WO2023195811A1 - 유전자로 정의된 암기원세포, 및 이의 분류방법 - Google Patents

유전자로 정의된 암기원세포, 및 이의 분류방법 Download PDF

Info

Publication number
WO2023195811A1
WO2023195811A1 PCT/KR2023/004698 KR2023004698W WO2023195811A1 WO 2023195811 A1 WO2023195811 A1 WO 2023195811A1 KR 2023004698 W KR2023004698 W KR 2023004698W WO 2023195811 A1 WO2023195811 A1 WO 2023195811A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
brain cancer
cells
origin
group
Prior art date
Application number
PCT/KR2023/004698
Other languages
English (en)
French (fr)
Inventor
강석구
최란주
윤선진
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2023195811A1 publication Critical patent/WO2023195811A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention relates to cancer origin cells defined by genes, and methods for classifying them.
  • Cancer is one of the most common causes of death worldwide. Approximately 10 million new cases occur each year, accounting for approximately 12% of all deaths, making it the third most common cause of death.
  • brain cancer in particular occurs regardless of age and has a higher incidence in children than other cancers.
  • Brain cancer is divided into primary brain tumors that develop in brain tissue and the meninges surrounding the brain, and secondary brain tumors that metastasize from cancer that originates in the skull or other parts of the body. Symptoms include motor paralysis, sensory paralysis, language impairment, and visual impairment. , local symptoms such as balance disorders, and symptoms of intracranial hypertension.
  • the brain cancer includes various types of cancer such as glioblastoma multiforme, malignant glioma, lymphadenoma, germ cell tumor, and metastatic tumor, unlike cancer that occurs in other tissues in which one or two types of cancer are tissue-specific.
  • glioma is a tumor that accounts for 60% of primary brain tumors. It has a high incidence and is difficult to treat, so it is a malignant tumor for which there is no specific treatment other than radiation therapy.
  • glioblastoma which is classified as the most malignant, has a very high resistance to radiation and anticancer drug treatment compared to other cancers, and once diagnosed, the survival period is only 1 year, so each patient's Proper diagnosis and understanding of the origin and course are important.
  • GBM glioblastoma
  • the development of treatments is difficult due to the relative lack of understanding of brain neurobiology. The reality is that it is not active.
  • glioblastoma shows an aggressive variant, which can lead to fatal results within a few weeks if not treated quickly.
  • glioblastoma is treated with radiation therapy and chemical drug treatment, but there is no perfect treatment due to causes such as the occurrence of resistant mutations and recurrence by tumor stem cells.
  • glioblastoma origin cells Oc1 and Oc2
  • Glioblastoma cells of origin were defined by gene expression patterns.
  • the glioblastoma origin cells of the present invention and the method for classifying them from the subventricular zone are expected to be greatly used in the prevention and treatment of glioblastoma by understanding the origin of glioblastoma development and blocking the progression from cancer origin cells to cancer cells.
  • the present inventors have made extensive research efforts to discover the origin of brain cancer, especially glioblastoma, for which it is difficult to find an effective treatment and its prognosis and survival rate are very poor.
  • the present invention was completed by isolating and defining glioblastoma origin cells (Oc1 and Oc2) through gene expression analysis in cells isolated from the subventricular zone.
  • the object of the present invention is to produce one or more proteins selected from the group consisting of LUZP2, RORA, SLC1A2, TNR,
  • the aim is to provide a method of isolating brain cancer origin cells, which includes the step of confirming the expression level of the gene.
  • Another object of the present invention is to measure the expression level of one or more proteins selected from the group consisting of LUZP2, RORA, SLC1A2, TNR, XKR4, CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, and TF, or genes encoding them
  • the object is to provide a composition for diagnosing glioblastoma containing the following agent as an active ingredient.
  • NRXN1 Neuron 1
  • MEG3 Neuronal Cell Adhesion Molecule
  • TNR Teenascin R
  • NRCAM Neurovascular Cell Adhesion Molecule
  • PTPRZ1 Protein Tyrosine Phosphatase Receptor Type Z1
  • LUZP2 Leucine Zipper Protein 2
  • RORA RORA
  • PLP1 Proteolipid Protein 1
  • TF Transferrin
  • MBP Myelin Basic Protein
  • CERCAM Cerebral Endothelial Cell Adhesion Molecule
  • TMEM144 Transmembrane Protein 144
  • PLXDC2 Plexin Domain Containing 2
  • FTL Feritin
  • LAMA2 Laminin Subunit Alpha 2
  • the present inventors have made extensive research efforts to discover the origin of brain cancer, especially glioblastoma, for which it is difficult to find an effective treatment and its prognosis and survival rate are very poor.
  • the present invention was completed by isolating and defining glioblastoma origin cells (Oc1 and Oc2) through gene expression analysis in cells isolated from the subventricular zone.
  • subventricular zone refers to an area located on the outer wall of each lateral ventricle of the vertebrate brain. This region is present in both fetal and adult brains, and in embryonic life the subventricular zone represents a secondary proliferative zone containing neural progenitor cells that divide during neurogenesis to generate neurons.
  • brain tumor refers to a solid (liquid) neoplasm formed within the skull, a tumor within the brain or spinal canal, and is a general term for tumors occurring in the brain matter and meninges. This is a tumor that grows in brain cells. It includes all neoplasms that develop within the skull, originating from blood vessels, nerves, and meninges. Symptoms vary depending on where they occur, but commonly include headaches, vomiting, abnormal movements of the limbs (convulsions, paralysis), and visual impairment.
  • the brain cancer origin cells are cells that develop into glioblastoma (GBM).
  • glioblastoma refers to a type of glioma, the most common and severe form of tumor that occurs primarily in the brain. Symptoms and signs that first occur are not disease-specific and may be stroke-like, such as headaches, personality changes, or nausea. Symptoms worsen rapidly and may lead to unconsciousness.
  • a separation method further comprising: confirming an increase in the copy number of chromosome 7 in cells isolated from the subventricular zone.
  • the present invention provides a group consisting of NRXN1, Provided is a composition for predicting the development of brain cancer, comprising as an active ingredient an agent for measuring the expression level of one or more proteins selected from, or genes encoding the same.
  • prediction refers to evaluating whether a subject has developed a specific disease or disease to a severe degree or is at risk of developing a severe disease in the future based on a marker that has a significant correlation with the severity.
  • predictive composition refers to NRXN1, , an integrated mixture or device containing an agent for measuring the expression level of one or more proteins selected from the group consisting of MBP, CERCAM, TMEM144, PLXDC2, FTL, and LAMA2, or the genes encoding them. This means that it can also be expressed as a “prediction kit.”
  • the agent for measuring the expression level of one or more selected proteins may be a composition that is an aptamer, antibody, or antigen-binding fragment thereof that specifically binds to the protein.
  • the protein of the present invention can be detected according to an immunoassay method using an antigen-antibody reaction and used to analyze glioblastoma in an individual.
  • This immunoassay can be performed according to various immunoassay or immunostaining protocols developed conventionally.
  • antibodies labeled with radioisotopes may be used.
  • one or more proteins selected from the group consisting of NRXN1 are polyclonal or monoclonal antibodies, and more specifically, monoclonal antibodies.
  • the antibody of the present invention can be produced by methods commonly practiced in the art, for example, a fusion method, a recombinant DNA method, or a phage antibody library method.
  • Glioblastoma can be predicted by analyzing the intensity of the final signal by the above-described immunoassay process. That is, one or more selected from the group consisting of NRXN1, If the signal for the protein is weaker or stronger than that of a normal sample, the risk of glioblastoma is judged to be increased.
  • antigen binding fragment refers to a portion of a polypeptide to which an antigen can bind among the overall structure of an immunoglobulin, such as F(ab')2, Fab', Fab, Fv, and Including, but not limited to scFv.
  • the term “specifically binding” has the same meaning as “specifically recognizing,” meaning that an antigen and an antibody (or a fragment thereof) specifically interact through an immunological reaction. It means to do.
  • the present invention may use an aptamer that specifically binds to the marker protein of the present invention instead of an antibody.
  • aptamer refers to a single-stranded nucleic acid (RNA or DNA) molecule or peptide molecule that binds to a specific target substance with high affinity and specificity.
  • An agent for measuring the expression level of a gene encoding one or more proteins may be a composition that is a primer or probe that specifically binds to the gene.
  • nucleic acid molecule is meant to comprehensively include DNA (gDNA and cDNA) and RNA molecules, and nucleotides, which are the basic structural units in nucleic acid molecules, include not only natural nucleotides but also those with modified sugars or base sites. Also includes analogues.
  • primer refers to conditions that induce the synthesis of a primer extension product complementary to a nucleic acid chain (template), i.e., the presence of nucleotides and a polymerizing agent such as DNA polymerase, and synthesis under conditions of appropriate temperature and pH. refers to an oligonucleotide that acts as the starting point. Specifically, the primer is a single strand of deoxyribonucleotide. Primers used in the present invention may include naturally occurring dNMP (i.e., dAMP, dGMP, dCMP, and dTMP), modified nucleotides, or non-natural nucleotides, and may also include ribonucleotides.
  • template i.e., the presence of nucleotides and a polymerizing agent such as DNA polymerase, and synthesis under conditions of appropriate temperature and pH.
  • primer refers to an oligonucleotide that acts as the starting point.
  • the primer is a single strand
  • the primer of the present invention may be an extension primer that anneals to the target nucleic acid to form a sequence complementary to the target nucleic acid by template-dependent nucleic acid polymerase, which extends to the position where the immobilized probe is annealed, thereby forming the probe. Occupies the annealed area.
  • Extension primers used in the present invention target nucleic acids, such as NRXN1, It includes a hybridized nucleotide sequence complementary to a specific base sequence of one or more genes selected from the group consisting of.
  • the term “complementary” means that a primer or probe is sufficiently complementary to selectively hybridize to a target nucleic acid sequence under predetermined annealing or hybridization conditions, including substantially complementary and perfectly complementary. ), and specifically means completely complementary cases.
  • substantially complementary sequence refers not only to completely identical sequences, but also to sequences that are partially mismatched with the sequence being compared, to the extent that they can anneal to a specific sequence and serve as a primer.
  • Primers should be sufficiently long to prime the synthesis of the extension product in the presence of a polymerizing agent.
  • the suitable length of the primer depends on a number of factors, such as temperature, pH, and the source of the primer, but is typically 15-30 nucleotides. Short primer molecules generally require lower temperatures to form sufficiently stable hybrid complexes with the template.
  • the design of such primers can be easily performed by a person skilled in the art by referring to the target nucleotide sequence, for example, by using a primer design program (eg, PRIMER 3 program).
  • the term “probe” refers to a linear oligomer having a natural or modified monomer or linkage containing deoxyribonucleotides and ribonucleotides that can hybridize to a specific nucleotide sequence.
  • the probes are single-stranded, more specifically deoxyribonucleotides, for maximum efficiency in hybridization.
  • a sequence that is completely complementary to the specific base sequence of the marker gene of the present invention may be used, but a substantially complementary sequence may be used to the extent that it does not interfere with specific hybridization. This may also be used.
  • the composition may be one in which the brain cancer is glioblastoma (GBM).
  • GBM glioblastoma
  • the present invention consists of NRXN1,
  • a kit for predicting the development of brain cancer which includes a composition for predicting the development of brain cancer containing as an active ingredient an agent for measuring the expression level of one or more proteins selected from the group, or genes encoding the same.
  • the kit may be used for cells isolated from the subventricular zone (SVZ).
  • SVZ subventricular zone
  • the cells isolated from the subventricular zone may be cells with an increased copy number of chromosome 7, which may be a kit.
  • the kit may be an RT-PCR kit, a DNA chip kit, an ELISA kit, a protein chip kit, a rapid kit, or a multiple reaction monitoring (MRM) kit.
  • MRM multiple reaction monitoring
  • NRXN1 measuring the expression level of one or more proteins selected from the group consisting of TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, and LAMA2, or genes encoding the same.
  • the prediction method may further include the step of confirming an increase in the copy number of chromosome 7 in cells isolated from the subventricular zone.
  • the expression of one or more proteins selected from the group consisting of NRXN1 it may be a prediction method that predicts that the individual has a high possibility of developing brain cancer.
  • the likelihood of the subject developing brain cancer is high. It may be a predictive or predictive method.
  • the It may be a predictive method that predicts that the likelihood of developing brain cancer is high.
  • the subject when the expression of one or more proteins selected from the group consisting of CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, and TF, or the genes encoding them, is reduced, the subject develops brain cancer. It may be a prediction method that predicts what is likely.
  • the brain cancer may be glioblastoma (GBM), a prediction method.
  • GBM glioblastoma
  • the present invention includes the steps of (a) treating brain cancer origin cells isolated by the method of claim 1 with a candidate substance for preventing brain cancer; and, (b) determining that the candidate substance has a brain cancer prevention effect when the brain cancer origin cells are killed.
  • test material used when referring to the screening method of the present invention is added to an unknown sample for the purpose of testing the brain cancer prevention effect, and is used to determine NRXN1, , one or more proteins selected from the group consisting of PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, and LAMA2, or used in screening to test whether they affect the activity or expression level of the gene encoding them.
  • the test substances include, but are not limited to, compounds, nucleotides, peptides, and natural extracts.
  • the step of measuring the expression level or activity of one or more proteins, or the genes encoding them can be performed by various expression level and activity measurement methods known in the art.
  • the present invention includes the steps of (a) treating brain cancer origin cells isolated by the method of claim 1 with a candidate substance for preventing brain cancer; (b) selected from the group consisting of NRXN1, Reconfirming the expression level of one or more proteins or genes encoding them; And, (c) determining that the candidate material has a brain cancer prevention effect when the expression level of the protein or gene is significantly different compared to before treatment with the candidate material.
  • a screening method for a candidate material for preventing brain cancer including a step. provides.
  • one or more proteins selected from the group consisting of NRXN1, , or administering an expression inhibitor of the gene encoding the same.
  • the present invention provides at least one protein selected from the group consisting of PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, and LAMA2, or encoding the same, in the subventricular zone (SVZ). It provides a method for preventing or treating brain cancer, comprising: administering an agent that activates the expression of a gene.
  • the present invention provides one or more proteins selected from the group consisting of NRXN1, Provided is a pharmaceutical composition for preventing or treating brain cancer containing as an active ingredient, wherein the pharmaceutical composition is administered to the subventricular zone (SVZ).
  • SVZ subventricular zone
  • the present invention uses one or more proteins selected from the group consisting of PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, and LAMA2, or an expression activator of the gene encoding the same as an active ingredient.
  • a pharmaceutical composition for preventing or treating brain cancer wherein the pharmaceutical composition is administered to the subventricular zone (SVZ).
  • SVZ subventricular zone
  • NRXN1 a measuring unit that measures the expression level of one or more proteins selected from the group consisting of TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, and LAMA2, or genes encoding the same; providing a device for predicting the onset of brain cancer, including a .
  • the present invention provides NRXN1, , CERCAM, TMEM144, PLXDC2, FTL, and LAMA2; confirming the expression level of one or more proteins selected from the group consisting of, or genes encoding the same; A processing unit that processes candidate substances for brain cancer prevention; and a determination unit that determines that the candidate substance has a brain cancer prevention effect when the brain cancer origin cells are killed.
  • the present invention provides NRXN1, , CERCAM, TMEM144, PLXDC2, FTL, and LAMA2; confirming the expression level of one or more proteins selected from the group consisting of, or genes encoding the same; A processing unit that processes candidate substances for brain cancer prevention; One or more proteins selected from the group consisting of NRXN1, , or a measuring unit that rechecks the expression level of the gene encoding it; and a determination unit that determines that the candidate substance has a brain cancer prevention effect when the expression level of the protein or gene is significantly different compared to before treatment with the candidate substance. do.
  • the present invention is NRXN1, Provided is a method for isolating brain cancer cells of origin, comprising the step of confirming the expression level of one or more proteins selected from the group consisting of, or the genes encoding them.
  • the present inventors have found that in brain cancer, especially glioblastoma, for which it is difficult to find an effective treatment and the prognosis and survival rate are very poor, the above factors not only function as highly reliable diagnostic markers, but also suppress the tumor by regulating their expression, resulting in incurable disease. It can be useful as a fundamental therapeutic composition that significantly improves the survival rate of patients with glioblastoma disease.
  • Figure 1 relates to a human tissue-based identification study to find glioblastoma cells of origin.
  • Next-generation sequencing of the transcriptome can be used to predict patterns of structural changes at the chromosome level, such as chromosome gains and losses from human tissues.
  • a stem cell niche a subventricular sample of the human brain, was included in this study.
  • complete sequencing data SRP145073 for chromosomal pattern identification.
  • Figure 2 shows chromosome copy number patterns calculated from bulk tissue RNA sequencing samples, with sample percentages summarized in a pie chart for patterns of chromosomes 7 and 10.
  • Figure 3 relates to mononuclear RNA array-based cell identification. Two types of cells showed distinct gene expression patterns and were labeled as progenitor cells 1 and progenitor cells 2. After confirming the cell-level chromosomal patterns of chromosome 7 q-arm gain and chromosome 10 loss, cells showing only chromosome 7 q-arm gain were designated as GBM origin-cell 1 (Oc1), chromosome 7 q. Cells showing -arm gain and chromosome 10 loss were defined as origin-cell 2 (Oc2) of GBM.
  • Oc1 origin-cell 1
  • Oc2 origin-cell 2
  • Figure 4 illustrates the tumor-progenome profiling strategy with alteration patterns of chromosomes 7 and 10, copy number patterns, and cellular signatures of the two origin cells that are susceptible before transformation into glioblastoma tumor cells. It was assumed to be a marker tool to find cells.
  • Progenitor cell 1 (brown) and origin cell 2 (yellow) are adjacent to the main cluster of tumor cells consisting of neural progenitor cell group (light blue), neuron-like cell group (gray), cell cycle activated cell group (blue), and mesenchymal cell group (red). There is.
  • the present invention focuses on the main cluster of tumors.
  • Figure 6 shows tumor-free subventricular zone samples (left, tumor-free subventricular zone samples from control disease, tumor-free subventricular zone samples from glioblastoma) or tumor-related samples (right, tumor-glioblastoma or glioblastoma tumor tissue). shown for infiltrated subventricular zone samples).
  • Figure 7 focuses on mononuclear patient GN1 and two cell types, cells of origin 1 and 2, were found in the lower part of the ventricle and in the tumor.
  • Figure 8 examines chromosomal gain events of 1 copy gain (orange), 2 copy gain (red), or 1 copy loss (blue) in tumor-free subventricular samples.
  • Figure 9 shows that matched tumor samples show that the cell-of-origin 1 cluster is more likely to be chromosomally neutral than cell-of-origin 2 and other cells.
  • Figure 10 shows the cumulative copy number of chromosome 7q arm from cell of origin 1 to cell of origin 2 in the cells of patient GN1.
  • Figure 11 Comparing the two types of chromosomal alterations at the individual cell level reveals the order of chromosomal copy number alterations. Left, chromosome 7q is followed by an increase in chromosome 7p. Right, gain of chromosome 7q is followed by loss of chromosome 10.
  • Figure 12 shows the connectome of ligand receptor signaling for each cell type. At the top, there is a tumor-free subventricular sample of glioblastoma without tumor infiltration. Bottom, glioblastoma tumor tissue, with different modes defined by mode-specific receptors and ligand genes.
  • the stem cell mode is defined by three receptors (CD44, ITGA4, NRCAM) and four ligands (BCAN, CD14, LPL, VIM).
  • Figure 13 shows connectome edgeweight by gene. Progenitor cell 1 (brown), progenitor cell 2 (yellow), and circulating cell (blue) were selected for subventricular specimens and tumor specimens. At the top, a cycle plot of interconnected genes in a subventricular sample is shown, and at the bottom, a cycle plot of interconnected genes in a glioblastoma tumor sample is shown.
  • Figure 14 examines two types of glioblastoma tumors in terms of cells of origin, circulating cells, and cancer stem cells.
  • Glioblastoma tumor samples are subclassified according to the mutational status of the TERT promoter in the tumor tissue. Matched subventricular samples are labeled according to their respective TERT promoter mutation status, and cell presence is determined using four sets of genes (progenitor 1, progenitor 2, cycle cell, and cancer stem cell 24) extracted from single-cell-level RNA array data. Predictions were made by applying them to expression values from bulk tissue RNA array data sets (TERT promoter available data samples were used for this analysis). Left, TERT promoter wild-type glioblastoma tumor and patient matched subventricular sample. TERT promoter mutant glioblastoma tumor and patient matched subventricular sample. Student t-test, ⁇ 0.001**, ⁇ 0.01**, non-significant results are not shown.
  • Figure 15 relates to a mouse cell model of CRISPR/Cas9-based gene editing technology, in which subventricular cells of mice with gene mutations in Trp53 and Pten were isolated by induction of the EGFRvii gene. Mutant cells in the subventricular region transform into mouse glioblastoma tumors approximately 11 to 16 weeks after mutation introduction. Three types of cells were labeled and compared.
  • Figure 16 identifies subpopulations of cells in three cell types using cell-specific markers. Other cell markers were negative for these three types of cells.
  • Figure 17 shows tumorigenesis of tumor cells, and no tumorigenesis was found in other cells. That is, they were cells isolated from the lower part of the contralateral ventricle without genetic modification or original cells isolated from the lower part of the CRISPR/Cas9-edited ventricle.
  • Figure 18 shows individual cell integration maps of three cell types, left, showing the three cell types mixed, and right, showing the four cell states identified in the three cell types.
  • Figure 19 is a quantitative comparison of four cell states in three mouse cell types.
  • Figure 20 Gene module scores were calculated by single-cell RNA sequencing of three mouse cell types. Gene module scores were used to predict the relative cell number of a given cell state (arbitrary relative units). In addition, the mouse cell score was calculated by converting the human origin cell 1 specific gene into the mouse homolog gene. For mouse cell scoring, human origin cell 2 specific genes are used.
  • Figure 21 shows that chromosomal changes were calculated from single cell RNA arrays, and the most significant changes were noted in the cell state map. It was confirmed that the front and rear parts of chromosome 7 had different chromosomal change patterns in three mouse cell models.
  • Figure 22 shows collection of subventricular samples from adult human brain for glioblastoma cell identification.
  • SRP145073 a new and previously published data set
  • Figure 23 numbers single cell-level RNA sequencing of patient specimens from 1 to 14, but not bulk tissue-level RNA sequencing patient specimens, and patient case 4 was excluded due to specimen preparation quality.
  • Figure 24 is a simple graphical summary of the process of preparing a subventricular sample from an adult brain during surgery.
  • Figures 25 to 27 show magnetic resonance medical images of a patient and sampling locations in the lower ventricle.
  • Figure 25 represents a single nuclear RNA sequencing patient case with glioblastoma (label starting with GN), and all subventricular specimens were found to be uncontaminated by tumor by pathological evaluation. That is, mononuclear RNA is sequenced from patients with control disease (labels starting with CN). No tumor cell contamination was found in the samples.
  • Figure 27 relates to single cell RNA sequencing of a glioblastoma patient. Single cell RNA sequencing failed in two ventricular region specimens (GC11 and GC13). Tumor mixed subventricular samples were also included in the study as a control group (GC12).
  • Figure 28 shows cell-of-origin evidence in the ventricular region obtained from bulk tissue RNA array and bulk tissue whole exome array data. This is a comparison of gene expression in the subventricular group. Tumor-free subventricular areas of left glioblastoma were compared with control disease. Right, set enrichment analysis results of genes highly upregulated in the tumor-free lower ventricles than in control disease.
  • Figure 29 shows gene set enrichment analysis comparing subventricular to glioblastoma, resulting in genes upregulated in the subventricular part of glioblastoma. Subventricular areas of control disease were excluded.
  • Figure 30 shows the chromosomal pattern, variant allele frequency and mutation time of the tumor-free ventricular region of the adult human brain in the whole exome sequencing dataset of SRP145073.
  • a chromosomal pattern of copy number gain was found on the q-arm side of chromosome 7.
  • the chromosomal pattern was relatively distinct in the subventricular specimens, which were identified as unidirectional shared mutations in the subventricular tumor (P520, P276, P26, P499). It was confirmed that chromosome 7 q-arm was not clearly increased in patient samples (P37, P396, P881, P246).
  • Figure 31 shows the verification of chromosome patterns in total sequencing data and RNA sequencing data at the mass tissue level. Since these two methods show limitations, additional single-cell level analysis was prepared.
  • Figure 32 relates to specific gene sets and patient-specific proportions of cells of origin in all patient specimens (related to Figures 5-6). This represents a network plot of the gene signature of cell of origin 1.
  • the enrichment analysis of the gene set was done based on the Kyoto Encyclopedia of Genes and Genomes (KEGG), and cell of origin 1 was defined by the top 100 genes.
  • Genes were extracted from an integrated single nuclear RNA array dataset of patient GN1 (tumor-free subventricular and glioblastoma).
  • Figure 33 shows a network plot of cell of origin 2, where the top 100 genes of cell of origin 2 were extracted from the integrated single nuclear RNA sequencing patient sample GN1.
  • Figure 34 extracts genes defining cell types and depicts normalized expression in a heatmap. Yellow indicates high expression and purple indicates low expression. All single-cell-level RNA sequencing data sets were integrated for analysis, and ribosomal protein genes or mitochondrial genes were included throughout the process and these genes were removed prior to the gene set extraction process.
  • Cell type percentages are summarized by individual patient, with mononuclear RNA array sample GN1 comprised of a glioblastoma tumor and a tumor-free subventricular region of glioblastoma. Cells of origin 1 and 2 are indicated in brown and yellow, respectively. The cell percentage graph shows that oligodendrocytes (light brown) are predominantly expressed in the single nuclear RNA array dataset (GN-dataset).
  • RNA sequencing dataset human tissue samples are predominantly expressed by neural progenitor cells (light blue) rather than oligodendrocytes (light brown).
  • the tumor-mixed subventricular zone (GC12 and GC13) of glioblastoma (GC14) has a lower proportion of oligodendrocytes (light brown) than the tumor-free subventricular zone (GC12 and GC13) based on two single-cell RNA sequencing analysis.
  • Tumor-free ventricular zone samples from control disease CN8, CN9, and CN10
  • oligodendrocytes light brown
  • microglia green
  • the chromosomal patterns of chromosome 7 p-arm, 7 q-arm and chromosome 10 are summarized by patient and sample type, with the seven patient samples listed from top to bottom, with sample types divided from left to right. Subventricular zone samples (light blue) and tumor samples (light red) are shown, and seven single nuclear RNA sequencing patient cases are shown. Individual cell locations are derived from Figure 5.
  • the panel provides maps of cell location by tissue type (subventricular zone or glioblastoma tumor), cell type (progenitor cell 1, progenitor cell 2, neural progenitor-like cell, or mesenchymal cell), and chromosome pattern (chromosome 7 p-arm, chromosome 7 q-arm or chromosome 10).
  • the tumor samples showed a chromosomal pattern of copy number gains in the 7p-arm and 7q-arm (except in glioblastoma of GN5), and loss of chromosome 10 was found in tumor samples except in GN2 and GN5.
  • Two types of cells of origin are found in tumor-free subventricular zone samples. Additionally, cells affected by chromosome 7 q-arm copy number gain are more abundant in the two cell-of-origin groups in tumor-free subventricular zone samples than are chromosome 10 loss events in the samples.
  • subventricular zone samples excluding the cell of origin of GN7 chromosome patterns 7 p-arm, 7 q-arm, and chromosome 10 cannot be compared with the small number of cells affected by the chromosome pattern.
  • two types of cells of origin are at the center of the chromosomal pattern.
  • Figure 35 shows that the gene signature of the cell of origin was found in all samples of RNA sequencing at the single cell level, and the pseudotime of the cell of origin 1 root indicated cell of origin 2 at an early stage.
  • This represents a pseudo-time trajectory plot using cell of origin 1 as the starting point or root.
  • Left represents integrated trajectory plots for tumor-free subventricular zone samples from single nuclear RNA sequencing (GN1, GN2, GN3, GN5, GN6, and GN7) and single cell RNA sequencing data (GC14), with purple indicating the root is the initial event. If the initial differentiated cells in the root, yellow indicates further differentiated cells in the root only if the root is an initial event.
  • trajectory plot is based on all single cell level tumor samples (GN1, GN2, GN3, GN5, CN6, CN7, GC11, GC12, GC13 and GC14).
  • Figures 36 and 37 show that subventricular zone cells and tumor cells were subsampled by each patient, artificially selecting cell of origin 1 as the root, and found that group cell of origin 2 was displayed as relatively early cells in the trajectory analysis.
  • Figure 36 is a trajectory plot of a single nuclear RNA sequencing data set, which, unlike the single cell RNA sequencing data set below, shows neuron-like clusters (dark gray) downstream of cell of origin 1 in patients GN2, GN3, and GN5. was discovered.
  • Figure 37 shows a trajectory plot of a single cell RNA sequencing data set, confirming that patient GC11 had no trace lines crossing the cell clusters 1 or 2 of origin.
  • Figure 38 Impact on glioblastoma patient survival based on cell-of-origin-related gene signatures, enrichment in samples, and cell identification scores from bulk tissue RNA sequencing.
  • tumor-free subventricular region Glioblastoma areas 40
  • cell of origin 1 was assumed to be a set of genes derived from cell of origin 1 in the tumor-free subventricular zone of glioblastoma patient GN1.
  • cell of origin 2 was assumed to be the gene set of cell of origin 2 in the tumor-free subventricular zone of glioblast
  • Figures 39 and 40 show patient survival after glioblastoma surgery by cell identification score of the two cells of origin.
  • Figure 39 shows patient survival by cell of origin score in subventricular zone samples
  • Figure 40 shows patient survival by cell of origin score in tumor tissue.
  • Cell identification scores of different gene sets are summarized in a heatmap. Public data sets or published gene sets were used to find signature-assigned genes. The heatmap is divided into groups (Brain cell type group26, Glioblastoma MGH group27, Columbia group28, and origin-cell type in this study), and subgroup signatures were clustered by Euclidean distance.
  • Figures 41 and 42 show that the cross-correlation between signatures was calculated with the dot product of the cell identification scores, with red indicating higher correlation between signatures and blue meaning lower correlation between signatures.
  • Figure 43 shows that origin cells were identified in the subventricular region of the CRISPR/Cas9-based mutagenic mouse brain, and that the isolated origin cells were confirmed to be non-tumorigenic in a brain allograft model.
  • This is a summary of a previously published method for generating CRISPR/Cas9-based genome-edited mice with tumor suppressor mutations and EGFRvII amplification, which generates tdTomato-positive cells (red) in the subventricular zone of the mouse brain after electroporation of the plasmid. .
  • mouse brain sections show cells migrating from the subventricular to subcortical areas. Tumors with necrosis, labeled as tumor cells or mouse glioblastoma, could be detected 14 to 23 weeks after electroporation.
  • Figure 44 shows aligned representative time series images of a coronal section of a mouse brain. Top, confocal image (red: tdTomato-positive cells); bottom, H&E image. Scale bar: 1 mm. A conceptual time window during tumorigenesis can be used for the separation of cells of origin and tumor cells (tumor cells that have migrated from the subventricular zone).
  • Figure 45 refers to the conceptual location where cells used in the experiment are illustrated.
  • the origin cell is a tdTomato-positive cell into which a plasmid has been inserted
  • the tumor cell is a tdTomato-positive cell into which a plasmid has been inserted.
  • Figure 46 shows representative microscopic images of cells captured in spherical culture conditions. Scale bar: 200 ⁇ m. BF, bright field; tdTomato filter: Red indicates tdTomato positive.
  • Figure 47 shows an anatomy-based illustration of three types of cells.
  • Figure 48 Mouse brain injection experiments were used as an indicator of tumor formation potential using cells isolated from different locations, subventricular regions, or tumors. These cells were injected into the brains of mice, and while mice injected with tumor cells had poor survival rates, mice injected with progenitor cells were not affected (see Figure 17). Representative images of IVIS, magnetic resonance imaging (9.4T), H&E, and confocal images using tdTomato (red) are presented. Scale bar: 1 mm.
  • Figure 49 shows the intermediate cell state from the control state to the tumor state in CRISPR/Cas9-based origin-cells in terms of transcriptome changes and chromosomal modification patterns at each stage.
  • This heatmap identifies cell state-specifying genes in four cell states (control, early, late, and tumor state) from integrated single-cell RNA sequencing data from three different cells (control cells, progenitor cells, and tumor cells). It shows.
  • Figure 50 compares the gene expression of Cspg4, an oligodendrocyte precursor cell marker, by state and cell type.
  • Figure 51 shows the module scores of the four states in the integrated data set for the three types of cells, converting the gene set from human to mouse and calculating the score for each cell state (related to Figure 20).
  • Figure 52 summarizes the chromosomal pattern of the mouse subventricular zone cell model.
  • the control state of the control cells was used as a reference cell group (related to Figure 21).
  • Figure 53 shows a pseudo-time trajectory plot for integrated data from three cell types, with the trajectory rooted in the control state among the four states.
  • Figure 54 shows that CRISPR/Cas9-based origin cells show superior ability in neurosphere formation (stem) and invade a longer distance (migration ability) than control cells and tumor cells. This represents a sphere formation assay to estimate stem cell phenotype. Cells from different mouse brains are separated on the graph. Scale bar: 200 ⁇ m.
  • Figure 55 Cell invasion assay to estimate cell velocity over 72 hours. Cells from different mouse brains are separated on the graph. Scale bar: 500 ⁇ m.
  • Figure 56 compares the differentiation ability between origin cells and tumor cells in the mouse subventricular zone model. After culturing for 2 weeks in a medium containing 10% fetal calf serum, GFAP was expressed in the origin cells and tumor cells. The cells of origin expressed the neuronal marker TUBB3. Scale bar: 200 ⁇ m.
  • the present invention is a study for the early diagnosis and understanding of the origin of glioblastoma and the development of new treatments based thereon. It was confirmed that cells isolated from the subventricular zone were glioblastoma origin cells, and chromosome 7 q- The cell showing only arm acquisition is called GBM origin cell 1 (Oc1), and the cell showing chromosome 7 q-arm gain and chromosome 10 loss is called GBM origin cell 2 (origin-cell 2; Oc2). defined. Cell of origin 1 was common in TERT promoter wild-type GBM, while cell of origin 2 was more common in TERT promoter mutant GBM.
  • GN patient samples are glioblastoma patient-derived samples
  • CN patient samples are tumor-free SVZ samples from non-GBM patients.
  • the GN4 patient sample was lost during preparation and was excluded.
  • Single cell RNA sequencing samples are indicated as GC11, GC12, GC13, and GC14. All these samples were prepared from GBM patients. Among these samples, two SVZs from two different patients failed the quality control step, including a single tumor-free SVZ and a mixed SVZ sample with one tumor.
  • tissue samples were triturated with a scalpel in lysis buffer [0.2% Triton Homogenized tissue samples were filtered using a 40- ⁇ m strainer, then DAPI (0.5 ⁇ g/ml; Sigma) was added to stain the nuclei, and free nuclei were extracted using a 20- ⁇ m pluriStrainer Mini for analysis by FACS (BD FACSAriaTM system, BD). was filtered again. Single nuclei from the DAPI-positive population were sorted for subsequent snRNA sequencing.
  • Single cell dissociation was performed on SVZ and GBM tumor samples. Each living tissue was cryopreserved immediately after surgery, and single cell dissociation was performed approximately 1 month later. In summary, on the day of surgery, a cryopreservation solution mixed with 90% FBS and 10% DMSO was added to the raw tissue, chopped into small pieces, and stored in liquid nitrogen for about a month. After approximately 1 month, each cryopreserved sample was centrifuged at 300 g and washed twice with serum-free DMEM to obtain a pellet.
  • the pellet was minced as finely as possible in medium containing 1 M PIPES solution and treated with papain (Worthington Biochemical) and 0.4 U/mL DNase I solution (Worthington Biochemical) at 37°C for 13 min. After centrifugation at 310 g for 10 minutes, 100 ⁇ l of 7 mg/ml Ovomucoid (Sigma-Aldrich) and 0.4 U/mL DNase I were added to the washing medium to inactivate the papain enzyme. Afterwards, myelin sheath and debris were removed using Percoll gradation with 22% Percoll solution (MP Biomedicals), and the supernatant was removed by centrifugation at 594 g to obtain the final cell pellet.
  • papain Waxington Biochemical
  • DNase I solution Worthington Biochemical
  • the RBC removal process was performed according to the manufacturer's specifications using 10x RBC lysis buffer (Stemcell Technologies). Due to high aggregation, single cells cannot be obtained in some samples. In this case, Magnetic Activated Cell Sorting (MACS) sorting (Miltenyi Biotec, Germany) was performed according to the manufacturer's protocol, supplemented with 10% BSA, 1% FBS and Rho kinase (ROCK) inhibitor in 1xPBS to prevent aggregation and single cell death. was added to dilute the separated cells.
  • MCS Magnetic Activated Cell Sorting
  • Sequencing was performed at the Yonsei University Genome Center or Macrogen using the 10x Chromium Controller (10x Genomics) according to the manufacturer's protocol based on 10x Genomics proprietary technology. All single nuclear and single cell RNA sequencing libraries were prepared using the Next GEM Single-cell 3' GEM, Library & Gel Bead Kit, V3.1 (10x Genomics) according to the manufacturer's protocol. The initial step consisted of performing an emulsion in which individual nuclei were separated into droplets with gel beads coated with a unique primer carrying a 10x cell barcode, a unique molecular identifier, and a poly(dT) sequence.
  • a reverse transcription reaction was performed to generate barcoded full-length cDNA, and then the emulsion was disrupted using DynaBeads MyOne Silane Beads (10X genomics) as a retrieval agent and cDNA cleanup.
  • Bulk cDNA was amplified using a SimpliAmp Thermal Cycler (98°C for 3 min, cycled 11-13x (depending on target cell recovery): 98°C for 15 s, 67°C for 20 s, 72°C for 1 min). (72°C for 1 minute, held at 4°C).
  • the amplified cDNA product was washed using the SPRIselect Reagent Kit (Beckman Coulter).
  • An indexed sequencing library was constructed using reagents from the Chromium Single-cell 3 v3.1 reagent kit as follows: fragmentation, end repair, and A-tailing; Select size with SPRIselect; adapter ligation; Post-ligation cleanup using SPRIselect; Sample index polymerase chain reaction and cleanup using SPRIselect beads. Library quantification and quality assessment were performed using the 4200Tapetation using HSD1000 screen tape (Agilent Genomics). Indexed libraries were sequenced on the Illumina HiSeq series using paired-end 26x98 bp.
  • Raw sequencing data were computed from the GRCh38 genome (cell coverage 6.0.1). Processed raw and filtered features were loaded into Seurat (version 4.0.6) and graphs were plotted using Seurat (version 4.0.6) and dittoSeq (version 1.6.0).
  • Single nuclear RNA sequencing data samples were prepared as raw and filtered matrices of samples using the SoupX algorithm34 and the Seurat package35, and the dataset was subjected to SC transformation, PCA, UMAP (from 1 to 10), nearest neighbor graph construction ( dimensions from 1 to 15) and cluster determination (resolution 0.5).
  • the pN-pK parameter sweeping algorithm was applied to remove doublets (1st to 10th principal components).
  • Singlet assumption cells were calculated with a doublet ratio of 7.5%, artificial doublet number of 0.25, PC neighborhood size of 0.09, and principal component number of 1 to 10.
  • Single cell RNA sequencing data samples were processed as filtered matrices and the SoupX algorithm was not applied. Data were normalized and resized and dimension reduction plots were calculated. Single nuclear RNA sequencing data and single cell RNA sequencing data were integrated into Seurat using the CCA algorithm.
  • Seurat individuals were scored as modules for the functional expression program of SCT analysis in single nuclear RNA sequencing data sets.
  • oligodendrocyte, microglial, radial glial, or pericyte programs extracted from third-party data sets were used.
  • GBM-related gene program published gene lists from GBM tumor articles were used.
  • cell of origin 1 was enriched for neural progenitor signatures (BCAN, SEZ6L) and oligodendrocyte progenitor signatures (PTPRZ1, TNR, and PDGFRA).
  • Cell of origin 2 was enriched with an astrocyte signature (AQP4, SPARCL1, ATP1A2) and neural stem cell signature (ADGRV1, SLC1A2).
  • the SVZ biopsy site was visualized using pre- and postoperative axial or coronal magnetic resonance imaging (MRI). MRI was used for preoperative planning of the SVZ biopsy site. The planned SVZ removal area was identified by the surgeon and a thin layer was incised in the area of non-tumor involvement.
  • MRI magnetic resonance imaging
  • An experienced pathologist distinguished tumor-free SVZ samples from tumor-mixed SVZ samples during disease diagnosis or during post-mortem pathological review for RNA sequencing analysis.
  • RNA sequencing followed the best protocol for hisat2 and stringtie37.
  • Patient survival time was calculated from the first neurosurgical operation (unit: months) until the last clinical follow-up or from data collected from the death certificate (Severance Oncology Center). Subgroups were divided according to the GSVA scores of origin cell 1 and origin cell 2, with a threshold of 0. SVZ-based survival, which aims to investigate patient survival, is distinguished by finding specific cells of origin in the SVZ, while tumor-based survival determined whether patient survival is influenced by specific cell-of-origin characteristics of GBM tissue.
  • the chromosome pattern inference algorithm was based on a moving average of 500 genes. Tumor-free SVZ samples from the control group were used as the control reference tissue group. Copy number variation patterns of single cell/nucleus data sets were processed with infercnv using oligodendrocytes as control samples (version 1.10.1). Copy number changes in six states were calculated for UMAP illustration and cell-level sequence prediction. They are based on the hidden Markov model of the infercnv algorithm.
  • Gene set variation analysis was used with designated gene sets for cell type identification in bulk tissue-level RNA sequencing data sets. Normalization scores per signature were calculated using the GSVA package (version 1.42.0), and for the cancer stem cell gene set, the cluster 0 signature of GBM24 was used.
  • mice harboring LSL-tdtomato C57BL/6 strain, The Jackson Laboratory
  • LSL-EGFR viii47 allele FVB strain
  • plasmid sgRNA for p53 and Pten genes
  • Successfully injected animals received five electrical pulses (100 V, 50 ms, 950 ms apart) using an ECM830 electroporator (BTX-Harvard Apparatus) and 1 mm tweezer electrodes (CUY650P1, Nepagene).
  • Either tumor specimens or SVZ specimens were dissected from electrolyzed mice using a stereomicroscope (S9i, Leica). Subsequent cell isolation from the sample was brief. The cell isolation procedure consisted of performing mechanical dissociation with a scalpel in Dulbecco's modified Eagle's medium/nutrient mixture F-12 (DMEM/F-12; Corning), then straining the mixture through a 70- ⁇ m nylon mesh cell strainer. Passed through (BD Falcon).
  • DMEM/F-12 Dulbecco's modified Eagle's medium/nutrient mixture F-12
  • the cell suspension was then washed twice in DMEM/F-12 and cultured in DMEM/F-12 containing 20 ng/ml of B27 supplement (1X; Invitrogen), basic fibroblast growth factor (bFGF, Novoprotein), and epidermal growth factor (Novopein). Cultured in complete medium consisting of 12. All in vitro experiments were performed under previously mentioned culture conditions.
  • Isolated single cells were grown in complete medium consisting of DMEM/F-12 containing B27 supplement (1 Dissociated single cells were cultured in 96-well plates. After culturing for 11 days under the same conditions, the number of 9-positive wells was calculated, and the ratio of 9-positive wells in each group was calculated and expressed as a percentage. Images of spherical positive wells were captured and analyzed using ToupView software (ToupTek Photonics).
  • mice 6- to 8-week-old male athymic nude mice (Central Lab. Animal Inc.) were housed in microisolator cages under sterile conditions and monitored for at least 1 week prior to experiments to ensure appropriate health.
  • Zoletil (30 mg/kg; Virbac Korea) and xylazine (10 mg/kg; Bayer Korea) solutions were administered intraperitoneally to anesthetize the mice.
  • Dissociated cells (2 ⁇ 10 5 ) were transplanted orthotopically as previously described (day 0). Bioluminescence image acquisition and analysis were performed using the In Vivo Imaging System (IVIS) imaging system and Living Image v4.2 software (Caliper Life Sciences).
  • IVIS In Vivo Imaging System
  • mice Fifteen minutes before signal acquisition, mice were injected intraperitoneally with 100 ⁇ L D-luciferin (30 mg/mL, dissolved in PBS; Promega) and administered under 2.5% isoflurane anesthesia. Mice that lost more than 15% of their maximum body weight were euthanized according to approved protocols.
  • Mouse cells of origin and tumor cells isolated from the Trp53/Pten/hEGFRvIII mutant mouse model were supplemented with B27 supplement (1X; Invitrogen), 20 ng/ml basic fibroblast growth factor (bFGF, Novoprotein), and 20 ng/ml epidermal growth factor (EGF). , Novoprotein) and 1% penicillin-streptomycin (15140122, Thermo Fisher).
  • B27 supplement (1X; Invitrogen
  • bFGF basic fibroblast growth factor
  • EGF epidermal growth factor
  • PBS penicillin-streptomycin
  • the present invention used chromosome patterns as indicators for tracking glioblastoma (GBM)-originating cells (gain of chromosome 7 and loss of chromosome 10).
  • GBM glioblastoma
  • Patient samples were collected for bulk tissue-level RNA sequencing and single-cell level RNA sequencing (FIG. 22), along with the publicly available full extract sequencing data set (SRP145073)2.
  • Single-cell level RNA sequences include single-cell RNA sequences and mononuclear RNA sequences ( Figure 23).
  • SVZ tissue samples were defined as tumor-free if tumor admixture status was not confirmed by the pathologist after sampling of the SVZ tissue ( Figure 24).
  • All SVZ samples except one tumor-mixed SVZ sample in single-cell RNA array analysis were tumor-free ( Fig. 1 ).
  • the sampling location of the tumor-free SVZ of GBM varies depending on the tumor location ( Figure 25).
  • Tumor-free SVZ controls are obtained from non-GBM patients ( Figure 26).
  • a chromosome 7 q-arm gain As a result of single-cell level RNA sequencing, two types of cells with GBM-related chromosomal patterns were found in the SVZ of one patient's GBM sample: a chromosome 7 q-arm gain and a chromosome 10 loss pattern ( Fig. 3 ).
  • the common chromosomal pattern of these two cell types was chromosome 7 q-arm amplification.
  • One cell type showed loss of chromosome 10 in half of the population, while the other cell type showed no loss of chromosome 10 in the population ( Figure 3).
  • ligand-receptor linkage analysis was applied to single-cell level RNA sequencing data ( Figure 12).
  • stem cell mode we found that cell of origin 1 was connected to cell of origin 2 in the SVZ sample. Cycling cells in tumor samples were associated with cell of origin 2 ( Figure 12). Since three types of cells were found in the centroid plot, the interconnections between these cells were analyzed at the gene level ( Figure 13).
  • BCAN-NRCAM connections were commonly found in circulation plots of SVZ and tumors. Particularly in SVZ samples, EGFR was upregulated across cell of origin 1, cell of origin 2, and circulating cells ( Figure 13).
  • the present invention is a study for the early diagnosis and understanding of the origin of glioblastoma and the development of new treatments based thereon. It was confirmed that cells isolated from the subventricular zone were glioblastoma origin cells (Oc1 and Oc2), The glioblastoma cell of origin was defined by gene expression pattern.
  • the glioblastoma origin cells of the present invention and the method for classifying them from the subventricular zone are expected to be greatly used in the prevention and treatment of glioblastoma by understanding the origin of glioblastoma development and blocking the progression from cancer origin cells to cancer cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 뇌실하대로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계를 포함하는, 뇌암 기원세포의 분리 방법에 관한 것이다. 본 발명자들은 뇌암, 특히 유효한 치료제의 발굴이 어렵고 예후와 생존률이 매우 불량한 교모세포종에 있어서, 상기 인자들이 신뢰도 높은 진단 표지자로 기능할 뿐 아니라, 이들의 발현 조절을 통해 종양을 억제하여 난치성 질환인 교모세포종 환자의 생존률을 현저히 개선하는 근본적인 치료제 조성물로 유용하게 이용될 수 있다.

Description

유전자로 정의된 암기원세포, 및 이의 분류방법
본 발명은 유전자로 정의된 암기원세포, 및 이의 분류방법에 관한 것이다.
암은 전세계적으로 가장 보편적인 사망원인 중의 하나이다. 약 천만 건의 새로운 케이스가 매년 발생하며, 전체 사망원인의 약 12%를 차지하여 세 번째로 많은 사망의 원인이 되고 있다. 여러 가지 종류의 암 중에서 특히 뇌암은 연령에 관계없이 발생되며, 소아에 발생 빈도가 다른 암에 비하여 높은 특징이 있다. 뇌암은 뇌조직과 뇌를 싸고 있는 뇌막에서 발생되는 일차성 뇌종양과 두개골이나 신체의 다른 부위에서 발생된 암으로부터 전이된 이차성 뇌종양으로 구별되는데, 증세로는 운동 마비, 지각마비, 언어 장애, 시력 장애, 평형 장애 등과 같은 국소 증상과 두개내압항진 증상을 들 수 있다. 상기 뇌암은 조직특이적으로 1 내지 2종의 암이 발병되는 다른 조직에서 발병되는 암과는 달리 다형성아교모세포종, 악성신경교종, 임파선종, 배아세포종, 전이성 종양 등의 다양한 종류의 암을 포함하는데, 그 중 신경교종(glioma)은 원발성 뇌 종양(primary brain tumor)의 60%를 차지하는 종양으로서, 발생 빈도가 높고 치료가 어려워, 현재까지도 방사선 치료 외엔 특별한 치료법이 없는 악성 종양에 해당한다. 그 중 가장 악성으로 분류되고 있는 교모세포종(glioblastoma, GBM)의 경우, 다른 암과 비교하였을 때 방사선 및 항암제 치료에 대한 저항성이 매우 높아 일단 진단되면 생존기간이 1년에 불과하므로, 각 환자의 발생 기원과 과정에 대한 적절한 진단 및 이해가 중요하다. 또한, 상기 뇌 종양의 경우, 뇌혈관 장벽(Brain Blood Barrier)이 존재하기 때문에 치료를 위한 약물 전달이 목적하는 뇌 부위로 전달되기 어려울 뿐만 아니라, 상대적으로 뇌신경 생물학에 대한 이해가 부족하여 치료제 개발이 활발하지 못한 것이 현실이다. 더욱이, 교모세포종은 다른 뇌 종양과 비교해볼 때 공격적 변이(aggressive variant)를 나타내어, 이를 빠른 시일 내에 치료하지 않으면 몇 주 이내에 치명적인 결과를 초래할 수 있다. 교모세포종의 치료에는 외과적 처치 이외에 방사선 치료 및 화학 약물 치료가 함께 수행되고 있으나, 상기 치료는 내성 변이의 발생, 종양줄기세포에 의한 재발 등의 원인으로 인하여 완벽한 치료법이 없다.
따라서, 교모세포종의 발생 기원에 대한 초기 진단과 이해 및 그에 기반한 새로운 치료법의 개발을 위한 연구로서, 뇌실하대(subventricular zone)에서 분리된 세포가 교모세포종 기원세포(Oc1 및 Oc2)임을 확인하고, 상기 교모세포종 기원세포를 유전자 발현 양상으로 정의하였다. 본 발명의 교모세포종 기원세포, 및 뇌실하대로부터 이를 분류하는 방법은 교모세포종 발생 근원을 이해하고 암 기원세포로부터 암세포로의 진행을 차단함으로써, 교모세포종 예방 및 치료에 크게 이용될 것으로 기대된다.
본 발명자들은 뇌암, 특히 유효한 치료제의 발굴이 어렵고 예후와 생존률이 매우 불량한 교모세포종의 발생 근원을 발굴하기 위하여 예의 연구 노력하였다. 그 결과, 뇌실하대(subventricular zone)에서 분리된 세포에서 유전자 발현 분석을 통해 교모세포종 기원세포(Oc1 및 Oc2)를 분리 및 정의함으로써, 본 발명을 완성하게 되었다.
따라서 본 발명의 목적은 뇌실하대로부터 분리된 세포에서 LUZP2, RORA, SLC1A2, TNR, XKR4, CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, 및 TF 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계를 포함하는, 뇌암 기원세포의 분리 방법을 제공하는 데 있다.
본 발명의 다른 목적은 LUZP2, RORA, SLC1A2, TNR, XKR4, CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, 및 TF 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 제제를 유효성분으로 포함하는 교모세포종 진단용 조성물을 제공하는 데 있다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당 업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하, 본원에 기재된 다양한 구체예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세사항, 예컨대, 특이적 형태, 조성물 및 공정 등이 기재되어 있다. 그러나, 특정의 구체예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구체예" 또는 "구체예"에 대한 본 명세서 전체를 통한 참조는 구체예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구체예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구체예에서" 또는 "구체예"의 상황은 반드시 본 발명의 동일한 구체예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구체예에서 어떠한 적합한 방법으로 조합될 수 있다.
명세서에서 특별한 정의가 없으면 본 명세서에 사용된 모든 과학적 및 기술적인 용어는 본 발명이 속하는 기술분야에서 당업자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가진다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 일 양태에 따르면, 본 발명은 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1(Neurexin 1), XKR4(XK Related 4), MAP2(Microtubule Associated Protein 2), SLC1A2(Solute Carrier Family 1 Member 2), MEG3(Maternally Expressed 3), TNR(Tenascin R),, NRCAM(Neuronal Cell Adhesion Molecule), PTPRZ1(Protein Tyrosine Phosphatase Receptor Type Z1), LUZP2(Leucine Zipper Protein 2), RORA(RAR Related Orphan Receptor A), PLP1(Proteolipid Protein 1), TF(Transferrin), MBP(Myelin Basic Protein), CERCAM(Cerebral Endothelial Cell Adhesion Molecule), TMEM144(Transmembrane Protein 144), PLXDC2(Plexin Domain Containing 2), FTL(Ferritin Light Chain), 및 LAMA2(Laminin Subunit Alpha 2) 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계;를 포함하는, 뇌암 기원세포의 분리 방법을 제공한다.
본 발명자들은 뇌암, 특히 유효한 치료제의 발굴이 어렵고 예후와 생존률이 매우 불량한 교모세포종의 발생 근원을 발굴하기 위하여 예의 연구 노력하였다. 그 결과, 뇌실하대(subventricular zone)에서 분리된 세포에서 유전자 발현 분석을 통해 교모세포종 기원세포(Oc1 및 Oc2)를 분리 및 정의함으로써, 본 발명을 완성하게 되었다.
본 명세서에서 용어 “뇌실하대(SVZ)”는 척추동물 뇌의 각 측뇌실의 외벽에 위치한 영역을 의미한다. 이 영역은 태아와 성인의 뇌 모두에 존재하며, 배아 생활에서 뇌실하대는 신경 발생 과정에서 분열하여 뉴런을 생성하는 신경 전구 세포를 포함하는 2차 증식 영역을 나타낸다.
본 명세서에서 용어 “뇌암(brain tumor)”은 두개골 안에서 만들어지는 고(액)체 신생물로, 뇌나 척주관 안의 종양을 의미하며, 뇌질과 뇌막에 발생하는 종양의 총칭이다. 이는 뇌세포에서 자란 종양. 혈관을 비롯 신경, 뇌막 등에서 발생하여 두개골 내에서 발육하는 신생물을 모두 포괄한다. 증상은 생기는 부위에 따라 다른데, 보편적으로 두통, 구토, 팔다리의 운동 이상(경련, 마비), 시각 장애 증세를 보인다.
본 발명의 구체적인 구현예에 따르면, 상기 뇌암 기원세포는 교모세포종(glioblastoma, GBM)으로 발전되는 세포인 것인, 분리 방법이다.
본 명세서에서 용어 “교모세포종(glioblastoma; GBM)”은 교종의 일종으로 뇌에서 일차적으로 발생하는 가장 흔하고 심한 형태의 종양을 의미한다. 처음 발생하는 증상과 징후는 질병에 특이적이지 않고 두통, 성격변화, 또는 구역질 등 뇌졸중과 유사한 증상일 수 있다. 빠른 증상악화가 있으며 의식불명에 이를 수 있다.
본 발명의 구체적인 구현예에 따르면, 상기 뇌실하대로부터 분리된 세포에서 7번 염색체의 복제 수 증가를 확인하는 단계;를 추가로 포함하는, 분리 방법이다.
본 발명의 다른 양태에 따르면, 본 발명은 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 제제를 유효성분으로 포함하는, 뇌암 발병 예측용 조성물을 제공한다.
본 명세서에서 용어“예측”은 한 객체가 특정 질병 또는 질환이 현재 중증으로 진행되었거나 또는 향후 중증으로 진행될 위험이 있는지 여부를 중증도와 유의한 상관관계를 가지는 표지자를 기반으로 평가하는 것을 의미한다.
본 명세서에서 용어“예측용 조성물”은 대상체의 교모세포종이 발명했거나 향후 발병될 위험성을 가지는지를 예측하기 위해 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 제제를 포함하는 통합적인 혼합물(mixture) 또는 장비(device)를 의미하며, 이에“예측용 키트”로 표현될 수도 있다.
본 발명의 구체적인 구현예에 따르면, 상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질의 발현량을 측정하는 제제는 상기 단백질에 특이적으로 결합하는 앱타머, 항체 또는 이의 항원 결합 단편인 것인, 조성물일 수 있다.
본 발명에 따르면, 본 발명의 상기 단백질을 항원-항체 반응을 이용한 면역분석(immunoassay) 방법에 따라 검출하여 개체의 교모세포종을 분석하는 데 이용될 수 있다. 이러한 면역분석은 종래에 개발된 다양한 면역분석 또는 면역염색 프로토콜에 따라 실시될 수 있다.
예를 들어, 본 발명의 방법이 방사능면역분석 방법에 따라 실시되는 경우, 방사능동위원소(예컨대, C14, I125, P32 및 S35)로 표지된 항체가 이용될 수 있다. 본 발명에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질을 특이적으로 인식하는 항체는 폴리클로날 또는 모노클로날 항체이며, 보다 구체적으로는 모노클로날 항체이다.
본 발명의 항체는 당업계에서 통상적으로 실시되는 방법들, 예를 들어, 융합 방법, 재조합 DNA 방법 또는 파아지 항체 라이브러리 방법에 의해 제조될 수 있다.
상술한 면역분석 과정에 의한 최종적인 시그널의 강도를 분석함으로써, 교모세포종을 예측할 수 있다. 즉, 개체의 시료에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질에 대한 시그널이 정상 시료 보다 약하거나 강하게 나오는 경우에는 교모세포종의 위험도가 증가된 것으로 판단된다.
본 명세서에서 용어“항원 결합 단편(antigen binding fragment)”은 면역글로불린 전체 구조 중 항원이 결합할 수 있는 폴리펩티드의 일부를 의미하며, 예를 들어 F(ab')2, Fab', Fab, Fv 및 scFv를 포함하나, 이에 제한되는 것은 아니다.
본 명세서에서 용어, "특이적으로 결합(specifically binding)" 은 "특이적으로 인식(specifically recognizing)"과 동일한 의미로서, 항원과 항체(또는 이의 단편)가 면역학적 반응을 통해 특이적으로 상호작용하는 것을 의미한다.
본 발명은 항체 대신 본 발명의 상기 마커 단백질에 특이적으로 결합하는 앱타머를 이용할 수도 있다. 본 명세서에서 용어“앱타머”는 특정 표적물질에 높은 친화력과 특이성으로 결합하는 단일 줄기의(single-stranded) 핵산(RNA 또는 DNA) 분자 또는 펩타이드 분자를 의미한다.
발명의 구체적인 구현예에 따르면, 상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질을 코딩하는 유전자의 발현량을 측정하는 제제는 상기 유전자에 특이적으로 결합하는 프라이머 또는 프로브인 것인, 조성물일 수 있다.
본 명세서에서, 용어 “핵산 분자”는 DNA(gDNA 및 cDNA) 그리고 RNA 분자를 포괄적으로 포함하는 의미를 갖으며, 핵산 분자에서 기본 구성 단위인 뉴클레오타이드는 자연의 뉴클레오타이드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다.
본 명세서에서 사용되는 용어“프라이머”는 핵산쇄(주형)에 상보적인 프라이머 연장 산물의 합성이 유도되는 조건, 즉, 뉴클레오타이드와 DNA 중합효소와 같은 중합제의 존재, 적합한 온도와 pH의 조건에서 합성의 개시점으로 작용하는 올리고뉴클레오타이드를 의미한다. 구체적으로는, 프라이머는 디옥시리보뉴클레오타이드 단일쇄이다. 본 발명에서 이용되는 프라이머는 자연(naturally occurring) dNMP(즉, dAMP, dGMP, dCMP 및 dTMP), 변형 뉴클레오타이드 또는 비-자연 뉴클레오타이드를 포함할 수 있으며, 리보뉴클레오타이드도 포함할 수 있다.
본 발명의 프라이머는 타겟 핵산에 어닐링 되어 주형-의존성 핵산 중합효소에 의해 타겟 핵산에 상보적인 서열을 형성하는 연장 프라이머(extension primer)일 수 있으며, 이는 고정화 프로브가 어닐링 되어 있는 위치까지 연장되어 프로브가 어닐링 되어 있는 부위를 차지한다.
본 발명에서 이용되는 연장 프라이머는 타겟 핵산, 예를 들어 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 유전자의 특정 염기서열에 상보적인 혼성화 뉴클레오타이드 서열을 포함한다. 용어“상보적”은 소정의 어닐링 또는 혼성화 조건하에서 프라이머 또는 프로브가 타겟 핵산 서열에 선택적으로 혼성화할 정도로 충분히 상보적인 것을 의미하며, 실질적으로 상보적(substantially complementary)인 경우 및 완전히 상보적(perfectly complementary)인 경우를 모두 포괄하는 의미이며, 구체적으로는 완전히 상보적인 경우를 의미한다. 본 명세서에서 용어“실질적으로 상보적인 서열”은 완전히 일치되는 서열뿐만 아니라, 특정 서열에 어닐링하여 프라이머 역할을 할 수 있는 범위 내에서, 비교 대상의 서열과 부분적으로 불일치되는 서열도 포함되는 의미이다.
프라이머는, 중합제의 존재 하에서 연장 산물의 합성을 프라이밍시킬 수 있을 정도로 충분히 길어야 한다. 프라이머의 적합한 길이는 다수의 요소, 예컨대, 온도, pH 및 프라이머의 소스(source)에 따라 결정되지만 전형적으로 15-30 뉴클레오타이드이다. 짧은 프라이머 분자는 주형과 충분히 안정된 혼성 복합체를 형성하기 위하여 일반적으로 보다 낮은 온도를 요구한다. 이러한 프라이머의 설계는 타겟 뉴클레오티드 서열을 참조하여 당업자가 용이하게 실시할 수 있으며, 예컨대, 프라이머 디자인용 프로그램(예: PRIMER 3 프로그램)을 이용하여 할 수 있다.
본 명세서에서 용어“프로브”는 특정 뉴클레오타이드 서열에 혼성화될 수 있는 디옥시리보뉴클레오타이드 및 리보뉴클레오타이드를 포함하는 자연 또는 변형되는 모노머 또는 결합을 갖는 선형의 올리고머를 의미한다. 구체적으로, 프로브는 혼성화에서의 최대 효율을 위하여 단일가닥이며, 더욱 구체적으로는 디옥시리보뉴클레오타이드이다. 본 발명에 이용되는 프로브로서, 본 발명의 마커 유전자의 특정 염기서열에 완전하게(perfectly) 상보적인 서열이 이용될 수 있으나, 특이적 혼성화를 방해하지 않는 범위 내에서 실질적으로(substantially) 상보적인 서열이 이용될 수도 있다. 일반적으로, 혼성화에 의해 형성되는 듀플렉스(duplex)의 안정성은 말단의 서열의 일치에 의해 결정되는 경향이 있기 때문에, 타겟 서열의 3’-말단 또는 5’-말단에 상보적인 프로브를 사용하는 것이 바람직하다.
발명의 구체적인 구현예에 따르면, 상기 뇌암은 교모세포종(glioblastoma, GBM)인 것인, 조성물일 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 제제를 유효성분으로 포함하는 뇌암 발병 예측용 조성물을 포함하는, 뇌암 발병 예측용 키트를 제공한다.
발명의 구체적인 구현예에 따르면, 상기 키트는 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포를 대상으로 사용되는 것인, 키트일 수 있다.
발명의 구체적인 구현예에 따르면, 상기 뇌실하대로부터 분리된 세포는 7번 염색체의 복제 수가 증가된 세포인 것인, 키트일 수 있다.
발명의 구체적인 구현예에 따르면, 상기 키트는 RT-PCR 키트, DNA 칩 키트, ELISA 키트, 단백질 칩 키트, 래피드(rapid) 키트 또는 MRM(Multiple reaction monitoring) 키트인 것인, 키트일 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 목적하는 개체의 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 단계;를 포함하는, 뇌암의 발병 예측 방법을 제공한다.
발명의 구체적인 구현예에 따르면, 상기 뇌실하대로부터 분리된 세포에서 7번 염색체의 복제 수 증가를 확인하는 단계;를 추가로 포함하는, 예측 방법일 수 있다.
발명의 구체적인 구현예에 따르면, 상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, 및 RORA로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 증가된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법일 수 있다.
발명의 구체적인 구현예에 따르면, 상기 LUZP2, RORA, SLC1A2, TNR, 및 XKR4로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 증가된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법일 수 있다.
발명의 구체적인 구현예에 따르면, 상기 PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 감소된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법일 수 있다.
발명의 구체적인 구현예에 따르면, 상기 CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, 및 TF로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 감소된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법일 수 있다.
발명의 구체적인 구현예에 따르면, 상기 뇌암은 교모세포종(glioblastoma, GBM)인 것인, 예측 방법일 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 (a) 제 1항의 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 단계; 및, (b) 상기 뇌암 기원세포가 사멸된 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 단계;를 포함하는 뇌암 예방용 후보물질의 스크리닝 방법을 제공한다.
본 발명의 스크리닝 방법을 언급하면서 사용되는 용어“후보물질”은 뇌암 예방 효과를 타진하기 위한 목적으로 미지의 시료에 첨가되어 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 활성 또는 발현량에 영향을 미치는지 여부를 검사하기 위하여 스크리닝에서 이용되는 물질을 의미한다. 상기 시험물질은 화합물, 뉴클레오타이드, 펩타이드 및 천연 추출물을 포함하나, 이에 `제한되는 것은 아니다. 시험물질을 처리한 생물학적 시료에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량 또는 활성을 측정하는 단계는 당업계에 공지된 다양한 발현량 및 활성 측정방법에 의해 수행될 수 있다.
본 발명의 또 다른 양태에 따르면, 본 발명은 (a) 제 1항의 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 단계; (b) 상기 뇌암 기원세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 재확인하는 단계; 및, (c) 상기 단백질, 또는 유전자의 발현 정도가 후보물질 처리 전과 비교하여 유의하게 달라진 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 단계;를 포함하는 뇌암 예방용 후보물질의 스크리닝 방법을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 뇌실하대(subventricular zone; SVZ)에 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, 및 RORA로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 억제제를 투여하는 단계;를 포함하는 뇌암의 예방 또는 치료 방법을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 뇌실하대(subventricular zone; SVZ)에 PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 활성제를 투여하는 단계;를 포함하는 뇌암의 예방 또는 치료 방법을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, 및 RORA로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 억제제를 유효성분으로 포함하는 뇌암의 예방 또는 치료용 약학조성물로서, 상기 약학조성물은 뇌실하대(subventricular zone; SVZ)에 투여되는 것을 특징으로 하는 약학조성물을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 활성제를 유효성분으로 포함하는 뇌암의 예방 또는 치료용 약학조성물로서, 상기 약학조성물은 뇌실하대(subventricular zone; SVZ)에 투여되는 것을 특징으로 하는 약학조성물을 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 목적하는 개체의 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 측정부;를 포함하는 뇌암의 발병 예측 장치를 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계;를 포함하는 뇌암 기원세포의 분리 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 처리부; 및, 상기 뇌암 기원세포가 사멸된 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 판단부;를 포함하는 뇌암 예방용 후보물질의 스크리닝 장치를 제공한다.
본 발명의 또 다른 양태에 따르면, 본 발명은 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계;를 포함하는 뇌암 기원세포의 분리 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 처리부; 상기 뇌암 기원세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 재확인하는 측정부; 및, 상기 단백질, 또는 유전자의 발현 정도가 후보물질 처리 전과 비교하여 유의하게 달라진 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 판단부;를 포함하는 뇌암 예방용 후보물질의 스크리닝 장치를 제공한다.
본 발명의 특징 및 이점을 요약하면 다음과 같다:
(a) 본 발명은 뇌실하대로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계를 포함하는, 뇌암 기원세포의 분리 방법을 제공한다.
(b) 본 발명자들은 뇌암, 특히 유효한 치료제의 발굴이 어렵고 예후와 생존률이 매우 불량한 교모세포종에 있어서, 상기 인자들이 신뢰도 높은 진단 표지자로 기능할 뿐 아니라, 이들의 발현 조절을 통해 종양을 억제하여 난치성 질환인 교모세포종 환자의 생존률을 현저히 개선하는 근본적인 치료제 조성물로 유용하게 이용될 수 있다.
도 1은 교모세포종 기원세포를 찾기 위한 인체 조직 기반 식별 연구에 관한 것이다. 트랜스크립텀의 차세대 시퀀싱은 인간 조직으로부터의 염색체 획득 및 손실과 같은 염색체 수준의 구조적 변화 패턴을 예측하기 위해 사용될 수 있다. 인간 뇌의 심실하부 샘플인 줄기세포 틈새를 이 연구에 포함시켰다. 벌크 조직 및 세포 수준(단세포 및 단핵) RNA 염기서열 분석과 더불어 염색체 패턴 식별을 위한 전체 염기서열 분석 데이터(SRP145073)를 포함하였다.
도 2는 대량 조직 RNA 배열 샘플에 의해 계산된 염색체 복사 번호 패턴에 대한 것으로, 샘플 퍼센티지는 7번 염색체와 10번 염색체의 패턴으로 파이 차트에 요약된다.
도 3은 단핵 RNA 배열 기반 세포 식별에 관한 것으로, 두 종류의 세포는 뚜렷한 유전자 발현 패턴을 보였으며, 기원세포 1과 기원세포 2로 라벨이 붙여졌다. 7번 염색체 q-arm 획득과 10번 염색체 손실의 세포 수준 염색체 패턴을 확인한 후, 7번 염색체 q-arm 획득만을 나타내는 세포를 GBM의 기원세포 1(origin-cell 1; Oc1), 7번 염색체 q-arm 획득 및 10번 염색체 손실을 나타내는 세포를 GBM의 기원세포 2(origin-cell 2; Oc2)라고 정의하였다.
도 4는 7번 염색체와 10번 염색체의 변형 패턴을 가진 종양-전립자 프로파일링 전략에 대해 나타내며, 복사 번호(copy number) 패턴과 두 오리진 세포의 세포 시그니처를 교아종 종양 세포로 변환하기 전에 취약한 세포를 찾기 위한 마커 도구로 가정하였다.
도 5는 통합된 인체 조직 유래 데이터로부터 두 가지 유형의 기원지가 발견되었다(총 세포 n = 59,417). 기원세포1(갈색) 및 기원세포2(노란색)는 신경전구세포군(연청색), 뉴런양세포군(회색), 세포주기활성세포군(파란색), 간엽세포군(빨간색)으로 이루어진 종양세포의 주클러스터에 인접해 있다. 본 발명은 종양의 주성단에 초점을 맞췄다.
도 6은 종양이 없는 뇌실하대 샘플(왼쪽, 대조군 질병의 종양이 없는 뇌실하대 샘플, 교모세포종에서 얻은 종양이 없는 뇌실하대 샘플) 또는 종양 관련 샘플(오른쪽, 종양 -교모세포종 또는 교모세포종 종양 조직의 침윤된 뇌실하 구역 샘플)에 대해 나타냈다.
도 7은 단핵 환자 GN1에 초점을 맞췄고 두 가지 세포 유형인 기원세포 1과 2는 심실 하부와 종양에서 발견되었다.
도 8은 무종양 심실하부 샘플에서 1 카피 획득(주황색), 2 카피 획득(빨간색) 또는 1 카피 손실(파란색)의 염색체 획득 이벤트를 검사한다.
도 9는 일치하는 종양 샘플은 기원세포 1 클러스터가 기원세포 2 및 다른 세포보다 염색체 중립 상태에 있을 가능성이 높다는 것을 보여준다.
도 10은 환자 GN1의 세포는 기원세포 1에서 기원세포 2로의 염색체 7q 암의 누적 복사 번호를 나타낸다.
도 11은 개별 세포 수준에서 두 가지 유형의 염색체 변경을 비교하면 염색체 사본 수 변경의 순서가 밝혀졌다. 왼쪽, 염색체 7q 다음에는 염색체 7p가 증가한다. 오른쪽, 염색체 7q 획득 이후에 염색체 10 손실 사건이 발생한다.
도 12는 세포 유형별 리간드 리셉터 시그널링의 커넥텀에 대해 나타낸다. 맨 위에, 종양 침윤이 없는 교아세포종의 무종양 심실하부 샘플이 있다. 아래쪽, 교아세포종 종양 조직이며, 모드 특이적 수용체와 배위자 유전자에 의해 다른 모드가 정의된다. 줄기세포 모드는 3개의 수용체(CD44, ITGA4, NRCAM)와 4개의 리간드(BCAN, CD14, LPL, VIM)로 정의된다.
도 13은 유전자에 의한 커넥텀 엣지웨이트 기원세포 1(갈색), 기원세포 2(노란색) 및 순환세포(파란색)는 심실하부 검체와 종양 검체에 대해 선택되었다. 상단의, 심실하부 샘플의 상호연결 유전자의 순환 플롯을 나타내며, 맨 아래, 교아종 종양 샘플의 서로 연결된 유전자의 순환 플롯을 나타낸다.
도 14는 기원세포, 순환세포, 암줄기세포의 관점에서 두 가지 유형의 교아종 종양을 검사한다. 교아종 종양 샘플은 종양 조직에서 TERT 프로모터의 돌연변이 상태에 따라 하위분류된다. 일치하는 심실하부 샘플은 모종의 TERT 프로모터 돌연변이 상태에 따라 라벨링되며, 세포 존재는 단세포 수준의 RNA 배열 데이터에서 추출한 4개의 유전자 세트(기원세포 1, 기원세포 2, 사이클 세포 및 암 줄기세포 24)를 벌크 조직 RNA 배열 데이터 세트의 발현 값에 적용하여 예측되었다(본 분석에 TERT 프로모터 사용 가능한 데이터 샘플 사용). 왼쪽, TERT 프로모터 야생형 교아세포종 종양과 환자가 심실하부 샘플과 일치한다. TERT 프로모터 돌연변이 교아세포종 종양과 환자가 심실하부 샘플과 일치한다. student t-test, <0.001**, <0.01**, 유의하지 않은 결과는 표시되지 않는다.
도 15는 CRISPR/Cas9 기반의 유전자 편집 기술의 마우스 세포 모델에 관한 것으로 EGFRvii 유전자의 유도로 Trp53과 Pten에서 유전자 돌연변이를 가지고 있는 생쥐의 심실하부 세포를 분리하였다. 심실하부의 돌연변이 세포는 돌연변이 도입 후 약 11~16주 후에 생쥐 교아종 종양으로 변화한다. 세 가지 유형의 세포가 라벨로 표시되어 비교되었다.
도 16은 세포 특이적 마커를 사용하여 세 가지 유형의 세포에서 세포의 하위 집단을 식별하였다. 다른 세포 마커는 이 세 가지 유형의 세포에 대해 음성이었다.
도 17은 종양 세포의 종양 발생에 대한 것으로, 다른 세포에서 종양 발생은 발견되지 않았다. 즉, 유전자 수정 없이 대측방 심실 하부에서 분리된 세포 또는 CRISPR/Cas9 편집 심실 하부에서 분리된 원세포였다.
도 18은 세 가지 세포 유형의 개별 세포 통합 지도에 대한 것으로, 왼쪽, 혼합된 세 가지 세포 유형을 나타내고, 오른쪽, 세 가지 세포 유형에서 식별된 네 가지 세포 상태를 보여준다.
도 19는 3가지 마우스 세포 유형에서 4가지 세포 상태의 정량적 비교에 대한 것이다.
도 20은 유전자 모듈 점수는 3가지 마우스 세포 유형의 단세포 RNA 시퀀싱으로 계산되었다. 유전자 모듈 점수는 지정된 세포 상태(임의 상대 단위)의 상대 세포 수를 예측하는 데 사용되었다. 또한 인간 기원세포 1 특정 유전자를 마우스 호몰로그 유전자로 변환하여 마우스 세포 점수를 산출하였다. 마우스 세포 점수에는 인간 기원세포 2 특정 유전자를 이용한다.
도 21은 단세포 RNA 배열에서 염색체 변화가 계산되었으며, 세포 상태 맵에서 가장 중요한 변화가 언급되었다. 7번 염색체 앞부분과 뒷부분은 3개의 마우스 세포 모델에서 염색체 변화 패턴이 달랐음을 확인하였다.
도 22는 교아종 발생 세포 식별을 위해 성인 인간의 뇌에서 심실하부 샘플을 수집한 것을 나타낸다. 인간 연구 파트의 개요로서, 교아세포종 기원세포의 식별을 위해 새로운 데이터 세트와 이전에 공개된 데이터 세트(SRP145073)2를 사용하였다.
도 23은 환자 검체의 단일 세포 수준 RNA 염기서열 분석 번호를 1부터 14까지 지정했지만 대량 조직 수준 RNA 염기서열 분석 환자 검체는 지정하지 않았고, 환자 사례 4는 검체 준비 품질 때문에 제외되었다.
도 24는 수술 중 성인의 뇌에서 심실하부 샘플을 준비하는 과정을 간단한 그래픽으로 요약한 것이다.
도 25 내지 도 27은 환자의 자기공명 의료 영상과 심실하부의 샘플링 위치를 나타낸다. 도 25는 교아세포종(GN으로 시작하는 라벨)이 있는 단일 핵 RNA 시퀀싱 환자 사례를 나타내며, 모든 심실하부 검체는 병리학적 평가에 의해 종양에 의해 오염되지 않았다. 즉, 단핵 RNA가 대조군 질환의 환자(CN으로 시작하는 라벨)를 시퀀싱하는 것이다. 시료에서 종양세포 오염은 발견되지 않았다. 도 27은 교아세포종 환자의 단세포 RNA 염기서열 분석에 관한 것으로 두 개의 심실 영역 검체(GC11 및 GC13)에서 단세포 RNA 시퀀싱에 실패하였다. 종양 혼합 심실하부 샘플도 대조군 그룹(GC12)으로 연구에 포함되었다.
도 28은 벌크 조직 RNA 배열 및 벌크 조직 전체 엑솜 배열 데이터에서 얻은 심실 부위의 기원세포 증거를 나타낸다. 이는 심실하부 그룹의 유전자 발현 비교에 대한 것으로, 좌측 교아세포종의 무종양 심실하부를 제어질환과 비교하였다. 우측, 제어 질환보다 무종양 심실 하부에서 고조절된 유전자의 농축 분석 결과를 설정하였다.
도 29는 심실하부와 교아종양을 비교한 유전자 세트 농축 분석을 나타낸 것으로, 교아세포종의 심실하부에서 상향 조절된 유전자에서 도출된다. 제어 질환의 심실하부는 제외되었다.
도 30은 SRP145073의 전체 엑솜 배열 데이터셋에서 성인 인간 뇌의 무종양 심실 영역의 염색체 패턴, 변종 대립 유전자 빈도 및 돌연변이 시간을 나타낸다. 환자 P245 사례에서 7번 염색체의 q-arm 측에서 카피 번호 획득의 염색체 패턴을 발견하였다. 염색체 패턴은 심실하부에서 종양으로 단방향 공유 돌연변이로 식별된 심실하부 검체에서 비교적 뚜렷하였다(P520, P276, P26, P499). 환자 검체(P37, P396, P881, P246)에서 염색체 7 q-arm이 확실히 증가하지 않는 것을 확인하였다. 모든 염색체를 통한 카피 번호의 염색체 패턴에 관한 것으로, 이전에 발표된 알고리즘을 사용하여 대량 조직 RNA 시퀀싱에서 계산되었다. 모든 카피 번호 결과가 전체 샘플에 걸쳐 조정되고 정규화된다. 제어 질환의 무종양 심실하대(n = 9)를 가진 카피 번호 계산에 참조 그룹을 사용하였다.
도 31은 전체 염기서열 분석 데이터 및 대량 조직 수준의 RNA 염기서열 분석 데이터에서의 염색체 패턴 검증을 나타낸 것으로, 이 두 가지 방법이 한계를 보여주기 때문에, 추가로 단세포 수준 분석을 준비하였다.
도 32는 모든 환자 검체 내 기원세포의 특정 유전자 세트 및 기원세포의 환자 고유 비율(도 5 내지 도 6 관련)에 관한 것이다. 이는 기원세포 1의 유전자 시그니처의 네트워크 플롯을 나타내며, 유전자 세트의 농축 분석은 교토 유전자와 게놈 백과사전(KEGG)에 근거해 이루어졌으며, 상위 100개의 유전자로 기원세포 1을 정의하였다. 유전자는 환자 GN1의 통합된 단일 핵 RNA 배열 데이터 세트(종양이 없는 심실하부 및 교아세포종)에서 추출되었다.
도 33은 기원세포 2의 네트워크 플롯을 나타내며, 기원세포 2의 상위 100개 유전자는 통합된 단일 핵 RNA 시퀀싱 환자 샘플 GN1에서 추출되었다.
도 34는 세포 유형을 정의하는 유전자를 추출하고 히트맵에 정규화된 발현을 묘사하였다. 노란색은 높은 발현, 보라색은 낮은 발현을 나타낸다. 분석을 위해 모든 단세포 수준의 RNA 배열 데이터 세트가 통합되었으며, 프로세스 전체에 리보솜 단백질 유전자 또는 미토콘드리아 유전자를 포함시켰고 이러한 유전자는 유전자 세트 추출 과정 전에 제거되었다. 세포 유형 백분율은 개별 환자에 의해 요약되며, 단핵 RNA 배열 시료 GN1은 교아세포종 종양과 교아세포종의 무종양 심실하부로 구성된다. 기원세포 1, 2는 각각 갈색, 노란색으로 표기된다. 세포 백분율 그래프는 단일 핵 RNA 배열 데이터 세트(GN-dataset)의 올리고덴드로사이트(연갈색)이 우위 발현된다. 단세포 RNA 배열 데이터 세트(GC-dataset)에서 인간 조직 샘플은 대부분 올리고덴드로사이트(연갈색)가 아닌 신경원조세포(연청색)에 의해 우위 발현된다. 이들 시료 중 교아종(GC14)의 종양혼합 심실하대(GC12 및 GC13)는 2개의 단세포 RNA 염기서열분석 기반의 무종양 심실하대(GC12 및 GC13)보다 올리고덴드로사이트(연갈색)의 비율이 낮다. 제어 질환(CN8, CN9 및 CN10)의 무종양 심실 영역 샘플은 올리고덴드로사이트(연갈색)와 마이크로글리아(녹색)에 의해 우위 발현된다. 모든 샘플에서 두 가지 유형의 기원세포가 식별되었다. 7번 염색체 p-arm, 7번 q-arm 및 10번 염색체의 염색체 패턴은 환자 및 샘플 유형별로 요약되어 있고, 7명의 환자 샘플이 위에서 아래로 나열되며, 샘플 유형은 왼쪽에서 오른쪽으로 나뉜다. 뇌실하 영역 샘플(연한 파란색) 및 종양 샘플(연한 빨간색)을 나타내며, 7개의 단일 핵 RNA 시퀀싱 환자 사례가 표시된다. 개별 세포 위치는 도 5에서 파생된다. 패널은 조직 유형(뇌실하 영역 또는 교모세포종 종양), 세포 유형(기원세포 1, 기원세포 2, 신경 전구 유사 세포 또는 중간엽 세포)에 따른 세포 위치 지도 및 염색체 패턴(염색체 7 p-암, 염색체 7 q-암 또는 염색체 10)을 나타낸다. 전반적으로, 종양 샘플은 7p-arm 및 7q-arm(GN5의 교모세포종 제외)의 복제 수 증가의 염색체 패턴을 보여주며, GN2 및 GN5를 제외한 종양 샘플에서 10번 염색체 손실이 발견되었다. 종양이 없는 뇌실하 영역 샘플에서 두 가지 유형의 기원세포가 발견된다. 또한, 염색체 7 q-arm 복제수(copy number) 증가에 의해 영향을 받는 세포는 샘플의 10번 염색체 손실 이벤트보다 종양이 없는 뇌실하대 샘플의 2개 기원세포 그룹에 풍부하다. 즉, GN7의 기원세포 제외 뇌실하 영역 샘플: 염색체 패턴 7 p-arm, 7 q-arm 및 염색체 10은 염색체 패턴의 영향을 받는 소수의 세포와 비교할 수 없다. 종양이 없는 뇌실하 영역 및 교모세포종 종양 샘플에 대한 위의 설명을 요약하면 두 가지 유형의 기원세포가 염색체 패턴의 중심에 있다.
도 35는 단일 세포 수준의 RNA 시퀀싱의 모든 샘플에서 기원세포의 유전자 시그니처가 발견되었으며, 기원세포 1 루트의 유사시간(pseudotime)은 초기 단계에서 기원세포 2를 나타냈다. 이는 기원세포 1을 시작점 또는 루트로 사용하는 유사시간 궤적 플롯을 나타낸다. 왼쪽, 단일 핵 RNA 시퀀싱(GN1, GN2, GN3, GN5, GN6 및 GN7) 및 단일 세포 RNA 시퀀싱 데이터(GC14)의 종양이 없는 뇌실하 영역 샘플에 통합된 궤적 플롯을 나타내며, 보라색은 루트가 초기 이벤트인 경우 루트에서 분화된 초기 세포, 노란색은 루트가 초기 이벤트인 경우에만 루트에서 더 분화된 세포를 나타낸다. 오른쪽, 궤적 플롯은 모든 단일 세포 수준 종양 샘플(GN1, GN2, GN3, GN5, CN6, CN7, GC11, GC12, GC13 및 GC14)을 기반으로 한다.
도 36 및 도 37은 뇌실하 영역 세포와 종양 세포는 각 환자에 의해 서브샘플링되고, 인위적으로 기원세포 1을 루트로 선택하고 기원세포 2 그룹이 궤적 분석에서 비교적 초기 세포로 표시되는 것을 발견하였다. 도 36은 단일 핵 RNA 시퀀싱 데이터 세트의 궤적 플롯에 관한 것으로, 아래의 단일 세포 RNA 시퀀싱 데이터 세트와 달리 뉴런 유사 클러스터(진한 회색)가 환자 GN2, GN3 및 GN5에서 기원세포 1의 다운스트림 아래에 있음을 발견하였다. 도 37은 단일 세포 RNA 시퀀싱 데이터 세트의 궤적 플롯을 보여주며, 환자 GC11은 기원세포 1 또는 2 세포 클러스터를 가로지르는 궤적선이 없다는 것을 확인하였다.
도 38은 기원세포 관련 유전자 시그니처, 샘플에서의 농축, 벌크 조직 RNA 시퀀싱의 세포 식별 점수를 기반으로 한 교모세포종 환자 생존에 미치는 영향에 대한 것이다. 이는 세 가지 유형의 샘플에 대한 대량 조직 수준 RNA 시퀀싱 데이터에서 기원세포 1 및 2(세포 식별 점수)의 동일성 추정(대조군 질병의 종양이 없는 뇌실하 영역(n = 9)), 종양이 없는 뇌실하 교모세포종 영역(n = 40) 및 교모세포종 종양 샘플(n = 126)을 나타낸다. 왼쪽, 기원세포 1은 교모세포종 환자 GN1의 종양이 없는 뇌실하 영역의 기원세포 1에서 파생된 유전자 세트로 추정되었다. 오른쪽, 기원세포 2는 교모세포종 환자 GN1의 종양이 없는 뇌실하 영역의 기원세포 2의 유전자 세트로 추정되었다.
도 39 및 도 40은 두 개의 기원세포의 세포 식별 점수에 의한 교모세포종 수술 후 환자 생존에 대해 나타낸다. 도 39는 심실하 영역 샘플에서 기원세포 점수에 의한 환자 생존을 나타내며, 도 40은 종양 조직에서 기원세포 점수에 의한 환자 생존을 나타낸다. 서로 다른 유전자 세트의 세포 식별 점수는 히트맵에 요약되어 있다. 시그니처 지정 유전자를 찾기 위해 공개 데이터 세트 또는 공개된 유전자 세트를 사용하였다. 히트맵은 그룹(Brain cell type group26, Glioblastoma MGH group27, Columbia group28, 및 본 연구의 origin-cell 유형)으로 구분되며, subgroup signature는 Euclidean distance로 클러스터링되었다.
도 41 및 도 42는 시그니처 간의 상호 상관은 세포 식별 점수의 내적과 함께 계산되었으며, 빨간색은 서명 간의 더 높은 상관 관계를 나타내고, 파란색은 서명 간의 낮은 상관 관계를 의미한다. 도 41은 교모세포종의 종양이 없는 뇌실하 영역 샘플의 내부 제품 히트맵(n = 40)을 나타내며, 도 42는 모든 종양 샘플의 내부 제품 히트맵(n = 126)을 나타낸다.
도 43은 CRISPR/Cas9 기반 돌연변이 유발 마우스 뇌의 뇌실하 영역에서 기원세포가 확인되었으며, 분리된 기원세포는 뇌 동종이식 모델에서 비종양유발성임을 확인하였다. 이는 이전에 발표된 종양억제제 돌연변이와 EGFRvII 증폭을 가진 CRISPR/Cas9 기반 게놈 편집 마우스를 생성하는 방법 요약에 관한 것으로, 플라스미드의 전기천공 후 마우스 뇌의 심실하 영역에 tdTomato 양성세포(빨간색)를 생성한다. 4-14주 후, 마우스 뇌섹션은 심실하부에서 피질하 영역으로 이동하는 세포를 보여준다. 전기천공 후 14~23주 후에 종양세포 또는 생쥐 교아세포종으로 표시된 괴사를 수반하는 종양을 발견할 수 있었다.
도 44는 마우스 뇌의 관상 섹션의 대표적인 시계열 이미지가 정렬됨을 나타낸다. 상단, 공초점 이미지(빨간색: tdTomato 양성 세포), 하단, H&E 이미지. 스케일 바: 1mm. 종양 형성 동안 개념적 시간 창은 기원세포와 종양 세포(심실하 영역에서 이동한 종양 세포)의 분리에 사용할 수 있다.
도 45는 실험에 사용된 세포가 예시된 개념적 위치를 의미한다. 기원세포는 플라스미드가 삽입된 tdTomato 양성 세포이며, 종양 세포는 플라스미드가 삽입된 tdTomato 양성 세포이다.
도 46은 구형 배양 조건에서 포획된 세포의 대표적인 현미경 이미지를 나타낸다. 스케일 바: 200μm. BF, 명시야; tdTomato 필터: 빨간색은 tdTomato 양성을 나타낸다.
도 47은 세 가지 유형의 세포에 대한 해부학 기반 그림을 보여준다.
도 48은 마우스 뇌 주입 실험은 각기 다른 위치, 뇌실하 영역 또는 종양에서 분리된 세포를 사용하여 종양 형성 가능성의 지표로 사용되었다. 이 세포를 쥐의 뇌에 주입했고, 종양 세포를 주입한 마우스는 생존율이 좋지 않은 반면, 기원세포를 주입한 마우스는 영향을 받지 않았다(도 17 관련). IVIS의 대표영상, 자기공명영상(9.4T), H&E, tdTomato(적색)를 이용한 공초점 영상을 제시한다. 스케일 바: 1mm.
도 49는 CRISPR/Cas9 기반의 기원세포(origin-cells)는 대조군 상태에서 종양 상태까지의 중간 세포 상태를 단계별로 전사체 변화와 염색체 변형 패턴으로 보여준다. 이는 히트맵(Heatmap)은 3개의 다른 세포(대조군 세포, 기원세포 및 종양 세포)의 통합된 단일 세포 RNA 시퀀싱 데이터에서 4가지 세포 상태(대조군, 초기, 후기 및 종양 상태)의 세포 상태 지정 유전자를 보여준다.
도 50은 희소돌기아교세포 전구체 세포 마커인 Cspg4의 유전자 발현을 상태 및 세포 유형별로 비교하였다.
도 51은 세 가지 유형의 세포에 대한 통합 데이터 세트에서 4가지 상태의 모듈 점수를 나타내며, 유전자 세트를 인간에서 마우스로 변환하고 각 세포 상태에 대한 점수를 계산하였다(도 20 관련).
도 52는 마우스 뇌실하 영역 세포 모델의 염색체 패턴이 요약되어 있다. 대조군 세포의 대조군 상태를 기준 세포군으로 사용하였다(도 21 관련).
도 53은 세 가지 세포 유형의 통합 데이터에 대한 의사 시간 궤적 플롯을 나타내며, 궤적은 4개 상태 중 통제 상태에 뿌리를 두고 있다.
도 54는 CRISPR/Cas9 기반의 기원세포는 신경구 형성(줄기)에서 우월한 능력을 보여주고 대조군 세포와 종양 세포보다 더 먼 거리(이동 능력)를 침범하는 것을 확인하였다. 이는 줄기 세포 표현형을 추정하기 위한 구 형성 분석을 나타낸다. 다른 마우스 뇌의 세포는 그래프에서 분리된다. 스케일 바: 200μm.
도 55는 72시간 동안 세포 속도를 추정하기 위한 세포 침입 분석이다. 다른 마우스 뇌의 세포는 그래프에서 분리된다. 스케일 바: 500μm.
도 56은 마우스의 뇌실하대 모델의 기원세포와 종양 세포 간의 분화 능력을 비교하였다. 10% 소태아혈청 함유 배지에서 2주간 배양한 후, 기원세포 및 종양 세포에서 GFAP를 발현하였다. 기원세포는 뉴런 마커인 TUBB3을 발현하였다. 스케일 바: 200μm.
도 57은 기원세포 1 및 2의 그래픽 요약을 나타내며, 두 가지 유형의 성인 뇌 줄기 세포는 단일 세포 및 단일 핵 RNA 시퀀싱으로 구별된다(뇌실하 영역 n = 11, 교모세포종 n = 10). 염색체 패턴, 코넥톰 패턴 및 CRISPR/Cas9 기원세포 모델의 일관성을 발견하였다.
본 발명은 교모세포종의 발생 기원에 대한 초기 진단과 이해 및 그에 기반한 새로운 치료법의 개발을 위한 연구로서, 뇌실하대(subventricular zone)에서 분리된 세포가 교모세포종 기원세포임을 확인하고, 7번 염색체 q-arm 획득만을 나타내는 세포를 GBM의 기원세포 1(origin-cell 1; Oc1), 7번 염색체 q-arm 획득 및 10번 염색체 손실을 나타내는 세포를 GBM의 기원세포 2(origin-cell 2; Oc2)라고 정의하였다. 기원세포 1은 TERT 프로모터 야생형 GBM에서 일반적이었고, 기원세포 2는 TERT 프로모터 돌연변이 GBM에서 더 흔하게 나타났다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예
[실험방법]
윤리적 승인(Ethical approval)
이 연구는 인간 샘플의 전사체 분석 분석을 위해 세브란스 병원의 기관 심사 위원회의 승인을 받았다(IRB 4-2012-0212, 4-2021-1319). 이 연구에 사용된 절차는 1964년 헬싱키 선언의 신조를 준수하였다.
인간 환자 조직
총 196개의 인체 조직 샘플이 본 연구에 포함되었다. 이들 샘플은 뇌종양에 대한 신경외과 진단 후 잔류 샘플로 획득되었다. 이러한 샘플은 175개의 대량 조직 수준 RNA 배열 데이터와 21개의 단세포 수준 RNA 배열 데이터(16개의 단핵 RNA 배열 데이터, 5개의 단세포 RNA 배열 데이터)로 구성된다. 대량 RNA 염기서열 데이터는 세 가지 검체 그룹으로 구성되어 있다. 교아세포종의 무종양 SVZ(n = 40), 교아세포종 종양 조직(n = 126), 제어 질환의 무종양 SVZ(n = 9).
인간 샘플의 단일 세포 수준 RNA 시퀀싱 코호트(Single-cell-level RNA sequencing cohort of human samples)
방법 및 준비 순서에 따라 단일 세포 수준 데이터베이스의 환자에 레이블을 지정했다. 단일 핵 RNA 시퀀싱으로 처리된 환자 샘플은 GN1, GN2, GN3, GN5, GN6, GN7, CN8, CN9 및 CN10으로 표시되었다. GN 환자 샘플은 교모세포종 환자 유래 샘플이고, CN 환자 샘플은 GBM이 아닌 환자의 종양이 없는 SVZ 샘플이다. 준비 과정에서 GN4 환자 샘플이 손실되어 샘플을 제외하였다. 단일 세포 RNA 시퀀싱 샘플은 GC11, GC12, GC13 및 GC14로 표시된다. 이 모든 샘플은 GBM 환자로부터 준비되었다. 이 샘플 중 2명의 다른 환자의 2개의 SVZ가 품질 관리 단계에서 실패했으며, 단 하나의 종양이 없는 SVZ와 하나의 종양이 혼합된 SVZ 샘플이 포함되었다.
인간 샘플의 단일 핵 분리(Single-nuclei isolation of human samples)
단일 핵은 이전 보고서에 따라 일부 수정에 따라 신선한 냉동 조직 샘플에서 분리되었다. 간단히 말해서, 조직 샘플을 용해 완충액[0.2% Triton X-100, 1X 프로테아제 억제제, 1mM DTT, 0.2U/μL RNAsin(Promega), PBS 중 2%(w/v) BSA]에서 메스로 분쇄하였다. 균질화된 조직 샘플을 40μm 스트레이너를 사용하여 여과한 다음 DAPI(0.5μg/ml; Sigma)를 첨가하여 핵을 염색하고, FACS(BD FACSAria™ 시스템, BD)로 분석할 20μm pluriStrainer Mini를 사용하여 자유 핵을 다시 여과하였다. DAPI 양성 집단의 단일 핵은 후속 snRNA 시퀀싱을 위해 분류되었다.
인간 샘플의 단일 세포 분리(Single-cell isolation of human samples)
SVZ 및 GBM 종양 샘플에 대해 단일 세포 해리를 수행하였다. 각각의 살아있는 조직은 수술 직후에 동결보존되었고, 단세포 해리는 대략 1개월 후에 수행되었다. 요약하면, 수술 당일 생조직에 90% FBS와 10% DMSO가 혼합된 냉동보존액을 첨가하고 잘게 썰어 액체질소에서 약 한 달 동안 보관하였다. 약 1개월 후, 각각의 동결보존된 샘플을 300g에서 원심분리하고 무혈청 DMEM으로 2회 세척하여 펠렛을 얻었다. 펠렛을 1M PIPES 용액을 포함하는 배지에서 가능한 한 잘게 자르고 파파인(Worthington Biochemical) 및 0.4 U/mL DNase I 용액(Worthington Biochemical)으로 37°C에서 13분 동안 처리하였다. 310g에서 10분 동안 원심분리한 후, 100㎕의 7mg/ml Ovomucoid(Sigma-Aldrich) 및 0.4U/mL DNase I을 세척 배지에 첨가하여 파파인 효소를 불활성화시켰다. 그 후, 22% Percoll 용액(MP Biomedicals)으로 Percoll gradation을 사용하여 수초 및 파편을 제거하고, 594g에서 원심분리하여 상청액을 제거하여 최종 세포 펠렛을 얻었다. 펠렛층의 세포가 적혈구(RBC)를 포함하는 경우 10x RBC 용해 완충액(Stemcell Technologies)을 사용하여 제조업체의 사양에 따라 RBC 제거 프로세스를 수행하였다. 높은 응집으로 인해 일부 샘플에서는 단일 세포를 얻을 수 없다. 이 경우 제조사의 프로토콜에 따라 MACS(Magnetic Activated Cell Sorting) 선별(Miltenyi Biotec, Germany)을 수행하고, 응집 및 단일 세포 사멸을 방지하기 위해 1xPBS에 10% BSA, 1% FBS 및 ROCK(Rho kinase) 억제제를 추가하여 분리된 세포를 희석하였다.
라이브러리의 단일 세포 수준 RNA 시퀀싱(Single-cell-level RNA sequencing of the libraries)
시퀀싱은 10x Genomics 독점 기술을 기반으로 하는 제조사의 프로토콜에 따라 10x Chromium Controller(10x Genomics)를 사용하여 연세대 게놈 센터 또는 마크로젠에서 수행되었다. 모든 단일 핵 및 단일 세포 RNA 시퀀싱 라이브러리는 제조업체의 프로토콜에 따라 Next GEM Single-cell 3' GEM, Library & Gel Bead Kit, V3.1(10x Genomics)을 사용하여 준비되었다. 초기 단계는 10x 세포 바코드, 고유한 분자 식별자 및 폴리(dT) 서열을 지닌 고유한 프라이머로 코팅된 겔 비드와 함께 개별 핵이 액적으로 분리되는 에멀젼을 수행하는 것으로 구성되었다. 역전사 반응을 수행하여 바코드가 있는 전체 길이 cDNA를 생성한 다음 DynaBeads MyOne Silane Beads(10X genomics)를 사용하여 회수제 및 cDNA 클린업을 사용하여 에멀젼을 파괴하였다. 벌크 cDNA는 SimpliAmp Thermal Cycler(3분 동안 98℃, 순환 11-13x(표적 세포 복구에 따라): 15초 동안 98℃, 20초 동안 67°C, 1분 동안 72°C)를 사용하여 증폭되었다(72℃에서 1분, 4℃에서 유지). 증폭된 cDNA 산물은 SPRIselect Reagent Kit(Beckman Coulter)를 사용하여 세척되었다. Chromium Single-cell 3 v3.1 시약 키트의 시약을 사용하여 인덱싱된 시퀀싱 라이브러리를 다음과 같이 구성하였다: 단편화, 말단 복구 및 A-테일링; SPRIselect로 크기 선택; 어댑터 결찰; SPRIselect를 사용한 결찰 후 정리; SPRIselect 비드를 사용한 샘플 인덱스 중합효소 연쇄 반응 및 정리. 라이브러리 정량화 및 품질 평가는 HSD1000 스크린 테이프(Agilent Genomics)를 사용하여 4200Tapestation을 사용하여 수행되었다. 인덱싱된 라이브러리는 paired-end 26x98 bp를 사용하여 Illumina HiSeq 시리즈에서 시퀀싱되었다.
단일 세포/핵 RNAseq 데이터 분석(Single-cell/nuclei RNAseq data analysis)
원시 시퀀싱 데이터는 GRCh38 게놈(세포 범위 6.0.1)에서 계산되었다. 처리된 원시 및 필터링된 기능은 Seurat(버전 4.0.6)에 로드되었으며 그래프는 Seurat(버전 4.0.6) 및 dittoSeq(버전 1.6.0)를 사용하여 플롯되었다. 단일 핵 RNA 시퀀싱 데이터 샘플은 SoupX 알고리즘34 및 Seurat 패키지35를 사용하여 샘플의 원시 및 필터링된 매트릭스로 준비되었고, 데이터 세트는 SC 변환, PCA, UMAP(1에서 10까지), 가장 가까운 이웃 그래프 구성(1에서 차원 15까지) 및 클러스터 결정(해상도 0.5)으로 개별적으로 처리되었다. 이중선 제거를 위해 pN-pK 매개변수 스위핑 알고리즘이 적용되었다(1에서 10번째 주성분). 단일항 가정 세포는 이중선 비율 7.5%, 인공 이중선 수 0.25, PC 이웃 크기 0.09, 주성분 수 1에서 10까지로 계산되었다. 단일 세포 RNA 시퀀싱 데이터 샘플은 필터링된 매트릭스로 처리되었으며 SoupX 알고리즘은 적용되지 않았다. 데이터를 정규화하고 크기를 조정하고 차원 축소 플롯을 계산하였다. 단일 핵 RNA 시퀀싱 데이터 및 단일 세포 RNA 시퀀싱 데이터는 CCA 알고리즘을 사용하여 Seurat에 통합되었다.
단일 세포 수준 데이터에서 세포 유형 식별(Cell-type identification in the single-cell level data)
획득한 Seurat 개체는 단일 핵 RNA 시퀀싱 데이터 세트에서 SCT 분석의 기능 발현 프로그램에 대한 모듈 점수로 표시되었다. 정상 세포 프로그램의 경우 제3자 데이터 세트에서 추출한 희소돌기아교세포, 소교세포, 방사상 신경교 또는 혈관주위세포 프로그램을 사용하였다. GBM 관련 유전자 프로그램의 경우 GBM 종양 기사의 공개된 유전자 목록을 사용하였다. 모든 데이터 세트를 통합한 후(도 5), 기원세포 1에 신경 전구 세포 서명(BCAN, SEZ6L) 및 희돌기아교세포 전구 서명(PTPRZ1, TNR 및 PDGFRA)이 풍부해졌다. 기원세포 2는 성상 세포 서명(AQP4, SPARCL1, ATP1A2) 및 신경 줄기 세포 서명(ADGRV1, SLC1A2)으로 풍부하였다.
자기 공명 영상(Magnetic resonance imaging)
수술 전후의 축 또는 관상 자기 공명 영상(MRI)을 사용하여 SVZ 생검 부위를 시각화하였다. MRI는 SVZ 생검 부위의 수술 전 계획에 사용되었다. 계획된 SVZ 제거 영역은 외과의가 확인하고 비종양 침범 영역에서 얇은 층을 절개하였다.
병리학자 검토(Pathologist review)
숙련된 병리학자(S.H.K.)는 질병 진단 중 또는 RNA 시퀀싱 분석을 위한 사후 병리학적 검토 중에 종양이 없는 SVZ 샘플을 종양이 혼합된 SVZ 샘플과 구별하였다.
대량 조직 수준 RNA 시퀀싱(Bulk-tissue-level RNA sequencing)
RNA 시퀀싱은 hisat2 및 stringtie37에 대한 최상의 프로토콜을 따랐다.
생존 분석(Survival analysis)
환자의 생존기간은 최초 신경외과 수술(단위: 개월)부터 마지막 임상 추시까지 또는 사망진단서(세브란스종양센터)에 수집된 자료로 계산하였다. 하위 그룹은 기원세포 1과 기원세포 2의 GSVA 점수에 따라 나누었으며 임계값은 0이다. 환자의 생존을 조사하는 것을 목표로 하는 SVZ 기반 생존은 SVZ에서 특정 기원세포를 찾는 것으로 구별되며, 종양 기반 생존은 환자의 생존이 GBM 조직의 특정 기원세포 특징에 의해 영향을 받는지 여부를 결정하였다.
카피수 변이 분석(Copy-number variation analysis)
인간 벌크 조직 수준 RNA 시퀀싱의 경우 염색체 패턴 추론 알고리즘은 500개 유전자의 이동 평균을 기반으로 하였다. 대조군의 무종양 SVZ 샘플을 대조군 기준 조직군으로 사용하였다. 단일 세포/핵 데이터 세트의 카피 수 변이 패턴은 대조 샘플(버전 1.10.1)로 희소돌기아교세포를 사용하여 infercnv로 처리되었다. UMAP 일러스트레이션 및 세포 수준 시퀀스 예측을 위해 6가지 상태의 카피 수 변경이 계산되었다. 이들은 infercnv 알고리즘의 숨겨진 Markov 모델을 기반으로 하였다.
디콘볼루션 분석(Deconvolution analysis)
벌크 조직 수준 RNA 시퀀싱 데이터 세트에서 세포 유형 식별을 위해 지정된 유전자 세트로 유전자 세트 변이 분석을 사용하였다. GSVA 패키지를 사용하여 서명별 정규화 점수(버전 1.42.0)를 계산했으며, 암 줄기 세포 유전자 세트의 경우 GBM24의 클러스터 0 서명을 사용하였다.
의사 궤적 분석(Pseudo-trajectory analysis)
의사 시간 궤적 플롯은 Monocle 3으로 계산되었다. 인간 데이터 세트의 경우 시작점으로 기원세포 1이 선택되었고, 마우스 세포 데이터에서는 컨트롤 세포의 컨트롤 상태를 시작점으로 선택하였다.
체세포 돌연변이에 의해 유도된 마우스 기원세포(Mouse origin-cells induced by somatic mutation)
모든 마우스 실험은 GLP 원칙에 따라 연세대학교 의과대학 기관 동물 관리 및 사용 위원회의 지침에 따라 승인되고 수행되었다. LSL-tdtomato(C57BL/6 균주, The Jackson Laboratory)가 있는 마우스를 LSL-EGFR viii47 대립유전자(FVB 균주)로 사육하고 신생아에게 플라스미드(p53 및 Pten 유전자용 sgRNA) 용액(2μg/μl, 함유 1% Fast Green). 간단히 말해서, 신생아, 2-3일 된 새끼(P2-P3)를 저체온으로 마취시킨 다음 플라스미드 용액을 우측 뇌실에 주입하였다. 성공적으로 주입된 동물은 ECM830 전기천공기(BTX-Harvard 장치) 및 1mm 핀셋 전극(CUY650P1, Nepagene)을 사용하여 5개의 전기 펄스(100V, 50ms, 950ms 간격)를 받았다.
마우스 기원세포 분리(Mouse origin-cell isolation)
종양 검체 또는 SVZ 검체 중 하나를 입체 현미경(S9i, Leica)을 사용하여 전기 분해된 생쥐에서 해부하였다. 시료로부터의 후속 세포 분리는 간단히 세포 분리 절차는 Dulbecco의 수정된 Eagle의 중간/영양분 혼합물 F-12(DMEM/F-12; Corning)에서 메스로 기계적 해리를 수행한 후 혼합물을 70μm 나일론 메시 세포 스트레이너(BD Falcon)를 통해 통과시켰다. 이어서 세포 현탁액을 DMEM/F-12에서 두 번 세척하고 B27 보충제(1X; Invitrogen), 염기성 섬유아세포증식인자(bFGF, Novoprotein), 표피증식인자(Novopein, Novopein) 20ng/ml를 포함한 DMEM/F-12로 구성된 완전한 배지에서 배양하였다. 모든 시험관내 실험은 앞서 언급한 배양 조건 하에서 수행되었다.
구체 형성 분석(Sphere formation assay)
분리된 단일 세포는 B27 보충제(1X; Invitrogen), 염기성 섬유아세포증식인자(bFGF, Novoprotein), 표피증식인자(EGF, Novoprotein) 20ng/ml, 페니실린 1%를 포함한 DMEM/F-12로 구성된 전체 배지에서 96-웰 판에서 해리성 단세포를 배양하였다. 동일한 조건에서 11일 동안 배양한 후 구양성 웰의 수를 계산하고 각 그룹의 구양성 웰의 비율을 계산하여 백분율로 표시하였다. ToupView 소프트웨어(ToupTek Photonics)를 사용하여 구면 양성 웰의 이미지를 캡처하고 분석하였다.
3D 침공 분석(3D Invasion assay)
마우스 세포의 침입성은 3D 침입 분석을 사용하여 결정되었다. 단일 해리된 세포(3000개 세포)를 PrimeSurface 96M 플레이트(Shimadzu)의 각 웰에 접종하였다. 24시간 후, 각 웰은 마트리젤, 콜라겐 유형 I(Corning) 및 완전 배지로 구성된 마트리젤 매트릭스로 채워졌다. 30분 후, 완전한 배지(30μL/웰)를 겔 매트릭스에 첨가하여 건조를 방지하였다. 이미지는 Operetta CLS(Perkin Elmer)를 사용하여 캡처되었고, 침습 영역은 (72 h-0 h)/0 h에서 점유 영역으로 정량화되었다.
동소생착(Orthotopic engraftment)
동소 동종이식 모델의 경우, 6-8주 된 수컷 무흉선 누드 마우스(Central Lab. Animal Inc.)를 무균 조건의 마이크로 아이솔레이터 케이지에 수용하고 적절한 건강을 보장하기 위해 실험 전에 최소 1주일 동안 모니터링하였다. Zoletil(30 mg/kg; Virbac Korea)과 xylazine(10 mg/kg; Bayer Korea) 용액을 복강 내 투여하여 마우스를 마취시켰다. 해리된 세포(2 × 105)는 이전에 설명한 대로 동소적으로 이식되었다(0일). 생체 발광 이미지 획득 및 분석은 생체 내 이미징 시스템(IVIS) 이미징 시스템 및 Living Image v4.2 소프트웨어(Caliper Life Sciences)를 사용하여 수행되었다. 신호 획득 15분 전에 마우스에 100μL D-루시페린(30mg/mL, PBS에 용해됨; Promega)을 복강내 주사하고 2.5% 이소플루란 마취 하에 투여하였다. 최대 체중에 비해 체중이 15% 이상 감소한 마우스는 승인된 프로토콜에 따라 안락사되었다.
마우스 뇌의 이미지 분석(Image analysis of mouse brain)
마우스 뇌를 얻었고, 10% 포르말린에 고정하고, 30% 완충 자당에서 밤새 동결 보호하고, -80°C에서 보관된 냉동 블록(최적 절단 온도 화합물(OCT 화합물))에 보관하였다. Cryostat 절단 섹션(두께 10μm)은 bregma에서 떨어진 관상 섹션 지점 1, -1, -2 및 -3mm에서 얻었다. 핵 염색에는 DAPI(H-1200-10, Vector Laboratories)가 있는 장착 배지를 사용했으며, Zeiss LSM700 공초점 현미경(Zeiss)을 사용하여 이미지를 얻었다. H&E 염색을 위해 4μm cryo-stat-cut 섹션이 사용되었다.
단일 세포 RNA 시퀀싱을 위한 마우스 세포 준비(Mouse cell preparation for single-cell RNA sequencing)
Trp53/Pten/hEGFRvIII 돌연변이 마우스 모델에서 분리된 마우스 기원세포와 종양 세포는 B27 보충제(1X; Invitrogen), 20ng/ml의 기본 섬유아세포 성장 인자(bFGF, Novoprotein), 20ng/ml의 표피 성장 인자(EGF, Novoprotein) 및 1% 페니실린-스트렙토마이신(15140122, Thermo Fisher). 마우스 기원세포 또는 종양 세포가 구체를 형성하면 구체를 수집하고 Accutase 용액(A6954, Sigma-Aldrich)으로 1분 동안 해리시켰다. 해리된 단일 세포를 PBS 중 0.04% BSA 용액으로 3회 세척하였다. 트리판 블루 염색으로 세포 생존력을 모니터링하고, 생존 세포를 후속 단일 세포 RNA 시퀀싱에 사용하였다.
[실험결과]
심실하부 조직의 염색체 패턴(Chromosome patterns in the subventricular zone tissues)
본 발명은 염색체 패턴을 교모세포종(GBM)-기원세포를 추적하기 위한 지표로 사용하였다(염색체 7의 획득과 염색체 10의 손실). 공개된 전체 추출 배열 데이터 세트(SRP145073)2와 더불어 대량 조직 수준의 RNA 배열과 단세포 수준의 RNA 배열(도 22)을 위해 환자 샘플을 수집하였다. 단세포 수준의 RNA 배열에는 단세포 RNA 배열과 단핵 RNA 배열이 포함된다(도 23).
본 연구의 가장 중요한 측면은 뇌의 SVZ의 종양 없는 상태이다(노란색 상자, 도 1). SVZ 조직의 샘플링(도 24) 후 병리학자가 종양 혼합 상태를 확인하지 않은 경우 SVZ 조직 샘플을 무종양으로 정의하였다. 본 연구에서는 단세포 RNA 배열 분석의 종양 혼합 SVZ 샘플 1개를 제외한 모든 SVZ 샘플은 무종양이다(도 1). GBM의 무종양 SVZ 샘플링 위치는 종양 위치에 따라 다르다(도 25). 무종양 SVZ 대조군은 비 GBM 환자로부터 확보된다(도 26). SVZ의 샘플링은 수술 전 의료 영상으로 계획되어 있지만 병리학적 검사 결과 단세포 RNA 배열 분석 사례에서 종양 혼합 샘플이 있는 두 사례가 밝혀졌다(하류 분석의 경우 한 샘플이 실패하고 한 개의 종양 혼합 샘플만 포함됨, 도 27). 따라서, 우리는 뇌의 SVZ를 달리 명시된 종양 없는 샘플로 명명하였다.
벌크 조직 수준의 RNA 염기서열 분석을 사용한 파일럿 연구에서는 유전자 발현 차이와 신경전달물질 관련 신호 전달의 상향 조절을 통한 대조군 SVZ와의 GBM의 SVZ 차이를 보여주었다(도 28). GBM의 SVZ는 GBM 조직과 다시 비교되었으며 세포 이동 관련 시그니처는 GBM의 SVZ에서 상향 조절되었다.
벌크 RNA 염기서열을 가진 다른 조직과 GBM의 SVZ의 차이를 바탕으로 GBM의 SVZ가 GBM-기원세포에 대한 증거를 포함할 수 있다는 가설을 세웠다. GBM은 7번 염색체 q-arm 획득과 10번 염색체 손실 패턴을 가지고 있기 때문에, 우리는 이 두 염색체의 염색체 패턴에 초점을 맞춘 전체 데이터 세트를 검토하였다. 흥미롭게도, 우리는 GBM의 SVZ(도 30)에서 7q 염색체 획득 패턴을 발견하였다. 7번 염색체 패턴은 GBM의 SVZ의 다른 샘플에서도 뚜렷하게 나타났다. 또한 7번 염색체는 SVZ 검체가 두드러지지 않았으므로, 더 큰 벌크 RNA 배열 데이터 집합에서 염색체 패턴을 검증하려고 시도했고 카피 번호(copy number)를 비교하였다(도 2).
종양 조직의 98%에서 GBM, 7번 염색체 획득 또는 10번 염색체 손실의 정의 염색체 패턴을 발견하였다(도 2). GBM의 SVZ는 표본의 65%에서 2개의 CNV 변화를 보인 반면 대조군의 SVZ는 33% 표본에서 염색체 패턴을 보였다. 벌크 조직 기반 염색체 패턴 분석(도 31)의 한계를 발견하여 단세포 수준의 RNA 염기서열 분석을 조사하였다.
단일 세포 레벨 분석 결과 SVZ에서 2개의 암기원세포 검출
단세포 수준 RNA 염기서열 분석 결과, 한 환자의 GBM 샘플의 SVZ에서 GBM 관련 염색체 패턴을 가진 두 가지 유형의 세포, 즉 7번 염색체 q-arm 획득과 10번 염색체 손실 패턴을 발견하였다(도 3). 이 두 세포 유형의 공통 염색체 패턴은 7번 염색체 q-암 증폭이었다. 한 세포형은 모집단의 절반에서 10번 염색체 손실을 보였고 다른 세포형 모집단에서 10번 염색체 손실을 보이지 않았다(도 3). 이 세포들은 GBM-기원세포의 이론적인 염색체 패턴을 나타냈기 때문에 우리는 7번 염색체 q-arm 획득만을 나타내는 세포를 GBM의 기원세포 1(origin-cell 1; Oc1), 7번 염색체 q-arm 획득 및 10번 염색체 손실을 나타내는 세포를 GBM의 기원세포 2(origin-cell 2)라고 정의하였다. 또한 이 두 세포의 세포형 시그니처가 확장된 수의 SVZ 샘플에 적용될 수 있다는 가설을 세웠다(도 4).
확장된 코호트에서 우리는 위의 파일럿 단핵 RNA 배열 SVZ 샘플(Patient GN1)에서 얻은 정의 유전자 시그니처를 가진 두 개의 기원세포 클러스터(도 5)를 발견하였다. 이러한 기원세포 시그니처는 PTPRZ1의 기원세포 1(도 32)과 AQP4의 기원세포 2(도 33)를 나타내는 유전자로 요약된다. 간단히 말해서, 우리는 각 단일 세포 수준 데이터 세트를 GN-1 SVZ 추출 유전자 세트로 라벨링하고 조화 데이터 세트를 찾기 위해 개별 데이터 세트를 통합하였다(도 5, 및 도 34). 이 두 가지 기원세포 유형은 무종양 SVZ 샘플과 GBM 종양 조직에서 발견되었다(도 6).
염색체 패턴의 순차적 축적(Sequential accumulation of chromosome patterns)
두 가지 유형의 기원세포 시그니처가 샘플 전체에서 발견되었지만(도 6), GBM의 염색체 패턴의 시간 순서를 조사하려고 하였다. SVZ와 종양의 환자 GN1 샘플은 뉴런 유사 세포를 제외한 치수 감소 플롯에서 중복 영역을 나타낸다(도 7). 환자 GN1의 SVZ 샘플에서 두 가지 유형의 기원세포가 뉴런 유사 세포 클러스터보다 염색체 7q-암 획득 이벤트와 염색체 10 손실 이벤트에 의해 지배된다는 것을 발견하였다(도 8). GN1의 종양 세포에서 대부분의 염색체 변화 패턴은 두 가지 유형의 기원세포와 연결된 세포 클러스터에서 발견되었다(도 9). SVZ와 종양의 원세포에서 7번 염색체 획득과 10번 염색체 손실이 발견되었으므로, 환자 GN1에서 이 두 데이터 세트를 결합했고, 7개의 q-arm 축적 패턴이 원세포 연결 클러스터의 세포에서 발견되었다(도 10). 동일한 통합 데이터 집합에서, 단일 세포 수준에서 염색체 7p 획득 또는 염색체 10 손실 사건보다 염색체 7q 획득 사건이 선행된다는 것을 발견하였다(도 11). 우리는 두 가지 유형의 기원세포가 SVZ 샘플과 종양 샘플을 연결하는 염색체 패턴을 나타내고 있다는 것을 발견할 수 있다. 즉, SVZ의 다른 세포에 비해 SVZ의 기원세포에서 더 많은 7번 p-arm과 q-arm 획득이다. GBM의 다른 세포보다 GBM 종양의 원세포에서 7번 염색체 p-암과 q-암 증가율이 낮다. 10번 염색체 손실 사건도 SVZ에서 종양으로의 연결 패턴을 보여준다.
상호 연결된 기원세포(Interconnected origin-cells)
기원세포 클러스터는 염색체 패턴의 양성 세포 클러스터(신경 전구체, 간엽성, 순환 세포)에 연결되어 있으므로 의사 주사 플롯(pseudotrajectory plot)을 계산하였다. 기원세포 1이 다른 유형의 세포에 선행할 것으로 예상되었기 때문에, 우리는 세포를 시작점으로 설정하였다. 종양 없는 SVZ의 통합 데이터 세트는 기원세포 1이 뉴런 유사 세포, 순환 세포 또는 간엽 세포로 이어질 수 있음을 보여주었다. 통합 종양 지도는 기원세포 1이 모든 유형의 세포로 이어질 수 있음을 보여주었다(도 35). 환자별 데이터는 기원세포가 종양 세포 클러스터에 연결되어 있으며 뉴런 유사 세포, 신경 전구 세포, 간엽 세포 또는 순환 세포와의 연결을 보여준다(도 36). 단세포 RNA 염기서열결정 데이터셋에서 샘플 전체에서 뉴런 유사 세포의 수가 적더라도 신경 전구 세포, 순환 세포 또는 간엽 세포와 같은 다른 종양 관련 세포에 대한 원세포의 연결성은 변경되지 않는다(도 37).
상호연결성을 위해 단세포 수준의 RNA 염기서열 분석 데이터에서 리간드-수용체 연결 분석을 적용하였다(도 12). 줄기세포 모드에서, 우리는 SVZ 샘플에서 기원세포 1이 기원세포 2에 연결되어 있는 것을 발견하였다. 종양 샘플에서 사이클링 세포는 기원세포 2에 연결되었다(도 12). 중심도 그림에서 세 가지 유형의 세포가 발견되었으므로 유전자 수준에서 이러한 세포들 간의 상호 연관성을 분석하였다(도 13). 우리는 BCAN-NRCAM 연결이 SVZ와 종양의 순환 플롯에서 공통적으로 발견되었음을 발견하였다. 특히 SVZ 샘플에서, EGFR은 기원세포 1, 기원세포 2, 순환 세포에 걸쳐 상향 조절되었다(도 13).
암기원세포 및 임상종양(Origin-cells and the clinical tumours)
연구 결과를 단세포 수준의 RNA 염기서열 분석에서 대량 조직 수준의 RNA 염기서열 분석 데이터로 확장하였다. 단일 세포 레벨 데이터가 세포 유형 간에 고해상도 상호 연결을 보일 수 있지만, 모집단 레벨 데이터는 위의 분석에서 얻을 수 없었다. 상기 분석의 유전자 시그니처를 이용하여 벌크 조직 수준의 RNA 배열 데이터(도 38)에서 세포 식별 점수를 산출하였다. SVZ 표본에서 통계적 차이가 없는 대조군의 SVZ와 GBM의 SVZ에서 두 가지 유형의 기원세포가 발견되었다(도 38). 기원세포 2의 세포 수는 종양 샘플에서 감소할 것으로 예측되었다. 또한 GBM 환자의 생존을 세포 식별 점수로 비교하였다. 무종양 SVZ 검체(도 39) 또는 종양 검체(도 40)의 기원세포 점수 식별에 의한 생존 효과는 없었다. GBM의 TERT 프로모터 돌연변이 상태를 이용할 수 있는 표본으로 범위를 좁혔을 때, 우리는 두 개의 기원세포 유형의 다른 패턴을 발견하였다(도 14). 기원세포 1은 TERT 프로모터 야생형 GBM에서 일반적이었다(도 14). 기원세포 2는 TERT 프로모터 돌연변이 GBM에서 더 흔하게 나타났다. 모든 데이터 세트에 따라, 기원세포 2는 두 가지 TERT 프로모터 유형의 GBM에서 감소 추세를 보였다(도 14, 및 도 38). 이와는 대조적으로, 이 두 가지 유형의 GBM은 SVZ 샘플보다 종양 내 세포 순환과 암 줄기세포 시그니처의 증가 추세를 보였다. 또, 2개의 기원세포의 시그니처를 다른 시그니처와 비교하였다. GBM의 SVZ에서, 두 가지 유형의 기원세포는 상관 행렬에서 높은 연관성을 보였다(도 41). 단, 종양에서는 기원세포 1 클러스터에서 기원세포 2의 소결이 분리되었다(도 42).
GBM 기원세포 마우스 모델(Mouse model of the GBM origin-cells)
인간 SVZ 시료와 GBM 시료에 비추어 CRISPR/Cas9로 원세포 및 원세포 유래 종양 세포를 만들었고, 미수정 세포를 대조군으로 사용하였다(도 15, 및 도 43). 이 모델은 이전에 마우스 GBM(도 44)를 형성하는 것으로 보고되었다. GBM-기원세포와 종양세포는 각각 마우스 심실하부와 종양에서 얻었다(도 45). 이러한 세포는 배양 가능하고 세포에 CRISPR/Cas9 플라스미드를 도입하는 것을 암시하는 높은 tdTomato 양성으로 검증된다(도 46). 이 세 가지 유형의 세포(도 47)는 마우스 뇌에 주입될 때 종양을 형성할 수 있는지 검증된다(도 48). 마커 유전자의 유사한 유전자 발현 패턴(도 16)은 마우스 뇌 주입 모델에서 다른 종양 형성을 설명하기에 충분하지 않았다(도 17, 및 도 48). 통합 분석에서는 3종류의 세포를 4종류의 세포 상태로 분류할 수 있었다(도 18). 간단히 말해서, 우리는 세포 상태 조성(도 19), 인간 기원세포의 유전자 시그니처 점수(도 20), 염색체 패턴 분석(도 21)을 비교하여 이들 4가지 세포 상태를 라벨링하였다.
마우스 세포의 단세포 RNA 배열에 대한 자세한 내용은 도 49 내지 53에 요약되어 있다. 3종류의 세포 통합 분석에서도 마찬가지로 제어 유전자를 특정하는 세포 상태와 초기 상태를 과잉 발현한다(도 49). 올리고덴드로사이트 전구세포 마커 Cspg4는 제어상태에서 높은 상태에서 종양상태로 점차 감쇠하는 2개의 기원세포 스코어와 동일한 순서로 발현된다(도 20, 및 도 50). 투우머 관련 세포 주기 시그니처 또는 간엽 시그니처는 대조군 상태에서 종양 상태로 상승하는 패턴을 보였다(도 51). 세포 상태가 초기, 후기에서 종양 상태로 변화함에 따라 염색체 패턴과 이상 증가가 계산되었다(도 52). 마지막으로, 우리는 제어 상태를 출발점으로 선택했고 의사 시간 분석에서 궤적의 끝에 있는 종양 세포가 밝혀졌다.
신경구 기반 분석(도 54 내지 도 55)에서 기원세포의 흥미로운 표현형이 발견되었다. 서로 다른 마우스 뇌의 서로 다른 두 기원세포에서 높은 신경구 형성 표현형이 발견되었다(도 54). 세포 침입 분석을 조사했더니 72시간까지 기원세포가 가장 멀리 있는 세포였다(도 55). 기원세포와 종양 세포를 분화하려고 했을 때, 기원세포만이 TUBB3 양성 세포를 형성하고 있는 것이 확인되었다(도 56).
간단히 말해서, 우리는 두 가지 유형의 인간 GBM-기원세포를 확인했고 그 결과는 유전자 발현 패턴과 염색체 패턴을 가진 마우스 GBM-기원세포에서 검증되었다. 특히 성인의 뇌에서 최초로 기원세포 1을 동정하고, TERT 프로모터 와일드형 GBM은 기원세포 1에서 발생할 수 있다(도 57).
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
본 발명은 교모세포종의 발생 기원에 대한 초기 진단과 이해 및 그에 기반한 새로운 치료법의 개발을 위한 연구로서, 뇌실하대(subventricular zone)에서 분리된 세포가 교모세포종 기원세포(Oc1 및 Oc2)임을 확인하고, 상기 교모세포종 기원세포를 유전자 발현 양상으로 정의하였다. 본 발명의 교모세포종 기원세포, 및 뇌실하대로부터 이를 분류하는 방법은 교모세포종 발생 근원을 이해하고 암 기원세포로부터 암세포로의 진행을 차단함으로써, 교모세포종 예방 및 치료에 크게 이용될 것으로 기대된다.

Claims (27)

  1. 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 확인하는 단계;를 포함하는, 뇌암 기원세포의 분리 방법.
  2. 제 1 항에 있어서,
    상기 뇌암 기원세포는 교모세포종(glioblastoma, GBM)으로 발전되는 세포인 것인, 분리 방법.
  3. 제 1 항에 있어서,
    상기 뇌실하대로부터 분리된 세포에서 7번 염색체의 복제 수 증가를 확인하는 단계;를 추가로 포함하는, 분리 방법.
  4. NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 제제를 유효성분으로 포함하는, 뇌암 발병 예측용 조성물.
  5. 제 4 항에 있어서,
    상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질의 발현량을 측정하는 제제는 상기 단백질에 특이적으로 결합하는 앱타머, 항체 또는 이의 항원 결합 단편인 것인, 조성물.
  6. 제 4 항에 있어서,
    상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질을 코딩하는 유전자의 발현량을 측정하는 제제는 상기 유전자에 특이적으로 결합하는 프라이머 또는 프로브인 것인, 조성물.
  7. 제 4항에 있어서,
    상기 뇌암은 교모세포종(glioblastoma, GBM)인 것인, 조성물.
  8. 제 4항의 조성물을 포함하는, 뇌암 발병 예측용 키트.
  9. 제 8 항에 있어서,
    상기 키트는 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포를 대상으로 사용되는 것인, 키트.
  10. 제 9 항에 있어서,
    상기 뇌실하대로부터 분리된 세포는 7번 염색체의 복제 수가 증가된 세포인 것인, 키트.
  11. 제 9 항에 있어서,
    상기 키트는 RT-PCR 키트, DNA 칩 키트, ELISA 키트, 단백질 칩 키트, 래피드(rapid) 키트 또는 MRM(Multiple reaction monitoring) 키트인 것인, 키트.
  12. 목적하는 개체의 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 단계;를 포함하는, 뇌암의 발병 예측 방법.
  13. 제 12 항에 있어서,
    상기 뇌실하대로부터 분리된 세포에서 7번 염색체의 복제 수 증가를 확인하는 단계;를 추가로 포함하는, 예측 방법.
  14. 제 12 항에 있어서,
    상기 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, 및 RORA로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 증가된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법.
  15. 제 12 항에 있어서,
    상기 LUZP2, RORA, SLC1A2, TNR, 및 XKR4로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 증가된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법.
  16. 제 12 항에 있어서,
    상기 PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 감소된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법.
  17. 제 12 항에 있어서,
    상기 CERCAM, FTL, LAMA2, MBP, PLP1, PLXDC2, 및 TF로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현이 감소된 경우에 상기 개체의 뇌암 발병 가능성이 높은 것으로 예측하는, 예측 방법.
  18. 제 12항에 있어서,
    상기 뇌암은 교모세포종(glioblastoma, GBM)인 것인, 예측 방법.
  19. (a) 제 1항의 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 단계; 및,
    (b) 상기 뇌암 기원세포가 사멸된 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 단계;를 포함하는, 뇌암 예방용 후보물질의 스크리닝 방법.
  20. (a) 제 1항의 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 단계;
    (b) 상기 뇌암 기원세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 재확인하는 단계; 및,
    (c) 상기 단백질, 또는 유전자의 발현 정도가 후보물질 처리 전과 비교하여 유의하게 달라진 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 단계;를 포함하는, 뇌암 예방용 후보물질의 스크리닝 방법.
  21. 뇌실하대(subventricular zone; SVZ)에 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, 및 RORA로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 억제제를 투여하는 단계;를 포함하는, 뇌암의 예방 또는 치료 방법.
  22. 뇌실하대(subventricular zone; SVZ)에 PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 활성제를 투여하는 단계;를 포함하는, 뇌암의 예방 또는 치료 방법.
  23. NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, 및 RORA로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 억제제를 유효성분으로 포함하는 뇌암의 예방 또는 치료용 약학조성물로서,
    상기 약학조성물은 뇌실하대(subventricular zone; SVZ)에 투여되는 것을 특징으로 하는, 약학조성물.
  24. PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 활성제를 유효성분으로 포함하는 뇌암의 예방 또는 치료용 약학조성물로서,
    상기 약학조성물은 뇌실하대(subventricular zone; SVZ)에 투여되는 것을 특징으로 하는, 약학조성물.
  25. 목적하는 개체의 뇌실하대(subventricular zone; SVZ)로부터 분리된 세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현량을 측정하는 측정부;를 포함하는, 뇌암의 발병 예측 장치.
  26. 제 1항의 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 처리부; 및,
    상기 뇌암 기원세포가 사멸된 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 판단부;를 포함하는, 뇌암 예방용 후보물질의 스크리닝 장치.
  27. 제 1항의 방법으로 분리한 뇌암 기원세포에 뇌암 예방용 후보물질을 처리하는 처리부;
    상기 뇌암 기원세포에서 NRXN1, XKR4, MAP2, SLC1A2, MEG3, TNR, NRCAM, PTPRZ1, LUZP2, RORA, PLP1, TF, MBP, CERCAM, TMEM144, PLXDC2, FTL, 및 LAMA2 로 구성된 군으로부터 선택되는 하나 이상의 단백질, 또는 이를 코딩하는 유전자의 발현 정도를 재확인하는 측정부; 및,
    상기 단백질, 또는 유전자의 발현 정도가 후보물질 처리 전과 비교하여 유의하게 달라진 경우에 상기 후보물질이 뇌암 예방 효과가 있는 것으로 판단하는 판단부;를 포함하는, 뇌암 예방용 후보물질의 스크리닝 장치.
PCT/KR2023/004698 2022-04-08 2023-04-07 유전자로 정의된 암기원세포, 및 이의 분류방법 WO2023195811A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0043848 2022-04-08
KR1020220043848A KR20230144759A (ko) 2022-04-08 2022-04-08 유전자로 정의된 암기원세포, 및 이의 분류방법

Publications (1)

Publication Number Publication Date
WO2023195811A1 true WO2023195811A1 (ko) 2023-10-12

Family

ID=88243277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004698 WO2023195811A1 (ko) 2022-04-08 2023-04-07 유전자로 정의된 암기원세포, 및 이의 분류방법

Country Status (2)

Country Link
KR (1) KR20230144759A (ko)
WO (1) WO2023195811A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120038339A (ko) * 2010-10-13 2012-04-23 사회복지법인 삼성생명공익재단 교모세포종의 진단 또는 예후 예측용 바이오 마커 및 그 용도
US20170051360A1 (en) * 2014-07-14 2017-02-23 Genentech, Inc. Diagnostic methods and compositions for treatment of glioblastoma
KR20180024262A (ko) * 2016-08-29 2018-03-08 연세대학교 산학협력단 뇌실하 영역의 돌연변이 유전자를 이용한 교모세포종 조직 기원의 예측 방법 및 동물 모델
KR20190095074A (ko) * 2018-02-06 2019-08-14 한국과학기술원 뇌 종양 동물 모델 및 이의 제조 방법
US20210222253A1 (en) * 2020-01-21 2021-07-22 10X Genomics, Inc. Identification of biomarkers of glioblastoma and methods of using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120038339A (ko) * 2010-10-13 2012-04-23 사회복지법인 삼성생명공익재단 교모세포종의 진단 또는 예후 예측용 바이오 마커 및 그 용도
US20170051360A1 (en) * 2014-07-14 2017-02-23 Genentech, Inc. Diagnostic methods and compositions for treatment of glioblastoma
KR20180024262A (ko) * 2016-08-29 2018-03-08 연세대학교 산학협력단 뇌실하 영역의 돌연변이 유전자를 이용한 교모세포종 조직 기원의 예측 방법 및 동물 모델
KR20190095074A (ko) * 2018-02-06 2019-08-14 한국과학기술원 뇌 종양 동물 모델 및 이의 제조 방법
US20210222253A1 (en) * 2020-01-21 2021-07-22 10X Genomics, Inc. Identification of biomarkers of glioblastoma and methods of using the same

Also Published As

Publication number Publication date
KR20230144759A (ko) 2023-10-17

Similar Documents

Publication Publication Date Title
Flaherty et al. Neuronal impact of patient-specific aberrant NRXN1α splicing
Lange et al. Single cell sequencing of radial glia progeny reveals the diversity of newborn neurons in the adult zebrafish brain
Cai et al. Characterization of the transcriptome of nascent hair cells and identification of direct targets of the Atoh1 transcription factor
CN110582578B (zh) 用于细胞类型特异性谱分析以鉴定药物靶标的方法
Kim et al. Differential effects on sodium current impairments by distinct SCN1A mutations in GABAergic neurons derived from Dravet syndrome patients
JP2003515317A (ja) 病的事象の検出のための組成物及び方法
Berg et al. Transcriptomic signatures of postnatal and adult intrinsically photosensitive ganglion cells
Cardona-Alberich et al. Elucidating the cellular dynamics of the brain with single-cell RNA sequencing
Qu et al. Single-cell RNA sequencing technology landscape in 2023
Tuddenham et al. A cross-disease human microglial framework identifies disease-enriched subsets and tool compounds for microglial polarization
Turrero García et al. Transcriptional regulation of MGE progenitor proliferation by PRDM16 controls cortical GABAergic interneuron production
Saeki et al. IRF8 configures enhancer landscape in postnatal microglia and directs microglia specific transcriptional programs
WO2023195811A1 (ko) 유전자로 정의된 암기원세포, 및 이의 분류방법
WO2023195812A1 (ko) 유전자로 정의된 암기원세포, 및 이의 분류방법
Kumar et al. Germ cell-specific sustained activation of Wnt signalling perturbs spermatogenesis in aged mice, possibly through non-coding RNAs
Laureano et al. shox2 is required for vestibular statoacoustic neuron development
Garaffo et al. Profiling, bioinformatic, and functional data on the developing olfactory/GnRH system reveal cellular and molecular pathways essential for this process and potentially relevant for the Kallmann syndrome
Zhu et al. Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia
Ratz et al. Cell types and clonal relations in the mouse brain revealed by single-cell and spatial transcriptomics
Chandra et al. A multi-enhancer hub at the Ets1 locus controls T cell differentiation and allergic inflammation through 3D genome topology
Durak et al. ASD gene Bcl11a regulates subcellular RNA localization, associative circuitry, and social behavior
Villa et al. CHD8 haploinsufficiency alters the developmental trajectories of human excitatory and inhibitory neurons linking autism phenotypes with transient cellular defects
McGrath et al. ASXL3 controls cortical neuron fate specification through extrinsic self-renewal pathways
Cho et al. ARX regulates interneuron subtype differentiation and migration
Boroujeni et al. Evaluation of TUBB8 gene alterations in infertile women with oocyte maturation and cleavage arrest referred to Royan Institute

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23785035

Country of ref document: EP

Kind code of ref document: A1