WO2023197794A1 - 力反馈装置的校准方法、驱动方法、设备及存储介质 - Google Patents

力反馈装置的校准方法、驱动方法、设备及存储介质 Download PDF

Info

Publication number
WO2023197794A1
WO2023197794A1 PCT/CN2023/080545 CN2023080545W WO2023197794A1 WO 2023197794 A1 WO2023197794 A1 WO 2023197794A1 CN 2023080545 W CN2023080545 W CN 2023080545W WO 2023197794 A1 WO2023197794 A1 WO 2023197794A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
feedback device
force feedback
stroke
target
Prior art date
Application number
PCT/CN2023/080545
Other languages
English (en)
French (fr)
Inventor
杨鑫峰
刘兵
宋洪磊
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023197794A1 publication Critical patent/WO2023197794A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/25Output arrangements for video game devices
    • A63F13/28Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
    • A63F13/285Generating tactile feedback signals via the game input device, e.g. force feedback
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F13/00Video games, i.e. games using an electronically generated display having two or more dimensions
    • A63F13/20Input arrangements for video game devices
    • A63F13/24Constructional details thereof, e.g. game controllers with detachable joystick handles
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/10Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
    • A63F2300/1037Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being specially adapted for converting control signals received from the game device into a haptic signal, e.g. using force feedback

Definitions

  • the present invention relates to the field of force feedback technology, and in particular to a calibration method, driving method, equipment and storage medium for a force feedback device.
  • Force feedback devices can provide force feedback that matches the operation, giving users a realistic user experience. With the rise of the concept of the metaverse, the demand for force feedback in game controllers, AR/VR and other devices is also increasing.
  • the force feedback device based on the electromagnetic direct drive principle uses the electromagnetic force exerted by the energized coil at the stator end in the magnetic field to give equal reaction force to the mover, thereby generating an external output force and forming a force feedback effect; by controlling the size of the current and direction, the electromagnetic force can be precisely controlled, thereby achieving different force feedback effects.
  • the external output force generated by the force feedback device is often the superposition of the reaction force and the external output force caused by the characteristics of the force feedback device (such as spring force, static magnetic field interaction force, etc.). Electromagnetic force is used as the external output force. Controlling the output force will lead to the problem that the actual external output force of the force feedback device is different from the expected output force, which will lead to poor force feedback effect.
  • the main purpose of the present invention is to provide a calibration method, driving method, equipment and storage medium for a force feedback device, aiming to reduce the force feedback device by using data reflecting the characteristics of a single force feedback device as a basis for controlling the external output force. The difference between the actual external output force and the expected output force improves the force feedback effect.
  • the present invention provides a calibration method of a force feedback device.
  • the force feedback device is a force feedback device based on the electromagnetic direct drive principle.
  • the method includes the following steps:
  • the stroke of the mover in the force feedback device is adjusted through a test tool and the external output force of the force feedback device is measured through a force sensor to measure the single force of the force feedback device.
  • the stroke of the mover is adjusted through the test tool and the external output force of the force feedback device is measured through the force sensor to combine with the first
  • the corresponding relationship measures the second corresponding relationship between the electromagnetic force and the stroke of the force feedback device in the preset driving mode
  • the first corresponding relationship and the second corresponding relationship are output, so that the controller of the force feedback device can output the force according to the current stroke of the mover, the target output force, the first corresponding relationship and the second corresponding relationship.
  • the corresponding relationship determines a target driving mode, and the force feedback device is driven according to the target driving mode.
  • the stroke of the mover in the force feedback device is adjusted through a test tool and the external output force of the force feedback device is measured through a force sensor to measure the force feedback device.
  • the steps of describing the first corresponding relationship between the single characteristic force and the stroke of the force feedback device include:
  • test tool When the force feedback device is not powered on, the test tool is used to adjust the stroke of the mover in the force feedback device according to the forward movement direction and the force sensor is used to measure the external output force of the force feedback device to measure the The third corresponding relationship between the resultant force of the single characteristic force of the force feedback device and the stroke;
  • test tool When the force feedback device is not powered on, the test tool is used to adjust the stroke of the mover according to the reverse movement direction and the force sensor is used to measure the external output force of the force feedback device to measure the The fourth corresponding relationship between the resultant force of the single characteristic force of the force feedback device and the stroke;
  • the fifth correspondence between the friction force and the stroke of the force feedback device and the sixth correspondence between other characteristic forces of the force feedback device and the stroke are calculated according to the third correspondence and the fourth correspondence.
  • Correspondence taking the fifth correspondence and the sixth correspondence as the first correspondence;
  • the friction force is one of the single-body characteristic forces, and the other characteristic forces are other forces in the single-body characteristic force except the friction force.
  • the step of outputting the first corresponding relationship and the second corresponding relationship includes:
  • the first corresponding relationship and the second corresponding relationship are bound to the identification information and then uploaded to a preset server, so that the controller of the force feedback device obtains all the information from the preset server according to the identification information. the first corresponding relationship and the second corresponding relationship.
  • the present invention also provides a driving method of a force feedback device.
  • the force feedback device is a force feedback device based on the principle of electromagnetic direct drive. The method includes the following steps:
  • the target driving mode is determined according to the current stroke, the target output force, a first correspondence relationship and a second correspondence relationship, wherein the first correspondence relationship is the single characteristic force of the force feedback device and the mover
  • the second corresponding relationship is the corresponding relationship between the electromagnetic force of the force feedback device and the stroke of the mover in the preset driving mode, and the single characteristic force is because The external output force caused by the single characteristics of the force feedback device;
  • the force feedback device is driven according to the target driving mode.
  • the step of determining the target driving mode according to the current stroke, the target output force, the first corresponding relationship and the second corresponding relationship includes:
  • a target driving mode is determined based on the target electromagnetic force and the first estimated electromagnetic force.
  • the step further includes:
  • Relational data representing the correspondence between the estimated output force and the current stroke is generated, and the relational data is output.
  • the step of determining the current monomer characteristic force corresponding to the current stroke according to the first corresponding relationship includes:
  • the fifth correspondence relationship is the correspondence relationship between the friction force of the force feedback device and the stroke of the mover
  • the sixth correspondence relationship is the correspondence relationship between other characteristic forces of the force feedback device and the mover.
  • the corresponding relationship between the strokes of the sub-unit, the friction force is one of the monomer characteristic forces, and the other characteristic forces are other forces in the monomer characteristic force except the friction force;
  • the target output force is subtracted from the difference between the current other characteristic force and the current friction force to obtain the target electromagnetic force of the force feedback device.
  • the preset driving mode is to output a forward voltage with a preset duty cycle
  • the step of determining the target driving mode according to the target electromagnetic force and the first estimated electromagnetic force includes:
  • the forward voltage of the target duty cycle is output as the target driving mode
  • the reverse voltage whose output duty cycle is the absolute value of the target duty cycle is used as the target driving mode.
  • the step further includes:
  • the present invention also provides a calibration device for a force feedback device.
  • the calibration device for a force feedback device includes: a memory, a processor, and a calibration device stored in the memory and available in the memory.
  • a calibration program of the force feedback device is run on the processor. When the calibration program of the force feedback device is executed by the processor, the steps of the calibration method of the force feedback device as described above are implemented.
  • the present invention also provides a driving device for a force feedback device.
  • the driving device for the force feedback device includes: a memory, a processor, and a force feedback device stored in the memory and operable on the processor.
  • a driver program for a feedback device When the driver program for a force feedback device is executed by the processor, the steps of the driving method for a force feedback device as described above are implemented.
  • the present invention also proposes a computer-readable storage medium.
  • the computer-readable storage medium stores a calibration program of the force feedback device.
  • the calibration program of the force feedback device is executed by the processor, the above-mentioned steps are implemented. Steps of calibration method of force feedback device.
  • the present invention also proposes a computer-readable storage medium.
  • the computer-readable storage medium stores a driver program of the force feedback device.
  • the driver program of the force feedback device is executed by the processor, the above is implemented.
  • the steps of the driving method of the force feedback device is implemented.
  • the single characteristics of the force feedback device are measured by adjusting the stroke of the mover in the force feedback device through a test tool and measuring the external output force of the force feedback device through a force sensor.
  • the first correspondence between force and stroke when driving the force feedback device according to the preset driving mode, adjust the stroke of the mover through the test tool and measure the external output force of the force feedback device through the force sensor to combine the first correspondence
  • the second corresponding relationship between the electromagnetic force and the stroke of the force feedback device in the preset driving mode is measured; the first corresponding relationship and the second corresponding relationship are output for the controller of the force feedback device according to the current position of the mover.
  • the stroke, target output force, first corresponding relationship and second corresponding relationship determine the target driving mode, and the force feedback device is driven according to the target driving mode.
  • the present invention obtains the first correspondence relationship and the second correspondence relationship that can reflect the characteristics of the force feedback device alone, which are used as the basis for the controller to drive the force feedback device to control the external output force, reducing the The difference between the actual external output force and the expected output force of the force feedback device is eliminated, thereby improving the force feedback effect.
  • Figure 1 is a schematic flow chart of the first embodiment of the calibration method of the force feedback device of the present invention
  • Figure 2 is a schematic diagram of the calibration process of a force feedback device according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the driving flow of a force feedback device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the calibration and driving system architecture of a force feedback device according to an embodiment of the present invention.
  • Figure 1 is a schematic flow chart of a calibration method for a force feedback device according to a first embodiment of the present invention.
  • the embodiment of the present invention provides an embodiment of a calibration method for a force feedback device. It should be noted that although the logical sequence is shown in the flow chart, in some cases, the shown sequence can be performed in a sequence different from that here. out or describe the steps.
  • the calibration method of the force feedback device can be applied to computers, smart phones, servers and other equipment, and is not limited here. For convenience of description, the specific implementation manner will be described below with the calibration equipment as the execution subject.
  • the calibration method of the force feedback device includes:
  • Step S10 when the force feedback device is not powered on, adjust the stroke of the mover in the force feedback device through a test tool and measure the external output force of the force feedback device through a force sensor to measure the force feedback.
  • the first corresponding relationship between the single characteristic force of the device and the stroke, wherein the single characteristic force is the external output force caused by the single characteristic of the force feedback device;
  • the force feedback device using the electromagnetic direct drive principle includes a mover and a stator. Its working principle is that the energized coil at the stator end will be affected by the electromagnetic force in the magnetic field, and then give an equal reaction force to the mover.
  • the mover can move back and forth (or move) within a certain range. During the movement process, the mover will be subject to some forces other than the reaction force, and due to the process and instability factors of the production and processing of the force feedback device, different force feedback device units will receive these forces under the same circumstances. The magnitudes are also different.
  • the resultant force of the superposition of these forces and reaction forces is the external output force of the force feedback device.
  • At least one of the mover and the stator contains a permanent magnet, and at least one of the stator and the mover contains a coil.
  • the end of the coil is equipped with a magnetically conductive material to enhance the electromagnetic force after energization. Since the coil needs to be connected to a power source to work, the magnet is The steel and coil are designed at the stator end; the mover and the stator are connected through necessary connecting elements, which can be springs.
  • calibration equipment is used to calibrate the force feedback device.
  • the operation of calibrating the force feedback device using calibration equipment can be completed on the production line or in other scenarios, and is not limited here.
  • the calibration equipment adjusts the stroke of the mover in the force feedback device through the test tooling, and in the process measures the external output force of the force feedback device through the force sensor.
  • the operation of energizing or de-energizing the force feedback device is called a driving operation, and outputting different voltages or currents to the force feedback device belongs to different driving methods.
  • the driving operation of the force feedback device can be performed by a controller matched with the force feedback device or by a controller equipped on the production line, which is not limited in this embodiment.
  • the calibration equipment can determine the driving mode of the force feedback device, such as setting it by the tester in the calibration equipment, or reporting it from the controller of the force feedback device, etc., which are not limited in this embodiment; for example , in one embodiment, the calibration device can be connected to the controller of the force feedback device, and send an instruction to the controller so that the controller does not power on the force feedback device. In one embodiment, the controller de-energizes the force feedback device by outputting a voltage with a duty cycle of 0 to the force feedback device.
  • stroke is used to represent the position of the mover during movement. Whether it is represented by distance or percentage and the selection of the position reference are not limited in this embodiment.
  • one end of the movable range of the mover may be taken as the starting point and the other end may be the terminal point, and the proportion of the distance traveled by the mover from the starting point to the current position to the entire distance from the starting point to the terminal is called the stroke.
  • the test tooling can be a device capable of adjusting the stroke of the mover.
  • the test tool is The test tool can control the pressing degree of the mover, which can change the stroke of the mover.
  • the force sensor can be used to simulate the user's perception of the external force of the force feedback device (hereinafter referred to as the external output force).
  • the force sensor also measures the external output force of the force feedback device at different strokes.
  • Calibration The equipment obtains the stroke from the test tooling and the external output force from the force sensor, and then the corresponding relationship between the external output force and the stroke can be obtained.
  • the calibration equipment can send instructions to the test tool, so that the test tool adjusts the mover stroke and obtains the external output force corresponding to different strokes through the force sensor.
  • the mover will be in different positions during the movement, and the characteristic force of the single body is different at different positions.
  • the above stroke adjustment process is carried out when the force feedback device is not powered on.
  • the force feedback device does not generate electromagnetic force, and the mover does not receive reaction force. Therefore, the measured external output force can be considered as a single unit of the force feedback device. Characteristic force.
  • the various monomer characteristic forces can be considered as a whole or individually; when considered as a whole, the calibration equipment can obtain the monomer's characteristic force based on the measured correspondence between the external output force and the stroke.
  • the correspondence between the resultant force of the characteristic force and the stroke is called the first correspondence; when considered individually, the calibration equipment can calculate different single units based on the measured correspondence between the external output force and the stroke.
  • the corresponding relationship between the characteristic force and the stroke is called the first corresponding relationship.
  • friction force may contribute or reduce the external output force of the force feedback device; that is, when the friction force When the direction is the same as the reaction force, friction force contributes to the external output force.
  • the external output force is friction force, reaction force (hereinafter also called electromagnetic force when the direction is not considered, only the magnitude is considered) and other single body characteristic forces ( (hereinafter referred to as the sum of other characteristic forces); and when the direction of the friction force is opposite to the direction of the reaction force, the friction force has a reducing effect on the external output force, and the external output force is the sum of the reaction force and other single characteristic forces. Subtract the amount of friction.
  • the individual characteristic force can be considered as a whole and adjusted through the test tooling.
  • the stroke of the mover it can be adjusted according to one direction of movement.
  • the corresponding relationship between the resultant force of the single characteristic force and the stroke is measured, and this corresponding relationship is regarded as the first corresponding relationship.
  • the friction force can also be taken into consideration, and the test tool can be used to adjust the stroke of the mover according to one direction of movement, and the relationship between the resultant force of the single characteristic force and the stroke when the mover moves in the direction of movement can be measured.
  • the single characteristic force can also be considered separately, that is, the corresponding relationship between the friction force (referring to the magnitude of the friction force here) and the stroke is measured, and For the corresponding relationships between other characteristic forces and strokes, these two corresponding relationships are regarded as the first corresponding relationships.
  • Step S20 when driving the force feedback device according to the preset driving mode, adjust the stroke of the mover through the test tool and measure the external output force of the force feedback device through the force sensor to combine the The first corresponding relationship measures the second corresponding relationship between the electromagnetic force and the stroke of the force feedback device in the preset driving mode;
  • the magnitude of the electromagnetic force generated by the force feedback device is different, so the reaction force received by the mover is also different, and the external output force of the force feedback device is also different.
  • the force feedback device is powered on, the magnitude of the electromagnetic force generated by the force feedback device is also different at different positions of the mover, so the reaction force received by the mover is also different, and the external output force of the force feedback device is It's also different.
  • the calibration equipment can adjust the stroke of the mover through the test tool when it is determined that the force feedback device is driven according to the preset driving mode.
  • the external output force of the force feedback device can be measured by the force sensor, and the external output force can be obtained. Correspondence with the itinerary.
  • the preset driving mode may be one or more predefined driving modes, which is not limited in this embodiment.
  • the preset driving mode may be to output a forward voltage with a duty cycle of 100%.
  • the calibration device can be connected to the controller of the force feedback device and send instructions to the controller so that the controller drives the force feedback device according to a preset driving mode.
  • the above stroke adjustment process is performed when the force feedback device is driven according to the preset driving mode.
  • the force feedback device generates an electromagnetic force corresponding to the preset driving mode, and the mover receives a corresponding reaction force.
  • the measured external output force can be considered as the sum of the single characteristic force of the force feedback device and the electromagnetic force generated in the preset driving mode. Therefore, based on the The first corresponding relationship between the obtained single body characteristic force and the stroke can be obtained by excluding the single body characteristic force during the same stroke from the external output force of the force feedback device measured when driven according to the preset driving mode.
  • the second corresponding relationship between the electromagnetic force and the stroke of the force feedback device in the preset driving mode it should be noted that when there are multiple preset driving modes, the calibration equipment separately measures the second corresponding relationship between the electromagnetic force and the stroke of the force feedback device in each preset driving mode.
  • the single characteristic force is considered in different ways when measuring the first correspondence relationship.
  • the external output force of the force feedback device measured under driving according to the preset driving mode excludes the same stroke.
  • the exclusion methods adopted when determining the characteristic force of a single unit are also different.
  • the calibration device adjusts the mover stroke according to one direction of motion and measures the relationship between the resultant force of the single-body characteristic force and the stroke.
  • the corresponding relationship is as the first corresponding relationship.
  • the calibration equipment can also adjust the mover stroke according to the movement direction through the test tool when driving the force feedback device according to the preset driving mode, and measure the mover in this direction.
  • the corresponding relationship between the external output force and the stroke can be obtained by subtracting the external output force under each stroke from the resultant force of the single body characteristic force corresponding to the same stroke in the first correspondence relationship, and the relationship between the electromagnetic force and the stroke can be obtained.
  • the corresponding relationship between them is regarded as the second corresponding relationship.
  • the relationship between a set of electromagnetic forces and the stroke can be measured in the two directions of movement in the above manner. Correspondence, and then average the electromagnetic forces corresponding to the same stroke in the two sets of correspondences, and then a set of correspondences between the electromagnetic forces and the strokes can be obtained, and this correspondence is regarded as the second correspondence.
  • the calibration device measures the corresponding relationship between the friction force and the stroke, as well as the corresponding relationship between other characteristic forces and the stroke
  • the calibration equipment can measure the corresponding relationship between the external output force and the stroke in a direction of movement when driving according to the preset driving method, and then calculate the superposition method between friction force and other characteristic forces and electromagnetic force in the direction of movement.
  • the electromagnetic force is obtained after excluding the friction force and other characteristic forces under the same stroke for each external output force, and then a set of correspondences between the electromagnetic force and the stroke is obtained, and this correspondence is regarded as the second correspondence.
  • Step S30 Output the first corresponding relationship and the second corresponding relationship for the controller of the force feedback device to use the current stroke of the mover, the target output force, the first corresponding relationship and the The second corresponding relationship determines a target driving mode, and the force feedback device is driven according to the target driving mode.
  • the calibration device may output the first correspondence relationship and the second correspondence relationship.
  • the purpose of the output is to enable the controller of the force feedback device to obtain the first corresponding relationship and the second corresponding relationship, and then determine the driving mode of the force feedback device based on the first corresponding relationship and the second corresponding relationship.
  • the specific output mode is in There is no limitation in this embodiment.
  • the calibration device may output the first correspondence and the second correspondence to a storage device, and the controller obtains them from the storage device when needed.
  • the controller can save the first correspondence and the second correspondence, and then obtain the first correspondence when it is necessary to drive the force feedback device. Used with the second correspondence.
  • the controller can determine the driving mode (hereinafter referred to as the target driving mode) based on the current stroke of the mover, the target output force, the first corresponding relationship and the second corresponding relationship.
  • the target driving mode is a driving mode corresponding to the target output force, also That is, the purpose of driving the force feedback device through the target driving mode is to make the actual external output force of the force feedback device reach the level of the target output force.
  • the controller can detect the current stroke of the mover through a Hall element or other position sensor.
  • the target output force is the external output force required to be produced under the current stroke.
  • the controller can obtain the correspondence between different strokes and the required external output force, and determine the target corresponding to the current stroke based on the correspondence.
  • Output force among them, the corresponding relationship between different strokes and the required external output force can be obtained externally by the controller, for example, from an upper-layer application.
  • the corresponding relationship can be based on the force feedback of the force feedback device in the current application scenario. It is determined according to the effect requirements, and the determination method is not limited in this embodiment.
  • the controller may determine the target electromagnetic force based on the current stroke, the target output force, the first corresponding relationship, and the second corresponding relationship, and then determine the target driving mode based on the target electromagnetic force.
  • the target electromagnetic force is the magnitude of the electromagnetic force required to achieve the target output force.
  • the controller can determine the single-body characteristic force under the current stroke according to the first corresponding relationship, and then exclude the single-body characteristic force from the target output force to obtain the target electromagnetic force.
  • the controller can determine the estimated electromagnetic force corresponding to the current stroke in the preset driving mode through the second corresponding relationship, and determine the target driving mode based on the estimated electromagnetic force and the target electromagnetic force.
  • step S30 includes:
  • Step S301 obtain the identification information of the force feedback device
  • Step S302 Bind the first correspondence relationship and the second correspondence relationship with the identification information and then upload it to a default server so that the controller of the force feedback device can obtain the information from the preset server according to the identification information.
  • the server obtains the first corresponding relationship and the second corresponding relationship.
  • the force feedback device and the controller may be set up independently. After the user purchases the force feedback device and the controller, the two devices are paired and used. At this time, the paired controller needs to be configured with the force feedback device. The corresponding first correspondence relationship and the second correspondence relationship are used to determine the driving mode, and then driving is performed according to the driving mode.
  • the calibration device in order to enable the controller to obtain the first correspondence relationship and the second correspondence relationship of the temporarily paired force feedback device during the use phase, the calibration device can obtain the identification information of the force feedback device, and convert the The first correspondence relationship and the second correspondence relationship are bound to the identification information and then uploaded to the default server, so that the controller of the force feedback device can obtain the first correspondence of the force feedback device from the default server according to the identification information.
  • the calibration equipment can obtain the identification information of the force feedback device through manual input or scanning with a barcode gun.
  • the identification information can be carried by graphic codes, barcodes, etc., and the identification information can be uniquely identified as the force feedback device. Information.
  • the stroke of the mover in the force feedback device is adjusted through the test tool and the external output force of the force feedback device is measured through the force sensor, so as to measure the single value of the force feedback device.
  • the first corresponding relationship between body characteristic force and stroke when driving the force feedback device according to the preset driving mode, adjust the stroke of the mover through the test tool and measure the external output force of the force feedback device through the force sensor, in order to combine with the third
  • a corresponding relationship is measured to determine the second corresponding relationship between the electromagnetic force and the stroke of the force feedback device in the preset driving mode; the first corresponding relationship and the second corresponding relationship are output for the controller of the force feedback device according to the mover
  • the current stroke, target output force, first correspondence relationship and second correspondence relationship determine the target driving mode, and drive the force feedback device according to the target driving mode.
  • the first correspondence relationship and the second correspondence relationship that can reflect the characteristics of the force feedback device alone are obtained, which serve as the basis for the controller to drive the force feedback device to control the external output force, thereby reducing the force
  • the difference between the actual external output force of the feedback device and the expected output force improves the force feedback effect.
  • the step S10 includes:
  • Step S101 When the force feedback device is not powered on, the test tool is used to move in the forward direction. Directionally adjust the stroke of the mover in the force feedback device and measure the external output force of the force feedback device through a force sensor to measure the third correspondence between the resultant force of the single characteristic force of the force feedback device and the stroke. relation;
  • the individual characteristic force can be considered separately, and the friction force can be taken into account.
  • the calibration equipment can adjust the stroke of the mover according to the forward movement direction through the test tool when it is determined that the force feedback device is not energized, and in the process, measure the external output force of the force feedback device through the force sensor.
  • the forward movement direction and the reverse movement direction are two opposite directions.
  • one direction of the mover's back and forth movement can be regarded as the forward direction and the other direction as the reverse direction.
  • Adjusting the stroke of the mover in the forward movement direction means making the mover move in the forward movement direction.
  • the calibration equipment can send instructions to the test tooling, so that the test tooling adjusts the mover stroke in the forward movement direction according to the instructions and obtains the external output force corresponding to different strokes through the force sensor.
  • the calibration device will obtain the corresponding relationship between the external output force and the stroke when the mover moves in the forward movement direction as the corresponding relationship between the resultant force of the single characteristic force and the stroke when the mover moves in the forward movement direction (hereinafter It is called the third correspondence relationship to show the difference).
  • Step S102 when the force feedback device is not powered on, adjust the stroke of the mover according to the reverse movement direction through the test tool and measure the external output force of the force feedback device through the force sensor to measure Obtain the fourth corresponding relationship between the resultant force of the single characteristic force of the force feedback device and the stroke;
  • the calibration equipment can adjust the stroke of the mover according to the reverse movement direction through the test tool when it is determined that the force feedback device is not energized, and in the process, measure the external output force of the force feedback device through the force sensor.
  • the calibration equipment can send instructions to the test tooling, so that the test tooling adjusts the mover stroke in the reverse movement direction according to the instructions and obtains the external output force corresponding to different strokes through the force sensor.
  • the calibration device uses the obtained correspondence between the external output force and the stroke when the mover moves in the reverse direction as the correspondence between the resultant force of the single characteristic force and the stroke when the mover moves in the reverse direction (hereinafter It is called the fourth correspondence to show the difference).
  • Step S103 Calculate a fifth correspondence between the friction force and the stroke of the force feedback device and other characteristic forces of the force feedback device and the stroke according to the third correspondence and the fourth correspondence.
  • the sixth corresponding relationship, the fifth corresponding relationship and the sixth corresponding relationship As the first corresponding relationship; wherein, the friction force is one of the monomer characteristic forces, and the other characteristic forces are other forces in the monomer characteristic force except the friction force.
  • the calibration equipment can calculate the correspondence between the friction force and the stroke of the force feedback device based on the third correspondence and the fourth correspondence (hereinafter referred to as the fifth correspondence).
  • the friction force of the force feedback device is the friction force experienced by the mover.
  • the fifth correspondence relationship only the correspondence relationship between the magnitude of the friction force and the stroke is considered, and its direction is not considered. It can be understood that the magnitude of the frictional force of the force feedback device during the same stroke is the same and the direction is opposite.
  • the corresponding relationship between other characteristic forces and the stroke can be obtained by adding the resultant force of the single body characteristic forces corresponding to the same stroke in the third correspondence relationship and the fourth correspondence relationship.
  • the correspondence relationship between the third correspondence relationship and the In the fourth correspondence relationship the corresponding relationship between friction force and stroke is obtained by subtracting the resultant force of the single body characteristic force corresponding to the same stroke.
  • the characteristic force of the single body corresponding to the same stroke in the third correspondence relationship and the fourth correspondence relationship can be Add the resultant force and divide by two to get the corresponding relationship between other characteristic forces and stroke. You can subtract the resultant force of the single-body characteristic force in the third correspondence relationship from the single-body characteristic force corresponding to the same stroke in the fourth correspondence relationship. The resultant force is then divided by two to obtain the corresponding relationship between friction force and stroke.
  • a third embodiment of the driving method of the force feedback device of the present invention is proposed.
  • the driving method of the force feedback device can be applied to the controller of the force feedback device.
  • the controller and the force feedback device can be deployed in equipment that needs to realize the force feedback function, such as in VR/AR.
  • the game controller of the device is not specifically limited in this embodiment. For convenience of description, the specific implementation is described below with the controller as the execution subject.
  • the driving method of the force feedback device includes:
  • Step A10 obtain the current stroke of the mover in the force feedback device and the target output force corresponding to the current stroke
  • Step A20 Determine a target driving mode according to the current stroke, the target output force, a first correspondence relationship and a second correspondence relationship, wherein the first correspondence relationship is a single function of the force feedback device.
  • the corresponding relationship between the body characteristic force and the stroke of the mover, the second corresponding relationship is the corresponding relationship between the electromagnetic force of the force feedback device and the stroke of the mover in the preset driving mode,
  • the single characteristic force is the external output force caused by the single characteristic of the force feedback device;
  • Step A30 drive the force feedback device according to the target driving mode.
  • the specific implementation of steps A10 to A30 can be referred to the specific implementation of steps S10 to S30 in the first embodiment, which will not be described again here.
  • the first correspondence relationship and the second correspondence relationship of the force feedback device can be preset in the controller, or the controller can obtain the first correspondence relationship and the second correspondence relationship of the force feedback device from a server or other storage device.
  • the method of obtaining the first correspondence relationship and the second correspondence relationship of the force feedback device can refer to the above-mentioned first or second embodiment, or can be determined by the tester based on the data measured by the test tooling and the force sensor, and is not limited here. .
  • step A10 before step A10, it also includes:
  • Step A40 obtain the identification information of the force feedback device
  • Step A50 Download the first correspondence relationship and the second correspondence relationship corresponding to the identification information from a preset server.
  • steps A40 and A50 may refer to the specific implementation of steps S301 and S302 in the above-mentioned first embodiment, and will not be described again here.
  • the current stroke of the mover in the force feedback device and the target output force corresponding to the current stroke are obtained; the target driving mode is determined according to the current stroke, the target output force, the first correspondence relationship and the second correspondence relationship, where,
  • the first correspondence is the correspondence between the single characteristic force of the force feedback device and the stroke of the mover
  • the second correspondence is the correspondence between the electromagnetic force of the force feedback device and the stroke of the mover in the preset driving mode.
  • the single characteristic force is the external output force caused by the single characteristic of the force feedback device; the force feedback device is driven according to the target driving mode.
  • the gap between the actual external output force and the expected output force of the force feedback device is reduced. The difference improves the force feedback effect.
  • the step A20 includes:
  • Step A201 Determine the current unit characteristics corresponding to the current trip according to the first correspondence relationship. sex force
  • the controller can determine the single-body characteristic force corresponding to the current stroke (hereinafter referred to as the current single-body characteristic force) according to the first correspondence relationship. That is, the current single-body characteristic force represents the force feedback under the current stroke.
  • the single characteristic force of the device when the first corresponding relationship is the corresponding relationship between the resultant force of the single body characteristic force and the stroke, the current single body characteristic force refers to the resultant force of the current single body characteristic force.
  • the current single body characteristic force includes the current various single body characteristic forces, such as the current friction force and other characteristic forces.
  • Step A202 determine the target electromagnetic force of the force feedback device according to the target output force and the current single body characteristic force
  • the controller can determine the target electromagnetic force of the force feedback device based on the target output force and the current single body characteristic force. Specifically, the controller can exclude the current single body characteristic force from the target output force to obtain the target electromagnetic force.
  • the way of excluding the current single body characteristic force from the target output force is also different.
  • the first corresponding relationship is the corresponding relationship between the resultant force of the single-body characteristic force and the stroke.
  • the controller obtains the result based on the first corresponding relationship.
  • the current single body characteristic force is the resultant force of the single body characteristic forces.
  • the controller can subtract the current single body characteristic force from the target output force as the target electromagnetic force.
  • the first corresponding relationship when the single-body characteristic force is considered as a whole, but the friction force is also taken into account, the first corresponding relationship includes the corresponding relationship between the resultant force of the single-body characteristic force and the stroke in the two motion directions,
  • the current single-body characteristic force obtained by the controller based on the first correspondence is the resultant force of the single-body characteristic forces corresponding to the current moving direction of the mover.
  • the controller subtracts the current single-body characteristic force from the target output force as the target electromagnetic force. force.
  • the first corresponding relationship when the characteristic force of a single unit is considered separately, the first corresponding relationship includes the corresponding relationship between friction force and stroke and the corresponding relationship between other characteristic forces and stroke.
  • the body characteristic force includes the current friction force and other current characteristic forces.
  • the controller excludes the current friction force and other current characteristic forces from the target output force according to the superposition of friction force, other characteristic forces and reaction forces in the current direction of movement of the mover. Target electromagnetic force.
  • Step A203 Determine the first estimated electromagnetic force corresponding to the current stroke in the preset driving mode according to the second corresponding relationship
  • the controller can determine the electromagnetic force corresponding to the current stroke (hereinafter referred to as the first estimated electromagnetic force) according to the second correspondence relationship.
  • the first estimated electromagnetic force represents the force feedback device when driving according to the preset driving mode under the current stroke.
  • Step A204 Determine a target driving mode based on the target electromagnetic force and the first estimated electromagnetic force.
  • the controller may determine the target driving mode based on the target electromagnetic force and the first estimated electromagnetic force.
  • the method of determining the target driving mode based on the target electromagnetic force and the first estimated electromagnetic force is also different. It can be understood that the force feedback device is expected to produce the first estimated electromagnetic force under the preset driving mode. According to the relationship between the electromagnetic forces that the force feedback device can generate under different driving modes, a target driving mode can be determined. , so that when the force feedback device is driven according to the target driving mode, the actual electromagnetic force of the force feedback device can reach a level equivalent to the target electromagnetic force.
  • the controller may obtain different preset driving modes according to the second corresponding relationships corresponding to the different preset driving modes.
  • the target electromagnetic force is compared with each first estimated electromagnetic force.
  • a first estimated electromagnetic force that is the same as the target electromagnetic force or has an error less than a certain range can be selected, and the first estimated electromagnetic force can be selected.
  • a preset driving mode corresponding to the estimated electromagnetic force is used as the target driving mode.
  • step A20 it also includes:
  • Step A60 Determine the second estimated electromagnetic force of the force feedback device under the target driving mode and the current stroke according to the first estimated electromagnetic force and the target driving mode;
  • the controller can determine the electromagnetic force that the force feedback device is expected to generate under the target driving mode and the current stroke (hereinafter referred to as the second estimated electromagnetic force) based on the first estimated electromagnetic force and the target driving mode.
  • the force feedback device is expected to produce the first estimated electromagnetic force under the preset driving mode. According to the relationship between the electromagnetic forces that the force feedback device can generate under different driving modes, it can be expected that the force feedback device will produce the first estimated electromagnetic force according to the target driving mode.
  • the electromagnetic force that the force feedback device can generate when there are multiple preset driving modes, the controller selects the first estimated electromagnetic force that is the same as the target electromagnetic force or the error is less than a certain range, and sets the preset drive corresponding to the first estimated electromagnetic force to When the mode is used as the target driving mode, the first estimated electromagnetic force can be used as the second Estimating electromagnetic forces.
  • Step A70 Determine the estimated output force of the force feedback device based on the second estimated electromagnetic force and the current single unit characteristic force
  • the controller may determine the estimated output force of the force feedback device based on the second estimated electromagnetic force and the current single body characteristic force. Specifically, the controller can superimpose the second estimated electromagnetic force with the current single body characteristic force to obtain the estimated output force.
  • the superposition method is related to the way of considering the characteristic force of the single body and the direction of movement of the mover. For details, you can refer to the above-mentioned reverse process of excluding the current single body characteristic force from the target output force.
  • Step A80 Generate relational data representing the correspondence between the estimated output force and the current stroke, and output the relational data.
  • the controller can generate relationship data representing the correspondence between the estimated output force and the current stroke, and output the relationship data.
  • the stroke of the mover is constantly changing, and the relationship data includes data marking the estimated output force corresponding to different strokes.
  • the relational data may be output to a display device connected to the controller for display, or may be output to a storage device connected to the controller for storage, so that subsequent technicians or users can review the relational data. Perform analysis.
  • step A201 includes:
  • Step A2011 determine the current friction force corresponding to the current stroke according to the fifth correspondence relationship among the first correspondence relationships
  • Step A2012 Determine other current characteristic forces corresponding to the current stroke according to the sixth correspondence among the first correspondences; wherein the fifth correspondence is the friction between the force feedback device and the mover.
  • the corresponding relationship between the strokes, the sixth corresponding relationship is the corresponding relationship between other characteristic forces of the force feedback device and the stroke of the mover, and the friction force is a part of the single characteristic force kind, the other characteristic forces are other forces in the single body characteristic force except the friction force;
  • the first correspondence relationship may include a fifth correspondence relationship and a sixth correspondence relationship, that is, the correspondence relationship between friction force and stroke and the correspondence relationship between other characteristic forces and stroke.
  • the controller may determine the current friction force corresponding to the current stroke according to the fifth correspondence relationship, and determine the current other characteristic forces corresponding to the current stroke according to the sixth correspondence relationship.
  • the step A202 includes:
  • Step A2021 when the current movement direction of the mover is the forward movement direction, subtract the sum of the current other characteristic forces and the current friction force from the target output force to obtain the target electromagnetic force of the force feedback device. force;
  • the direction in which the friction force direction and the reaction force direction are the same when the mover moves can be regarded as the forward movement direction.
  • the controller can determine the current motion direction of the mover. When the current motion direction is the forward motion direction, the controller can calculate the sum of other current characteristic forces and the current friction force to obtain the resultant force of the current single characteristic force, and then use the target output The target electromagnetic force is obtained by subtracting the resultant force of the current single body characteristic force from the force.
  • the controller can determine the direction of the mover based on the current stroke and the stroke at the previous moment.
  • Step A2022 When the current movement direction of the mover is the reverse movement direction, subtract the difference between the current other characteristic force and the current friction force from the target output force to obtain the target of the force feedback device. Electromagnetic force.
  • the controller can calculate the difference between the current other characteristic forces and the current friction force to obtain the resultant force of the current single-body characteristic force, and then subtract the resultant force of the current single-body characteristic force from the target output force. , get the target electromagnetic force.
  • the controller may use the driving mode at the previous moment as the target driving mode.
  • the preset driving method is to output a forward voltage with a preset duty cycle
  • the step A204 includes:
  • Step A2041 Calculate the ratio of the target electromagnetic force to the first estimated electromagnetic force, and determine the target duty cycle based on the ratio and the preset duty cycle;
  • the controller can calculate the ratio of the target electromagnetic force and the first estimated electromagnetic force, and then determine the target duty cycle based on the ratio and the preset duty cycle.
  • the target duty cycle represents the proportion of the target electromagnetic force that the force feedback device can output when driven by a forward voltage outputting 100% duty cycle under the current stroke.
  • the controller may multiply the ratio by the preset duty cycle and divide it by 100% to obtain the target duty cycle. It can be understood that when the preset duty cycle is 100%, the controller can directly obtain the target duty cycle based on the ratio value. Further, in one embodiment, when the target output force causes the calculation When the obtained duty cycle exceeds the duty cycle range of the driving voltage (-100%-100%), the duty cycle can be controlled within this range. Specifically, the controller can multiply the ratio by the preset duty cycle Then divide by 100% to get a percentage. If the percentage is greater than 100%, use 100% as the target duty cycle. If the percentage is less than -100%, use -100% as the target duty cycle. If the percentage is not greater than 100% or not less than -100%, then use this percentage as the target duty cycle.
  • the target duty cycle determined at the previous moment may be used as the target duty cycle at the current moment.
  • Step A2042 when the target duty cycle is greater than or equal to zero, output the forward voltage of the target duty cycle as the target driving mode
  • Step A2043 When the target duty cycle is less than zero, the reverse voltage whose output duty cycle is the absolute value of the target duty cycle is used as the target driving mode.
  • the controller can output the forward voltage of the target duty cycle as the target driving mode.
  • the controller can output the reverse voltage of the target duty cycle as the target driving mode.
  • the determination method of the target driving mode is exactly opposite to that when the preset driving mode is to output a forward voltage with a preset duty cycle. This will not be described in detail.
  • calculating the second estimated electromagnetic force may specifically multiply the first estimated electromagnetic force by the target duty cycle.
  • the second estimated electromagnetic force is obtained.
  • the estimated output force determined at the previous moment can be used as the estimated output force at the current moment.
  • a specific force feedback device calibration and driving process is taken as an example to illustrate.
  • the calibration process of a force feedback device is shown in Figure 2
  • the control process is shown in Figure 3
  • the system block diagram is as follows As shown in Figure 4.
  • the force feedback device outputs the relationship data between the force and the stroke without power and with the maximum forward current (the relationship data is the relationship data in the above embodiments). corresponding relationship), get Obtain the relationship data between the first electromagnetic force Fe1 and the stroke and the relationship data between the resultant force of the spring force Fk, the static magnetic force Fm and the forward friction force Ff (the first resultant force Fa1) and the stroke.
  • the specific process is:
  • PC sends working mode 1 to the test tooling and controller, that is, the stroke S of the test tool’s pressing force feedback device gradually increases from 0% stroke to 100% stroke; the controller driving voltage duty cycle is 0 and no power is supplied. Control force feedback device;
  • the PC sends working mode 2 to the test tooling and the controller, that is, the stroke S of the pressing force feedback device of the test tool gradually increases from 0% stroke to 100% stroke; the controller driving voltage duty cycle is 100%.
  • the test tool detects the output force Fs2 of the force feedback device during the full stroke S through the force sensor.
  • the force feedback device outputs data on the relationship between the force and the stroke when no power is supplied and when the maximum forward current is supplied, and the relationship between the second electromagnetic force Fe2 and the stroke is obtained.
  • the PC sends working mode 3 to the test tooling and controller, that is, the stroke S of the test tool’s pressing force feedback device gradually decreases from 100% stroke to 0% stroke; the controller’s driving voltage duty cycle is 0 and no power is supplied. Control force feedback device;
  • the test tool detects the output force Fs3 of the force feedback device during the full stroke S through the force sensor.
  • the PC sends working mode 4 to the test tooling and controller, that is, the test tool pressing force feedback device
  • the set stroke S gradually decreases from 100% stroke to 0% stroke in reverse direction; the controller driving voltage duty cycle is 100%, and the maximum forward current controls the force feedback device;
  • the test tool detects the output force Fs4 of the force feedback device during the full stroke S through the force sensor.
  • the controller sends the identification information to the cloud server
  • the cloud server sends calibration data matching the identification information to the controller
  • the controller receives the relationship data between the target force Ft and the stroke from the external input.
  • the upper limit of the external input target force Ft is the rated output force FN of the force feedback device; and because the force feedback device outputs a force less than 0N, the experiencer and The force output component of the device will separate and no longer contact, that is, the experiencer will not feel force feedback less than 0N, and considering the control error, the lower limit of the target force Ft is generally a value greater than 0N, such as 0.2N;
  • the controller continuously detects the current stroke of the mover of the force feedback device through a Hall element or other position sensor. As shown in Figure 4, the controller continuously detects the current stroke S of the mover of the force feedback device through the position sensor.
  • the controller determines the movement direction of the current stroke of the force feedback device based on the currently detected stroke Spresent and the last detected stroke Slast. Specifically:
  • the controller calculates the first duty required for the current stroke based on the relationship data between the target force Ft, the third electromagnetic force Fe3, the third resultant force Fa3, the friction force Ff and the stroke, as well as the current stroke S and the movement direction of the current stroke.
  • D1 Specifically:
  • the controller determines the amplitude of the first duty cycle D1. If the first duty cycle D1 is greater than 100%, the first duty cycle D1 is adjusted to 100%; if the first duty cycle D1 is less than -100%, Then adjust the first duty cycle D1 to -100%; otherwise, maintain the first duty cycle D1 unchanged.
  • the adjusted first duty cycle D1 is defined as the second duty cycle D2. Specifically:
  • Output PWM chopper voltage and drive force feedback device specifically is:
  • the controller determines the polarity of the second duty cycle D2. If the second duty cycle D2 is greater than or equal to 0, that is, D2 ⁇ 0, then the forward voltage is output, the amplitude is the DC power supply voltage Udc, and the duty cycle D is the second duty cycle D2;
  • the controller generates PWM chopper voltage in the above manner, and controls the force feedback device to generate actual force output.
  • the calibration equipment of the force feedback device of the present invention may include: a processor, such as a CPU, a network interface, a user interface, a memory, and a communication bus.
  • the user interface may include a display screen (Display) and an input unit such as a keyboard (Keyboard).
  • the optional user interface may also include standard wired interfaces and wireless interfaces.
  • Optional network interfaces may include standard wired interfaces and wireless interfaces (such as WI-FI interfaces).
  • the memory can be high-speed RAM memory or stable memory (non-volatile memory), such as disk memory.
  • the memory may optionally be a storage device independent of the aforementioned processor.
  • the memory as a computer storage medium may include an operating system, a network communication module, a user interface module and a calibration program of the force feedback device.
  • the operating system is a program that manages and controls the hardware and software resources of the device, and supports the calibration program of the force feedback device and the operation of other software or programs.
  • the user interface is mainly used for data communication with the client; the network interface is mainly used for the server to establish communication connections.
  • the processor may be used to call the calibration program of the force feedback device stored in the memory and perform the following operations:
  • the stroke of the mover in the force feedback device is adjusted through a test tool and the external output force of the force feedback device is measured through a force sensor to measure the single force of the force feedback device.
  • the stroke of the mover is adjusted through the test tool and the external output force of the force feedback device is measured through the force sensor to combine with the first
  • the corresponding relationship measures the second corresponding relationship between the electromagnetic force and the stroke of the force feedback device in the preset driving mode
  • the first corresponding relationship and the second corresponding relationship are output, so that the controller of the force feedback device can output the force according to the current stroke of the mover, the target output force, the first corresponding relationship and the second corresponding relationship.
  • the corresponding relationship determines a target driving mode, and the force feedback device is driven according to the target driving mode.
  • the stroke of the mover in the force feedback device is adjusted through a test tool and the external output force of the force feedback device is measured through a force sensor to measure the
  • the operation of the first corresponding relationship between the single characteristic force and the stroke of the force feedback device includes:
  • test tool When the force feedback device is not powered on, the test tool is used to adjust the stroke of the mover in the force feedback device according to the forward movement direction and the force sensor is used to measure the external output force of the force feedback device to measure the The third corresponding relationship between the resultant force of the single characteristic force of the force feedback device and the stroke;
  • test tool When the force feedback device is not powered on, the test tool is used to adjust the stroke of the mover according to the reverse movement direction and the force sensor is used to measure the external output force of the force feedback device to measure the The fourth corresponding relationship between the resultant force of the single characteristic force of the force feedback device and the stroke;
  • the fifth correspondence between the friction force and the stroke of the force feedback device and the sixth correspondence between other characteristic forces of the force feedback device and the stroke are calculated according to the third correspondence and the fourth correspondence.
  • Correspondence taking the fifth correspondence and the sixth correspondence as the first correspondence;
  • the friction force is one of the single-body characteristic forces, and the other characteristic forces are other forces in the single-body characteristic force except the friction force.
  • the operation of outputting the first corresponding relationship and the second corresponding relationship includes:
  • the first corresponding relationship and the second corresponding relationship are bound to the identification information and then uploaded to a preset server, so that the controller of the force feedback device obtains all the information from the preset server according to the identification information. the first corresponding relationship and the second corresponding relationship.
  • the driving device of the force feedback device of the present invention may include: a processor, such as a CPU, a network interface, a user interface, a memory, and a communication bus.
  • the user interface may include a display screen (Display) and an input unit such as a keyboard (Keyboard).
  • the optional user interface may also include standard wired interfaces and wireless interfaces.
  • Optional network interfaces may include standard wired interfaces and wireless interfaces (such as WI-FI interfaces).
  • the memory can be high-speed RAM memory or stable memory (non-volatile memory), such as disk memory.
  • the memory may optionally be a storage device independent of the aforementioned processor.
  • the memory as a computer storage medium may include an operating system, a network communication module, a user interface module, and a driver for the force feedback device.
  • the operating system is a program that manages and controls the hardware and software resources of the device, and supports the operation of the driver of the force feedback device and other software or programs.
  • the user interface is mainly used for data communication with the client; the network interface is mainly used for the server to establish communication connections.
  • the processor may be used to call a driver for the force feedback device stored in the memory and perform the following operations:
  • the target driving mode is determined according to the current stroke, the target output force, a first correspondence relationship and a second correspondence relationship, wherein the first correspondence relationship is the single characteristic force of the force feedback device and the mover
  • the second corresponding relationship is the corresponding relationship between the electromagnetic force of the force feedback device and the stroke of the mover in the preset driving mode, and the single characteristic force is because The external output force caused by the single characteristics of the force feedback device;
  • the force feedback device is driven according to the target driving mode.
  • the operation of determining the target driving mode based on the current stroke, the target output force, the first corresponding relationship and the second corresponding relationship includes:
  • a target driving mode is determined based on the target electromagnetic force and the first estimated electromagnetic force.
  • the processor may also be used to call the drive of the force feedback device stored in the memory. program that does the following:
  • Relational data representing the correspondence between the estimated output force and the current stroke is generated, and the relational data is output.
  • the operation of determining the current single body characteristic force corresponding to the current stroke according to the first corresponding relationship includes:
  • the fifth correspondence relationship is the correspondence relationship between the friction force of the force feedback device and the stroke of the mover
  • the sixth correspondence relationship is the correspondence relationship between other characteristic forces of the force feedback device and the mover.
  • the corresponding relationship between the strokes of the sub-unit, the friction force is one of the monomer characteristic forces, and the other characteristic forces are other forces in the monomer characteristic force except the friction force;
  • the target output force is subtracted from the difference between the current other characteristic force and the current friction force to obtain the target electromagnetic force of the force feedback device.
  • the preset driving mode is to output a forward voltage with a preset duty cycle
  • the operation of determining the target driving mode according to the target electromagnetic force and the first estimated electromagnetic force includes:
  • the forward voltage of the target duty cycle is output as the target driving mode
  • the reverse voltage whose output duty cycle is the absolute value of the target duty cycle is used as the target driving mode.
  • the processor may also be used to call the driver program of the force feedback device stored in the memory to execute The following actions:
  • embodiments of the present invention also provide a computer-readable storage medium.
  • the storage medium stores a calibration program of the force feedback device.
  • the calibration program of the force feedback device is executed by the processor, the force feedback device as described below is implemented. steps of the calibration method.
  • embodiments of the present invention also provide a computer-readable storage medium.
  • the storage medium stores a driver program for a force feedback device.
  • the driver program for the force feedback device is executed by a processor, the force feedback device as described below is implemented.
  • the steps of the driving method For each embodiment of the driving equipment and computer-readable storage medium of the force feedback device of the present invention, reference can be made to the driving method of the force feedback device of the present invention. The various embodiments of the method will not be described again here.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present invention can be embodied in the form of a software product in essence or the part that contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal device (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Mechanical Control Devices (AREA)

Abstract

一种力反馈装置的校准方法、驱动方法、设备及存储介质,所述校准方法包括:在未对力反馈装置通电时,通过调整力动子的行程以及通过测量力反馈装置的对外输出力,测得力反馈装置的单体特性力与行程之间的第一对应关系(S10);在按照预设驱动方式对力反馈装置驱动时,通过调整动子的行程以及通过测量力反馈装置的对外输出力,测得在预设驱动方式下力反馈装置的电磁力与行程之间的第二对应关系(S20);将第一对应关系与第二对应关系输出,以供力控制器根据动子的当前行程、目标输出力、第一对应关系和第二对应关系确定目标驱动方式,并按照目标驱动方式驱动(S30)。该方法降低了力反馈装置实际对外输出力与预期输出力之间的差异,提高了力反馈效果。

Description

力反馈装置的校准方法、驱动方法、设备及存储介质 技术领域
本发明涉及力反馈技术领域,尤其涉及一种力反馈装置的校准方法、驱动方法、设备及存储介质。
背景技术
力反馈装置能够提供与操作相匹配的力感反馈,给用户带来逼真的使用体验,随着元宇宙概念的兴起,游戏手柄、AR/VR等设备对力反馈的需求也越来越高。基于电磁直驱原理的力反馈装置通过定子端的通电线圈在磁场中受到的电磁力的作用,给动子以相等的反作用力,进而产生对外的输出力,形成力反馈效果;通过控制电流的大小和方向,可以精准地控制电磁力,进而实现不同的力反馈效果。但是在实际过程中,力反馈装置产生的对外输出力往往是反作用力与力反馈装置单体特性引起的对外输出力(例如弹簧力、静态磁场相互作用力等)的叠加,以电磁力作为对外输出力进行控制,将会导致力反馈装置实际对外输出力与预期输出力存在差异的问题,进而导致力反馈效果不佳。
发明内容
本发明的主要目的在于提供一种力反馈装置的校准方法、驱动方法、设备及存储介质,旨在通过将反映力反馈装置单体特性的数据作为控制对外输出力的依据,以降低力反馈装置实际对外输出力与预期输出力之间的差异,提高力反馈效果。
为实现上述目的,本发明提供一种力反馈装置的校准方法,所述力反馈装置为基于电磁直驱原理的力反馈装置,所述方法包括以下步骤:
在未对所述力反馈装置通电时,通过测试工装调整所述力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力与行程之间的第一对应关系,其中,所述单体特性力为因所述力反馈装置的单体特性而引起的对外输出力;
在按照预设驱动方式对所述力反馈装置驱动时,通过所述测试工装调整所述动子的行程以及通过所述力传感器测量所述力反馈装置的对外输出力,以结合所述第一对应关系测得在所述预设驱动方式下所述力反馈装置的电磁力与行程之间的第二对应关系;
将所述第一对应关系与所述第二对应关系输出,以供所述力反馈装置的控制器根据所述动子的当前行程、目标输出力、所述第一对应关系和所述第二对应关系确定目标驱动方式,并按照所述目标驱动方式驱动所述力反馈装置。
可选地,所述在未对所述力反馈装置通电时,通过测试工装调整所述力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力与行程之间的第一对应关系的步骤包括:
在未对所述力反馈装置通电时,通过测试工装按照正向运动方向调整所述力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力的合力与行程之间的第三对应关系;
在未对所述力反馈装置通电时,通过所述测试工装按照反向运动方向调整所述动子的行程以及通过所述力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力的合力与行程之间的第四对应关系;
根据所述第三对应关系和所述第四对应关系计算得到所述力反馈装置的摩擦力与行程之间的第五对应关系以及所述力反馈装置的其他特性力与行程之间的第六对应关系,将所述第五对应关系和所述第六对应关系作为所述第一对应关系;
其中,所述摩擦力是所述单体特性力的一种,所述其它特性力是所述单体特性力中除所述摩擦力外的其他力。
可选地,所述将所述第一对应关系与所述第二对应关系输出的步骤包括:
获取所述力反馈装置的标识信息;
将所述第一对应关系和所述第二对应关系与所述标识信息绑定后上传预设服务器,以供所述力反馈装置的控制器按照所述标识信息从所述预设服务器获取所述第一对应关系和所述第二对应关系。
为实现上述目的,本发明还提供一种力反馈装置的驱动方法,所述力反馈装置为基于电磁直驱原理的力反馈装置,所述方法包括以下步骤:
获取所述力反馈装置中动子的当前行程和所述当前行程对应的目标输出力;
根据所述当前行程、所述目标输出力、第一对应关系和第二对应关系确定目标驱动方式,其中,所述第一对应关系为所述力反馈装置的单体特性力与所述动子的行程之间的对应关系,所述第二对应关系为在预设驱动方式下所述力反馈装置的电磁力与所述动子的行程之间的对应关系,所述单体特性力为因所述力反馈装置的单体特性而引起的对外输出力;
按照所述目标驱动方式驱动所述力反馈装置。
可选地,所述根据所述当前行程、所述目标输出力、第一对应关系和第二对应关系确定目标驱动方式的步骤包括:
根据所述第一对应关系确定所述当前行程对应的当前单体特性力;
根据所述目标输出力和所述当前单体特性力确定所述力反馈装置的目标电磁力;
根据所述第二对应关系确定在所述预设驱动方式下所述当前行程对应的第一预估电磁力;
根据所述目标电磁力和所述第一预估电磁力确定目标驱动方式。
可选地,所述根据所述当前行程、所述目标输出力、第一对应关系和第二对应关系确定目标驱动方式的步骤之后,还包括:
根据所述第一预估电磁力和所述目标驱动方式确定在所述目标驱动方式及所述当前行程下所述力反馈装置的第二预估电磁力;
根据所述第二预估电磁力和所述当前单体特性力确定所述力反馈装置的预估输出力;
生成表征所述预估输出力和所说当前行程之间对应关系的关系数据,并输出所述关系数据。
可选地,所述根据所述第一对应关系确定所述当前行程对应的当前单体特性力的步骤包括:
根据所述第一对应关系中的第五对应关系确定所述当前行程对应的当前摩擦力;
根据所述第一对应关系中的第六对应关系确定所述当前行程对应的当前其他特性力;
其中,所述第五对应关系为所述力反馈装置的摩擦力与所述动子的行程之间的对应关系,所述第六对应关系为所述力反馈装置的其他特性力与所述动子的行程之间的对应关系,所述摩擦力是所述单体特性力的一种,所述其它特性力是所述单体特性力中除所述摩擦力外的其他力;
所述根据所述目标输出力和所述当前单体特性力确定所述力反馈装置的目标电磁力的步骤包括:
当所述动子当前的运动方向是正向运动方向时,将所述目标输出力减去所述当前其他特性力与所述当前摩擦力之和,得到所述力反馈装置的目标电磁力;
当所述动子当前的运动方向是反向运动方向时,将所述目标输出力减去所述当前其他特性力与所述当前摩擦力之差,得到所述力反馈装置的目标电磁力。
可选地,所述预设驱动方式为输出预设占空比的正向电压,所述根据所述目标电磁力和所述第一预估电磁力确定目标驱动方式的步骤包括:
计算所述目标电磁力与所述第一预估电磁力的比值,根据所述比值和所述预设占空比确定目标占空比;
当所述目标占空比大于或等于零时,将输出所述目标占空比的正向电压作为目标驱动方式;
当所述目标占空比小于零时,将输出占空比为所述目标占空比绝对值的反向电压作为目标驱动方式。
可选地,所述获取所述力反馈装置中动子的当前行程和所述当前行程对应的目标输出力的步骤之前,还包括:
获取所述力反馈装置的标识信息;
从预设服务器下载与所述标识信息对应的所述第一对应关系和所述第二对应关系。
为实现上述目的,本发明还提供一种力反馈装置的校准设备,所述力反馈装置的校准设备包括:存储器、处理器及存储在所述存储器上并可在所述 处理器上运行的力反馈装置的校准程序,所述力反馈装置的校准程序被所述处理器执行时实现如上所述的力反馈装置的校准方法的步骤。
为实现上述目的,本发明还提供一种力反馈装置的驱动设备,所述力反馈装置的驱动设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的力反馈装置的驱动程序,所述力反馈装置的驱动程序被所述处理器执行时实现如上所述的力反馈装置的驱动方法的步骤。
为实现上述目的,本发明还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有力反馈装置的校准程序,所述力反馈装置的校准程序被处理器执行时实现如上所述的力反馈装置的校准方法的步骤。
此外,为实现上述目的,本发明还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有力反馈装置的驱动程序,所述力反馈装置的驱动程序被处理器执行时实现如上所述的力反馈装置的驱动方法的步骤。
本发明中,通过在未对力反馈装置通电时,通过测试工装调整力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得力反馈装置的单体特性力与行程之间的第一对应关系;在按照预设驱动方式对力反馈装置驱动时,通过测试工装调整动子的行程以及通过力传感器测量力反馈装置的对外输出力,以结合第一对应关系测得在预设驱动方式下力反馈装置的电磁力与行程之间的第二对应关系;将第一对应关系与第二对应关系输出,以供力反馈装置的控制器根据动子的当前行程、目标输出力、第一对应关系和第二对应关系确定目标驱动方式,并按照目标驱动方式驱动力反馈装置。本发明通过对力反馈装置单体进行校准,得到能够反映该力反馈装置单体特性的第一对应关系和第二对应关系,以作为控制器驱动力反馈装置以控制对外输出力的依据,降低了力反馈装置实际对外输出力与预期输出力之间的差异,提高了力反馈效果。
附图说明
图1为本发明力反馈装置的校准方法第一实施例的流程示意图;
图2为本发明实施例涉及的一种力反馈装置的校准流程示意图;
图3为本发明实施例涉及的一种力反馈装置的驱动流程示意图;
图4为本发明实施例涉及的一种力反馈装置的校准与驱动系统架构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1,图1为本发明力反馈装置的校准方法第一实施例的流程示意图。
本发明实施例提供了力反馈装置的校准方法的实施例,需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。在本实施例中,所述力反馈装置的校准方法可以应用于电脑、智能手机、服务器等设备,在此并不做限制。以下为便于描述,以校准设备为执行主体进行具体实施方式的阐述。在本实施例中,所述力反馈装置的校准方法包括:
步骤S10,在未对所述力反馈装置通电时,通过测试工装调整所述力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力与行程之间的第一对应关系,其中,所述单体特性力为因所述力反馈装置的单体特性而引起的对外输出力;
在本实施例中,为解决力反馈装置实际对外输出力与预期输出力存在差异的问题,提出通过对力反馈装置单体进行校准,得到能够反映该力反馈装置单体特性的数据,以作为控制对外输出力的依据,进而降低力反馈装置实际对外输出力与预期输出力之间的差异,提高力反馈效果。
具体地,采用电磁直驱原理的力反馈装置包括动子和定子两部分。其工作原理是定子端的通电线圈在磁场中会受到电磁力的作用,进而给动子以相等的反作用力。动子是可以在一定范围内来回运动(或称为移动)的,在运 动过程中,动子会受到除反作用力以外的一些力,且由于生产加工力反馈装置的工艺和不稳定性因素,会导致不同的力反馈装置单体在相同情况下动子受到的这些力的大小也是不同的,这些力与反作用力叠加的合力就是力反馈装置对外的输出力,以下将这些力称为因力反馈装置的单体特性引起的对外的输出力,进一步地简称为单体特性力。单体特性力可能有很多种,例如摩擦力、弹簧力、静态磁场相互作用力(静磁力)。在一实施方式中,动子和定子中至少有一个包含永磁体,至少有一个包含线圈,线圈所在端搭配导磁材料来增强通电后的电磁力;由于线圈需要连接电源通电工作,因此将磁钢和线圈设计在定子端;动子和定子之间通过必要的连接元件进行连接,该连接元件可以是弹簧。
在本实施例中,采用校准设备对力反馈装置进行校准。在具体实施方式中,采用校准设备对力反馈装置进行校准的操作可以在生产线上完成,也可以在其它场景下完成,在此并不做限制。
在确定力反馈装置未被通电的情况下,校准设备通过测试工装调整力反馈装置中动子的行程,并在这个过程中通过力传感器测量力反馈装置的对外输出力。
其中,以下将对力反馈装置进行通电或不通电的操作称为驱动操作,输出不同的电压或电流给力反馈装置属于不同的驱动方式。在校准过程中,对力反馈装置的驱动操作可以由与力反馈装置配套的控制器来执行,也可以由生产线上配备的控制器来执行,在本实施例中并不做限制。校准设备确定力反馈装置以何种驱动方式驱动的方法有很多种,例如由测试人员在校准设备中设置,或由力反馈装置的控制器上报等,在本实施例中并不做限制;例如,在一实施方式中,校准设备可以与力反馈装置的控制器进行连接,向控制器发送指示,以使得控制器对力反馈装置不通电。在一实施方式中,控制器对力反馈装置不通电可以通过向力反馈装置输出占空比为0的电压来实现。
以下采用行程来表示动子在运动过程中所处的位置,具体是采用距离还是百分比来表示以及位置基准的选取在本实施例中并不做限制。例如,在一实施方式中,可以是以动子可运动范围的一端为起点另一端为终端,将动子从起点运动到当前位置所经过的距离占起点到终端全程的占比称为行程。
测试工装可以是能够调整动子行程的装置,在具体实施方式中,通过测 试工装对动子的按压程度的控制,可以改变动子的行程。力传感器可以用于模拟用户感受力反馈装置对外的作用力(以下称为对外输出力),在测试工装调整行程的过程中,力传感器也测得不同行程时力反馈装置的对外输出力,校准设备从测试工装获取行程以及从力传感器获取对外输出力,进而可以得到对外输出力与行程之间的对应关系。在一实施方式中,校准设备可以向测试工装发送指示,以使得测试工装调整动子行程并通过力传感器获取不同行程对应的对外输出力。
需要说明的是,运动过程中动子将会处于不同的位置,在不同位置处,单体特性力是不同的。上述行程调节过程是在力反馈装置未被通电的情况下进行的,力反馈装置没有产生电磁力,动子也没有受到反作用力,所以测得的对外输出力可以认为是力反馈装置的单体特性力。
在具体实施方式中,可以将多种单体特性力作为一个整体考虑,也可以单独考虑;在整体考虑时,校准设备可以根据测得的对外输出力与行程之间的对应关系,得到单体特性力的合力与行程之间的对应关系,将该对应关系称为第一对应关系;在单独考虑时,校准设备可以根据测得的对外输出力与行程之间的对应关系,计算不同单体特性力与行程之间的对应关系,将各对应关系称为第一对应关系。
由于动子的运动方向不同时其受到的摩擦力方向也是不同的,所以摩擦力作为一种单体特性力对力反馈装置的对外输出力可能是贡献作用或削减作用;也即,当摩擦力方向与反作用力方向相同时,摩擦力对对外输出力是贡献作用,对外输出力为摩擦力、反作用力(以下在不考虑方向仅考虑大小时也称为电磁力)和其他单体特性力(以下称为其他特性力)的大小之和;而当摩擦力方向与反作用力方向相反时,摩擦力对对外输出力是削减作用,对外输出力为反作用力和其他单体特性力的大小之和减去摩擦力的大小。基于上述原理,在动子的运动方向不同时,在相同的行程下,单体特性力的合力是不同的。其中,其他特性力是除摩擦力外的其它单体特性力。需要说明的是,在同一行程下运动方向不同时电磁力的大小和方向都是相同的,其他特性力也是同样的。
在一实施方式中,若力反馈装置的动子在运动过程中受到的摩擦力是可以忽略不计的,则可以将单体特性力作为一个整体考虑,在通过测试工装调 整动子的行程时,可以按照一个运动方向进行调整,测得动子在以该运动方向运动时,单体特性力的合力与行程之间的对应关系,将该对应关系作为第一对应关系。在另一实施方式中,也可以将摩擦力考虑在内,通过测试工装按照一个运动方向调整动子的行程,测得动子在以该运动方向运动时单体特性力的合力与行程之间的对应关系,以及再通过测试工装按照另一个运动方向调整动子的行程,测得动子在以该另一运动方向运动时单体特性力的合力与行程之间的对应关系,将该两个对应关系作为第一对应关系。在另一实施方式中,在将摩擦力考虑在内时,也可以将单体特性力单独考虑,也即,测得摩擦力(这里指摩擦力的大小)与行程之间的对应关系,以及其他特性力与行程之间的对应关系,将该两个对应关系作为第一对应关系。
步骤S20,在按照预设驱动方式对所述力反馈装置驱动时,通过所述测试工装调整所述动子的行程以及通过所述力传感器测量所述力反馈装置的对外输出力,以结合所述第一对应关系测得在所述预设驱动方式下所述力反馈装置的电磁力与行程之间的第二对应关系;
按照不同的驱动方式驱动力反馈装置时,力反馈装置产生的电磁力的大小是不同的,从而动子受到的反作用力也是不同的,进而力反馈装置的对外输出力也是不同的。在对力反馈装置进行通电的情况下,动子在不同位置处,力反馈装置产生的电磁力的大小也是不同的,从而动子受到的反作用力也是不同的,进而力反馈装置的对外输出力也是不同的。
校准设备可以在确定力反馈装置被按照预设驱动方式进行驱动时,通过测试工装调整动子的行程,并在这个过程中通过力传感器测量力反馈装置的对外输出力,进而可以得到对外输出力与行程之间的对应关系。
其中,预设驱动方式可以是预先定义的一种或多种驱动方式,在本实施例中并不做限制,例如,预设驱动方式可以是输出100%占空比的正向电压。在一实施方式中,校准设备可以与力反馈装置的控制器进行连接,向控制器发送指示,以使得控制器对力反馈装置按照预设驱动方式进行驱动。
需要说明的是,上述行程调节过程是在力反馈装置被按照预设驱动方式进行驱动的情况下进行的,力反馈装置产生与该预设驱动方式相应的电磁力,动子受到相应的反作用力,所以测得的对外输出力可以认为是力反馈装置的单体特性力与在该预设驱动方式下产生的电磁力大小之和。因此基于已经获 得的单体特性力与行程之间的第一对应关系,可以通过将在按照预设驱动方式进行驱动下测得的力反馈装置的对外输出力排除掉同一行程时的单体特性力,得到在预设驱动方式下力反馈装置的电磁力与行程之间的第二对应关系。需要说明的是,当预设驱动方式有多种时,校准设备分别测得每一种预设驱动方式下力反馈装置的电磁力与行程之间的第二对应关系。
在具体实施方式中,在测得第一对应关系时对单体特性力的考虑方式不同,相应地,在按照预设驱动方式进行驱动下测得的力反馈装置的对外输出力排除掉同一行程下的单体特性力时所采取的排除方式也不同。
在一实施方式中,当将单体特性力作为整体考虑,且对摩擦力忽略不计时,校准设备将按照一个运动方向进行动子行程调整而测得的单体特性力的合力与行程之间的对应关系作为第一对应关系,相应地,校准设备也可以在按照预设驱动方式对力反馈装置进行驱动时,通过测试工装按照该运动方向进行动子行程调整,测得动子在以该运动方向运动时,对外输出力与行程之间的对应关系,将各行程下的对外输出力减去第一对应关系中同一行程对应的单体特性力的合力,即可得到电磁力与行程之间的对应关系,将该对应关系作为第二对应关系。在另一实施方式中,当将单体特性力作为整体考虑,且也将摩擦力考虑在内时,可以按照上述方式在两种运动方向下,分别测得一组电磁力与行程之间的对应关系,再将两组对应关系中同一行程对应的电磁力求平均,即可得到一组电磁力与行程之间的对应关系,将该对应关系作为第二对应关系。在另一实施方式中,当将摩擦力考虑在内,将单体特性力单独考虑时,校准设备测得了摩擦力与行程之间的对应关系,以及其他特性力与行程之间的对应关系,校准设备可以在测得在按照预设驱动方式驱动时一种运动方向下对外输出力与行程之间的对应关系后,按照该运动方向下摩擦力和其他特性力与电磁力之间的叠加方式,将各个对外输出力排除掉同一行程下的摩擦力和其他特性力后得到电磁力,进而得到一组电磁力与行程之间的对应关系,将该对应关系作为第二对应关系。
步骤S30,将所述第一对应关系与所述第二对应关系输出,以供所述力反馈装置的控制器根据所述动子的当前行程、目标输出力、所述第一对应关系和所述第二对应关系确定目标驱动方式,并按照所述目标驱动方式驱动所述力反馈装置。
校准设备在测得第一对应关系和第二对应关系后,可以将第一对应关系和第二对应关系输出。输出的目的是使得力反馈装置的控制器可以获得该第一对应关系和第二对应关系,进而可以根据该第一对应关系和第二对应关系确定对力反馈装置的驱动方式,具体输出方式在本实施例中并不做限制。例如,在一实施方式中,校准设备可以将第一对应关系和第二对应关系输出到存储设备,控制器在需要时从存储设备中获取。
控制器在获取到力反馈装置的第一对应关系和第二对应关系后,可以将第一对应关系和第二对应关系进行保存,在需要对力反馈装置进行驱动时,再获取第一对应关系和第二对应关系使用。
控制器可以根据动子的当前行程、目标输出力、第一对应关系和第二对应关系确定驱动方式(以下称为目标驱动方式),该目标驱动方式是与目标输出力对应的驱动方式,也即,通过该目标驱动方式驱动力反馈装置的目的是使得力反馈装置的实际对外输出力达到该目标输出力的水平。其中,在具体实施方式中,控制器可以通过霍尔元件或其他位置传感器来检测动子当前的行程。目标输出力是当前行程下所需生产的对外输出力,在具体实施方式中,控制器可以获取不同行程与所需的对外输出力之间的对应关系,根据该对应关系确定当前行程对应的目标输出力;其中,不同行程与所需的对外输出力之间的对应关系可以由控制器从外部获取,例如从上层应用获取,该对应关系可以根据力反馈装置在当前所处应用场景的力反馈效果需求而确定,在本实施例中对该确定方法并不做限制。
在一实施方式中,控制器可以根据当前行程、目标输出力、第一对应关系和第二对应关系确定目标电磁力,再根据目标电磁力确定目标驱动方式。其中,目标电磁力即为达到该目标输出力所需产生的电磁力的大小。进一步地,在一实施方式中,控制器可以根据第一对应关系确定在当前行程下的单体特性力,进而从目标输出力中排除掉单体特性力,以得到目标电磁力。进一步地,在一实施方式中,控制器可以第二对应关系确定在预设驱动方式下当前行程对应的预估电磁力,根据该预估电磁力和目标电磁力确定目标驱动方式。
进一步地,在一实施方式中,所述步骤S30包括:
步骤S301,获取所述力反馈装置的标识信息;
步骤S302,将所述第一对应关系和所述第二对应关系与所述标识信息绑定后上传预设服务器,以供所述力反馈装置的控制器按照所述标识信息从所述预设服务器获取所述第一对应关系和所述第二对应关系。
在实际应用场景中,力反馈装置与控制器可能是独立设置的,用户在购买力反馈装置和控制器后,将两个装置配对使用,此时,配对使用的控制器需要采用与该力反馈装置对应的第一对应关系和第二对应关系来确定驱动方式,进而根据驱动方式进行驱动。在本实施方式中,为使得在使用阶段控制器能够获取到临时配对的力反馈装置的第一对应关系和第二对应关系,校准设备可以获取力反馈装置的标识信息,将该力反馈装置的第一对应关系和第二对应关系与该标识信息绑定后上传到预设服务器,以使得该力反馈装置的控制器可以按照该标识信息到预设服务器中获取该力反馈装置的第一对应关系和第二对应关系。在具体实施方式中,校准设备可以通过人工录入或扫码枪扫描等方式获取力反馈装置的标识信息,标识信息可以采用图形码、条形码等方式作为载体,标识信息可以是能够唯一标识力反馈装置的信息。
在本实施例中,通过在未对力反馈装置通电时,通过测试工装调整力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得力反馈装置的单体特性力与行程之间的第一对应关系;在按照预设驱动方式对力反馈装置驱动时,通过测试工装调整动子的行程以及通过力传感器测量力反馈装置的对外输出力,以结合第一对应关系测得在预设驱动方式下力反馈装置的电磁力与行程之间的第二对应关系;将第一对应关系与第二对应关系输出,以供力反馈装置的控制器根据动子的当前行程、目标输出力、第一对应关系和第二对应关系确定目标驱动方式,并按照目标驱动方式驱动力反馈装置。通过对力反馈装置单体进行校准,得到能够反映该力反馈装置单体特性的第一对应关系和第二对应关系,以作为控制器驱动力反馈装置以控制对外输出力的依据,降低了力反馈装置实际对外输出力与预期输出力之间的差异,提高了力反馈效果。
进一步地,基于上述第一实施例,提出本发明力反馈装置的校准方法第二实施例,在本实施例中,所述步骤S10包括:
步骤S101,在未对所述力反馈装置通电时,通过测试工装按照正向运动 方向调整所述力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力的合力与行程之间的第三对应关系;
在本实施例中,可以将单体特性力单独考虑,并将摩擦力考虑在内。具体地,校准设备可以在确定对力反馈装置未被通电的情况下,通过测试工装按照正向运动方向调整动子的行程,并在这个过程中通过力传感器测量力反馈装置的对外输出力。其中,正向运动方向和反向运动方向是两个相反的方向,在本实施例中,可以将动子来回运动的其中一个方向作为正向,另一个方向作为反向,具体并不做限制。以正向运动方向调整动子的行程是指使得动子按照该正向运动方向来运动。在一实施方式中,校准设备可以向测试工装发送指示,以使得测试工装根据指示按照正向运动方向调整动子行程并通过力传感器获取不同行程对应的对外输出力。
校准装置将获得的动子以正向运动方向运动时对外输出力与行程之间的对应关系,作为动子以正向运动方向运动时单体特性力的合力与行程之间的对应关系(以下称为第三对应关系以示区别)。
步骤S102,在未对所述力反馈装置通电时,通过所述测试工装按照反向运动方向调整所述动子的行程以及通过所述力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力的合力与行程之间的第四对应关系;
校准设备可以在确定对力反馈装置未被通电的情况下,通过测试工装按照反向运动方向调整动子的行程,并在这个过程中通过力传感器测量力反馈装置的对外输出力。在一实施方式中,校准设备可以向测试工装发送指示,以使得测试工装根据指示按照反向运动方向调整动子行程并通过力传感器获取不同行程对应的对外输出力。
校准装置将获得的动子以反向运动方向运动时对外输出力与行程之间的对应关系,作为动子以反向运动方向运动时单体特性力的合力与行程之间的对应关系(以下称为第四对应关系以示区别)。
步骤S103,根据所述第三对应关系和所述第四对应关系计算得到所述力反馈装置的摩擦力与行程之间的第五对应关系以及所述力反馈装置的其他特性力与行程之间的第六对应关系,将所述第五对应关系和所述第六对应关系 作为所述第一对应关系;其中,所述摩擦力是所述单体特性力的一种,所述其它特性力是所述单体特性力中除所述摩擦力外的其他力。
校准设备在得到第三对应关系和第四对应关系后,可以根据第三对应关系和第四对应关系计算得到力反馈装置的摩擦力与行程之间的对应关系(以下称为第五对应关系),以及其他特性力与行程之间的对应关系以下称为第六对应关系)。其中,力反馈装置的摩擦力即动子所受到的摩擦力,第五对应关系中只考虑摩擦力的大小与行程之间的对应关系,不考虑其方向。可以理解的是,在同一行程力反馈装置的摩擦力的大小是相同的,方向是相反的。需要说明的是,第三对应关系和第四对应关系中同一行程对应的单体特性力的合力中其他特性力的部分是大小和方向都相同的,而摩擦力的部分则是大小相同方向相反的,因此可以通过将第三对应关系和第四对应关系中同一行程对应的单体特性力的合力相加的方式获得其他特性力与行程之间的对应关系,可以通过将第三对应关系和第四对应关系中同一行程对应的单体特性力的合力相减的方式获得摩擦力与行程之间的对应关系。
在一实施方式中,当将动子运动时摩擦力方向与反作用力方向相同的方向作为正向运动方向时,可以将第三对应关系和第四对应关系中同一行程对应的单体特性力的合力相加再除以二,得到其他特性力与行程之间的对应关系,可以将第三对应关系中的单体特性力的合力减去第四对应关系中同一行程对应的单体特性力的合力再除以二,得到摩擦力与行程之间的对应关系。
进一步地,基于上述第一和/或第二实施例,提出本发明力反馈装置的驱动方法第三实施例。在本实施例中,所述力反馈装置的驱动方法可以应用于所述力反馈装置的控制器,控制器和力反馈装置可以部署于需要实现力反馈功能的设备中,例如部署于VR/AR设备的游戏手柄中,具体在本实施例中并不做限制。以下为便于描述,以控制器为执行主体进行具体实施方式的阐述。所述力反馈装置的驱动方法包括:
步骤A10,获取所述力反馈装置中动子的当前行程和所述当前行程对应的目标输出力;
步骤A20,根据所述当前行程、所述目标输出力、第一对应关系和第二对应关系确定目标驱动方式,其中,所述第一对应关系为所述力反馈装置的单 体特性力与所述动子的行程之间的对应关系,所述第二对应关系为在预设驱动方式下所述力反馈装置的电磁力与所述动子的行程之间的对应关系,所述单体特性力为因所述力反馈装置的单体特性而引起的对外输出力;
步骤A30,按照所述目标驱动方式驱动所述力反馈装置。
本实施例中,步骤A10~A30的具体实施方式,可以参照上述第一实施例中步骤S10~S30的具体实施方式中,在此不再赘述。在具体实施方式中,控制器中可以预置力反馈装置的第一对应关系和第二对应关系,也可以由控制器从服务器或其他存储设备中获取力反馈装置的第一对应关系和第二对应关系。力反馈装置的第一对应关系和第二对应关系的获取方式可以参照上述第一或第二实施例,也可以由测试人员根据测试工装和力传感器测得的数据确定,在此并不做限制。
进一步地,在一实施方式中,所述步骤A10之前,还包括:
步骤A40,获取所述力反馈装置的标识信息;
步骤A50,从预设服务器下载与所述标识信息对应的所述第一对应关系和所述第二对应关系。
步骤A40和A50的具体实施方式可以参照上述第一实施例中步骤S301和S302的具体实施方式中,在此不再赘述。
在本实施例中,获取力反馈装置中动子的当前行程和当前行程对应的目标输出力;根据当前行程、目标输出力、第一对应关系和第二对应关系确定目标驱动方式,其中,第一对应关系为力反馈装置的单体特性力与动子的行程之间的对应关系,第二对应关系为在预设驱动方式下力反馈装置的电磁力与动子的行程之间的对应关系,单体特性力为因力反馈装置的单体特性而引起的对外输出力;按照目标驱动方式驱动所述力反馈装置。通过利用反映该力反馈装置单体特性的第一对应关系和第二对应关系作为控制器驱动力反馈装置以控制对外输出力的依据,降低了力反馈装置实际对外输出力与预期输出力之间的差异,提高了力反馈效果。
进一步地,基于上述第三实施例,提出本发明力反馈装置的驱动方法第四实施例,在本实施例中,所述步骤A20包括:
步骤A201,根据所述第一对应关系确定所述当前行程对应的当前单体特 性力;
在本实施例中,控制器可以根据第一对应关系确定当前行程对应的单体特性力(以下称为当前单体特性力),也即,当前单体特性力表征了在当前行程下力反馈装置的单体特性力。在具体实施方式中,当第一对应关系是单体特性力的合力与行程的对应关系时,当前单体特性力是指当前的单体特性力的合力,当第一对应关系包括各种单体特性力分别与行程的对应关系时,当前单体特性力包括当前的各种单体特性力,例如当前的摩擦力和其他特性力。
步骤A202,根据所述目标输出力和所述当前单体特性力确定所述力反馈装置的目标电磁力;
控制器根据目标输出力和当前单体特性力可以确定力反馈装置的目标电磁力。具体地,控制器可以将目标输出力排除掉当前单体特性力,进而得到目标电磁力。
其中,在具体实施方式中,根据对单体特性力的考虑方式不同,从目标输出力中排除当前单体特性力的方式也不同。例如,在一实施方式中,当将单体特性力作为整体考虑,且忽略摩擦力时,第一对应关系是单体特性力的合力与行程的对应关系,控制器根据第一对应关系得到的当前单体特性力是单体特性力的合力,控制器可以将目标输出力减去当前单体特性力得到的结果作为目标电磁力。在另一实施方式中,当将单体特性力作为整体考虑,但也将摩擦力考虑在内时,第一对应关系包括在两种运动方向下单体特性力的合力与行程的对应关系,控制器根据第一对应关系得到的当前单体特性力是当前动子的运动方向所对应的单体特性力的合力,控制器将目标输出力减去当前单体特性力得到的结果作为目标电磁力。在另一实施方式中,当将单体特性力单独考虑时,第一对应关系包括摩擦力与行程的对应关系以及其他特性力与行程的对应关系,控制器根据第一对应关系得到的当前单体特性力包括当前摩擦力和当前其他特性力,控制器按照动子当前运动方向下摩擦力、其他特性力和反作用力的叠加方式,从目标输出力中排除当前摩擦力和当前其他特性力得到目标电磁力。
步骤A203,根据所述第二对应关系确定在所述预设驱动方式下所述当前行程对应的第一预估电磁力;
控制器可以根据第二对应关系确定当前行程对应的电磁力(以下称为第一预估电磁力),第一预估电磁力表征在当前行程下按照预设驱动方式进行驱动时力反馈装置所预计能够产生的电磁力。
步骤A204,根据所述目标电磁力和所述第一预估电磁力确定目标驱动方式。
控制器可以根据目标电磁力和第一预估电磁力确定目标驱动方式。在本实施例中,根据选取的预设驱动方式不同,根据目标电磁力和第一预估电磁力确定目标驱动方式的方法也不同。可以理解的是,在预设驱动方式下力反馈装置预计能够产出第一预估电磁力,根据不同驱动方式下力反馈装置所能够产生的电磁力之间的关系,可以确定一个目标驱动方式,使得按照目标驱动方式进行驱动力反馈装置时,力反馈装置的实际电磁力能够达到与目标电磁力相当的水平。
在一实施方式中,预设驱动方式可以有多种,例如,可以是输出不同占空比的电压的驱动方式,控制器根据不同预设驱动方式对应的第二对应关系,可以得到不同预设驱动方式下的第一预估电磁力,将目标电磁力与各个第一预估电磁力进行比较,可以选取一个与目标电磁力相同或者误差小于一定范围的第一预估电磁力,将该第一预估电磁力对应的预设驱动方式作为目标驱动方式。
进一步地,在一实施方式中,所述步骤A20之后,还包括:
步骤A60,根据所述第一预估电磁力和所述目标驱动方式确定在所述目标驱动方式及所述当前行程下所述力反馈装置的第二预估电磁力;
在本实施方式中,控制器可以根据第一预估电磁力和目标驱动方式确定在目标驱动方式及当前行程下力反馈装置预计能产生的电磁力(以下称为第二预估电磁力)。
可以理解的是,在预设驱动方式下力反馈装置预计能够产出第一预估电磁力,根据不同驱动方式下力反馈装置所能够产生的电磁力之间的关系,可以预计按照目标驱动方式进行驱动力反馈装置时,力反馈装置所能够产生的电磁力。在一实施方式中,当预设驱动方式有多种,控制器选取了与目标电磁力相同或者误差小于一定范围的第一预估电磁力,将该第一预估电磁力对应的预设驱动方式作为目标驱动方式时,可以将该第一预估电磁力作为第二 预估电磁力。
步骤A70,根据所述第二预估电磁力和所述当前单体特性力确定所述力反馈装置的预估输出力;
控制器可以根据第二预估电磁力和当前单体特性力确定力反馈装置的预估输出力。具体地,控制器可以将第二预估电磁力叠加上当前单体特性力,进而得到预估输出力。其中,叠加方式与对单体特性力的考虑方式、动子运动方向相关,具体可以参照上述将目标输出力排除掉当前单体特性力的逆过程。
步骤A80,生成表征所述预估输出力和所说当前行程之间对应关系的关系数据,并输出所述关系数据。
控制器在得到预估输出力后,可以生成表征预估输出力与当前行程之间的对应关系的关系数据,并将关系数据进行输出。其中,动子的行程在不断的变化,关系数据包括标注不同行程所对应的预估输出力的数据,具体可以是表格形式或曲线图形式等,在本实施例中并不做限制。在具体实施方式中,将关系数据进行输出可以是输出到与控制器连接的显示设备进行显示,也可以是输出到与控制器连接的存储设备进行存储,以便于后续技术人员或用户对关系数据进行分析。
进一步地,在一实施方式中,所述步骤A201包括:
步骤A2011,根据所述第一对应关系中的第五对应关系确定所述当前行程对应的当前摩擦力;
步骤A2012,根据所述第一对应关系中的第六对应关系确定所述当前行程对应的当前其他特性力;其中,所述第五对应关系为所述力反馈装置的摩擦力与所述动子的行程之间的对应关系,所述第六对应关系为所述力反馈装置的其他特性力与所述动子的行程之间的对应关系,所述摩擦力是所述单体特性力的一种,所述其它特性力是所述单体特性力中除所述摩擦力外的其他力;
在本实施例中,第一对应关系可以包括第五对应关系和第六对应关系,也即包括摩擦力与行程之间的对应关系和其他特性力与行程之间的对应关系。控制器可以根据第五对应关系确定当前行程对应的当前摩擦力,以及根据第六对应关系确定当前行程对应的当前其他特性力。
所述步骤A202包括:
步骤A2021,当所述动子当前的运动方向是正向运动方向时,将所述目标输出力减去所述当前其他特性力与所述当前摩擦力之和,得到所述力反馈装置的目标电磁力;
在本实施方式中,可以将动子运动时摩擦力方向与反作用力方向相同的方向作为正向运动方向。控制器可以确定动子当前的运动方向,当当前的运动方向为正向运动方向时,控制器可以计算当前其他特性力与当前摩擦力之和得到当前单体特性力的合力,再采用目标输出力减去该当前单体特性力的合力,得到目标电磁力。其中,在具体实施方式中,控制器可以根据当前行程和上一时刻的行程确定动子的方向。
步骤A2022,当所述动子当前的运动方向是反向运动方向时,将所述目标输出力减去所述当前其他特性力与所述当前摩擦力之差,得到所述力反馈装置的目标电磁力。
当当前的运动方向为正向运动方向时,控制器可以计算当前其他特性力与当前摩擦力之差得到当前单体特性力的合力,再采用目标输出力减去该当前单体特性力的合力,得到目标电磁力。
进一步地,在一实施方式中,当当前的运动方向为静止时,也即当前行程与上一时刻的行程相同时,控制器可以将上一时刻的驱动方式作为目标驱动方式。
进一步地,在一实施方式中,所述预设驱动方式为输出预设占空比的正向电压,所述步骤A204包括:
步骤A2041,计算所述目标电磁力与所述第一预估电磁力的比值,根据所述比值和所述预设占空比确定目标占空比;
在本实施方式中,预设驱动方式可以只有一种,具体为输出预设占空比的正向电压。控制器在得到目标电磁力和第一预估电磁力后,可以计算目标电磁力与第一预估电磁力的比值,再根据该比值和预设占空比确定目标占空比。其中,所述目标占空比表征所述目标电磁力占在所述当前行程下按输出100%占空比的正向电压驱动时所述力反馈装置可输出电磁力的占比。
在一实施方式中,控制器可以将该比值乘以预设占空比再除以100%得到目标占空比。可以理解的是,当预设占空比为100%时,控制器可以直接根据比值得到目标占空比。进一步地,在一实施方式中,当目标输出力使得计算 得到的占空比超出驱动电压的占空比范围(-100%-100%)时,可以将占空比控制在该范围内,具体地,控制器可以将该比值乘以预设占空比再除以100%得到一个百分比,若该百分比大于100%,则将100%作为目标占空比,若该百分比小于-100%,则将-100%作为目标占空比,若该百分比不大于100%或不小于-100%,则将该百分比作为目标占空比。
进一步地,在一实施方式中,当当前运动方向为正向运动方向时,可以将上一时刻确定的目标占空比作为当前时刻的目标占空比。
步骤A2042,当所述目标占空比大于或等于零时,将输出所述目标占空比的正向电压作为目标驱动方式;
步骤A2043,当所述目标占空比小于零时,将输出占空比为所述目标占空比绝对值的反向电压作为目标驱动方式。
当目标占空比大于或等于零时,控制器可以将输出目标占空比的正向电压作为目标驱动方式。当目标占空比小于零时,控制器可以将输出目标占空比的反向电压作为目标驱动方式。
可以理解的是,当预设驱动方式为输出预设占空比的反向电压时,目标驱动方式的确定方式与预设驱动方式为输出预设占空比的正向电压时正好相反,在此不做赘述。
进一步地,在一实施方式中,当预设驱动方式为输出预设占空比的正向电压时,计算第二预估电磁力具体可以是将第一预估电磁力乘以目标占空比得到第二预估电磁力。进一步地,在一实施方式中,当当前运动方向为正向运动方向时,可以将上一时刻确定的预估输出力作为当前时刻的预估输出力。
进一步地,在一实施方式中,以一个具体的力反馈装置校准与驱动过程为例进行说明,一种力反馈装置的校准流程如图2所示,控制流程如图3所示,系统框图如图4所示。
如图2所示,本实施方式中,一种力反馈装置的校准方法的具体说明如下:
1)获取第一电磁力Fe1与第一合力Fa1。先通过测试力反馈装置的动子在以正向运动方向运动过程中,力反馈装置在不通电和通最大正向电流下输出力与行程之间的关系数据(关系数据即上述各实施例中的对应关系),获 取第一电磁力Fe1与行程之间的关系数据以及弹簧力Fk、静磁力Fm和正向摩擦力Ff三者合力(第一合力Fa1)与行程之间的关系数据。如图4所示,具体过程是:
1.1)PC向测试工装和控制器发送工作模式1,即测试工装按压力反馈装置的行程S从0%行程逐步正向增大到100%行程;控制器驱动电压占空比为0,不通电控制力反馈装置;
1.2)测试工装通过力传感器检测力反馈装置在全行程S的输出力Fs1(注:Fs1是与行程S相关的一组数据曲线,严格来讲应该表示为Fs1(S),为表述方便,下文均简化为Fs1,其他力的表示与Fs1均做同样的简化),该力即为弹簧力Fk、静磁力Fm和正向摩擦力Ff三者合力,即第一合力Fa1,Fa1=Fs1=Fk+Fm+Ff;
1.3)PC向测试工装和控制器发送工作模式2,即测试工装按压力反馈装置的行程S从0%行程逐步正向增大到100%行程;控制器驱动电压占空比为100%,通最大正向电流控制力反馈装置;
1.4)测试工装通过力传感器检测力反馈装置在全行程S的输出力Fs2,该力即为第一电磁力Fe1、弹簧力Fk、静磁力Fm和正向摩擦力Ff四者合力,即Fs2=Fe1+Fk+Fm+Ff;
1.5)根据输出力Fs1和Fs2,计算第一电磁力Fe1,即Fe1=Fs2–Fs1。
2)获取第二电磁力Fe2与第二合力Fa2。再通过测试动子在反向行程运动过程中,力反馈装置在不通电和通最大正向电流下输出力与行程之间的关系数据,获取第二电磁力Fe2与行程之间的关系数据以及弹簧力Fk、静磁力Fm和反向摩擦力-Ff三者合力(第二合力Fa2)与行程之间的关系数据。如图4所示,具体过程是:
2.1)PC向测试工装和控制器发送工作模式3,即测试工装按压力反馈装置的行程S从100%行程逐步反向减小到0%行程;控制器驱动电压占空比为0,不通电控制力反馈装置;
2.2)测试工装通过力传感器检测力反馈装置在全行程S的输出力Fs3,该力即为弹簧力Fk、静磁力Fm和反向摩擦力-Ff三者合力,即第二合力Fa2,Fa2=Fs3=Fk+Fm-Ff;
2.3)PC向测试工装和控制器发送工作模式4,即测试工装按压力反馈装 置的行程S从100%行程逐步反向减小到0%行程;控制器驱动电压占空比为100%,通最大正向电流控制力反馈装置;
2.4)测试工装通过力传感器检测力反馈装置在全行程S的输出力Fs4,该力即为第二电磁力Fe2、弹簧力Fk、静磁力Fm和反向摩擦力-Ff四者合力,即Fs4=Fe2+Fk+Fm-Ff;
2.5)根据输出力Fs3和Fs4,计算第二电磁力Fe2,即Fe2=Fs4–Fs3。
3)计算第三合力Fa3与摩擦力Ff。根据第一合力Fa1、第二合力Fa2计算得到弹簧力Fk和静磁力Fm二者合力(第三合力Fa3)与行程之间的关系数据、摩擦力Ff与行程之间的关系数据,具体过程是:
3.1)根据第一合力Fa1、第二合力Fa2,计算弹簧力Fk和静磁力Fm二者合力,即第三合力Fa3,即Fa3=(Fa1+Fa2)/2;
3.2)根据第一合力Fa1、第二合力Fa2,计算摩擦力Ff,即Ff=(Fa1-Fa2)/2;
4)计算第三电磁力Fe3。根据第一电磁力Fe1、第二电磁力Fe2计算得到第三电磁力Fe3,即Fe3=(Fe1+Fe2)/2;
5)打包校准数据,绑定单体并上传云服务器存储。如图4所示,将第三电磁力Fe3、第三合力Fa3、摩擦力Ff与行程之间的关系数据打包,作为该力反馈装置单体的校准数据包,与力反馈装置单体的二维码或其他身份标识信息绑定后,上传到云服务器保存。
如图3所示,本实施方式中,一种力反馈装置的驱动方法的具体说明如下:
1)下载校准数据并存储到控制器。实际控制时,控制器先根据当前力反馈装置单体的二维码或其他身份标识信息,从云服务器中下载对应的校准数据包,并存储到控制器中。如图4所示,具体过程是:
1.1)利用扫码枪扫描当前力反馈装置单体的二维码或其他身份标识信息,并传递到控制器;
1.2)控制器将该身份识别信息发送到云服务器;
1.3)云服务器将与该身份识别信息匹配的校准数据发送给控制器;
1.4)控制器下载完校准数据后,将其保存在控制器中。
2)接收目标力Ft(也即上述各实施例中的目标输出力)。如图4所示, 控制器接收来自外部输入的目标力Ft与行程之间的关系数据,通常外部输入的目标力Ft上限为力反馈装置的额定输出力FN;又因为力反馈装置输出小于0N的力时体验者与装置的力输出部件将产生分离,不再接触,也即体验者感受不到小于0N的力反馈,并且考虑到控制误差,所以目标力Ft的下限一般为一个大于0N的数值,例如0.2N;
3)检测当前行程S。控制器通过霍尔元件或其他位置传感器持续检测力反馈装置动子的当前行程。如图4所示,控制器通过位置传感器持续检测力反馈装置动子的当前行程S。
4)判断运动方向。控制器根据当前检测的行程Spresent和上次检测的行程Slast,判断力反馈装置当前行程的运动方向。具体为:
4.1)若当前检测的行程Spresent大于上次检测的行程Slast,即Spresent>Slast,则行程S的运动方向为正;
4.2)若当前检测的行程Spresent小于上次检测的行程Slast,即Spresent<Slast,则行程S的运动方向为负;
4.3)若当前检测的行程Spresent等于上次检测的行程Slast,即Spresent=Slast,则行程S的运动状态为静止。
5)计算第一占空比D1。控制器根据目标力Ft、第三电磁力Fe3、第三合力Fa3、摩擦力Ff与行程之间的关系数据,以及当前行程S、当前行程的运动方向,计算当前行程所需的第一占空比D1。具体为:
5.1)若当前行程的运动方向为正,则第一占空比D1=[Ft–(Fa3+Ff)]/Fe3;
5.2)若当前行程的运动方向为负,则第一占空比D1=[Ft–(Fa3-Ff)]/Fe3;
5.3)若当前行程的运动状态为静止,则第一占空比D1维持上次计算值。
6)确定第二占空比D2。控制器对第一占空比D1进行幅值判断,若第一占空D1比大于100%,则将第一占空比D1调整为100%;若第一占空比D1小于-100%,则将第一占空比D1调整为-100%;否则,维持第一占空比D1不变。将调整后的第一占空比D1定义为第二占空比D2。具体为:
6.1)若D1>100%,则D2=100%;
6.2)若D1<-100%,则D2=-100%;
6.3)若-100%≤D1≤100%,则D2=D1。
7)输出PWM斩波电压,驱动力反馈装置。具体是:
7.1)控制器对第二占空比D2进行极性判断,若第二占空比D2大于等于0,即D2≥0,则输出正向电压,幅值为直流电源电压Udc,占空比D为第二占空比D2;
7.2)若第二占空比D2小于0,即D2<0,则输出反向电压,幅值为直流电压电压Udc,占空比D为第二占空比的绝对值|D2|;
7.3)控制器按照上述方式产生PWM斩波电压,控制力反馈装置产生实际的力输出。
8)计算估计输出力Fb并反馈。控制器根据第三电磁力Fe3、第三合力Fa3、摩擦力Ff与行程之间的关系数据,以及第二占空比D2、当前行程的运动方向,计算估计的输出力Fb与行程之间的关系数据,该数据可反馈到屏幕进行绘图显示或批量存储用于后续分析。具体是:
8.1)若当前行程的运动方向为正,则估计输出力Fb=D2*Fe3+Fa3+Ff;
8.2)若当前行程的运动方向为负,则估计输出力Fb=D2*Fe3+Fa3-Ff;
8.3)若当前行程的运动状态为静止,则估计输出力Fb维持上次计算值;
将估计的输出力Fb反馈到屏幕进行绘图显示或批量存储用于后续分析。
在一实施例中,本发明力反馈装置的校准设备可以包括:处理器,例如CPU,网络接口,用户接口,存储器,通信总线。用户接口可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口还可以包括标准的有线接口、无线接口。网络接口可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器可选的还可以是独立于前述处理器的存储装置。
作为一种计算机存储介质的存储器中可以包括操作系统、网络通信模块、用户接口模块以及力反馈装置的校准程序。操作系统是管理和控制设备硬件和软件资源的程序,支持力反馈装置的校准程序以及其它软件或程序的运行。 用户接口主要用于与客户端进行数据通信;网络接口主要用于服务器建立通信连接。处理器可以用于调用存储器中存储的力反馈装置的校准程序,并执行以下操作:
在未对所述力反馈装置通电时,通过测试工装调整所述力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力与行程之间的第一对应关系,其中,所述单体特性力为因所述力反馈装置的单体特性而引起的对外输出力;
在按照预设驱动方式对所述力反馈装置驱动时,通过所述测试工装调整所述动子的行程以及通过所述力传感器测量所述力反馈装置的对外输出力,以结合所述第一对应关系测得在所述预设驱动方式下所述力反馈装置的电磁力与行程之间的第二对应关系;
将所述第一对应关系与所述第二对应关系输出,以供所述力反馈装置的控制器根据所述动子的当前行程、目标输出力、所述第一对应关系和所述第二对应关系确定目标驱动方式,并按照所述目标驱动方式驱动所述力反馈装置。
进一步地,所述在未对所述力反馈装置通电时,通过测试工装调整所述力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力与行程之间的第一对应关系的操作包括:
在未对所述力反馈装置通电时,通过测试工装按照正向运动方向调整所述力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力的合力与行程之间的第三对应关系;
在未对所述力反馈装置通电时,通过所述测试工装按照反向运动方向调整所述动子的行程以及通过所述力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力的合力与行程之间的第四对应关系;
根据所述第三对应关系和所述第四对应关系计算得到所述力反馈装置的摩擦力与行程之间的第五对应关系以及所述力反馈装置的其他特性力与行程之间的第六对应关系,将所述第五对应关系和所述第六对应关系作为所述第一对应关系;
其中,所述摩擦力是所述单体特性力的一种,所述其它特性力是所述单体特性力中除所述摩擦力外的其他力。
进一步地,所述将所述第一对应关系与所述第二对应关系输出的操作包括:
获取所述力反馈装置的标识信息;
将所述第一对应关系和所述第二对应关系与所述标识信息绑定后上传预设服务器,以供所述力反馈装置的控制器按照所述标识信息从所述预设服务器获取所述第一对应关系和所述第二对应关系。
在一实施例中,本发明力反馈装置的驱动设备可以包括:处理器,例如CPU,网络接口,用户接口,存储器,通信总线。用户接口可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口还可以包括标准的有线接口、无线接口。网络接口可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器可选的还可以是独立于前述处理器的存储装置。
作为一种计算机存储介质的存储器中可以包括操作系统、网络通信模块、用户接口模块以及力反馈装置的驱动程序。操作系统是管理和控制设备硬件和软件资源的程序,支持力反馈装置的驱动程序以及其它软件或程序的运行。用户接口主要用于与客户端进行数据通信;网络接口主要用于服务器建立通信连接。处理器可以用于调用存储器中存储的力反馈装置的驱动程序,并执行以下操作:
获取所述力反馈装置中动子的当前行程和所述当前行程对应的目标输出力;
根据所述当前行程、所述目标输出力、第一对应关系和第二对应关系确定目标驱动方式,其中,所述第一对应关系为所述力反馈装置的单体特性力与所述动子的行程之间的对应关系,所述第二对应关系为在预设驱动方式下所述力反馈装置的电磁力与所述动子的行程之间的对应关系,所述单体特性力为因所述力反馈装置的单体特性而引起的对外输出力;
按照所述目标驱动方式驱动所述力反馈装置。
进一步地,所述根据所述当前行程、所述目标输出力、第一对应关系和第二对应关系确定目标驱动方式的操作包括:
根据所述第一对应关系确定所述当前行程对应的当前单体特性力;
根据所述目标输出力和所述当前单体特性力确定所述力反馈装置的目标电磁力;
根据所述第二对应关系确定在所述预设驱动方式下所述当前行程对应的第一预估电磁力;
根据所述目标电磁力和所述第一预估电磁力确定目标驱动方式。
进一步地,所述根据所述当前行程、所述目标输出力、第一对应关系和第二对应关系确定目标驱动方式的操作之后,处理器还可以用于调用存储器中存储的力反馈装置的驱动程序,执行以下操作:
根据所述第一预估电磁力和所述目标驱动方式确定在所述目标驱动方式及所述当前行程下所述力反馈装置的第二预估电磁力;
根据所述第二预估电磁力和所述当前单体特性力确定所述力反馈装置的预估输出力;
生成表征所述预估输出力和所说当前行程之间对应关系的关系数据,并输出所述关系数据。
进一步地,所述根据所述第一对应关系确定所述当前行程对应的当前单体特性力的操作包括:
根据所述第一对应关系中的第五对应关系确定所述当前行程对应的当前摩擦力;
根据所述第一对应关系中的第六对应关系确定所述当前行程对应的当前其他特性力;
其中,所述第五对应关系为所述力反馈装置的摩擦力与所述动子的行程之间的对应关系,所述第六对应关系为所述力反馈装置的其他特性力与所述动子的行程之间的对应关系,所述摩擦力是所述单体特性力的一种,所述其它特性力是所述单体特性力中除所述摩擦力外的其他力;
所述根据所述目标输出力和所述当前单体特性力确定所述力反馈装置的目标电磁力的操作包括:
当所述动子当前的运动方向是正向运动方向时,将所述目标输出力减去 所述当前其他特性力与所述当前摩擦力之和,得到所述力反馈装置的目标电磁力;
当所述动子当前的运动方向是反向运动方向时,将所述目标输出力减去所述当前其他特性力与所述当前摩擦力之差,得到所述力反馈装置的目标电磁力。
进一步地,所述预设驱动方式为输出预设占空比的正向电压,所述根据所述目标电磁力和所述第一预估电磁力确定目标驱动方式的操作包括:
计算所述目标电磁力与所述第一预估电磁力的比值,根据所述比值和所述预设占空比确定目标占空比;
当所述目标占空比大于或等于零时,将输出所述目标占空比的正向电压作为目标驱动方式;
当所述目标占空比小于零时,将输出占空比为所述目标占空比绝对值的反向电压作为目标驱动方式。
进一步地,所述获取所述力反馈装置中动子的当前行程和所述当前行程对应的目标输出力的操作之前,处理器还可以用于调用存储器中存储的力反馈装置的驱动程序,执行以下操作:
获取所述力反馈装置的标识信息;
从预设服务器下载与所述标识信息对应的所述第一对应关系和所述第二对应关系。
此外,本发明实施例还提出一种计算机可读存储介质,所述存储介质上存储有力反馈装置的校准程序,所述力反馈装置的校准程序被处理器执行时实现如下所述的力反馈装置的校准方法的步骤。本发明力反馈装置的校准设备和计算机可读存储介质的各实施例,均可参照本发明力反馈装置的校准方法各个实施例,此处不再赘述。
此外,本发明实施例还提出一种计算机可读存储介质,所述存储介质上存储有力反馈装置的驱动程序,所述力反馈装置的驱动程序被处理器执行时实现如下所述的力反馈装置的驱动方法的步骤。本发明力反馈装置的驱动设备和计算机可读存储介质的各实施例,均可参照本发明力反馈装置的驱动方 法各个实施例,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (13)

  1. 一种力反馈装置的校准方法,其特征在于,所述力反馈装置为基于电磁直驱原理的力反馈装置,所述方法包括以下步骤:
    在未对所述力反馈装置通电时,通过测试工装调整所述力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力与行程之间的第一对应关系,其中,所述单体特性力为因所述力反馈装置的单体特性而引起的对外输出力;
    在按照预设驱动方式对所述力反馈装置驱动时,通过所述测试工装调整所述动子的行程以及通过所述力传感器测量所述力反馈装置的对外输出力,以结合所述第一对应关系测得在所述预设驱动方式下所述力反馈装置的电磁力与行程之间的第二对应关系;
    将所述第一对应关系与所述第二对应关系输出,以供所述力反馈装置的控制器根据所述动子的当前行程、目标输出力、所述第一对应关系和所述第二对应关系确定目标驱动方式,并按照所述目标驱动方式驱动所述力反馈装置。
  2. 如权利要求1所述的力反馈装置的校准方法,其特征在于,所述在未对所述力反馈装置通电时,通过测试工装调整所述力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力与行程之间的第一对应关系的步骤包括:
    在未对所述力反馈装置通电时,通过测试工装按照正向运动方向调整所述力反馈装置中动子的行程以及通过力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力的合力与行程之间的第三对应关系;
    在未对所述力反馈装置通电时,通过所述测试工装按照反向运动方向调整所述动子的行程以及通过所述力传感器测量所述力反馈装置的对外输出力,以测得所述力反馈装置的单体特性力的合力与行程之间的第四对应关系;
    根据所述第三对应关系和所述第四对应关系计算得到所述力反馈装置的摩擦力与行程之间的第五对应关系以及所述力反馈装置的其他特性力与行程 之间的第六对应关系,将所述第五对应关系和所述第六对应关系作为所述第一对应关系;
    其中,所述摩擦力是所述单体特性力的一种,所述其它特性力是所述单体特性力中除所述摩擦力外的其他力。
  3. 如权利要求1或2所述的力反馈装置的校准方法,其特征在于,所述将所述第一对应关系与所述第二对应关系输出的步骤包括:
    获取所述力反馈装置的标识信息;
    将所述第一对应关系和所述第二对应关系与所述标识信息绑定后上传预设服务器,以供所述力反馈装置的控制器按照所述标识信息从所述预设服务器获取所述第一对应关系和所述第二对应关系。
  4. 一种力反馈装置的驱动方法,其特征在于,所述力反馈装置为基于电磁直驱原理的力反馈装置,所述方法包括以下步骤:
    获取所述力反馈装置中动子的当前行程和所述当前行程对应的目标输出力;
    根据所述当前行程、所述目标输出力、第一对应关系和第二对应关系确定目标驱动方式,其中,所述第一对应关系为所述力反馈装置的单体特性力与所述动子的行程之间的对应关系,所述第二对应关系为在预设驱动方式下所述力反馈装置的电磁力与所述动子的行程之间的对应关系,所述单体特性力为因所述力反馈装置的单体特性而引起的对外输出力;
    按照所述目标驱动方式驱动所述力反馈装置。
  5. 如权利要求4所述的力反馈装置的驱动方法,其特征在于,所述根据所述当前行程、所述目标输出力、第一对应关系和第二对应关系确定目标驱动方式的步骤包括:
    根据所述第一对应关系确定所述当前行程对应的当前单体特性力;
    根据所述目标输出力和所述当前单体特性力确定所述力反馈装置的目标电磁力;
    根据所述第二对应关系确定在所述预设驱动方式下所述当前行程对应的 第一预估电磁力;
    根据所述目标电磁力和所述第一预估电磁力确定目标驱动方式。
  6. 如权利要求5所述的力反馈装置的驱动方法,其特征在于,所述根据所述当前行程、所述目标输出力、第一对应关系和第二对应关系确定目标驱动方式的步骤之后,还包括:
    根据所述第一预估电磁力和所述目标驱动方式确定在所述目标驱动方式及所述当前行程下所述力反馈装置的第二预估电磁力;
    根据所述第二预估电磁力和所述当前单体特性力确定所述力反馈装置的预估输出力;
    生成表征所述预估输出力和所说当前行程之间对应关系的关系数据,并输出所述关系数据。
  7. 如权利要求5所述的力反馈装置的驱动方法,其特征在于,所述根据所述第一对应关系确定所述当前行程对应的当前单体特性力的步骤包括:
    根据所述第一对应关系中的第五对应关系确定所述当前行程对应的当前摩擦力;
    根据所述第一对应关系中的第六对应关系确定所述当前行程对应的当前其他特性力;
    其中,所述第五对应关系为所述力反馈装置的摩擦力与所述动子的行程之间的对应关系,所述第六对应关系为所述力反馈装置的其他特性力与所述动子的行程之间的对应关系,所述摩擦力是所述单体特性力的一种,所述其它特性力是所述单体特性力中除所述摩擦力外的其他力;
    所述根据所述目标输出力和所述当前单体特性力确定所述力反馈装置的目标电磁力的步骤包括:
    当所述动子当前的运动方向是正向运动方向时,将所述目标输出力减去所述当前其他特性力与所述当前摩擦力之和,得到所述力反馈装置的目标电磁力;
    当所述动子当前的运动方向是反向运动方向时,将所述目标输出力减去所述当前其他特性力与所述当前摩擦力之差,得到所述力反馈装置的目标电 磁力。
  8. 如权利要求5所述的力反馈装置的驱动方法,其特征在于,所述预设驱动方式为输出预设占空比的正向电压,所述根据所述目标电磁力和所述第一预估电磁力确定目标驱动方式的步骤包括:
    计算所述目标电磁力与所述第一预估电磁力的比值,根据所述比值和所述预设占空比确定目标占空比;
    当所述目标占空比大于或等于零时,将输出所述目标占空比的正向电压作为目标驱动方式;
    当所述目标占空比小于零时,将输出占空比为所述目标占空比绝对值的反向电压作为目标驱动方式。
  9. 如权利要求4至8任一项所述的力反馈装置的驱动方法,其特征在于,所述获取所述力反馈装置中动子的当前行程和所述当前行程对应的目标输出力的步骤之前,还包括:
    获取所述力反馈装置的标识信息;
    从预设服务器下载与所述标识信息对应的所述第一对应关系和所述第二对应关系。
  10. 一种力反馈装置的校准设备,其特征在于,所述力反馈装置的校准设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的力反馈装置的校准程序,所述力反馈装置的校准程序被所述处理器执行时实现如权利要求1至3中任一项所述的力反馈装置的校准方法的步骤。
  11. 一种力反馈装置的驱动设备,其特征在于,所述力反馈装置的驱动设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的力反馈装置的驱动程序,所述力反馈装置的驱动程序被所述处理器执行时实现如权利要求4至9中任一项所述的力反馈装置的驱动方法的步骤。
  12. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有力反馈装置的校准程序,所述力反馈装置的校准程序被处理器执行时实现如权利要求1至3中任一项所述的力反馈装置的校准方法的步骤。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有力反馈装置的驱动程序,所述力反馈装置的驱动程序被处理器执行时实现如权利要求4至9中任一项所述的力反馈装置的驱动方法的步骤。
PCT/CN2023/080545 2022-04-11 2023-03-09 力反馈装置的校准方法、驱动方法、设备及存储介质 WO2023197794A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210375951.1A CN114669043A (zh) 2022-04-11 2022-04-11 力反馈装置的校准方法、驱动方法、设备及存储介质
CN202210375951.1 2022-04-11

Publications (1)

Publication Number Publication Date
WO2023197794A1 true WO2023197794A1 (zh) 2023-10-19

Family

ID=82077660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080545 WO2023197794A1 (zh) 2022-04-11 2023-03-09 力反馈装置的校准方法、驱动方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN114669043A (zh)
WO (1) WO2023197794A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669043A (zh) * 2022-04-11 2022-06-28 歌尔股份有限公司 力反馈装置的校准方法、驱动方法、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103853373A (zh) * 2012-12-06 2014-06-11 联想(北京)有限公司 产生力反馈的方法和力反馈装置
US20180031378A1 (en) * 2016-07-27 2018-02-01 Fujitsu Limited Setting control method and setting control device
CN108646911A (zh) * 2018-04-11 2018-10-12 浙江大学 独立微型螺旋桨牵引的柔性可穿戴力反馈产生装置与方法
CN113296605A (zh) * 2021-05-24 2021-08-24 中国科学院深圳先进技术研究院 力反馈方法、力反馈装置及电子设备
CN114669043A (zh) * 2022-04-11 2022-06-28 歌尔股份有限公司 力反馈装置的校准方法、驱动方法、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103853373A (zh) * 2012-12-06 2014-06-11 联想(北京)有限公司 产生力反馈的方法和力反馈装置
US20180031378A1 (en) * 2016-07-27 2018-02-01 Fujitsu Limited Setting control method and setting control device
CN108646911A (zh) * 2018-04-11 2018-10-12 浙江大学 独立微型螺旋桨牵引的柔性可穿戴力反馈产生装置与方法
CN113296605A (zh) * 2021-05-24 2021-08-24 中国科学院深圳先进技术研究院 力反馈方法、力反馈装置及电子设备
CN114669043A (zh) * 2022-04-11 2022-06-28 歌尔股份有限公司 力反馈装置的校准方法、驱动方法、设备及存储介质

Also Published As

Publication number Publication date
CN114669043A (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
WO2023197794A1 (zh) 力反馈装置的校准方法、驱动方法、设备及存储介质
US6861814B2 (en) Control parameter automatic adjustment apparatus
CN107024985B (zh) 线性马达刹车方法和装置,及触觉反馈系统
JP6409803B2 (ja) シミュレーション装置、シミュレーション方法、制御プログラム、および記録媒体
US10606236B2 (en) Control device, control method, and control program
US11137728B2 (en) Processing device, control parameter determination method, and non-transitory recording medium storing a control parameter determination program
CN103296940A (zh) 一种自适应pi控制方法与系统
US10303132B2 (en) Control device, control method, and control program
KR20200067723A (ko) 과도 응답 특성을 개선하기 위해 액추에이터 구동 신호를 제어하기 위한 시스템 및 방법
CN111581039A (zh) 系统性能的测试方法、装置、设备及存储介质
CN108317696B (zh) 空调器的控制方法、装置和计算机可读存储介质
US11121660B2 (en) System and method for improving drive efficiency in an industrial automation system
CN114050862B (zh) 量子通信跟踪仪的谐振频率控制方法、装置、系统与介质
JP2009038942A (ja) 負荷イナーシャ同定方法及びサーボモータ制御装置
CN110413421A (zh) 业务数据处理方法和装置、交易数据处理方法和装置
CN109779808A (zh) 用于操作内燃发动机的起动器的方法和装置
US11146191B2 (en) Simulation device, simulation method, and simulation program for a motor control device
CN115543080A (zh) 力反馈装置的驱动方法、力反馈装置及计算机存储介质
CN109546837B (zh) 电动机结构选定装置和选定方法以及计算机可读介质
CN115609343A (zh) 一种运动倍率调节方法、装置、计算机设备和存储介质
CN111459202B (zh) 输出气压调节方法、装置、设备及计算机可读存储介质
CN110086378A (zh) 控制电驱动器装置的访问的方法、装置、系统和程序产品
CN116008887A (zh) 一种基于LabVIEW的接近开关测试方法、装置及系统
CN117811451A (zh) 自动调零方法、装置、系统、设备及可读存储介质
CN113659885A (zh) 音圈电机控制方法、装置、系统及拍摄设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787442

Country of ref document: EP

Kind code of ref document: A1