WO2023195144A1 - Terminal, base station, and communication method - Google Patents

Terminal, base station, and communication method Download PDF

Info

Publication number
WO2023195144A1
WO2023195144A1 PCT/JP2022/017312 JP2022017312W WO2023195144A1 WO 2023195144 A1 WO2023195144 A1 WO 2023195144A1 JP 2022017312 W JP2022017312 W JP 2022017312W WO 2023195144 A1 WO2023195144 A1 WO 2023195144A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
power
csi
base station
downlink
Prior art date
Application number
PCT/JP2022/017312
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
聡 永田
ユー ジャン
ジン ワン
ルー フェン
アンシン リ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/017312 priority Critical patent/WO2023195144A1/en
Publication of WO2023195144A1 publication Critical patent/WO2023195144A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure

Definitions

  • the present invention relates to a terminal, a base station, and a communication method in a wireless communication system.
  • NR New Radio
  • LTE Long Term Evolution
  • the present invention has been made in view of the above points, and an object of the present invention is to realize savings in power consumption of a base station.
  • a receiving unit that receives information instructing dynamic adjustment of downlink transmission power on the downlink, and radio resource adjustment based on the timing at which the downlink transmission power is dynamically adjusted.
  • a terminal is provided that includes a control unit that performs management-related measurements.
  • a technology that makes it possible to save power consumption of a base station.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining power allocation in conventional downlink transmission.
  • FIG. 3 is a diagram for explaining solution 1 according to the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining solution 2 according to the embodiment of the present invention. It is a figure for explaining solution 3 concerning an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining features of each solution according to an embodiment of the present invention.
  • FIG. 7 is a diagram for explaining plan 1-1 of example 1-3 of the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining Plan 1-3 of Example 1-3 of the embodiment of the present invention.
  • FIG. 4 is a diagram for explaining Examples 1-4 of the embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a diagram for explaining power allocation in conventional downlink transmission.
  • FIG. 3 is a diagram
  • FIG. 3 is a diagram for explaining L1 and L3 filtering.
  • FIG. 7 is a diagram for explaining direction 1 of Example 2-1 of the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining direction 2 of Example 2-1 of the embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of parameters of Plan 4 of Example 2-2 of the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a CSI reference resource for a periodic or semi-permanent CSI report.
  • FIG. 3 is a diagram illustrating an example of CSI reference resources for non-periodic CSI reports.
  • FIG. 7 is a diagram for explaining Example 3-1 of the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining case D of Example 3-1-3 of the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining case E of Example 3-1-3 of the embodiment of the present invention.
  • 1 is a diagram showing an example of a functional configuration of a base station according to an embodiment of the present invention.
  • 1 is a diagram illustrating an example of a functional configuration of a terminal according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of the hardware configuration of a base station or a terminal according to an embodiment of the present invention.
  • 1 is a diagram showing an example of the configuration of a vehicle according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • NR system after LTE-Advanced
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical Terms such as random access channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
  • configure the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is just an example, and there may be a plurality of each.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of a radio signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too.
  • a TTI Transmission Time Interval
  • a TTI Transmission Time Interval
  • the base station 10 transmits a synchronization signal and system information to the terminal 20.
  • the synchronization signals are, for example, NR-PSS and NR-SSS.
  • System information is transmitted, for example, on NR-PBCH, and is also referred to as broadcast information.
  • the synchronization signal and system information may be called SSB (SS/PBCH block).
  • the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink).
  • Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL.
  • MIMO Multiple Input Multiple Output
  • both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell) and a primary cell (PCell) using CA (Carrier Aggregation). Furthermore, the terminal 20 may communicate via a primary cell of the base station 10 and a primary SCG cell (PSCell) of another base station 10 using DC (Dual Connectivity).
  • SCell secondary cell
  • PCell primary cell
  • DC Direct Connectivity
  • the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Furthermore, the terminal 20 receives various reference signals transmitted from the base station 10, and measures the channel quality based on the reception results of the reference signals. Note that the terminal 20 may be called a UE, and the base station 10 may be called a gNB.
  • Base station and terminal techniques to improve network energy savings from both base station transmission and reception perspectives are discussed.
  • the base station uses the potential support/feedback from the terminals and the potential assistance information to transmit and Methods are being considered to more efficiently realize dynamic and/or semi-static and/or finer-grained adaptation of reception.
  • FIG. 2 is a diagram for explaining power allocation in conventional downlink transmission.
  • the base station 10 determines the absolute value of the EPRE (energy per resource element) of the SSB and the Dedicated Demodulation Reference (CSI-RS to SSB, PDSCH to CSI-RS, and PDSCH to DM-RS).
  • the relative value of EPRE (signals) is instructed to the terminal 20 by upper layer parameters.
  • the absolute value of EPRE of SSB is indicated by "ss-PBCH-BlockPower".
  • the relative value of EPRE of the CSI-RS with SSB as the reference power is provided as an offset value by "powerControlOffsetSS”.
  • the relative value of the EPRE of the PDSCH with the CSI-RS as the reference power is provided as a ratio by "PowerControlOffset”.
  • the EPRE of the DM-RS using the PDSCH as the reference power is determined according to the number of CDM (Code Division Multiplexing) groups of the DM-RS.
  • the conventional power allocation method in downlink transmission has been described above.
  • the transmission power of the base station 10 cannot be reduced.
  • the base station 10 may dynamically adjust (e.g., reduce) the transmission power in order to save power. is desirable.
  • FIG. 3 is a diagram for explaining Solution 1 according to the embodiment of the present invention.
  • Solution 1 realizes dynamic adjustment of SSB power.
  • CSI-RS and PDSCH power adjustment follows conventional regulations.
  • FIG. 4 is a diagram for explaining Solution 2 according to the embodiment of the present invention.
  • Solution 2 does not change the SSB power and realizes dynamic adjustment of the CSI-RS power.
  • PDSCH power adjustment follows conventional regulations.
  • FIG. 5 is a diagram for explaining Solution 3 according to the embodiment of the present invention.
  • Solution 3 realizes dynamic adjustment of only the PDSCH power without changing the SSB and CSI-RS powers.
  • Example 1 dynamic adjustment of downlink transmission power will be described.
  • Example 2 expansion of RRM (Radio Resource Management) using dynamic power adjustment will be described.
  • Example 3 expansion of CSI report by dynamic power adjustment will be described.
  • FIG. 6 is a diagram for explaining the features of each solution according to the embodiment of the present invention.
  • Solution 1 has an impact on specifications in SSB adjustment in terms of power instructions related to Example 1. Furthermore, from the RRM perspective related to Example 2, Solution 1 has an impact on specifications in L1/L3 measurements. Furthermore, from the perspective of the CSI report related to the third embodiment, Solution 1 has an impact on the specifications when changing the power of the PDSCH. Therefore, Solution 1 has a high overall impact on specifications. In addition, Solution 1 has a high power saving effect and reduces SSB power, so the degree of achievement of cell discovery is medium/low.
  • Solution 2 has an impact on the specifications in adjusting the ratio of CSI-RS and SSB in terms of power instructions related to Example 1. Furthermore, from the perspective of RRM related to Example 2, Solution 2 has an impact on the specifications in RRM based on CSI-RS. Furthermore, from the perspective of the CSI report related to the third embodiment, Solution 2 has an impact on the specifications in changing the power of the PDSCH. Therefore, Solution 2 has a high overall impact on specifications. In addition, Solution 2 has a medium/high power saving effect and a good degree of achievement of cell discovery.
  • Solution 3 has an impact on the specifications in adjusting the ratio of PDSCH and CSI-RS in terms of power instructions related to Example 1. Furthermore, Solution 3 has no impact on the specifications from the RRM perspective related to Example 2. Furthermore, from the perspective of the CSI report related to the third embodiment, solution 3 has an impact on the specifications in changing the power of the PDSCH. Therefore, Solution 3 has a medium impact on the specifications overall. Furthermore, since the RS power is not adjusted in Solution 3, the power saving effect is moderate and the degree of achievement of cell discovery is good.
  • Example 1 In this embodiment, dynamic adjustment of downlink transmission power will be described.
  • Example 1-1 SSB dynamic power instruction (Solution 1)
  • Example 1-2 CSI-RS or PDSCH dynamic power instruction (Solution 2, Solution 3)
  • Example 1-3 Validation time of downlink power instruction
  • Example 1-4 Power transition period ⁇ Other ⁇ Example 1-5: Downlink transmission Power indication signal design
  • the base station 10 may perform any of the following three operations.
  • the base station 10 may instruct the terminal 20 about the offset value of SSS-EPRE based on a parameter (for example, "ss-PBCH-BlockPower-adjust") indicating the absolute value of SSS-EPRE by the upper layer.
  • the terminal 20 derives the SSS adjusted EPRE as follows.
  • ss-PBCH-BlockPower-adjust contains EPRE adjustment value candidates in dB (for example, 1 bit ⁇ -3,0 ⁇ , 2 bits ⁇ -9, -6, -3,0 ⁇ or ⁇ -6,-3,0,3 ⁇ ) is included.
  • the terminal 20 may recognize that the EPRE adjustment value is 0 dB. That is, in that case, the terminal 20 does not need to adjust EPRE.
  • the base station 10 may instruct the terminal 20 about the absolute value of EPRE using a new parameter (for example, "ss-PBCH-BlockPower-r18").
  • the terminal 20 derives the SSS adjusted EPRE as follows.
  • the value of the parameter "ss-PBCH-BlockPower-r18" is a candidate for SSS EPRE in dBm, and is an integer value in the range of (-60...50), for example.
  • the terminal 20 may instead use the default value or "ss-PBCH-BlockPower" to derive the SSS EPRE. .
  • the base station 10 may instruct the terminal 20 to adjust an EPRE value (for example, "ss-PBCH-BlockPower-adjust2", etc.) based on the previously adjusted EPRE.
  • the terminal 20 derives the SSS adjusted EPRE as follows.
  • EPRE of SSS (i+1) [dBm] EPRE of SSS (i) [dBm] + "s-PBCH-BlockPower-adjust2" [dB]
  • the EPRE of SSS(i) means the EPRE adjusted immediately before derivation. Further, the EPRE of SSS(i+1) means the EPRE adjusted at the time of derivation.
  • ss-PBCH-BlockPower-adjust2 contains EPRE adjustment value candidates in dB (for example, 1 bit ⁇ -3, 3 ⁇ , 2 bits ⁇ -3, -1, 0, 3 ⁇ or ⁇ -6, -3,0,6 ⁇ ) are included.
  • the terminal 20 may recognize that the EPRE adjustment value is 0 dB. That is, in that case, the terminal 20 does not need to adjust EPRE.
  • the base station 10 may perform one of the following three operations.
  • the base station 10 may instruct the terminal 20 to specify an offset value (for example, "OffsetAdjust") to "powerControlOffsetSS” or "powerControlOffset.”
  • an offset value for example, "OffsetAdjust”
  • the ratio between the NZP-CSI-RS EPRE and the SSS EPRE is equal to "powerControlOffsetSS” [dB] + “OffsetAdjust” [dB]. Further, the ratio between the PDSCH EPRE and the NZP-CSI-RS EPRE is equal to "powerControlOffset” [dB] + “OffsetAdjust” [dB].
  • OffsetAdjust contains EPRE adjustment value candidates in dB (for example, 1 bit ⁇ -3, 3 ⁇ , 2 bits ⁇ -9, -6, -3, 0 ⁇ or ⁇ -6, -3 ,0,3 ⁇ ) are included.
  • the terminal 20 may recognize that the EPRE adjustment value is 0 dB. That is, in that case, the terminal 20 does not need to adjust EPRE.
  • the base station 10 may instruct the terminal 20 about the absolute value of EPRE using a new parameter (for example, "ss-PBCH-BlockPower-r18"). Specifically, the base station 10 determines the ratio between CSI-RS EPRE and SSS EPRE or the ratio between PDSCH EPRE and NZP-CSI-RS EPRE to replace "powerControlOffsetSS” or "powerControlOffset”. A new value (for example, "powerControlOffsetSS-r18" or "powerControlOffset-r18”) may be instructed to the terminal 20.
  • a new parameter for example, "ss-PBCH-BlockPower-r18”
  • the ratio of CSI-RS EPRE to SSS EPRE is equal to "powerControlOffsetSS-r18" if "powerControlOffsetSS-r18" is specified, and equal to "powerControlOffsetSS” otherwise.
  • the ratio between the PDSCH EPRE and the NZP-CSI-RS EPRE is equal to "powerControlOffset-r18" if "powerControlOffset-r18" is specified, and equal to "powerControlOffset” otherwise.
  • the base station 10 may instruct the terminal 20 to adjust an EPRE value (eg, "OffsetAdjust2", etc.) based on the previously adjusted EPRE.
  • the terminal 20 derives the ratio between CSI-RS EPRE and SSS EPRE or the ratio between PDSCH EPRE and NZP-CSI-RS EPRE as follows.
  • PowerRatio(i) means the ratio between the CSI-RS EPRE and the SSS EPRE, or the ratio between the PDSCH EPRE and the NZP-CSI-RS EPRE, which were adjusted immediately before derivation.
  • PowerRatio (i+1) means the ratio between the CSI-RS EPRE and the SSS EPRE or the ratio between the PDSCH EPRE and the NZP-CSI-RS EPRE, which are adjusted at the time of derivation.
  • the ratio between the CSI-RS EPRE and the SSS EPRE, or the PDSCH EPRE and the NZP-CSI-RS EPRE adjusted immediately before derivation is as follows.
  • PowerRatio (0) "powerControlOffsetSS” or "powerControlOffset"
  • OffsetAdjust2 contains EPRE adjustment value candidates in dB (for example, 1 bit ⁇ -3, 3 ⁇ , 2 bits ⁇ -3, -1, 0, 3 ⁇ or ⁇ -6, -3, 0,6 ⁇ ) are included.
  • the terminal 20 may recognize that the EPRE adjustment value is 0 dB. That is, in that case, the terminal 20 does not need to adjust EPRE.
  • the terminal 20 may assume that one of the following restrictions will be applied, taking into account the time characteristics of the CSI-RS.
  • the terminal 20 may assume that the above-described adjustment applies only to aperiodic CSI-RS or only to semi-persistent CSI-RS.
  • the terminal 20 may assume that the above-described adjustment applies to both aperiodic CSI-RS and semi-persistent CSI-RS.
  • the terminal 20 may assume that the above-described adjustment applies to aperiodic CSI-RS, semi-persistent CSI-RS, and periodic CSI-RS.
  • the terminal 20 When the terminal 20 receives the downlink power instruction at slot/symbol/time n, the terminal 20 transmits a signal using the adjusted downlink power from the base station 10 at the activation time of one of the following plans. It may be assumed that
  • the terminal 20 uses the downlink power adjusted from the base station 10 from slot/symbol/time n+m onwards until it receives a new downlink power instruction. It may be assumed that the signal is transmitted by
  • FIG. 7 is a diagram for explaining Plan 1-1 of Example 1-3 of the embodiment of the present invention.
  • the time until the downlink power indication is activated (validation time) is m slots/symbols/time from slot/symbol/time n to slot/symbol/time n+m.
  • the activation time includes a period during which power is transferred (power transfer period T offset ).
  • the terminal 20 receives the downlink power instruction at the slot/symbol/time n
  • the terminal 20 receives the downlink power instruction adjusted from the base station 10 from the slot/symbol/time n+m onwards until the slot/symbol/time n+m+l-1 or n+l-1. It may be assumed that the power is used to transmit a signal and then the downlink power returns to the pre-adjustment level.
  • the terminal 20 Upon receiving the downlink power indication at slot/symbol/time n, the terminal 20 transmits the signal using the adjusted downlink power from the base station 10 in the PDSCH in the scheduled slot and/or the triggering RS resource. may be assumed to be transmitted, after which the downlink power returns to the pre-adjustment level.
  • FIG. 8 is a diagram for explaining Plan 1-3 of Example 1-3 of the embodiment of the present invention.
  • the time until the downlink power indication is activated (validation time) is m slot length/symbol length/time from slot/symbol/time n to slot/symbol/time n+m. Further, the valid period of the power instruction is one slot length.
  • ⁇ Plan 2-1> m or l is a fixed value.
  • m may be 0, in which case the terminal 20 may assume that the downlink transmit power has already been adjusted at the slot/symbol/time (e.g., milliseconds) at which the instruction is received. good.
  • m may be 4, in which case the terminal 20 may adjust the downlink transmission power 4 slot length/symbol length/time (e.g. milliseconds) after receiving the instruction. may be assumed.
  • l may be 2, in which case the terminal 20 transmits the downlink signal using the adjusted downlink power at 2 slot length/symbol length/time (e.g., milliseconds). It may be assumed that
  • Terminal 20 may assume that m or l is set according to one or more of the following factors:
  • the reference elements are numerology/subcarrier spacing, symbol or slot period, power transition period of base station 10 (Example 1-4), base station capability, reported terminal capability, power adjustment amount, power adjustment direction ( That is, whether the power is increased or decreased).
  • the terminal 20 may assume that m or l is indicated in RRC/MAC-CE/DCI/SIB.
  • Example 1-4 When the base station 10 transmits with downlink power adjusted by the slot length/symbol length/time n+m, the terminal 20 assumes that there is a power transition period T offset immediately before the slot length/symbol length/time n+m. Good too.
  • FIG. 9 is a diagram for explaining Examples 1-4 of the embodiment of the present invention.
  • the duration of the power transition period Toffset may be determined by any of the following schemes.
  • T offset may be a fixed value.
  • Terminal 20 may assume that T offset is set according to one or more of the following factors: The criteria are: numerology/subcarrier spacing, symbol or slot period, base station capability, reported terminal capability, amount of power adjustment, and direction of power adjustment (i.e., whether power is increased or decreased). It may be one or more of the following.
  • the terminal 20 may assume that T offset is indicated by RRC/MAC-CE/DCI/SIB.
  • the terminal 20 may assume any of the following plans during the power transition period T offset .
  • the terminal 20 may assume that there is no downlink RS (including SSB) transmission, and/or PDCCH transmission, and/or PDSCH transmission.
  • RS including SSB
  • the terminal 20 may assume that there is no uplink transmission.
  • Terminal 20 may assume no downlink and uplink transmissions.
  • Example 1-5 a signal design of power indication for downlink transmission will be described.
  • the terminal 20 may assume that the downlink transmission power instruction includes one or more of the following. ⁇ SSB power adjustment (Example 1-1) ⁇ CSI-RS power adjustment (Example 1-2) ⁇ PDSCH power adjustment (Example 1-2) ⁇ Validation time (m) and validity period (l) (Example 1-3) ⁇ Power transition period (T offset ) (Example 1-4)
  • the terminal 20 may also assume that, in addition to the downlink power indication, the signaling includes one or more of the following spatial domain information for energy conservation of the base station 10: ⁇ Valid CSI-RS port number ⁇ Valid codebook setting ⁇ Valid CSI-RS resource set ⁇ Valid CSI-RS report setting or group of report settings
  • the terminal 20 may assume that the downlink transmission power instruction is transmitted in one of the following ways.
  • the terminal 20 may assume that candidate values are set by RRC, and the index of a value selected from the candidate values is indicated by MAC-CE and/or DCI.
  • ⁇ Plan 1-3> It may be assumed that the terminal 20 is directed only by the DCI (terminal-specific or terminal-group DCI).
  • the terminal 20 may assume that the instruction is given in one of the following ways.
  • Terminal 20 may be assumed to be multiplexed into a conventional DCI bit field in a conventional DCI format.
  • the terminal 20 is indicated by the new DCI bit field in the conventional DCI format. As an example 1, it may be a new bit field of "DL power indicator" of DCI format 1_0/1_1/1_2. In this case, since the actual downlink transmission time is the activation time, the terminal 20 may assume that the "Effective time" field is omitted.
  • DCI format 2_6 it may be a new bit field of "DL power indicator" in DCI format 2_6.
  • the terminal 20 may assume that for each block of DCI format 2_6, one or more elements of power adjustment/activation time/power transition period are added to the block as follows. ⁇ DCI format 2_6: Block number 1, block number 2, ..., block number N
  • the terminal 20 is instructed with a new DCI format with a new RNTI defined for downlink power indication. For example, it may be assumed that the terminal 20 is notified in DCI format 2_x using a new RNTI (ES_RNTI) to notify the group of terminals 20.
  • ES_RNTI new RNTI
  • the terminal 20 may assume that the DCI bit size of the power indication field is set by an RRC parameter or defined by a specification.
  • Example 1 any of Examples 1-1 to 1-5), the terminal 20 can assume that the base station 10 instructs the downlink transmission power. Thereby, the transmission power of the base station 10 can be adjusted appropriately, and the base station 10 can save energy.
  • Example 2 In this embodiment, expansion of RRM by dynamic power adjustment will be described. First, the conventional technology that is the premise of the second embodiment will be explained.
  • FIG. 10 is a diagram for explaining L1 and L3 filtering.
  • L1 and L3 filtering is applied to both cell level and beam level measurements.
  • the cell result is L1 beam (implementation) -> L1 cell (average over modified beams) -> L3 cell (L3 filtering).
  • the beam result is L1 beam (implementation) -> L3 beam (L3 filtering).
  • L3 filtering is expressed by the following formula.
  • M n is the latest L1 result.
  • F n-1 is the filtered old measurement result with F 0 set to M 1 .
  • a 1/2 (ki/4) .
  • ki is the value of the parameter "filterCoefficient" indicated by RRC.
  • Example 2-1 the contents of RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted will be described.
  • the terminal 20 may perform RRM measurement according to any of the following directions.
  • the terminal 20 may perform the L1 measurement in any of the following ways.
  • the terminal 20 may perform RRM measurements depending on the implementation (same as NR Release 17).
  • the terminal 20 may perform the L1 measurement so that the RS before power adjustment is not taken into account in the L1 measurement result.
  • the terminal 20 may perform L3 filtering as in any of the following schemes.
  • FIG. 11 is a diagram for explaining direction 1 of Example 2-1 of the embodiment of the present invention.
  • the terminal 20 may perform L3 filtering without any modification from before (same as NR Release 17).
  • the terminal 20 may restart L3 filtering when power adjustment is completed.
  • F n is the L3 filtered measurement result
  • M 1 is the first measurement result from the physical layer after power adjustment.
  • the terminal 20 may perform L3 filtering in consideration of the power offset or ratio between the RS power at the time of measurement and the RS power before that.
  • L3 filtering is expressed by the following formula.
  • FIG. 12 is a diagram for explaining direction 2 of Example 2-2 of the embodiment of the present invention.
  • the terminal 20 may assume that RS/SSB opportunities at the same power level or within a range of power levels form a measurement group.
  • the terminal 20 may assume that the L1 measurement results of a specific measurement group do not take into account the RS/SSB of other measurement groups. Additionally, the terminal 20 may apply L3 filtering to L1 measurement results from the same measurement group.
  • L3 filtering is expressed by the following formula.
  • the terminal 20 may assume that the number of groups for which L1/L3 measurement results are derived during one measurement period is one of the following plans.
  • the terminals 20 may be assumed to be in one measurement group. For example, it may be assumed that the terminal 20 is the one group with the highest ratio of SSB/RS opportunities during the period among all the groups. It may also be assumed that the terminals 20 are one group with SSB/RS opportunities that existed at the start/end of the period.
  • the terminals 20 may be assumed to be in multiple measurement groups.
  • the terminal 20 may be assumed to be a measurement group in the event that an SSB/RS opportunity for the group exists during the period.
  • the terminal 20 is a group in which the ratio/number of SSB/RS opportunities of the group exceeds a threshold value.
  • the terminal 20 may be assumed to be in all measurement groups.
  • Example 2-2 In this example, limitations on application of RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted will be described.
  • the terminal 20 may apply RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted to measurement using a specific RS. For example, the terminal 20 may apply only measurement settings for measuring with SSB. Further, the terminal 20 may be applied only to measurement settings for measuring with CSI-RS. Furthermore, the terminal 20 may apply all measurement settings for measuring with SSB or CSI-RS.
  • the terminal 20 may apply RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted to measurement for a specific report.
  • the terminal 20 may apply only measurement configurations that report RSRP, RSRQ, or SINR.
  • the terminal 20 may apply RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted to measurements with specific cell characteristics.
  • the terminal 20 may be applied to measurement of a serving cell, PCell, or Pscell.
  • the terminal 20 may be applied to measurements of both the serving cell and neighboring cells.
  • the terminal 20 may be applied to both intra-RAT and inter-RAT measurements.
  • the terminal 20 may apply RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted to measurement settings that enable dynamic power adjustment.
  • FIG. 13 is a diagram showing an example of parameters of Plan 4 of Example 2-2 of the embodiment of the present invention.
  • the terminal 20 may apply only to measurement objects that allow dynamic power adjustment.
  • a new parameter (eg, "EnablePowerAdjust") of the measurement object (eg, "MeasObjectNR”) is a parameter that indicates whether dynamic power adjustment is supported.
  • the terminal 20 may be applied only to measurement resources that enable dynamic power adjustment.
  • a new parameter (such as "EnablePowerAdjust") for a measurement resource (such as "CSI-RS-CellMobility” or "SSB-ConfigMobility”) is a parameter that indicates whether dynamic power adjustment is supported.
  • the terminal 20 may apply RRM measurement to any combination of Plan 1, Plan 2, Plan 3, and Plan 4 when the transmission power of SSB or CSI-RS is dynamically adjusted.
  • Example 2 the terminal 20 can assume expansion of RRM by dynamic power adjustment.
  • the terminal 20 receives at least one channel measurement and CSI-RS and/or CSI-RS transmission opportunity after CSI report (re)configuration, serving cell activation, BWP change, or SP-CSI activation. report the CSI report only after The CSI-IM opportunity for interference measurement is the CSI reference resource at the latest, otherwise drop the report.
  • FIG. 14 is a diagram illustrating an example of a CSI reference resource for a periodic or semi-permanent CSI report.
  • the CSI reference resource for CSI reporting in uplink slot n is defined by a single downlink slot nn CSI_ref for periodic or semi-permanent CSI reporting.
  • n CSI_ref is a minimum value of 4 ⁇ 2 ⁇ _DL /5 ⁇ 2 ⁇ _DL or more in the case of single/multiple CSI-RS/SSB resources.
  • FIG. 15 is a diagram illustrating an example of CSI reference resources for non-periodic CSI reports.
  • a CSI reference resource for a CSI report in uplink slot n is defined by a single downlink slot nn CSI_ref .
  • n CSI_ref is a minimum value greater than or equal to [Z'/N symb slot ].
  • Z' is the CSI calculation time.
  • a DCI with a request to trigger a CSI report is sent Z before the CSI report.
  • Example 3-1 In this embodiment, the operation of the terminal 20 that performs CSI calculation and reporting in consideration of power adjustment will be described.
  • FIG. 16 is a diagram for explaining Example 3-1 of the embodiment of the present invention.
  • Example 3-1-1 If the power transition occurs after the CSI reference resource in the CSI report (Case A), or if the power transition occurs after the most recent CSI-RS opportunity immediately before the CSI reference resource (Case B), the terminal 20: You may implement any of the following options.
  • the terminal 20 may derive the CSI assuming the power level after the power transition. In other cases, the terminal 20 may derive the CSI assuming the power level of the CSI reference resource.
  • the terminal 20 may derive the CSI assuming the power level of the CSI reference resource.
  • the terminal 20 does not need to update the CSI. That is, the terminal 20 may report the CSI measured before setting the report.
  • the terminal 20 may delete/ignore the report. That is, the terminal 20 does not have to report the CSI.
  • the terminal 20 may select one of the above plans in consideration of the timing when the power transition is completed and the power is returned to the original power.
  • the terminal 20 may report a CSI report only after receiving at least one CSI-RS opportunity by the CSI reference resource after power transition (case C). Terminal 20 may otherwise drop/ignore the report.
  • Example 3-1-3 For aperiodic CSI reporting, if the terminal 20 receives a power adjustment instruction before the slot or in the same slot in which it receives the DCI that triggers the A-CSI, and the power transition occurs in the slot of the A-CSI trigger and the corresponding report If it occurs between slots (Case D), or if the terminal 20 receives the power adjustment instruction after the slot in which it receives the A-CSI trigger DCI, and the power adjustment instruction occurs between the slot of the power adjustment instruction and the slot of the corresponding A-CSI report. If a power transition occurs in (Case E), one of the following options may be executed.
  • FIG. 17 is a diagram for explaining case D of Example 3-1-3 of the embodiment of the present invention. Further, FIG. 18 is a diagram for explaining case E of Example 3-1-3 of the embodiment of the present invention.
  • the terminal 20 may derive and report the CSI according to Example 3-1-1.
  • the terminal 20 does not need to update the CSI. That is, the terminal 20 may report the previously measured CSI.
  • the terminal 20 may delete/ignore the report. That is, the terminal 20 does not have to report the CSI.
  • Example 3-2 Because there are various CSIs measured by SSB or CSI-RS, power adjustment of CSI-RS or SSB may only affect some CSI reports.
  • the terminal 20 may assume that the CSI to which Example 3-1 can be applied is limited.
  • the terminal 20 may apply Example 3-1 to a CSI report using a specific RS.
  • the terminal 20 may apply only the CSI report settings measured by SSB.
  • the terminal 20 may apply only the CSI report settings measured by CSI-RS.
  • the terminal 20 may apply CSI report settings measured by SSB or CSI-RS.
  • the terminal 20 may apply a specific number of CSI reports. For example, the terminal 20 may apply only the CSI report setting of the SSB-related quantity ("ssb-Index-RSRP").
  • the terminal 20 also stores CSI-RS related quantities ("cri-RI-PMI-CQI”, “cri-RI-i1”, “cri-RI-i1-CQI”, “cri-RI-CQI”, “cri-RSRP”, “cri-RI-LI-PMI-CQI”).
  • the terminal 20 also determines the amount of RI and/or CQI ("cri-RI-PMI-CQI”, “ri-RI-i1”, “cri-RI-i1-CQI”, “cri-RI-CQI”, “cri-RI-LI-PMI-CQI”).
  • the terminal 20 may apply Example 3-1 to a CSI report that uses operational attributes in a specific time domain. For example, the terminal 20 may apply only periodic/semi-permanent/non-periodic CSI reports. Furthermore, the terminal 20 may be applied to regular, semi-permanent, and non-regular CSI reports. Furthermore, the terminal 20 may be applied to periodic and semi-permanent CSI reports.
  • the terminal 20 may apply Example 3-1 to CSI report settings that enable dynamic power adjustment.
  • the terminal 20 may apply only to CSI resources that enable dynamic power adjustment.
  • a new parameter eg, "EnablePowerAdjust" for the CSI resource (eg, "CSI-ResourceConfig) indicates whether dynamic power adjustment is supported.
  • the terminal 20 may apply only to CSI reports that enable dynamic power adjustment.
  • a new parameter eg, "EnablePowerAdjust” in the CSI report (eg, "CSI-ReportConfig) indicates whether dynamic power adjustment is supported.
  • Example 3 the terminal 20 can assume expansion of the CSI report by dynamic power adjustment.
  • FIG. 19 is a diagram illustrating an example of the functional configuration of the base station 10.
  • base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 19 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 110 and the receiving section 120 may be collectively referred to as a communication section.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals.
  • the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI using PDCCH, data using PDSCH, etc. to the terminal 20.
  • the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device included in the setting unit 130, and reads them from the storage device as necessary.
  • the control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110. Further, the control unit 140 includes a function to perform LBT. A functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. Further, the transmitting section 110 may be called a transmitter, and the receiving section 120 may be called a receiver.
  • FIG. 20 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 20 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 210 and the receiving section 220 may be collectively referred to as a communication section.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI by PDCCH, data by PDSCH, etc. transmitted from the base station 10.
  • the transmitting unit 210 transmits a PSCCH (Physical Sidelink Control Channel), a PSSCH (Physical Sidelink Shared Channel), a PSDCH to another terminal 20 as D2D communication. (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc.
  • the receiving unit 120 may receive the PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other terminal 20.
  • the setting unit 230 stores various types of setting information received from the base station 10 or other terminals by the receiving unit 220 in a storage device included in the setting unit 230, and reads the information from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the control unit 240 controls the terminal 20. Further, the control unit 240 includes a function to perform LBT.
  • the terminal of this embodiment may be configured as a terminal shown in each section below. Additionally, the following communication method may be implemented.
  • a receiving unit that receives information on the downlink that instructs dynamic adjustment of downlink transmission power; a control unit that performs measurements regarding radio resource management based on the timing at which downlink transmission power is dynamically adjusted; terminal.
  • the control unit assumes that reception opportunities of reference signals or synchronization signals within the same power level or power level range form a measurement group, further comprising a transmitting unit that transmits measurement results on the uplink based on the measurement group; The terminal described in paragraph 1.
  • the control unit is configured such that the measurement in the case where the transmission power of the synchronization signal or the reference signal is dynamically adjusted is applied to a specific reference signal, report, cell characteristic or measurement that enables dynamic power adjustment.
  • any of the above configurations provides a technique that makes it possible to save power consumption of the base station.
  • measurements related to radio resource management can be performed based on the timing at which downlink transmission power is dynamically adjusted.
  • the results of the measurements can be transmitted on the uplink based on the measurement group.
  • the measurements in the case where the transmission power of the synchronization signal or reference signal is dynamically adjusted apply to specific reference signals, reports, cell characteristics or measurements that enable dynamic power adjustment. It can be assumed that
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 21 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the control unit 140 of the base station 10 shown in FIG. 19 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 20 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may be called a register, cache, main memory, or the like.
  • the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • FIG. 22 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • an input device for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.
  • an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 receives signals from the various sensors 2021 to 2029 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 2010, various sensors 2021-2029, information service unit 2012, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
  • the communication module 2013 also stores various information received from external devices into a memory 2032 that can be used by the microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
  • the present invention may be
  • the base station 10 may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
  • MME Mobility Management Entity
  • S-GW Packet Control Function
  • the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
  • the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • Base Station BS
  • wireless base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
  • RRHs small indoor base stations
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • the terminal 20 may have the functions that the base station 10 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station may have the functions that the user terminal described above has.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for the terminal 20 within one carrier.
  • At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP.
  • Note that "cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Abstract

A terminal comprising a reception unit for receiving information in a downlink that indicates the dynamic adjustment of the transmitted electric power of the downlink, and a control unit for performing measurement regarding wireless resource management on the basis of a timing at which the transmitted electric power of the downlink was dynamically adjusted.

Description

端末、基地局及び通信方法Terminal, base station and communication method
 本発明は、無線通信システムにおける端末、基地局及び通信方法に関する。 The present invention relates to a terminal, a base station, and a communication method in a wireless communication system.
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。 The requirements for NR (New Radio) (also referred to as "5G"), which is the successor system to LTE (Long Term Evolution), are a large capacity system, high data transmission speed, low latency, and the simultaneous use of a large number of terminals. Techniques that satisfy connectivity, low cost, power saving, etc. are being considered (for example, Non-Patent Document 1).
 NRリリース18では、基地局のエネルギー節約仕様について検討されている。詳細については、今後の検討課題となっている。 In NR Release 18, energy saving specifications for base stations are being considered. The details are a subject for future consideration.
 カーボンニュートラルとSDGsを達成するために、基地局の消費電力を節約することの重要性が高まっている。しかし、従来は、基地局の消費電力を節約する手法は標準化されていないという問題がある。 In order to achieve carbon neutrality and SDGs, it is becoming increasingly important to save power consumption of base stations. However, there has been a problem in the past in that methods for saving power consumption of base stations have not been standardized.
 本発明は上記の点に鑑みてなされたものであり、基地局の消費電力の節約を実現させることを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to realize savings in power consumption of a base station.
 開示の技術によれば、ダウンリンクの送信電力の動的な調整を指示する情報をダウンリンクで受信する受信部と、ダウンリンクの送信電力が動的に調整されたタイミングに基づいて、無線リソース管理に関する測定を行う制御部と、を備える端末が提供される。 According to the disclosed technology, there is provided a receiving unit that receives information instructing dynamic adjustment of downlink transmission power on the downlink, and radio resource adjustment based on the timing at which the downlink transmission power is dynamically adjusted. A terminal is provided that includes a control unit that performs management-related measurements.
 開示の技術によれば、基地局の消費電力の節約を実現させることを可能とする技術が提供される。 According to the disclosed technology, a technology is provided that makes it possible to save power consumption of a base station.
本発明の実施の形態に係る無線通信システムについて説明するための図である。1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention. 従来のダウンリンク送信における電力割り当てについて説明するための図である。FIG. 2 is a diagram for explaining power allocation in conventional downlink transmission. 本発明の実施の形態に係る解決策1について説明するための図である。FIG. 3 is a diagram for explaining solution 1 according to the embodiment of the present invention. 本発明の実施の形態に係る解決策2について説明するための図である。FIG. 7 is a diagram for explaining solution 2 according to the embodiment of the present invention. 本発明の実施の形態に係る解決策3について説明するための図である。It is a figure for explaining solution 3 concerning an embodiment of the present invention. 本発明の実施の形態に係る各解決策の特徴について説明するための図である。FIG. 3 is a diagram for explaining features of each solution according to an embodiment of the present invention. 本発明の実施の形態の実施例1-3の案1-1について説明するための図である。FIG. 7 is a diagram for explaining plan 1-1 of example 1-3 of the embodiment of the present invention. 本発明の実施の形態の実施例1-3の案1-3について説明するための図である。FIG. 7 is a diagram for explaining Plan 1-3 of Example 1-3 of the embodiment of the present invention. 本発明の実施の形態の実施例1-4について説明するための図である。FIG. 4 is a diagram for explaining Examples 1-4 of the embodiment of the present invention. L1およびL3フィルタリングについて説明するための図である。FIG. 3 is a diagram for explaining L1 and L3 filtering. 本発明の実施の形態の実施例2-1のディレクション1について説明するための図である。FIG. 7 is a diagram for explaining direction 1 of Example 2-1 of the embodiment of the present invention. 本発明の実施の形態の実施例2-1のディレクション2について説明するための図である。FIG. 7 is a diagram for explaining direction 2 of Example 2-1 of the embodiment of the present invention. 本発明の実施の形態の実施例2-2の案4のパラメータの一例を示す図である。FIG. 7 is a diagram showing an example of parameters of Plan 4 of Example 2-2 of the embodiment of the present invention. 定期的または半永続的なCSIレポートのCSI参照リソースの一例を示す図である。FIG. 3 is a diagram illustrating an example of a CSI reference resource for a periodic or semi-permanent CSI report. 非定期的なCSIレポートのCSI参照リソースの一例を示す図である。FIG. 3 is a diagram illustrating an example of CSI reference resources for non-periodic CSI reports. 本発明の実施の形態の実施例3-1について説明するための図である。FIG. 7 is a diagram for explaining Example 3-1 of the embodiment of the present invention. 本発明の実施の形態の実施例3-1-3のケースDについて説明するための図である。FIG. 7 is a diagram for explaining case D of Example 3-1-3 of the embodiment of the present invention. 本発明の実施の形態の実施例3-1-3のケースEについて説明するための図である。FIG. 7 is a diagram for explaining case E of Example 3-1-3 of the embodiment of the present invention. 本発明の実施の形態に係る基地局の機能構成の一例を示す図である。1 is a diagram showing an example of a functional configuration of a base station according to an embodiment of the present invention. 本発明の実施の形態に係る端末の機能構成の一例を示す図である。1 is a diagram illustrating an example of a functional configuration of a terminal according to an embodiment of the present invention. 本発明の実施の形態に係る基地局又は端末のハードウェア構成の一例を示す図である。FIG. 1 is a diagram showing an example of the hardware configuration of a base station or a terminal according to an embodiment of the present invention. 本発明の実施の形態に係る車両の構成の一例を示す図である。1 is a diagram showing an example of the configuration of a vehicle according to an embodiment of the present invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。 Existing technologies are used as appropriate for the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, existing LTE, but is not limited to existing LTE. Further, the term "LTE" used in this specification has a broad meaning including LTE-Advanced and a system after LTE-Advanced (eg, NR) unless otherwise specified.
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。 In addition, in the embodiments of the present invention described below, SS (Synchronization signal), PSS (Primary SS), SSS (Secondary SS), PBCH (Physical broadcast channel), PRACH (Physical Terms such as random access channel), PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel), PUCCH (Physical Uplink Control Channel), and PUSCH (Physical Uplink Shared Channel) are used. This is for convenience of description, and signals, functions, etc. similar to these may be referred to by other names. Also, the above terms in NR correspond to NR-SS, NR-PSS, NR-SSS, NR-PBCH, NR-PRACH, etc. However, even if the signal is used for NR, it is not necessarily specified as "NR-".
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Further, in the embodiment of the present invention, the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。 Furthermore, in the embodiment of the present invention, "configure" the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
 (システム構成)
 図1は、本発明の実施の形態に係る無線通信システムについて説明するための図である。
本発明の実施の形態に係る無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
(System configuration)
FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
The wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is just an example, and there may be a plurality of each.
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。 The base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20. The physical resources of a radio signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too. Furthermore, a TTI (Transmission Time Interval) in the time domain may be a slot, or a TTI may be a subframe.
 基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。同期信号及びシステム情報は、SSB(SS/PBCH block)と呼ばれてもよい。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるセカンダリセル(SCell:Secondary Cell)及びプライマリセル(PCell:Primary Cell)を介して通信を行ってもよい。さらに、端末20は、DC(Dual Connectivity)による基地局10のプライマリセル及び他の基地局10のプライマリセカンダリセルグループセル(PSCell:Primary SCG Cell)を介して通信を行ってもよい。 The base station 10 transmits a synchronization signal and system information to the terminal 20. The synchronization signals are, for example, NR-PSS and NR-SSS. System information is transmitted, for example, on NR-PBCH, and is also referred to as broadcast information. The synchronization signal and system information may be called SSB (SS/PBCH block). As shown in FIG. 1, the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink). Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL. Further, both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell) and a primary cell (PCell) using CA (Carrier Aggregation). Furthermore, the terminal 20 may communicate via a primary cell of the base station 10 and a primary SCG cell (PSCell) of another base station 10 using DC (Dual Connectivity).
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。また、端末20は、基地局10から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。 The terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Furthermore, the terminal 20 receives various reference signals transmitted from the base station 10, and measures the channel quality based on the reception results of the reference signals. Note that the terminal 20 may be called a UE, and the base station 10 may be called a gNB.
 次に、NRリリース18における基地局の省電力化の議論状況について説明する。基地局の送信と受信の両方の観点からネットワークのエネルギー節約を改善するための基地局および端末の手法について検討されている。例えば、基地局は、端末からの潜在的なサポート/フィードバック、および潜在的な支援情報を使用して、時間、周波数、空間、および電力ドメインのうちの1つ以上のネットワークエネルギー節約技術で送信および/または受信の動的および/または半静的でより細かい粒度の適応をより効率的に実現する方法が検討されている。 Next, the status of discussions regarding base station power saving in NR Release 18 will be explained. Base station and terminal techniques to improve network energy savings from both base station transmission and reception perspectives are discussed. For example, the base station uses the potential support/feedback from the terminals and the potential assistance information to transmit and Methods are being considered to more efficiently realize dynamic and/or semi-static and/or finer-grained adaptation of reception.
 (従来のダウンリンク送信における電力割り当て)
 次に、従来のダウンリンク送信における電力割り当てについて説明する。
(Power allocation in conventional downlink transmission)
Next, power allocation in conventional downlink transmission will be explained.
 図2は、従来のダウンリンク送信における電力割り当てについて説明するための図である。NRリリース17およびそれ以前では、基地局10は、SSBのEPRE(リソース要素あたりのエネルギー)の絶対値、およびCSI-RSからSSB、PDSCHからCSI-RS、およびPDSCHからDM-RS(Dedicated demodulation reference signals)のEPREの相対値を、上位レイヤパラメータによって端末20に指示する。 FIG. 2 is a diagram for explaining power allocation in conventional downlink transmission. In NR Release 17 and earlier, the base station 10 determines the absolute value of the EPRE (energy per resource element) of the SSB and the Dedicated Demodulation Reference (CSI-RS to SSB, PDSCH to CSI-RS, and PDSCH to DM-RS). The relative value of EPRE (signals) is instructed to the terminal 20 by upper layer parameters.
 具体的には、SSBのEPREの絶対値は、"ss-PBCH-BlockPower"によって指示される。SSBを基準電力とするCSI-RSのEPREの相対値は、"powerControlOffsetSS"によるオフセット値として提供される。CSI-RSを基準電力とするPDSCHのEPREの相対値は、"PowerControlOffset"による比率として提供される。また、PDSCHを基準電力とするDM-RSのEPREは、DM-RSのCDM(Code Division Multiplexing)グループの数に従って決定される。 Specifically, the absolute value of EPRE of SSB is indicated by "ss-PBCH-BlockPower". The relative value of EPRE of the CSI-RS with SSB as the reference power is provided as an offset value by "powerControlOffsetSS". The relative value of the EPRE of the PDSCH with the CSI-RS as the reference power is provided as a ratio by "PowerControlOffset". Furthermore, the EPRE of the DM-RS using the PDSCH as the reference power is determined according to the number of CDM (Code Division Multiplexing) groups of the DM-RS.
 以上、従来のダウンリンク送信における電力割り当て方法について説明した。しかしながら、従来は、基地局10の送信電力を削減させることができないという問題がある。例えば、トラフィック負荷が低い状況、またはQoS状態が非常に良好な端末20への信号送信の場合、基地局10は、電力を節約するために、送信電力を動的に調整(例えば削減)することが望ましい。 The conventional power allocation method in downlink transmission has been described above. However, conventionally, there is a problem in that the transmission power of the base station 10 cannot be reduced. For example, in situations where the traffic load is low or when transmitting a signal to a terminal 20 with a very good QoS condition, the base station 10 may dynamically adjust (e.g., reduce) the transmission power in order to save power. is desirable.
 (本実施の形態の概要)
 そこで、本実施の形態では、ダウンリンク送信における動的電力調整において、以下の3つの解決策について説明する。
(Summary of this embodiment)
Therefore, in this embodiment, the following three solutions will be described in dynamic power adjustment in downlink transmission.
 図3は、本発明の実施の形態に係る解決策1について説明するための図である。解決策1では、SSB電力の動的調整を実現させる。この場合、CSI-RSおよびPDSCHの電力調整は従来の規定に従う。 FIG. 3 is a diagram for explaining Solution 1 according to the embodiment of the present invention. Solution 1 realizes dynamic adjustment of SSB power. In this case, CSI-RS and PDSCH power adjustment follows conventional regulations.
 図4は、本発明の実施の形態に係る解決策2について説明するための図である。解決策2では、SSB電力は変更せず、CSI-RS電力の動的調整を実現させる。この場合、PDSCHの電力調整は従来の規定に従う。 FIG. 4 is a diagram for explaining Solution 2 according to the embodiment of the present invention. Solution 2 does not change the SSB power and realizes dynamic adjustment of the CSI-RS power. In this case, PDSCH power adjustment follows conventional regulations.
 図5は、本発明の実施の形態に係る解決策3について説明するための図である。解決策3では、SSBおよびCSI-RSの電力は変更せず、PDSCH電力のみの動的調整を実現させる。 FIG. 5 is a diagram for explaining Solution 3 according to the embodiment of the present invention. Solution 3 realizes dynamic adjustment of only the PDSCH power without changing the SSB and CSI-RS powers.
 以下では、これらの解決策1-3に対して、3つの実施例について説明する。実施例1では、ダウンリンク送信電力の動的調整について説明する。実施例2では、動的電力調整によるRRM(Radio Resource Management)の拡張について説明する。実施例3では、動的電力調整によるCSIレポートの拡張について説明する。 Below, three examples will be described for these solutions 1-3. In Example 1, dynamic adjustment of downlink transmission power will be described. In a second embodiment, expansion of RRM (Radio Resource Management) using dynamic power adjustment will be described. In the third embodiment, expansion of CSI report by dynamic power adjustment will be described.
 図6は、本発明の実施の形態に係る各解決策の特徴について説明するための図である。解決策1は、実施例1に関連する電力指示の観点では、SSBの調整において仕様への影響がある。また、解決策1は、実施例2に関連するRRMの観点では、L1/L3測定において仕様への影響がある。また、解決策1は、実施例3に関連するCSIレポートの観点では、PDSCHの電力変更において仕様への影響がある。したがって、解決策1は、全体的に仕様への影響が高い。また、解決策1は、省電力効果が高く、SSB電力が減少するため、セル発見の達成度が中/低である。 FIG. 6 is a diagram for explaining the features of each solution according to the embodiment of the present invention. Solution 1 has an impact on specifications in SSB adjustment in terms of power instructions related to Example 1. Furthermore, from the RRM perspective related to Example 2, Solution 1 has an impact on specifications in L1/L3 measurements. Furthermore, from the perspective of the CSI report related to the third embodiment, Solution 1 has an impact on the specifications when changing the power of the PDSCH. Therefore, Solution 1 has a high overall impact on specifications. In addition, Solution 1 has a high power saving effect and reduces SSB power, so the degree of achievement of cell discovery is medium/low.
 解決策2は、実施例1に関連する電力指示の観点では、CSI-RSとSSBとの比率の調整において仕様への影響がある。また、解決策2は、実施例2に関連するRRMの観点では、CSI-RSに基づくRRMにおいて仕様への影響がある。また、解決策2は、実施例3に関連するCSIレポートの観点では、PDSCHの電力変更において仕様への影響がある。したがって、解決策2は、全体的に仕様への影響が高い。また、解決策2は、省電力効果が中/高であり、セル発見の達成度が良である。 Solution 2 has an impact on the specifications in adjusting the ratio of CSI-RS and SSB in terms of power instructions related to Example 1. Furthermore, from the perspective of RRM related to Example 2, Solution 2 has an impact on the specifications in RRM based on CSI-RS. Furthermore, from the perspective of the CSI report related to the third embodiment, Solution 2 has an impact on the specifications in changing the power of the PDSCH. Therefore, Solution 2 has a high overall impact on specifications. In addition, Solution 2 has a medium/high power saving effect and a good degree of achievement of cell discovery.
 解決策3は、実施例1に関連する電力指示の観点では、PDSCHとCSI-RSとの比率の調整において仕様への影響がある。また、解決策3は、実施例2に関連するRRMの観点では、仕様への影響が無い。また、解決策3は、実施例3に関連するCSIレポートの観点では、PDSCHの電力変更において仕様への影響がある。したがって、解決策3は、全体的に仕様への影響が中である。また、解決策3は、RS電力が調整されないため、省電力効果が中であり、セル発見の達成度が良である。 Solution 3 has an impact on the specifications in adjusting the ratio of PDSCH and CSI-RS in terms of power instructions related to Example 1. Furthermore, Solution 3 has no impact on the specifications from the RRM perspective related to Example 2. Furthermore, from the perspective of the CSI report related to the third embodiment, solution 3 has an impact on the specifications in changing the power of the PDSCH. Therefore, Solution 3 has a medium impact on the specifications overall. Furthermore, since the RS power is not adjusted in Solution 3, the power saving effect is moderate and the degree of achievement of cell discovery is good.
 次に、各実施例について説明する。 Next, each example will be described.
 (実施例1)
 本実施例では、ダウンリンク送信電力の動的調整について説明する。
(Example 1)
In this embodiment, dynamic adjustment of downlink transmission power will be described.
 動的指示を可能にするために、以下の実施例について説明する。
・電力レベルの指示
・・実施例1-1:SSBの動的電力指示(解決策1)
・・実施例1-2:CSI-RSまたはPDSCHの動的電力指示(解決策2、解決策3)
・電力調整時間の終了および電力移行期間
・・実施例1-3:ダウンリンク電力指示の有効化時間
・・実施例1-4:電力移行期間
・その他
・・実施例1-5:ダウンリンク送信電力指示の信号設計
To enable dynamic instruction, the following example is described.
・Power level instruction...Example 1-1: SSB dynamic power instruction (Solution 1)
・Example 1-2: CSI-RS or PDSCH dynamic power instruction (Solution 2, Solution 3)
・End of power adjustment time and power transition period・Example 1-3: Validation time of downlink power instruction・Example 1-4: Power transition period・Other・Example 1-5: Downlink transmission Power indication signal design
 (実施例1-1)
 SSBの動的電力指示について、基地局10は、以下の3つの案のいずれかの動作を行ってもよい。
(Example 1-1)
Regarding the SSB dynamic power instruction, the base station 10 may perform any of the following three operations.
 <案1>
 基地局10は、上位レイヤによるSSS-EPREの絶対値を示すパラメータ(例えば、"ss-PBCH-BlockPower-adjust")に基づいて、SSS-EPREのオフセット値を端末20に指示してもよい。端末20は、SSSの調整済みEPREを次のように導出する。
<Plan 1>
The base station 10 may instruct the terminal 20 about the offset value of SSS-EPRE based on a parameter (for example, "ss-PBCH-BlockPower-adjust") indicating the absolute value of SSS-EPRE by the upper layer. The terminal 20 derives the SSS adjusted EPRE as follows.
 SSSのEPRE[dBm]="ss-PBCH-BlockPower"[dBm]+"ss-PBCH-BlockPower-adjust"[dB] SSS EPRE [dBm] = "ss-PBCH-BlockPower" [dBm] + "ss-PBCH-BlockPower-adjust" [dB]
 ここで、"ss-PBCH-BlockPower-adjust"には、dB単位のEPREの調整値候補(例えば、1ビット{-3,0}、2ビット{-9,-6,-3,0}または{-6,-3,0,3})が含まれる。 Here, "ss-PBCH-BlockPower-adjust" contains EPRE adjustment value candidates in dB (for example, 1 bit {-3,0}, 2 bits {-9, -6, -3,0} or {-6,-3,0,3}) is included.
 端末20は、"ss-PBCH-BlockPower-adjust"が存在しない、指示されない、または有効でない場合、EPREの調整値が0dBであると認識してもよい。すなわち、その場合、端末20は、EPREを調整しなくてもよい。 If "ss-PBCH-BlockPower-adjust" does not exist, is not instructed, or is not valid, the terminal 20 may recognize that the EPRE adjustment value is 0 dB. That is, in that case, the terminal 20 does not need to adjust EPRE.
 <案2>
 基地局10は、新規のパラメータ(例えば、"ss-PBCH-BlockPower-r18")によってEPREの絶対値を端末20に指示してもよい。端末20は、SSSの調整済みEPREを次のように導出する。
<Plan 2>
The base station 10 may instruct the terminal 20 about the absolute value of EPRE using a new parameter (for example, "ss-PBCH-BlockPower-r18"). The terminal 20 derives the SSS adjusted EPRE as follows.
 SSSのEPRE[dBm]="ss-PBCH-BlockPower-r18"[dBm] SSS EPRE [dBm] = "ss-PBCH-BlockPower-r18" [dBm]
 パラメータ"ss-PBCH-BlockPower-r18"の値は、dBm単位のSSSのEPREの候補であって、例えば(-60・・・50)の範囲の整数値である。 The value of the parameter "ss-PBCH-BlockPower-r18" is a candidate for SSS EPRE in dBm, and is an integer value in the range of (-60...50), for example.
 端末20は、"ss-PBCH-BlockPower-r18"が存在しない、指示されない、または有効でない場合、代わりにデフォルト値または"ss-PBCH-BlockPower"を使用してSSSのEPREを導出してもよい。 If "ss-PBCH-BlockPower-r18" does not exist, is not indicated, or is not valid, the terminal 20 may instead use the default value or "ss-PBCH-BlockPower" to derive the SSS EPRE. .
 <案3>
 基地局10は、以前に調整されたEPREに基づくEPREの調整値(例えば"ss-PBCH-BlockPower-adjust2"など)を端末20に指示してもよい。端末20は、SSSの調整済みEPREを次のように導出する。
<Plan 3>
The base station 10 may instruct the terminal 20 to adjust an EPRE value (for example, "ss-PBCH-BlockPower-adjust2", etc.) based on the previously adjusted EPRE. The terminal 20 derives the SSS adjusted EPRE as follows.
 SSS(i+1)のEPRE[dBm]=SSS(i)のEPRE[dBm]+"s-PBCH-BlockPower-adjust2"[dB] EPRE of SSS (i+1) [dBm] = EPRE of SSS (i) [dBm] + "s-PBCH-BlockPower-adjust2" [dB]
 ここで、SSS(i)のEPREは、導出時の直前に調整されたEPREを意味する。また、SSS(i+1)のEPREは、導出時において調整されたEPREを意味する。 Here, the EPRE of SSS(i) means the EPRE adjusted immediately before derivation. Further, the EPRE of SSS(i+1) means the EPRE adjusted at the time of derivation.
 なお、i=0の場合、以前の調整が為されていないため、導出時の直前に調整されたEPREは以下の通りとする。 Note that in the case of i=0, no previous adjustment has been made, so the EPRE adjusted immediately before derivation is as follows.
 SSS(0)のEPRE="ss-PBCH-BlockPower"[dBm] EPRE of SSS (0) = "ss-PBCH-BlockPower" [dBm]
 ここで、"ss-PBCH-BlockPower-adjust2"には、dB単位のEPREの調整値候補(例えば、1ビット{-3,3}、2ビット{-3,-1,0,3}または{-6,-3,0,6})が含まれる。 Here, "ss-PBCH-BlockPower-adjust2" contains EPRE adjustment value candidates in dB (for example, 1 bit {-3, 3}, 2 bits {-3, -1, 0, 3} or { -6, -3,0,6}) are included.
 端末20は、"ss-PBCH-BlockPower-adjust2"が存在しない、指示されない、または有効でない場合、EPREの調整値が0dBであると認識してもよい。すなわち、その場合、端末20は、EPREを調整しなくてもよい。 If "ss-PBCH-BlockPower-adjust2" does not exist, is not instructed, or is not valid, the terminal 20 may recognize that the EPRE adjustment value is 0 dB. That is, in that case, the terminal 20 does not need to adjust EPRE.
 (実施例1-2)
 CSI-RSまたはPDSCHの動的電力指示について、基地局10は、以下の3つの案のいずれかの動作を行ってもよい。
(Example 1-2)
Regarding the dynamic power instruction of the CSI-RS or PDSCH, the base station 10 may perform one of the following three operations.
 <案1>
 基地局10は、"powerControlOffsetSS"または"powerControlOffset"へのオフセット値(例えば"OffsetAdjust")を端末20に指示してもよい。
<Plan 1>
The base station 10 may instruct the terminal 20 to specify an offset value (for example, "OffsetAdjust") to "powerControlOffsetSS" or "powerControlOffset."
 NZP-CSI-RSのEPREとSSSのEPREとの比率は、"powerControlOffsetSS"[dB]+"OffsetAdjust"[dB]に等しい。また、PDSCHのEPREとNZP-CSI-RSのEPREとの比率は、"powerControlOffset"[dB]+"OffsetAdjust"[dB]に等しい。 The ratio between the NZP-CSI-RS EPRE and the SSS EPRE is equal to "powerControlOffsetSS" [dB] + "OffsetAdjust" [dB]. Further, the ratio between the PDSCH EPRE and the NZP-CSI-RS EPRE is equal to "powerControlOffset" [dB] + "OffsetAdjust" [dB].
 ここで、"OffsetAdjust"には、dB単位のEPREの調整値候補(例えば、1ビット{-3,3}、2ビット{-9,-6,-3,0}または{-6,-3,0,3})が含まれる。 Here, "OffsetAdjust" contains EPRE adjustment value candidates in dB (for example, 1 bit {-3, 3}, 2 bits {-9, -6, -3, 0} or {-6, -3 ,0,3}) are included.
 端末20は、"OffsetAdjust"が存在しない、指示されない、または有効でない場合、EPREの調整値が0dBであると認識してもよい。すなわち、その場合、端末20は、EPREを調整しなくてもよい。 If "OffsetAdjust" does not exist, is not instructed, or is not valid, the terminal 20 may recognize that the EPRE adjustment value is 0 dB. That is, in that case, the terminal 20 does not need to adjust EPRE.
 <案2>
 基地局10は、新規のパラメータ(例えば、"ss-PBCH-BlockPower-r18")によってEPREの絶対値を端末20に指示してもよい。具体的には、基地局10は、"powerControlOffsetSS"または"powerControlOffset"を置き換えるためのCSI-RSのEPREとSSSのEPREとの比率、またはPDSCHのEPREとNZP-CSI-RSのEPREとの比率の新しい値(例えば"powerControlOffsetSS-r18"または"powerControlOffset-r18")を端末20に指示してもよい。
<Plan 2>
The base station 10 may instruct the terminal 20 about the absolute value of EPRE using a new parameter (for example, "ss-PBCH-BlockPower-r18"). Specifically, the base station 10 determines the ratio between CSI-RS EPRE and SSS EPRE or the ratio between PDSCH EPRE and NZP-CSI-RS EPRE to replace "powerControlOffsetSS" or "powerControlOffset". A new value (for example, "powerControlOffsetSS-r18" or "powerControlOffset-r18") may be instructed to the terminal 20.
 CSI-RSのEPREとSSSのEPREとの比率は、"powerControlOffsetSS-r18"が指示されている場合は"powerControlOffsetSS-r18"に等しく、それ以外の場合は"powerControlOffsetSS"に等しい。 The ratio of CSI-RS EPRE to SSS EPRE is equal to "powerControlOffsetSS-r18" if "powerControlOffsetSS-r18" is specified, and equal to "powerControlOffsetSS" otherwise.
 PDSCHのEPREとNZP-CSI-RSのEPREとの比率は、"powerControlOffset-r18"が指示されている場合は"powerControlOffset-r18"に等しく、それ以外の場合は"powerControlOffset"に等しい。 The ratio between the PDSCH EPRE and the NZP-CSI-RS EPRE is equal to "powerControlOffset-r18" if "powerControlOffset-r18" is specified, and equal to "powerControlOffset" otherwise.
 <案3>
 基地局10は、以前に調整されたEPREに基づくEPREの調整値(例えば"OffsetAdjust2"など)を端末20に指示してもよい。端末20は、CSI-RSのEPREとSSSのEPREとの比率またはPDSCHのEPREとNZP-CSI-RSのEPREとの比率を次のように導出する。
<Plan 3>
The base station 10 may instruct the terminal 20 to adjust an EPRE value (eg, "OffsetAdjust2", etc.) based on the previously adjusted EPRE. The terminal 20 derives the ratio between CSI-RS EPRE and SSS EPRE or the ratio between PDSCH EPRE and NZP-CSI-RS EPRE as follows.
 PowerRatio(i+1)[dBm]=PowerRatio(i)[dBm]+"OffsetAdjust2"[dB] PowerRatio(i+1)[dBm]=PowerRatio(i)[dBm]+"OffsetAdjust2"[dB]
 ここで、PowerRatio(i)は、導出時の直前に調整されたCSI-RSのEPREとSSSのEPREとの比率またはPDSCHのEPREとNZP-CSI-RSのEPREとの比率を意味する。また、PowerRatio(i+1)は、導出時において調整されたCSI-RSのEPREとSSSのEPREとの比率またはPDSCHのEPREとNZP-CSI-RSのEPREとの比率を意味する。 Here, PowerRatio(i) means the ratio between the CSI-RS EPRE and the SSS EPRE, or the ratio between the PDSCH EPRE and the NZP-CSI-RS EPRE, which were adjusted immediately before derivation. Further, PowerRatio (i+1) means the ratio between the CSI-RS EPRE and the SSS EPRE or the ratio between the PDSCH EPRE and the NZP-CSI-RS EPRE, which are adjusted at the time of derivation.
 なお、i=0の場合、以前の調整が為されていないため、導出時の直前に調整されたCSI-RSのEPREとSSSのEPREとの比率またはPDSCHのEPREとNZP-CSI-RSのEPREとの比率は以下の通りとする。 If i = 0, no previous adjustment has been made, so the ratio between the CSI-RS EPRE and the SSS EPRE, or the PDSCH EPRE and the NZP-CSI-RS EPRE adjusted immediately before derivation. The ratio is as follows.
 PowerRatio(0)="powerControlOffsetSS"または"powerControlOffset" PowerRatio (0) = "powerControlOffsetSS" or "powerControlOffset"
 ここで、"OffsetAdjust2"には、dB単位のEPREの調整値候補(例えば、1ビット{-3,3}、2ビット{-3,-1,0,3}または{-6,-3,0,6})が含まれる。 Here, "OffsetAdjust2" contains EPRE adjustment value candidates in dB (for example, 1 bit {-3, 3}, 2 bits {-3, -1, 0, 3} or {-6, -3, 0,6}) are included.
 端末20は、"OffsetAdjust2"が存在しない、指示されない、または有効でない場合、EPREの調整値が0dBであると認識してもよい。すなわち、その場合、端末20は、EPREを調整しなくてもよい。 If "OffsetAdjust2" does not exist, is not instructed, or is not valid, the terminal 20 may recognize that the EPRE adjustment value is 0 dB. That is, in that case, the terminal 20 does not need to adjust EPRE.
 また、上述した調整がCSI-RSに適用される場合、端末20は、CSI-RSの時間特性を考慮して、以下の案のいずれかの制限が適用されると想定してもよい。 Furthermore, when the above-described adjustment is applied to the CSI-RS, the terminal 20 may assume that one of the following restrictions will be applied, taking into account the time characteristics of the CSI-RS.
 <案1>
 端末20は、上述した調整が非周期的CSI-RSにのみ適用されるか、または半永続的CSI-RSにのみ適用されると想定してもよい。
<Plan 1>
The terminal 20 may assume that the above-described adjustment applies only to aperiodic CSI-RS or only to semi-persistent CSI-RS.
 <案2>
 端末20は、上述した調整が非周期的CSI-RSと半永続的CSI-RSの両方に適用されると想定してもよい。
<Plan 2>
The terminal 20 may assume that the above-described adjustment applies to both aperiodic CSI-RS and semi-persistent CSI-RS.
 <案3>
 端末20は、上述した調整が非周期的CSI-RS、半永続的CSI-RSおよび周期的CSI-RSに適用されると想定してもよい。
<Plan 3>
The terminal 20 may assume that the above-described adjustment applies to aperiodic CSI-RS, semi-persistent CSI-RS, and periodic CSI-RS.
 (実施例1-3)
 ダウンリンク電力指示の有効化時間および有効期間について説明する。
(Example 1-3)
The activation time and validity period of downlink power instructions will be described.
 端末20は、スロット/シンボル/時刻nにおいてダウンリンク電力指示を受信すると、以下の案のいずれかの有効化時間において、基地局10から調整されたダウンリンク電力を使用して信号が送信されると想定してもよい。 When the terminal 20 receives the downlink power instruction at slot/symbol/time n, the terminal 20 transmits a signal using the adjusted downlink power from the base station 10 at the activation time of one of the following plans. It may be assumed that
 <案1-1>
 端末20は、スロット/シンボル/時刻nにおいてダウンリンク電力指示を受信すると、スロット/シンボル/時刻n+m以降から新しくダウンリンク電力指示を受信するまで、基地局10から調整されたダウンリンク電力を使用して信号が送信されると想定してもよい。
<Plan 1-1>
When the terminal 20 receives the downlink power instruction at slot/symbol/time n, it uses the downlink power adjusted from the base station 10 from slot/symbol/time n+m onwards until it receives a new downlink power instruction. It may be assumed that the signal is transmitted by
 図7は、本発明の実施の形態の実施例1-3の案1-1について説明するための図である。ダウンリンク電力指示が有効化されるまでの時間(有効化時間)は、スロット/シンボル/時刻nからスロット/シンボル/時刻n+mまでのmスロット/シンボル/時間である。有効化時間には、電力を移行する期間(電力移行期間Toffset)が含まれる。 FIG. 7 is a diagram for explaining Plan 1-1 of Example 1-3 of the embodiment of the present invention. The time until the downlink power indication is activated (validation time) is m slots/symbols/time from slot/symbol/time n to slot/symbol/time n+m. The activation time includes a period during which power is transferred (power transfer period T offset ).
 <案1-2>
 端末20は、スロット/シンボル/時刻nにおいてダウンリンク電力指示を受信すると、スロット/シンボル/時刻n+m以降からスロット/シンボル/時刻n+m+l-1またはn+l-1まで、基地局10から調整されたダウンリンク電力を使用して信号が送信され、その後、ダウンリンク電力は調整前のレベルに戻ると想定してもよい。
<Plan 1-2>
When the terminal 20 receives the downlink power instruction at the slot/symbol/time n, the terminal 20 receives the downlink power instruction adjusted from the base station 10 from the slot/symbol/time n+m onwards until the slot/symbol/time n+m+l-1 or n+l-1. It may be assumed that the power is used to transmit a signal and then the downlink power returns to the pre-adjustment level.
 <案1-3>
 端末20は、スロット/シンボル/時刻nにおいてダウンリンク電力指示を受信すると、スケジュールされたスロットにおけるPDSCHおよび/またはトリガーとなるRSリソースにおいては基地局10から調整されたダウンリンク電力を使用して信号が送信され、その後、ダウンリンク電力は調整前のレベルに戻ると想定してもよい。
<Plan 1-3>
Upon receiving the downlink power indication at slot/symbol/time n, the terminal 20 transmits the signal using the adjusted downlink power from the base station 10 in the PDSCH in the scheduled slot and/or the triggering RS resource. may be assumed to be transmitted, after which the downlink power returns to the pre-adjustment level.
 図8は、本発明の実施の形態の実施例1-3の案1-3について説明するための図である。ダウンリンク電力指示が有効化されるまでの時間(有効化時間)は、スロット/シンボル/時刻nからスロット/シンボル/時刻n+mまでのmスロット長/シンボル長/時間である。また、電力指示の有効期間は、1スロット長である。 FIG. 8 is a diagram for explaining Plan 1-3 of Example 1-3 of the embodiment of the present invention. The time until the downlink power indication is activated (validation time) is m slot length/symbol length/time from slot/symbol/time n to slot/symbol/time n+m. Further, the valid period of the power instruction is one slot length.
 上述したパラメータmまたはlは、次のように設定される。 The above-mentioned parameter m or l is set as follows.
 <案2-1>
 mまたはlは固定値である。例えば、m=0であってもよく、その場合、端末20は、指示を受信したスロット/シンボル/時刻(例:ミリ秒)でダウンリンク送信電力がすでに調整されていることを想定してもよい。
<Plan 2-1>
m or l is a fixed value. For example, m may be 0, in which case the terminal 20 may assume that the downlink transmit power has already been adjusted at the slot/symbol/time (e.g., milliseconds) at which the instruction is received. good.
 また、例えば、m=4であってもよく、その場合、端末20は、指示を受信してから4スロット長/シンボル長/時間(例:ミリ秒)後にダウンリンク送信電力が調整されることを想定してもよい。 Also, for example, m may be 4, in which case the terminal 20 may adjust the downlink transmission power 4 slot length/symbol length/time (e.g. milliseconds) after receiving the instruction. may be assumed.
 また、例えば、l=2であってもよく、その場合、端末20は、2スロット長/シンボル長/時間(例:ミリ秒)において調整済みのダウンリンク電力を使用してダウンリンク信号が送信されると想定してもよい。 Also, for example, l may be 2, in which case the terminal 20 transmits the downlink signal using the adjusted downlink power at 2 slot length/symbol length/time (e.g., milliseconds). It may be assumed that
 <案2-2>
 端末20は、mまたはlが、以下の1つ以上の要素に従って設定されることを想定してもよい。基準となる要素は、ニューメロロジ/サブキャリア間隔、シンボルまたはスロット期間、基地局10の電力移行期間(実施例1-4)、基地局能力、報告された端末能力、電力調整量、電力調整方向(すなわち電力を増加させたか減少させたか)のいずれかの要素の1つ以上であってもよい。
<Plan 2-2>
Terminal 20 may assume that m or l is set according to one or more of the following factors: The reference elements are numerology/subcarrier spacing, symbol or slot period, power transition period of base station 10 (Example 1-4), base station capability, reported terminal capability, power adjustment amount, power adjustment direction ( That is, whether the power is increased or decreased).
 <案2-3>
 端末20は、mまたはlがRRC/MAC-CE/DCI/SIBで指示されると想定してもよい。
<Plan 2-3>
The terminal 20 may assume that m or l is indicated in RRC/MAC-CE/DCI/SIB.
 (実施例1-4)
 基地局10がスロット長/シンボル長/時間n+mで調整されたダウンリンク電力で送信する場合、端末20は、スロット長/シンボル長/時間n+mの直前に電力移行期間Toffsetがあると想定してもよい。
(Example 1-4)
When the base station 10 transmits with downlink power adjusted by the slot length/symbol length/time n+m, the terminal 20 assumes that there is a power transition period T offset immediately before the slot length/symbol length/time n+m. Good too.
 図9は、本発明の実施の形態の実施例1-4について説明するための図である。電力移行期間Toffsetの期間は、以下の案のいずれかによって決定してもよい。 FIG. 9 is a diagram for explaining Examples 1-4 of the embodiment of the present invention. The duration of the power transition period Toffset may be determined by any of the following schemes.
 <案1-1>
 Toffsetは、固定値であってもよい。
<Plan 1-1>
T offset may be a fixed value.
 <案1-2>
 端末20は、Toffsetが以下の1つ以上の要素に従って設定されることを想定してもよい。基準となる要素は、ニューメロロジ/サブキャリア間隔、シンボルまたはスロット期間、基地局能力、報告された端末能力、電力調整量、電力調整方向(すなわち電力を増加させたか減少させたか)のいずれかの要素の1つ以上であってもよい。
<Plan 1-2>
Terminal 20 may assume that T offset is set according to one or more of the following factors: The criteria are: numerology/subcarrier spacing, symbol or slot period, base station capability, reported terminal capability, amount of power adjustment, and direction of power adjustment (i.e., whether power is increased or decreased). It may be one or more of the following.
 <案1-3>
 端末20は、ToffsetがRRC/MAC-CE/DCI/SIBで指示されると想定してもよい。
<Plan 1-3>
The terminal 20 may assume that T offset is indicated by RRC/MAC-CE/DCI/SIB.
 端末20は、電力移行期間Toffset中に次の案のいずれかを想定してもよい。 The terminal 20 may assume any of the following plans during the power transition period T offset .
 <案2-1>
 端末20は、ダウンリンク用RS(SSBを含む)の送信が無い、および/またはPDCCHの送信が無い、および/またはPDSCHの送信が無いことを想定してもよい。
<Plan 2-1>
The terminal 20 may assume that there is no downlink RS (including SSB) transmission, and/or PDCCH transmission, and/or PDSCH transmission.
 <案2-2>
 端末20は、アップリンクの送信が無いことを想定してもよい。
<Plan 2-2>
The terminal 20 may assume that there is no uplink transmission.
 <案2-3>
 端末20は、ダウンリンクおよびアップリンクの送信が無いことを想定してもよい。
<Plan 2-3>
Terminal 20 may assume no downlink and uplink transmissions.
 (実施例1-5)
 本実施例では、ダウンリンク送信の電力指示の信号設計について説明する。端末20は、ダウンリンク用送信電力指示に、次の1つ以上が含まれると想定してもよい。
・SSBの電力調整(実施例1-1)
・CSI-RSの電力調整(実施例1-2)
・PDSCHの電力調整(実施例1-2)
・有効化時間(m)と有効期間(l)(実施例1-3)
・電力移行期間(Toffset)(実施例1-4)
(Example 1-5)
In this embodiment, a signal design of power indication for downlink transmission will be described. The terminal 20 may assume that the downlink transmission power instruction includes one or more of the following.
・SSB power adjustment (Example 1-1)
・CSI-RS power adjustment (Example 1-2)
・PDSCH power adjustment (Example 1-2)
・Validation time (m) and validity period (l) (Example 1-3)
・Power transition period (T offset ) (Example 1-4)
 また、端末20は、ダウンリンク用電力指示に加えて、シグナリングに、基地局10のエネルギー節約のための次の空間ドメインの情報の1つ以上が含まれると想定してもよい。
・CSI-RSの有効なポート番号
・有効なコードブック設定
・有効なCSI-RSリソースセット
・有効なCSI-RSレポート設定またはレポート設定のグループ
The terminal 20 may also assume that, in addition to the downlink power indication, the signaling includes one or more of the following spatial domain information for energy conservation of the base station 10:
・Valid CSI-RS port number ・Valid codebook setting ・Valid CSI-RS resource set ・Valid CSI-RS report setting or group of report settings
 端末20は、ダウンリンク用送信電力指示が次の案のいずれかで送信されると想定してもよい。 The terminal 20 may assume that the downlink transmission power instruction is transmitted in one of the following ways.
 <案1-1>
 端末20は、RRCによって候補値が設定され、MAC-CEおよび/またはDCIによって候補値から選択された値のインデックスが指示されると想定してもよい。
<Plan 1-1>
The terminal 20 may assume that candidate values are set by RRC, and the index of a value selected from the candidate values is indicated by MAC-CE and/or DCI.
 <案1-2>
 端末20は、MAC-CEのみによって指示されると想定してもよい。
<Plan 1-2>
It may be assumed that the terminal 20 is directed only by the MAC-CE.
 <案1-3>
 端末20は、DCIのみ(端末固有または端末グループDCI)によって指示されると想定してもよい。
<Plan 1-3>
It may be assumed that the terminal 20 is directed only by the DCI (terminal-specific or terminal-group DCI).
 また、端末20は、上述の指示にDCIが使用される場合、次の案のいずれかのように指示されると想定してもよい。 Further, when the DCI is used for the above-mentioned instruction, the terminal 20 may assume that the instruction is given in one of the following ways.
 <案2-1>
 端末20は、従来のDCIフォーマットの従来のDCIビットフィールドに多重化されると想定してもよい。
<Plan 2-1>
Terminal 20 may be assumed to be multiplexed into a conventional DCI bit field in a conventional DCI format.
 <案2-2>
 端末20は、従来のDCIフォーマットの新しいDCIビットフィールドによって指示されると想定してもよい。例1として、DCIフォーマット1_0/1_1/1_2の"DL power indicator"の新しいビットフィールドであってもよい。この場合、実際のダウンリンク送信時間が有効化時間であるため、端末20は、「"Effective time"(有効化時間)」フィールドは省略されることを想定してもよい。
<Plan 2-2>
It may be assumed that the terminal 20 is indicated by the new DCI bit field in the conventional DCI format. As an example 1, it may be a new bit field of "DL power indicator" of DCI format 1_0/1_1/1_2. In this case, since the actual downlink transmission time is the activation time, the terminal 20 may assume that the "Effective time" field is omitted.
 例2として、DCIフォーマット2_6の"DL power indicator"の新しいビットフィールドであってもよい。端末20は、以下のように、DCIフォーマット2_6のブロックごとに、電力調整/有効化時間/電力移行期間のうちの1つ以上の要素をブロックに追加されることを想定してもよい。
・DCIフォーマット2_6:ブロック番号1、ブロック番号2、・・・、ブロック番号N
As example 2, it may be a new bit field of "DL power indicator" in DCI format 2_6. The terminal 20 may assume that for each block of DCI format 2_6, one or more elements of power adjustment/activation time/power transition period are added to the block as follows.
・DCI format 2_6: Block number 1, block number 2, ..., block number N
 <案2-3>
 端末20は、ダウンリンク電力指示用に定義された新しいRNTIを備えた新しいDCIフォーマットで指示されると想定してもよい。例えば、端末20は、端末20のグループに通知するための新しいRNTI(ES_RNTI)を使用したDCIフォーマット2_xで通知されると想定してもよい。ここで、端末20は、電力指示フィールドのDCIビットサイズが、RRCパラメータで設定されるか、仕様で規定されると想定してもよい。
<Plan 2-3>
It may be assumed that the terminal 20 is instructed with a new DCI format with a new RNTI defined for downlink power indication. For example, it may be assumed that the terminal 20 is notified in DCI format 2_x using a new RNTI (ES_RNTI) to notify the group of terminals 20. Here, the terminal 20 may assume that the DCI bit size of the power indication field is set by an RRC parameter or defined by a specification.
 実施例1(実施例1-1から実施例1-5までのいずれか)によれば、端末20は、ダウンリンク送信電力を基地局10から指示されることを想定することができる。これによって、基地局10の送信電力を適切に調整し、基地局10のエネルギーの節約を実現させることができる。 According to Example 1 (any of Examples 1-1 to 1-5), the terminal 20 can assume that the base station 10 instructs the downlink transmission power. Thereby, the transmission power of the base station 10 can be adjusted appropriately, and the base station 10 can save energy.
 (実施例2)
 本実施例では、動的電力調整によるRRMの拡張について説明する。まず、実施例2の前提となる従来の技術について説明する。
(Example 2)
In this embodiment, expansion of RRM by dynamic power adjustment will be described. First, the conventional technology that is the premise of the second embodiment will be explained.
 図10は、L1およびL3フィルタリングについて説明するための図である。L1およびL3フィルタリングは、セルレベルとビームレベルの両方の測定結果に適用される。セルの結果は、L1ビーム(実装)->L1セル(修飾されたビーム全体の平均)->L3セル(L3フィルタリング)となる。また、ビームの結果は、L1ビーム(実装)->L3ビーム(L3フィルタリング)となる。 FIG. 10 is a diagram for explaining L1 and L3 filtering. L1 and L3 filtering is applied to both cell level and beam level measurements. The cell result is L1 beam (implementation) -> L1 cell (average over modified beams) -> L3 cell (L3 filtering). Also, the beam result is L1 beam (implementation) -> L3 beam (L3 filtering).
 L3フィルタリングは、以下の式で表される。 L3 filtering is expressed by the following formula.
 F=(1-a)*Fn-1+a*M F n =(1-a)*F n-1 +a*M n
 ここで、Mは最新のL1の結果である。Fn-1は、フィルタ処理された古い測定結果であり、FがMにセットされている。また、a=1/2(ki/4)である。ここで、kiはRRCによって指示されるパラメータ"filterCoefficient"の値である。 Here, M n is the latest L1 result. F n-1 is the filtered old measurement result with F 0 set to M 1 . Further, a=1/2 (ki/4) . Here, ki is the value of the parameter "filterCoefficient" indicated by RRC.
 (実施例2-1)
 本実施例では、SSBまたはCSI-RSの送信電力が動的に調整される場合におけるRRM測定の内容について説明する。
(Example 2-1)
In this embodiment, the contents of RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted will be described.
 端末20は、RRM測定を次のディレクションのいずれかのように実行してもよい。 The terminal 20 may perform RRM measurement according to any of the following directions.
 <ディレクション1:測定グループなし(従来のフレームワーク)>
 端末20は、L1測定を、次の案のいずれかのように実行してもよい。
<Direction 1: No measurement group (legacy framework)>
The terminal 20 may perform the L1 measurement in any of the following ways.
 <案1-1>
 端末20は、実装に任せてRRM測定を実行してもよい(NRリリース17と同じ)。
<Plan 1-1>
The terminal 20 may perform RRM measurements depending on the implementation (same as NR Release 17).
 <案1-2>
 端末20は、L1測定結果で電力調整前のRSを考慮に入れないようにL1測定を行ってもよい。
<Plan 1-2>
The terminal 20 may perform the L1 measurement so that the RS before power adjustment is not taken into account in the L1 measurement result.
 また、端末20は、L3フィルタリングを次の案のいずれかのように実行してもよい。 Additionally, the terminal 20 may perform L3 filtering as in any of the following schemes.
 図11は、本発明の実施の形態の実施例2-1のディレクション1について説明するための図である。 FIG. 11 is a diagram for explaining direction 1 of Example 2-1 of the embodiment of the present invention.
 <案2-1>
 端末20は、従来から変更せずにL3フィルタリングを実行してもよい(NRリリース17と同じ)。
<Plan 2-1>
The terminal 20 may perform L3 filtering without any modification from before (same as NR Release 17).
 <案2-2>
 端末20は、電力調整が完了した場合にL3フィルタリングを再開してもよい。電力調整が発生すると、n=0に設定され、次にFがMに設定される。ここで、FはL3フィルタ処理された測定結果であり、Mは電力調整後の物理レイヤからの最初の測定結果である。
<Plan 2-2>
The terminal 20 may restart L3 filtering when power adjustment is completed. When a power adjustment occurs, n=0 is set and then F 0 is set to M 1 . Here, F n is the L3 filtered measurement result and M 1 is the first measurement result from the physical layer after power adjustment.
 <案2-3>
 端末20は、測定時のRS電力と、それ以前のRS電力の電力のオフセットまたは比率を考慮したL3フィルタリングを実行してもよい。例えば、L3フィルタリングは、以下の式で表される。
<Plan 2-3>
The terminal 20 may perform L3 filtering in consideration of the power offset or ratio between the RS power at the time of measurement and the RS power before that. For example, L3 filtering is expressed by the following formula.
 F=(1-a)*b*Fn-1+a*M F n =(1-a)*b n *F n-1 +a*M n
 ここで、bは、Mを受信するときのRS電力とMn-1を受信するときのRS電力の間の電力のオフセット値/比率に等しい。また、b=1、b=1である。 Here, b n is equal to the power offset value/ratio between the RS power when receiving M n and the RS power when receiving M n-1 . Further, b 0 =1 and b 1 =1.
 <ディレクション2:さまざまなRS/SSB電力レベルまたは電力範囲の測定グループ> <Direction 2: Measurement groups for various RS/SSB power levels or power ranges>
 図12は、本発明の実施の形態の実施例2-2のディレクション2について説明するための図である。 FIG. 12 is a diagram for explaining direction 2 of Example 2-2 of the embodiment of the present invention.
 端末20は、同じ電力レベルまたは電力レベルの範囲内のRS/SSB機会が、測定グループを形成することを想定してもよい。 The terminal 20 may assume that RS/SSB opportunities at the same power level or within a range of power levels form a measurement group.
 端末20は、特定の測定グループのL1測定結果では、他の測定グループのRS/SSBを考慮に入れないことを想定してもよい。また、端末20は、L3フィルタリングを、同じ測定グループからのL1測定結果に適用してもよい。 The terminal 20 may assume that the L1 measurement results of a specific measurement group do not take into account the RS/SSB of other measurement groups. Additionally, the terminal 20 may apply L3 filtering to L1 measurement results from the same measurement group.
 例えば、L3フィルタリングは、以下の式で表される。 For example, L3 filtering is expressed by the following formula.
 Fn,p=(1-a)*Fn-1,p+a*Mn,p F n,p = (1-a p )*F n-1,p +a p *M n,p
 pは測定グループのインデックスである。また、a=1/2(ki,p/4)である。ここで、ki,pはRRCによって示される"filterCoefficient"である。 p is the measurement group index. Further, a p =1/2(k i,p /4). Here, k i,p is "filterCoefficient" indicated by RRC.
 端末20は、1つの測定期間中にL1/L3測定結果を導出するグループの数が次の案のいずれかであると想定してもよい。 The terminal 20 may assume that the number of groups for which L1/L3 measurement results are derived during one measurement period is one of the following plans.
 <案1>
 端末20は、1つの測定グループであると想定してもよい。例えば、端末20は、すべてのグループの中で、期間中にSSB/RSの機会の比率が最も高い1つのグループであると想定してもよい。また、端末20は、期間の開始/終了時に存在したSSB/RSの機会を持つ1つのグループであると想定してもよい。
<Plan 1>
The terminals 20 may be assumed to be in one measurement group. For example, it may be assumed that the terminal 20 is the one group with the highest ratio of SSB/RS opportunities during the period among all the groups. It may also be assumed that the terminals 20 are one group with SSB/RS opportunities that existed at the start/end of the period.
 <案2>
 端末20は、複数の測定グループであると想定してもよい。例えば、端末20は、グループのSSB/RSの機会が期間中に存在した場合における測定グループであると想定してもよい。また、端末20は、グループのSSB/RS機会の比率/数が閾値を超えているグループであると想定してもよい。
<Plan 2>
The terminals 20 may be assumed to be in multiple measurement groups. For example, the terminal 20 may be assumed to be a measurement group in the event that an SSB/RS opportunity for the group exists during the period. Furthermore, it may be assumed that the terminal 20 is a group in which the ratio/number of SSB/RS opportunities of the group exceeds a threshold value.
 <案3>
 端末20は、すべての測定グループであると想定してもよい。
<Plan 3>
The terminal 20 may be assumed to be in all measurement groups.
 (実施例2-2)
 本実施例では、SSBまたはCSI-RSの送信電力が動的に調整される場合におけるRRM測定の適用の制限について説明する。
(Example 2-2)
In this example, limitations on application of RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted will be described.
 <案1>
 端末20は、SSBまたはCSI-RSの送信電力が動的に調整される場合におけるRRM測定を、特定のRSを使用した測定に適用してもよい。例えば、端末20は、SSBで測定する測定設定にのみ適用してもよい。また、端末20は、CSI-RSで測定する測定設定にのみ適用してもよい。また、端末20は、SSBまたはCSI-RSで測定するすべての測定設定に適用してもよい。
<Plan 1>
The terminal 20 may apply RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted to measurement using a specific RS. For example, the terminal 20 may apply only measurement settings for measuring with SSB. Further, the terminal 20 may be applied only to measurement settings for measuring with CSI-RS. Furthermore, the terminal 20 may apply all measurement settings for measuring with SSB or CSI-RS.
 <案2>
 端末20は、SSBまたはCSI-RSの送信電力が動的に調整される場合におけるRRM測定を、特定のレポートのための測定に適用してもよい。例えば、端末20は、RSRP、RSRQまたはSINRを報告する測定設定にのみ適用してもよい。
<Plan 2>
The terminal 20 may apply RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted to measurement for a specific report. For example, the terminal 20 may apply only measurement configurations that report RSRP, RSRQ, or SINR.
 <案3>
 端末20は、SSBまたはCSI-RSの送信電力が動的に調整される場合におけるRRM測定を、特定のセル特性を持つ測定に適用してもよい。例えば、端末20は、サービングセル、PCellまたはPscellの測定に適用してもよい。また、端末20は、サービングセルと隣接セルの両方の測定に適用してもよい。また、端末20は、RAT内およびRAT間測定の両方に適用してもよい。
<Plan 3>
The terminal 20 may apply RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted to measurements with specific cell characteristics. For example, the terminal 20 may be applied to measurement of a serving cell, PCell, or Pscell. Furthermore, the terminal 20 may be applied to measurements of both the serving cell and neighboring cells. Furthermore, the terminal 20 may be applied to both intra-RAT and inter-RAT measurements.
 <案4>
 端末20は、SSBまたはCSI-RSの送信電力が動的に調整される場合におけるRRM測定を、動的な電力調整を可能にする測定設定に適用してもよい。
<Plan 4>
The terminal 20 may apply RRM measurement when the transmission power of SSB or CSI-RS is dynamically adjusted to measurement settings that enable dynamic power adjustment.
 図13は、本発明の実施の形態の実施例2-2の案4のパラメータの一例を示す図である。例えば、端末20は、動的な電力調整を可能にする測定オブジェクトにのみ適用してもよい。測定オブジェクト(例:"MeasObjectNR")の新しいパラメータ(例:"EnablePowerAdjust")は、動的電力調整をサポートするか否かを示すパラメータである。 FIG. 13 is a diagram showing an example of parameters of Plan 4 of Example 2-2 of the embodiment of the present invention. For example, the terminal 20 may apply only to measurement objects that allow dynamic power adjustment. A new parameter (eg, "EnablePowerAdjust") of the measurement object (eg, "MeasObjectNR") is a parameter that indicates whether dynamic power adjustment is supported.
 また、端末20は、動的な電力調整を可能にする測定リソースにのみ適用してもよい。測定リソース("CSI-RS-CellMobility"または"SSB-ConfigMobility"など)の新しいパラメータ("EnablePowerAdjust"など)は、動的な電力調整をサポートするか否かを示すパラメータである。 Furthermore, the terminal 20 may be applied only to measurement resources that enable dynamic power adjustment. A new parameter (such as "EnablePowerAdjust") for a measurement resource (such as "CSI-RS-CellMobility" or "SSB-ConfigMobility") is a parameter that indicates whether dynamic power adjustment is supported.
 <案5>
 端末20は、SSBまたはCSI-RSの送信電力が動的に調整される場合におけるRRM測定を、案1、案2、案3および案4の任意の組み合わせに適用してもよい。
<Plan 5>
The terminal 20 may apply RRM measurement to any combination of Plan 1, Plan 2, Plan 3, and Plan 4 when the transmission power of SSB or CSI-RS is dynamically adjusted.
 実施例2(実施例2-1または実施例2-2)によれば、端末20は、動的電力調整によるRRMの拡張を想定することができる。 According to Example 2 (Example 2-1 or Example 2-2), the terminal 20 can assume expansion of RRM by dynamic power adjustment.
 (実施例3)
 本実施例では、動的電力調整によるCSIレポートの拡張について説明する。
(Example 3)
In this embodiment, expansion of CSI report by dynamic power adjustment will be described.
 まず、従来のCSIレポートについて説明する。端末20は、CSIレポート(再)設定、サービングセルのアクティブ化、BWPの変更、またはSP-CSIのアクティブ化の後、チャネル測定およびCSI-RSおよび/またはCSI-RSの送信機会を少なくとも1回受信した後にのみ、CSIレポートを報告する。干渉測定のためのCSI-IMの機会は、遅くともCSI参照リソースであり、それ以外の場合はレポートをドロップする。 First, a conventional CSI report will be explained. The terminal 20 receives at least one channel measurement and CSI-RS and/or CSI-RS transmission opportunity after CSI report (re)configuration, serving cell activation, BWP change, or SP-CSI activation. report the CSI report only after The CSI-IM opportunity for interference measurement is the CSI reference resource at the latest, otherwise drop the report.
 図14は、定期的または半永続的なCSIレポートのCSI参照リソースの一例を示す図である。アップリンクスロットnにおけるCSIレポートのCSI参照リソースは、定期的または半永続的なCSIレポートの場合、単一のダウンリンクスロットn-nCSI_refによって定義される。ここで、nCSI_refは、単一/複数のCSI-RS/SSBリソースの場合、4・2μ_DL/5・2μ_DL以上の最小値である。 FIG. 14 is a diagram illustrating an example of a CSI reference resource for a periodic or semi-permanent CSI report. The CSI reference resource for CSI reporting in uplink slot n is defined by a single downlink slot nn CSI_ref for periodic or semi-permanent CSI reporting. Here, n CSI_ref is a minimum value of 4·2 μ_DL /5·2 μ_DL or more in the case of single/multiple CSI-RS/SSB resources.
 図15は、非定期的なCSIレポートのCSI参照リソースの一例を示す図である。アップリンクスロットnにおけるCSIレポートのCSI参照リソースは、単一のダウンリンクスロットn-nCSI_refによって定義される。ここで、nCSI_refは、[Z′/Nsymb slot]以上の最小値である。ここで、Z′はCSI計算時間である。CSIレポートをトリガーする要求のあるDCIは、CSIレポートよりZ前に送信される。 FIG. 15 is a diagram illustrating an example of CSI reference resources for non-periodic CSI reports. A CSI reference resource for a CSI report in uplink slot n is defined by a single downlink slot nn CSI_ref . Here, n CSI_ref is a minimum value greater than or equal to [Z'/N symb slot ]. Here, Z' is the CSI calculation time. A DCI with a request to trigger a CSI report is sent Z before the CSI report.
 以上説明したCSIレポートについて、電力調整は、CSIの精度とCSIの計算時間に影響を与える可能性がある。そこで、動的電力調整によるCSIレポートの拡張に係る以下の実施例について説明する。 Regarding the CSI report described above, power adjustment may affect CSI accuracy and CSI calculation time. Therefore, the following embodiment regarding expansion of CSI report by dynamic power adjustment will be described.
 (実施例3-1)
 本実施例では、電力調整を考慮したCSI計算とレポートを行う端末20の動作について説明する。
(Example 3-1)
In this embodiment, the operation of the terminal 20 that performs CSI calculation and reporting in consideration of power adjustment will be described.
 図16は、本発明の実施の形態の実施例3-1について説明するための図である。 FIG. 16 is a diagram for explaining Example 3-1 of the embodiment of the present invention.
 (実施例3-1-1)
 CSIレポートのCSI参照リソースの後に電力移行が発生した場合(ケースA)、またはCSI参照リソースの直前の最新のCSI-RSの機会の後に電力移行が発生した場合(ケースB)、端末20は、次の案のいずれかを実行してもよい。
(Example 3-1-1)
If the power transition occurs after the CSI reference resource in the CSI report (Case A), or if the power transition occurs after the most recent CSI-RS opportunity immediately before the CSI reference resource (Case B), the terminal 20: You may implement any of the following options.
 <案1>
 端末20は、電力移行がCSIレポートのスロットのスロット長/シンボル長/時間X前で終了した場合、電力移行後の電力レベルを想定してCSIを導出してもよい。端末20は、それ以外の場合は、CSI参照リソースの電力レベルを想定してCSIを導出してもよい。
<Plan 1>
If the power transition ends before the slot length/symbol length/time X of the slot of the CSI report, the terminal 20 may derive the CSI assuming the power level after the power transition. In other cases, the terminal 20 may derive the CSI assuming the power level of the CSI reference resource.
 <案2>
 端末20は、CSI参照リソースの電力レベルを想定してCSIを導出してもよい。
<Plan 2>
The terminal 20 may derive the CSI assuming the power level of the CSI reference resource.
 <案3>
 端末20は、CSIを更新しなくてもよい。すなわち、端末20は、レポート設定の以前に測定されたCSIを報告してもよい。
<Plan 3>
The terminal 20 does not need to update the CSI. That is, the terminal 20 may report the CSI measured before setting the report.
 <案4>
 端末20は、レポートを削除/無視してもよい。すなわち、端末20は、CSIを報告しなくてもよい。
<Plan 4>
The terminal 20 may delete/ignore the report. That is, the terminal 20 does not have to report the CSI.
 なお、端末20は、電力移行が完了して元の電力に戻ったタイミングを考慮して、上記の案のいずれかを選択してもよい。 Note that the terminal 20 may select one of the above plans in consideration of the timing when the power transition is completed and the power is returned to the original power.
 (実施例3-1-2)
 端末20は、電力移行後のCSI参照リソース(ケースC)までに少なくとも1回のCSI-RS機会を受信した後にのみCSIレポートを報告してもよい。端末20は、それ以外の場合、レポートをドロップ/無視してもよい。
(Example 3-1-2)
The terminal 20 may report a CSI report only after receiving at least one CSI-RS opportunity by the CSI reference resource after power transition (case C). Terminal 20 may otherwise drop/ignore the report.
 (実施例3-1-3)
 非周期的CSIレポートの場合、端末20がスロットの前またはA-CSIをトリガーするDCIを受信する同じスロットで電力調整指示を受信し、電力移行がA-CSIトリガーのスロットおよび対応するレポート用のスロット間で発生する場合(ケースD)、または端末20がA-CSIトリガーDCIを受信したスロットの後に電力調整指示を受信し、電力調整指示のスロットと対応するA-CSIレポートのスロットとの間で電力移行が発生した場合(ケースE)、次の案のいずれかを実行してもよい。
(Example 3-1-3)
For aperiodic CSI reporting, if the terminal 20 receives a power adjustment instruction before the slot or in the same slot in which it receives the DCI that triggers the A-CSI, and the power transition occurs in the slot of the A-CSI trigger and the corresponding report If it occurs between slots (Case D), or if the terminal 20 receives the power adjustment instruction after the slot in which it receives the A-CSI trigger DCI, and the power adjustment instruction occurs between the slot of the power adjustment instruction and the slot of the corresponding A-CSI report. If a power transition occurs in (Case E), one of the following options may be executed.
 図17は、本発明の実施の形態の実施例3-1-3のケースDについて説明するための図である。また、図18は、本発明の実施の形態の実施例3-1-3のケースEについて説明するための図である。 FIG. 17 is a diagram for explaining case D of Example 3-1-3 of the embodiment of the present invention. Further, FIG. 18 is a diagram for explaining case E of Example 3-1-3 of the embodiment of the present invention.
 <案1>
 端末20は、実施例3-1-1に従ってCSIを導出し、報告してもよい。
<Plan 1>
The terminal 20 may derive and report the CSI according to Example 3-1-1.
 <案2>
 端末20は、CSIを更新しなくてもよい。すなわち、端末20は、以前に測定されたCSIを報告してもよい。
<Plan 2>
The terminal 20 does not need to update the CSI. That is, the terminal 20 may report the previously measured CSI.
 <案3>
 端末20は、レポートを削除/無視してもよい。すなわち、端末20は、CSIを報告しなくてもよい。
<Plan 3>
The terminal 20 may delete/ignore the report. That is, the terminal 20 does not have to report the CSI.
 (実施例3-2)
 SSBまたはCSI-RSで測定されるさまざまなCSIがあるため、CSI-RSまたはSSBの電力調整は、一部のCSIレポートにのみ影響するとこととしてもよい。
(Example 3-2)
Because there are various CSIs measured by SSB or CSI-RS, power adjustment of CSI-RS or SSB may only affect some CSI reports.
 端末20は、実施例3-1を適用され得るCSIが制限されることを想定してもよい。 The terminal 20 may assume that the CSI to which Example 3-1 can be applied is limited.
 <案1>
 端末20は、実施例3-1を、特定のRSを使用するCSIレポートに適用してもよい。例えば、端末20は、SSBで測定するCSIレポート設定にのみ適用してもよい。また、端末20は、CSI-RSで測定するCSIレポート設定にのみ適用してもよい。また、端末20は、SSBまたはCSI-RSで測定するCSIレポート設定に適用してもよい。
<Plan 1>
The terminal 20 may apply Example 3-1 to a CSI report using a specific RS. For example, the terminal 20 may apply only the CSI report settings measured by SSB. Further, the terminal 20 may apply only the CSI report settings measured by CSI-RS. Furthermore, the terminal 20 may apply CSI report settings measured by SSB or CSI-RS.
 <案2>
 端末20は、特定のレポート数のCSIレポートに適用してもよい。例えば、端末20は、SSB関連の数量("ssb-Index-RSRP")のCSIレポート設定にのみ適用してもよい。
<Plan 2>
The terminal 20 may apply a specific number of CSI reports. For example, the terminal 20 may apply only the CSI report setting of the SSB-related quantity ("ssb-Index-RSRP").
 また、端末20は、CSI-RS関連の数量("cri-RI-PMI-CQI"、"cri-RI-i1"、"cri-RI-i1-CQI"、"cri-RI-CQI"、"cri-RSRP"、"cri-RI-LI-PMI-CQI")のCSIレポート設定にのみ適用してもよい。 In addition, the terminal 20 also stores CSI-RS related quantities ("cri-RI-PMI-CQI", "cri-RI-i1", "cri-RI-i1-CQI", "cri-RI-CQI", " cri-RSRP", "cri-RI-LI-PMI-CQI").
 また、端末20は、RIおよび/またはCQIの量("cri-RI-PMI-CQI"、"ri-RI-i1"、"cri-RI-i1-CQI"、"cri-RI-CQI"、"cri-RI-LI-PMI-CQI")を含むCSIレポート設定にのみ適用してもよい。 The terminal 20 also determines the amount of RI and/or CQI ("cri-RI-PMI-CQI", "ri-RI-i1", "cri-RI-i1-CQI", "cri-RI-CQI", "cri-RI-LI-PMI-CQI").
 <案3>
 端末20は、実施例3-1を、特定の時間領域の動作属性を使用するCSIレポートに適用してもよい。例えば、端末20は、定期的/半永続的/非定期的なCSIレポートにのみ適用してもよい。また、端末20は、定期的、半永続的および非定期的なCSIレポートに適用してもよい。また、端末20は、定期的および半永続的なCSIレポートに適用してもよい。
<Plan 3>
The terminal 20 may apply Example 3-1 to a CSI report that uses operational attributes in a specific time domain. For example, the terminal 20 may apply only periodic/semi-permanent/non-periodic CSI reports. Furthermore, the terminal 20 may be applied to regular, semi-permanent, and non-regular CSI reports. Furthermore, the terminal 20 may be applied to periodic and semi-permanent CSI reports.
 <案4>
 端末20は、実施例3-1を、動的な電力調整を可能にするCSIレポート設定に適用してもよい。例えば、端末20は、動的な電力調整を可能にするCSIリソースにのみ適用してもよい。当該CSIリソース(例えば"CSI-ResourceConfig")の新しいパラメータ(例えば"EnablePowerAdjust")は、動的な電力調整をサポートするか否かを示す。
<Plan 4>
The terminal 20 may apply Example 3-1 to CSI report settings that enable dynamic power adjustment. For example, the terminal 20 may apply only to CSI resources that enable dynamic power adjustment. A new parameter (eg, "EnablePowerAdjust") for the CSI resource (eg, "CSI-ResourceConfig") indicates whether dynamic power adjustment is supported.
 また、端末20は、動的な電力調整を可能にするCSIレポートにのみ適用してもよい。当該CSIレポート(例えば"CSI-ReportConfig")の新しいパラメータ(例えば"EnablePowerAdjust")は、動的な電力調整をサポートするか否かを示す。 Additionally, the terminal 20 may apply only to CSI reports that enable dynamic power adjustment. A new parameter (eg, "EnablePowerAdjust") in the CSI report (eg, "CSI-ReportConfig") indicates whether dynamic power adjustment is supported.
 実施例3(実施例3-1または実施例3-2)によれば、端末20は、動的電力調整によるCSIレポートの拡張を想定することができる。 According to Example 3 (Example 3-1 or Example 3-2), the terminal 20 can assume expansion of the CSI report by dynamic power adjustment.
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。
(Device configuration)
Next, an example of the functional configuration of the base station 10 and terminal 20 that execute the processes and operations described above will be described.
 <基地局10>
 図19は、基地局10の機能構成の一例を示す図である。図19に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図19に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。また、送信部110と、受信部120とをまとめて通信部と称してもよい。
<Base station 10>
FIG. 19 is a diagram illustrating an example of the functional configuration of the base station 10. As shown in FIG. 19, base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140. The functional configuration shown in FIG. 19 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names. Furthermore, the transmitting section 110 and the receiving section 120 may be collectively referred to as a communication section.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、PDCCHによるDCI、PDSCHによるデータ等を送信する機能を有する。 The transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals. Further, the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DCI using PDCCH, data using PDSCH, etc. to the terminal 20.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を設定部130が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。 The setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device included in the setting unit 130, and reads them from the storage device as necessary.
 制御部140は、送信部110を介して端末20のDL受信あるいはUL送信のスケジューリングを行う。また、制御部140は、LBTを行う機能を含む。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110を送信機と呼び、受信部120を受信機と呼んでもよい。 The control unit 140 schedules DL reception or UL transmission of the terminal 20 via the transmission unit 110. Further, the control unit 140 includes a function to perform LBT. A functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. Further, the transmitting section 110 may be called a transmitter, and the receiving section 120 may be called a receiver.
 <端末20>
 図20は、端末20の機能構成の一例を示す図である。図20に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図20に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と、受信部220をまとめて通信部と称してもよい。
<Terminal 20>
FIG. 20 is a diagram showing an example of the functional configuration of the terminal 20. As shown in FIG. As shown in FIG. 20, the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240. The functional configuration shown in FIG. 20 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names. The transmitting section 210 and the receiving section 220 may be collectively referred to as a communication section.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号、PDCCHによるDCI、PDSCHによるデータ等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部120は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信することとしてもよい。 The transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, DCI by PDCCH, data by PDSCH, etc. transmitted from the base station 10. For example, the transmitting unit 210 transmits a PSCCH (Physical Sidelink Control Channel), a PSSCH (Physical Sidelink Shared Channel), a PSDCH to another terminal 20 as D2D communication. (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) etc., and the receiving unit 120 may receive the PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other terminal 20.
 設定部230は、受信部220により基地局10又は他の端末から受信した各種の設定情報を設定部230が備える記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、端末20の制御を行う。また、制御部240はLBTを行う機能を含む。 The setting unit 230 stores various types of setting information received from the base station 10 or other terminals by the receiving unit 220 in a storage device included in the setting unit 230, and reads the information from the storage device as necessary. The setting unit 230 also stores setting information that is set in advance. The control unit 240 controls the terminal 20. Further, the control unit 240 includes a function to perform LBT.
 本実施の形態の端末は、下記の各項に示す端末として構成されてもよい。また、下記の通信方法が実施されてもよい。 The terminal of this embodiment may be configured as a terminal shown in each section below. Additionally, the following communication method may be implemented.
 <本実施の形態に関する構成>
(第1項)
 ダウンリンクの送信電力の動的な調整を指示する情報をダウンリンクで受信する受信部と、
 ダウンリンクの送信電力が動的に調整されたタイミングに基づいて、無線リソース管理に関する測定を行う制御部と、を備える、
 端末。
(第2項)
 前記制御部は、同じ電力レベルまたは電力レベルの範囲内の参照信号または同期信号の受信機会が、測定グループを形成することを想定し、
 前記測定グループに基づいて、測定の結果をアップリンクで送信する送信部をさらに備える、
 第1項に記載の端末。
(第3項)
 前記制御部は、同期信号または参照信号の送信電力が動的に調整される場合における測定が、特定の参照信号、レポート、セル特性または動的な電力調整を可能にする測定に適用されることを想定する、
 第1項または第2項に記載の端末。
(第4項)
 ダウンリンクの送信電力の動的な調整を指示する情報を端末に送信する送信部と、
 ダウンリンクの送信電力が動的に調整されたタイミングに基づいて、無線リソース管理に関する測定が行われることを想定する制御部と、を備える、
 基地局。
(第5項)
 ダウンリンクの送信電力の動的な調整を指示する情報をダウンリンクで受信するステップと、
 ダウンリンクの送信電力が動的に調整されたタイミングに基づいて、無線リソース管理に関する測定を行うステップと、を備える、
 端末が実行する通信方法。
<Configuration related to this embodiment>
(Section 1)
a receiving unit that receives information on the downlink that instructs dynamic adjustment of downlink transmission power;
a control unit that performs measurements regarding radio resource management based on the timing at which downlink transmission power is dynamically adjusted;
terminal.
(Section 2)
The control unit assumes that reception opportunities of reference signals or synchronization signals within the same power level or power level range form a measurement group,
further comprising a transmitting unit that transmits measurement results on the uplink based on the measurement group;
The terminal described in paragraph 1.
(Section 3)
The control unit is configured such that the measurement in the case where the transmission power of the synchronization signal or the reference signal is dynamically adjusted is applied to a specific reference signal, report, cell characteristic or measurement that enables dynamic power adjustment. Assuming that
The terminal according to item 1 or 2.
(Section 4)
a transmitter that transmits information instructing dynamic adjustment of downlink transmission power to the terminal;
a control unit that assumes that measurements related to radio resource management are performed based on the timing at which downlink transmission power is dynamically adjusted;
base station.
(Section 5)
receiving information on the downlink directing dynamic adjustment of downlink transmit power;
making measurements regarding radio resource management based on the timing at which downlink transmission power is dynamically adjusted;
The communication method that the terminal performs.
 上記構成のいずれによっても、基地局の消費電力の節約を実現させることを可能とする技術が提供される。第1項によれば、ダウンリンクの送信電力が動的に調整されたタイミングに基づいて、無線リソース管理に関する測定を行うことができる。第2項によれば、測定グループに基づいて、測定の結果をアップリンクで送信することができる。第3項によれば、同期信号または参照信号の送信電力が動的に調整される場合における測定が、特定の参照信号、レポート、セル特性または動的な電力調整を可能にする測定に適用されることを想定することができる。 Any of the above configurations provides a technique that makes it possible to save power consumption of the base station. According to the first item, measurements related to radio resource management can be performed based on the timing at which downlink transmission power is dynamically adjusted. According to the second clause, the results of the measurements can be transmitted on the uplink based on the measurement group. According to clause 3, the measurements in the case where the transmission power of the synchronization signal or reference signal is dynamically adjusted apply to specific reference signals, reports, cell characteristics or measurements that enable dynamic power adjustment. It can be assumed that
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図19及び図20)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 19 and 20) used to explain the above embodiments show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図21は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 21 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure. The base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, the above-described control unit 140, control unit 240, etc. may be implemented by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図19に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図20に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 140 of the base station 10 shown in FIG. 19 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Further, for example, the control unit 240 of the terminal 20 shown in FIG. 20 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Although the various processes described above have been described as being executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured. The storage device 1002 may be called a register, cache, main memory, or the like. The storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. The above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of. For example, a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission line interface, etc. may be realized by the communication device 1004. The transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 図22に車両2001の構成例を示す。図22に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 FIG. 22 shows an example of the configuration of the vehicle 2001. As shown in FIG. 22, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013. Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカー、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。 The information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
 情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021-2029からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021-2029、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 2013 receives signals from the various sensors 2021 to 2029 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 2010, various sensors 2021-2029, information service unit 2012, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001. The information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
 また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 also stores various information received from external devices into a memory 2032 that can be used by the microprocessor 2031. Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary information on the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, etc. Probably. Although the invention has been explained using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, these numerical values are merely examples, and any appropriate values may be used. The classification of items in the above explanation is not essential to the present invention, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another item. may be applied to the matters described in (unless inconsistent). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical components. The operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components. Regarding the processing procedures described in the embodiments, the order of processing may be changed as long as there is no contradiction. Although the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of process description, such devices may be implemented in hardware, software, or a combination thereof. Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these. The present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this specification, specific operations performed by the base station 10 may be performed by its upper node in some cases. In a network consisting of one or more network nodes including a base station 10, various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to). Although the case where there is one network node other than the base station 10 is illustrated above, the other network node may be a combination of multiple other network nodes (for example, MME and S-GW). .
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements may be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)," "wireless base station," "base station," "fixed station," "NodeB," "eNodeB (eNB)," and "gNodeB ( gNB)”, “access point”, “transmission point”, “reception point”, “transmission/reception point”, “cell”, “sector”, Terms such as "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In the present disclosure, the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 20 may have the functions that the base station 10 described above has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station may have the functions that the user terminal described above has.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (e.g., accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" refer to resolving, selecting, choosing, establishing, comparing, etc. as "judgment" and "decision". may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, refer to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. You can. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on newerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP) (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured for the terminal 20 within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)
10 Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port (IO port)

Claims (5)

  1.  ダウンリンクの送信電力の動的な調整を指示する情報をダウンリンクで受信する受信部と、
     ダウンリンクの送信電力が動的に調整されたタイミングに基づいて、無線リソース管理に関する測定を行う制御部と、を備える、
     端末。
    a receiving unit that receives information on the downlink that instructs dynamic adjustment of downlink transmission power;
    a control unit that performs measurements regarding radio resource management based on the timing at which downlink transmission power is dynamically adjusted;
    terminal.
  2.  前記制御部は、同じ電力レベルまたは電力レベルの範囲内の参照信号または同期信号の受信機会が、測定グループを形成することを想定し、
     前記測定グループに基づいて、測定の結果をアップリンクで送信する送信部をさらに備える、
     請求項1に記載の端末。
    The control unit assumes that reception opportunities of reference signals or synchronization signals within the same power level or power level range form a measurement group,
    further comprising a transmitting unit that transmits measurement results on the uplink based on the measurement group;
    The terminal according to claim 1.
  3.  前記制御部は、同期信号または参照信号の送信電力が動的に調整される場合における測定が、特定の参照信号、レポート、セル特性または動的な電力調整を可能にする測定に適用されることを想定する、
     請求項1に記載の端末。
    The control unit is configured such that the measurement in the case where the transmission power of the synchronization signal or the reference signal is dynamically adjusted is applied to a specific reference signal, report, cell characteristic or measurement that enables dynamic power adjustment. Assuming that
    The terminal according to claim 1.
  4.  ダウンリンクの送信電力の動的な調整を指示する情報を端末に送信する送信部と、
     ダウンリンクの送信電力が動的に調整されたタイミングに基づいて、無線リソース管理に関する測定が行われることを想定する制御部と、を備える、
     基地局。
    a transmitter that transmits information instructing dynamic adjustment of downlink transmission power to the terminal;
    a control unit that assumes that measurements related to radio resource management are performed based on the timing at which downlink transmission power is dynamically adjusted;
    base station.
  5.  ダウンリンクの送信電力の動的な調整を指示する情報をダウンリンクで受信するステップと、
     ダウンリンクの送信電力が動的に調整されたタイミングに基づいて、無線リソース管理に関する測定を行うステップと、を備える、
     端末が実行する通信方法。
    receiving information on the downlink directing dynamic adjustment of downlink transmit power;
    making measurements regarding radio resource management based on the timing at which downlink transmission power is dynamically adjusted;
    The communication method that the terminal performs.
PCT/JP2022/017312 2022-04-07 2022-04-07 Terminal, base station, and communication method WO2023195144A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017312 WO2023195144A1 (en) 2022-04-07 2022-04-07 Terminal, base station, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017312 WO2023195144A1 (en) 2022-04-07 2022-04-07 Terminal, base station, and communication method

Publications (1)

Publication Number Publication Date
WO2023195144A1 true WO2023195144A1 (en) 2023-10-12

Family

ID=88242587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017312 WO2023195144A1 (en) 2022-04-07 2022-04-07 Terminal, base station, and communication method

Country Status (1)

Country Link
WO (1) WO2023195144A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520437A (en) * 2005-12-20 2009-05-21 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Resource scheduling in cellular systems
US20150049649A1 (en) * 2013-08-19 2015-02-19 Blackberry Limited Wireless access network node having an off state
WO2020261551A1 (en) * 2019-06-28 2020-12-30 株式会社Nttドコモ Terminal and wireless communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520437A (en) * 2005-12-20 2009-05-21 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Resource scheduling in cellular systems
US20150049649A1 (en) * 2013-08-19 2015-02-19 Blackberry Limited Wireless access network node having an off state
WO2020261551A1 (en) * 2019-06-28 2020-12-30 株式会社Nttドコモ Terminal and wireless communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Discussion on NW energy saving techniques", 3GPP DRAFT; R1-2204392, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 28 April 2022 (2022-04-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153520 *

Similar Documents

Publication Publication Date Title
WO2023195144A1 (en) Terminal, base station, and communication method
WO2023195145A1 (en) Terminal, base station, and communication method
WO2023195143A1 (en) Terminal, base station, and communication method
WO2023157260A1 (en) Terminal, base station, and communication method
WO2023199392A1 (en) Terminal, base station, and communication method
WO2023195142A1 (en) Terminal, base station, and communication method
WO2023152987A1 (en) Terminal, base station, and communication method
WO2023135654A1 (en) Terminal, base station, and communication method
WO2023199446A1 (en) Terminal, base station, and communication method
WO2023188440A1 (en) Terminal, base station, and communication method
WO2023089790A1 (en) Base station and communication method
WO2023199526A1 (en) Terminal, base station, and communication method
WO2023203623A1 (en) Terminal, base station, and communication method
WO2023135656A1 (en) Terminal, base station, and communication method
WO2023090079A1 (en) Terminal, and communication method
WO2024069902A1 (en) Terminal, base station, and communication method
WO2023210016A1 (en) Terminal, base station, and communication method
WO2023199393A1 (en) Terminal, base station, and communication method
WO2024004109A1 (en) Terminal and communication method
WO2023199498A1 (en) Terminal, base station, and communication method
WO2023195141A1 (en) Terminal, base station, and communication method
WO2023199391A1 (en) Terminal, base station, and communication method
WO2023162748A1 (en) Terminal, base station, and communication method
WO2023132085A1 (en) Terminal, base station, and communication method
WO2023079653A1 (en) Terminal, base station, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936542

Country of ref document: EP

Kind code of ref document: A1