WO2023195741A1 - Method and device for acquiring information from medical image expressing time-varying information - Google Patents

Method and device for acquiring information from medical image expressing time-varying information Download PDF

Info

Publication number
WO2023195741A1
WO2023195741A1 PCT/KR2023/004527 KR2023004527W WO2023195741A1 WO 2023195741 A1 WO2023195741 A1 WO 2023195741A1 KR 2023004527 W KR2023004527 W KR 2023004527W WO 2023195741 A1 WO2023195741 A1 WO 2023195741A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
segmentation
medical image
measurement value
information
Prior art date
Application number
PCT/KR2023/004527
Other languages
French (fr)
Korean (ko)
Inventor
심학준
전재익
김세근
김지연
최안네스
Original Assignee
주식회사 온택트헬스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 온택트헬스 filed Critical 주식회사 온택트헬스
Publication of WO2023195741A1 publication Critical patent/WO2023195741A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention relates to the processing of medical images, and in particular, to a method and device for obtaining information from medical images expressing time-varying information.
  • Disease refers to a condition that causes disorders in the human mind and body, impeding normal functioning. Depending on the disease, a person may suffer and may even be unable to sustain his or her life. Accordingly, various social systems and technologies for diagnosing, treating, and even preventing diseases have developed along with human history. In the diagnosis and treatment of diseases, various tools and methods have been developed in accordance with the remarkable advancement of technology, but the reality is that they are still ultimately dependent on the judgment of doctors.
  • AI artificial intelligence
  • various studies are being conducted to use artificial intelligence algorithms to solve tasks that have traditionally been limited to clinical judgment, such as diagnosing and predicting diseases.
  • various studies are being conducted to solve the task of processing and analyzing medical data as an intermediate process for diagnosis, etc. using artificial intelligence algorithms.
  • the present invention is intended to provide a method and device for effectively obtaining information from medical images using an artificial intelligence (AI) algorithm.
  • AI artificial intelligence
  • the present invention is intended to provide a method and device for extracting information in real time from medical images expressing time-varying information.
  • the present invention is intended to provide a method and device for extracting and analyzing signals of each pattern from medical images with repetitive patterns.
  • a method for obtaining information from a medical image includes performing segmentation on at least one signal in at least one medical image, the at least one signal obtained through the segmentation. determining at least one measurement value for each signal based on an envelope, confirming at least one true signal among the at least one signals, and at least one measurement value for the at least one true signal. It may include determining at least one final measurement value based on the method.
  • the at least one medical image may represent at least one medical image that represents a result of arranging time-varying information on the time axis.
  • the at least one medical image may include at least one Doppler echocardiography image.
  • the at least one measurement value is the maximum velocity value of blood flow, velocity time integral (VTI), deceleration time (DT), pressure half time (PHT), acceleration time (AT), and EDV. (end-diastolic velocity), DT(deceleration time), dP/dt(the rate of pressure change using the 4V2 formula over time during isovolumic contraction), S'sept(septal)(peak systolic mitral annular velocity at the septal part of mitral annulus), E'sept(peak early diastolic mitral annular velocity at the septal part of mitral annulus), A'sept(peak late diastolic mitral annular velocity at the septal part of mitral annulus), S'lat(lateral)(peak systolic mitral annular velocity at the lateral part of mitral annulus), E'lat(peak early diastolic mitral annular velocity at the lateral part of mitral annulus), A'lat(VTI), deceleration time
  • the at least one true signal includes probability information for each pixel generated for the segmentation, the length of the envelope, the area of the area specified by the envelope, and the area specified by the envelope. It can be identified based on at least one of the shapes of .
  • the at least one true signal may be identified based on the distribution of entropy values generated for the segmentation.
  • the step of checking the at least one true signal may include a step of checking entropy values generated in the step of performing the segmentation.
  • the segmentation may be performed based on multi-scale pyramid representations.
  • the method includes extracting an electrocardiogram (ECG) signal from the at least one medical image, and at least one other signal based on the ECG signal and the at least one final measurement value.
  • ECG electrocardiogram
  • the step of determining the measured value may be further included.
  • the at least one signal includes a first signal related to a first value and a second signal related to a second value, and the first signal and the second signal are electrocardiogram signals. may be classified based on, or may be classified based on the pattern of the at least one signal.
  • the method includes grouping the at least one signal into pairs including two consecutive signals on the time axis, and the width of signals included in each of the pairs ( A step of classifying the signals based on width may be further included.
  • a device for obtaining information from a medical image includes a storage unit that stores a set of instructions for operating the device, and at least one processor connected to the storage unit, wherein the at least One processor performs segmentation on at least one signal in at least one medical image, and determines at least one measurement value for each signal based on an envelope of the at least one signal obtained through the segmentation, Control may be performed to confirm at least one true signal among the at least one signals and determine at least one final measurement value based on at least one measurement value for the at least one true signal.
  • a program stored in a medium can execute the above-described method when operated by a processor.
  • information can be effectively obtained from medical images using an artificial intelligence (AI) algorithm.
  • AI artificial intelligence
  • FIG. 1 shows a system according to one embodiment of the present invention.
  • Figure 2 shows the structure of a device according to an embodiment of the present invention.
  • Figure 3 shows an example of a perceptron constituting an artificial intelligence model applicable to the present invention.
  • Figure 4 shows an example of an artificial neural network constituting an artificial intelligence model applicable to the present invention.
  • FIGS 5A to 5F show an example of an image processing process according to an embodiment of the present invention.
  • Figure 6 shows an example of the structure of an artificial intelligence model according to an embodiment of the present invention.
  • FIG. 7 shows an example of the structure of an adaptive context module (ACM) in an artificial intelligence model according to an embodiment of the present invention.
  • ACM adaptive context module
  • Figure 8 shows an example of a procedure for obtaining information from a medical image according to an embodiment of the present invention.
  • Figure 9 shows an example of a procedure for classifying true signals and false signals according to an embodiment of the present invention.
  • FIGS. 10A to 10D show examples of information obtainable from a MV (Mitral Valve) inflow PW (pulsed-wave) view according to an embodiment of the present invention.
  • MV Mitsubishi Valve
  • PW pulse-wave
  • 11A to 11D show examples of information obtainable from a TDI (tissue Doppler imaging) view according to an embodiment of the present invention.
  • Figures 12A to 12D show examples of information obtainable in an aortic regurgitation (AR) pressure half time (PHT) view according to an embodiment of the present invention.
  • AR aortic regurgitation
  • PHT pressure half time
  • FIGS. 13A to 13D show examples of information obtainable from a mitral valve (MS) PHT view according to an embodiment of the present invention.
  • MS mitral valve
  • Figures 14a and 14b show examples of information obtainable in a pulmonic valve (PV) PW view according to an embodiment of the present invention.
  • PV pulmonic valve
  • Figures 15a and 15b show examples of information obtainable in a mitral regurgitation (MR) PW view according to an embodiment of the present invention.
  • Figure 16 shows an example of a procedure for obtaining information from a medical image using electrocardiogram (ECG) extraction and segmentation according to an embodiment of the present invention.
  • ECG electrocardiogram
  • Figure 17 shows an example of a medical image including an electrocardiogram according to an embodiment of the present invention.
  • Figure 18 shows examples of graphs representing electrocardiogram signals according to an embodiment of the present invention.
  • Figure 19 shows an example of a procedure for obtaining information from a medical image considering the presence or absence of an electrocardiogram signal according to an embodiment of the present invention.
  • Figure 20 shows an example of a medical image of a PW view of the MV inlet in a normal state according to an embodiment of the present invention.
  • Figure 21 shows an example of a two-path split network configuration, which is one of the semantic segmentation models applicable to the present invention.
  • Figure 22 shows an example of a method for aggregating output generated from detailed branches and semantic branches applicable to the present invention.
  • Figure 23 shows an example of the configuration of a three-path partition network, one of the semantic segmentation models according to an embodiment of the present invention.
  • FIG. 1 shows a system according to one embodiment of the present invention.
  • the system includes a service server 110, a data server 120, and at least one client device 130.
  • the service server 110 provides services based on artificial intelligence models. That is, the service server 110 performs learning and prediction operations using an artificial intelligence model.
  • the service server 110 may communicate with the data server 120 or at least one client device 130 through a network. For example, the service server 110 may receive learning data for training an artificial intelligence model from the data server 120 and perform training.
  • the service server 110 may receive data necessary for learning and prediction operations from at least one client device 130. Additionally, the service server 110 may transmit information about the prediction result to at least one client device 130.
  • the data server 120 provides learning data for training the artificial intelligence model stored in the service server 110.
  • the data server 120 may provide public data that anyone can access or provide data that requires permission. If necessary, the learning data may be preprocessed by the data server 120 or the service server 120. According to another embodiment, the data server 120 may be omitted. In this case, the service server 110 may use an externally trained artificial intelligence model, or learning data may be provided to the service server 110 offline.
  • At least one client device 130 transmits and receives data related to an artificial intelligence model operated by the service server 110 with the service server 110.
  • At least one client device 130 is equipment used by the user, and transmits information input by the user to the service server 110, and stores the information received from the service server 110 or provides it to the user (e.g. : mark) is possible.
  • a prediction operation may be performed based on data transmitted from one client, and information related to the result of the prediction may be provided to another client.
  • At least one client device 130 may be various types of computing devices, such as desktop computers, laptop computers, smartphones, tablets, and wearable devices.
  • the system may further include a management device for managing the service server 110.
  • the management device is a device used by the entity that manages the service, and monitors the status of the service server 110 or controls settings of the service server 110.
  • the management device may be connected to the service server 110 through a network or directly through a cable connection. According to the control of the management device, the service server 110 can set parameters for operation.
  • the service server 110, the data server 120, at least one client device 130, a management device, etc. may be connected and interact through a network.
  • the network may include at least one of a wired network and a wireless network, and may be comprised of any one or a combination of two or more of a cellular network, a local area network, and a wide area network.
  • the network is based on at least one of LAN (local area network), WLAN (wireless LAN), Bluetooth, long term evolution (LTE), LTE-advanced (LTE-A), and 5th generation (5G). This can be implemented.
  • Figure 2 shows the structure of a device according to an embodiment of the present invention.
  • the structure illustrated in FIG. 2 may be understood as the structure of the service server 110, data server 120, and at least one client device 130 of FIG. 1.
  • the device includes a communication unit 210, a storage unit 220, and a control unit 230.
  • the communication unit 210 performs functions to connect to the network and communicate with other devices.
  • the communication unit 210 may support at least one of wired communication and wireless communication.
  • the communication unit 210 may include at least one of a radio frequency (RF) processing circuit and a digital data processing circuit.
  • RF radio frequency
  • the communication unit 210 may be understood as a component including a terminal for connecting a cable. Since the communication unit 210 is a component for transmitting and receiving data and signals, it may be referred to as a 'transceiver'.
  • the storage unit 220 stores data, programs, microcode, instruction sets, applications, etc. necessary for the operation of the device.
  • the storage unit 220 may be implemented as a temporary or non-transitory storage medium. Additionally, the storage unit 220 may be fixed to the device or may be implemented in a detachable form.
  • the storage unit 220 may include compact flash (CF) cards, secure digital (SD) cards, memory sticks, solid-state drives (SSD), and micro It may be implemented as at least one of magnetic computer storage devices such as NAND flash memory such as an SD card and a hard disk drive (HDD).
  • CF compact flash
  • SD secure digital
  • SSD solid-state drives
  • HDD hard disk drive
  • the control unit 230 controls the overall operation of the device.
  • the control unit 230 may include at least one processor, at least one microprocessor, etc.
  • the control unit 230 can execute a program stored in the storage unit 220 and access the network through the communication unit 210.
  • the control unit 230 may perform algorithms according to various embodiments described later and control the device to operate according to embodiments described later.
  • an artificial intelligence model consisting of an artificial neural network can be used to implement the artificial intelligence algorithm.
  • perceptron which is a structural unit of artificial neural network, and artificial neural network are as follows.
  • the perceptron is modeled after a biological nerve cell and has a structure that takes multiple signals as input and outputs a single signal.
  • Figure 3 shows an example of a perceptron constituting an artificial intelligence model applicable to the present invention.
  • the perceptron sets weights (302-1 to 302-n) (e.g., w 1j , w 2j , w) for each of the input values ( e.g., x 1 , x 2, x 3 , ..., x n ). After multiplying by 3j , ..., w nj ), the weighted input values are summed using a transfer function 304.
  • a bias value (e.g., b k ) may be added.
  • the perceptron generates an output value (e.g., o j) by applying an activation function (306) to the net input value (e.g., net j ) , which is the output of the transformation function (304).
  • activation function 306 may operate based on a threshold (eg, ⁇ j ).
  • Activation functions can be defined in various ways. The present invention is not limited to this, but for example, a step function, sigmoid, Relu, Tanh, etc. may be used as the activation function.
  • An artificial neural network can be designed by arranging perceptrons as shown in Figure 3 and forming layers.
  • Figure 4 shows an example of an artificial neural network constituting an artificial intelligence model applicable to the present invention.
  • each node represented by a circle can be understood as the perceptron of FIG. 3.
  • the artificial neural network includes an input layer 402, a plurality of hidden layers 404a and 404b, and an output layer 462.
  • the input data is weighted and transformed by the perceptrons that make up the input layer 402 and the hidden layers 404a and 404b. and forward propagation to the output layer 462 through activation function calculation, etc.
  • the error is calculated through backward propagation from the output layer 162 to the input layer 402, and the weight values defined in each perceptron can be updated according to the calculated error. there is.
  • Doppler echocardiography is a technology that records ultrasound images of the heart and magnifies two-dimensional echocardiography.
  • Doppler echocardiography is a technology that measures blood velocity in the heart and great vessels and is a key technology in the evaluation of valvular heart disease and cardiac performance. am.
  • VTI velocity-time-integral
  • peak velocity from Doppler echocardiography
  • images can be acquired and then analyzed by manually tracing the Doppler envelope. A skilled technician is required.
  • the present disclosure proposes a technique for automated Doppler envelope quantification.
  • FIGS. 5A to 5F show an example of an image processing process according to an embodiment of the present invention.
  • FIGS. 5A to 5F illustrate results obtained from each of the processing steps for analysis of a medical image representing time-varying information, according to various embodiments.
  • FIG. 5A shows an example of a raw image 510.
  • the horizontal axis represents time and the vertical axis represents blood flow speed. That is, the raw image 510 lists the time-varying heart blood flow speed on the time axis.
  • the image can change in real time by adding new data and excluding past data over time, as shown in the raw image 510 of FIG. 5A.
  • the waveform has a certain pattern, and the pattern has periodicity.
  • a 'signal' a pattern with consistency is referred to as a 'signal'.
  • Figure 5b shows an example of a segmentation result for a signal.
  • segmentation results 521, 522, and 523 for the three signals expressed in the image are generated.
  • Segments 521, 522, and 523 include at least a portion of the envelope for the signals.
  • Figure 5c shows an example of detection results of maximum speed values 531a, 532a, 533a and time values 531b, 532b, 533b.
  • Maximum speed values 531a, 532a, 533a and time values 531b, 532b, 533b are detected based on the segmentation results 521, 522, 523 illustrated in FIG. 5B. That is, in the segmentation results 521, 522, or 523 of each signal, the points with the largest size are selected as the maximum speed values 531a, 532a, and 533a, and the end points of each signal are selected as the maximum visual values 531b, 532b, and 533b. ) is selected as.
  • Figure 5d shows an example of the results of calculating various measurement values 541, 542, and 543.
  • maximum velocity (Vmax), VTI, deceleration time (DT), pressure half time (PHT), acceleration time (AT), end-diastolic velocity (EDV), dP/ Measured values 541, 542, and 543, including dt (the rate of pressure change using the 4V2 formula over time during isovolumic contraction), may be determined.
  • Figure 5e shows examples of entropies 551, 552, and 553 for segmentation.
  • Entropy expresses the probability value for the segmentation area created in the process of performing segmentation. It can be understood that the clearer the entropy and the clearer the distinction from other areas, the higher the accuracy of the derived segmentation.
  • the first entropy 551 and the second entropy 552 on the right are confirmed to be relatively clearer than the third entropy 553 on the left.
  • Figure 5f shows examples of classification results 561, 562, and 563 for true and false signals.
  • True signals and false signals can be classified based on the entropies 551, 552, and 553 as shown in FIG. 5E.
  • clarity is lower than that of the other entropies 551 and 552, such as the third entropy 553 in FIG. 5E. Accordingly, true signals and false signals can be determined based on the sharpness or blurring of the entropy.
  • segmentation is performed on the signal.
  • segmentation can be performed using an artificial intelligence model, and the artificial intelligence model for segmentation can be defined in various ways.
  • the artificial intelligence model shown in FIGS. 6 and 7 below or an artificial intelligence model similar thereto may be used for segmentation of signals in an image.
  • Figure 6 shows an example of the structure of an artificial intelligence model according to an embodiment of the present invention.
  • Figure 6 illustrates an artificial intelligence model that can be used to generate segmentation results like Figure 5b.
  • the artificial intelligence model includes a CNN (610), a feature map transformer (620), and multiple adaptive context modules (ACM) (630-1 to 630). -S), a concatenation unit 640, and a convolutional layer 650.
  • CNN 610 generates features of the input image.
  • the generated features include a dense 3-dimension convolution feature cube.
  • a 3D convolutional feature cube e.g., X
  • convolutional feature vectors e.g., X i
  • a 3D convolutional feature cube may have a 3D structure with a width w, a height h, and a number of channels c.
  • CNN 610 may be implemented based on ResNet or InceptionNet.
  • the feature map conversion unit 620 converts the feature map generated by the CNN 610 into multi-scale pyramid representations.
  • the feature map converter 620 generates feature maps (eg, Y s ) with different scales by decomposing the 3D convolutional feature cube. For example, a 3D convolutional feature cube is divided into s x s sub-regions and combined at scales from 1 to S, so that S feature maps can be generated.
  • Each of the multi-scale pyramid representations is input to a corresponding adaptive context module among the multiple adaptive context modules 630-1 to 630-S.
  • the multiple adaptive context modules 630-1 to 630-S are a set of adaptive context modules that process feature maps of different scales. For example, the first adaptive context module 630-1 processes a feature map of scale 1, and the second adaptive context module 630-2 processes a feature map of scale 2.
  • Each of the multiple adaptive context modules 630-1 to 630-S generates at least one adaptive context vector from a feature map of the corresponding scale. That is, each of the multiple adaptive context modules 630-1 to 630-S determines a context vector for each local location by leveraging global-guided local affinity (GLA).
  • GLA global-guided local affinity
  • connection unit 640 concatenates adaptive context vectors generated by multiple adaptive context modules 630-1 to 630-S. That is, the connection unit 640 connects adaptive context vectors having different scales.
  • the convolutional layer 650 generates output data based on the connected adaptive context vectors.
  • Output data may include a semantic label for the input image. That is, the output data is a prediction result for each pixel of the input image and includes semantic labels.
  • FIG. 7 shows an example of the structure of an adaptive context module in an artificial intelligence model according to an embodiment of the present invention.
  • FIG. 7 is a structure applicable to each of the multiple adaptive context modules 630-1 to 630-S, and illustrates the structure of an adaptive context module with a scale of s.
  • the adaptive context module includes a convolutional layer 702, a global information extractor 704, a summation unit 706, a convolutional layer 708, and a reshape unit. ) 710, a pooling unit 712, a convolutional layer 714, a reshaping unit 716, a matrix multiplication unit 718, a reshaping unit 720, and a summing unit 722. .
  • the convolutional layer 702 converts the input feature map of scale s (e.g., X) into a reduced feature map (e.g., x). To this end, the convolutional layer 702 can perform a 1 ⁇ 1 convolution operation. Reduced feature maps are generated for each location and are used for computational efficiency. For example, the reduced feature map may have a three-dimensional structure with a size of h ⁇ w ⁇ 512.
  • the global information extractor 704 generates a global information representation vector based on the reduced feature map. To this end, the global information extractor 704 may perform spatial global average pooling operations and convolution operations.
  • the summation unit 706 integrates by summing local features in the reduced feature map generated by the convolutional layer 702 and the global information representation vector generated by the global information extractor 704. ). Through this, local features at each local position are integrated with the global information representation vector.
  • the convolutional layer 708 performs a convolution operation on the local features integrated with the global information representation vector. Through this, the convolutional layer 708 can generate affinity vectors corresponding to each sub-region. For example, h ⁇ w relevance vectors with length s 2 can be generated.
  • the reshaping unit 710 generates an affinity map by reshaping the affinity vectors.
  • a relevance map may be referred to as a relevance matrix.
  • the relevance map may have a two-dimensional structure with a size of h ⁇ w ⁇ s 2 .
  • the elements included in the relevance map correspond to the affinity coefficient, and the degree to which each sub-region (e.g. Y s j ) is used in estimating the semantic label of the local feature (e.g. X i ) of the feature map. of how) Indicates whether it contributes.
  • the pooling unit 712 performs an average pooling operation on the input feature map (eg, X) of scale s. Through this, the pooling unit 712 summarizes the content of each sub-region included in the feature map of scale s into a feature vector (eg, y s j ).
  • the convolutional layer 714 performs a 1 ⁇ 1 convolution operation. Through the operations of the pooling unit 712 and the convolutional layer 714, a feature vector corresponding to each sub-region may be generated. In other words, the pooling unit 712 and the convolutional layer 714 summarize the sub-region into one feature vector by performing an average pooling operation and a convolution operation.
  • a feature vector is a single-scale representation and may have a three-dimensional structure with a size of s ⁇ s ⁇ 512.
  • the reshaping unit 716 reshapes the feature vector so that it can be multiplied by the relevance map. Through this, the feature vector is transformed into a two-dimensional feature vector of size s 2 ⁇ 512 (e.g. y s ).
  • the matrix multiplier 718 multiplies the two-dimensional feature vector and the relevance map.
  • an adaptive context matrix with a two-dimensional structure is created. For example, an adaptive context matrix with a two-dimensional structure may have a size of h ⁇ w ⁇ 512.
  • the reshaping unit 720 reshapes the adaptive context matrix into a three-dimensional structure.
  • an adaptive context matrix (e.g., z s ) with a three-dimensional structure may have a size of h ⁇ w ⁇ 512.
  • the summation unit 722 sums the adaptive context matrix of the three-dimensional structure and the reduced feature map (eg, x).
  • FIG. 8 shows an example of a procedure for obtaining information from a medical image according to an embodiment of the present invention.
  • FIG. 8 illustrates a method of operating a device with computing capabilities (eg, the service server 110 of FIG. 1).
  • step S801 the device performs segmentation on the signal.
  • the device performs segmentation on at least one signal having a certain pattern in a medical image representing time-varying information.
  • the device can perform segmentation using an artificial intelligence algorithm.
  • the device can obtain an envelope for at least one signal included in the medical image.
  • the artificial intelligence model with the structure described with reference to FIGS. 6 and 7 may be used for segmentation.
  • the device determines measurement values.
  • the device may determine various measurement values related to a diagnosed subject (e.g., heart blood flow rate) to obtain a medical image. For example, when the blood flow rate at a specific location in the heart is the diagnostic target, measurement values for items such as maximum velocity, signal extinction time, VTI, DT, and PHT may be determined. Here, measurement values can be determined for each segmented signal.
  • the device may search for feature points by analyzing the segmentation results and calculate measurement values according to predefined rules based on time axis values and velocity axis values corresponding to the searched feature points. For example, feature points may be defined based on the slope of the boundary line determined by segmentation, coordinate values, etc. Specifically, the feature point corresponding to the maximum speed may be a point with the maximum absolute value on the speed axis among the points forming the boundary line.
  • a separate artificial intelligence model may be used to search for feature points.
  • step S805 the device identifies true signals and false signals.
  • the device distinguishes whether each of the at least one signal segmented in step S801 is a true signal or a false signal.
  • true signals and false signals are distinguished depending on whether the signal is completely captured in the medical image. For example, when the entire signal is captured, as in the first segmentation 521 or the second segmentation 522 of FIG. 5B, the signal may be treated as a true signal. As another example, when only a part of the signal is captured, such as the third segmentation 523 of FIG. 5B, the signal may be treated as a false signal.
  • a true signal can be understood as a complete signal captured in its entirety
  • a false signal can be understood as an incomplete signal captured only in part.
  • the device uses pixel-specific probability information generated during the segmentation process or the envelope obtained through segmentation (e.g., length of the envelope, area of the area specified by the envelope, shape, etc.) can be used.
  • the device determines the final measurement value. Specifically, the device determines the final measurement value based on measurement values obtained from at least one true signal. For at least some of the items measured for each signal, the final measurement value may be determined by combining (eg, averaging) a plurality of signals. At this time, at least one signal classified as a false signal may be excluded from combining. That is, the device can generate final measurement values for each item by compiling measurement values obtained from at least one true signal for each item.
  • the device may output final measurement values.
  • the device may display final output values through a display means provided in the device, or may transmit data including the final measurement values to another device through a communication network.
  • the device can record final measurement values by uploading them to a database that manages medical information.
  • final measurement values may be determined using at least one true signal.
  • at least one true signal must be captured in the medical image. That is, if all captured signals are false signals, final measurement values cannot be determined. Therefore, according to another embodiment, after step S805, the device determines whether a true signal exists, and if no true signal exists, step S807 may be omitted.
  • the procedure illustrated in FIG. 8 can be performed on the result of capturing an image that changes in real time at a specific point in time. Accordingly, the above-described procedure may be performed repeatedly according to changes in the image, and the repetition period may vary depending on specific embodiments. For example, the repetition period may be determined based on the rate at which new data is added to the image.
  • sequentially captured images may contain the same signal.
  • segmentation and measurement values for the same signal analyzed in a previously captured image can be reused when analyzing the captured image later. Accordingly, at each iteration, the above-described procedure may be performed on only a portion of the captured images.
  • the operation of determining the final measurement value in step S807 in the procedure of FIG. 8 may be performed using a plurality of medical images, rather than a single captured medical image. That is, the device can generate final measurement values based on measurement values of signals segmented from a plurality of medical images captured at different times.
  • FIG. 9 shows an example of a procedure for classifying true signals and false signals according to an embodiment of the present invention.
  • FIG. 9 is a procedure for classifying signals based on entropy, and illustrates a method of operating a device with computational capabilities (eg, the service server 110 of FIG. 1).
  • step S901 the device determines entropy for segmented signals.
  • Entropy is information expressing the probability value for the segmentation area generated during the process of performing segmentation.
  • Entropy is a measure of uncertainty for pixels and is determined on a pixel-by-pixel basis for a given class.
  • the entropy of the envelope of the signal is determined.
  • entropy can be expressed as shown in Figure 5e. Since the operation of calculating entropy is part of segmentation, this step can be understood as an operation of checking entropy values generated during the segmentation operation.
  • the device classifies the signal based on entropy. Specifically, the device can classify the signal as a true signal or a false signal by dividing the entropy values for each signal and analyzing the distribution of the entropy values for each signal. The clearer the entropy and the clearer the distinction from other areas, the higher the accuracy of the derived segmentation. Therefore, for the entropy values for each signal, the device can generate an unsharpness index that indicates the clarity of distinction between large values and small values, and classify the signal based on the unsharpness index. For example, the unsharpness index may be determined to be higher as more values fall in the middle region between the maximum and minimum entropy values.
  • the sharpness index may be defined as a statistical value (e.g., average value, variance value) of entropy values of pixels belonging to an area specified by the segmentation result.
  • the sharpness index is a statistical value (e.g., average value, variance value) of the entropy values of pixels that fall within a certain distance inside and a certain distance outside from the boundary line of the area created by segmentation. can be defined.
  • the first entropy 551 and the second entropy 552 on the right are confirmed to be relatively clearer than the third entropy 553 on the left, so the first entropy 551 and the second entropy (552) 552) can be classified as true signals, and the third entropy 553 can be classified as false signals.
  • measurement values for signals segmented from a medical image may be determined.
  • the items of the acquired measurement values may vary.
  • the items that can be measured depending on the Doppler echocardiography view may be as shown in [Table 1] below.
  • Type Doppler view measurement MV (Mitral Valve) MV inflow PW MV E vel, MV A vel, MV dt MV(MS) CW MV Vmax, MV VTI, MV PHT MV(MR) CW MR Vmax, MR VTI, dp/dt Septal annulus TDI (tissue Doppler imaging) E' sept, A' sept, S' sept Lateral annulus TDI E'lat, A'lat, S'lat AV (Aortic Valve) AV(LVOT) PW(pulsed-wave) LVOT(left ventricular outflow tract) Vmax, LVOT VTI LVOT obstruction CW(continuous-wave) LVOT obstruction Vmax AV(AS(aortic stenosis)) CW AV Vmax, AV VTI AV(AR) CW AR(aortic regurgitation) Vmax, AR PHT PV (Pulmonic Valve) PV(RVOT) PW RV
  • FIGS. 10A to 10D show examples of information obtainable from a MV (Mitral Valve) inflow PW (pulsed-waved) view according to an embodiment of the present invention.
  • MV E velocity early diastolic inflow velocity
  • MV A velocity late diastolic inflow velocity
  • MV dt deceleration time
  • FIGS. 11A to 11D show examples of information obtainable from a TDI (tissue Doppler imaging) view according to an embodiment of the present invention.
  • Figures 11A, 11B, and 11D illustrate the septal annulus TDI view
  • Figure 11C illustrates the lateral annulus TDI view.
  • FIGS. 12A to 12D show examples of information obtainable in an aortic regurgitation (AR) pressure half time (PHT) view according to an embodiment of the present invention.
  • AR Vmax 1202
  • AR PHT 1204
  • AR Vmax 1202
  • AR PHT 1204
  • FIGS. 13A to 13D show examples of information obtainable from a mitral valve (MS) PHT view according to an embodiment of the present invention.
  • MV PHT 1302 can be measured.
  • FIGS. 14A and 14B show examples of information obtainable in a pulmonic valve (PV) PW view according to an embodiment of the present invention.
  • RVOT Vmax 1402
  • RVOT at acceleration time
  • RVOT VTI 1406
  • Figures 15a and 15b show examples of information obtainable in a mitral regurgitation (MR) PW view according to an embodiment of the present invention.
  • MR Vmax (1502)
  • MR dp/dt 1504
  • MR VTI 1506
  • measurement values for signals segmented from a medical image may be determined.
  • the above-mentioned measurement values are examples of information directly confirmed from the segmentation results.
  • the above-described measured values are examples of information that can be obtained by reading the value of a specific point in the segmentation result or calculating the length of the section.
  • secondary measurement values may be obtained through a calculation formula based on at least one measurement value directly obtained from the segmentation result. Examples of secondary measurement values are shown in [Table 2] below.
  • FIG. 16 shows an example of a procedure for obtaining information from a medical image using electrocardiogram (ECG) extraction and segmentation according to an embodiment of the present invention.
  • FIG. 16 illustrates a method of operating a device with computing capabilities (eg, the service server 160 of FIG. 1).
  • the device determines at least one measurement value based on segmentation of the signal. At least one measurement value may be determined based on a segmentation result for at least one true signal among signals included in the medical image. According to one embodiment, the device may determine at least one measurement value according to at least one of the procedures described with reference to FIGS. 5A to 5F, FIG. 8, or FIG. 9.
  • the device extracts the electrocardiogram signal.
  • the device extracts electrocardiogram signals from the medical images used in the S1601.
  • the device can use artificial intelligence models. For example, in a medical image such as that shown in FIG. 17, a signal 1702 may be extracted as an electrocardiogram signal.
  • step S1605 the device performs ED (end-diastolic)/ES (end-systolic) segmentation from the extracted ECG signal.
  • ED/ES segmentation refers to the operation of segmenting the section from ED to ES or the section from ES to ED.
  • the device can segment the ED-ES region or ES-ED region in the ECG signal.
  • the device can use artificial intelligence models.
  • the ECG signal extracted in step S1603 may be obtained with baseline wandering due to noise, etc., as shown in graph 1802 of FIG. 18. Accordingly, the device can obtain an ECG signal in a stable state as shown in graph 1804 by performing filtering and then perform ED and ES segmentation.
  • the device In step S1607, the device generates information based on the measurement values and ED/ES. For example, the device may classify at least one measurement value obtained in step S1601 based on the timing of ED and ES. For example, if the medical image is from the MV inflow PW view, the device determines E-related values (e.g., MV E velocity) and A-related values (e.g., MV A velocity) based on the viewpoints in the ED and ES. ) can be classified. In other words, the ED/ES segmentation result can be used as a standard for classifying the measurement value determined based on the signal segmentation result.
  • E-related values e.g., MV E velocity
  • A-related values e.g., MV A velocity
  • FIG. 19 shows an example of a procedure for obtaining information from a medical image considering the presence or absence of an electrocardiogram signal according to an embodiment of the present invention.
  • FIG. 19 illustrates a method of operating a device with computing capabilities (eg, the service server 160 of FIG. 1).
  • the device determines a measurement value based on segmentation of the signal. At least one measurement value may be determined based on a segmentation result for at least one true signal among signals included in the medical image. According to one embodiment, the device may determine at least one measurement value according to at least one of the procedures described with reference to FIGS. 5A to 5F, FIG. 8, or FIG. 9.
  • the measured values may include E-related values (e.g., MV E velocity) and A-related values (e.g., MV A velocity).
  • step S1903 the device determines whether an electrocardiogram signal exists in the medical image.
  • the presence of an electrocardiogram signal may be determined based on analysis of a medical image, or may be determined by a separate input.
  • the device performs E/A classification based on the ECG signal.
  • the device can classify E-related values (e.g., MV E rate) and A-related values (e.g., MV A rate) based on the electrocardiogram signal.
  • E-related values e.g., MV E rate
  • A-related values e.g., MV A rate
  • the device segments the ED-ES region or ES-ED region in the electrocardiogram signal and, based on the ED/ES segmentation results, generates E-related values (e.g., MV E rate) and A-related values (e.g., MV A rate). can be classified.
  • the device performs E/A classification based on the signal pattern.
  • a signal representing an E-related value hereinafter referred to as an 'E signal'
  • a signal representing an A-related value hereinafter referred to as an 'A signal'
  • the E-related value (2002) and the A-related value (2004) are sequentially confirmed on the time axis, and it is confirmed that the pair of related E signals and A signals is repeated.
  • the width (2012) of the E signal is relatively larger than the width (2014) of the A signal. Therefore, the device can distinguish between the E signal and the A signal by pairing two consecutive signals in the segmentation result and comparing the widths of the signals included in the pair. Accordingly, the device can also distinguish between E-related values and A-related values.
  • step S1909 the device checks whether abnormal E/A distribution has occurred. If the heart of a subject involved in a medical image is in a normal state, the distribution of pairs of E and A signals is uniform, as shown in FIG. 20. However, in case of E/A summation or arrhythmia, a different pattern may be observed. For example, in the case of arrhythmia, a characteristic in which the interval of the E signal is non-uniform may be observed. For example, in the case of EA summation, a characteristic that the cardiac cycle identified in E-mode echocardiography and the period of the E signal do not match may be observed. By checking whether features such as uneven E signal spacing and discrepancy with E-mode echocardiography are observed, the device can determine whether there is an abnormal E/A distribution.
  • the device If abnormal E/A distribution is confirmed, in step S1911, the device outputs a warning message. That is, the device outputs the results of E/A classification based on the signal pattern and may further output a warning message notifying that an abnormal E/A distribution has been confirmed.
  • the warning message may further include information about suspected abnormal conditions (e.g., E/A summation, arrhythmia, etc.).
  • the device may output only the E/A classification results without a warning message.
  • various measurement values can be obtained based on segmentation of Doppler echocardiography images.
  • an artificial intelligence model for segmentation an artificial intelligence model such as that shown in FIGS. 6 and 7 or an artificial intelligence model similar thereto may be used.
  • an artificial intelligence model different from the artificial intelligence model shown in FIGS. 6 and 7 may be used for segmentation.
  • various artificial intelligence models can be used, considering computing power, time required for learning, accuracy, etc.
  • Figure 21 shows an example of the configuration of a two-path partition network, which is one of the semantic segmentation models applicable to the present invention.
  • the two-path segmentation network performs semantic segmentation tasks by using low-level details and high-level semantics.
  • the path segmentation network improves the accuracy and efficiency of the semantic segmentation model by separating spatial details and categorical meaning.
  • the two-path split network includes a two pathway backbone (2110), an aggregation layer (2150), and a booster part (2140).
  • the two-path backbone 2110 again includes a detail branch 2120 and a semantic branch 2130.
  • the detail branch 2120 and the semantic branch 2130 include at least one stage, and at least one operation is performed within each stage.
  • Computation modules used for computation tasks may be Conv2d, Stem, GE, CE, etc. [Table 3] below is an example of a case where the detailed branch 2120 has three stages.
  • the detail branch 2120 is responsible for spatial details and is low-level detail information. Therefore, the detail branch 2120 requires abundant channel capacity to encode spatial details. Meanwhile, since the detailed branch 2120 focuses only on low-level details, the detailed branch 2120 can be designed as a thin structure with small strides.
  • the core concept of detail branch 2120 is to use wide channels and shallow layers for spatial details.
  • the semantic branch 2130 is configured in parallel with the detailed branch 2120.
  • the semantic branch 2130 is designed to obtain high-level semantics. Because spatial details can be provided by the detail branch 2120, the channel capacity of the semantic branch 2130 can be set low.
  • the semantic branch 2130 can be designed by selecting any one of the lightweight convolution models.
  • the semantic branch 2130 adopts a fast downsampling strategy to improve the level of feature representation and quickly increase the receptive field. Therefore, for high level semantics, a large receptive field is needed.
  • Semantic branch 2130 embeds the global contextual response using global average pooling.
  • the aggregation layer 2150 is a layer for merging the output generated from the detailed branch 2120 and the semantic branch 2130.
  • the feature representations of the detail branch 2120 and the semantic branch 2130 are complementary, and one branch does not recognize information from the other branch. Therefore, the aggregation layer 2150 is designed to merge two types of feature representations. Because of the fast downsampling strategy, the spatial dimensions of the output generated from the semantic branch 2130 are smaller than the spatial dimensions of the output generated from the detailed branch 2120. Upsampling is necessary to match the feature map of the output generated from the semantic branch 2130 with the output of the detailed branch 2120. Methods in which the aggregation layer 2150 aggregates the outputs of the detailed branch 2120 and the semantic branch 2130 may be implemented in various ways.
  • Figure 22 shows an example of a method for aggregating output generated from the detailed branch 2120 and the semantic branch 2130 applicable to the present invention.
  • DW conv means depth-wise convolution
  • APooling means average pooling
  • BN batch normalization
  • Upsample means bilinear interpolation
  • Sigmoid means It refers to the sigmoid activation function
  • Sum refers to the addition part
  • m ⁇ m refers to the kernel size
  • H ⁇ W ⁇ C refers to the tensor shape
  • N refers to element-wise multiplication.
  • the aggregation layer 2150 fuses the output of the detailed branch 2120 and the output generated from the semantic branch 2130.
  • the aggregation layer 2150 using the calculation procedure shown in FIG. 22 is called a guided aggregation layer (GAL).
  • GAL guided aggregation layer
  • Semantic segmentation is completed by performing atrous spatial pyramid pooling (ASPP) based on the high-dimensional feature map that passed through the aggregation layer 2150.
  • ASPP atrous spatial pyramid pooling
  • the booster part 2140 is where the auxiliary segmentation head is extracted to further improve semantic segmentation accuracy.
  • the segmentation head is the result of predicting which class each pixel belongs to, and is used for artificial intelligence learning.
  • the main segmentation head is extracted as the final result of the semantic segmentation model. Since the output value of the process of extracting the main segmentation head is used, the performance of semantic segmentation can be improved by adding a few calculation procedures.
  • the booster part 2140 can determine where to extract the auxiliary segmentation head from different locations in the semantic branch 2130.
  • the booster part 2140 is used during the artificial intelligence learning process, but the booster part 2140 may not be used when testing or utilizing the learned artificial intelligence. By appropriately selecting the weights of the auxiliary segmentation head and the main segmentation head, more efficient artificial intelligence learning can be performed.
  • Figure 23 shows an example of the configuration of a three-path partition network, one of the semantic segmentation models according to an embodiment of the present invention.
  • 3 Path segmentation networks further improve semantic segmentation by using low-level details, high-level details, and shapes.
  • This model achieves high accuracy and efficiency in real-time semantic segmentation by separating not only spatial details and categorical meanings, but also geometric meanings.
  • the three-path split network includes a two pathway backbone (2310), an aggregation layer (2350), and a booster part (2390).
  • the three-path backbone 2310 includes a detail branch 2320, a semantic branch 2330, and a shape branch 2340.
  • the detailed branch 2320, semantic branch 2330, and booster part 2390 can be configured in the same way as in the embodiment using FIG. 22.
  • the shape branch 2340 obtains shape information based on the output generated at each stage of the detail branch 2320 and the semantic branch 2330.
  • the shape branch 2340 processes each feature obtained from the detail branch 2320 and the semantic branch 2330 and generates a semantic boundary as output based on the image gradient.
  • a gated convolutional layer (GCL) 2380 is used to facilitate the flow of the output generated in the detail branch 2320 and the output generated in the semantic branch 2330.
  • Shape branch 2340 includes at least one guided aggregation layer. Outputs generated for each stage are selected from the detailed branch (2320) and the semantic branch (2330) as many as the number of guided aggregation layers (2360 and 2370) and input to each guided aggregation layer.
  • the result of convolution of all the results calculated from each guided aggregation layer 2360 and 2370 is used. If the tensor shapes of the outputs calculated in the aggregation layers 2360 and 2370 are different, 1 ⁇ 1 convolution may be performed first.
  • the gated convolution layer (2380) convolutions all the results calculated from each guided aggregation layer (2360 and 2370) with the image gradient ( ⁇ I) and shapes it using the sigmoid function. Extract information about
  • semantic segmentation is performed by performing atrous spatial pyramid pooling (ASPP) based on the high-dimensional feature map calculated in the guided aggregation layer 2350 and the gated convolution layer 2380. Learning about semantic segmentation is performed based on segmentation loss, edge loss, and dual task loss.
  • ABP atrous spatial pyramid pooling
  • DNN deep neural networks
  • DNN deep neural networks
  • DNN deep neural networks
  • Exemplary methods of the present invention are expressed as a series of operations for clarity of explanation, but this is not intended to limit the order in which the steps are performed, and each step may be performed simultaneously or in a different order, if necessary.
  • other steps may be included in addition to the exemplified steps, some steps may be excluded and the remaining steps may be included, or some steps may be excluded and additional other steps may be included.
  • various embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • one or more ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • general purpose It can be implemented by a processor (general processor), controller, microcontroller, microprocessor, etc.
  • the scope of the present invention includes software or machine-executable instructions (e.g., operating systems, applications, firmware, programs, etc.) that enable operations according to the methods of various embodiments to be executed on a device or computer, and such software or It includes non-transitory computer-readable medium in which instructions, etc. are stored and can be executed on a device or computer.
  • software or machine-executable instructions e.g., operating systems, applications, firmware, programs, etc.

Abstract

The objective of the present invention is to acquire information from a medical image expressing time-varying information, and a method for acquiring information from a medical image may comprise the steps of: performing segmentation on one or more signals in one or more medical images; determining one or more measurement values by signal on the basis of an envelope of the one or more signals acquired through the segmentation; confirming one or more true signals from among the one or more signals; and determining one or more final measurement values on the basis of one or more measurement values for the one or more true signals.

Description

시변하는 정보를 표현한 의료 영상에서 정보를 획득하기 위한 방법 및 장치Method and device for obtaining information from medical images expressing time-varying information
본 발명은 의료 영상의 처리에 대한 것으로, 특히, 시변하는(time-varying) 정보를 표현한 의료 영상에서 정보를 획득하기 위한 방법 및 장치에 대한 것이다.The present invention relates to the processing of medical images, and in particular, to a method and device for obtaining information from medical images expressing time-varying information.
질병은 인간의 심신에 장애를 일으켜서 정상적인 기능을 저해하는 상태를 의미하는 것으로, 질병에 따라 인간은 고통을 받고 심지어 생을 유지하지 못할 수 있다. 따라서, 질병을 진단하고, 치료하고 나아가 예방하기 위한 다양한 사회적 시스템 및 기술들이 인류의 역사와 함께 발전해왔다. 질병의 진단 및 치료에 있어서, 기술의 눈부신 발전에 따라 다양한 도구들 및 방식들이 개발되어 왔지만, 아직까지, 종국적으로는 의사의 판단에 의존하고 있는 현실이다.Disease refers to a condition that causes disorders in the human mind and body, impeding normal functioning. Depending on the disease, a person may suffer and may even be unable to sustain his or her life. Accordingly, various social systems and technologies for diagnosing, treating, and even preventing diseases have developed along with human history. In the diagnosis and treatment of diseases, various tools and methods have been developed in accordance with the remarkable advancement of technology, but the reality is that they are still ultimately dependent on the judgment of doctors.
한편, 최근 인공지능(artificial intelligence, AI) 기술이 크게 발전하면서 다양한 분야에서 주목되고 있다. 특히, 방대한 양의 누적된 의료 데이터와, 영상 위주의 진단 데이터 등의 환경으로 인해, 의료 분야에 인공지능 알고리즘을 접목하려는 다양한 시도와 연구가 진행 중이다. 구체적으로, 질병을 진단, 예측하는 등 종래의 임상적 판단에 머물러 있던 작업들을 인공지능 알고리즘을 이용하여 해결하려는 다양한 연구가 이루어지고 있다. 또한, 진단 등을 위한 중간 과정으로서 의료 데이터를 처리하고 분석하는 작업을 인공지능 알고리즘을 이용하여 해결하려는 다양한 연구가 이루어지고 있다.Meanwhile, artificial intelligence (AI) technology has recently developed significantly and is attracting attention in various fields. In particular, due to the environment of vast amounts of accumulated medical data and image-oriented diagnostic data, various attempts and research are underway to apply artificial intelligence algorithms to the medical field. Specifically, various studies are being conducted to use artificial intelligence algorithms to solve tasks that have traditionally been limited to clinical judgment, such as diagnosing and predicting diseases. In addition, various studies are being conducted to solve the task of processing and analyzing medical data as an intermediate process for diagnosis, etc. using artificial intelligence algorithms.
본 발명은 인공지능(artificial intelligence, AI) 알고리즘을 이용하여 의료 영상으로부터 효과적으로 정보를 획득하기 위한 방법 및 장치를 제공하기 위한 것이다.The present invention is intended to provide a method and device for effectively obtaining information from medical images using an artificial intelligence (AI) algorithm.
본 발명은 시변하는 정보를 표현하는 의료 영상으로부터 실시간으로 정보를 추출하기 위한 방법 및 장치를 제공하기 위한 것이다.The present invention is intended to provide a method and device for extracting information in real time from medical images expressing time-varying information.
본 발명은 반복적 패턴을 가진 의료 영상에서 각 패턴의 신호를 추출 및 분석하기 위한 방법 및 장치를 제공하기 위한 것이다.The present invention is intended to provide a method and device for extracting and analyzing signals of each pattern from medical images with repetitive patterns.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the description below. You will be able to.
본 발명의 일 실시 예에 따른, 의료 영상에서 정보를 획득하기 위한 방법은, 적어도 하나의 의료 영상에서 적어도 하나의 신호에 대한 세그먼테이션을 수행하는 단계, 상기 세그먼테이션을 통해 획득된 상기 적어도 하나의 신호의 포락선에 기반하여 적어도 하나의 측정 값을 신호 별로 결정하는 단계, 상기 적어도 하나의 신호 중 적어도 하나의 참(true) 신호를 확인하는 단계, 및 상기 적어도 하나의 참 신호에 대한 적어도 하나의 측정 값에 기반하여 적어도 하나의 최종 측정 값을 결정하는 단계를 포함할 수 있다.According to an embodiment of the present invention, a method for obtaining information from a medical image includes performing segmentation on at least one signal in at least one medical image, the at least one signal obtained through the segmentation. determining at least one measurement value for each signal based on an envelope, confirming at least one true signal among the at least one signals, and at least one measurement value for the at least one true signal. It may include determining at least one final measurement value based on the method.
본 발명의 일 실시 예에 따르면, 상기 적어도 하나의 의료 영상은, 시변하는 정보를 시간축에서 나열한 결과를 표현하는 적어도 하나의 의료 영상을 표현할 수 있다.According to an embodiment of the present invention, the at least one medical image may represent at least one medical image that represents a result of arranging time-varying information on the time axis.
본 발명의 일 실시 예에 따르면, 상기 적어도 하나의 의료 영상은, 적어도 하나의 도플러 심초음파(Doppler echocardiography) 영상을 포함할 수 있다.According to one embodiment of the present invention, the at least one medical image may include at least one Doppler echocardiography image.
본 발명의 일 실시 예에 따르면, 상기 적어도 하나의 측정 값은, 혈류의 최대 속도 값, VTI(velocity time integral), DT(deceleration time), PHT(pressure half time), AT(acceleration time), EDV(end-diastolic velocity), DT(deceleration time), dP/dt(the rate of pressure change using the 4V2 formula over time during isovolumic contraction), S'sept(septal)(peak systolic mitral annular velocity at the septal part of mitral annulus), E'sept(peak early diastolic mitral annular velocity at the septal part of mitral annulus), A'sept(peak late diastolic mitral annular velocity at the septal part of mitral annulus), S'lat(lateral)(peak systolic mitral annular velocity at the lateral part of mitral annulus), E'lat(peak early diastolic mitral annular velocity at the lateral part of mitral annulus), A'lat(peak late diastolic mitral annular velocity at the lateral part of mitral annulus)중 적어도 하나를 포함할 수 있다.According to an embodiment of the present invention, the at least one measurement value is the maximum velocity value of blood flow, velocity time integral (VTI), deceleration time (DT), pressure half time (PHT), acceleration time (AT), and EDV. (end-diastolic velocity), DT(deceleration time), dP/dt(the rate of pressure change using the 4V2 formula over time during isovolumic contraction), S'sept(septal)(peak systolic mitral annular velocity at the septal part of mitral annulus), E'sept(peak early diastolic mitral annular velocity at the septal part of mitral annulus), A'sept(peak late diastolic mitral annular velocity at the septal part of mitral annulus), S'lat(lateral)(peak systolic mitral annular velocity at the lateral part of mitral annulus), E'lat(peak early diastolic mitral annular velocity at the lateral part of mitral annulus), A'lat(peak late diastolic mitral annular velocity at the lateral part of mitral annulus) It may include at least one of:
본 발명의 일 실시 예에 따르면, 상기 적어도 하나의 참 신호는, 상기 세그먼테이션을 위해 생성된 픽셀 별 확률 정보, 상기 포락선의 길이, 상기 포락선에 의해 특정되는 영역의 넓이, 상기 포락선에 의해 특정되는 영역의 모양 중 적어도 하나에 기반하여 확인될 수 있다.According to an embodiment of the present invention, the at least one true signal includes probability information for each pixel generated for the segmentation, the length of the envelope, the area of the area specified by the envelope, and the area specified by the envelope. It can be identified based on at least one of the shapes of .
본 발명의 일 실시 예에 따르면, 상기 적어도 하나의 참 신호는, 상기 세그먼테이션을 위해 생성된 엔트로피(entropy) 값들의 분포에 기반하여 확인될 수 있다.According to an embodiment of the present invention, the at least one true signal may be identified based on the distribution of entropy values generated for the segmentation.
본 발명의 일 실시 예에 따르면, 상기 적어도 하나의 참 신호를 확인하는 단계는, 상기 세그먼테이션을 수행하는 단계에서 생성된 엔트로피 값들을 확인하는 단계를 포함하는 단계를 포함할 수 있다.According to an embodiment of the present invention, the step of checking the at least one true signal may include a step of checking entropy values generated in the step of performing the segmentation.
본 발명의 일 실시 예에 따르면, 상기 세그먼테이션은, 다중-스케일 피라미드 표현들(multi-scale pyramid representations)에 기반하여 수행될 수 있다.According to one embodiment of the present invention, the segmentation may be performed based on multi-scale pyramid representations.
본 발명의 일 실시 예에 따르면, 상기 방법은, 상기 적어도 하나의 의료 영상에서 심전도(electrocardiogram, ECG) 신호를 추출하는 단계, 및 상기 심전도 신호 및 상기 적어도 하나의 최종 측정 값에 기반하여 다른 적어도 하나의 측정 값을 결정하는 단계를 더 포함할 수 있다.According to one embodiment of the present invention, the method includes extracting an electrocardiogram (ECG) signal from the at least one medical image, and at least one other signal based on the ECG signal and the at least one final measurement value. The step of determining the measured value may be further included.
본 발명의 일 실시 예에 따르면, 상기 적어도 하나의 신호는, 제1 값에 관련된 제1 신호 및 제2 값에 관련된 제2 신호를 포함하며, 상기 제1 신호 및 상기 제2 신호는, 심전도 신호에 기반하여 분류되거나, 또는, 상기 적어도 하나의 신호의 패턴에 기반하여 분류될 수 있다.According to one embodiment of the present invention, the at least one signal includes a first signal related to a first value and a second signal related to a second value, and the first signal and the second signal are electrocardiogram signals. may be classified based on, or may be classified based on the pattern of the at least one signal.
본 발명의 일 실시 예에 따르면, 상기 방법은, 상기 적어도 하나의 신호를 시간 축에서 연속한 2개의 신호들을 포함하는 쌍(pair)들로 묶는 단계, 및 상기 쌍들 각각에 포함되는 신호들의 폭(width)에 기반하여 상기 신호들을 분류하는 단계를 더 포함할 수 있다.According to one embodiment of the present invention, the method includes grouping the at least one signal into pairs including two consecutive signals on the time axis, and the width of signals included in each of the pairs ( A step of classifying the signals based on width may be further included.
본 발명의 일 실시 예에 따른, 의료 영상에서 정보를 획득하기 위한 장치는, 상기 장치의 동작을 위한 명령어 집합을 저장하는 저장부, 및 상기 저장부와 연결된 적어도 하나의 프로세서를 포함하며, 상기 적어도 하나의 프로세서는, 적어도 하나의 의료 영상에서 적어도 하나의 신호에 대한 세그먼테이션을 수행하고, 상기 세그먼테이션을 통해 획득된 상기 적어도 하나의 신호의 포락선에 기반하여 적어도 하나의 측정 값을 신호 별로 결정하고, 상기 적어도 하나의 신호 중 적어도 하나의 참(true) 신호를 확인하고, 상기 적어도 하나의 참 신호에 대한 적어도 하나의 측정 값에 기반하여 적어도 하나의 최종 측정 값을 결정하도록 제어할 수 있다.According to an embodiment of the present invention, a device for obtaining information from a medical image includes a storage unit that stores a set of instructions for operating the device, and at least one processor connected to the storage unit, wherein the at least One processor performs segmentation on at least one signal in at least one medical image, and determines at least one measurement value for each signal based on an envelope of the at least one signal obtained through the segmentation, Control may be performed to confirm at least one true signal among the at least one signals and determine at least one final measurement value based on at least one measurement value for the at least one true signal.
본 발명의 일 실시 예에 따른, 매체에 저장된 프로그램은, 프로세서에 의해 동작되면 전술한 방법을 실행할 수 있다.According to an embodiment of the present invention, a program stored in a medium can execute the above-described method when operated by a processor.
본 발명에 대하여 위에서 간략하게 요약된 특징들은 후술하는 본 발명의 상세한 설명의 예시적인 양상일 뿐이며, 본 발명의 범위를 제한하는 것은 아니다.The features briefly summarized above with respect to the present invention are merely exemplary aspects of the detailed description of the present invention that follows, and do not limit the scope of the present invention.
본 발명에 따르면, 인공지능(artificial intelligence, AI) 알고리즘을 이용하여 의료 영상으로부터 효과적으로 정보가 획득될 수 있다.According to the present invention, information can be effectively obtained from medical images using an artificial intelligence (AI) algorithm.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects that can be obtained from the present invention are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the description below. will be.
도 1은 본 발명의 일 실시 예에 따른 시스템을 도시한다.1 shows a system according to one embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따른 장치의 구조를 도시한다.Figure 2 shows the structure of a device according to an embodiment of the present invention.
도 3은 본 발명에 적용 가능한 인공지능 모델을 구성하는 퍼셉트론(perceptron)의 예를 도시한다.Figure 3 shows an example of a perceptron constituting an artificial intelligence model applicable to the present invention.
도 4는 본 발명에 적용 가능한 인공지능 모델을 구성하는 인공 신경망의 예를 도시한다.Figure 4 shows an example of an artificial neural network constituting an artificial intelligence model applicable to the present invention.
도 5a 내지 도 5f는 본 발명의 일 실시 예에 따른 영상 처리 과정의 예를 도시한다.Figures 5A to 5F show an example of an image processing process according to an embodiment of the present invention.
도 6은 본 발명의 일 실시 예에 따른 인공지능 모델의 구조의 예를 도시한다.Figure 6 shows an example of the structure of an artificial intelligence model according to an embodiment of the present invention.
도 7은 본 발명의 일 실시 예에 따른 인공지능 모델 내의 적응적 컨텍스트 모듈(adaptive context module, ACM)의 구조의 예를 도시한다.Figure 7 shows an example of the structure of an adaptive context module (ACM) in an artificial intelligence model according to an embodiment of the present invention.
도 8은 본 발명의 일 실시 예에 따라 의료 영상으로부터 정보를 획득하는 절차의 예를 도시한다. Figure 8 shows an example of a procedure for obtaining information from a medical image according to an embodiment of the present invention.
도 9는 본 발명의 일 실시 예에 따라 참 신호 및 거짓 신호를 분류하는 절차의 예를 도시한다.Figure 9 shows an example of a procedure for classifying true signals and false signals according to an embodiment of the present invention.
도 10a 내지 도 10d는 본 발명의 일 실시 예에 따라 MV(Mitral Valve) 유입부(inflow) PW(pulsed-wave) 뷰(view)에서 획득가능한 정보의 예들을 도시한다.FIGS. 10A to 10D show examples of information obtainable from a MV (Mitral Valve) inflow PW (pulsed-wave) view according to an embodiment of the present invention.
도 11a 내지 도 11d는 본 발명의 일 실시 예에 따라 TDI(tissue Doppler imaging) 뷰에서 획득가능한 정보의 예들을 도시한다.11A to 11D show examples of information obtainable from a TDI (tissue Doppler imaging) view according to an embodiment of the present invention.
도 12a 내지 도 12d는 본 발명의 일 실시 예에 따라 AR(aortic regurgitation) PHT(pressure half time) 뷰에서 획득가능한 정보의 예들을 도시한다.Figures 12A to 12D show examples of information obtainable in an aortic regurgitation (AR) pressure half time (PHT) view according to an embodiment of the present invention.
도 13a 내지 도 13d는 본 발명의 일 실시 예에 따라 MS(mitral valve) PHT 뷰에서 획득가능한 정보의 예들을 도시한다.FIGS. 13A to 13D show examples of information obtainable from a mitral valve (MS) PHT view according to an embodiment of the present invention.
도 14a 및 도 14b는 본 발명의 일 실시 예에 따라 PV(pulmonic valve) PW 뷰에서 획득가능한 정보의 예들을 도시한다.Figures 14a and 14b show examples of information obtainable in a pulmonic valve (PV) PW view according to an embodiment of the present invention.
도 15a 및 도 15b는 본 발명의 일 실시 예에 따라 MR(mitral regurgitation) PW 뷰에서 획득가능한 정보의 예들을 도시한다.Figures 15a and 15b show examples of information obtainable in a mitral regurgitation (MR) PW view according to an embodiment of the present invention.
도 16은 본 발명의 일 실시 예에 따라 심전도(electrocardiogram, ECG) 추출 및 세그먼테이션을 이용하여 의료 영상으로부터 정보를 획득하는 절차의 예를 도시한다.Figure 16 shows an example of a procedure for obtaining information from a medical image using electrocardiogram (ECG) extraction and segmentation according to an embodiment of the present invention.
도 17은 본 발명의 일 실시 예에 따라 심전도를 포함하는 의료 영상의 예를 도시한다.Figure 17 shows an example of a medical image including an electrocardiogram according to an embodiment of the present invention.
도 18은 본 발명의 일 실시 예에 따라 심전도 신호를 나타내는 그래프들의 예를 도시한다.Figure 18 shows examples of graphs representing electrocardiogram signals according to an embodiment of the present invention.
도 19는 본 발명의 일 실시 예에 따라 심전도 신호의 유무를 고려하여 의료 영상으로부터 정보를 획득하는 절차의 예를 도시한다.Figure 19 shows an example of a procedure for obtaining information from a medical image considering the presence or absence of an electrocardiogram signal according to an embodiment of the present invention.
도 20는 본 발명의 일 실시 예에 따른 정상 상태의 MV 유입부 PW 뷰의 의료 영상의 예를 도시한다.Figure 20 shows an example of a medical image of a PW view of the MV inlet in a normal state according to an embodiment of the present invention.
도 21은 본 발명에 적용 가능한 시맨틱 세그먼테이션(semantic segmentation) 모델 중 하나인 2 경로 분할 네트워크 구성의 예를 도시한다.Figure 21 shows an example of a two-path split network configuration, which is one of the semantic segmentation models applicable to the present invention.
도 22는 본 발명에 적용 가능한 세부 브랜치와 시맨틱 브랜치에서 생성된 출력을 집계하는 방법 중 일 예를 도시한다. Figure 22 shows an example of a method for aggregating output generated from detailed branches and semantic branches applicable to the present invention.
도 23은 본 발명의 일 실시예에 따른 시맨틱 세그먼테이션 모델 중 하나인 3 경로 분할 네트워크의 구성의 예를 도시한다.Figure 23 shows an example of the configuration of a three-path partition network, one of the semantic segmentation models according to an embodiment of the present invention.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. Hereinafter, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein.
본 발명의 실시 예를 설명함에 있어서 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그에 대한 상세한 설명은 생략한다. 그리고, 도면에서 본 발명에 대한 설명과 관계없는 부분은 생략하였으며, 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.In describing embodiments of the present invention, if it is determined that a detailed description of a known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, in the drawings, parts that are not related to the description of the present invention are omitted, and similar parts are given similar reference numerals.
도 1은 본 발명의 일 실시 예에 따른 시스템을 도시한다.1 shows a system according to one embodiment of the present invention.
도 1을 참고하면, 시스템은 서비스 서버(110), 데이터 서버(120), 적어도 하나의 클라이언트 장치(130)를 포함한다. Referring to FIG. 1, the system includes a service server 110, a data server 120, and at least one client device 130.
서비스 서버(110)는 인공지능 모델 기반의 서비스를 제공한다. 즉, 서비스 서버(110)는 인공지능 모델을 이용하여 학습 및 예측 동작을 수행한다. 서비스 서버(110)는 네트워크를 통해 데이터 서버(120) 또는 적어도 하나의 클라이언트 장치(130)와 통신을 수행할 수 있다. 예를 들어, 서비스 서버(110)는 데이터 서버(120)로부터 인공지능 모델을 훈련하기 위한 학습 데이터를 수신하고, 훈련을 수행할 수 있다. 서비스 서버(110)는 적어도 하나의 클라이언트 장치(130)로부터 학습 및 예측(prediction) 동작에 필요한 데이터를 수신할 수 있다. 또한, 서비스 서버(110)는 적어도 하나의 클라이언트 장치(130)에게 예측 결과에 대한 정보를 송신할 수 있다. The service server 110 provides services based on artificial intelligence models. That is, the service server 110 performs learning and prediction operations using an artificial intelligence model. The service server 110 may communicate with the data server 120 or at least one client device 130 through a network. For example, the service server 110 may receive learning data for training an artificial intelligence model from the data server 120 and perform training. The service server 110 may receive data necessary for learning and prediction operations from at least one client device 130. Additionally, the service server 110 may transmit information about the prediction result to at least one client device 130.
데이터 서버(120)는 서비스 서버(110)에 저장된 인공지능 모델의 훈련을 위한 학습 데이터를 제공한다. 다양한 실시 예들에 따라, 데이터 서버(120)는 누구나 접근 가능한 공공 데이터를 제공하거나 또는 허가를 필요로 하는 데이터를 제공할 수 있다. 필요에 따라, 학습 데이터는 데이터 서버(120)에 의해 또는 서비스 서버(120)에 의해 전처리할 수 있다. 다른 실시 예에 따라, 데이터 서버(120)는 생략될 수 있다. 이 경우, 서비스 서버(110)는 외부에서 훈련된 인공지능 모델을 사용하거나 또는 서비스 서버(110)에 오프라인으로 학습 데이터가 제공될 수 있다.The data server 120 provides learning data for training the artificial intelligence model stored in the service server 110. According to various embodiments, the data server 120 may provide public data that anyone can access or provide data that requires permission. If necessary, the learning data may be preprocessed by the data server 120 or the service server 120. According to another embodiment, the data server 120 may be omitted. In this case, the service server 110 may use an externally trained artificial intelligence model, or learning data may be provided to the service server 110 offline.
적어도 하나의 클라이언트 장치(130)는 서비스 서버(110)에 의해 운용되는 인공지능 모델에 관련된 데이터를 서비스 서버(110)와 송신 및 수신한다. 적어도 하나의 클라이언트 장치(130)는 사용자에 의해 사용되는 장비이며, 사용자에 의해 입력되는 정보를 서비스 서버(110)에게 송신하고, 서비스 서버(110)로부터 수신되는 정보를 저장하거나 사용자에게 제공(예: 표시)할 수 있다. 경우에 따라, 어느 하나의 클라이언트로부터 송신된 데이터에 기반하여 예측 동작이 수행되고, 예측의 결과에 관련된 정보가 다른 클라이언트에게 제공될 수 있다. 적어도 하나의 클라이언트 장치(130)는 데스크탑 컴퓨터, 랩탑 컴퓨터, 스마트폰, 타블렛, 웨어러블 기기 등 다양한 형태의 컴퓨팅 장치일 수 있다.At least one client device 130 transmits and receives data related to an artificial intelligence model operated by the service server 110 with the service server 110. At least one client device 130 is equipment used by the user, and transmits information input by the user to the service server 110, and stores the information received from the service server 110 or provides it to the user (e.g. : mark) is possible. In some cases, a prediction operation may be performed based on data transmitted from one client, and information related to the result of the prediction may be provided to another client. At least one client device 130 may be various types of computing devices, such as desktop computers, laptop computers, smartphones, tablets, and wearable devices.
도 1에 도시되지 아니하였으나, 시스템은 서비스 서버(110)를 관리하기 위한 관리 장치를 더 포함할 수 있다. 관리 장치는 서비스를 관리하는 주체에 의해 사용되는 장치로서, 서비스 서버(110)의 상태를 모니터링하거나, 서비스 서버(110)의 설정을 제어한다. 관리 장치는 네트워크를 통해 서비스 서버(110)에 접속하거나 또는 케이블 연결을 통해 직접 연결될 수 있다. 관리 장치의 제어에 따라, 서비스 서버(110)는 동작을 위한 파라미터를 설정할 수 있다.Although not shown in FIG. 1, the system may further include a management device for managing the service server 110. The management device is a device used by the entity that manages the service, and monitors the status of the service server 110 or controls settings of the service server 110. The management device may be connected to the service server 110 through a network or directly through a cable connection. According to the control of the management device, the service server 110 can set parameters for operation.
도 1을 참고하여 설명한 바와 같이, 서비스 서버(110), 데이터 서버(120), 적어도 하나의 클라이언트 장치(130), 관리 장치 등이 네트워크를 통해 연결되고, 상호작용할 수 있다. 여기서, 네트워크는 유선 네트워크 및 무선 네트워크 중 적어도 하나를 포함할 수 있고, 셀룰러 네트워크, 근거리 네트워크, 광역 네트워크 중 어느 하나 또는 둘 이상의 조합으로 이루어질 수 있다. 예를 들어, 네트워크는 LAN(local area network), WLAN(wireless LAN), 블루투스(bluetooth), LTE(long term evolution), LTE-A(LTE-advanced), 5G(5th generation) 중 적어도 하나에 기반하여 구현될 수 있다.As described with reference to FIG. 1, the service server 110, the data server 120, at least one client device 130, a management device, etc. may be connected and interact through a network. Here, the network may include at least one of a wired network and a wireless network, and may be comprised of any one or a combination of two or more of a cellular network, a local area network, and a wide area network. For example, the network is based on at least one of LAN (local area network), WLAN (wireless LAN), Bluetooth, long term evolution (LTE), LTE-advanced (LTE-A), and 5th generation (5G). This can be implemented.
도 2는 본 발명의 일 실시 예에 따른 장치의 구조를 도시한다. 도 2에 예시된 구조는 도 1의 서비스 서버(110), 데이터 서버(120), 적어도 하나의 클라이언트 장치(130)의 구조로 이해될 수 있다.Figure 2 shows the structure of a device according to an embodiment of the present invention. The structure illustrated in FIG. 2 may be understood as the structure of the service server 110, data server 120, and at least one client device 130 of FIG. 1.
도 2를 참고하면, 장치는, 통신부(210), 저장부(220), 제어부(230)를 포함한다.Referring to FIG. 2, the device includes a communication unit 210, a storage unit 220, and a control unit 230.
통신부(210)는 네트워크에 접속하고, 다른 장치와 통신을 수행하기 위한 기능을 수행한다. 통신부(210)는 유선 통신 및 무선 통신 중 적어도 하나를 지원할 수 있다. 통신을 위해, 통신부(210)는 RF(radio frequency) 처리 회로, 디지털 데이터 처리 회로 중 적어도 하나를 포함할 수 있다. 경우에 따라, 통신부(210)는 케이블을 연결하기 위한 단자를 포함하는 구성요소로 이해될 수 있다. 통신부(210)는 데이터, 신호를 송신 및 수신하기 위한 구성요소이므로, '송수신부(transceiver)'라 지칭될 수 있다.The communication unit 210 performs functions to connect to the network and communicate with other devices. The communication unit 210 may support at least one of wired communication and wireless communication. For communication, the communication unit 210 may include at least one of a radio frequency (RF) processing circuit and a digital data processing circuit. In some cases, the communication unit 210 may be understood as a component including a terminal for connecting a cable. Since the communication unit 210 is a component for transmitting and receiving data and signals, it may be referred to as a 'transceiver'.
저장부(220)는 장치의 동작을 위해 필요한 데이터, 프로그램, 마이크로 코드, 명령어 집합, 어플리케이션 등을 저장한다. 저장부(220)는 일시적 또는 비일시적 저장 매체로 구현될 수 있다. 또한, 저장부(220)는 장치에 고정되어 있거나, 또는 분리 가능한 형태로 구현될 수 있다. 예를 들어, 저장부(220)는 콤팩트 플래시(compact flash, CF) 카드, SD(secure digital) 카드, 메모리 스틱(memory stick), 솔리드 스테이트 드라이브(solid-state drive; SSD) 및 마이크로(micro) SD 카드 등과 같은 낸드 플래시 메모리(NAND flash memory), 하드 디스크 드라이브(hard disk drive; HDD) 등과 같은 마그네틱 컴퓨터 기억 장치 중 적어도 하나로 구현될 수 있다.The storage unit 220 stores data, programs, microcode, instruction sets, applications, etc. necessary for the operation of the device. The storage unit 220 may be implemented as a temporary or non-transitory storage medium. Additionally, the storage unit 220 may be fixed to the device or may be implemented in a detachable form. For example, the storage unit 220 may include compact flash (CF) cards, secure digital (SD) cards, memory sticks, solid-state drives (SSD), and micro It may be implemented as at least one of magnetic computer storage devices such as NAND flash memory such as an SD card and a hard disk drive (HDD).
제어부(230)는 장치의 전반적인 동작을 제어한다. 이를 위해, 제어부(230)는 적어도 하나의 프로세서, 적어도 하나의 마이크로 프로세서 등을 포함할 수 있다. 제어부(230)는 저장부(220)에 저장된 프로그램을 실행하고, 통신부(210)를 통해 네트워크에 접속할 수 있다. 특히, 제어부(230)는 후술하는 다양한 실시 예들에 따른 알고리즘들을 수행하고, 후술하는 실시 예들에 따라 장치가 동작하도록 제어할 수 있다.The control unit 230 controls the overall operation of the device. To this end, the control unit 230 may include at least one processor, at least one microprocessor, etc. The control unit 230 can execute a program stored in the storage unit 220 and access the network through the communication unit 210. In particular, the control unit 230 may perform algorithms according to various embodiments described later and control the device to operate according to embodiments described later.
도 1 및 도 2를 참고하여 설명한 구조에 기반하여, 본 발명의 다양한 실시 예들에 따른 인공지능 알고리즘 기반의 서비스가 제공될 수 있다. 여기서, 인공지능 알고리즘을 구현하기 위해 인공 신경망으로 이루어진 인공지능 모델이 사용될 수 있다. 인공 신경망의 구성 단위인 퍼셉트론(perceptron) 및 인공 신경망의 개념은 다음과 같다.Based on the structure described with reference to FIGS. 1 and 2, services based on artificial intelligence algorithms can be provided according to various embodiments of the present invention. Here, an artificial intelligence model consisting of an artificial neural network can be used to implement the artificial intelligence algorithm. The concepts of perceptron, which is a structural unit of artificial neural network, and artificial neural network are as follows.
퍼셉트론은 생물의 신경 세포를 모델링한 것으로서, 다수의 신호들을 입력으로 삼아 하나의 신호를 출력하는 구조를 가진다. 도 3은 본 발명에 적용 가능한 인공지능 모델을 구성하는 퍼셉트론의 예를 도시한다. 도 3을 참고하면, 퍼셉트론은 입력 값들(예: x1, x2, x3, …, xn) 각각 대하여 가중치들(302-1 내지 302-n)(예: w1j, w2j, w3j, …, wnj)을 곱한 후, 가중치 곱해진(weighted) 입력 값들을 변환 함수(transfer function)(304)을 이용하여 합산한다. 합산 과정에서, 바이어스(bias) 값(예: bk)이 더해질 수 있다. 퍼셉트론은 변환 함수(304)의 출력인 네트(net) 입력 값(예: netj)에 대하여 활성 함수(activation function)(306)을 적용함으로써, 출력 값(예: oj)를 생성한다. 경우에 따라, 활성 함수(306)은 임계치(예: θj)에 기반하여 동작할 수 있다. 활성 함수는 다양하게 정의될 수 있다. 본 발명이 이에 제한되는 것은 아니나, 예를 들어, 활성 함수로서, 스텝 함수(step function), 시그모이드(sigmoid), Relu, Tanh 등이 사용될 수 있다.The perceptron is modeled after a biological nerve cell and has a structure that takes multiple signals as input and outputs a single signal. Figure 3 shows an example of a perceptron constituting an artificial intelligence model applicable to the present invention. Referring to Figure 3, the perceptron sets weights (302-1 to 302-n) (e.g., w 1j , w 2j , w) for each of the input values ( e.g., x 1 , x 2, x 3 , ..., x n ). After multiplying by 3j , ..., w nj ), the weighted input values are summed using a transfer function 304. During the summation process, a bias value (e.g., b k ) may be added. The perceptron generates an output value (e.g., o j) by applying an activation function (306) to the net input value (e.g., net j ) , which is the output of the transformation function (304). In some cases, activation function 306 may operate based on a threshold (eg, θ j ). Activation functions can be defined in various ways. The present invention is not limited to this, but for example, a step function, sigmoid, Relu, Tanh, etc. may be used as the activation function.
도 3과 같은 퍼셉트론들이 나열되고, 레이어를 이룸으로써 인공 신경망이 설계될 수 있다. 도 4는 본 발명에 적용 가능한 인공지능 모델을 구성하는 인공 신경망의 예를 도시한다. 도 4에서, 원으로 표현된 각 노드는 도 3의 퍼셉트론으로 이해될 수 있다. 도 4를 참고하면, 인공 신경망은 입력 레이어(input layer)(402), 복수의 은닉 레이어(hidden layer)들(404a, 404b), 출력 레이어(output layer)(462)를 포함한다. An artificial neural network can be designed by arranging perceptrons as shown in Figure 3 and forming layers. Figure 4 shows an example of an artificial neural network constituting an artificial intelligence model applicable to the present invention. In FIG. 4, each node represented by a circle can be understood as the perceptron of FIG. 3. Referring to FIG. 4, the artificial neural network includes an input layer 402, a plurality of hidden layers 404a and 404b, and an output layer 462.
예측을 수행하는 경우, 입력 레이어(402)의 각 노드로 입력 데이터가 제공되면, 입력 데이터는 입력 레이어(402), 은닉 레이어들(404a, 404b)을 이루는 퍼셉트론들에 의한 가중치 적용, 변환 함수 연산 및 활성 함수 연산 등을 거쳐 출력 레이어(462)까지 순전파(forward propagation)된다. 반대로, 훈련을 수행하는 경우, 출력 레이어(162)로부터 입력 레이어(402)를 향한 역전파(backward propagation)를 통해 오차가 계산되고, 계산된 오차에 따라 각 퍼셉트론에 정의된 가중치 값들이 갱신될 수 있다.When performing prediction, when input data is provided to each node of the input layer 402, the input data is weighted and transformed by the perceptrons that make up the input layer 402 and the hidden layers 404a and 404b. and forward propagation to the output layer 462 through activation function calculation, etc. Conversely, when training is performed, the error is calculated through backward propagation from the output layer 162 to the input layer 402, and the weight values defined in each perceptron can be updated according to the calculated error. there is.
AI 기술을 통해 다양한 의료 영상들이 효율적으로 분석될 수 있다. 일례로, 도플러 심초음파(Doppler echocardiography)는 심장에 대한 초음파 이미지를 기록하고, 2차원적 심장 초음파 검사를 확대하는 기술이다. 도플러 심초음파는 심장 및 큰 혈관(heart and great vessel)에서의 혈류 속도(blood velocity)를 측정하고, 심장 판막 관련 질환(valvular heart disease) 및 심장 기능(cardiac performance)에 대한 평가에 핵심이 되는 기술이다. 그러나, 도플러 심초음파로부터 VTI(velocity-time-integral) 및 피크 속도(peak velocity)를 측정하기 위해, 영상을 획득하고, 이어서 수동으로(manually) 도플러 포락선(envelope)을 추적함으로써 영상을 분석할 수 있는 숙련된 기술자가 요구된다.A variety of medical images can be efficiently analyzed through AI technology. For example, Doppler echocardiography is a technology that records ultrasound images of the heart and magnifies two-dimensional echocardiography. Doppler echocardiography is a technology that measures blood velocity in the heart and great vessels and is a key technology in the evaluation of valvular heart disease and cardiac performance. am. However, to measure velocity-time-integral (VTI) and peak velocity from Doppler echocardiography, images can be acquired and then analyzed by manually tracing the Doppler envelope. A skilled technician is required.
평균을 획득하기 위해 다중 측정을 생성하는 것을 고려하는 초음파 검사자들(echocardiographers)은 추가적인 시간 비용(extra time expenditure)을 정의하거나, 다른 영역에 대한 집중(attention)을 중단(disinvest)해야 할 것이다. 또한, 초음파 검사자들이 평균으로 고려할 대표 비트(representative beat)를 선택하려는 경향이 있다는 사실은 도플러 측정의 현저한 검사-재검사 가변성(test-retest variability)에 기여할 수 있다. 따라서, 본 개시는 자동화된 도플러 포락선 정량화를 위한 기술을 제안한다.Echocardiographers considering generating multiple measurements to obtain an average will have to define extra time expenditure or disinvest attention in other areas. Additionally, the fact that sonographers tend to select representative beats to consider as averages may contribute to the significant test-retest variability of Doppler measurements. Accordingly, the present disclosure proposes a technique for automated Doppler envelope quantification.
도 5a 내지 도 5f는 본 발명의 일 실시 예에 따른 영상 처리 과정의 예를 도시한다. 도 5a 내지 도 5f는 시변하는 정보를 표현하는 의료 영상에 대하여 다양한 실시 예들에 따른 분석을 위한 처리 단계들 각각에서 얻어지는 결과들을 예시한다.5A to 5F show an example of an image processing process according to an embodiment of the present invention. FIGS. 5A to 5F illustrate results obtained from each of the processing steps for analysis of a medical image representing time-varying information, according to various embodiments.
도 5a는 로우(raw) 영상(510)의 예를 도시한다. 로우 영상(510)에서, 가로축은 시간을, 세로축은 혈류 속도를 나타낸다. 즉, 로우 영상(510)은 시변하는 심장의 혈류 속도를 시간축에서 나열한다. 예를 들어, 도플러 초음파 기술을 이용하여 혈류 속도를 측정하는 경우, 영상은 시간의 흐름에 따라 새로운 데이터를 추가하고, 과거의 데이터를 제외하면서 실시간으로 변화할 수 있는데, 도 5a의 로우 영상(510)은 실시간으로 변화하는 영상을 특정 시점에서 캡쳐한 것으로 이해될 수 있다. 도 5a와 같이, 파형은 일정한 패턴을 가지며, 해당 패턴은 주기성을 가진다. 이하, 일정성을 가지는 패턴은 '신호'라 지칭된다. FIG. 5A shows an example of a raw image 510. In the raw image 510, the horizontal axis represents time and the vertical axis represents blood flow speed. That is, the raw image 510 lists the time-varying heart blood flow speed on the time axis. For example, when measuring blood flow velocity using Doppler ultrasound technology, the image can change in real time by adding new data and excluding past data over time, as shown in the raw image 510 of FIG. 5A. ) can be understood as capturing an image that changes in real time at a specific point in time. As shown in Figure 5a, the waveform has a certain pattern, and the pattern has periodicity. Hereinafter, a pattern with consistency is referred to as a 'signal'.
도 5b는 신호에 대한 세그먼테이션(segmentation) 결과의 예를 도시한다. 도 5b를 참고하면, 영상 내에 표현된 3개의 신호들에 대한 세그먼테이션 결과들(521, 522, 523)이 생성된다. 세그먼테이션들(521, 522, 523)은 신호들에 대한 포락선의 적어도 일부를 포함한다.Figure 5b shows an example of a segmentation result for a signal. Referring to FIG. 5B, segmentation results 521, 522, and 523 for the three signals expressed in the image are generated. Segments 521, 522, and 523 include at least a portion of the envelope for the signals.
도 5c는 최대 속도 값들(531a, 532a, 533a) 및 시각 값들(531b, 532b, 533b)의 검출 결과의 예를 도시한다. 최대 속도 값들(531a, 532a, 533a) 및 시각 값들(531b, 532b, 533b)은 도 5b에 예시된 세그먼테이션 결과들(521, 522, 523)에 기반하여 검출된다. 즉, 각 신호의 세그먼테이션 결과(521, 522 또는 523)에서, 가장 크기가 큰 지점들이 최대 속도 값들(531a, 532a, 533a)로서 선택되고, 각 신호의 끝점들이 최대 시각 값들(531b, 532b, 533b)로서 선택된다.Figure 5c shows an example of detection results of maximum speed values 531a, 532a, 533a and time values 531b, 532b, 533b. Maximum speed values 531a, 532a, 533a and time values 531b, 532b, 533b are detected based on the segmentation results 521, 522, 523 illustrated in FIG. 5B. That is, in the segmentation results 521, 522, or 523 of each signal, the points with the largest size are selected as the maximum speed values 531a, 532a, and 533a, and the end points of each signal are selected as the maximum visual values 531b, 532b, and 533b. ) is selected as.
도 5d는 다양한 측정 값들(541, 542, 543)을 계산한 결과의 예를 도시한다. 도 5d를 참고하면, 3개의 신호들 각각에 대하여 최대 속도(Vmax), VTI, DT(deceleration time), PHT(pressure half time), AT(acceleration time), EDV(end-diastolic velocity), dP/dt(the rate of pressure change using the 4V2 formula over time during isovolumic contraction) 등을 포함하는 측정 값들(541, 542, 543)이 결정될 수 있다.Figure 5d shows an example of the results of calculating various measurement values 541, 542, and 543. Referring to Figure 5d, for each of the three signals, maximum velocity (Vmax), VTI, deceleration time (DT), pressure half time (PHT), acceleration time (AT), end-diastolic velocity (EDV), dP/ Measured values 541, 542, and 543, including dt (the rate of pressure change using the 4V2 formula over time during isovolumic contraction), may be determined.
도 5e는 세그먼테이션에 대한 엔트로피(entropy)들(551, 552, 553)의 예를 도시한다. 엔트로피는 세그먼테이션을 수행하는 과정에서 생성되는 세그먼테이션 영역에 대한 확률 값을 표현한다. 엔트로피가 선명하고 다른 영역과 구분이 명확할수록, 도출된 세그먼테이션에 대한 정확도가 높다고 이해될 수 있다. 도 5e의 경우, 우측의 제1 엔트로피(551) 및 제2 엔트로피(552)는 좌측의 제3 엔트로피(553)에 비하여 상대적으로 더 선명함이 확인된다.Figure 5e shows examples of entropies 551, 552, and 553 for segmentation. Entropy expresses the probability value for the segmentation area created in the process of performing segmentation. It can be understood that the clearer the entropy and the clearer the distinction from other areas, the higher the accuracy of the derived segmentation. In the case of FIG. 5E, the first entropy 551 and the second entropy 552 on the right are confirmed to be relatively clearer than the third entropy 553 on the left.
도 5f는 참(true) 신호 및 거짓(false) 신호에 대한 분류 결과(561, 562, 563)의 예를 도시한다. 참 신호 및 거짓 신호는 도 5e와 같은 엔트로피들(551, 552, 553)에 기반하여 분류될 수 있다. 신호의 일부에 대한 세그먼테이션이 이루어진 경우, 도 5e의 제3 엔트로피(553)와 같이 다른 엔트로피들(551, 552)에 비하여 선명도가 떨어진다. 따라서, 엔트로피의 선명도 또는 번짐에 기반하여 참 신호 및 거짓 신호가 판단될 수 있다.Figure 5f shows examples of classification results 561, 562, and 563 for true and false signals. True signals and false signals can be classified based on the entropies 551, 552, and 553 as shown in FIG. 5E. When segmentation is performed on a portion of the signal, clarity is lower than that of the other entropies 551 and 552, such as the third entropy 553 in FIG. 5E. Accordingly, true signals and false signals can be determined based on the sharpness or blurring of the entropy.
도 5a 내지 도 5f를 참고하여 설명한 절차에서, 신호에 대한 세그먼테이션이 수행된다. 여기서, 세그먼테이션은 인공지능 모델을 이용하여 수행될 수 있고, 세그먼테이션을 위한 인공지능 모델은 다양하게 정의될 수 있다. 일 실시 예에 따라, 영상에서 신호에 대한 세그먼테이션을 위해 이하 도 6 및 도 7과 같은 인공지능 모델 또는 이와 유사한 인공지능 모델이 사용될 수 있다.In the procedure described with reference to FIGS. 5A to 5F, segmentation is performed on the signal. Here, segmentation can be performed using an artificial intelligence model, and the artificial intelligence model for segmentation can be defined in various ways. According to one embodiment, the artificial intelligence model shown in FIGS. 6 and 7 below or an artificial intelligence model similar thereto may be used for segmentation of signals in an image.
도 6은 본 발명의 일 실시 예에 따른 인공지능 모델의 구조의 예를 도시한다. 도 6은 도 5b와 같은 세그먼테이션 결과를 생성하기 위해 사용될 수 있는 인공지능 모델을 예시한다.Figure 6 shows an example of the structure of an artificial intelligence model according to an embodiment of the present invention. Figure 6 illustrates an artificial intelligence model that can be used to generate segmentation results like Figure 5b.
도 6을 참고하면, 인공지능 모델은 CNN(610), 특징 맵 변환부(feature map transformer)(620), 다중(multiple) 적응적 컨텍스트 모듈(adaptive context module, ACM)들(630-1 내지 630-S), 결합부(concatenation unit)(640), 컨볼루셔널(convolutional) 레이어(650)를 포함한다.Referring to Figure 6, the artificial intelligence model includes a CNN (610), a feature map transformer (620), and multiple adaptive context modules (ACM) (630-1 to 630). -S), a concatenation unit 640, and a convolutional layer 650.
CNN(610)은 입력되는 영상의 특징(feature)들을 생성한다. 여기서, 생성되는 특징들은 밀집된 3차원 컨볼루션 특징 큐브(dense 3-dimension convolution feature cube)를 포함한다. 3차원 컨볼루션 특징 큐브(예: X)는 각 위치(position)에서의 로컬 특징(local feature)인 컨볼루셔널 특징 벡터(convolutional feature vector)들(예: Xi)을 포함한다. 예를 들어, 3차원 컨볼루션 특징 큐브는 너비(width) w, 높이(height) h, 채널 개수 c의 3차원 구조를 가질 수 있다. 예를 들어, CNN(610)은 ResNet 또는 InceptionNet에 기반하여 구현될 수 있다. CNN 610 generates features of the input image. Here, the generated features include a dense 3-dimension convolution feature cube. A 3D convolutional feature cube (e.g., X) includes convolutional feature vectors (e.g., X i ) that are local features at each position. For example, a 3D convolutional feature cube may have a 3D structure with a width w, a height h, and a number of channels c. For example, CNN 610 may be implemented based on ResNet or InceptionNet.
특징 맵 변환부(620)는 CNN(610)에 의해 생성된 특징 맵을 다중-스케일 피라미드 표현들(multi-scale pyramid representations)로 변환한다. 다시 말해, 특징 맵 변환부(620)는 3차원 컨볼루션 특징 큐브를 분해함으로써 서로 다른 스케일을 가지는 특징 맵들(예: Ys)을 생성한다. 예를 들어, 3차원 컨볼루션 특징 큐브는 s×s개의 서브영역들로 나뉘어지고, 1 내지 S의 스케일들로 조합됨으로써, S개의 특징 맵들이 생성될 수 있다. 다중-스케일 피라미드 표현들 각각은 다중 적응적 컨텍스트 모듈들(630-1 내지 630-S) 중 대응하는 적응적 컨텍스트 모듈에 입력된다.The feature map conversion unit 620 converts the feature map generated by the CNN 610 into multi-scale pyramid representations. In other words, the feature map converter 620 generates feature maps (eg, Y s ) with different scales by decomposing the 3D convolutional feature cube. For example, a 3D convolutional feature cube is divided into s x s sub-regions and combined at scales from 1 to S, so that S feature maps can be generated. Each of the multi-scale pyramid representations is input to a corresponding adaptive context module among the multiple adaptive context modules 630-1 to 630-S.
다중 적응적 컨텍스트 모듈들(630-1 내지 630-S)은 서로 다른 스케일의 특징 맵을 처리하는 적응적 컨텍스트 모듈들의 집합이다. 예를 들어, 제1 적응적 컨텍스트 모듈(630-1)은 스케일 1의 특징 맵을 처리하고, 제2 적응적 컨텍스트 모듈(630-2)은 스케일 2의 특징 맵을 처리한다. 다중 적응적 컨텍스트 모듈들(630-1 내지 630-S) 각각은 대응되는 스케일의 특징 맵으로부터 적어도 하나의 적응적 컨텍스트 벡터(adaptive context vector)를 생성한다. 즉, 다중 적응적 컨텍스트 모듈들(630-1 내지 630-S) 각각은 GLA(global-guided local affinity)를 레버리징(leveraging)함으로써 각 로컬 위치에 대한 컨텍스트 벡터를 결정한다.The multiple adaptive context modules 630-1 to 630-S are a set of adaptive context modules that process feature maps of different scales. For example, the first adaptive context module 630-1 processes a feature map of scale 1, and the second adaptive context module 630-2 processes a feature map of scale 2. Each of the multiple adaptive context modules 630-1 to 630-S generates at least one adaptive context vector from a feature map of the corresponding scale. That is, each of the multiple adaptive context modules 630-1 to 630-S determines a context vector for each local location by leveraging global-guided local affinity (GLA).
연결부(640)는 다중 적응적 컨텍스트 모듈들(630-1 내지 630-S)에 의해 생성된 적응적 컨텍스트 벡터들을 연결한다(concatenate). 즉, 연결부(640)는 서로 다른 스케일을 가지는 적응적 컨텍스트 벡터들을 연결한다.The connection unit 640 concatenates adaptive context vectors generated by multiple adaptive context modules 630-1 to 630-S. That is, the connection unit 640 connects adaptive context vectors having different scales.
컨볼루셔널(convolutional) 레이어(650)는 연결된 적응적 컨텍스트 벡터들에 기반하여 출력 데이터를 생성한다. 출력 데이터는 입력된 영상에 대한 시맨틱(sementic) 레이블(label)을 포함할 수 있다. 즉, 출력 데이터는 입력된 영상의 각 픽셀에 대한 예측 결과로서, 시맨틱 레이블들을 포함한다.The convolutional layer 650 generates output data based on the connected adaptive context vectors. Output data may include a semantic label for the input image. That is, the output data is a prediction result for each pixel of the input image and includes semantic labels.
도 7은 본 발명의 일 실시 예에 따른 인공지능 모델 내의 적응적 컨텍스트 모듈의 구조의 예를 도시한다. 도 7은 다중 적응적 컨텍스트 모듈들(630-1 내지 630-S) 각각에 적용 가능한 구조로서, 스케일이 s인 적응적 컨텍스트 모듈의 구조를 예시한다.Figure 7 shows an example of the structure of an adaptive context module in an artificial intelligence model according to an embodiment of the present invention. FIG. 7 is a structure applicable to each of the multiple adaptive context modules 630-1 to 630-S, and illustrates the structure of an adaptive context module with a scale of s.
도 7을 참고하면, 적응적 컨텍스트 모듈은 컨볼루셔널 레이어(702), 글로벌 정보 추출기(global information extractor)(704), 합산부(706), 컨볼루셔널 레이어(708), 재성형부(reshape unit)(710), 풀링부(pooling unit)(712), 컨볼루셔널 레이어(714), 재성형부(716), 행렬 곱셈부(718), 재성형부(720), 합산부(722)를 포함한다.Referring to Figure 7, the adaptive context module includes a convolutional layer 702, a global information extractor 704, a summation unit 706, a convolutional layer 708, and a reshape unit. ) 710, a pooling unit 712, a convolutional layer 714, a reshaping unit 716, a matrix multiplication unit 718, a reshaping unit 720, and a summing unit 722. .
컨볼루셔널 레이어(702)는 입력되는 스케일 s의 특징 맵(예: X)을 감소된(reduced) 특징 맵(예: x)으로 변환한다. 이를 위해, 컨볼루셔널 레이어(702)는 1×1 컨볼루션 연산을 수행할 수 있다. 감소된 특징 맵은 위치 별로 생성되며, 계산의 효율성을 위해 사용된다. 예를 들어, 감소된 특징 맵은 h×w×512의 크기의 3차원 구조를 가질 수 있다.The convolutional layer 702 converts the input feature map of scale s (e.g., X) into a reduced feature map (e.g., x). To this end, the convolutional layer 702 can perform a 1×1 convolution operation. Reduced feature maps are generated for each location and are used for computational efficiency. For example, the reduced feature map may have a three-dimensional structure with a size of h×w×512.
글로벌 정보 추출기(704)는 감소된 특징 맵에 기반하여 글로벌 정보 표현 벡터(global information representation vector)를 생성한다. 이를 위해, 글로벌 정보 추출기(704)는 공간 글로벌 평균화 풀링(spatial global average pooling) 동작 및 컨볼루션 연산을 수행할 수 있다.The global information extractor 704 generates a global information representation vector based on the reduced feature map. To this end, the global information extractor 704 may perform spatial global average pooling operations and convolution operations.
합산부(706)는 컨볼루셔널 레이어(702)에 의해 생성된 감소된 특징 맵 및 글로벌 정보 추출기(704)에 의해 생성된 글로벌 정보 표현 벡터 내의 로컬 특징(local feature)를 합산함으로써 통합한다(integrate). 이를 통해, 각 로컬 위치(local position)에서의 로컬 특징이 글로벌 정보 표현 벡터와 통합된다.The summation unit 706 integrates by summing local features in the reduced feature map generated by the convolutional layer 702 and the global information representation vector generated by the global information extractor 704. ). Through this, local features at each local position are integrated with the global information representation vector.
컨볼루셔널 레이어(708)는 글로벌 정보 표현 벡터와 통합된 로컬 특징들에 대하여 컨볼루션 연산을 수행한다. 이를 통해, 컨볼루셔널 레이어(708)는 각 서브영역에 대응하는 관련성 벡터(affinity vector)들을 생성할 수 있다. 예를 들어, s2길이를 가지는 h×w개의 관련성 벡터들이 생성될 수 있다.The convolutional layer 708 performs a convolution operation on the local features integrated with the global information representation vector. Through this, the convolutional layer 708 can generate affinity vectors corresponding to each sub-region. For example, h×w relevance vectors with length s 2 can be generated.
재성형부(710)는 관련성 벡터들을 재성형함으로써 관련성 맵(affinity map)을 생성한다. 관련성 맵은 관련성 행렬로 지칭될 수 있다. 예를 들어, 관련성 맵은 h·w×s2의 크기의 2차원 구조를 가질 수 있다. 관련성 맵에 포함되는 원소들은 관련성 계수(affinity coefficient)에 해당하며, 특징 맵의 로컬 특징(예: Xi)의 시맨틱 레이블을 추정하는데 있어서 각 서브영역(예: Ys j)이 어느 정도(degree of how) 기여하는지를 나타낸다.The reshaping unit 710 generates an affinity map by reshaping the affinity vectors. A relevance map may be referred to as a relevance matrix. For example, the relevance map may have a two-dimensional structure with a size of h·w×s 2 . The elements included in the relevance map correspond to the affinity coefficient, and the degree to which each sub-region (e.g. Y s j ) is used in estimating the semantic label of the local feature (e.g. X i ) of the feature map. of how) Indicates whether it contributes.
풀링부(712)는 입력되는 스케일 s의 특징 맵(예: X)에 대한 평균 풀링 동작을 수행한다. 이를 통해, 풀링부(712)는 스케일 s의 특징 맵에 포함되는 서브영역들 각각의 컨텐츠를 특징 벡터(예: ys j)로 요약한다. 컨볼루셔널 레이어(714)는 1×1 컨볼루션 연산을 수행한다. 풀링부(712) 및 컨볼루셔널 레이어(714)의 동작들에 의해, 각 서브영역에 대응하는 특징 벡터가 생성될 수 있다. 다시 말해, 풀링부(712) 및 컨볼루셔널 레이어(714)는 평균 풀링 동작 및 컨볼루션 동작을 수행함으로써 서브영역을 하나의 특징 벡터로 요약한다. 예를 들어, 특징 벡터는 단일 스케일 표현(single-scale representation)으로서, s×s×512 크기의 3차원 구조를 가질 수 있다.The pooling unit 712 performs an average pooling operation on the input feature map (eg, X) of scale s. Through this, the pooling unit 712 summarizes the content of each sub-region included in the feature map of scale s into a feature vector (eg, y s j ). The convolutional layer 714 performs a 1×1 convolution operation. Through the operations of the pooling unit 712 and the convolutional layer 714, a feature vector corresponding to each sub-region may be generated. In other words, the pooling unit 712 and the convolutional layer 714 summarize the sub-region into one feature vector by performing an average pooling operation and a convolution operation. For example, a feature vector is a single-scale representation and may have a three-dimensional structure with a size of s×s×512.
재성형부(716)는 특징 벡터를 관련성 맵과 곱해질 수 있도록 재성형한다. 이를 통해, 특징 벡터는 s2×512 크기의 2차원 구조의 특징 벡터(예: ys)로 변형된다. 행렬 곱셈부(718)는 2차원 구조의 특징 벡터 및 관련성 맵을 곱한다. 이를 통해, 2차원 구조의 적응적 컨텍스트 행렬이 생성된다. 예를 들어, 2차원 구조의 적응적 컨텍스트 행렬은 h·w×512 크기를 가질 수 있다. 재성형부(720)는 적응적 컨텍스트 행렬을 3차원 구조로 재성형한다. 예를 들어, 3차원 구조의 적응적 컨텍스트 행렬(예: zs)은 h×w×512 크기를 가질 수 있다. 합산부(722)는 3차원 구조의 적응적 컨텍스트 행렬 및 감소된 특징 맵(예: x)를 합산한다.The reshaping unit 716 reshapes the feature vector so that it can be multiplied by the relevance map. Through this, the feature vector is transformed into a two-dimensional feature vector of size s 2 × 512 (e.g. y s ). The matrix multiplier 718 multiplies the two-dimensional feature vector and the relevance map. Through this, an adaptive context matrix with a two-dimensional structure is created. For example, an adaptive context matrix with a two-dimensional structure may have a size of h·w×512. The reshaping unit 720 reshapes the adaptive context matrix into a three-dimensional structure. For example, an adaptive context matrix (e.g., z s ) with a three-dimensional structure may have a size of h×w×512. The summation unit 722 sums the adaptive context matrix of the three-dimensional structure and the reduced feature map (eg, x).
도 8은 본 발명의 일 실시 예에 따라 의료 영상으로부터 정보를 획득하는 절차의 예를 도시한다. 도 8은 연산 능력을 가진 장치(예: 도 1의 서비스 서버(110))의 동작 방법을 예시한다.Figure 8 shows an example of a procedure for obtaining information from a medical image according to an embodiment of the present invention. FIG. 8 illustrates a method of operating a device with computing capabilities (eg, the service server 110 of FIG. 1).
도 8을 참고하면, S801 단계에서, 장치는 신호에 대한 세그먼테이션을 수행한다. 다시 말해, 장치는 시변하는 정보를 표현하는 의료 영상에서 일정 패턴을 가지는 적어도 하나의 신호에 대한 세그먼테이션을 수행한다. 장치는 인공지능 알고리즘을 이용하여 세그먼테이션을 수행할 수 있다. 세그먼테이션을 수행함으로써, 장치는 의료 영상에 포함된 적어도 하나의 신호에 대한 포락선을 획득할 수 있다. 일 실시 예에 따라, 도 6 및 도 7을 참고하여 설명한 구조의 인공지능 모델이 세그먼테이션을 위해 사용될 수 있다.Referring to FIG. 8, in step S801, the device performs segmentation on the signal. In other words, the device performs segmentation on at least one signal having a certain pattern in a medical image representing time-varying information. The device can perform segmentation using an artificial intelligence algorithm. By performing segmentation, the device can obtain an envelope for at least one signal included in the medical image. According to one embodiment, the artificial intelligence model with the structure described with reference to FIGS. 6 and 7 may be used for segmentation.
S803 단계에서, 장치는 측정 값들을 결정한다. 장치는 의료 영상을 획득하기 위해 진단된 대상(예: 심장의 혈류 속도)에 관련된 다양한 측정 값들을 결정할 수 있다. 예를 들어, 심장의 특정 위치의 혈류 속도가 진단 대상인 경우, 최대 속도, 신호 소멸 시각, VTI, DT, PHT 등의 항목들에 대한 측정 값들이 결정될 수 있다. 여기서, 측정 값들은 세그먼테이션된 신호 별로 결정될 수 있다. 측정 값들을 결정하기 위해, 장치는 세그먼테이션 결과를 분석함으로써 특징점들을 탐색하고, 탐색된 특징점들에 대응하는 시간축 값 및 속도축 값에 기반하여 미리 정의된 규칙에 따라 측정 값들을 계산할 수 있다. 예를 들어, 특징점들은 세그먼테이션에 의해 결정된 경계선의 기울기, 좌표값 등에 기반하여 정의될 수 있다. 구체적으로, 최대 속도에 대응하는 특징점은 경계선을 이루는 점들 중 속도축에서 최대의 절대값을 가지는 지점일 수 있다. 일 실시 예에 따라, 특징점들을 탐색하기 위해, 별도의 인공지능 모델이 사용될 수 있다.In step S803, the device determines measurement values. The device may determine various measurement values related to a diagnosed subject (e.g., heart blood flow rate) to obtain a medical image. For example, when the blood flow rate at a specific location in the heart is the diagnostic target, measurement values for items such as maximum velocity, signal extinction time, VTI, DT, and PHT may be determined. Here, measurement values can be determined for each segmented signal. To determine measurement values, the device may search for feature points by analyzing the segmentation results and calculate measurement values according to predefined rules based on time axis values and velocity axis values corresponding to the searched feature points. For example, feature points may be defined based on the slope of the boundary line determined by segmentation, coordinate values, etc. Specifically, the feature point corresponding to the maximum speed may be a point with the maximum absolute value on the speed axis among the points forming the boundary line. According to one embodiment, a separate artificial intelligence model may be used to search for feature points.
S805 단계에서, 장치는 참 신호 및 거짓 신호를 식별한다. 다시 말해, 이에 따라, 장치는 S801 단계에서 세그먼테이션된 적어도 하나의 신호 각각이 참 신호인지 또는 거짓 신호인지를 구분한다. 여기서, 참 신호 및 거짓 신호는 의료 영상에서 신호가 완전하게 캡쳐되었는지 여부에 따라 구분된다. 예를 들어, 도 5b의 제1 세그먼테이션(521) 또는 제2 세그먼테이션(522)과 같이 신호 전체가 모두 캡쳐된 경우, 해당 신호는 참 신호로 취급될 수 있다. 다른 예로, 도 5b의 제3 세그먼테이션(523)과 같이, 신호가 일부만 캡쳐된 경우, 해당 신호는 거짓 신호로 취급될 수 있다. 즉, 참 신호는 전체가 캡쳐된 완전한 신호이고, 거짓 신호는 일부분만 캡쳐된 불완전한 신호로 이해될 수 있다. 참 신호 및 거짓 신호를 식별하기 위해, 장치는 세그먼테이션 과정에서 생성된 픽셀 별 확률 정보를 이용하거나 또는 세그먼테이션을 통해 획득된 포락선(예: 포락선의 길이, 포락선에 의해 특정되는 영역의 넓이, 모양 등)를 이용할 수 있다.In step S805, the device identifies true signals and false signals. In other words, according to this, the device distinguishes whether each of the at least one signal segmented in step S801 is a true signal or a false signal. Here, true signals and false signals are distinguished depending on whether the signal is completely captured in the medical image. For example, when the entire signal is captured, as in the first segmentation 521 or the second segmentation 522 of FIG. 5B, the signal may be treated as a true signal. As another example, when only a part of the signal is captured, such as the third segmentation 523 of FIG. 5B, the signal may be treated as a false signal. In other words, a true signal can be understood as a complete signal captured in its entirety, and a false signal can be understood as an incomplete signal captured only in part. To identify true signals and false signals, the device uses pixel-specific probability information generated during the segmentation process or the envelope obtained through segmentation (e.g., length of the envelope, area of the area specified by the envelope, shape, etc.) can be used.
S807 단계에서, 장치는 최종 측정 값을 결정한다. 구체적으로, 장치는 적어도 하나의 참 신호로부터 얻어진 측정 값들에 기반하여 최종 측정 값을 결정한다. 신호 별로 측정된 항목들 중 적어도 일부에 대하여, 복수의 신호들에 대한 결합(예: 평균화)를 통해 최종 측정 값이 결정될 수 있다. 이때, 거짓 신호로 분류된 적어도 하나의 신호는 결합에서 배제될 수 있다. 즉, 장치는 적어도 하나의 참 신호로부터 얻어진 측정 값들을 항목 별로 결함함으로써 각 항목에 대한 최종 측정 값들을 생성할 수 있다. In step S807, the device determines the final measurement value. Specifically, the device determines the final measurement value based on measurement values obtained from at least one true signal. For at least some of the items measured for each signal, the final measurement value may be determined by combining (eg, averaging) a plurality of signals. At this time, at least one signal classified as a false signal may be excluded from combining. That is, the device can generate final measurement values for each item by compiling measurement values obtained from at least one true signal for each item.
이후, 도 8에 도시되지 아니하였으나, 장치는 최종 측정 값들을 출력할 수 있다. 예를 들어, 장치는 장치에 구비된 표시수단을 통해 최종 출력 값들을 표시하거나, 최종 측정 값들을 포함하는 데이터를 통신망을 통해 다른 장치로 송신할 수 있다. 나아가, 장치는 최종 측정 값들을 의료 정보를 관리하는 데이터베이스에 업로드함으로써 기록할 수 있다.Afterwards, although not shown in FIG. 8, the device may output final measurement values. For example, the device may display final output values through a display means provided in the device, or may transmit data including the final measurement values to another device through a communication network. Furthermore, the device can record final measurement values by uploading them to a database that manages medical information.
도 8을 참고하여 설명한 실시 예에서, 적어도 하나의 참 신호를 이용하여 최종 측정 값들이 결정될 수 있다. 이를 위해, 적어도 하나의 참 신호가 의료 영상에 캡쳐되어야 한다. 즉, 캡쳐된 신호가 모두 거짓 신호인 경우, 최종 측정 값들은 결정될 수 없다. 따라서, 다른 실시 예에 따라, S805 단계 이후, 장치는 참 신호가 존재하는지 여부를 판단하고, 참 신호가 존재하지 아니하면, S807 단계를 생략할 수 있다.In the embodiment described with reference to FIG. 8, final measurement values may be determined using at least one true signal. For this, at least one true signal must be captured in the medical image. That is, if all captured signals are false signals, final measurement values cannot be determined. Therefore, according to another embodiment, after step S805, the device determines whether a true signal exists, and if no true signal exists, step S807 may be omitted.
도 8에 예시된 절차는 실시간으로 변화하는 영상을 특정 시점에서 캡쳐한 결과물에 대하여 수행될 수 있다. 따라서, 영상의 변화에 따라, 전술한 절차가 반복적으로 수행될 수 있으며, 반복 주기는 구체적인 실시 예에 따라 달라질 수 있다. 예를 들어, 반복 주기는 영상에 새로운 데이터가 추가되는 속도에 기반하여 결정될 수 있다.The procedure illustrated in FIG. 8 can be performed on the result of capturing an image that changes in real time at a specific point in time. Accordingly, the above-described procedure may be performed repeatedly according to changes in the image, and the repetition period may vary depending on specific embodiments. For example, the repetition period may be determined based on the rate at which new data is added to the image.
새로운 데이터가 추가되면서 영상이 변화하기 때문에, 연속적으로 캡쳐된 영상들은 동일한 신호를 포함할 수 있다. 이 경우, 앞서 캡쳐된 영상에서 분석된 동일한 신호에 대한 세그먼테이션 및 측정 값들은 후에 캡쳐된 영상의 분석 시 재사용될 수 있다. 이에 따라, 매 반복 시점에서, 전술한 절차는 캡쳐된 영상의 일부에 대하여만 수행될 수 있다. Because the image changes as new data is added, sequentially captured images may contain the same signal. In this case, segmentation and measurement values for the same signal analyzed in a previously captured image can be reused when analyzing the captured image later. Accordingly, at each iteration, the above-described procedure may be performed on only a portion of the captured images.
또한, 새로운 데이터가 추가되면서 영상이 변화하기 때문에, 시간의 흐름에 따라 획득되는 참 신호의 개수가 누적될 수 있다. 따라서, 도 8의 절차에서 S807 단계의 최종 측정 값을 결정하는 동작은, 하나의 캡쳐된 의료 영상이 아니라, 복수의 의료 영상들을 이용하여 수행될 수 있다. 즉, 장치는 서로 다른 시점에 캡쳐된 복수의 의료 영상들에서 세그먼테이션된 신호들의 측정 값들에 기반하여 최종 측정 값들을 생성할 수 있다.Additionally, because the image changes as new data is added, the number of true signals acquired may accumulate over time. Accordingly, the operation of determining the final measurement value in step S807 in the procedure of FIG. 8 may be performed using a plurality of medical images, rather than a single captured medical image. That is, the device can generate final measurement values based on measurement values of signals segmented from a plurality of medical images captured at different times.
도 9는 본 발명의 일 실시 예에 따라 참 신호 및 거짓 신호를 분류하는 절차의 예를 도시한다. 도 9는 엔트로피에 기반하여 신호를 분류하는 절차로서, 연산 능력을 가진 장치(예: 도 1의 서비스 서버(110))의 동작 방법을 예시한다.Figure 9 shows an example of a procedure for classifying true signals and false signals according to an embodiment of the present invention. FIG. 9 is a procedure for classifying signals based on entropy, and illustrates a method of operating a device with computational capabilities (eg, the service server 110 of FIG. 1).
도 9를 참고하면, S901 단계에서, 장치는 세그먼테이션된 신호들에 대한 엔트로피를 결정한다. 엔트로피는 세그먼테이션을 수행하는 과정에서 생성되는 세그먼테이션 영역에 대한 확률 값을 표현하는 정보이다. 엔트로피는 픽셀들에 대한 불확실성의 측정 지표로서, 지정된 클래스에 대하여 픽셀 별로 결정된다. 본 발명의 경우, 신호의 포락선에 대한 엔트로피가 결정된다. 예를 들어, 엔트로피는 도 5e와 같이 표현될 수 있다. 엔트로피를 계산하는 동작은 세그먼테이션의 일부이므로, 본 단계는 세그먼테이션 동작 중 생성된 엔트로피 값들을 확인하는 동작으로 이해될 수 있다.Referring to FIG. 9, in step S901, the device determines entropy for segmented signals. Entropy is information expressing the probability value for the segmentation area generated during the process of performing segmentation. Entropy is a measure of uncertainty for pixels and is determined on a pixel-by-pixel basis for a given class. In the case of the present invention, the entropy of the envelope of the signal is determined. For example, entropy can be expressed as shown in Figure 5e. Since the operation of calculating entropy is part of segmentation, this step can be understood as an operation of checking entropy values generated during the segmentation operation.
S903 단계에서, 장치는 엔트로피에 기반하여 신호를 분류한다. 구체적으로, 장치는 엔트로피 값들을 신호 별로 구획하고, 각 신호 별로 엔트로피 값들의 분포를 분석함으로써 신호를 참 신호 또는 거짓 신호로 분류할 수 있다. 엔트로피가 선명하고 다른 영역과 구분이 명확할수록, 도출된 세그먼테이션에 대한 정확도가 높다고 판단될 수 있다. 따라서, 각 신호 별 엔트로피 값들에 대하여, 장치는 큰 값들 및 작은 값들 간 구분의 명확성을 지시하는 비선명도 지표를 생성하고, 비선명도 지표에 기반하여 신호를 분류할 수 있다. 예를 들어, 비선명도 지표는 엔트로피 값들의 최대값 및 최소 값의 중간 영역에 속하는 값들이 많을수록 높게 결정될 수 있다. 일 실시 예에 따라, 선명도 지표는 세그먼테이션 결과에 의해 특정되는 영역 내부에 속한 픽셀들의 엔트로피 값들의 통계 값(예: 평균 값, 분산 값)으로 정의될 수 있다. 다른 실시 예에 따라, 선명도 지표는 세그먼테이션에 의해 생성된 영역의 경계선으로부터 내부로 일정 거리 이내에 속하는 픽셀들 및 외부로 일정 거리 이내에 속하는 픽셀들의 엔트로피 값들의 통계 값(예: 평균 값, 분산 값)으로 정의될 수 있다. 도 5e의 경우, 우측의 제1 엔트로피(551) 및 제2 엔트로피(552)는 좌측의 제3 엔트로피(553)에 비하여 상대적으로 더 선명함이 확인되므로, 제1 엔트로피(551) 및 제2 엔트로피(552)는 참 신호들로, 제3 엔트로피(553)는 거짓 신호로 분류될 수 있다.In step S903, the device classifies the signal based on entropy. Specifically, the device can classify the signal as a true signal or a false signal by dividing the entropy values for each signal and analyzing the distribution of the entropy values for each signal. The clearer the entropy and the clearer the distinction from other areas, the higher the accuracy of the derived segmentation. Therefore, for the entropy values for each signal, the device can generate an unsharpness index that indicates the clarity of distinction between large values and small values, and classify the signal based on the unsharpness index. For example, the unsharpness index may be determined to be higher as more values fall in the middle region between the maximum and minimum entropy values. According to one embodiment, the sharpness index may be defined as a statistical value (e.g., average value, variance value) of entropy values of pixels belonging to an area specified by the segmentation result. According to another embodiment, the sharpness index is a statistical value (e.g., average value, variance value) of the entropy values of pixels that fall within a certain distance inside and a certain distance outside from the boundary line of the area created by segmentation. can be defined. In the case of Figure 5e, the first entropy 551 and the second entropy 552 on the right are confirmed to be relatively clearer than the third entropy 553 on the left, so the first entropy 551 and the second entropy (552) 552) can be classified as true signals, and the third entropy 553 can be classified as false signals.
전술한 다양한 실시 예들에 따라, 의료 영상에서 세그먼테이션된 신호들에 대한 측정 값들이 결정될 수 있다. 사용된 의료 영상이 무엇이냐에 따라, 구체적으로, 도플러 심초음파의 뷰(view)가 무엇이냐에 따라, 획득되는 측정 값들의 항목들은 달라질 수 있다. 예를 들어, 도플러 심초음파의 뷰에 따라 측정 가능한 항목들은 이하 [표 1]과 같을 수 있다.According to the various embodiments described above, measurement values for signals segmented from a medical image may be determined. Depending on the medical image used, and specifically, depending on the view of the Doppler echocardiography, the items of the acquired measurement values may vary. For example, the items that can be measured depending on the Doppler echocardiography view may be as shown in [Table 1] below.
TypeType Doppler viewDoppler view measurementmeasurement
MV
(Mitral Valve)
MV
(Mitral Valve)
MV inflow PWMV inflow PW MV E vel, MV A vel, MV dtMV E vel, MV A vel, MV dt
MV(MS) CWMV(MS) CW MV Vmax, MV VTI, MV PHTMV Vmax, MV VTI, MV PHT
MV(MR) CWMV(MR) CW MR Vmax, MR VTI, dp/dtMR Vmax, MR VTI, dp/dt
Septal annulus TDI(tissue Doppler imaging) Septal annulus TDI (tissue Doppler imaging) E' sept, A' sept, S' septE' sept, A' sept, S' sept
Lateral annulus TDILateral annulus TDI E' lat, A'lat, S'latE'lat, A'lat, S'lat
AV
(Aortic Valve)
AV
(Aortic Valve)
AV(LVOT) PW(pulsed-wave)AV(LVOT) PW(pulsed-wave) LVOT(left ventricular outflow tract) Vmax, LVOT VTILVOT(left ventricular outflow tract) Vmax, LVOT VTI
LVOT obstruction CW(continuous-wave)LVOT obstruction CW(continuous-wave) LVOT obstruction VmaxLVOT obstruction Vmax
AV(AS(aortic stenosis)) CWAV(AS(aortic stenosis)) CW AV Vmax, AV VTIAV Vmax, AV VTI
AV(AR) CWAV(AR) CW AR(aortic regurgitation) Vmax, AR PHTAR(aortic regurgitation) Vmax, AR PHT
PV
(Pulmonic Valve)
PV
(Pulmonic Valve)
PV(RVOT) PWPV(RVOT) PW RVOT(right ventricular outflow tract) Vmax, RVOT VTI, RVOT atRVOT(right ventricular outflow tract) Vmax, RVOT VTI, RVOT at
PV(PS) CWPV(PS) CW PV Vmax, PV VTIPV Vmax, PV VTI
PV(PR) CWPV(PR) CW PR Vmax, PR EDVPR Vmax, PR EDV
TV
(Tricuspid Valve)
TV
(Tricuspid Valve)
TV(TR) CWTV (TR) CW TR Vmax, TR VTITR Vmax, TR VTI
TV(TS) CWTV (TS) CW TV Vmax, TV VTITV Vmax, TV VTI
Pulmonary VeinPulmonary Vein Pulmonary VeinPulmonary Vein S, D, AS, D, A
전술한 도플러 심초음파의 뷰에 따라 측정 가능한 항목들을 영상을 참고하여 살펴보면 다음과 같다.The items that can be measured according to the above-mentioned Doppler echocardiography view are examined with reference to the image as follows.
도 10a 내지 도 10d는 본 발명의 일 실시 예에 따라 MV(Mitral Valve) 유입부(inflow) PW(pulsed-waved) 뷰(view)에서 획득가능한 정보의 예들을 도시한다. 도 10a 내지 도 10d를 참고하면, MV 유입부 PW 뷰의 의료 영상으로부터, MV E 속도(early diastolic inflow velocity)(1002), MV A 속도(late diastolic inflow 속도)(1004), MV dt(deceleration time)(1006)이 측정될 수 있다. MV dt(1006)는 MV E 속도(1002)로부터, MV E 속도(1002) 이후 나타나는 최저점까지의 시간을 의미한다.FIGS. 10A to 10D show examples of information obtainable from a MV (Mitral Valve) inflow PW (pulsed-waved) view according to an embodiment of the present invention. Referring to FIGS. 10A to 10D, from the medical image of the MV inlet PW view, MV E velocity (early diastolic inflow velocity) (1002), MV A velocity (late diastolic inflow velocity) (1004), and MV dt (deceleration time) )(1006) can be measured. MV dt (1006) means the time from MV E speed (1002) to the lowest point that appears after MV E speed (1002).
도 11a 내지 도 11d는 본 발명의 일 실시 예에 따라 TDI(tissue Doppler imaging) 뷰에서 획득가능한 정보의 예들을 도시한다. 도 11a, 도 11b, 도 11d는 중격측 고리(septal annulus) TDI 뷰를, 도 11c는 외측 고리(lateral annulus) TDI 뷰를 예시한다. 도 11a 내지 도 11d를 참고하면, TDI 뷰의 의료 영상으로부터, S'sept(septal)(peak systolic mitral annular velocity at the septal part of mitral annulus)(1102), E'sept(peak early diastolic mitral annular velocity at the septal part of mitral annulus)(1103), A'sept(peak late diastolic mitral annular velocity at the septal part of mitral annulus)(1104), S'lat(lateral)(1106), E'lat(peak systolic mitral annular velocity at the lateral part of mitral annulus)(1107), A'lat(peak late diastolic mitral annular velocity at the lateral part of mitral annulus)(1108)가 측정될 수 있다. 11A to 11D show examples of information obtainable from a TDI (tissue Doppler imaging) view according to an embodiment of the present invention. Figures 11A, 11B, and 11D illustrate the septal annulus TDI view, and Figure 11C illustrates the lateral annulus TDI view. Referring to FIGS. 11A to 11D, from the medical image of the TDI view, S'sept (septal) (peak systolic mitral annular velocity at the septal part of mitral annulus) 1102, E'sept (peak early diastolic mitral annular velocity) at the septal part of mitral annulus)(1103), A'sept(peak late diastolic mitral annular velocity at the septal part of mitral annulus)(1104), S'lat(lateral)(1106), E'lat(peak systolic) mitral annular velocity at the lateral part of mitral annulus) (1107) and A'lat (peak late diastolic mitral annular velocity at the lateral part of mitral annulus) (1108) can be measured.
도 12a 내지 도 12d는 본 발명의 일 실시 예에 따라 AR(aortic regurgitation) PHT(pressure half time) 뷰에서 획득가능한 정보의 예들을 도시한다. 도 12a 내지 도 12d를 참고하면, AR Vmax(1202), AR PHT(1204)가 측정될 수 있다. AR PHT(1204)는 AR Vmax(1202)로부터 AR Vmax(1202) 이후 속도 값이 급격히 감소하는 지점까지의 시간을 의미한다.Figures 12A to 12D show examples of information obtainable in an aortic regurgitation (AR) pressure half time (PHT) view according to an embodiment of the present invention. Referring to FIGS. 12A to 12D, AR Vmax (1202) and AR PHT (1204) can be measured. AR PHT (1204) means the time from AR Vmax (1202) to the point where the speed value rapidly decreases after AR Vmax (1202).
도 13a 내지 도 13d는 본 발명의 일 실시 예에 따라 MS(mitral valve) PHT 뷰에서 획득가능한 정보의 예들을 도시한다. 도 13a 내지 도 13d를 참고하면, MV PHT(1302)가 측정될 수 있다.FIGS. 13A to 13D show examples of information obtainable from a mitral valve (MS) PHT view according to an embodiment of the present invention. Referring to FIGS. 13A to 13D, MV PHT 1302 can be measured.
도 14a 및 도 14b는 본 발명의 일 실시 예에 따라 PV(pulmonic valve) PW 뷰에서 획득가능한 정보의 예들을 도시한다. 도 14a 및 도 14b를 참고하면, RVOT Vmax(1402), RVOT at(acceleration time)(1404), RVOT VTI(1406)가 측정될 수 있다.Figures 14a and 14b show examples of information obtainable in a pulmonic valve (PV) PW view according to an embodiment of the present invention. Referring to FIGS. 14A and 14B, RVOT Vmax (1402), RVOT at (acceleration time) 1404, and RVOT VTI (1406) can be measured.
도 15a 및 도 15b는 본 발명의 일 실시 예에 따라 MR(mitral regurgitation) PW 뷰에서 획득가능한 정보의 예들을 도시한다. 도 15a 및 도 15b를 참고하면, MR Vmax(1502), MR dp/dt(1504), MR VTI(1506)가 측정될 수 있다.Figures 15a and 15b show examples of information obtainable in a mitral regurgitation (MR) PW view according to an embodiment of the present invention. Referring to FIGS. 15A and 15B, MR Vmax (1502), MR dp/dt (1504), and MR VTI (1506) can be measured.
전술한 다양한 실시 예들에 따라, 의료 영상에서 세그먼테이션된 신호들에 대한 측정 값들이 결정될 수 있다. 전술한 측정 값들은 세그먼테이션 결과로부터 직접적으로 확인되는 정보의 예들이다. 다시 말해, 전술한 측정 값들은 세그먼테이션 결과에서 특정 지점의 값을 읽거나 또는 구간의 길이를 계산함으로써 얻어질 수 있는 정보의 예들이다. According to the various embodiments described above, measurement values for signals segmented from a medical image may be determined. The above-mentioned measurement values are examples of information directly confirmed from the segmentation results. In other words, the above-described measured values are examples of information that can be obtained by reading the value of a specific point in the segmentation result or calculating the length of the section.
추가적으로, 세그먼테이션 결과로부터 직접적으로 얻어지는 적어도 하나의 측정 값에 기반하여 계산식을 통해 2차적 측정 값들이 획득될 수 있다. 2차적 측정 값들의 예는 이하 [표 2]와 같다.Additionally, secondary measurement values may be obtained through a calculation formula based on at least one measurement value directly obtained from the segmentation result. Examples of secondary measurement values are shown in [Table 2] below.
TypeType Doppler viewDoppler view Measurement from formulaMeasurement from formula
MVMV MV inflow PWMV inflow PW E/A ratioE/A ratio
MV(MS) CWMV(MS) CW MV maxPG, MVmeanPG, MVA by PHTMV maxPG, MVmeanPG, MVA by PHT
MR CWMR CW MR maxPGMR maxPG
Septal annulus TDISeptal annulus TDI E/E'septE/E'sept
AV
(Aortic Valve)
AV
(Aortic Valve)
AV(LVOT) PWAV(LVOT) PW LVOT maxPG, LVOT meanPG, LV stroke volume, AVA continuity EquationLVOT maxPG, LVOT meanPG, LV stroke volume, AVA continuity Equation
LVOT obstruction CWLVOT obstruction CW LVOT obstruction maxPGLVOT obstruction maxPG
AV(AS(aortic stenosis)) CWAV(AS(aortic stenosis)) CW AV maxPG, AV meanPGAV maxPG, AV meanPG
AV(AR) CWAV(AR) CW AR maxPGAR maxPG
PV
(Pulmonic Valve)
PV
(Pulmonic Valve)
PV(RVOT) PWPV(RVOT) PW RVOT maxPG, RVOT meanPG, RV stroke volume, QP/PS, meanPAPRVOT maxPG, RVOT meanPG, RV stroke volume, QP/PS, meanPAP
PV(PS) CWPV(PS) CW PV maxPG, PV meanPGPV maxPG, PV meanPG
PV(PR) CWPV(PR) CW PR maxPG, meanPAPPR maxPG, meanPAP
TV
(Tricuspid Valve)
TV
(Tricuspid Valve)
TV(TR) CWTV (TR) CW TR maxPG, meanPAP, PVSPTR maxPG, meanPAP, PVSP
TV(TS) CWTV (TS) CW TV maxPG, TV maxPGTV maxPG, TV maxPG
도 16은 본 발명의 일 실시 예에 따라 심전도(electrocardiogram, ECG) 추출 및 세그먼테이션을 이용하여 의료 영상으로부터 정보를 획득하는 절차의 예를 도시한다. 도 16은 연산 능력을 가진 장치(예: 도 1의 서비스 서버(160))의 동작 방법을 예시한다.Figure 16 shows an example of a procedure for obtaining information from a medical image using electrocardiogram (ECG) extraction and segmentation according to an embodiment of the present invention. FIG. 16 illustrates a method of operating a device with computing capabilities (eg, the service server 160 of FIG. 1).
도 16을 참고하면, S1601 단계에서, 장치는 신호에 대한 세그먼테이션에 기반하여 적어도 하나의 측정 값을 결정한다. 적어도 하나의 측정 값은 의료 영상에 포함된 신호들 중 적어도 하나의 참 신호에 대한 세그먼테이션 결과에 기반하여 결정될 수 있다. 일 실시 예에 따라, 장치는 도 5a 내지 도 5f를 참고하여 설명된 절차, 도 8 또는 도 9를 참고하여 설명된 절차들 중 적어도 하나에 따라 적어도 하나의 측정 값을 결정할 수 있다.Referring to FIG. 16, in step S1601, the device determines at least one measurement value based on segmentation of the signal. At least one measurement value may be determined based on a segmentation result for at least one true signal among signals included in the medical image. According to one embodiment, the device may determine at least one measurement value according to at least one of the procedures described with reference to FIGS. 5A to 5F, FIG. 8, or FIG. 9.
S1603 단계에서, 장치는 심전도 신호를 추출한다. 장치는 S1601에서 사용된 의료 영상에서 심전도 신호를 추출한다. 이를 위해, 장치는 인공지능 모델을 사용할 수 있다. 예를 들어, 도 17과 같은 의료 영상에서, 신호(1702)가 심전도 신호로서 추출될 수 있다.In step S1603, the device extracts the electrocardiogram signal. The device extracts electrocardiogram signals from the medical images used in the S1601. For this purpose, the device can use artificial intelligence models. For example, in a medical image such as that shown in FIG. 17, a signal 1702 may be extracted as an electrocardiogram signal.
S1605 단계에서, 장치는 추출된 심전도 신호로부터 ED(end-diastolic)/ES(end-systolic) 세그먼테이션을 수행한다. 여기서, ED/ES 세그먼테이션은 ED로부터 ES까지의 구간 또는 ES에서 ED까지의 구간을 세그먼테이션하는 동작을 의미한다. 다시 말해, 장치는 심전도 신호에서 ED-ES 영역 또는 ES-ED 영역을 세그먼테이션할 수 있다. 이를 위해, 장치는 인공지능 모델을 사용할 수 있다. 예를 들어, S1603 단계에서 추출된 심전도 신호는, 도 18의 그래프(1802)와 같이, 잡음 등으로 인해 베이스라인(baseline) 웬더링(wandering)된 상태로 획득될 수 있다. 따라서, 장치는 필터링을 수행함으로써 그래프(1804)와 같이 안정된 상태의 심전도 신호를 획득한 후, ED 및 ES 세그먼테이션을 수행할 수 있다.In step S1605, the device performs ED (end-diastolic)/ES (end-systolic) segmentation from the extracted ECG signal. Here, ED/ES segmentation refers to the operation of segmenting the section from ED to ES or the section from ES to ED. In other words, the device can segment the ED-ES region or ES-ED region in the ECG signal. For this purpose, the device can use artificial intelligence models. For example, the ECG signal extracted in step S1603 may be obtained with baseline wandering due to noise, etc., as shown in graph 1802 of FIG. 18. Accordingly, the device can obtain an ECG signal in a stable state as shown in graph 1804 by performing filtering and then perform ED and ES segmentation.
S1607 단계에서, 장치는 측정 값들 및 ED/ES에 기반하여 정보를 생성한다. 예를 들어, 장치는 ED 및 ES의 시점에 기반하여 S1601 단계에서 획득된 적어도 하나의 측정 값을 분류할 수 있다. 예를 들어, 의료 영상이 MV 유입부(inflow) PW 뷰의 영상인 경우, 장치는 ED 및 ES의 시점에 기반하여 E 관련 값(예: MV E 속도) 및 A 관련 값(예: MV A 속도)를 분류할 수 있다. 즉, ED/ES 세그먼테이션 결과는 신호의 세그먼테이션 결과에 기반하여 결정된 측정 값을 분류하는 기준으로서 사용될 수 있다.In step S1607, the device generates information based on the measurement values and ED/ES. For example, the device may classify at least one measurement value obtained in step S1601 based on the timing of ED and ES. For example, if the medical image is from the MV inflow PW view, the device determines E-related values (e.g., MV E velocity) and A-related values (e.g., MV A velocity) based on the viewpoints in the ED and ES. ) can be classified. In other words, the ED/ES segmentation result can be used as a standard for classifying the measurement value determined based on the signal segmentation result.
도 19는 본 발명의 일 실시 예에 따라 심전도 신호의 유무를 고려하여 의료 영상으로부터 정보를 획득하는 절차의 예를 도시한다. 도 19는 연산 능력을 가진 장치(예: 도 1의 서비스 서버(160))의 동작 방법을 예시한다.Figure 19 shows an example of a procedure for obtaining information from a medical image considering the presence or absence of an electrocardiogram signal according to an embodiment of the present invention. FIG. 19 illustrates a method of operating a device with computing capabilities (eg, the service server 160 of FIG. 1).
도 19를 참고하면, S1901 단계에서, 장치는 신호에 대한 세그먼테이션에 기반하여 측정 값을 결정한다. 적어도 하나의 측정 값은 의료 영상에 포함된 신호들 중 적어도 하나의 참 신호에 대한 세그먼테이션 결과에 기반하여 결정될 수 있다. 일 실시 예에 따라, 장치는 도 5a 내지 도 5f를 참고하여 설명된 절차, 도 8 또는 도 9를 참고하여 설명된 절차들 중 적어도 하나에 따라 적어도 하나의 측정 값을 결정할 수 있다. 여기서, 측정 값은 E 관련 값(예: MV E 속도) 및 A 관련 값(예: MV A 속도)를 포함할 수 있다.Referring to FIG. 19, in step S1901, the device determines a measurement value based on segmentation of the signal. At least one measurement value may be determined based on a segmentation result for at least one true signal among signals included in the medical image. According to one embodiment, the device may determine at least one measurement value according to at least one of the procedures described with reference to FIGS. 5A to 5F, FIG. 8, or FIG. 9. Here, the measured values may include E-related values (e.g., MV E velocity) and A-related values (e.g., MV A velocity).
S1903 단계에서, 장치는 의료 영상 내에 심전도 신호가 존재하는지 판단한다. 심전도 신호의 존재는 의료 영상에 대한 분석에 기반하여 판단되거나, 또는 별도의 입력에 의해 판단될 수 있다.In step S1903, the device determines whether an electrocardiogram signal exists in the medical image. The presence of an electrocardiogram signal may be determined based on analysis of a medical image, or may be determined by a separate input.
만일, 심전도 신호가 존재하면, S1905 단계에서, 장치는 심전도 신호에 기반하여 E/A 분류를 수행한다. 다시 말해, 장치는 심전도 신호에 기반하여 E 관련 값(예: MV E 속도) 및 A 관련 값(예: MV A 속도)를 분류할 수 있다. 구체적으로, 장치는 심전도 신호에서 ED-ES 영역 또는 ES-ED 영역을 세그먼테이션하고, ED/ES 세그먼테이션 결과에 기반하여 E 관련 값(예: MV E 속도) 및 A 관련 값(예: MV A 속도)를 분류할 수 있다.If an ECG signal exists, in step S1905, the device performs E/A classification based on the ECG signal. In other words, the device can classify E-related values (e.g., MV E rate) and A-related values (e.g., MV A rate) based on the electrocardiogram signal. Specifically, the device segments the ED-ES region or ES-ED region in the electrocardiogram signal and, based on the ED/ES segmentation results, generates E-related values (e.g., MV E rate) and A-related values (e.g., MV A rate). can be classified.
만일, 심전도 신호가 존재하지 아니하면, S1907 단계에서, 장치는 신호 패턴에 기반하여 E/A 분류를 수행한다. 의료 영상에서, E 관련 값을 나타내는 신호(이하 'E 신호') 및 A 관련 값을 나타내는 신호(이하 'A 신호')는 쌍(pair)을 이루어 반복적으로 관찰된다. 예를 들어, 도 20을 참고하면, E 관련 값(2002) 및 A 관련 값(2004)이 시간 축에서 순차적으로 확인되며, 관련된 E 신호 및 A 신호의 쌍이 반복되는 것이 확인된다. 이때, 도 20을 참고하면, E 신호의 폭(2012)은 A 신호의 폭(2014)보다 상대적으로 큰 것이 확인된다. 따라서, 장치는 세그먼테이션 결과에서 연속하는 2개의 신호들을 쌍으로 묶고, 쌍에 포함되는 신호들의 폭들을 비교함으로써 E 신호 및 A 신호를 구분할 수 있다. 이에 따라, 장치는 E 관련 값 및 A 관련 값도 구분할 수 있다.If the ECG signal does not exist, in step S1907, the device performs E/A classification based on the signal pattern. In medical images, a signal representing an E-related value (hereinafter referred to as an 'E signal') and a signal representing an A-related value (hereinafter referred to as an 'A signal') are repeatedly observed as a pair. For example, referring to Figure 20, the E-related value (2002) and the A-related value (2004) are sequentially confirmed on the time axis, and it is confirmed that the pair of related E signals and A signals is repeated. At this time, referring to FIG. 20, it is confirmed that the width (2012) of the E signal is relatively larger than the width (2014) of the A signal. Therefore, the device can distinguish between the E signal and the A signal by pairing two consecutive signals in the segmentation result and comparing the widths of the signals included in the pair. Accordingly, the device can also distinguish between E-related values and A-related values.
S1909 단계에서, 장치는 비정상 E/A 분포가 발생하였는지 확인한다. 의료 영상에 관련된 대상자의 심장이 정상 상태라면, 도 20과 같이 E 신호 및 A 신호의 쌍의 분포가 균일하다. 하지만, E/A 합산(summation) 또는 부정맥(arrhythmia)의 경우, 다른 형태의 패턴이 관찰될 수 있다. 예를 들어, 부정맥의 경우, E 신호의 간격이 불균일한 특징이 관찰될 수 있다. 예를 들어, EA 합산의 경우, E 모드 심장 초음파에서 확인되는 심장 주기와 E 신호의 주기가 불일치하는 특징이 관찰될 수 있다. 불균일한 E 신호의 간격, E 모드 심장 초음파와의 불일치 등의 특징이 관찰되는지 여부를 확인함으로써, 장치는 비정상 E/A 분포 여부를 판단할 수 있다.In step S1909, the device checks whether abnormal E/A distribution has occurred. If the heart of a subject involved in a medical image is in a normal state, the distribution of pairs of E and A signals is uniform, as shown in FIG. 20. However, in case of E/A summation or arrhythmia, a different pattern may be observed. For example, in the case of arrhythmia, a characteristic in which the interval of the E signal is non-uniform may be observed. For example, in the case of EA summation, a characteristic that the cardiac cycle identified in E-mode echocardiography and the period of the E signal do not match may be observed. By checking whether features such as uneven E signal spacing and discrepancy with E-mode echocardiography are observed, the device can determine whether there is an abnormal E/A distribution.
만일, 비정상 E/A 분포가 확인되면, S1911 단계에서, 장치는 경고 메시지를 출력한다. 즉, 장치는 신호 패턴에 기반하여 E/A 분류의 결과를 출력하며, 비정상 E/A 분포 확인됨을 알리는 경고 메시지를 더 출력할 수 있다. 예를 들어, 경고 메시지는 의심되는 비정상 상태(예: E/A 합산, 부정맥 등)에 대한 정보를 더 포함할 수 있다. 반면, 비정상 E/A 분포가 확인되지 아니하면, 장치는 경고 메시지 없이 E/A 분류 결과만을 출력할 수 있다.If abnormal E/A distribution is confirmed, in step S1911, the device outputs a warning message. That is, the device outputs the results of E/A classification based on the signal pattern and may further output a warning message notifying that an abnormal E/A distribution has been confirmed. For example, the warning message may further include information about suspected abnormal conditions (e.g., E/A summation, arrhythmia, etc.). On the other hand, if abnormal E/A distribution is not confirmed, the device may output only the E/A classification results without a warning message.
전술한 다양한 실시 예들에 따라, 도플러 심초음파 영상에 대한 세그먼테이션에 기반하여 다양한 측정 값들이 획득될 수 있다. 이때, 세그먼테이션을 위한 인공지능 모델로서, 도 6 및 도 7과 같은 인공지능 모델 또는 이와 유사한 인공지능 모델이 사용될 수 있다. 또는, 다른 실시 예에 따라, 도 6 및 도 7과 같은 인공지능 모델과 다른 인공지능 모델이 세그먼테이션을 위해 사용될 수 있다. 예를 들어, 컴퓨팅 파워, 학습에 소요할 시간, 정확도 등을 고려하여, 다양한 인공지능 모델들이 사용될 수 있다. According to the various embodiments described above, various measurement values can be obtained based on segmentation of Doppler echocardiography images. At this time, as an artificial intelligence model for segmentation, an artificial intelligence model such as that shown in FIGS. 6 and 7 or an artificial intelligence model similar thereto may be used. Alternatively, according to another embodiment, an artificial intelligence model different from the artificial intelligence model shown in FIGS. 6 and 7 may be used for segmentation. For example, various artificial intelligence models can be used, considering computing power, time required for learning, accuracy, etc.
도 21은 본 발명에 적용 가능한 시맨틱 세그먼테이션(semantic segmentation) 모델 중 하나인 2 경로 분할 네트워크의 구성의 예를 도시한다. 2 경로 분할 네트워크는 낮은 수준의 디테일(details)과 높은 수준 시맨틱(semantics)을 사용함으로써, 시맨틱 세그먼테이션 작업을 수행한다. 2 경로 분할 네트워크는 공간적 세부사항과 카테고리적 의미를 분리함으로써, 시맨틱 세그먼테이션 모델의 정확도와 효율성을 높인다.Figure 21 shows an example of the configuration of a two-path partition network, which is one of the semantic segmentation models applicable to the present invention. The two-path segmentation network performs semantic segmentation tasks by using low-level details and high-level semantics. 2 The path segmentation network improves the accuracy and efficiency of the semantic segmentation model by separating spatial details and categorical meaning.
도 21을 참고하면, 2 경로 분할 네트워크는 2 경로 백본(two pathway backbone)(2110), 집계 레이어(aggregation layer)(2150), 부스터 파트(2140)를 포함한다.Referring to FIG. 21, the two-path split network includes a two pathway backbone (2110), an aggregation layer (2150), and a booster part (2140).
2 경로 백본(2110)은 다시 세부 브랜치(detail branch)(2120)와 시맨틱 브랜치(semantic branch)(2130)를 포함한다. 세부 브랜치(2120)와 시맨틱 브랜치(2130)는 적어도 하나의 스테이지를 포함하고 있고, 각 스테이지 안에서 적어도 하나의 연산 작업(operation)이 수행된다. 연산 작업에 이용되는 연산 모듈은 Conv2d, Stem, GE, CE 등이 될 수 있다. 하기 [표 3]는 세부 브랜치(2120)의 스테이지가 3개인 경우의 일 예이다.The two-path backbone 2110 again includes a detail branch 2120 and a semantic branch 2130. The detail branch 2120 and the semantic branch 2130 include at least one stage, and at least one operation is performed within each stage. Computation modules used for computation tasks may be Conv2d, Stem, GE, CE, etc. [Table 3] below is an example of a case where the detailed branch 2120 has three stages.
StageStage opropr kk cc ss rr output size output size
InputInput 512×1024512×1024
S1 S1 Conv2dConv2d 33 6464 22 1One 256×512256×512
Conv2d Conv2d 33 6464 1One 1One 256×512256×512
S2 S2 Conv2dConv2d 33 6464 22 1One 128×256128×256
Conv2d Conv2d 33 6464 1One 22 128×256128×256
S3 S3 Conv2dConv2d 33 128128 22 1One 64×12864×128
Conv2d Conv2d 33 128128 1One 22 64×12864×128
[표 3]에서, opr은 연산 모듈을 의미하고, k는 커널 크기를 의미하고, c는 출력 채널 수를 의미하고, s는 스트라이드(stride)를 의미하고, r은 처리 반복 횟수를 의미한다.In [Table 3], opr refers to the operation module, k refers to the kernel size, c refers to the number of output channels, s refers to the stride, and r refers to the number of processing repetitions.
세부 브랜치(2120)는 공간적인 디테일들(spatial details)을 담당하며, 낮은 수준의 디테일 정보이다. 따라서 세부 브랜치(2120)는 공간적인 디테일들을 인코딩 하기 위해 풍부한 채널 용량이 필요하다. 한편, 세부 브랜치(2120)는 저 수준 디테일들에만 초점을 맞추기 때문에, 세부 브랜치(2120)는 작은 스트라이드와 함께 얇은 구조로 설계될 수 있다. 세부 브랜치(2120)의 핵심 개념은 공간적인 디테일들을 위해 넓은 채널과 얕은 계층을 사용하는 것이다.The detail branch 2120 is responsible for spatial details and is low-level detail information. Therefore, the detail branch 2120 requires abundant channel capacity to encode spatial details. Meanwhile, since the detailed branch 2120 focuses only on low-level details, the detailed branch 2120 can be designed as a thin structure with small strides. The core concept of detail branch 2120 is to use wide channels and shallow layers for spatial details.
하기 [표 4]는 시맨틱 브랜치(2130)의 스테이지가 5개인 경우의 일 예이다.[Table 4] below is an example of a case where the semantic branch 2130 has five stages.
StageStage opropr kk cc ee ss rr output size output size
InputInput 512×1024512×1024
S1 S1 StemStem 33 1616 -- 44 1One 256×512 256×512256×512 256×512
S2S2 128×256128×256
128×256128×256
S3 S3 GEGE 33 3232 66 22 1One 64×12864×128
GE GE 33 3232 66 1One 1One 64×12864×128
S4 S4 GEGE 33 6464 66 22 1One 32×6432×64
GE GE 33 6464 66 1One 1One 32×6432×64
S5 S5 GEGE 33 128128 66 22 1One 16×3216×32
GE GE 33 128128 -- 1One 33 16×3216×32
CEC.E. 33 128128 -- 1One 1One 16×3216×32
[표 4]에서, opr은 연산 모듈을 의미하고, k는 커널 크기를 의미하고, c는 출력 채널 수를 의미하고, e는 확장계수, s는 스트라이드를 의미하고, r은 처리 반복 횟수를 의미한다.In [Table 4], opr refers to the operation module, k refers to the kernel size, c refers to the number of output channels, e refers to the expansion coefficient, s refers to the stride, and r refers to the number of processing repetitions. do.
시맨틱 브랜치(2130)는 세부 브랜치(2120)와 병렬적으로 구성된다. 시맨틱 브랜치(2130)는 높은 수준의 시맨틱(semantics)을 획득하기 위해 설계된다. 공간적인 디테일들은 세부 브랜치(2120)가 제공할 수 있기 때문에, 시맨틱 브랜치(2130)의 채널 용량은 낮게 설정될 수 있다. 시맨틱 브랜치(2130)는 가벼운 합성 곱 모델 중 어느 하나를 선택해서 설계될 수 있다. 시맨틱 브랜치(2130)는 빠른 다운샘플링 전략을 채택하여 피처 표현의 레벨을 향상시키고 수용 필드를 빠르게 증가시킨다. 따라서 높은 수준의 시맨틱을 위해서, 큰 수용 필드가 필요하다. 시맨틱 브랜치(2130)는 전역 평균 풀링(global average pooling)을 사용하여 전역 컨텍스트 응답(global contextual response)을 임베딩한다.The semantic branch 2130 is configured in parallel with the detailed branch 2120. The semantic branch 2130 is designed to obtain high-level semantics. Because spatial details can be provided by the detail branch 2120, the channel capacity of the semantic branch 2130 can be set low. The semantic branch 2130 can be designed by selecting any one of the lightweight convolution models. The semantic branch 2130 adopts a fast downsampling strategy to improve the level of feature representation and quickly increase the receptive field. Therefore, for high level semantics, a large receptive field is needed. Semantic branch 2130 embeds the global contextual response using global average pooling.
집계 레이어(2150)는 세부 브랜치(2120)와 시맨틱 브랜치(2130)에서 생성된 출력을 병합하기 위한 레이어이다. 세부 브랜치(2120)와 시맨틱 브랜치(2130)의 특징 표현(feature representation)은 상호 보완적이고, 한쪽 브랜치는 다른 한쪽 브랜치의 정보를 인식하지 못한다. 따라서 집계 레이어(2150)는 두 종류의 특징 표현을 병합하도록 설계된다. 빠른 다운샘플링 전략 때문에 시맨틱 브랜치(2130)에서 생성된 출력의 공간 차수(spatial dimensions)가 세부 브랜치(2120)에서 생성된 출력의 공간 차수보다 작다. 시맨틱 브랜치(2130)에서 생성된 출력의 특징 맵을 세부 브랜치(2120)의 출력과 일치시키기 위해 업샘플링이 필요하다. 집계 레이어(2150)가 세부 브랜치(2120)와 시맨틱 브랜치(2130)의 출력을 집계하는 방법은 다양하게 구현될 수 있다.The aggregation layer 2150 is a layer for merging the output generated from the detailed branch 2120 and the semantic branch 2130. The feature representations of the detail branch 2120 and the semantic branch 2130 are complementary, and one branch does not recognize information from the other branch. Therefore, the aggregation layer 2150 is designed to merge two types of feature representations. Because of the fast downsampling strategy, the spatial dimensions of the output generated from the semantic branch 2130 are smaller than the spatial dimensions of the output generated from the detailed branch 2120. Upsampling is necessary to match the feature map of the output generated from the semantic branch 2130 with the output of the detailed branch 2120. Methods in which the aggregation layer 2150 aggregates the outputs of the detailed branch 2120 and the semantic branch 2130 may be implemented in various ways.
도 22는 본 발명에 적용 가능한 세부 브랜치(2120)와 시맨틱 브랜치(2130)에서 생성된 출력을 집계하는 방법 중 일 예를 도시한다. 도 22에서 DW conv는 depth-wise 콘볼루션을 의미하고, APooling은 평균 풀링을 의미하고, BN은 배치 정규화(batch normalization)를 의미하고, Upsample은 이중 선형 보간법(bilinear interpolation)을 의미하고, Sigmoid는 시그모이드 활성화 함수를 의미하고, Sum은 덧셈부를 의미하고, m×m은 커널 크기를 나타내고, H×W×C는 탠서 형상(tensor shape)을 의미하고, N은 element-wise 곱셈을 의미한다. 도 22에 도시되어 있는 계산 절차를 통해 집계레이어(2150)가 세부 브랜치(2120)의 출력과 시맨틱 브랜치(2130)에서 생성된 출력을 융합한다. 도 22에 도시 되어 있는 계산 절차를 이용한 집계 레이어(2150)를 지도된 집계 레이어(guided aggregation layer, GAL)라 한다.Figure 22 shows an example of a method for aggregating output generated from the detailed branch 2120 and the semantic branch 2130 applicable to the present invention. In Figure 22, DW conv means depth-wise convolution, APooling means average pooling, BN means batch normalization, Upsample means bilinear interpolation, and Sigmoid means It refers to the sigmoid activation function, Sum refers to the addition part, m×m refers to the kernel size, H×W×C refers to the tensor shape, and N refers to element-wise multiplication. . Through the calculation procedure shown in FIG. 22, the aggregation layer 2150 fuses the output of the detailed branch 2120 and the output generated from the semantic branch 2130. The aggregation layer 2150 using the calculation procedure shown in FIG. 22 is called a guided aggregation layer (GAL).
집계 레이어(2150)를 통과한 고차원 특징 맵을 기반으로 ASPP(atrous spatial pyramid pooling)을 수행함으로써, 시맨틱 세그먼테이션이 완료된다.Semantic segmentation is completed by performing atrous spatial pyramid pooling (ASPP) based on the high-dimensional feature map that passed through the aggregation layer 2150.
부스터 파트(2140)는 시맨틱 세그먼테이션 정확도를 더욱 향상시키기 위해서 보조 세그먼테이션 헤드를 추출하는 곳이다. 세그먼테이션 헤드는 각 픽셀이 어떤 클래스에 속하는지를 예측한 결과이고, 인공지능 학습에 사용되고 주 분할 해드는 시맨틱 세그먼테이션 모델의 마지막 결과값으로 추출된다. 주 세그먼테이션 헤드를 추출하는 과정의 출력 값을 사용하기 때문에 약간의 계산 절차의 추가로 시맨틱 세그먼테이션의 성능을 향상 시킬 수 있다. 부스터 파트(2140)는 보조 세그먼테이션 헤드를 추출할 곳을 시맨틱 브랜치(2130)의 다른 위치들로 결정할 수 있다. 인공지능 학습 과정 중에는 부스터 파트(2140)가 이용되나, 학습된 인공지능을 테스트하거나 활용하는 경우는 부스터 파트(2140)는 이용하지 않을 수 있다. 보조 세그먼테이션 헤드와 주 세그먼테이션 헤드의 가중치를 적절히 선택함으로써, 더 효율적인 인공지능 학습이 수행될 수 있다.The booster part 2140 is where the auxiliary segmentation head is extracted to further improve semantic segmentation accuracy. The segmentation head is the result of predicting which class each pixel belongs to, and is used for artificial intelligence learning. The main segmentation head is extracted as the final result of the semantic segmentation model. Since the output value of the process of extracting the main segmentation head is used, the performance of semantic segmentation can be improved by adding a few calculation procedures. The booster part 2140 can determine where to extract the auxiliary segmentation head from different locations in the semantic branch 2130. The booster part 2140 is used during the artificial intelligence learning process, but the booster part 2140 may not be used when testing or utilizing the learned artificial intelligence. By appropriately selecting the weights of the auxiliary segmentation head and the main segmentation head, more efficient artificial intelligence learning can be performed.
도 23은 본 발명의 일 실시예에 따른 시맨틱 세그먼테이션 모델 중 하나인 3 경로 분할 네트워크의 구성의 예를 도시한다. 3 경로 분할 네트워크는 낮은 수준의 디테일(details)과 높은 수준 세부사항(semantics), 형상(shape)를 사용함으로써, 시맨틱 세그먼테이션을 더 향상시킨다. 공간적 세부사항과 카테고리적 의미뿐만 아니라 형상적 의미까지 분리함으로써, 실시간 시맨틱 세그먼테이션의 높은 정확도와 효율성을 달성하는 모델이다.Figure 23 shows an example of the configuration of a three-path partition network, one of the semantic segmentation models according to an embodiment of the present invention. 3 Path segmentation networks further improve semantic segmentation by using low-level details, high-level details, and shapes. This model achieves high accuracy and efficiency in real-time semantic segmentation by separating not only spatial details and categorical meanings, but also geometric meanings.
3 경로 분할 네트워크는 3 경로 백본(two pathway backbone)(2310), 집계 레이어(2350) 및 부스터 파트(2390)를 포함한다. 3 경로 백본(2310)은 세부 브랜치(2320), 시맨틱 브랜치(2330) 및 형상 브랜치(shape branch)(2340)를 포함한다. 세부 브랜치(2320)와 시맨틱 브랜치(2330) 및 부스터 파트(2390)는 도 22를 이용한 실시 예에서 구성한 방식과 같은 방식으로 구성할 수 있다.The three-path split network includes a two pathway backbone (2310), an aggregation layer (2350), and a booster part (2390). The three-path backbone 2310 includes a detail branch 2320, a semantic branch 2330, and a shape branch 2340. The detailed branch 2320, semantic branch 2330, and booster part 2390 can be configured in the same way as in the embodiment using FIG. 22.
형상 브랜치(2340)는 세부 브랜치(2320)와 시맨틱 브랜치(2330)의 각 스테이지 마다 생성되는 출력을 기반으로 형상적 정보를 획득한다. 형상 브랜치(2340)는 세부 브랜치(2320)와 시맨틱 브랜치(2330)로부터 얻은 각 특징들(features)을 가공하고, 이미지 그라디언트를 기반으로 시맨틱 경계를 출력으로 생성한다. 세부 브랜치(2320)에서 생성된 출력과 시맨틱 브랜치(2330)에서 생성된 출력의 흐름을 돕기 위해 게이트화된 컨볼루션 레이어(gated convolutional layer, GCL)(2380)가 이용된다. 형상 브랜치(2340)은 적어도 하나의 가이드된 집계 레이어를 포함한다. 가이드된 집계 레이어 개수(2360 및 2370)만큼 세부 브랜치(2320)와 시맨틱 브랜치(2330)에서 각 스테이지마다 생성된 출력이 선택되고, 각 가이드된 집계 레이어에 입력된다. 복수개의 가이드된 집계 레이어들(2360 및 2370)이 있는 경우에는 각 가이드된 집계 레이어들(2360 및 2370)에서 계산된 결과값들을 모두 컨볼루션 연산한 결과를 이용한다. 만약 집계 레이어들(2360 및 2370)에서 계산된 출력의 텐서 모양(tensor shape)이 다른 경우에는 1×1 컨볼루션이 먼저 수행될 수 있다. 게이트화된 컨볼루션 레이어(2380)는 각 가이드된 집계 레이어(2360 및 2370)에서 계산된 결과값들을 모두 컨볼루션 연산한 결과를 이미지 그레디언트(▽I)와 컨볼루션 연산 하고 sigmoid함수를 사용하여 형상에 대한 정보를 추출한다.The shape branch 2340 obtains shape information based on the output generated at each stage of the detail branch 2320 and the semantic branch 2330. The shape branch 2340 processes each feature obtained from the detail branch 2320 and the semantic branch 2330 and generates a semantic boundary as output based on the image gradient. A gated convolutional layer (GCL) 2380 is used to facilitate the flow of the output generated in the detail branch 2320 and the output generated in the semantic branch 2330. Shape branch 2340 includes at least one guided aggregation layer. Outputs generated for each stage are selected from the detailed branch (2320) and the semantic branch (2330) as many as the number of guided aggregation layers (2360 and 2370) and input to each guided aggregation layer. When there are a plurality of guided aggregation layers 2360 and 2370, the result of convolution of all the results calculated from each guided aggregation layer 2360 and 2370 is used. If the tensor shapes of the outputs calculated in the aggregation layers 2360 and 2370 are different, 1×1 convolution may be performed first. The gated convolution layer (2380) convolutions all the results calculated from each guided aggregation layer (2360 and 2370) with the image gradient (▽I) and shapes it using the sigmoid function. Extract information about
또한 가이드된 집계 레이어(2350)와 게이트화된 컨볼루션 레이어(2380)에서 계산된 고차원 특징 맵(feature map)을 기반으로 ASPP(atrous spatial pyramid pooling)을 수행함으로써, 시맨틱 세그먼테이션이 수행된다. 시맨틱 세그먼테이션에 대한 학습은 세그먼테이션 손실(segmentation loss), 가장자리 손실(edge loss) 이중 작업 손실(dual task loss)을 기반으로 수행된다.Additionally, semantic segmentation is performed by performing atrous spatial pyramid pooling (ASPP) based on the high-dimensional feature map calculated in the guided aggregation layer 2350 and the gated convolution layer 2380. Learning about semantic segmentation is performed based on segmentation loss, edge loss, and dual task loss.
본원발명이 이용할 수 있는 시맨틱 세그먼테이션 모델은 도 21을 이용해서 설명한 실시예와, 도 23을 이용한 실시예에 한정되지 않는다. 구체적으로 DenseNet-121, U-net, VGG net, DenseNet 및, encoder-decoder 구조를 갖는 FCN (fully convolutional network), SegNet, DeconvNet, DeepLAB V3+와 같은 DNN(deep neural network), Lawin+, SegFormer, Swin과 같은 Transformer, SqueezeNet, Alexnet, ResNet18, MobileNet-v2, GoogLeNet, Resnet-v2, Resnet50, RetinaNet, Resnet101, Inception-v3, HRNet, ResNeXt, EfficientNet 등으로 교체될 수 있다.The semantic segmentation model that the present invention can use is not limited to the embodiment described using FIG. 21 and the embodiment using FIG. 23. Specifically, DNN (deep neural networks) such as DenseNet-121, U-net, VGG net, DenseNet, FCN (fully convolutional network) with encoder-decoder structure, SegNet, DeconvNet, DeepLAB V3+, Lawin+, SegFormer, Swin, and It can be replaced with the same Transformer, SqueezeNet, Alexnet, ResNet18, MobileNet-v2, GoogLeNet, Resnet-v2, Resnet50, RetinaNet, Resnet101, Inception-v3, HRNet, ResNeXt, EfficientNet, etc.
본 발명의 예시적인 방법들은 설명의 명확성을 위해서 동작의 시리즈로 표현되어 있지만, 이는 단계가 수행되는 순서를 제한하기 위한 것은 아니며, 필요한 경우에는 각각의 단계가 동시에 또는 상이한 순서로 수행될 수도 있다. 본 발명에 따른 방법을 구현하기 위해서, 예시하는 단계에 추가적으로 다른 단계를 포함하거나, 일부의 단계를 제외하고 나머지 단계를 포함하거나, 또는 일부의 단계를 제외하고 추가적인 다른 단계를 포함할 수도 있다.Exemplary methods of the present invention are expressed as a series of operations for clarity of explanation, but this is not intended to limit the order in which the steps are performed, and each step may be performed simultaneously or in a different order, if necessary. In order to implement the method according to the present invention, other steps may be included in addition to the exemplified steps, some steps may be excluded and the remaining steps may be included, or some steps may be excluded and additional other steps may be included.
본 발명의 다양한 실시 예는 모든 가능한 조합을 나열한 것이 아니고 본 발명의 대표적인 양상을 설명하기 위한 것이며, 다양한 실시 예에서 설명하는 사항들은 독립적으로 적용되거나 또는 둘 이상의 조합으로 적용될 수도 있다.The various embodiments of the present invention do not list all possible combinations, but are intended to explain representative aspects of the present invention, and matters described in the various embodiments may be applied independently or in combination of two or more.
또한, 본 발명의 다양한 실시 예는 하드웨어, 펌웨어(firmware), 소프트웨어, 또는 그들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 범용 프로세서(general processor), 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다. Additionally, various embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof. For hardware implementation, one or more ASICs (Application Specific Integrated Circuits), DSPs (Digital Signal Processors), DSPDs (Digital Signal Processing Devices), PLDs (Programmable Logic Devices), FPGAs (Field Programmable Gate Arrays), general purpose It can be implemented by a processor (general processor), controller, microcontroller, microprocessor, etc.
본 발명의 범위는 다양한 실시 예의 방법에 따른 동작이 장치 또는 컴퓨터 상에서 실행되도록 하는 소프트웨어 또는 머신-실행가능한 명령들(예를 들어, 운영체제, 애플리케이션, 펌웨어(firmware), 프로그램 등), 및 이러한 소프트웨어 또는 명령 등이 저장되어 장치 또는 컴퓨터 상에서 실행 가능한 비-일시적 컴퓨터-판독가능 매체(non-transitory computer-readable medium)를 포함한다. The scope of the present invention includes software or machine-executable instructions (e.g., operating systems, applications, firmware, programs, etc.) that enable operations according to the methods of various embodiments to be executed on a device or computer, and such software or It includes non-transitory computer-readable medium in which instructions, etc. are stored and can be executed on a device or computer.

Claims (15)

  1. 의료 영상에서 정보를 획득하기 위한 방법에 있어서,In a method for obtaining information from medical images,
    적어도 하나의 의료 영상에서 적어도 하나의 신호에 대한 세그먼테이션을 수행하는 단계;performing segmentation on at least one signal in at least one medical image;
    상기 세그먼테이션을 통해 획득된 상기 적어도 하나의 신호의 포락선에 기반하여 적어도 하나의 측정 값을 신호 별로 결정하는 단계;determining at least one measurement value for each signal based on an envelope of the at least one signal obtained through the segmentation;
    상기 적어도 하나의 신호 중 적어도 하나의 참(true) 신호를 확인하는 단계; 및confirming at least one true signal among the at least one signal; and
    상기 적어도 하나의 참 신호에 대한 적어도 하나의 측정 값에 기반하여 적어도 하나의 최종 측정 값을 결정하는 단계를 포함하는 방법.A method comprising determining at least one final measurement value based on at least one measurement value for the at least one true signal.
  2. 청구항 1에 있어서,In claim 1,
    상기 적어도 하나의 의료 영상은, 시변하는 정보를 시간축에서 나열한 결과를 표현하는 적어도 하나의 의료 영상을 표현하는 방법.A method of expressing at least one medical image, wherein the at least one medical image represents a result of arranging time-varying information on a time axis.
  3. 청구항 1에 있어서,In claim 1,
    상기 적어도 하나의 의료 영상은, 적어도 하나의 도플러 심초음파(Doppler echocardiography) 영상을 포함하는 방법.The method wherein the at least one medical image includes at least one Doppler echocardiography image.
  4. 청구항 1에 있어서,In claim 1,
    상기 적어도 하나의 측정 값은, 혈류의 최대 속도 값, VTI(velocity time integral), DT(deceleration time), PHT(pressure half time), AT(acceleration time), EDV(eld-diastolic velocity), DT(deceleration time), dP/dt(the rate of pressure change using the 4V2 formula over time during isovolumic contraction), S'Sept(septal)(peak systolic mitral annular velocity at the septal part of mitral annulus), E'Sept(peak early diastolic mitral annular velocity at the septal part of mitral annulus), A'Sept(peak late diastolic mitral annular velocity at the septal part of mitral annulus), S'lat(lateral)(peak systolic mitral annular velocity at the lateral part of mitral annulus), E'lat(peak early diastolic mitral annular velocity at the lateral part of mitral annulus), A'lat(peak late diastolic mitral annular velocity at the lateral part of mitral annulus) 중 적어도 하나를 포함하는 방법.The at least one measurement value is the maximum velocity value of blood flow, velocity time integral (VTI), deceleration time (DT), pressure half time (PHT), acceleration time (AT), older-diastolic velocity (EDV), and DT ( deceleration time), dP/dt(the rate of pressure change using the 4V2 formula over time during isovolumic contraction), S'Sept(septal)(peak systolic mitral annular velocity at the septal part of mitral annulus), E'Sept(peak) early diastolic mitral annular velocity at the septal part of mitral annular), A'Sept(peak late diastolic mitral annular velocity at the septal part of mitral annular), S'lat(lateral)(peak systolic mitral annular velocity at the lateral part of A method comprising at least one of (mitral annulus), E'lat (peak early diastolic mitral annular velocity at the lateral part of mitral annulus), and A'lat (peak late diastolic mitral annular velocity at the lateral part of mitral annulus).
  5. 청구항 1에 있어서,In claim 1,
    상기 적어도 하나의 참 신호는, 상기 세그먼테이션을 위해 생성된 픽셀 별 확률 정보, 상기 포락선의 길이, 상기 포락선에 의해 특정되는 영역의 넓이, 상기 포락선에 의해 특정되는 영역의 모양 중 적어도 하나에 기반하여 확인되는 방법.The at least one true signal is confirmed based on at least one of pixel-specific probability information generated for the segmentation, the length of the envelope, the area of the area specified by the envelope, and the shape of the area specified by the envelope. How to become.
  6. 청구항 1에 있어서,In claim 1,
    상기 적어도 하나의 참 신호는, 상기 세그먼테이션을 위해 생성된 엔트로피(entropy) 값들의 분포에 기반하여 확인되는 방법.The method wherein the at least one true signal is identified based on a distribution of entropy values generated for the segmentation.
  7. 청구항 6에 있어서,In claim 6,
    상기 적어도 하나의 참 신호를 확인하는 단계는,The step of confirming the at least one true signal includes:
    상기 세그먼테이션을 수행하는 단계에서 생성된 엔트로피 값들을 확인하는 단계를 포함하는 방법.A method comprising checking entropy values generated in the step of performing the segmentation.
  8. 청구항 1에 있어서,In claim 1,
    상기 세그먼테이션은, 다중-스케일 피라미드 표현들(multi-scale pyramid representations)에 기반하여 수행되는 방법.A method wherein the segmentation is performed based on multi-scale pyramid representations.
  9. 청구항 1에 있어서,In claim 1,
    상기 적어도 하나의 의료 영상에서 심전도(electrocardiogram, ECG) 신호를 추출하는 단계; 및extracting an electrocardiogram (ECG) signal from the at least one medical image; and
    상기 심전도 신호 및 상기 적어도 하나의 최종 측정 값에 기반하여 다른 적어도 하나의 측정 값을 결정하는 단계를 더 포함하는 방법.The method further comprising determining at least one other measurement value based on the electrocardiogram signal and the at least one final measurement value.
  10. 청구항 1에 있어서,In claim 1,
    상기 적어도 하나의 신호는, 제1 값에 관련된 제1 신호 및 제2 값에 관련된 제2 신호를 포함하며,The at least one signal includes a first signal related to a first value and a second signal related to a second value,
    상기 제1 신호 및 상기 제2 신호는, 심전도 신호에 기반하여 분류되거나, 또는, 상기 적어도 하나의 신호의 패턴에 기반하여 분류되는 방법.A method in which the first signal and the second signal are classified based on an electrocardiogram signal, or based on a pattern of the at least one signal.
  11. 청구항 10에 있어서,In claim 10,
    상기 적어도 하나의 신호를 시간 축에서 연속한 2개의 신호들을 포함하는 쌍(pair)들로 묶는 단계; 및grouping the at least one signal into pairs including two consecutive signals on the time axis; and
    상기 쌍들 각각에 포함되는 신호들의 폭(width)에 기반하여 상기 신호들을 분류하는 단계를 더 포함하는 방법.The method further includes classifying the signals based on the width of the signals included in each of the pairs.
  12. 청구항 1에 있어서, 상기 세그먼테이션을 수행하는 단계는,The method of claim 1, wherein performing the segmentation includes:
    상기 신호의 공간적인 디테일들(spatial details)을 결정하는 단계;determining spatial details of the signal;
    상기 신호의 시맨틱(semantics)을 결정하는 단계;determining semantics of the signal;
    상기 공간적인 디테일들과 상기 시맨틱을 집계하여 집계된 데이터를 생성하는 단계;generating aggregated data by aggregating the spatial details and the semantics;
    상기 집계된 데이터를 이용하여 형상(shape)을 결정하는 단계; 및determining a shape using the aggregated data; and
    상기 공간적인 정보, 상기 의미들 및 상기 형상에 기반하여 세그먼테이션을 수행하는 단계를 포함하는 방법.A method comprising performing segmentation based on the spatial information, the semantics and the shape.
  13. 청구항 1에 있어서, 상기 세그먼테이션을 수행하는 단계는,The method of claim 1, wherein performing the segmentation includes:
    DenseNet-121, U-net, VGG net, DenseNet 및, encoder-decoder 구조를 갖는 FCN (fully convolutional network), SegNet, DeconvNet, DeepLAB V3+와 같은 DNN(deep neural network), Lawin+, SegFormer, Swin과 같은 Transformer, SqueezeNet, Alexnet, ResNet18, MobileNet-v2, GoogLeNet, Resnet-v2, Resnet50, RetinaNet, Resnet101, Inception-v3, HRNet, ResNeXt 및 EfficientNet 중 하나의 모델을 이용하여 세그먼테이션을 수행하는 단계를 포함하는 방법.DenseNet-121, U-net, VGG net, DenseNet, FCN (fully convolutional network) with encoder-decoder structure, SegNet, DeconvNet, DNN (deep neural network) such as DeepLAB V3+, Transformer such as Lawin+, SegFormer, and Swin , a method comprising performing segmentation using one of the following models: SqueezeNet, Alexnet, ResNet18, MobileNet-v2, GoogLeNet, Resnet-v2, Resnet50, RetinaNet, Resnet101, Inception-v3, HRNet, ResNeXt, and EfficientNet.
  14. 의료 영상에서 정보를 획득하기 위한 장치에 있어서,In a device for obtaining information from medical images,
    상기 장치의 동작을 위한 명령어 집합을 저장하는 저장부; 및a storage unit that stores a set of instructions for operating the device; and
    상기 저장부와 연결된 적어도 하나의 프로세서를 포함하며,It includes at least one processor connected to the storage unit,
    상기 적어도 하나의 프로세서는, The at least one processor,
    적어도 하나의 의료 영상에서 적어도 하나의 신호에 대한 세그먼테이션을 수행하고,Perform segmentation on at least one signal in at least one medical image,
    상기 세그먼테이션을 통해 획득된 상기 적어도 하나의 신호의 포락선에 기반하여 적어도 하나의 측정 값을 신호 별로 결정하고,Determining at least one measurement value for each signal based on the envelope of the at least one signal obtained through the segmentation,
    상기 적어도 하나의 신호 중 적어도 하나의 참(true) 신호를 확인하고,Confirming at least one true signal among the at least one signal,
    상기 적어도 하나의 참 신호에 대한 적어도 하나의 측정 값에 기반하여 적어도 하나의 최종 측정 값을 결정하도록 제어하는 장치.A device for controlling to determine at least one final measurement value based on at least one measurement value for the at least one true signal.
  15. 프로세서에 의해 동작되면 제1항 내지 제13항 중의 어느 한 항에 따른 방법을 실행하기 위해 매체에 저장된 프로그램.A program stored in a medium for executing the method according to any one of claims 1 to 13 when operated by a processor.
PCT/KR2023/004527 2022-04-04 2023-04-04 Method and device for acquiring information from medical image expressing time-varying information WO2023195741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220041862 2022-04-04
KR10-2022-0041862 2022-04-04

Publications (1)

Publication Number Publication Date
WO2023195741A1 true WO2023195741A1 (en) 2023-10-12

Family

ID=88243252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004527 WO2023195741A1 (en) 2022-04-04 2023-04-04 Method and device for acquiring information from medical image expressing time-varying information

Country Status (1)

Country Link
WO (1) WO2023195741A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167450A (en) * 2004-12-10 2006-06-29 Agfa Gevaert Nv Method of selecting part of run of echocardiography image
JP2007020908A (en) * 2005-07-19 2007-02-01 Toshiba Corp Ultrasonic diagnostic equipment and control program of ultrasonic diagnostic equipment
KR20100128083A (en) * 2009-05-27 2010-12-07 충북대학교 산학협력단 Apparatus and method for diagnosing cardiac disorder
JP2019150296A (en) * 2018-03-02 2019-09-12 国立大学法人東京農工大学 Ultrasonic image analysis device, catheter system, and program
JP2021018531A (en) * 2019-07-18 2021-02-15 富士フイルム株式会社 Operating device of machine learning model, operation method and operation program therefor, learning device of machine learning model, operation method and operation program therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167450A (en) * 2004-12-10 2006-06-29 Agfa Gevaert Nv Method of selecting part of run of echocardiography image
JP2007020908A (en) * 2005-07-19 2007-02-01 Toshiba Corp Ultrasonic diagnostic equipment and control program of ultrasonic diagnostic equipment
KR20100128083A (en) * 2009-05-27 2010-12-07 충북대학교 산학협력단 Apparatus and method for diagnosing cardiac disorder
JP2019150296A (en) * 2018-03-02 2019-09-12 国立大学法人東京農工大学 Ultrasonic image analysis device, catheter system, and program
JP2021018531A (en) * 2019-07-18 2021-02-15 富士フイルム株式会社 Operating device of machine learning model, operation method and operation program therefor, learning device of machine learning model, operation method and operation program therefor

Similar Documents

Publication Publication Date Title
Wang et al. Diabetic retinopathy diagnosis using multichannel generative adversarial network with semisupervision
Rathod et al. Diagnosis of skin diseases using Convolutional Neural Networks
Zhu et al. Deeplung: Deep 3d dual path nets for automated pulmonary nodule detection and classification
Pennisi et al. An explainable AI system for automated COVID-19 assessment and lesion categorization from CT-scans
Sadasivan et al. High accuracy patch-level classification of wireless capsule endoscopy images using a convolutional neural network
Zhang et al. A survey of wound image analysis using deep learning: Classification, detection, and segmentation
Chudzik et al. Exudates segmentation using fully convolutional neural network and auxiliary codebook
WO2023195741A1 (en) Method and device for acquiring information from medical image expressing time-varying information
Yadav Bayesian deep learning based convolutional neural network for classification of Parkinson’s disease using functional magnetic resonance images
WO2023055103A1 (en) Method and apparatus for assisting in diagnosis of heart or cardiovascular abnormality on basis of 3d model simulation
Ashfaq et al. Convolutional neural network based thermal image classification
WO2023095989A1 (en) Method and device for analyzing multimodality medical images for cerebral disease diagnosis
Jia et al. COVID-19 diagnosis from CT images with convolutional neural network optimized by marine predator optimization algorithm
CN116052286A (en) Living body detection model training method, living body detection method and related equipment
CN115565245A (en) ICU patient self-unplugging tube behavior early warning method based on RGB video monitoring
Sushma et al. Classification of fetal heart ultrasound images for the detection of CHD
Jankowski et al. Neural network classifier for fall detection improved by Gram-Schmidt variable selection
Hasan et al. An intelligent detection system for Covid-19 diagnosis using CT-images
Boyadzhiev et al. Deep learning image classification for pneumonia detection
WO2023132523A1 (en) Method and device for assisting diagnosis of calcification on basis of artificial intelligence model
WO2023239150A1 (en) Functional analysis device and method
Rai et al. Detection of Cardiovascular Diseases Using Machine Learning and Deep Learning
WO2024053996A1 (en) Method for providing information regarding wart or corn prediction and apparatus using same
WO2022182180A1 (en) Method and apparatus for detecting medical indices in medical image
WO2023146361A1 (en) Artificial intelligence-based biomarker selection device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784965

Country of ref document: EP

Kind code of ref document: A1