromatique orientée de manière à illuminer le film thermosensible (14) et en ce que ce dernier est revêtu d’un couche d’un matériau fluorescent. Dispositif selon la revendication 1, caractérisé en ce que ladite caméra (16) est une caméra équipée d’un capteur infrarouge. Dispositif selon l’une des revendications 1 à 3, caractérisé en ce que lesdits moyens de modulation (13) du rayonnement dudit objet rayonnant (10) comprennent un microcontrôleur, un synthétiseur et un amplificateur radiofréquence ou microondes logés dans un compartiment (15) dédié. Dispositif selon l’une des revendications 1 à 3, caractérisé en ce que lesdits moyens de modulation (13) du rayonnement dudit objet rayonnant comprennent : un écran obturateur agencé entre ledit objet rayonnant (10) et ledit film thermosensible (14), ledit écran obturateur étant configuré pour pouvoir passer d’un état, dit transparent, dans lequel le rayonnement dudit objet rayonnant peut atteindre ledit film thermosensible, à un état, dit opaque, dans lequel ledit écran empêche ledit rayonnement dudit objet rayonnant d’atteindre ledit film thermosensible, une électronique de commande configurée pour piloter ledit écran obturateur entre l’état opaque et l’état transparent et inversement. Dispositif selon l’une des revendications 1 à 5, caractérisé en ce qu’il comprend en outre un filtre (19) agencé entre ledit objet rayonnant (10) à mesurer et ledit film thermosensible (14), ledit filtre (19) étant configuré pour filtrer une composante du champ électromagnétique de manière à permettre une mesure des autres composantes du rayonnement électromagnétique dudit objet rayonnant (10) à mesurer. Dispositif selon l’une des revendications 1 à 6, caractérisé en ce que ledit film thermosensible (14) est un film anisotrope comprenant un réseau de motifs permettant de déterminer la variation spatiale de l’amplitude et de la direction du champ (en polarisation linéaire), ou bien la variation spatiale de l’amplitude et du taux d’ellipticité (en polarisation circulaire) du champ rayonné par ledit objet rayonnant (10). Dispositif selon l’une des revendications 1 à 7, caractérisé en ce que ledit film thermosensible (14) est monté de manière amovible à l’intérieur dudit caisson (20) étanche. Dispositif selon l’une des revendications 1 à 8, caractérisé en ce que lesdits moyens de déplacement (12) dudit objet rayonnant (10) selon la direction longitudinale (L) comprennent un rail le long duquel ledit objet rayonnant (10) peut coulisser et un moteur électrique de déplacement dudit objet sur ledit rail. Dispositif selon l’une des revendications 1 à 9, caractérisé en ce que ledit caisson (20) étanche au rayonnement électromagnétique est formé d’un caisson présentant une paroi interne recouverte d’absorbants microondes.
PCT/EP2023/059320 2022-04-11 2023-04-07 Dispositif de mesure du rayonnement electromagnetique d'un objet rayonnant WO2023198646A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2203286A FR3134449B1 (fr) 2022-04-11 2022-04-11 Dispositif de mesure du rayonnement electromagnetique d’un objet rayonnant
FRFR2203286 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023198646A1 true WO2023198646A1 (fr) 2023-10-19

Family

ID=82781243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/059320 WO2023198646A1 (fr) 2022-04-11 2023-04-07 Dispositif de mesure du rayonnement electromagnetique d'un objet rayonnant

Country Status (2)

Country Link
FR (1) FR3134449B1 (fr)
WO (1) WO2023198646A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458851B2 (en) * 2018-02-03 2019-10-29 Keysight Technologies, Inc. Systems and methods for thermal imaging of RF signals
WO2020035193A1 (fr) 2018-08-14 2020-02-20 Bluetest Ab Dispositif de mesure amélioré de systèmes d'antennes
US20200119460A1 (en) * 2018-10-12 2020-04-16 Anritsu Corporation Antenna apparatus and measurement method
WO2021058895A1 (fr) * 2019-09-24 2021-04-01 Office National D'etudes Et De Recherches Aérospatiales Dispositif pour reveler des variations spatiales de polarisation d'un rayonnement electromagnetique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002216861A1 (en) 2001-12-19 2003-06-30 Institut De Cardiologie De Montreal Non-invasive detection of endothelial dysfunction by blood flow measurement in opposed limbs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458851B2 (en) * 2018-02-03 2019-10-29 Keysight Technologies, Inc. Systems and methods for thermal imaging of RF signals
WO2020035193A1 (fr) 2018-08-14 2020-02-20 Bluetest Ab Dispositif de mesure amélioré de systèmes d'antennes
US20200119460A1 (en) * 2018-10-12 2020-04-16 Anritsu Corporation Antenna apparatus and measurement method
WO2021058895A1 (fr) * 2019-09-24 2021-04-01 Office National D'etudes Et De Recherches Aérospatiales Dispositif pour reveler des variations spatiales de polarisation d'un rayonnement electromagnetique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PROST DANIEL: "Measurement of the Amplitude and Polarization of the Electric Field by Electromagnetic Infrared Thermography", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE, USA, vol. 70, no. 5, 29 December 2021 (2021-12-29), pages 3799 - 3805, XP011907751, ISSN: 0018-926X, [retrieved on 20211229], DOI: 10.1109/TAP.2021.3137491 *
RAGAZZO H ET AL: "Detection and Imaging of Magnetic Field in the Microwave Regime With a Combination of Magnetic Losses Material and Thermofluorescent Molecules", IEEE TRANSACTIONS ON MAGNETICS, IEEE, USA, vol. 55, no. 2, 1 February 2019 (2019-02-01), pages 1 - 4, XP011706023, ISSN: 0018-9464, [retrieved on 20190118], DOI: 10.1109/TMAG.2018.2860520 *

Also Published As

Publication number Publication date
FR3134449B1 (fr) 2024-04-19
FR3134449A1 (fr) 2023-10-13

Similar Documents

Publication Publication Date Title
EP2257765B1 (fr) Capteur interferometrique a atomes froids
EP2917688B1 (fr) Procede de mesure des variations d'epaisseur d'une couche d'une structure semi-conductrice multicouche
Foremen et al. 8C2-fluid flow measurements with a laser Doppler velocimeter
FR3048085A1 (fr) Un accelerometre de levitation magnetique a haute precision
CA2690102A1 (fr) Procede et dispositif de detection d'eau dans une structure alveolaire
EP0533785B1 (fr) Dispositif de mesure, en une pluralite de points d'une surface du champ micro-onde rayonne par une source
WO2015071116A1 (fr) Dispositif et methode de mise au point tridimensionnelle pour microscope
US9759995B2 (en) System and method for diffuse imaging with time-varying illumination intensity
FR3075386A1 (fr) Dispositif de mesure d’un champ electrique et/ou magnetique notamment dans un conducteur de transport d’energie electrique
EP2405287B1 (fr) Dispositif dé telédétection laser et procédé d'interférometrie
FR2623910A1 (fr) Dispositif de mesure sans contact de champs electriques qui se modifient statistiquement et/ou dans le temps
WO2023198646A1 (fr) Dispositif de mesure du rayonnement electromagnetique d'un objet rayonnant
CA2788259A1 (fr) Procede d'estimation de defauts dans un objet et dispositif de mise en oeuvre
Novikov et al. Microwave measurements of the pulsed photoconductivity and photoelectric effect
EP1597601B1 (fr) Procede et systeme pour mesurer un debit d'absorption specifique (das)
EP0151057B1 (fr) Interféromètre de vitesse à sensibilité continûment variable
FR2977683A1 (fr) Dispositif pour detecter des objets tels que des mines
WO2008006825A1 (fr) Detecteur d'objets par analyse d'echos hyperfrequences dans une enceinte a chaos variable
EP3516353B1 (fr) Procédé d'amélioration des capacités de détection d'un système d'imagerie multispectrale
FR2787583A1 (fr) Capteur de champ electromagnetique par thermographie infrarouge
FR3050529B1 (fr) Dispositif et procede pour estimer ou mesurer la stabilite d'un melange par la variation dans la duree d'un signal electrique radiofrequence
FR2599514A1 (fr) Systeme opto-electronique pour la determination de la direction et de la vitesse d'un vehicule mobile
FR2886492A1 (fr) Detecteur d'objets par analyse d'echos hyperfrequences
Jáuregui López Design of terahertz sensors based on metasurfaces for fungal infection detection
EP0868834A1 (fr) Procede et dispositif interferometriques de caracterisation d'un milieu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23717923

Country of ref document: EP

Kind code of ref document: A1