WO2023197600A1 - 5g信号频谱检测方法、装置、计算机设备及存储介质 - Google Patents

5g信号频谱检测方法、装置、计算机设备及存储介质 Download PDF

Info

Publication number
WO2023197600A1
WO2023197600A1 PCT/CN2022/132042 CN2022132042W WO2023197600A1 WO 2023197600 A1 WO2023197600 A1 WO 2023197600A1 CN 2022132042 W CN2022132042 W CN 2022132042W WO 2023197600 A1 WO2023197600 A1 WO 2023197600A1
Authority
WO
WIPO (PCT)
Prior art keywords
acquisition card
collected
parameters
clock
signal
Prior art date
Application number
PCT/CN2022/132042
Other languages
English (en)
French (fr)
Inventor
程柯
Original Assignee
广州万码科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州万码科技有限公司 filed Critical 广州万码科技有限公司
Publication of WO2023197600A1 publication Critical patent/WO2023197600A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters

Definitions

  • the invention relates to a 5G signal spectrum detection method, device, computer equipment and storage medium, and belongs to the field of 5G signal measurement.
  • the fifth generation mobile communication technology (5th generation mobile networks or 5th generation wireless systems, 5th-Generation, referred to as 5G or 5G technology) is the latest generation of cellular mobile communication technology, and wireless signals will be interfered during the transmission process, causing communication quality to be affected. loss.
  • 5G or 5G technology is the latest generation of cellular mobile communication technology, and wireless signals will be interfered during the transmission process, causing communication quality to be affected. loss.
  • interference or base station problems can be clearly analyzed; however, the acquisition equipment of the existing methods is usually larger, more expensive, and difficult to move.
  • the present invention provides a 5G signal spectrum detection method, device, computer equipment and storage medium, which is based on the center frequency of the acquisition card and uses the acquisition card to collect the target base station data according to the specified time, and then collects the target base station data. Mathematical operations are performed on the data to obtain an intermediate array that enables signal detection.
  • the first object of the present invention is to provide a 5G signal spectrum detection method.
  • the second object of the present invention is to provide a 5G signal spectrum detection device.
  • a third object of the present invention is to provide a computer device.
  • the fourth object of the present invention is to provide a storage medium.
  • a 5G signal spectrum detection method includes:
  • the acquisition card Based on the center frequency of the acquisition card and according to the specified time, the acquisition card is used to collect the target base station data;
  • the target base station data obtain the intermediate array and add one to the number of acquisitions of the acquisition card
  • the specified time is calculated according to the current time of the acquisition card clock, as follows:
  • time represents the specified time
  • now represents the current time of the acquisition card clock
  • slot represents the time slot
  • sleep represents the delay
  • center frequency of the acquisition card is calculated based on the acquisition card parameters, spectrum parameters and the number of times the acquisition card has been collected, as follows:
  • c represents the center frequency of the acquisition card
  • freq represents the center frequency of the spectrum
  • span represents the span
  • bw represents the bandwidth of the acquisition card
  • n represents the number of acquisitions by the acquisition card.
  • m represents the number of collections that the acquisition card should collect
  • ceil() represents the upward rounding function
  • span represents the span
  • bw represents the bandwidth of the acquisition card.
  • the determination of whether to detect the signal based on the judgment result specifically includes:
  • the intermediate array will be displayed. Based on the intermediate array, signal detection will be implemented, the number of collected times of the acquisition card will be reinitialized, and subsequent operations will be performed;
  • the judgment result is that the summed number of collected times is not equal to the number of times that should be collected, continue to calculate the specified time based on the current time of the clock of the acquisition card, and perform subsequent operations.
  • the target base station data is an IQ data set with a specified number of sampling points for the target base station, where I: In-phase means in-phase; Q: Quadrature means orthogonal, and is 90 degrees out of phase with I.
  • the acquisition card parameters include gain, sampling points and acquisition card bandwidth
  • the spectrum parameters include spectrum center frequency, span, time slot and delay.
  • a 5G signal spectrum detection device includes:
  • the parameter determination module is used to determine the acquisition card parameters and spectrum parameters, and set the acquisition card clock;
  • the first calculation module is used to calculate the number of times the capture card should collect
  • the first reset module is used to initialize the number of acquisitions of the acquisition card
  • the second reset module is used to synchronize the timing of the acquisition card clock so that the time of the acquisition card clock is set to zero;
  • the second calculation module is used to calculate the specified time based on the current time of the acquisition card clock
  • the third calculation module is used to calculate the center frequency of the acquisition card based on the acquisition card parameters, spectrum parameters and the number of times the acquisition card has been collected;
  • the data acquisition module is used to collect the target base station data using the acquisition card based on the center frequency of the acquisition card and according to the specified time;
  • the data processing module is used to obtain the intermediate array based on the target base station data, and add one to the number of acquisitions by the acquisition card;
  • the comparison judgment module is used to compare the combined number of collected times with the number of times that should be collected, and output the judgment result;
  • the signal detection module is used to decide whether to detect the signal based on the judgment result.
  • a computer device includes a processor and a memory for storing an executable program of the processor.
  • the processor executes the program stored in the memory, the above-mentioned 5G signal spectrum detection method is implemented.
  • a storage medium stores a program.
  • the program is executed by a processor, the above-mentioned 5G signal spectrum detection method is implemented.
  • the present invention has the following beneficial effects:
  • This invention uses the acquisition card to collect the target base station data based on the center frequency of the acquisition card and according to the specified time, and then performs mathematical operations on the target base station data to obtain an intermediate array that can achieve signal detection.
  • This method can be used in portable acquisition
  • the use in cards and corresponding software overcomes the shortcomings of existing 5G signal detection equipment such as excessive size, high cost, and poor portability; in addition, the intermediate array obtained by the present invention is convenient for storage and secondary analysis, and is easy to expand.
  • Figure 1 is a flow chart of a 5G signal spectrum detection method according to Embodiment 1 of the present invention.
  • Figure 2 is a flow chart of the 5G signal spectrum detection device according to Embodiment 2 of the present invention.
  • Figure 3 is a structural block diagram of a computer device according to Embodiment 3 of the present invention.
  • this embodiment provides a 5G signal spectrum detection method, which includes the following steps:
  • S101 Determine the acquisition card parameters and spectrum parameters, and set the acquisition card clock.
  • the global parameters in this embodiment include acquisition card parameters and spectrum parameters.
  • the acquisition card parameters include gain, sampling points, and acquisition card bandwidth.
  • the spectrum parameters include spectrum center frequency, span, time slot, and delay.
  • the spectrum center frequency is set to 2524.85MHz; the span is set to 1000e6Hz; the time slot is 0-279, such as CSI-RS:12; the delay unit is seconds, such as 0.003 seconds.
  • the spectrum parameters in this embodiment are common wireless signal spectrum parameters.
  • the bandwidth of the capture card is set to be less than or equal to the maximum bandwidth supported by the capture card; the gain is set to 65.
  • the number of sampling points of the acquisition card bw/280*0.01, where bw represents the bandwidth of the acquisition card.
  • the number m of acquisitions to be collected by the acquisition card is calculated as follows:
  • ceil() represents the upward rounding function
  • span represents the span
  • bw represents the bandwidth of the acquisition card.
  • S104 Synchronize the timing of the acquisition card clock so that the time of the acquisition card clock is set to zero.
  • This embodiment uses the GPS positioning system to perform a GPS synchronization timing on the acquisition card clock, so that the time of the acquisition card clock returns to 0.
  • the purpose of using GPS synchronization timing in this embodiment is because the target base station also performs time calibration through the GPS positioning system. Therefore, the acquisition card and the target base station are both in the GPS synchronization state, and the acquisition card can collect correct and expected data sets, thus It is easier to detect problems with the target base station.
  • time represents the specified time
  • now represents the current time of the acquisition card clock
  • slot represents the time slot
  • sleep represents the delay
  • c represents the center frequency of the acquisition card
  • freq represents the center frequency of the spectrum
  • span represents the span
  • bw represents the bandwidth of the acquisition card
  • n represents the number of acquisitions by the acquisition card.
  • the acquisition card Based on the center frequency of the acquisition card, starting from the specified time, the acquisition card is used to collect the IQ data set of the specified sampling points of the target base station, where I: in-phase means in-phase; Q: quadrature means quadrature, which is 90 degrees out of phase with I.
  • the above collection card collection is a one-time collection.
  • the target base station specifies the IQ data set with the number of sampling points, which is the target base station data.
  • step S110 The details of step S110 are as follows:
  • step S103 is re-executed, and subsequent steps are executed;
  • step S105 is continued and subsequent steps are performed.
  • this embodiment provides a 5G signal spectrum detection device, which includes a parameter determination module 201, a first calculation module 202, a first reset module 203, a second reset module 204, and a second calculation module.
  • Module 205 third calculation module 206, data acquisition module 207, data processing module 208, comparison and judgment module 209 and signal detection module 210.
  • the specific functions of each module are as follows:
  • Parameter determination module 201 used to determine acquisition card parameters and spectrum parameters, and set the acquisition card clock;
  • the first calculation module 202 is used to calculate the number of times the capture card should collect
  • the first reset module 203 is used to initialize the number of collections of the collection card
  • the second reset module 204 is used to synchronize the timing of the acquisition card clock, so that the time of the acquisition card clock is reset to zero;
  • the second calculation module 205 is used to calculate the specified time based on the current time of the acquisition card clock;
  • the third calculation module 206 is used to calculate the center frequency of the acquisition card based on the acquisition card parameters, spectrum parameters and the number of times the acquisition card has been collected;
  • the data collection module 207 is used to collect the target base station data using the collection card based on the center frequency of the collection card and according to the specified time;
  • the data processing module 208 is used to obtain the intermediate array according to the target base station data, and add one to the number of collections of the collection card;
  • the comparison and judgment module 209 is used to compare the combined number of collected times and the number of times that should be collected, and output the judgment result;
  • the signal detection module 210 is used to decide whether to detect the signal based on the judgment result.
  • each module in this embodiment can be referred to the above-mentioned Embodiment 1, which will not be described one by one here. It should be noted that the device provided in this embodiment is only exemplified by the division of the above-mentioned functional modules. In practical applications, the above functions can be assigned to different functional modules as needed, that is, the internal structure is divided into different functional modules to complete all or part of the functions described above.
  • this embodiment provides a computer device, which includes a processor 302 , a memory, an input device 303 , a display device 304 and a network interface 305 connected through a system bus 301 .
  • the processor 302 is used to provide computing and control capabilities
  • the memory includes a non-volatile storage medium 306 and an internal memory 307.
  • the non-volatile storage medium 306 stores an operating system, computer programs and databases.
  • the internal memory 307 is The operating system and computer program in the non-volatile storage medium 306 provide an environment for running.
  • the 5G signal spectrum detection method of the above-mentioned Embodiment 1 is implemented, as follows:
  • the acquisition card Based on the center frequency of the acquisition card and according to the specified time, the acquisition card is used to collect the target base station data;
  • the target base station data obtain the intermediate array and add one to the number of acquisitions of the acquisition card
  • This embodiment provides a storage medium, which is a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the 5G signal spectrum detection method of the above-mentioned Embodiment 1 is implemented, as follows:
  • the acquisition card Based on the center frequency of the acquisition card and according to the specified time, the acquisition card is used to collect the target base station data;
  • the target base station data obtain the intermediate array and add one to the number of acquisitions of the acquisition card
  • the computer-readable storage medium in this embodiment may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination thereof. More specific examples of computer readable storage media may include, but are not limited to: an electrical connection having one or more wires, a portable computer disk, a hard drive, random access memory (RAM), read only memory (ROM), removable Programmd read-only memory (EPROM or flash memory), fiber optics, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that may be used by or in conjunction with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, in which a computer-readable program is carried. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable storage medium other than computer-readable storage media that can be sent, propagated, or transmitted for use by or in connection with an instruction execution system, apparatus, or device program.
  • Computer programs embodied on computer-readable storage media may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • the above-mentioned computer-readable storage medium can be used to write a computer program for executing this embodiment in one or more programming languages or a combination thereof.
  • the above-mentioned programming languages include object-oriented programming languages such as Java, Python, and C++. Also included are conventional procedural programming languages—such as C or similar programming languages.
  • the Program may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer, such as through the Internet using an Internet service provider. ).
  • LAN local area network
  • WAN wide area network
  • the present invention is based on the center frequency of the acquisition card and uses the acquisition card to collect the target base station data according to the specified time, and then performs mathematical operations on the target base station data to obtain an intermediate array that can achieve signal detection.
  • This method It can be used in portable acquisition cards and corresponding software, which overcomes the shortcomings of existing 5G signal detection equipment such as excessive size, high cost, and poor portability; in addition, the intermediate array obtained by the present invention is convenient for storage and secondary analysis. And easy to expand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本发明公开了一种5G信号频谱检测方法、装置、计算机设备及存储介质,所述方法包括:确定采集卡参数和频谱参数,并设置采集卡时钟;计算采集卡的应采集次数;初始化采集卡的已采集次数;使采集卡时钟的时间置零;根据采集卡时钟的当前时间,计算指定时间;根据采集卡参数、频谱参数和采集卡的已采集次数,计算采集卡中心频率;基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据;根据目标基站数据,得到中间数组,并对采集卡的已采集次数加一;将加合后的已采集次数和应采集次数进行比较,输出判断结果;基于判断结果,决定是否对信号进行检测。本发明可以降低现有检测设备的成本和缩小现有检测设备的体积,实现便携式检测。

Description

5G信号频谱检测方法、装置、计算机设备及存储介质 技术领域
本发明涉及一种5G信号频谱检测方法、装置、计算机设备及存储介质,属于5G信号测量领域。
背景技术
第五代移动通信技术(5th generation mobile networks或5th generation wireless systems、5th-Generation,简称5G或5G技术)是最新一代蜂窝移动通信技术,而无线信号在传输过程中都会受到干扰,使通信质量受到损失。目前,通过对5G信号各个时隙频谱的检测,可以很清楚的分析干扰或者基站问题;然而现有方法的采集设备通常较大,成本较高,不易移动。
发明内容
有鉴于此,本发明提供了一种5G信号频谱检测方法、装置、计算机设备及存储介质,其基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据,然后再对目标基站数据进行数学运算,从而得到能够实现信号检测的中间数组。
本发明的第一个目的在于提供一种5G信号频谱检测方法。
本发明的第二个目的在于提供一种5G信号频谱检测装置。
本发明的第三个目的在于提供一种计算机设备。
本发明的第四个目的在于提供一种存储介质。
本发明的第一个目的可以通过采取如下技术方案达到:
一种5G信号频谱检测方法,所述方法包括:
确定采集卡参数和频谱参数,并设置采集卡时钟;
计算采集卡的应采集次数;
初始化采集卡的已采集次数;
对采集卡时钟进行同步授时,使得采集卡时钟的时间置零;
根据采集卡时钟的当前时间,计算指定时间;
根据采集卡参数、频谱参数和采集卡的已采集次数,计算采集卡中心频率;
基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据;
根据目标基站数据,得到中间数组,并对采集卡的已采集次数加一;
将加合后的已采集次数和应采集次数进行比较,输出判断结果;
基于判断结果,决定是否对信号进行检测。
进一步的,所述根据采集卡时钟的当前时间,计算指定时间,如下式:
Figure PCTCN2022132042-appb-000001
其中,time表示指定时间,now表示采集卡时钟的当前时间,slot表示时隙,sleep表示时延。
进一步的,所述根据采集卡参数、频谱参数和采集卡的已采集次数,计算采集卡中心频率,如下式:
Figure PCTCN2022132042-appb-000002
其中,c表示采集卡中心频率,freq表示频谱中心频率,span表示跨度,bw表示采集卡带宽,n表示采集卡的已采集次数。
进一步的,所述计算采集卡的应采集次数,如下式:
Figure PCTCN2022132042-appb-000003
其中,m表示采集卡的应采集次数,ceil()表示向上取整函数,span表示跨度,bw表示采集卡带宽。
进一步的,所述所述基于判断结果,决定是否对信号进行检测,具体包括:
若判断结果为加合后的已采集次数和应采集次数相等,则显示中间数组,根据中间数组,实现信号检测,重新初始化采集卡的已采集次数,并执行后续操作;
若判断结果为加和后的已采集次数和应采集次数不相等,则继续根据采集卡时钟的当前时间,计算指定时间,并执行后续操作。
进一步的,所述目标基站数据为目标基站指定采样点数的IQ数据集,其中I:In-phase表示同相;Q:Quadrature表示正交,与I相位差90度。
进一步的,所述采集卡参数包括增益、采样点数和采集卡带宽,所述频谱参数包括频谱中心频率、跨度、时隙和时延。
本发明的第二个目的可以通过采取如下技术方案达到:
一种5G信号频谱检测装置,所述装置包括:
参数确定模块,用于确定采集卡参数和频谱参数,并设置采集卡时钟;
第一计算模块,用于计算采集卡的应采集次数;
第一重置模块,用于初始化采集卡的已采集次数;
第二重置模块,用于对采集卡时钟进行同步授时,使得采集卡时钟的时间置零;
第二计算模块,用于根据采集卡时钟的当前时间,计算指定时间;
第三计算模块,用于根据采集卡参数、频谱参数和采集卡的已采集次数,计算采集卡中心频率;
数据采集模块,用于基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据;
数据处理模块,用于根据目标基站数据,得到中间数组,并对采集卡的已采集次数加一;
比较判断模块,用于将加合后的已采集次数和应采集次数进行比较,输出判断结果;
信号检测模块,用于基于判断结果,决定是否对信号进行检测。
本发明的第三个目的可以通过采取如下技术方案达到:
一种计算机设备,包括处理器以及用于存储处理器可执行程序的存储器,所述处理器执行存储器存储的程序时,实现上述的5G信号频谱检测方法。
本发明的第四个目的可以通过采取如下技术方案达到:
一种存储介质,存储有程序,所述程序被处理器执行时,实现上述的5G信号频谱检测方法。
本发明相对于现有技术具有如下的有益效果:
本发明基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据,然后再对目标基站数据进行数学运算,从而得到能够实现信号检测的中间数组,这种方法可以在便携式的采集卡及相应软件中运用,克服了现有5G信号检测设备体积过大,成本过高,以及便携性差的缺点;此外,本发明所得到的中间数组方便存储和二次分析,而且方便扩展。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明实施例1的5G信号频谱检测方法的流程图。
图2为本发明实施例2的5G信号频谱检测装置的流程图。
图3为本发明实施例3的计算机设备的结构框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
如图1所示,本实施例提供了一种5G信号频谱检测方法,该方法包括以下步骤:
S101、确定采集卡参数和频谱参数,并设置采集卡时钟。
本实施例中的全局参数包括采集卡参数和频谱参数,采集卡参数包括增益、采样点数和采集卡带宽,频谱参数包括频谱中心频率、跨度、时隙和时延。
确定频谱参数,例如:频谱中心频率设置为2524.85MHz;跨度设置为1000e6Hz;时隙,0-279,如CSI-RS:12;时延,单位为秒,如0.003秒。具体地,本实施例中的频谱参数是无线信号频谱通用参数。
确定采集卡参数,例如:采集卡带宽设置为小于或等于采集卡支持的最大带宽;增益设置为65。
本实施例中采集卡的采样点数=bw/280*0.01,其中bw表示采集卡带宽。
S102、计算采集卡的应采集次数。
本实施例根据步骤S101所设置的跨度和采集卡带宽,计算采集卡的应采集次数m,如下式:
Figure PCTCN2022132042-appb-000004
其中,ceil()表示向上取整函数,span表示跨度,bw表示采集卡带宽。
S103、初始化采集卡的已采集次数。
本实施例对采集卡的已采集次数进行初始化处理,得到采集卡的已采集次数n=0。
S104、对采集卡时钟进行同步授时,使得采集卡时钟的时间置零。
本实施例利用GPS定位系统对采集卡时钟进行一次GPS同步授时,使得采集卡时钟的时间归0。
本实施例中使用GPS同步授时的目的是因为目标基站也是通过GPS定位系统进行时间校准,因此采集卡和目标基站均在GPS同步状态下,采集卡可以采集到正确且合乎预期的数据集,从而更容易检测出目标基站的问题。
S105、根据采集卡时钟的当前时间,计算指定时间。
本实施例中的指定时间的具体公式如下:
Figure PCTCN2022132042-appb-000005
其中,time表示指定时间,now表示采集卡时钟的当前时间,slot表示时隙,sleep表示时延。
S106、根据采集卡参数、频谱参数和采集卡的已采集次数,计算采集卡中心频率。
本实施例的采集卡中心频率的具体公式如下:
Figure PCTCN2022132042-appb-000006
其中,c表示采集卡中心频率,freq表示频谱中心频率,span表示跨度,bw表示采集卡带宽,n表示采集卡的已采集次数。
S107、基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据。
基于采集卡中心频率,从指定时间开始,利用采集卡采集到目标基站指定采样点数的IQ数据集,其中I:in-phase表示同相;Q:quadrature表示正交,与I相位差90度。
上述采集卡采集为一次采集。
本实施例中的目标基站指定采样点数的IQ数据集即目标基站数据。
S108、根据目标基站数据,得到中间数组,并对采集卡的已采集次数加一。
本实施例将目标基站数据作傅里叶变换后的数组存入中间数组,并执行n=n+1。
S109、将加合后的已采集次数和应采集次数进行比较,输出判断结果。
S110、基于判断结果,决定是否对信号进行检测。
步骤S110具体如下:
若判断结果为加合后的已采集次数和应采集次数相等,则显示中间数组,根据中间数组,实现信号检测,重新执行步骤S103,并执行后续步骤;
若判断结果为加和后的已采集次数和应采集次数不相等,则继续执行步骤S105,并执行后续步骤。
实施例2:
如图2所示,本实施例提供了一种5G信号频谱检测装置,该装置包括参数确定模块201、第一计算模块202、第一重置模块203、第二重置模块204、第二计算模块205、第三计算模块206、数据采集模块207、数据处理模块208、比较判断模块209和信号检测模块210,各个模块的具体功能如下:
参数确定模块201,用于确定采集卡参数和频谱参数,并设置采集卡时钟;
第一计算模块202,用于计算采集卡的应采集次数;
第一重置模块203,用于初始化采集卡的已采集次数;
第二重置模块204,用于对采集卡时钟进行同步授时,使得采集卡时钟的时间置零;
第二计算模块205,用于根据采集卡时钟的当前时间,计算指定时间;
第三计算模块206,用于根据采集卡参数、频谱参数和采集卡的已采集次数,计算采集卡中心频率;
数据采集模块207,用于基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据;
数据处理模块208,用于根据目标基站数据,得到中间数组,并对采集卡的已采集次数加一;
比较判断模块209,用于将加合后的已采集次数和应采集次数进行比较,输出判断结果;
信号检测模块210,用于基于判断结果,决定是否对信号进行检测。
本实施例中各个模块的具体实现可以参见上述实施例1,在此不再一一赘述;需要说明的是,本实施例提供的装置仅以上述各功能模块的划分进行举例说明,在实际应用中,可以根据需要而将上述功能分配给不同的功能模块完成,即将内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
实施例3:
如图3所示,本实施例提供了一种计算机设备,其包括通过系统总线301连接的处理器302、存储器、输入装置303、显示装置304和网络接口305。其中,处理器302用于提供计算和控制能力,存储器包括非易失性存储介质306和内存储器307,该非易失性存储介质306存储有操作系统、计算机程序和数据库,该内存储器307为非易失性存储介质306中的操作系统和计算机程序的运行提供环境,计算机程序被处理器302执行时,实现上述实施例1的5G信号频谱检测方法,如下:
确定采集卡参数和频谱参数,并设置采集卡时钟;
计算采集卡的应采集次数;
初始化采集卡的已采集次数;
对采集卡时钟进行同步授时,使得采集卡时钟的时间置零;
根据采集卡时钟的当前时间,计算指定时间;
根据采集卡参数、频谱参数和采集卡的已采集次数,计算采集卡中心频率;
基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据;
根据目标基站数据,得到中间数组,并对采集卡的已采集次数加一;
将加合后的已采集次数和应采集次数进行比较,输出判断结果;
基于判断结果,决定是否对信号进行检测。
实施例4:
本实施例提供一种存储介质,该存储介质为计算机可读存储介质,其存储有计算机程序,所述计算机程序被处理器执行时,实现上述实施例1的5G信号频谱检测方法,如下:
确定采集卡参数和频谱参数,并设置采集卡时钟;
计算采集卡的应采集次数;
初始化采集卡的已采集次数;
对采集卡时钟进行同步授时,使得采集卡时钟的时间置零;
根据采集卡时钟的当前时间,计算指定时间;
根据采集卡参数、频谱参数和采集卡的已采集次数,计算采集卡中心频率;
基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据;
根据目标基站数据,得到中间数组,并对采集卡的已采集次数加一;
将加合后的已采集次数和应采集次数进行比较,输出判断结果;
基于判断结果,决定是否对信号进行检测。
需要说明的是,本实施例的计算机可读存储介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
在本实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读存储介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读存储介质上包含的计算机程序可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读存储介质可以以一种或多种程序设计语言或其组合来编写用于执行本实施例的计算机程序,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Python、C++,还包括常规的过程式程序设计语言—诸如C语言或类似的程序设计语言。程序可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机 的情形中,远程计算机可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN)连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
综上所述,本发明基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据,然后再对目标基站数据进行数学运算,从而得到能够实现信号检测的中间数组,这种方法可以在便携式的采集卡及相应软件中运用,克服了现有5G信号检测设备体积过大,成本过高,以及便携性差的缺点;此外,本发明所得到的中间数组方便存储和二次分析,而且方便扩展。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (10)

  1. 一种5G信号频谱检测方法,其特征在于,所述方法包括:
    确定采集卡参数和频谱参数,并设置采集卡时钟;
    计算采集卡的应采集次数;
    初始化采集卡的已采集次数;
    对采集卡时钟进行同步授时,使得采集卡时钟的时间置零;
    根据采集卡时钟的当前时间,计算指定时间;
    根据采集卡参数、频谱参数和采集卡的已采集次数,计算采集卡中心频率;
    基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据;
    根据目标基站数据,得到中间数组,并对采集卡的已采集次数加一;
    将加合后的已采集次数和应采集次数进行比较,输出判断结果;
    基于判断结果,决定是否对信号进行检测。
  2. 根据权利要求1所述的5G信号频谱检测方法,其特征在于,所述根据采集卡时钟的当前时间,计算指定时间,如下式:
    Figure PCTCN2022132042-appb-100001
    其中,time表示指定时间,now表示采集卡时钟的当前时间,slot表示时隙,sleep表示时延。
  3. 根据权利要求1所述的5G信号频谱检测方法,其特征在于,所述根据采集卡参数、频谱参数和采集卡的已采集次数,计算采集卡中心频率,如下式:
    Figure PCTCN2022132042-appb-100002
    其中,c表示采集卡中心频率,freq表示频谱中心频率,span表示跨度,bw表示采集卡带宽,n表示采集卡的已采集次数。
  4. 根据权利要求1所述的5G信号频谱检测方法,其特征在于,所述计算采集卡的应采集次数,如下式:
    Figure PCTCN2022132042-appb-100003
    其中,m表示采集卡的应采集次数,ceil()表示向上取整函数,span表示跨度,bw表示采集卡带宽。
  5. 根据权利要求1所述的5G信号频谱检测方法,其特征在于,所述基于判断结果,决定是否对信号进行检测,具体包括:
    若判断结果为加合后的已采集次数和应采集次数相等,则显示中间数组,根据中间数组,实现信号检测,重新初始化采集卡的已采集次数,并执行后续操作;
    若判断结果为加和后的已采集次数和应采集次数不相等,则继续根据采集卡时钟的当前时间,计算指定时间,并执行后续操作。
  6. 根据权利要求1所述的5G信号频谱检测方法,其特征在于,所述目标基站数据为目 标基站指定采样点数的IQ数据集,其中I:In-phase表示同相;Q:Quadrature表示正交,与I相位差90度。
  7. 根据权利要求1所述的5G信号频谱检测方法,其特征在于,所述采集卡参数包括增益、采样点数和采集卡带宽,所述频谱参数包括频谱中心频率、跨度、时隙和时延。
  8. 一种5G信号频谱检测装置,其特征在于,所述装置包括:
    参数确定模块,用于确定采集卡参数和频谱参数,并设置采集卡时钟;
    第一计算模块,用于计算采集卡的应采集次数;
    第一重置模块,用于初始化采集卡的已采集次数;
    第二重置模块,用于对采集卡时钟进行同步授时,使得采集卡时钟的时间置零;
    第二计算模块,用于根据采集卡时钟的当前时间,计算指定时间;
    第三计算模块,用于根据采集卡参数、频谱参数和采集卡的已采集次数,计算采集卡中心频率;
    数据采集模块,用于基于采集卡中心频率,并根据指定时间,利用采集卡采集到目标基站数据;
    数据处理模块,用于根据目标基站数据,得到中间数组,并对采集卡的已采集次数加一;
    比较判断模块,用于将加合后的已采集次数和应采集次数进行比较,输出判断结果;
    信号检测模块,用于基于判断结果,决定是否对信号进行检测。
  9. 一种计算机设备,包括处理器以及用于存储处理器可执行程序的存储器,其特征在于,所述处理器执行存储器存储的程序时,实现权利要求1-7任一项所述的5G信号频谱检测方法。
  10. 一种存储介质,存储有程序,所述程序被处理器执行时,实现权利要求1-7任一项所述的5G信号频谱检测方法。
PCT/CN2022/132042 2022-04-14 2022-11-15 5g信号频谱检测方法、装置、计算机设备及存储介质 WO2023197600A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210391225.9A CN114828069A (zh) 2022-04-14 2022-04-14 5g信号频谱检测方法、装置、计算机设备及存储介质
CN202210391225.9 2022-04-14

Publications (1)

Publication Number Publication Date
WO2023197600A1 true WO2023197600A1 (zh) 2023-10-19

Family

ID=82537430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132042 WO2023197600A1 (zh) 2022-04-14 2022-11-15 5g信号频谱检测方法、装置、计算机设备及存储介质

Country Status (2)

Country Link
CN (1) CN114828069A (zh)
WO (1) WO2023197600A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828069A (zh) * 2022-04-14 2022-07-29 广州万码科技有限公司 5g信号频谱检测方法、装置、计算机设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364348A (zh) * 2011-11-18 2012-02-29 西安欣业科技发展有限公司 卫星地面站中频信号频谱自动监测分析仪
CN108548958A (zh) * 2018-03-30 2018-09-18 南京国睿安泰信科技股份有限公司 一种频谱检测仪的快速扫频系统及方法
US20200379024A1 (en) * 2019-05-28 2020-12-03 Innowireless Co., Ltd. Spectrum analyzer and method of controlling the same
CN114828069A (zh) * 2022-04-14 2022-07-29 广州万码科技有限公司 5g信号频谱检测方法、装置、计算机设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364348A (zh) * 2011-11-18 2012-02-29 西安欣业科技发展有限公司 卫星地面站中频信号频谱自动监测分析仪
CN108548958A (zh) * 2018-03-30 2018-09-18 南京国睿安泰信科技股份有限公司 一种频谱检测仪的快速扫频系统及方法
US20200379024A1 (en) * 2019-05-28 2020-12-03 Innowireless Co., Ltd. Spectrum analyzer and method of controlling the same
CN114828069A (zh) * 2022-04-14 2022-07-29 广州万码科技有限公司 5g信号频谱检测方法、装置、计算机设备及存储介质

Also Published As

Publication number Publication date
CN114828069A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US10145933B2 (en) Angle determining system and method
CN111127563A (zh) 联合标定方法、装置、电子设备及存储介质
US20180352414A1 (en) Distributed network center and area estimation
WO2023197600A1 (zh) 5g信号频谱检测方法、装置、计算机设备及存储介质
US8180367B2 (en) Cluster-based fingerprinting algorithms
US20170234987A1 (en) Method and apparatus for joint data-pilot tracking of navigation signal
CN111372256B (zh) 辅助客户终端设备安装的方法和电子设备
CN107431995A (zh) 实现对移动装置的估计位置的验证
CN112235215B (zh) 一种无线信道探测方法、存储介质及终端设备
US20150204981A1 (en) Signal processing method for ultra-fast acquisition and tracking of severely attenuated spread spectrum signals with doppler frequency and apparatus thereof
WO2020207096A1 (zh) 一种5g场景下的定位方法、定位平台及用户终端
WO2014176846A1 (zh) 一种终端天线总辐射功率的快速测试方法
CN115103442A (zh) 目标终端设备的定位方法和装置、设备及存储介质
WO2021077587A1 (zh) 差分数据的处理方法和接收机的测试方法
US11238563B2 (en) Noise processing method and apparatus
WO2023197599A1 (zh) Lte帧偏移值计算方法、装置、系统、设备及存储介质
CN113050030B (zh) 基于到达角度测距的定位方法及装置
WO2018119949A1 (zh) 信道状态信息相位的校正方法及装置
JP2020010195A (ja) 周波数推定装置および追尾受信機
WO2022194158A1 (zh) 一种目标跟踪方法、装置、设备及介质
TWI451115B (zh) 衛星定位方法、衛星虛擬距離計算裝置及其衛星虛擬距離計算方法
WO2022194145A1 (zh) 一种拍摄位置确定方法、装置、设备及介质
US9509489B1 (en) Correction of quadrature modulation errors
CN113659340A (zh) 毫米波天线方向控制方法、装置、终端设备及介质
CN114978214B (zh) 直接变频接收机、数据接收方法、存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937232

Country of ref document: EP

Kind code of ref document: A1