WO2023197958A1 - 一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人 - Google Patents

一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人 Download PDF

Info

Publication number
WO2023197958A1
WO2023197958A1 PCT/CN2023/087011 CN2023087011W WO2023197958A1 WO 2023197958 A1 WO2023197958 A1 WO 2023197958A1 CN 2023087011 W CN2023087011 W CN 2023087011W WO 2023197958 A1 WO2023197958 A1 WO 2023197958A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
chamber
deep
underwater
solenoid valve
Prior art date
Application number
PCT/CN2023/087011
Other languages
English (en)
French (fr)
Inventor
郝富强
张纪亚
Original Assignee
深圳市行健自动化股份有限公司
深圳市鲲鹏智能装备制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市行健自动化股份有限公司, 深圳市鲲鹏智能装备制造有限公司 filed Critical 深圳市行健自动化股份有限公司
Publication of WO2023197958A1 publication Critical patent/WO2023197958A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/52Tools specially adapted for working underwater, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F3/00Amphibious vehicles, i.e. vehicles capable of travelling both on land and on water; Land vehicles capable of travelling under water
    • B60F3/003Parts or details of the vehicle structure; vehicle arrangements not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F3/00Amphibious vehicles, i.e. vehicles capable of travelling both on land and on water; Land vehicles capable of travelling under water
    • B60F3/0061Amphibious vehicles specially adapted for particular purposes or of a particular type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/13Hulls built to withstand hydrostatic pressure when fully submerged, e.g. submarine hulls

Definitions

  • the present invention relates to underwater mobile operating equipment, and in particular to a pressure-resistant cabin, an underwater mining vehicle and an underwater mobile robot for deep-sea mobile operating equipment.
  • the first method results in a greater strength and thickness of the equipment shell, which increases the weight and volume of the equipment a lot.
  • the sealing requires full pressure resistance, which is difficult in technical requirements and implementation.
  • the overweight of the equipment means that for underwater mobile equipment The large size and increased buoyancy compensation requirements make it more difficult to launch and recover.
  • the second method has low requirements for sealing and shell pressure resistance levels, but requires that the parts and electrical components used inside the equipment can withstand the same pressure as the external water depth.
  • the underwater equipment or parts produced by mainstream international manufacturers generally have a pressure resistance level of around 4,000 meters. Beyond this level, the industrial chain is not perfect. Related equipment components need to be customized and are expensive. At the same time, customized components still have a delivery date. And the shortcomings of difficulty in ensuring quality are not conducive to industrial production.
  • the technical problem to be solved by the present invention is to provide a pressure-resistant cabin, an underwater mining vehicle and an underwater mobile robot for deep-sea mobile operation equipment, so as to solve the problem of pressure-bearing pressure of underwater pressure-resistant components in the field of deep-water operation engineering.
  • There are problems such as insufficient level and difficulty in purchasing, or the extremely thick pressure-resistant cabin brings too much weight to mobile equipment and makes it difficult to move.
  • One aspect of the present invention provides a pressure-resistant cabin for deep-sea mobile operating equipment, which is used in an underwater environment of 3500-7000 meters, including:
  • the first chamber and the second chamber are sealed, the first chamber is used to accommodate the electrical functional components of the mobile working equipment, the second chamber is used to set the pressure compensator, the first chamber and the second chamber are passed by an electromagnetic Valve controlled pipeline connections;
  • the first chamber and the second chamber are filled with liquid insulating material
  • the shell of the first chamber is composed of a pressure-resistant metal structure, and the pressure load of the shell of the first chamber is 35Mpa;
  • the pressure compensator of the second chamber adjusts the internal pressure of the device as it dives into the bottom of the water.
  • the solenoid valve of the first chamber When the solenoid valve of the first chamber is open, the pressure in the first chamber connected to the pipeline of the second chamber also increases. can be adjusted accordingly.
  • Another aspect of the present invention provides an underwater mining vehicle, which is provided with the above-mentioned pressure-resistant cabin for deep-sea mobile operation equipment, an operation unit and a crawler moving assembly.
  • the crawler moving assembly is used to drive the mining vehicle under the power of the mining vehicle. Move underwater.
  • Another aspect of the present invention provides an underwater mobile robot, which is provided with the above-mentioned pressure-resistant cabin for deep-sea mobile operation equipment, and also includes a manipulator.
  • the manipulator is controlled by a hydraulic control valve group and a hydraulic/electric thruster provided in the first chamber. Mechanical activities are performed under the control of the control unit.
  • the pressure-resistant cabin, underwater mining vehicle and underwater mobile robot used for deep-sea mobile operating equipment according to the embodiments of the present invention have at least the following advantages:
  • the overall weight and volume of mobile operating equipment can be smaller than other equipment that purely relies on the shell to bear pressure while the strength of the pressure tank shell remains unchanged, which can reduce the need for buoyancy compensation. Volume and reduced launch/retrieval difficulty.
  • General pressure-resistant parts can be used in high-pressure working environments where the pressure is higher than their own endurance limit. There is no need to customize special ultra-deep water pressure-resistant parts, which reduces the supply cycle and cost. Mass-produced parts can improve Reliability, effectively solving the procurement problem of ultra-deep underwater operating equipment parts.
  • the balance pressure can be adjusted at any time with the underwater operating equipment under different water depth conditions during an operation, giving it wider applicability.
  • the pressure adjustment unit can be used to reduce the internal pressure of the first chamber of the equipment cabin and extend the life of pressure-resistant components.
  • the internal pressure of the first chamber can be directly increased to 35Mpa through the active pressure adjustment unit assembly for pressure testing. There is no need to use other equipment such as external pressure chambers to test the function and availability of the pressure chamber. . When operating offshore, it saves maintenance resources and time costs.
  • Figure 1 is a schematic structural cross-sectional view of a pressure-resistant cabin used for deep-sea mobile operating equipment provided by an embodiment of the present invention
  • Figure 2 is a schematic cross-sectional view from another direction of the pressure chamber structure used for deep sea mobile operating equipment shown in Figure 1;
  • One aspect of the present invention provides a pressure-resistant cabin for deep-sea mobile operating equipment, which is used in an underwater environment of 3500-7000 meters, including: a sealed first chamber and a second chamber, and the first chamber is used to accommodate Electrical functional components of mobile working equipment, the second chamber is used to set a pressure compensator, the first chamber and the second chamber are connected through a pipeline controlled by a solenoid valve; the first chamber and the second chamber are filled with liquid Insulating material; the shell of the first chamber is made of a pressure-resistant metal structure, and the pressure-bearing load of the pressure-resistant metal shell is 35Mpa; the pressure compensator of the second chamber adjusts the internal pressure as the device dives into the bottom of the water.
  • the pressure in the first chamber connected to the pipeline of the second chamber can also be adjusted accordingly.
  • the shell of the pressure-resistant cabin can achieve an underwater working environment of up to 7,000 meters with a pressure-bearing capacity of 35Mpa (usually requiring a pressure resistance of 70Mpa).
  • the electrical functional components in the pressure-resistant cabin only need to have an ordinary pressure-resistant level of no more than 35Mpa. This achieves the dual benefits of moderate thickness of the pressure chamber and low purchase cost of electrical control components.
  • an active pressure adjustment unit assembly is also provided in the first chamber, connected to the solenoid valve, and used to adjust the amount of pressure compensation from the second chamber to the first chamber.
  • the active pressure regulating unit assembly includes a pressure detection and control unit and a micro booster pump.
  • the electrical functional components provided in the first chamber include one or more of a pressure and temperature sensor, a flow meter, a hydraulic control valve, a reversing valve, a hydraulic motor drive, and an electronic control unit.
  • the electrical functional components provided in the first chamber are pressure-resistant components, and their pressure resistance does not exceed 35Mpa; for example, 30-35Mpa.
  • the active pressure regulating unit assembly also includes a hydraulic pipeline and a solenoid valve integrated block, which are connected to the solenoid valve.
  • the active pressure adjustment unit assembly pressurizes the inside of the pressure chamber to less than or equal to 35Mpa before the pressure chamber is launched into the water.
  • Another aspect of the present invention provides an underwater mining vehicle, which is provided with any of the above-mentioned pressure chambers for deep-sea mobile operation equipment, an operation unit and a crawler moving assembly.
  • the crawler moving assembly is used to drive mining under the power of the mining vehicle.
  • the car moves underwater.
  • Another aspect of the present invention provides an underwater mobile robot, which is provided with any of the above-mentioned pressure-resistant chambers for deep-sea mobile operating equipment, and also includes a manipulator.
  • the manipulator is controlled by a hydraulic control valve group, a hydraulic/electrical valve set in the first chamber, Mechanical activities are performed under the control of the thruster control unit.
  • the pressure-resistant cabin used for deep-sea mobile operating equipment shown in Figures 1 and 2 is used in an underwater environment of 3500 meters to 7000 meters. It includes upper and lower parts. After the pressure-resistant cabin is assembled, the upper part is the first chamber and the lower part is In the second chamber, a partition 4 is provided between the first chamber and the second chamber. The partition 4 is sealingly connected to the first chamber shell 1 and the second chamber shell 7. The top of the first chamber passes through the first chamber.
  • the chamber end cover 2 is sealed and fixed with the first chamber shell 1
  • the bottom of the second chamber is sealed and fixed with the second chamber shell 7 through the second chamber end cover 8 . Both chambers are filled with silicone oil solution; at least two pressure compensators 10 are also installed in the second chamber.
  • the first chamber is also provided with a hydraulic pipeline and a solenoid valve integrated block 13.
  • the solenoid valve integrated block 13 is provided with a first solenoid valve 15 and a second solenoid valve 16; as well as a booster pump assembly 18, a pressure-resistant pressure sensor 19, Electronic control unit 20.
  • the booster pump assembly 18 is provided with a booster pump oil inlet filter 17 and an oil outlet filter 14; the booster pump realizes active regulation of the pressure inside the first cavity through oil inlet or oil outlet control.
  • the solenoid valve can connect or close the first chamber and the second chamber.
  • the pressure regulating assembly composed of a pressure detection and control unit, a micro booster pump and a solenoid valve can actively adjust and seal the internal pressure of the first chamber. detection.
  • the shell 1 of the first chamber is made of pressure-resistant and corrosion-resistant metal. Through the end cover seal and the strength of the shell itself, it can withstand a maximum load of 35Mpa external pressure load or internal pressure or internal and external pressure difference; other electrical equipment required for underwater operations Control components, such as pressure and temperature sensors, flow meters, hydraulic control valves, reversing valves, and electronic control units, are placed in the first chamber.
  • the electrical functional components in the first chamber have limited pressure-bearing capabilities, and the pressure-bearing level Between 3000-3500 meters, but it can adapt to the working environment of 7000 meters underwater, effectively reducing the difficulty and cost of parts procurement; the pressure compensator set in the second chamber enables the chamber to have the ability to balance with the external pressure, and can be used at any time During the dive with the equipment, the external seawater pressure is synchronously transmitted to the second chamber to achieve the same state of internal and external pressure, so that when the pressure chamber is 7,000 meters underwater, the pressure difference between the inside and outside of the pressure chamber is maintained within 35Mpa. Both itself and the internal electrical functional components are within the normal pressure-bearing design range. Two or more pressure compensators are provided in the second chamber. When one pressure compensator is damaged, another pressure compensator can achieve the same function, thereby improving equipment safety and reducing maintenance opportunities.
  • an active pressure adjustment unit assembly is also provided in the first chamber, through which the internal pressure of the pressure resistance chamber can be adjusted.
  • the pressure regulating assembly can achieve:
  • the pressure resistance and sealing function of the first chamber can be verified; after the equipment is successfully integrated and manufactured, use the booster pump in the first chamber to increase the pressure in the first chamber to the design pressure and then detect the pressure resistance and sealing performance, and at the same time, it can be tested Compensating the sealing performance of the chamber; equipment inspection and maintenance can also use the pressure adjustment assembly to verify the pressure resistance and sealing function of the first chamber without passing a special external pressure chamber inspection.
  • valve of the solenoid valve is controlled by the active pressure adjustment assembly to open, connecting the first chamber and the second chamber, so that the pressure in the first chamber is balanced with the external seawater until the first chamber is submerged.
  • the valve is closed when the chamber pressure reaches the design pressure level or target pressure.
  • the internal pressure of the first chamber is the design pressure, and the overall structure and seal of the equipment cabin withstand the difference between the external water depth and the first chamber pressure.
  • the pressure in the first chamber is adjusted to balance with the pressure in the second chamber by inching the solenoid valve.
  • the use process of the pressure-resistant cabin of the deep-sea mobile operating equipment of the present invention is as follows:
  • the external water pressure can be transmitted to the first chamber synchronously; before the pressure in the first chamber reaches the pressure limit, the first solenoid valve 15 of the solenoid valve manifold 13 is closed, causing the second chamber to The chamber is isolated from the first chamber. Then continue to dive to the expected underwater working location.
  • Pressure adjustment for underwater mobile operations When the equipment needs to be moved to another location with a different water depth after completing its work at one operating point, the pressure change of the pressure-bearing strength can be controlled by the switch of the solenoid valve manifold 13. At this time The pressure adjustment can be realized through the second chamber or the booster pump assembly 18 according to the actual situation.
  • the above functions and control methods are all realized by the electronic control unit 20, which is equipped with a pressure sensor 19 for detecting the internal pressure of the first chamber and giving a control signal according to the set program.
  • the underwater mobile operating equipment is an underwater mining vehicle, which has a crawler moving assembly.
  • the movement of the underwater mining vehicle is realized under the action of the crawler moving assembly.
  • the underwater mining vehicle also has required components required for mining, such as Bearing platform, ore collection box, crushing device, etc.
  • the pressure chamber is equipped with components for electrical control, such as hydraulic motor drive, pressure temperature flow sensor, hydraulic control valve and other components.
  • the underwater mobile operating equipment is an underwater mobile robot, including a manipulator, a hydraulic control valve group and a hydraulic/electric thruster control unit arranged in a pressure chamber to drive the manipulator.
  • the pressure-resistant cabin, underwater mining vehicle and underwater mobile robot used for deep-sea mobile operating equipment according to the embodiments of the present invention have at least the following advantages:
  • the overall weight and volume of mobile operating equipment can be smaller than other equipment that purely relies on the shell to bear pressure while the strength of the pressure tank shell remains unchanged, which can reduce the need for buoyancy compensation. Volume and reduced launch/retrieval difficulty.
  • General pressure-resistant parts can be used in high-pressure working environments where the pressure is higher than their own endurance limit. There is no need to customize special ultra-deep water pressure-resistant parts, which reduces the supply cycle and cost. Mass-produced parts can improve Reliability, effectively solving the procurement problem of ultra-deep underwater operating equipment parts.
  • the balance pressure can be adjusted at any time with the underwater operating equipment under different water depth conditions during an operation, giving it wider applicability.
  • the pressure adjustment unit can be used to reduce the internal pressure of the first chamber of the equipment cabin and extend the life of pressure-resistant components.
  • the internal pressure of the first chamber can be directly increased to 35Mpa through the active pressure adjustment unit assembly for pressure testing. There is no need to use other equipment such as external pressure chambers to test the function and availability of the pressure chamber. . When operating offshore, it saves maintenance resources and time costs. Therefore, it has industrial practicality.

Abstract

一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人,包括密封的第一腔室和第二腔室,第一腔室用于容纳移动作业设备的电气功能部件,第二腔室用于设置压力补偿器(10),第一腔室和第二腔室通过由电磁阀控制的管路联通;第一腔室和第二腔室内填充有液体绝缘物质;第一腔室外壳(1)由耐压金属构成,第一腔室外壳(1)的承压能力为35Mpa;第二腔室的压力补偿器(10)随着设备潜入水底的深度对其内部压力进行调节,在第一腔室电磁阀打开的状态下,与第二腔室管路连通的第一腔室内的压力也可随之得到调节。该耐压舱有效减小设备的总体重量和体积,方便设备在深海的移动,同时降低成本。

Description

一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人 技术领域
本发明涉及水下移动作业设备,尤其涉及一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人。
背景技术
目前,在深海作业领域使用的设备受海水给予设备的外部压力影响,而深水采矿、可燃冰和海洋工程领域很多工作环境要求设备(如采矿车)需要在海底作业,作业水深大多需要达到5000-6500米,这就导致设备不得不将外壳做得足够坚固以便承受海水压力,或者通过安装压力补偿器结构并内部充液来实现内外压力平衡。
第一种方法导致设备外壳的强度及厚度要更大,使设备的重量和体积增加很多,同时密封要求全耐压,技术要求和实现难度大,设备过重对于水下移动设备来说意味着体积庞大与浮力补偿要求增加,以及下放回收难度增加。
第二种方法对密封和外壳耐压水平要求低,但需要设备内部使用的零部件及电气元件能够承受与外部水深同等的压力。目前国际上主流厂家生产的水下设备或零部件一般耐压水平在4000米左右,超过这个水平后产业链并不完善,相关设备元器件均需要定制且价格高昂,同时定制器件还有货期和品质难以保证的缺点,不利于工业化生产。
技术问题
有鉴于此,本发明要解决的技术问题是提供一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人,以解决深水作业工程领域水下耐压元器件承压水平不足、采购难的问题,或者极厚耐压舱为移动设备带来设备重量太大、移动困难的问题。
技术解决方案
本发明解决上述技术问题,本发明一个方面提供一种用于深海移动作业设备的耐压舱,应用于水下3500-7000米的环境,包括:
密封的第一腔室和第二腔室,第一腔室用于容纳移动作业设备的电气功能部件,第二腔室用于设置压力补偿器,第一腔室和第二腔室通过由电磁阀控制的管路联通;
第一腔室和第二腔室内填充有液体绝缘物质;
第一腔室的外壳由耐压金属结构构成,第一腔室的外壳的承压载荷为35Mpa;
第二腔室的压力补偿器随着设备潜入水底的深度对其内部压力进行调节,在第一腔室电磁阀打开的状态下,与第二腔室管路连通的第一腔室内的压力也可随之得到调节。
本发明再一个方面提供一种水下采矿车,设置有上述用于深海移动作业设备的耐压舱,作业单元及履带移动组件,履带移动组件用于在采矿车的动力驱动下带动采矿车在水下进行移动。
本发明又一个方面提供一种水下移动机器人,设置有上述用于深海移动作业设备的耐压舱,还包括机械手,机械手受设置于第一腔室的液压控制阀组、液/电推进器控制单元的控制而进行机械活动。
有益效果
本发明实施例的用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人,至少具有以下优点:
1.在超越常规深海水深尺度的限制后,可使移动作业设备在耐压舱外壳强度不变的情况下相对其他纯靠外壳承压的设备,整体重量和体积更小,可减少浮力补偿的体积和减小下放/回收难度。
2.由于第一腔室只需要承受有限外压(压差),耐压舱密封难度降低,可靠性提高。
3.可将一般耐压零部件使用在压力高于自身承受极限的高压工作环境中,不用再进行定制专用超深水耐压零部件,降低供货周期和成本,批量生产的零部件产品可以提高可靠性,有效的解决了超深水下作业设备零部件的采购难题。
4.部署在水下移动作业设备上时,可随着水下作业设备在一次作业中不同水深工况条件下随时调节平衡压力,具备更广泛适用性。
5.工作在水深较浅区域时,可通过压力调节单元降低设备舱的第一腔室内压,延长耐压元器件寿命。
6.在设备检修和测试时,可通过主动压力调节单元总成直接将第一腔室内压提高至35Mpa进行耐压测试,不必再通过外部压力舱等其他设备对耐压舱进行功能和可用性检验。在离岸作业时,节省检修资源和时间成本。
附图说明
图1为本发明实施例提供的用于深海移动作业设备的耐压舱结构剖面示意图;
图2是图1所示的用于深海移动作业设备的耐压舱结构另一方向的剖面示意图;
图中:
1-第一腔室外壳
2-第一腔室端盖
3-第一腔室密封
4-隔板
5-第一腔室密封
6-第二腔室密封
7-第二腔室外壳
8-第二腔室端盖
9-第二腔室密封
10-压力补偿器
11-压力补偿器呼吸挡板
12-进油滤器
13-电磁阀集成块
14-出油滤器
15-第一电磁阀
16-第二电磁阀,
17-增压泵进油滤器
18-增压泵总成
19-耐压压力传感器
20-电控单元
本发明的实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本申请中,以设备在正常使用状态下所处的状态为参考,定义其中涉及上、下、顶、底、内、外等表示相对位置关系的词。
本发明一个方面提供一种用于深海移动作业设备的耐压舱,应用于水下3500-7000米的环境,包括:密封的第一腔室和第二腔室,第一腔室用于容纳移动作业设备的电气功能部件,第二腔室用于设置压力补偿器,第一腔室和第二腔室通过由电磁阀控制的管路联通;第一腔室和第二腔室内填充有液体绝缘物质;第一腔室的外壳由耐压金属结构构成,该耐压金属外壳的承压载荷为35Mpa;第二腔室的压力补偿器随着设备潜入水底的深度对其内部压力进行调节,在第一腔室电磁阀打开的状态下,与第二腔室管路连通的第一腔室内的压力也可随之得到调节。使耐压舱外壳以35Mpa的承压能力实现水下深达7000米的工作环境(通常需要耐压70Mpa),耐压舱内的电气功能部件也只需要具备不超过35Mpa的普通耐压水平,从而实现耐压舱厚度适中和电气控制部件采购成本低的双重好处。
其中一个实施例中,第一腔室内还设有主动压力调节单元总成,与电磁阀连接,用于调节第二腔室向第一腔室补偿压力的量。
其中一个实施例中,主动压力调节单元总成包括压力检测与控制单元和微型增压泵。
其中一个实施例中,第一腔室内设置的电气功能部件包括压力温度传感器、流量计、液压控制阀、换向阀、液压马达驱动、以及电子控制单元的一个或多个。
其中一个实施例中,第一腔室内设置的电气功能部件为耐压部件,其承压不超过35Mpa;例如30-35Mpa。
其中一个实施例中,压力补偿器至少为两个,互为冗余。
其中一个实施例中,主动压力调节单元总成还包括液压管路和电磁阀集成块,与电磁阀连接。
其中一个实施例中,主动压力调节单元总成在耐压舱下水之前对耐压舱内部增压至小于或等于35Mpa。
本发明再一个方面提供一种水下采矿车,设置有上述任一用于深海移动作业设备的耐压舱,作业单元及履带移动组件,履带移动组件用于在采矿车的动力驱动下带动采矿车在水下进行移动。
本发明又一个方面提供一种水下移动机器人,设置有上述任一用于深海移动作业设备的耐压舱,还包括机械手,机械手受设置于第一腔室的液压控制阀组、液/电推进器控制单元的控制而进行机械活动。
以下将结合附图对本申请的各个方面进行具体的描述:
图1和图2所示的用于深海移动作业设备的耐压舱,应用于水下3500米-7000米的环境,包括上下部分,耐压舱组装后,上部为第一腔室,下部为第二腔室,第一腔室和第二腔室之间设置隔板4,隔板4与第一腔室外壳1和第二腔室外壳7密封连接,第一腔室的顶部通过第一腔室端盖2实现与第一腔室外壳1的密封固定,第二腔室的底部通过第二腔室端盖8实现与第二腔室外壳7的密封固定连接。两个腔室内部都填充硅油溶液;第二腔室内还安装有至少两个的压力补偿器10。第一腔室内还设置有液压管路及电磁阀集成块13、电磁阀集成块13上设置第一电磁阀15和第二电磁阀16;以及增压泵总成18、耐压压力传感器19、电控单元20。增压泵总成18上设置有增压泵进油滤器17和出油滤器14;增压泵通过进油或出油控制实现第一腔体内部压力的主动调节。电磁阀可实现将第一腔室与第二腔室连通或关闭,同时压力检测与控制单元和微型增压泵及电磁阀组成的压力调节总成实现第一腔室的内压主动调整和密封检测。
第一腔室的外壳1为耐压耐腐蚀金属制成,通过端盖密封及外壳自身的强度能够承受最大载荷为35Mpa外部压力载荷或内部压力或内外部压差;水下作业需要的其他电气控制部件,如压力温度传感器、流量计、液压控制阀、换向阀、以及电子控制单元等均放置在第一腔室中,第一腔室内的电气功能部件具有有限承压能力,承压水平介于3000-3500米,但是能适应水下7000米的工作环境,有效降低零部件采购难度和采购成本;第二腔室内设置的压力补偿器使腔室具备与外界压力平衡的能力,可随着设备下潜的过程中将外部海水压力同步传导到第二腔室内,达到内外压力相同的状态,从而使耐压舱处于水下7000米时,保持内外压差在35Mpa之内,耐压舱本身及内部的电气功能部件都在正常的承压设计范围之内。第二腔室内设置两个以上的压力补偿器,可以在一个压力补偿器损坏的情况下,由另一个压力补偿器实现相同的功能,提高设备安全性和降低维修机会。
为确保第一腔室内压力不超过设备自身的耐压水平;第一腔室中还设置主动压力调节单元总成,可通过该单元调节耐压腔室内部压力。
通过压力调节总成可实现:
1,第一腔室耐压与密封功能的可验证;设备集成制造成功后,使用第一腔室内的增压泵将第一腔室内压力提高到设计压力后检测耐压密封性能,同时可检测补偿仓密封性能;设备检维修也可通过该压力调节总成实现第一腔室耐压与密封功能验证,无须通过专门的外部压力舱检验。
2,第一腔室预充压后(或无压)下潜,通过第二腔室中的压力补偿器的皮囊收缩实现第二腔室同外部海水压力平衡。第一腔室与第二腔室和外界海水压差保持在设计许可范围。
3,第一腔室无压下潜时,通过主动压力调节总成控制电磁阀的阀门打开,连通第一腔室和第二腔室,使第一腔室内压力同外部海水平衡,直至第一腔室内压达到设计压力水平或目标压力后关闭该阀门。
4,设备到达目标作业水深,第一腔室内压为设计承压压力,设备舱整体结构和密封承受外部水深和第一腔室压力的差压。
5,设备工作水深变化到外压小于第一腔室压力、或第一腔室内压力无须保持设计压力时,通过点动电磁阀实现第一腔室内压力调节至与第二腔室压力平衡。
本发明用于深海移动作业设备的耐压舱的使用过程如下:
入水前进行压力预充:在设备入水前将电磁阀集成块13的第二电磁阀16开到第二腔室与增压泵总成18进油口导通状态,计算好水下作业水深及第一腔室的耐压极限值后开启增压泵总成18,将第一腔室的压力提高到目标压力;当压力达到目标压力则可将设备放入水中并下潜到预计水下作业点开始工作。
随着设备下潜同步压力平衡:在设备入水前将电磁阀集成块13的第一电磁阀15打开,第二腔室与第一腔室导通状态,保持此状态将设备放入水中开始下潜,下潜过程中水对设备的压力会随着下潜的深度增加,由于压力补偿器10皮囊的存在,外部水压会传导到第二腔室,而此时第二腔室又与第一腔室处于导通状态,则外部水压可同步传导到第一腔室;在第一腔室内的压力达到承压极限前关闭电磁阀集成块13的第一电磁阀15,使第二腔室与第一腔室隔绝开来。之后继续下潜到预计水下作业地点工作。
水下移动作业的压力调节:当设备在一处作业点工作完毕后需要换到另一个水深深度不同的地点工作,则可通过电磁阀集成块13的开关控制承压强的压力变化,此时的压力调节可根据实际情况来判断是通过第二腔室或者增压泵总成18来实现。
以上的功能及控制方式均由电控单元20实现,其内部安装有压力传感器19,用于检测第一腔室的内部压力,并根据设定好的程序给出控制信号。
在一个实施例中,水下移动作业设备为水下采矿车,具有履带移动组件,在履带移动组件作用下实现水下采矿车的移动,水下采矿车还具有采矿所需的需要部件,例如承载平台、集矿箱、破碎装置等,耐压舱内设置用于电气控制的部件、例如液压马达驱动、压力温度流量传感器及液压控制阀门等部件。
在一个实施例中,水下移动作业设备为水下移动机器人,包括机械手,和设置在耐压舱内为驱动机械手的液压控制阀组、液/电推进器控制单元。
以上参照附图说明了本发明的优选实施例,并非因此局限本发明的权利范围。本领域技术人员不脱离本发明的范围和实质,可以有多种变型方案实现本发明,比如作为一个实施例的特征可用于另一实施例而得到又一实施例。凡在运用本发明的技术构思之内所作的任何修改、等同替换和改进,均应在本发明的权利范围之内。
工业实用性
本发明实施例的用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人,至少具有以下优点:
1.在超越常规深海水深尺度的限制后,可使移动作业设备在耐压舱外壳强度不变的情况下相对其他纯靠外壳承压的设备,整体重量和体积更小,可减少浮力补偿的体积和减小下放/回收难度。
2.由于第一腔室只需要承受有限外压(压差),耐压舱密封难度降低,可靠性提高。
3.可将一般耐压零部件使用在压力高于自身承受极限的高压工作环境中,不用再进行定制专用超深水耐压零部件,降低供货周期和成本,批量生产的零部件产品可以提高可靠性,有效的解决了超深水下作业设备零部件的采购难题。
4.部署在水下移动作业设备上时,可随着水下作业设备在一次作业中不同水深工况条件下随时调节平衡压力,具备更广泛适用性。
5.工作在水深较浅区域时,可通过压力调节单元降低设备舱的第一腔室内压,延长耐压元器件寿命。
6.在设备检修和测试时,可通过主动压力调节单元总成直接将第一腔室内压提高至35Mpa进行耐压测试,不必再通过外部压力舱等其他设备对耐压舱进行功能和可用性检验。在离岸作业时,节省检修资源和时间成本。因此,具有工业实用性。

Claims (10)

  1. 一种用于深海移动作业设备的耐压舱,应用于水下3500-7000米的环境,包括:
    密封的第一腔室和第二腔室,所述第一腔室和第二腔室内填充有液体绝缘物质;
    所述第一腔室的外壳由耐压金属结构构成,所述第一腔室的外壳的承压载荷为35Mpa;所述第一腔室用于容纳所述移动作业设备的电气功能部件,电气功能部件的耐压水平不超过35Mpa;
    所述第二腔室用于设置压力补偿器,所述压力补偿器使设备下潜的过程中将外部海水压力同步传导到第二腔室内;
    所述第一腔室和第二腔室通过由电磁阀控制的管路联通;
    所述第一腔室内还设有主动压力调节单元总成,与所述电磁阀连接,用于检测第一腔室内压力及控制和调节第二腔室向第一腔室补偿压力的量;
    所述第二腔室的压力补偿器随着所述设备潜入水底的深度对其内部压力进行调节,在第一腔室电磁阀打开的状态下,与第二腔室管路连通的第一腔室内的压力也可随之得到调节。
  2. 根据权利要求1所述的用于深海移动作业设备的耐压舱,其特征在于:所述主动压力调节单元总成包括压力检测与控制单元和微型增压泵。
  3. 根据权利要求1所述的用于深海移动作业设备的耐压舱,其特征在于:所述第一腔室内设置的电气功能部件包括压力温度传感器、流量计、液压控制阀、换向阀、液压马达驱动、以及电子控制单元的一个或多个。
  4. 根据权利要求1所述的用于深海移动作业设备的耐压舱,其特征在于:所述压力补偿器至少为两个,互为冗余。
  5. 根据权利要求1所述的用于深海移动作业设备的耐压舱,其特征在于:第一腔室内还设置有液压管路和电磁阀集成块,与所述电磁阀连接。
  6. 根据权利要求1所述的用于深海移动作业设备的耐压舱,其特征在于:所述主动压力调节单元总成在耐压舱下水之前对耐压舱内部增压至小于或等于35Mpa。
  7. 根据权利要求1所述的用于深海移动作业设备的耐压舱,其特征在于:所述电磁阀包括第一电磁阀,当设备以下潜同步压力平衡方式入水时,入水前将第一电磁阀打开,第二腔室与第一腔室导通状态,所述第二腔室的压力补偿器随着所述设备潜入水底的深度对其内部压力进行调节,与第二腔室管路连通的第一腔室内的压力也随之得到调节,直至第一腔室内压达到承压极限前关闭第一电磁阀。
  8. 根据权利要求1所述的用于深海移动作业设备的耐压舱,其特征在于:所述电磁阀包括第二电磁阀,当设备以压力预充方式入水时,入水前将第二电磁阀开到第二腔室与主动压力调节单元的进油口导通状态,将第一腔室的压力提高到目标压力并下潜到预计水下作业点。
  9. 一种水下采矿车,设置有权利要求1-8任一项所述的用于深海移动作业设备的耐压舱,作业单元及履带移动组件,所述履带移动组件用于在采矿车的动力驱动下带动采矿车在水下进行移动。
  10. 一种水下移动机器人,设置有权利要求1-8任一项所述的用于深海移动作业设备的耐压舱,还包括机械手,所述机械手受设置于第一腔室的液压控制阀组、液/电推进器控制单元的控制而进行机械活动。
PCT/CN2023/087011 2022-04-13 2023-04-07 一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人 WO2023197958A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210383355.8 2022-04-13
CN202210383355.8A CN114802661B (zh) 2022-04-13 2022-04-13 一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人

Publications (1)

Publication Number Publication Date
WO2023197958A1 true WO2023197958A1 (zh) 2023-10-19

Family

ID=82535432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/087011 WO2023197958A1 (zh) 2022-04-13 2023-04-07 一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人

Country Status (2)

Country Link
CN (1) CN114802661B (zh)
WO (1) WO2023197958A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114802661B (zh) * 2022-04-13 2023-02-03 深圳市行健自动化股份有限公司 一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1600095A (en) * 1978-03-06 1981-10-14 Trw Inc Apparatus and electronic components thereof for use in a pressurized environment
CN101034594A (zh) * 2007-04-20 2007-09-12 厦门大学 深海常规仪器设备保护方法
CN103188904A (zh) * 2011-12-28 2013-07-03 西门子公司 海底装置的压力补偿器
US20160215913A1 (en) * 2015-01-23 2016-07-28 Siemens Aktiengesellschaft Pressure compensator for subsea device
CN110379592A (zh) * 2019-08-05 2019-10-25 吉林大学 一种双层压力补偿式水下变压器
CN212718193U (zh) * 2020-08-19 2021-03-16 中海石油(中国)有限公司 一种浅水水下控制模块的压力调节装置
CN114802661A (zh) * 2022-04-13 2022-07-29 深圳市行健自动化股份有限公司 一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU887357A1 (ru) * 1980-02-20 1981-12-07 За витель Защитное устройство дл подводного оборудовани
JP3106575B2 (ja) * 1991-07-30 2000-11-06 石川島播磨重工業株式会社 深海用均圧装置
CN201235921Y (zh) * 2008-07-08 2009-05-13 中国船舶重工集团公司第七○二研究所 皮囊式液压补偿器
US8464745B1 (en) * 2010-11-02 2013-06-18 The United States Of America, As Represented By The Secretary Of The Navy Constant volume pressure compensator
CN102897304A (zh) * 2012-10-25 2013-01-30 中国船舶重工集团公司第七一〇研究所 一种深海设备密封舱体的压力自动补偿装置
EP2924231A1 (en) * 2014-03-28 2015-09-30 Siemens Aktiengesellschaft Pressure compensation system
CN105432574B (zh) * 2015-11-23 2018-10-30 国家深海基地管理中心 一种搭载式深海宏生物取样器
CN205743845U (zh) * 2016-05-17 2016-11-30 宝鸡石油机械有限责任公司 带压力补偿装置的水下控制模块密封舱
CN109798118B (zh) * 2018-12-28 2024-01-26 长沙矿山研究院有限责任公司 一种适用于深海富钴结壳开采的采矿头
CN111895144A (zh) * 2020-08-19 2020-11-06 中海石油(中国)有限公司 一种浅水水下控制模块的压力调节装置及其使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1600095A (en) * 1978-03-06 1981-10-14 Trw Inc Apparatus and electronic components thereof for use in a pressurized environment
CN101034594A (zh) * 2007-04-20 2007-09-12 厦门大学 深海常规仪器设备保护方法
CN103188904A (zh) * 2011-12-28 2013-07-03 西门子公司 海底装置的压力补偿器
US20160215913A1 (en) * 2015-01-23 2016-07-28 Siemens Aktiengesellschaft Pressure compensator for subsea device
CN110379592A (zh) * 2019-08-05 2019-10-25 吉林大学 一种双层压力补偿式水下变压器
CN212718193U (zh) * 2020-08-19 2021-03-16 中海石油(中国)有限公司 一种浅水水下控制模块的压力调节装置
CN114802661A (zh) * 2022-04-13 2022-07-29 深圳市行健自动化股份有限公司 一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人

Also Published As

Publication number Publication date
CN114802661A (zh) 2022-07-29
CN114802661B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2023197958A1 (zh) 一种用于深海移动作业设备的耐压舱、水下采矿车和水下移动机器人
CN109591988B (zh) 一种基于海洋环境参数调节的浮力驱动装置
CN101870351B (zh) 深海油囊式浮力调节装置
CN202175183U (zh) 一种水下滑翔机浮力调节装置
CN111348160A (zh) 一种大深度水下机器人浮力匹配计算方法
CN108454809A (zh) 一种双泵式自动浮力与姿态调节装置
CN110901866B (zh) 一种用于中小型水下无人航行器的浮力快速调节系统
CN102248992A (zh) 一种水下滑翔机浮力调节装置
CN106477011A (zh) 一种潜水器用浮力调节及压力补偿系统和方法
CN205010449U (zh) 浮力调节系统
CN114414382B (zh) 模拟深海耐压测试系统以及方法
CN101726285A (zh) 一种水下测量平台的液压驱动调节装置
CN112124539A (zh) 一种大深度水下机器人用浮力调节装置
CN205801474U (zh) 一种用于船舶的声呐的升降装置
US7221623B2 (en) Expansion coefficient balancing in pressure compensation systems
CN107741363B (zh) 一种框架式超高压环境模拟装置与试验方法
CN108791693B (zh) 水下变形位移补偿系统
CN112747948A (zh) 模拟深海采矿海水波动对管道影响的实验装置及其方法
CN108343656B (zh) 一种深海自适应夹紧装置及其自适应夹紧方法
CN106184664B (zh) 耦合横滚调节和浮力调节的滑翔器调节装置
CN102862665A (zh) 用于水下充油系统的压力均衡保持器
CN206231596U (zh) 一种潜水器用浮力调节及压力补偿系统
CN213323623U (zh) 大深度水下机器人用浮力调节装置
KR101242721B1 (ko) 조류발전장치
CN108709849A (zh) 一种用于深海定深取样与腐蚀模拟实验的实验装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787602

Country of ref document: EP

Kind code of ref document: A1