WO2023197634A1 - 一种光伏发电控制方法及装置 - Google Patents

一种光伏发电控制方法及装置 Download PDF

Info

Publication number
WO2023197634A1
WO2023197634A1 PCT/CN2022/137522 CN2022137522W WO2023197634A1 WO 2023197634 A1 WO2023197634 A1 WO 2023197634A1 CN 2022137522 W CN2022137522 W CN 2022137522W WO 2023197634 A1 WO2023197634 A1 WO 2023197634A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
photovoltaic
storage
power consumption
Prior art date
Application number
PCT/CN2022/137522
Other languages
English (en)
French (fr)
Inventor
丁振华
高保华
李朋
张青花
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023197634A1 publication Critical patent/WO2023197634A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin

Definitions

  • the present application relates to the field of electric power technology, and in particular to a photovoltaic power generation control method.
  • the rise of clean and green energy power generation such as wind power, photovoltaic power, and tidal power generation can not only solve the environmental impact of traditional power generation, but also solve the needs of off-grid independent power generation in isolated islands/remote areas, reduce the difficulty of power generation and grid coverage, and increase flexibility. , can also meet the needs of electricity and electrical appliances in special areas;
  • This application provides a photovoltaic power generation control method, which includes: receiving the power consumption of the power consumption end, the power storage of the power storage system, photovoltaic sampling data and lighting environment data;
  • the power consumption the power storage, the photovoltaic sampling data and the lighting environment data, the start or stop of the photovoltaic power generation system and the power storage system is controlled.
  • the start-up of the photovoltaic power generation system and the power storage system is controlled based on the power consumption, the power storage, the photovoltaic sampling data and the lighting environment data. or stop, including:
  • a power generation command is generated and sent to the photovoltaic power generation system so that the photovoltaic power generation system can start power generation according to the power generation command until the power storage system Fully loaded.
  • a photovoltaic power generation control method after the determination of the power consumption and the power storage, it also includes:
  • the photovoltaic power generation system continues to operate until the new stored energy is not less than the electricity storage threshold.
  • a photovoltaic power generation control method after the determination of the connection between the power end and the external power grid, it also includes:
  • the power generation command is sent to the photovoltaic power generation system, so that the photovoltaic power generation system starts power generation according to the power generation command.
  • a photovoltaic power generation control method after judging the power consumption and the power supply, it also includes:
  • the power generation command is sent to the photovoltaic power generation system, so that the photovoltaic power generation system starts power generation according to the power generation command.
  • the power consumption of the receiving end, the power storage of the power storage system, photovoltaic sampling data and lighting environment data include:
  • the receiving module is used to receive the power consumption of the power consumption end, the power storage of the power storage system, photovoltaic sampling data and lighting environment data;
  • a control module configured to control the start or stop of the photovoltaic power generation system and the power storage system based on the power consumption, the power storage, the photovoltaic sampling data and the lighting environment data.
  • This application also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, it implements any one of the above photovoltaic power generation controls. method.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • a computer program is stored on which a computer program is stored.
  • the computer program is executed by a processor, any one of the above photovoltaic power generation control methods is implemented.
  • the present application also provides a computer program product, which includes a computer program.
  • the computer program When the computer program is executed by a processor, it implements any one of the above photovoltaic power generation control methods.
  • the photovoltaic power generation control method and device provided by this application analyze the power consumption, power storage and lighting environment data, and then control the start or stop of the photovoltaic power generation system and power storage system to solve the problem of power generation in remote areas with low cost and low noise. It is difficult to transmit power and use it for residents. At the same time, effective intelligent management and control of power generation and power consumption in remote areas is required.
  • FIG 1 is one of the flow diagrams of the photovoltaic power generation control method provided by this application.
  • FIG. 2 is a schematic structural diagram of the photovoltaic power generation control system provided by this application.
  • FIG. 3 is the second flow diagram of the photovoltaic power generation control method provided by this application.
  • FIG. 4 is a schematic structural diagram of the photovoltaic power generation control device provided by this application.
  • Figure 5 is a schematic structural diagram of an electronic device provided by this application.
  • Unstable power supply will not only make residents' lives inconvenient, but may also cause excessive loss or even damage of electrical appliances.
  • the execution subject may be an electronic device or a software or functional module or functional entity in the electronic device that can implement the photovoltaic power generation control method.
  • the electronic device includes but is not limited to a data processing center. . It should be noted that the above execution entities do not constitute a limitation on this application.
  • Figure 1 is one of the flow diagrams of the photovoltaic power generation control method provided by this application. As shown in Figure 1, it includes but is not limited to the following steps:
  • step S1 the power consumption of the power consumption end, the power storage of the power storage system, photovoltaic sampling data and lighting environment data are received.
  • the power consumption of the electric terminal, the power storage of the power storage system, and the lighting environment data are received in real time.
  • FIG 2 is a schematic structural diagram of the photovoltaic power generation control system provided by this application. As shown in Figure 2, it includes: power end, external power grid, inverter + filter system, data processing center, photovoltaic power generation system, filter + isolation system, lighting Sampling system, as well as power storage system, the entire photovoltaic power generation control system can be applied to remote island areas suitable for photovoltaic power generation, such as islands or deserts.
  • data 1 is the storage capacity of the power storage system
  • data 2 is the lighting environment data
  • data 3 is the monitoring data of the power storage system transmitting power to the external power grid
  • data 4 is the power consumption of the power consumer
  • data 5 is the power consumption from the external power grid to the external power grid.
  • data 6 is the photovoltaic sampling data.
  • Data 2 is collected by the photovoltaic power generation system and sent to the data processing center; data 6 is obtained by the photovoltaic sampling system sampling the photovoltaic matrix of the photovoltaic power generation system.
  • Command 1 is a power supply command, used to start the power storage system
  • Command 2 is a power generation command, used to start the photovoltaic power generation system
  • Command 3 is a monitoring command, used to start the monitoring system to monitor the power storage system and monitor the external power grid to transmit electric energy. Electricity and power quality.
  • the data processing center can send instructions 1 to the energy storage system and receive data 1 returned by the energy storage system; it can receive data 2 sent by the photovoltaic power generation system, and it can also send instructions 2 to the photovoltaic power generation system; it can also monitor the power storage system.
  • the data collected by the photovoltaic sampling system from the photovoltaic matrix of the photovoltaic power generation system can be received 6.
  • the direct current (DC) output by the photovoltaic power generation system can be stored in the power storage system through the filtering + isolation system; the power storage system can transmit power to the external grid through the boost filtering + isolation system; the DC power in the power storage system can be stored in the power storage system through the inverter + After the filtering system converts AC power into AC power, it provides power to the power consumer.
  • DC direct current
  • step S2 the start or stop of the photovoltaic power generation system and the power storage system is controlled based on the power consumption, the power storage, the photovoltaic sampling data and the lighting environment data.
  • the power consumption and the power storage are compared.
  • the lighting environment is judged based on the lighting environment data.
  • the light intensity in the light environment data is greater than the light threshold, it is determined that the current light environment is suitable for power generation, and command 2 is generated and sent to the photovoltaic power generation system.
  • the photovoltaic power generation system continues to generate power and stores the power in the storage through the filtering + isolation system.
  • the power system stops generating electricity until the energy storage system is fully loaded, and repeatedly receives power consumption, power storage and lighting environment data, and performs real-time analysis and judgment on the latest received data.
  • the photovoltaic power generation control method provided by this application analyzes the power consumption, power storage and lighting environment data, and then controls the start or stop of the photovoltaic power generation system and power storage system, solving the problem of power generation, transmission and troubleshooting in remote areas at low cost and low noise. It is difficult for residents to use electricity. At the same time, effective intelligent management and control of power generation and electricity consumption in remote areas are carried out.
  • the receiving power consumption of the power consumption end, the power storage of the power storage system, photovoltaic sampling data and lighting environment data include:
  • the power consumer receive the power consumption sent by the power consumer, receive the stored power sent by the power storage system, receive photovoltaic sampling data sent by the lighting sampling system, and Receive the lighting environment data sent by the photovoltaic power generation system.
  • controlling the start or stop of the photovoltaic power generation system and the power storage system based on the power consumption, the power storage, the photovoltaic sampling data and the lighting environment data includes:
  • the light intensity is determined based on the lighting environment data
  • a power generation command is generated and sent to the photovoltaic power generation system so that the photovoltaic power generation system can start power generation according to the power generation command until the power storage system Fully loaded.
  • the external grid can be an ultra-high voltage DC grid.
  • the light environment data includes light intensity.
  • the light sampling system is used to collect data 6 and send the data 6 to the data processing center.
  • Data 6 performs fault analysis on the photovoltaic power generation system.
  • command 2 is generated and sent to the photovoltaic power generation system.
  • the photovoltaic power generation system starts after receiving command 2; after it is determined that the photovoltaic power generation system exists In the event of a fault, a fault alarm is generated.
  • the illumination threshold C can be flexibly adjusted according to actual applications.
  • the power storage system sends data 1 to the data processing center in real time.
  • the data processing center analyzes the data 1.
  • the storage power Sc is not less than the power storage threshold, it generates an instruction 1 and sends it to the power storage system.
  • the power storage The system starts after receiving instruction 1, and provides the electric energy stored in the power storage system to the user through the inverter + filter system.
  • the power storage threshold is A% of the capacity of the power storage system, and the value of A can be flexibly adjusted according to actual applications.
  • the light sampling system is used to continuously collect data 6 and send the data 6 to the data processing center. Based on the data 6, a fault analysis is performed on the photovoltaic matrix of the photovoltaic power generation system, and the photovoltaic power generation system is determined. In the event of a fault, a fault alarm is generated.
  • the method further includes:
  • the photovoltaic power generation system continues to operate until the new stored energy is not less than the electricity storage threshold.
  • the power storage system When it is determined that the power consumption is not less than the stored power, the power storage system needs to provide supplementary power supply to the power consumption end, generate command 2, and send command 2 to the photovoltaic power generation system, so that the photovoltaic power generation system can start power generation according to command 2; and in real time Receive the new stored energy sent by the power storage system, and when it is determined that the new stored energy is less than the electricity storage threshold, it is determined that the energy stored in the power storage system is insufficient, and the photovoltaic power generation system continues to operate until the new stored energy is not less than the required amount. Describe the power storage threshold and continue to obtain new power consumption and storage power.
  • the method further includes:
  • the power generation command is sent to the photovoltaic power generation system, so that the photovoltaic power generation system starts power generation according to the power generation command.
  • the light environment data includes light intensity.
  • Data 6 performs a fault analysis on the photovoltaic matrix of the photovoltaic power generation system.
  • command 2 is generated and sent to the photovoltaic power generation system.
  • the photovoltaic power generation system starts after receiving command 2 and switches the photovoltaic power generation system to the photovoltaic power generation system.
  • the generated electric energy is stored in the power storage system through the filter isolation system until the power storage system is fully loaded and power generation is stopped; when it is determined that there is a fault in the photovoltaic power generation system, a fault alarm is generated.
  • the power storage system sends data 1 to the data processing center in real time.
  • the data processing center analyzes the data 1.
  • the power storage is less than the power storage threshold, it generates an instruction 1 and sends it to the power storage system.
  • the power storage system It is started after receiving instruction 1, and the electric energy stored in the power storage system is provided to users through the inverter + filter system, or to the power grid through the boost filter + isolation system, increasing the income of local users.
  • the light sampling system is used to continuously collect data 6 and send the data 6 to the data processing center. Based on the data 6, a fault analysis is performed on the photovoltaic matrix of the photovoltaic power generation system, and the photovoltaic power generation system is determined. In the event of a fault, a fault alarm is generated.
  • the method further includes:
  • the power generation command is sent to the photovoltaic power generation system, so that the photovoltaic power generation system starts power generation according to the power generation command.
  • the power storage system When it is determined that the power consumption is not less than the power supply, the power storage system needs to provide supplementary power supply to the power consumer, generate command 1, and send command 1 to the power storage system so that the power storage system can provide power to the power consumer according to the power supply command. terminal power supply.
  • command 2 is generated and sent to the photovoltaic power generation system for photovoltaic power generation.
  • the power generation system starts power generation according to the power generation command until the power stored in the power storage system is not less than the power storage threshold, and continues to obtain new power storage.
  • FIG 3 is the second flow diagram of the photovoltaic power generation control method provided by this application. As shown in Figure 3, it includes:
  • the photovoltaic power generation control system when it is determined that the photovoltaic power generation control system is connected to the external power grid, it receives the power supply from the external power grid;
  • command 1 When the power consumption is not less than the power supply, command 1 is generated to turn on the power storage system and receive new power storage in real time.
  • command 2 When the new power storage is less than the preset threshold, command 2 is generated to turn on the photovoltaic system. The power generation system waits until the new stored electricity received is not less than the electricity storage threshold;
  • the power storage is judged.
  • the power storage is less than the power storage threshold, it is determined that the power storage of the power storage system is insufficient, then the lighting environment data is received, and the lighting is determined based on the lighting environment data.
  • command 2 is generated to turn on the photovoltaic power generation system and send energy to the grid after the power storage system is fully loaded.
  • command 2 When the power consumption is not less than the stored power, command 2 is generated to turn on the photovoltaic power generation system, and turn on the filtering + isolation system, power storage system and inverter + filtering system; receive the new stored power, and in the new When the power storage is less than the preset threshold, command 2 is generated to turn on the photovoltaic power generation system until the new power storage received is not less than the power storage threshold;
  • photovoltaic sampling data and lighting environment data are received.
  • the photovoltaic power generation system is judged based on the photovoltaic sampling data.
  • command 2 is generated to turn on the photovoltaic power generation system until the power storage system is fully loaded.
  • the intelligent management and control scheme of photovoltaic power generation + power storage system in isolated island areas is used to ensure sufficient power for users in isolated islands or remote environments, and to effectively connect the maximum power of photovoltaic power generation and the power storage system.
  • the photovoltaic power generation control device provided by the present application will be described below.
  • the photovoltaic power generation control device described below and the photovoltaic power generation control method described above may be mutually referenced.
  • FIG 4 is a schematic structural diagram of the photovoltaic power generation control device provided by this application. As shown in Figure 4, it includes:
  • the receiving module 401 is used to receive the power consumption of the power consumption end, the power storage of the power storage system, photovoltaic sampling data and lighting environment data;
  • the control module 402 is used to control the start or stop of the photovoltaic power generation system and the power storage system according to the power consumption, the power storage, the photovoltaic sampling data and the lighting environment data.
  • the receiving module 401 receives the power consumption of the power consumption end, the power storage of the power storage system, photovoltaic sampling data and lighting environment data.
  • the power consumption of the electric terminal, the power storage of the power storage system, and the lighting environment data are received in real time.
  • FIG 2 it includes: power consumption end, external power grid, inverter + filter system, data processing center, photovoltaic power generation system, filter + isolation system, light sampling system, and power storage system.
  • the entire photovoltaic power generation control system can be applied In remote island areas suitable for photovoltaic power generation, such as islands or deserts.
  • data 1 is the storage capacity of the power storage system
  • data 2 is the lighting environment data
  • data 3 is the monitoring data of the power storage system transmitting power to the external power grid
  • data 4 is the power consumption of the power consumer
  • data 5 is the power consumption from the external power grid to the external power grid.
  • data 6 is the photovoltaic sampling data.
  • Data 2 is collected by the photovoltaic power generation system and sent to the data processing center; data 6 is obtained by the photovoltaic sampling system sampling the photovoltaic matrix of the photovoltaic power generation system.
  • Command 1 is a power supply command, used to start the power storage system
  • Command 2 is a power generation command, used to start the photovoltaic power generation system
  • Command 3 is a monitoring command, used to start the monitoring system to monitor the power storage system and monitor the external power grid to transmit electric energy. Electricity and power quality.
  • the data processing center can send instructions 1 to the energy storage system and receive data 1 returned by the energy storage system; it can receive data 2 sent by the photovoltaic power generation system, and it can also send instructions 2 to the photovoltaic power generation system; it can also monitor the power storage system.
  • the data collected by the photovoltaic sampling system from the photovoltaic matrix of the photovoltaic power generation system can be received 6.
  • the direct current (DC) output by the photovoltaic power generation system can be stored in the power storage system through the filtering + isolation system; the power storage system can transmit power to the external grid through the boost filtering + isolation system; the DC power in the power storage system can be stored in the power storage system through the inverter + After the filtering system converts AC power into AC power, it provides power to the power consumer.
  • DC direct current
  • control module 402 controls the start or stop of the photovoltaic power generation system and the power storage system according to the power consumption, the power storage, the photovoltaic sampling data and the lighting environment data.
  • the power consumption and the power storage are compared.
  • the lighting environment is judged based on the lighting environment data.
  • the light intensity in the light environment data is greater than the light threshold, it is determined that the current light environment is suitable for power generation, and command 2 is generated and sent to the photovoltaic power generation system.
  • the photovoltaic power generation system continues to generate power and stores the power in the storage through the filtering + isolation system.
  • the power system stops generating electricity until the energy storage system is fully loaded, and repeatedly receives power consumption, power storage and lighting environment data, and performs real-time analysis and judgment on the latest received data.
  • the photovoltaic power generation control device provided by this application analyzes the power consumption, power storage and lighting environment data, and then controls the start or stop of the photovoltaic power generation system and power storage system, solving the problem of power generation, transmission and troubleshooting in remote areas at low cost and low noise. It is difficult for residents to use electricity. At the same time, effective intelligent management and control of power generation and electricity consumption in remote areas are carried out.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by this application.
  • the electronic device may include: a processor (processor) 510, a communications interface (Communications Interface) 520, a memory (memory) 530 and a communication bus 540.
  • the processor 510, the communication interface 520, and the memory 530 complete communication with each other through the communication bus 540.
  • the processor 510 can call the logical instructions in the memory 530 to execute the photovoltaic power generation control method.
  • the method includes: receiving the power consumption of the power end, the power storage of the power storage system, photovoltaic sampling data and lighting environment data; according to the user
  • the power, the stored power, the photovoltaic sampling data and the lighting environment data control the start or stop of the photovoltaic power generation system and the power storage system.
  • the above-mentioned logical instructions in the memory 530 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the present application also provides a computer program product.
  • the computer program product includes a computer program.
  • the computer program can be stored on a non-transitory computer-readable storage medium.
  • the computer can Execute the photovoltaic power generation control method provided by each of the above methods.
  • the method includes: receiving the power consumption of the power consumption end, the power storage of the power storage system, the photovoltaic sampling data and the lighting environment data; according to the power consumption, the power storage , the photovoltaic sampling data and the lighting environment data control the start or stop of the photovoltaic power generation system and the power storage system.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by a processor to execute the photovoltaic power generation control method provided by each of the above methods.
  • the method includes : Receive the power consumption of the power consumption end, the power storage of the power storage system, the photovoltaic sampling data and the lighting environment data; control the photovoltaic power according to the power consumption, the power storage, the photovoltaic sampling data and the lighting environment data. Start or stop the power generation system and the power storage system.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by means of software plus the necessary general hardware platform, and of course it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Abstract

本申请提供一种光伏发电控制方法及装置,包括:接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据;根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止。本申请提供的光伏发电控制方法及装置,通过对用电量、储电量和光照环境数据进行分析,进而控制光伏发电系统和储电系统的启动或停止,低成本、低噪音地解决偏远地区发电输电及居民用电难,同时对偏远地区发电、用电进行有效的智能管控。

Description

一种光伏发电控制方法及装置
相关申请的交叉引用
本申请要求于2022年4月13日提交的申请号为202210388074.1,名称为“一种光伏发电控制方法及装置”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及电力技术领域,尤其涉及一种光伏发电控制方法。
背景技术
世界各地偏远区域电力资源不足及供电系统不完善导致居民用电困难紧张等系列问题。
风力、光伏、潮汐发电等清洁绿色能源发电的兴起,不仅可以解决传统发电对环境的影响,也可以解决类似孤岛/偏远地区离网独立发电等需求,降低发电上网及电网覆盖的难度增加灵活性,也能满足特殊区域用电及电器使用需求;
然而,在孤岛或偏远地区中,发电和用电的管控非常困难。
发明内容
本申请提供一种光伏发电控制方法及装置,用以解决现有技术中偏远地区发电和用电管控困难的缺陷,实现了偏远地区发电和用电的有效管控。
本申请提供一种光伏发电控制方法,包括:接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据;
根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止。
根据本申请提供的一种光伏发电控制方法,所述根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止,包括:
对所述用电端与外部电网的连接情况进行判断;
在确定所述用电端未连接所述外部电网的情况下,对所述用电量和所 述储电量进行判断;
在确定所述用电量小于所述储电量的情况下,据所述光照环境数据对光照强度进行判断;
在确定所述光照环境数据中的光照强度大于光照阈值的情况下,根据所述光伏采样数据对所述光伏发电系统的情况进行判断;
在判定所述光伏发电系统无故障的情况下,生成发电指令,并将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电,直至储电系统满载。
根据本申请提供的一种光伏发电控制方法,在所述对所述用电量和所述储电量进行判断之后,还包括:
在确定所述用电量不小于所述储电量的情况下,生成所述发电指令;
将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电;
接收所述储电系统发送的新的储电量;
在确定所述新的储电量小于储电阈值的情况下,所述光伏发电系统持续运行直至所述新的储电量不小于所述储电阈值。
根据本申请提供的一种光伏发电控制方法,在所述对所述用电端与外部电网的连接情况进行判断之后,还包括:
在确定所述用电端连接所述外部电网的情况下,接收所述外部电网对所述用电端的供电量;
对所述用电量和所述供电量进行判断;
在确定所述用电量小于所述供电量的情况下,根据所述光照环境数据对光照强度进行判断;
在判定所述光照环境数据中的光照强度大于光照阈值的情况下,生成发电指令;
将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电。
根据本申请提供的一种光伏发电控制方法,在对所述用电量和所述供电量进行判断之后,还包括:
在确定所述用电量不小于所述供电量的情况下,生成供电指令;
将所述供电指令发送至所述储电系统,以供所述储电系统根据供电指令向所述用电端供电;
接收所述储电系统发送的新的储电量;
在确定所述储电量小于储电阈值的情况下,生成所述发电指令;
将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电。
根据本申请提供的一种光伏发电控制方法,所述接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据,包括:
在所述用电端运行的过程中,接收由用电端发送的所述用电量,接收由所述储电系统发送的所述储电量,接收由光照采样系统发送的光伏采样数据,以及接收由所述光伏发电系统发送的所述光照环境数据。
本申请还提供一种光伏发电控制装置,包括:
接收模块,用于接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据;
控制模块,用于根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述光伏发电控制方法。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述光伏发电控制方法。
本申请还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述任一种所述光伏发电控制方法。
本申请提供的光伏发电控制方法及装置,通过对用电量、储电量和光照环境数据进行分析,进而控制光伏发电系统和储电系统的启动或停止,低成本、低噪音地解决偏远地区发电输电及居民用电难,同时对偏远地区发电、用电进行有效的智能管控。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例 或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的光伏发电控制方法的流程示意图之一;
图2是本申请提供的光伏发电控制系统的结构示意图;
图3是本申请提供的光伏发电控制方法的流程示意图之二;
图4是本申请提供的光伏发电控制装置的结构示意图;
图5是本申请提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
居民用电主要是在电器使用上,不稳定的电源不仅会使居民生活不便,还可能导致电器的过度损耗甚至损坏。
下面结合图1至图5描述本申请的实施例所提供的光伏发电控制方法及装置。
本申请实施例提供的光伏发电控制方法,执行主体可以为电子设备或者电子设备中能够实现该光伏发电控制方法的软件或功能模块或功能实体,本申请实施例中电子包括但不限于数据处理中心。需要说明的是,上述执行主体并不构成对本申请的限制。
图1是本申请提供的光伏发电控制方法的流程示意图之一,如图1所示,包括但不限于以下步骤:
首先,在步骤S1中,接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据。
电端的用电量、储电系统的储电量,以及光照环境数据为实时接收的。
图2是本申请提供的光伏发电控制系统的结构示意图,如图2所示,包括:用电端、外部电网、逆变+滤波系统、数据处理中心、光伏发电系统、滤波+隔离系统、光照采样系统,以及储电系统,整套光伏发电控制系统可 以应用于地段偏僻、适合光伏发电的孤岛区域,例如海岛或荒漠。
其中,数据1为储电系统的储电量,数据2为光照环境数据,数据3为储电系统向外部电网输送电能的监控数据,数据4为用电端的用电量,数据5为外部电网向用电端提供的用电量,数据6为光伏采样数据。数据2由光伏发电系统采集,并发送至数据处理中心;数据6由光伏采样系统对光伏发电系统的光伏矩阵进行数据采样得到的。
指令1为供电指令,用于开启储电系统;指令2为发电指令,用于启动光伏发电系统;指令3为监控指令,用于开启监控系统,以供监控储电系统监控外部电网输送电能的电量和电能质量。
数据处理中心可以向储能系统发送指令1,接收由储电系统返回的数据1;可以接收由光伏发电系统发送的数据2,也可以向光伏发电系统发送指令2;还可以向监控储电系统向外部电网输送电能的监控装置发送指令3,并接收监控装置根据指令3返回的数据3;可以接收由用电端发送的数据4,以及接收外部电网向用电端输送电能的数据5;还可以接收光伏采样系统对光伏发电系统的光伏矩阵采集到的数据6。
光伏发电系统输出的直流电(DC)可以通过滤波+隔离系统存储至储电系统;储电系统可以通过升压滤波+隔离系统将电能输送至外部电网;储电系统中的直流电可以通过逆变+滤波系统转换成交流电后,为用电端提供电能。
进一步地,在步骤S2中,根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止。
在仅通过储能系统为用电端的用户供电的情况下,将用电量和储电量进行比较,在确定储电量不小于用电量的情况下,根据光照环境数据对光照环境进行判断,在光照环境数据中的光照强度大于光照阈值的情况下,判定当前光照环境适合发电,则生成指令2并发送至向光伏发电系统,光伏发电系统持续发电,并将电能通过滤波+隔离系统存储至储电系统,直至储能系统的蓄电量满载,停止发电,并重复接收用电量、储电量和光照环境数据,对最新接收的数据进行实时的分析和判断。
本申请提供的光伏发电控制方法,通过对用电量、储电量和光照环境 数据进行分析,进而控制光伏发电系统和储电系统的启动或停止,低成本、低噪音地解决偏远地区发电输电及居民用电难,同时对偏远地区发电、用电进行有效的智能管控。
可选地,所述接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据,包括:
在所述用电端运行的过程中,接收由用电端发送的所述用电量,接收由所述储电系统发送的所述储电量,接收由光照采样系统发送的光伏采样数据,以及接收由所述光伏发电系统发送的所述光照环境数据。
可选地,所述根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止,包括:
对所述用电端与外部电网的连接情况进行判断;
在确定所述用电端未连接所述外部电网的情况下,对所述用电量和所述储电量进行判断;
在确定所述用电量小于所述储电量的情况下,据所述光照环境数据对光照强度进行判断;
在确定所述光照环境数据中的光照强度大于光照阈值的情况下,根据所述光伏采样数据对所述光伏发电系统的情况进行判断;
在判定所述光伏发电系统无故障的情况下,生成发电指令,并将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电,直至储电系统满载。
外部电网可以是超高压直流电网。
对用电端与外部电网的连接情况进行判断;在确定用电端未连接外部电网的情况下,对用电量和储电量进行判断;在确定用电量小于所述储电量的情况下,不需要储电系统对用电端的补充供电,根据所述光照环境数据对光照强度进行判断。
光照环境数据中包括光照强度,在光照强度Lux(1Lux=1Lm/㎡)不小于光照阈值C的情况下,一方面,利用光照采样系统采集数据6,并将数据6发送至数据处理中心,根据数据6对光伏发电系统进行故障分析,在确定光伏发电系统无故障的情况下,生成指令2并发送至光伏发电系统,光伏发电系统在接收到指令2的情况下启动;在确定光伏发电系统存在故 障的情况下,生成故障报警。其中,光照阈值C可以根据实际应用灵活调整。
另一方面,储电系统实时将数据1发送至数据处理中心,数据处理中心对数据1进行分析,在储电量Sc不小于储电阈值的情况下,生成指令1发送至储电系统,储电系统在接收到指令1的情况下启动,将储电系统中储存的电能通过逆变+滤波系统提供至用户。其中,储电阈值为储电系统A%的容量,A的值可以根据实际应用灵活调整。
在光照强度Lux小于光照阈值C的情况下,利用光照采样系统持续采集数据6,并将数据6发送至数据处理中心,根据数据6对光伏发电系统的光伏矩阵进行故障分析,在确定光伏发电系统存在故障的情况下,生成故障报警。
可选地,在所述对所述用电量和所述储电量进行判断之后,还包括:
在确定所述用电量不小于所述储电量的情况下,生成所述发电指令;
将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电;
接收所述储电系统发送的新的储电量;
在确定所述新的储电量小于储电阈值的情况下,所述光伏发电系统持续运行直至所述新的储电量不小于所述储电阈值。
在确定用电量不小于储电量的情况下,需要储电系统对用电端的补充供电,生成指令2,将指令2发送至光伏发电系统,以供光伏发电系统根据指令2启动发电;并实时接收储电系统发送的新的储电量,在确定新的储电量小于储电阈值的情况下,确定储电系统的储电量不足,则光伏发电系统持续运行直至所述新的储电量不小于所述储电阈值,并持续获取新的用电量和储电量。
可选地,在所述对所述用电端与外部电网的连接情况进行判断之后,还包括:
在确定所述用电端连接所述外部电网的情况下,接收所述外部电网对所述用电端的供电量;
对所述用电量和所述供电量进行判断;
在确定所述用电量小于所述供电量的情况下,根据所述光照环境数据 对光照强度进行判断;
在判定所述光照环境数据中的光照强度大于所述光照阈值的情况下,生成发电指令;
将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电。
对用电端与外部电网的连接情况进行判断,在确定用电端连接外部电网的情况下,对用电量和供电量进行判断;在确定用电量小于供电量的情况下,不需要储电系统对用电端的补充供电,则根据光照环境数据对光照强度进行判断。
光照环境数据中包括光照强度,在光照强度Lux(1Lux=1Lm/㎡)不小于光照阈值C的情况下,一方面,利用光照采样系统采集数据6,并将数据6发送至数据处理中心,根据数据6对光伏发电系统的光伏矩阵进行故障分析,在确定光伏发电系统无故障的情况下,生成指令2并发送至光伏发电系统,光伏发电系统在接收到指令2的情况下启动,将光伏发电产生的电能通过滤波隔离系统存储至储电系统,直至储电系统满载,停止发电;在确定光伏发电系统存在故障的情况下,生成故障报警。
另一方面,储电系统实时将数据1发送至数据处理中心,数据处理中心对数据1进行分析,在储电量小于储电阈值的情况下,生成指令1发送至储电系统,储电系统在接收到指令1的情况下启动,将储电系统中储存的电能通过逆变+滤波系统提供至用户,或通过升压滤波+隔离系统提供至电网,增加当地用户的收益。
在光照强度Lux小于光照阈值C的情况下,利用光照采样系统持续采集数据6,并将数据6发送至数据处理中心,根据数据6对光伏发电系统的光伏矩阵进行故障分析,在确定光伏发电系统存在故障的情况下,生成故障报警。
可选地,在对所述用电量和所述供电量进行判断之后,还包括:
在确定所述用电量不小于所述供电量的情况下,生成供电指令;
将所述供电指令发送至所述储电系统,以供所述储电系统根据供电指令向所述用电端供电;
接收所述储电系统发送的新的储电量;
在确定所述储电量小于储电阈值的情况下,生成所述发电指令;
将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电。
在确定用电量不小于供电量的情况下,需要储电系统对用电端进行补充供电,生成指令1,并将指令1发送至储电系统,以供储电系统根据供电指令向用电端供电。
实时接收储电系统发送的新的储电量,在确定储电量小于储电阈值的情况下,确定储电系统的储电量不足,则生成指令2,将指令2发送至光伏发电系统,以供光伏发电系统根据发电指令启动发电,直至储电系统的储电量不小于储电阈值,并持续获取新的储电量。
图3是本申请提供的光伏发电控制方法的流程示意图之二,如图3所示,包括:
首先,接收用电端的用电量和储电系统的储电量;
进一步地,对光伏发电控制系统是否连接外部电网进行判断;
一方面,在确定光伏发电控制系统连接外部电网的情况下,接收外部电网的供电量;
在用电量不小于供电量的情况下,生成指令1,以开启储电系统,并实时接收新的储电量,在新的储电量小于预设阈值的情况下,生成指令2,以开启光伏发电系统,直至接收的新的储电量不小于储电阈值;
在用电量小于供电量的情况下,对储电量进行判断,在储电量小于储电阈值的情况下,确定储电系统的储电量不足,则接收光照环境数据,在根据光照环境数据确定光照环境适合发电的情况下,生成指令2,以开启光伏发电系统,并在储电系统满载后,向电网送能。
另一方面,在确定光伏发电控制系统未连接外部电网的情况下,对用电量和储电量进行判断;
在用电量不小于储电储电量的情况下,生成指令2,以开启光伏发电系统,并开启滤波+隔离系统、储电系统和逆变+滤波系统;接收新的储电量,在新的储电量小于预设阈值的情况下,生成指令2,以开启光伏发电系统,直至接收的新的储电量不小于储电阈值;
在用电量小于储电储电量的情况下,接收光伏采样数据和光照环境数 据,在根据光照环境数据确定光照环境适合发电的情况下,根据光伏采样数据对光伏发电系统是否故障进行判断,在光伏发电系统无故障的情况下,生成指令2,以开启光伏发电系统,直至储电系统满载。
根据本申请提供的光伏发电控制方法,利用孤岛区域光伏发电用电+储电系统智能化管控方案,保障孤岛或偏远环境用户用电充足,以及有效衔接光伏发电最大功率和储电系统。
下面对本申请提供的光伏发电控制装置进行描述,下文描述的光伏发电控制装置与上文描述的光伏发电控制方法可相互对应参照。
图4是本申请提供的光伏发电控制装置的结构示意图,如图4所示,包括:
接收模块401,用于接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据;
控制模块402,用于根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止。
首先,接收模块401接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据
电端的用电量、储电系统的储电量,以及光照环境数据为实时接收的。
如图2所示,包括:用电端、外部电网、逆变+滤波系统、数据处理中心、光伏发电系统、滤波+隔离系统、光照采样系统,以及储电系统,整套光伏发电控制系统可以应用于地段偏僻、适合光伏发电的孤岛区域,例如海岛或荒漠。
其中,数据1为储电系统的储电量,数据2为光照环境数据,数据3为储电系统向外部电网输送电能的监控数据,数据4为用电端的用电量,数据5为外部电网向用电端提供的用电量,数据6为光伏采样数据。数据2由光伏发电系统采集,并发送至数据处理中心;数据6由光伏采样系统对光伏发电系统的光伏矩阵进行数据采样得到的。
指令1为供电指令,用于开启储电系统;指令2为发电指令,用于启动光伏发电系统;指令3为监控指令,用于开启监控系统,以供监控储电系统监控外部电网输送电能的电量和电能质量。
数据处理中心可以向储能系统发送指令1,接收由储电系统返回的数 据1;可以接收由光伏发电系统发送的数据2,也可以向光伏发电系统发送指令2;还可以向监控储电系统向外部电网输送电能的监控装置发送指令3,并接收监控装置根据指令3返回的数据3;可以接收由用电端发送的数据4,以及接收外部电网向用电端输送电能的数据5;还可以接收光伏采样系统对光伏发电系统的光伏矩阵采集到的数据6。
光伏发电系统输出的直流电(DC)可以通过滤波+隔离系统存储至储电系统;储电系统可以通过升压滤波+隔离系统将电能输送至外部电网;储电系统中的直流电可以通过逆变+滤波系统转换成交流电后,为用电端提供电能。
进一步地,控制模块402根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止。
在仅通过储能系统为用电端的用户供电的情况下,将用电量和储电量进行比较,在确定储电量不小于用电量的情况下,根据光照环境数据对光照环境进行判断,在光照环境数据中的光照强度大于光照阈值的情况下,判定当前光照环境适合发电,则生成指令2并发送至向光伏发电系统,光伏发电系统持续发电,并将电能通过滤波+隔离系统存储至储电系统,直至储能系统的蓄电量满载,停止发电,并重复接收用电量、储电量和光照环境数据,对最新接收的数据进行实时的分析和判断。
本申请提供的光伏发电控制装置,通过对用电量、储电量和光照环境数据进行分析,进而控制光伏发电系统和储电系统的启动或停止,低成本、低噪音地解决偏远地区发电输电及居民用电难,同时对偏远地区发电、用电进行有效的智能管控。
图5是本申请提供的电子设备的结构示意图,如图5所示,该电子设备可以包括:处理器(processor)510、通信接口(Communications Interface)520、存储器(memory)530和通信总线540,其中,处理器510,通信接口520,存储器530通过通信总线540完成相互间的通信。处理器510可以调用存储器530中的逻辑指令,以执行光伏发电控制方法,该方法包括:接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据;根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控 制光伏发电系统和所述储电系统的启动或停止。
此外,上述的存储器530中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,计算机程序可存储在非暂态计算机可读存储介质上,所述计算机程序被处理器执行时,计算机能够执行上述各方法所提供的光伏发电控制方法,该方法包括:接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据;根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各方法提供的光伏发电控制方法,该方法包括:接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据;根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各 实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种光伏发电控制方法,包括:
    接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据;
    根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止。
  2. 根据权利要求1所述的光伏发电控制方法,其中,所述根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止,包括:
    对所述用电端与外部电网的连接情况进行判断;
    在确定所述用电端未连接所述外部电网的情况下,对所述用电量和所述储电量进行判断;
    在确定所述用电量小于所述储电量的情况下,据所述光照环境数据对光照强度进行判断;
    在确定所述光照环境数据中的光照强度大于光照阈值的情况下,根据所述光伏采样数据对所述光伏发电系统的情况进行判断;
    在判定所述光伏发电系统无故障的情况下,生成发电指令,并将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电,直至所述储电系统满载。
  3. 根据权利要求2所述的光伏发电控制方法,其中,在所述对所述用电量和所述储电量进行判断之后,还包括:
    在确定所述用电量不小于所述储电量的情况下,生成所述发电指令;
    将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电;
    接收所述储电系统发送的新的储电量;
    在确定所述新的储电量小于储电阈值的情况下,所述光伏发电系统持续运行直至所述新的储电量不小于所述储电阈值。
  4. 根据权利要求2所述的光伏发电控制方法,其中,在所述对所述用电端与外部电网的连接情况进行判断之后,还包括:
    在确定所述用电端连接所述外部电网的情况下,接收所述外部电网对 所述用电端的供电量;
    对所述用电量和所述供电量进行判断;
    在确定所述用电量小于所述供电量的情况下,根据所述光照环境数据对光照强度进行判断;
    在判定所述光照环境数据中的光照强度大于光照阈值的情况下,生成发电指令;
    将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电。
  5. 根据权利要求4所述的光伏发电控制方法,其中,在对所述用电量和所述供电量进行判断之后,还包括:
    在确定所述用电量不小于所述供电量的情况下,生成供电指令;
    将所述供电指令发送至所述储电系统,以供所述储电系统根据供电指令向所述用电端供电;
    接收所述储电系统发送的新的储电量;
    在确定所述储电量小于储电阈值的情况下,生成所述发电指令;
    将所述发电指令发送至所述光伏发电系统,以供所述光伏发电系统根据所述发电指令启动发电。
  6. 根据权利要求1至5中任一项所述的光伏发电控制方法,其中,所述接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据,包括:
    在所述用电端运行的过程中,接收由用电端发送的所述用电量,接收由所述储电系统发送的所述储电量,接收由光照采样系统发送的光伏采样数据,以及接收由所述光伏发电系统发送的所述光照环境数据。
  7. 一种光伏发电控制装置,包括:
    接收模块,用于接收用电端的用电量、储电系统的储电量、光伏采样数据以及光照环境数据;
    控制模块,用于根据所述用电量、所述储电量、所述光伏采样数据和所述光照环境数据,控制光伏发电系统和所述储电系统的启动或停止。
  8. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现 如权利要求1至6任一项所述光伏发电控制方法。
  9. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述光伏发电控制方法。
  10. 一种计算机程序产品,包括计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述光伏发电控制方法。
PCT/CN2022/137522 2022-04-13 2022-12-08 一种光伏发电控制方法及装置 WO2023197634A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210388074.1 2022-04-13
CN202210388074.1A CN116961119A (zh) 2022-04-13 2022-04-13 一种光伏发电控制方法及装置

Publications (1)

Publication Number Publication Date
WO2023197634A1 true WO2023197634A1 (zh) 2023-10-19

Family

ID=88328753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137522 WO2023197634A1 (zh) 2022-04-13 2022-12-08 一种光伏发电控制方法及装置

Country Status (2)

Country Link
CN (1) CN116961119A (zh)
WO (1) WO2023197634A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040034A (zh) * 2016-02-03 2017-08-11 珠海格力电器股份有限公司 一种光伏储能空调装置及控制方法
CN109713712A (zh) * 2018-10-10 2019-05-03 北京天势新能源技术有限公司 光储荷智能化管理一体机及光储荷智能化管理方法
CN110350573A (zh) * 2018-04-03 2019-10-18 中国石油化工股份有限公司 一种自愈型供电系统和控制方法
CN111600330A (zh) * 2019-11-20 2020-08-28 中国节能减排有限公司 微电网系统
CN112737078A (zh) * 2020-12-21 2021-04-30 珠海格力电器股份有限公司 一种直流电源系统的控制装置、方法和直流电源系统
CN114336753A (zh) * 2022-01-05 2022-04-12 北京京运通科技股份有限公司 光伏发电和风力发电综合管理系统
US20220136721A1 (en) * 2019-09-26 2022-05-05 Gree Electric Appliances, Inc. Of Zhuhai Photovoltaic air conditioning system startup method, controller and photovoltaic air conditioning system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040034A (zh) * 2016-02-03 2017-08-11 珠海格力电器股份有限公司 一种光伏储能空调装置及控制方法
CN110350573A (zh) * 2018-04-03 2019-10-18 中国石油化工股份有限公司 一种自愈型供电系统和控制方法
CN109713712A (zh) * 2018-10-10 2019-05-03 北京天势新能源技术有限公司 光储荷智能化管理一体机及光储荷智能化管理方法
US20220136721A1 (en) * 2019-09-26 2022-05-05 Gree Electric Appliances, Inc. Of Zhuhai Photovoltaic air conditioning system startup method, controller and photovoltaic air conditioning system
CN111600330A (zh) * 2019-11-20 2020-08-28 中国节能减排有限公司 微电网系统
CN112737078A (zh) * 2020-12-21 2021-04-30 珠海格力电器股份有限公司 一种直流电源系统的控制装置、方法和直流电源系统
CN114336753A (zh) * 2022-01-05 2022-04-12 北京京运通科技股份有限公司 光伏发电和风力发电综合管理系统

Also Published As

Publication number Publication date
CN116961119A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
US20230378379A1 (en) Systems and Methods for Remote or Local Shut-off of a Photovoltaic System
CN114899866A (zh) 光伏储能系统的智能负载管理方法以及相关装置
CN111799840B (zh) 一种离并网一体化电源控制方法及系统
CN102148529B (zh) 向断路器控制单元智能供电的控制装置及其控制方法
CN108011447A (zh) 一种电站监控设备、电站监控系统
CN204376531U (zh) 变电站直流电源的远程智能维护系统
CN114421586A (zh) 数据中心供电系统及供电控制方法、装置和数据中心
WO2023197634A1 (zh) 一种光伏发电控制方法及装置
CN110460093B (zh) 光伏分体盒
CN201000972Y (zh) 一种电脑专用智能待机节电插座
CN104539050A (zh) 能信路由器及用于管理电能网络和信息网络的应用系统
CN102255373A (zh) 一种实现室外型光纤接入节点复合供电的设备及切换方法和系统
WO2023197624A1 (zh) 一种潮汐发电控制方法及装置
CN216313124U (zh) 一种太阳能网关
CN214337575U (zh) 一种安全节能的光伏配电箱系统
CN2403063Y (zh) 集成保护电源
CN211239448U (zh) 一种自愈型智能分布式配电自动化终端
CN210201493U (zh) 一种新能源电站发电单元测控装置
CN106787644B (zh) 电源管理系统及其电力供应方法
CN211456717U (zh) 绿能环保电子式数字智能紧急发电供电系统
CN104852680A (zh) 一种以太阳能为主电源的智能化供电系统
CN211151595U (zh) 具有掉电保护与报警功能的远程终端单元
CN109507932A (zh) 矿用数据交换机远程监控装置及监控方法
CN204668981U (zh) 交直流变频变压光伏智能发电系统
CN219018481U (zh) 光电互补装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937266

Country of ref document: EP

Kind code of ref document: A1