WO2023195106A1 - Communication device, communication method and communication program - Google Patents

Communication device, communication method and communication program Download PDF

Info

Publication number
WO2023195106A1
WO2023195106A1 PCT/JP2022/017193 JP2022017193W WO2023195106A1 WO 2023195106 A1 WO2023195106 A1 WO 2023195106A1 JP 2022017193 W JP2022017193 W JP 2022017193W WO 2023195106 A1 WO2023195106 A1 WO 2023195106A1
Authority
WO
WIPO (PCT)
Prior art keywords
traffic
amount
input
communication
output
Prior art date
Application number
PCT/JP2022/017193
Other languages
French (fr)
Japanese (ja)
Inventor
孝幸 中村
貴允 鳴海
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/017193 priority Critical patent/WO2023195106A1/en
Publication of WO2023195106A1 publication Critical patent/WO2023195106A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/11Identifying congestion

Definitions

  • the present invention relates to a communication device, a communication method, and a communication program.
  • VPN Virtual Private Network
  • congestion may occur when the amount of traffic exceeds the bandwidth and transfer processing performance allocated under a contract between a VPN user and a VPN provider.
  • NW Network
  • a controller can collect and centrally manage data communication directions and up and down data for each pair of bases, and place a bandwidth limit on the traffic volume of the VPN GW before and after the relay network before entering the relay network. Suppress the traffic flow rate of the relay NW.
  • the conventional technology has a problem in that the load on the controller is high and the accuracy of traffic congestion determination may not be high.
  • a controller performs centralized data management, and collects data communication direction and up/down data for each pair of bases. Therefore, when there are many locations, there is a problem that the load on the controller increases. Furthermore, when the controller acquires traffic of different VPN GWs, there is a tendency for the acquisition time to deviate, and there is a possibility that congestion may be incorrectly determined due to the difference caused by this.
  • the present invention has been made in view of the above, and aims to provide a communication device, a communication method, and a communication program that can appropriately control communication while reducing the cost of information management. .
  • a communication device of the present invention transmits the amount of input traffic input from a relay network that relays communication between bases and the data input from the relay network to a destination.
  • a measuring unit that measures the amount of output traffic output to a base; determining whether a difference between the input traffic amount and the output traffic amount measured by the measuring unit is equal to or greater than a predetermined threshold; a determination unit that sends a predetermined notification to an external device if the difference between the input traffic amount and the output traffic amount is equal to or greater than a predetermined threshold; and a traffic control unit that controls communication by limiting the amount of output traffic.
  • FIG. 1 is a block diagram showing an example of the configuration of a communication system according to an embodiment.
  • FIG. 2 is a block diagram illustrating the configuration of the VPN GW of this embodiment.
  • FIG. 3 is a diagram illustrating an example of information stored in the traffic storage unit.
  • FIG. 4 is a diagram showing an example of data notified from the VPN GW to the controller when congestion occurs.
  • FIG. 5 is a diagram showing an example of data notified from the VPN GW to the controller when congestion is resolved.
  • FIG. 6 is a block diagram illustrating the configuration of the controller of this embodiment.
  • FIG. 7 is a diagram illustrating an example of information stored in the configuration information storage unit.
  • FIG. 8 is a diagram showing an example of data notified from the controller to the VPN GW when congestion occurs.
  • FIG. 1 is a block diagram showing an example of the configuration of a communication system according to an embodiment.
  • FIG. 2 is a block diagram illustrating the configuration of the VPN GW of this embodiment.
  • FIG. 3 is
  • FIG. 9 is a diagram showing an example of data notified from the controller to the VPN GW when congestion is resolved.
  • FIG. 10 is a flowchart showing an example of a processing procedure by the VPN GW of this embodiment.
  • FIG. 11 is a flowchart showing an example of a processing procedure by the VPN GW of this embodiment.
  • FIG. 12 is a diagram illustrating the conventional problem.
  • FIG. 13 is a diagram illustrating the effects of the communication system according to the embodiment.
  • FIG. 14 is a diagram showing a computer that executes a program.
  • FIG. 1 is a block diagram showing an example of the configuration of a communication system according to an embodiment.
  • the communication system 1 includes a plurality of VPN GWs (communication devices) 10A to 10C, a controller 20, a plurality of user bases 30A and 30B, a plurality of server bases 40A and 40B, and a relay NW (for example, a WAN ( Wide Area Network)) 50.
  • VPN GWs communication devices
  • NW for example, a WAN ( Wide Area Network)
  • the plurality of VPN GWs 10A to 10C are assumed to have similar functions and configurations, and will be referred to as VPN GW 10 when described without distinction. Further, when describing the plurality of user bases 30A, 30B and the plurality of server bases 40A, 40B without any particular distinction, they will be described as user base 30 and server base 40, respectively. Further, the configuration shown in FIG. 1 is only an example, and the specific configuration and the number of each device are not particularly limited. In addition, in the figure, the identification information of user base 30A is "user base 1", the identification information of user base 30B is "user base 2", the identification information of server base 40A is "server base 1", and the identification information of server base 40B is "user base 1". Assume that the information is "server base 2".
  • the VPN GW 10 is a communication device that performs data communication between a subordinate base and other bases.
  • the VPN GW 10 measures traffic for each pair of source and destination locations. For example, in the example of FIG. 1, the VPN GW 10A calculates the amount of traffic input via the relay NW 50 and the amount of traffic output to the user location 30A, which is a subordinate location, regarding communication data from the server location 40A that is the source. Measure in pairs. In addition, the VPN GW 10A measures, in pairs, the amount of traffic input via the relay NW 50 and the amount of traffic output to the user location 30A, which is a subordinate location, regarding communication data from the server location 40B that is the transmission source.
  • the VPN GW 10 controls data traffic transmitted from a base under its control to other bases in accordance with instructions from the controller 20.
  • the VPN GW 10 controls communication to limit the amount of data traffic transmitted from the user base 30A, which is a subordinate base, to the server base 40A or the server base 40B, in response to an instruction from the controller 20.
  • the controller 20 issues instructions to control the traffic of each VPN GW 10A to 10C. For example, when the controller 20 receives a notification from the VPN GW 10 that congestion has occurred, it instructs the VPN GW 10 that serves the transmission source base to limit the amount of traffic. To explain with a specific example, when the controller 20 receives a notification from the VPN GW 10A that congestion has occurred between the source server base 40A and the destination user base 30A, the controller 20 The server base 40A is instructed to limit the amount of traffic.
  • FIG. 2 is a block diagram illustrating the configuration of the VPN GW of this embodiment.
  • the VPN GW 10 of this embodiment includes a communication processing section 11, a control section 12, and a storage section 13.
  • the communication processing unit 11 is realized by a NIC (Network Interface Card) or the like, and controls communication via a telecommunication line such as a LAN (Local Area Network) or the Internet.
  • NIC Network Interface Card
  • LAN Local Area Network
  • the storage unit 13 stores data and programs necessary for various processing by the control unit 12, and has a traffic storage unit 13a.
  • the storage unit 13 is a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory, or a storage device such as a hard disk or an optical disk.
  • the traffic storage unit 13a stores the traffic amount of data transmitted from the source base to the destination base. For example, as illustrated in FIG. 3, the traffic storage unit 13a stores "source” indicating information identifying the base of the transmission source, "destination” indicating information identifying the base of the transmission destination, and the relay NW 50. ⁇ Input/Output'' indicating whether the data was input via a server or output to a subordinate base, and ⁇ Traffic Volume'' indicating the traffic volume of the input or output data are stored in association with each other. .
  • FIG. 2 is a block diagram illustrating the configuration of the VPN GW of this embodiment.
  • the control unit 12 has an internal memory for storing programs that define various processing procedures and required data, and executes various processes using these.
  • the control unit 12 includes a traffic measurement unit 12a, a measurement result collection unit 12b, a congestion determination unit 12c, a limit setting unit 12d, and a traffic control unit 12e.
  • the control unit 12 is an electronic circuit such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), or an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • the traffic measurement unit 12a measures the amount of input traffic input from the relay network 50 that relays communication between bases, and the amount of output traffic that outputs the data input from the relay network 50 to the destination base. In other words, the traffic measuring unit 12a measures the amount of input traffic from the relay network 50 to the own device and the amount of traffic output from the own device to the subordinate points for each pair of source and destination locations. do.
  • the measurement result collection unit 12b collects the input traffic volume and output traffic volume measured by the traffic measurement unit 12a, and collects the input traffic volume and output traffic volume in association with information identifying the transmission source base and information identifying the transmission destination base.
  • the traffic amount is stored in the traffic storage unit 13a.
  • the measurement result collection unit 12b collects and holds the input and output traffic amounts for each base pair measured by the traffic measurement unit 12a at regular intervals (for example, every 5 seconds).
  • the congestion determination unit 12c determines whether the difference between the input traffic volume and the output traffic volume measured by the traffic measurement unit 12b is greater than or equal to a predetermined threshold, and determines whether the difference between the input traffic volume and the output traffic volume is a predetermined value. , a predetermined notification is sent to the controller 20. For example, if the difference between the input traffic amount and the output traffic amount is greater than or equal to a predetermined threshold, the congestion determination unit 12c sends a notification containing information identifying the source base stored in the traffic storage unit 13a to the controller. Send to 20.
  • the congestion determination unit 12c subtracts the output traffic amount from the input traffic amount as the difference between the input and output traffic amounts for each base pair based on the contents of the measurement result collection unit 12b at regular intervals. Calculate the value. Then, the congestion determination unit 12c determines that congestion has occurred if any of the calculated differences exceeds a threshold value set in advance for congestion determination.
  • the congestion determination unit 12c calculates the difference between the input and output traffic amounts for each base pair from the contents of the measurement result collection unit 12b at regular intervals (for example, every 5 seconds).
  • the output traffic volume is 100 Mbps for input and 50 Mbps for output when the source is "user base 1" and the destination is "server base 1.”
  • the congestion determination unit 12c determines that congestion has occurred if the difference exceeds the congestion determination threshold (10 Mbps).
  • the congestion determination unit 12c determines the transmission source of the base pair that has been determined to have congestion, and the transmission sources of other base pairs that have the same transmission destination (hereinafter referred to as "congestion occurrence base”) among the base pairs. is determined to be subject to traffic restriction.
  • the congestion determination unit 12c sets the transmission destination to "user base 1" which is the transmission source of the base pair that has been determined to have congestion, and "server base 1” which is the transmission destination of the base pair and is the congestion occurrence base.
  • “User base 2" which is the source of the other base pair, is determined to be subject to traffic restriction.
  • the congestion determination unit 12c transmits a predetermined notification to the controller 20 in order to limit the amount of output traffic to the relay network 50 at the transmission source targeted for traffic restriction. For example, as illustrated in FIG. 4, the congestion determination unit 12c determines, for each transmission source targeted for traffic restriction, the congestion occurrence base that is the transmission destination and the output traffic amount to the congestion occurrence base, with the congestion flag set to 1. Notice. In the example of FIG. 4, the congestion determination unit 12c tells the controller 20 that the transmission source is "user base 1", the transmission destination is "server base 1", the output traffic volume is "50 Mbps", and the congestion flag is "1". and send notifications regarding the same.
  • the congestion determination unit 12c records the content of the notification to the controller 20 in the storage unit 13. Furthermore, if there are multiple transmission sources for the transmission destination where congestion has occurred, the congestion determination unit 12c transmits the above-mentioned predetermined notifications to the controller 20 for the number of transmission sources.
  • the congestion determination unit 12c determines whether the traffic to the destination is congested. is determined to have been resolved. For example, the congestion determination unit 12c determines, as a predetermined condition, that the value obtained by subtracting the output traffic amount from the input traffic amount is less than a predetermined threshold value, and the output traffic in the relay network direction exceeds a predetermined limit value. If it is below, it is determined that the traffic congestion to the destination has been resolved.
  • the congestion determination unit 12c determines that the congestion of traffic to the destination has been resolved, it transmits a predetermined notification to the controller 20. For example, as illustrated in FIG. 5, the congestion determining unit 12c notifies information in which the output traffic volume is blank and the congestion flag is changed to 0 for a destination where congestion has been resolved. Note that the congestion determination unit 12c transmits multiple notifications to the controller 20 when there are multiple destinations for which congestion has been resolved. The congestion determination unit 12c then deletes the content of the notification to the controller 20 from the storage unit 13.
  • the limit setting unit 12d As a communication device accommodating a transmission source base, receives a notification to limit the amount of traffic from the controller 20, it sets a limit value for the amount of traffic included in the notification. For example, based on the notification from the controller 20, the limit setting unit 12d controls the output traffic amount when the setting flag is "1" for traffic control in the output direction of the relay NW that matches the target transmission source/destination. The limit value is set, and if the setting flag is "0", the limit value setting is canceled.
  • the traffic control unit 12e When the traffic control unit 12e receives a notification to limit the amount of traffic, it controls the amount of output traffic to be limited and performs communication. For example, the traffic control unit 12e controls the output traffic amount to be limited to the limit value set by the limit setting unit 12d, and performs communication.
  • FIG. 6 is a block diagram illustrating the configuration of the controller of this embodiment. As illustrated in FIG. 6, the controller 20 of this embodiment includes a communication processing section 21, a control section 22, and a storage section 23.
  • the communication processing unit 21 is realized by a NIC or the like, and controls communication via a telecommunication line such as a LAN or the Internet.
  • the storage unit 23 stores data and programs necessary for various processes by the control unit 22, and has a configuration information storage unit 23a.
  • the storage unit 23 is a semiconductor memory device such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk.
  • the configuration information storage unit 23a stores information that identifies the base and information that identifies the VPN GW 10 that accommodates the base in association with each other. For example, as illustrated in FIG. 7, the configuration information storage unit 23a associates "base”, which is information that identifies a base, with "accommodating VPN GW", which is information that identifies the VPN GW 10 that accommodates the base. memorize it.
  • the control unit 22 has an internal memory for storing programs that define various processing procedures and required data, and executes various processes using these.
  • the control section 22 includes a control instruction section 22a.
  • the control unit 22 is an electronic circuit such as a CPU or MPU, or an integrated circuit such as an ASIC or FPGA.
  • control instruction unit 22a When the control instruction unit 22a receives a notification of the occurrence of congestion from the VPN GW that accommodates the destination base, it sends a notification to the VPN GW that accommodates the source base to limit the amount of traffic. Notice. For example, when the control instruction unit 22a receives a congestion occurrence notification from the VPN GW 10, the control instruction unit 22a refers to the information stored in the configuration information storage unit 23a and selects the VPN GW that accommodates the source base included in the notification. Search for. To explain using the examples of FIGS. 4 and 6, for example, when the control instruction unit 22a receives a notification with a congestion flag of "1" from the VPN GW 10, the control instruction unit 22a determines that the transmission source included in the notification is "user base". 1", the information stored in the configuration information storage unit 23a is referred to and "VPN GW1" is searched as the accommodating VPN GW corresponding to "user base 1".
  • the control instruction unit 22a transmits a notification to the searched VPN GW 10 to limit the amount of output traffic. For example, as illustrated in FIG. 8, the control instruction unit 22a sends a notification that includes the source and destination of the notification, the output traffic volume of the notification as limit values, and the setting flag as "1". Send.
  • FIG. 8 is a diagram showing an example of data notified from the controller to the VPN GW when congestion occurs.
  • control instruction unit 22a when the control instruction unit 22a receives a congestion resolution notification from the VPN GW that accommodates the destination base, the control instruction unit 22a instructs the VPN GW that accommodates the source base to limit the amount of traffic. Notify me of notifications. For example, when the control instruction unit 22a receives a congestion resolution notification from the VPN GW 10, the control instruction unit 22a refers to the information stored in the configuration information storage unit 23a and selects the VPN GW that accommodates the source base included in the notification. Search for.
  • the control instruction unit 22a sends a notification to the searched VPN GW 10 that the restriction on the amount of output traffic is lifted. For example, as illustrated in FIG. 9, the control instruction unit 22a transmits a notification that includes information in which the source, destination, and limit value of the notification are blank, and the setting flag is set to "0."
  • FIG. 9 is a diagram showing an example of data notified from the controller to the VPN GW when congestion is resolved.
  • the measurement result collection unit 12b of each VPN GW 10A to 10C collects and holds the input and output traffic amounts for each base pair measured by the traffic measurement unit 12a at regular intervals (for example, every 5 seconds).
  • the congestion determination unit 12c of each VPN GW 10A to 10C calculates the difference between the input and output traffic volumes for each base pair from the contents of the measurement result collection unit 12b at regular intervals (for example, every 5 seconds). .
  • the output traffic volume is 100 Mbps for input and 50 Mbps for output when the source is "user base 1" and the destination is "server base 1.”
  • the congestion determination unit 12c determines that congestion has occurred if the difference exceeds the congestion determination threshold (10 Mbps).
  • the congestion determination unit 12c of the VPN GW 10C determines that "user base 1" is the source of the base pair that has been determined to have congestion, and "server base 1" is the transmission destination of the base pair and is the congestion occurrence base.
  • "User base 2" which is the transmission source of the other base pair whose transmission destination is “User base 2”
  • the congestion determination unit 12c of the VPN GW 10C informs the controller 20 that the source is "user base 1", the destination is "server base 1", the output traffic volume is "50 Mbps”, and the congestion flag is "1".
  • the control instruction unit 22a of the controller 20 uses the above notification as an opportunity to connect the VPN GW 10A that accommodates the sender "user base 1" included in each notification, and the VPN GW 10B that accommodates the sender "user base 2" included in each notification. is searched from the configuration information storage unit 23A. Then, the control instruction unit 22a includes information indicating that the transmission source is "user base 1", the transmission destination is "server base 1", the limit value is "20 Mbps”, and the setting flag is "1" for the VPN GW 10A. Send notifications.
  • control instruction unit 22a includes information for the VPN GW 10B that sets the transmission source to "user base 2", the transmission destination to "server base 1", the limit value to "30 Mbps", and the setting flag to "1". Send notifications.
  • the limit value may be determined in advance or may be determined dynamically depending on the state of congestion.
  • the restriction setting unit 12d of the VPN GW 10A sets the settings for the sender "user base 1" and the destination "server base 1" included in this notification, since the setting flag is "1". Based on the information, a limit value of 20 Mbps is set for the traffic control unit 12e in the WAN direction through which the relevant traffic passes.
  • the restriction setting unit 12d of the VPN GW 10B sets the settings for the sender "user base 2" and the destination "server base 1" included in this notification, since the setting flag is "1". Based on the information, a limit value of 30 Mbps is set for the traffic control unit 12e in the WAN direction through which the relevant traffic passes.
  • the congestion determination unit 12c of the VPN GW 10C determines that the difference between the amount of output traffic from "user base 2" to "server base 1" in the WAN direction and in the base direction is less than the threshold for congestion determination, and that it is less than the recorded limit value. When something happens, it is determined that the congestion has been resolved.
  • the congestion determination unit 12c notifies the controller 20 of the information that the source is "user base 2", the destination is "server base 1", the output traffic volume is blank, and the congestion flag is set to "0". do.
  • control instruction unit 22a of the controller 20 notifies the information that the source is "user base 1", the destination is "server base 1", the output traffic amount is blank, and the congestion flag is set to "0".
  • the control instruction unit 22a of the controller 20 sends a notification to the VPN GW 10A including information indicating that the source is "user base 1", the destination is "user base 1", the limit value is blank, and the setting flag is "0". Send.
  • control instruction unit 22a of the controller 20 sends information to the VPN GW 10B specifying that the source is "user base 2", the destination is "server base 1", the limit value is blank, and the setting flag is "0". Send notifications containing. Then, after receiving this notification, the restriction setting unit 12d of the VPN GW 10A sets the sending source “user base 1" and the destination "server base 1" included in this notification because the setting flag is "0". Based on the information, the limit value setting is canceled for the traffic control unit 12e in the WAN direction through which the relevant traffic passes.
  • the restriction setting unit 12d of the VPN GW 10B also determines that the setting flag is "0", so the limit setting unit 12d of the VPN GW 10B also sets the "user base 2" of the transmission source and the "server base 1" of the transmission destination included in this notification. Based on the information, the limit value setting is canceled for the traffic control unit 12e in the WAN direction through which the relevant traffic passes.
  • the line bandwidth and transfer processing performance of the VPN GWs 10A to 10C which are allocated by the contract between the VPN users at the user bases 30A and 30B and the VPN provider at the server bases 40A and 40B, are used as VPNs.
  • the amount of traffic within the network may exceed and cause congestion. Therefore, in the communication system 1, it is possible to prevent traffic that is discarded due to congestion at the VPN GWs 10A to 10C after passing through the relay NW 50 from flowing into the relay NW 50.
  • FIGS. 10 and 11 are flowcharts showing an example of a processing procedure by the VPN GW of this embodiment.
  • the traffic measurement unit 12a of the VPN GW 10 transmits the amount of input traffic input from the relay network 50 that relays communication between bases and the data input from the relay network 50 to the destination base.
  • the amount of output traffic to be output is measured (step S101).
  • the traffic measuring unit 12a collects the measured traffic amount (step S102).
  • the measurement result collection unit 12b collects the input traffic volume and output traffic volume measured by the measurement unit 12a, and collects the input traffic volume and output traffic volume in association with information identifying the transmission source base and information identifying the transmission destination base.
  • the traffic amount is stored in the traffic storage unit 13a.
  • the congestion determination unit 12c determines whether congestion has occurred (step S103). For example, the congestion determination unit 12c determines whether the difference between the input traffic volume and the output traffic volume measured by the measurement unit 12b is greater than or equal to a predetermined threshold, and determines whether the difference between the input traffic volume and the output traffic volume is equal to or greater than a predetermined threshold. If it is greater than or equal to a predetermined threshold, it is determined that congestion has occurred. As a result, if the congestion determination unit 12c determines that congestion has occurred (Yes at step S103), the process proceeds to step S104. Further, when the congestion determining unit 12c determines that congestion has not occurred (No in step S103), the process ends.
  • step S104 the congestion determination unit 12c transmits a predetermined notification to the controller 20. For example, if the difference between the input traffic amount and the output traffic amount is greater than or equal to a predetermined threshold, the congestion determination unit 12c sends a notification containing information identifying the source base stored in the traffic storage unit 13a to the controller. Send to 20.
  • the congestion determination unit 12c determines whether the congestion has been resolved (step S105). For example, when the value obtained by subtracting the output traffic amount from the input traffic amount is less than a predetermined threshold value, and the output traffic toward the relay network is less than a predetermined limit value, the congestion determination unit 12c determines that , it is determined that the traffic congestion to the destination has been resolved. As a result, if the congestion determining unit 12c determines that the congestion has been resolved (Yes in step S105), the process proceeds to step S106. Further, if the congestion determining unit 12c determines that the congestion has not been resolved (No in step S105), the congestion determining unit 12c repeats the process in step S105.
  • step S106 the congestion determination unit 12c transmits a predetermined notification to the controller 20 (step S106). For example, the congestion determination unit 12c notifies information in which the output traffic volume is blank and the congestion flag is changed to 0 for a destination where congestion has been resolved.
  • the limit setting unit 12d of the VPN GW 10 when the limit setting unit 12d of the VPN GW 10 receives a notification to limit the traffic amount from the controller 20 (Yes in step S201), the limit setting unit 12d of the VPN GW 10 sets a limit value for the traffic amount (step S202). ).
  • the limit setting unit 12d When the limit setting unit 12d receives a notification from the controller 20 to cancel the traffic limit (Yes at step S203), the limit setting unit 12d cancels the limit value of the traffic amount (step S204).
  • the VPN GW 10 of the communication system 1 outputs the input traffic amount input from the relay network 50 that relays communication between bases and the data input from the relay network 50 to the destination base. Measure the amount of output traffic. Then, the VPN GW 10 determines whether the difference between the measured input traffic amount and output traffic amount is greater than or equal to a predetermined threshold, and determines whether the difference between the input traffic amount and output traffic amount is greater than or equal to the predetermined threshold. In this case, a predetermined notification is sent to the external controller 20. When the VPN GW 10 receives a notification to limit the amount of traffic, it controls the amount of output traffic to be limited and performs communication. Therefore, the VPN GW 10 can improve the accuracy of determining traffic congestion while reducing the load on the controller 20.
  • FIG. 12 is a diagram illustrating the conventional problem.
  • FIG. 13 is a diagram illustrating the effects of the communication system according to the embodiment.
  • the controller 200 needed to collect relay/base direction and up/down data for each pair of bases. Therefore, when there are many locations, the load on the controller 200 increases. Further, in the controller 200, if there is a large traffic fluctuation during the data acquisition interval, the data acquisition time may be shifted, which may result in a difference in the amount of traffic between the VPN GWs 100A and 100B. In this case, when the controller 200 acquires the traffic of the different VPN GWs 100A and 100B, there is likely to be a lag in the acquisition time, and there is a possibility that congestion may be incorrectly determined due to the difference caused by this.
  • the function of collecting traffic volume and determining congestion is distributed and deployed in the VPN GW 10. Furthermore, in order to distribute the congestion determination function in the VPN GW 10, the traffic volume measured at the output point to the relay NW 500 in the conventional technology is changed to the input point from the relay NW 50.
  • the base output traffic volume and the relay input traffic volume match, so that the relay output is determined by the relay input traffic volume.
  • traffic volume collection and congestion determination are performed within the VPN GWs 10A and 10C.
  • the communication system 1 when there is a shortage of bandwidth between the VPN GW and the base or when the bandwidth within the VPN GWs 10A and 10C is tight, a difference occurs in the amount of traffic output from the base compared to the amount of relay input traffic, so based on this, congestion is determined. judge.
  • the VPN GW 10 can reduce the load on the controller 20 and improve the accuracy of determining traffic congestion. That is, in the communication system 1, the load on the controller 20 can be reduced by distributing the function of collecting traffic volume and determining congestion in the VPN GW 10, and notifying the VPN GW 10 of the occurrence of congestion. Furthermore, since the distributed processing, traffic volume collection, and congestion determination processing in each VPN GW 10 are performed within the VPN GW 10, there is no deviation in acquisition time and it is possible to reduce the possibility of erroneous determination.
  • ⁇ program ⁇ Furthermore, it is also possible to create a program in which the processing executed by the VPN GW 10 or the controller 20 described in the above embodiments is written in a computer-executable language. In this case, when the computer executes the program, the same effects as in the above embodiment can be obtained. Furthermore, the same processing as in the above embodiments may be realized by recording such a program on a computer-readable recording medium and having the computer read and execute the program recorded on this recording medium.
  • FIG. 14 is a diagram showing a computer that executes the program.
  • the computer 1000 includes, for example, a memory 1010, a CPU 1020, a hard disk drive interface 1030, a disk drive interface 1040, a serial port interface 1050, a video adapter 1060, and a network interface 1070. However, each of these parts is connected by a bus 1080.
  • the memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM 1012, as illustrated in FIG.
  • the ROM 1011 stores, for example, a boot program such as BIOS (Basic Input Output System).
  • BIOS Basic Input Output System
  • Hard disk drive interface 1030 is connected to hard disk drive 1031, as illustrated in FIG.
  • Disk drive interface 1040 is connected to disk drive 1041, as illustrated in FIG.
  • a removable storage medium such as a magnetic disk or an optical disk is inserted into the disk drive 1041.
  • the serial port interface 1050 is connected to, for example, a mouse 1051 and a keyboard 1052, as illustrated in FIG.
  • Video adapter 1060 is connected to display 1061, for example, as illustrated in FIG.
  • the hard disk drive 1031 stores, for example, an OS 1091, an application program 1092, a program module 1093, and program data 1094. That is, the above program is stored, for example, in the hard disk drive 1031 as a program module in which commands to be executed by the computer 1000 are written.
  • the various data described in the above embodiments are stored as program data in, for example, the memory 1010 or the hard disk drive 1031. Then, the CPU 1020 reads out the program module 1093 and program data 1094 stored in the memory 1010 and the hard disk drive 1031 to the RAM 1012 as necessary, and executes various processing procedures.
  • program module 1093 and program data 1094 related to the program are not limited to being stored in the hard disk drive 1031, but may be stored in a removable storage medium, for example, and read by the CPU 1020 via a disk drive or the like.
  • the program module 1093 and program data 1094 related to the program are stored in another computer connected via a network (LAN (Local Area Network), WAN (Wide Area Network), etc.), and are transmitted via the network interface 1070. It may be read by the CPU 1020.
  • LAN Local Area Network
  • WAN Wide Area Network

Abstract

A Virtual Private Network (VPN) gateway (GW) (10) measures an input traffic amount that is inputted from a relay network (50) used for relaying the communication between sites, and an output traffic amount of data inputted from the relay network (50) that is to be outputted to the site of transmission destination. Then, the VPN GW (10) determines whether the difference between the input traffic amount and the output traffic amount measured is equal to or greater than a predetermined threshold value. When the difference between the input traffic amount and the output traffic amount is equal to or greater than the predetermined threshold value, the VPN GW (10) transmits a predetermined notification to an external controller (20). Thereafter, when having received a notification to the effect that the traffic amount is to be limited, the VPN GW (10) performs a control to limit the output traffic amount for performing the communication.

Description

通信装置、通信方法及び通信プログラムCommunication device, communication method and communication program
 本発明は、通信装置、通信方法及び通信プログラムに関する。 The present invention relates to a communication device, a communication method, and a communication program.
 従来、VPN(Virtual Private Network)ユーザとVPN提供事業者間の契約等により割当される帯域や転送処理性能をトラフィック量が超過すると輻輳することがあった。このため、拠点間の通信を中継する中継NW(Network)では、輻輳が複数のVPNの通信品質劣化を招くことから、トラフィック増加に応じて設備増設を行わなければならない場合があった。 Conventionally, VPN (Virtual Private Network) congestion may occur when the amount of traffic exceeds the bandwidth and transfer processing performance allocated under a contract between a VPN user and a VPN provider. For this reason, in a relay NW (Network) that relays communications between bases, congestion causes deterioration in the communication quality of a plurality of VPNs, so equipment may have to be expanded in response to an increase in traffic.
 また、輻輳が発生することで中継NWを経由したトラフィックがVPN GW(Gateway)でロスする場合には、中継NW流入前に帯域制限をかけることで中継NWのトラフィック流量を抑制する方式がある。例えば、コントローラが、拠点のペア毎にデータの通信方向や上り下りのデータを収集して集中管理を行い、中継NW前後のVPN GWのトラフィック量に、中継NW流入前に帯域制限をかけることで中継NWのトラフィック流量を抑制する。 Furthermore, if traffic passing through a relay NW is lost at the VPN GW (Gateway) due to congestion, there is a method of suppressing the traffic flow rate of the relay NW by imposing a band limit before entering the relay NW. For example, a controller can collect and centrally manage data communication directions and up and down data for each pair of bases, and place a bandwidth limit on the traffic volume of the VPN GW before and after the relay network before entering the relay network. Suppress the traffic flow rate of the relay NW.
 しかしながら、従来の技術では、コントローラの負荷が高く、トラフィックの輻輳判定の精度が高くない場合があるという課題があった。例えば、従来の技術では、コントローラは、データの集中管理を行っており、拠点のペア毎にデータの通信方向や上り下りのデータを収集する。このため、拠点数が多くある場合、コントローラの負荷が増大する課題があった。また、コントローラは、異なるVPN GWのトラフィックを取得する際に、取得時刻のズレが生じやすく、これによる差分により輻輳を誤判定する可能性があった。 However, the conventional technology has a problem in that the load on the controller is high and the accuracy of traffic congestion determination may not be high. For example, in the conventional technology, a controller performs centralized data management, and collects data communication direction and up/down data for each pair of bases. Therefore, when there are many locations, there is a problem that the load on the controller increases. Furthermore, when the controller acquires traffic of different VPN GWs, there is a tendency for the acquisition time to deviate, and there is a possibility that congestion may be incorrectly determined due to the difference caused by this.
 本発明は、上記に鑑みてなされたものであって、情報管理にかかるコストを削減しつつ、適切に通信を制御することができる通信装置、通信方法及び通信プログラムを提供することを目的とする。 The present invention has been made in view of the above, and aims to provide a communication device, a communication method, and a communication program that can appropriately control communication while reducing the cost of information management. .
 上述した課題を解決し、目的を達成するために、本発明の通信装置は、拠点間の通信を中継する中継ネットワークから入力された入力トラフィック量と、前記中継ネットワークから入力されたデータを送信先の拠点へ出力する出力トラフィック量とを計測する計測部と、前記計測部によって計測された前記入力トラフィック量と前記出力トラフィック量との差分が所定の閾値以上であるか否かを判定し、前記入力トラフィック量と前記出力トラフィック量との差分が所定の閾値以上である場合には、所定の通知を外部の装置に送信する判定部と、トラフィック量を制限する旨の通知を受信した場合には、前記出力トラフィック量を制限して通信を行うように制御するトラフィック制御部とを有することを特徴とする。 In order to solve the above-mentioned problems and achieve the purpose, a communication device of the present invention transmits the amount of input traffic input from a relay network that relays communication between bases and the data input from the relay network to a destination. a measuring unit that measures the amount of output traffic output to a base; determining whether a difference between the input traffic amount and the output traffic amount measured by the measuring unit is equal to or greater than a predetermined threshold; a determination unit that sends a predetermined notification to an external device if the difference between the input traffic amount and the output traffic amount is equal to or greater than a predetermined threshold; and a traffic control unit that controls communication by limiting the amount of output traffic.
 本発明によれば、コントローラの負荷を軽減しつつ、トラフィックの輻輳の判定精度を向上させることが可能である。 According to the present invention, it is possible to improve the accuracy of determining traffic congestion while reducing the load on the controller.
図1は、実施の形態に係る通信システムの構成の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of a communication system according to an embodiment. 図2は、本実施形態のVPN GWの構成を例示するブロック図である。FIG. 2 is a block diagram illustrating the configuration of the VPN GW of this embodiment. 図3は、トラフィック記憶部に記憶される情報の一例を示す図である。FIG. 3 is a diagram illustrating an example of information stored in the traffic storage unit. 図4は、輻輳発生時にVPN GWからコントローラへ通知するデータの一例を示す図である。FIG. 4 is a diagram showing an example of data notified from the VPN GW to the controller when congestion occurs. 図5は、輻輳解消時にVPN GWからコントローラへ通知するデータの一例を示す図である。FIG. 5 is a diagram showing an example of data notified from the VPN GW to the controller when congestion is resolved. 図6は、本実施形態のコントローラの構成を例示するブロック図である。FIG. 6 is a block diagram illustrating the configuration of the controller of this embodiment. 図7は、構成情報記憶部に記憶される情報の一例を示す図である。FIG. 7 is a diagram illustrating an example of information stored in the configuration information storage unit. 図8は、輻輳発生時にコントローラからVPN GWへ通知するデータの一例を示す図である。FIG. 8 is a diagram showing an example of data notified from the controller to the VPN GW when congestion occurs. 図9は、輻輳解消時にコントローラからVPN GWへ通知するデータの一例を示す図である。FIG. 9 is a diagram showing an example of data notified from the controller to the VPN GW when congestion is resolved. 図10は、本実施形態のVPN GWによる処理手順の一例を示すフローチャートである。FIG. 10 is a flowchart showing an example of a processing procedure by the VPN GW of this embodiment. 図11は、本実施形態のVPN GWによる処理手順の一例を示すフローチャートである。FIG. 11 is a flowchart showing an example of a processing procedure by the VPN GW of this embodiment. 図12は、従来の課題を説明する図である。FIG. 12 is a diagram illustrating the conventional problem. 図13は、実施の形態に係る通信システムによる効果を説明する図である。FIG. 13 is a diagram illustrating the effects of the communication system according to the embodiment. 図14は、プログラムを実行するコンピュータを示す図である。FIG. 14 is a diagram showing a computer that executes a program.
 以下に、本願に係る通信装置、通信方法及び通信プログラムの実施の形態を図面に基づいて詳細に説明する。また、本発明は、以下に説明する実施の形態により限定されるものではない。 Below, embodiments of a communication device, a communication method, and a communication program according to the present application will be described in detail based on the drawings. Further, the present invention is not limited to the embodiments described below.
[通信システムの構成]
 実施の形態に係る通信システム1の構成を説明する。図1は、実施の形態に係る通信システムの構成の一例を示すブロック図である。図1に示すように、通信システム1は、複数のVPN GW(通信装置)10A~10C、コントローラ20、複数のユーザ拠点30A、30B、複数のサーバ拠点40A、40B、中継NW(例えば、WAN(Wide Area Network))50を有する。
[Communication system configuration]
The configuration of a communication system 1 according to an embodiment will be described. FIG. 1 is a block diagram showing an example of the configuration of a communication system according to an embodiment. As shown in FIG. 1, the communication system 1 includes a plurality of VPN GWs (communication devices) 10A to 10C, a controller 20, a plurality of user bases 30A and 30B, a plurality of server bases 40A and 40B, and a relay NW (for example, a WAN ( Wide Area Network)) 50.
 通信システム1では、VPNサービス提供に必要な各拠点を接続するための設定や各種設定は既になされているものとする。通信システム1では、ユーザ拠点30A、30Bとサーバ拠点40A、40Bが、VPN GW10AとVPN GW10B、VPN GW10Cおよびその間の中継NW50を介して疎通可能な状態であるものとする。 It is assumed that in the communication system 1, settings for connecting each base necessary for providing the VPN service and various settings have already been made. In the communication system 1, it is assumed that the user bases 30A, 30B and the server bases 40A, 40B are in a state where they can communicate via the VPN GW10A, the VPN GW10B, the VPN GW10C, and the relay NW50 between them.
 なお、複数のVPN GW10A~10Cは、それぞれ同様の機能および構成を有しているものとし、特に区別なく説明する場合には、VPN GW10と記載する。また、複数のユーザ拠点30A、30B、複数のサーバ拠点40A、40Bについても、特に区別なく説明する場合には、ユーザ拠点30、サーバ拠点40とそれぞれ記載する。また、図1に示す構成は一例にすぎず、具体的な構成や各装置の数は特に限定されない。また、図中では、ユーザ拠点30Aの識別情報が「ユーザ拠点1」、ユーザ拠点30Bの識別情報が「ユーザ拠点2」、サーバ拠点40Aの識別情報が「サーバ拠点1」、サーバ拠点40Bの識別情報が「サーバ拠点2」であるものとする。 Note that the plurality of VPN GWs 10A to 10C are assumed to have similar functions and configurations, and will be referred to as VPN GW 10 when described without distinction. Further, when describing the plurality of user bases 30A, 30B and the plurality of server bases 40A, 40B without any particular distinction, they will be described as user base 30 and server base 40, respectively. Further, the configuration shown in FIG. 1 is only an example, and the specific configuration and the number of each device are not particularly limited. In addition, in the figure, the identification information of user base 30A is "user base 1", the identification information of user base 30B is "user base 2", the identification information of server base 40A is "server base 1", and the identification information of server base 40B is "user base 1". Assume that the information is "server base 2".
 VPN GW10は、配下の拠点と他の拠点との間で送受信されるデータの通信を行う通信装置である。VPN GW10は、送信元と送信先の拠点のペア毎にトラフィックを計測する。例えば、図1の例では、VPN GW10Aは、送信元のサーバ拠点40Aの通信データについて、中継NW50を介して入力されたトラフィック量と、配下の拠点であるユーザ拠点30Aへ出力したトラフィック量とをペアで計測する。また、VPN GW10Aは、送信元のサーバ拠点40Bからの通信データについて、中継NW50を介して入力されたトラフィック量と、配下の拠点であるユーザ拠点30Aへ出力したトラフィック量とをペアで計測する。 The VPN GW 10 is a communication device that performs data communication between a subordinate base and other bases. The VPN GW 10 measures traffic for each pair of source and destination locations. For example, in the example of FIG. 1, the VPN GW 10A calculates the amount of traffic input via the relay NW 50 and the amount of traffic output to the user location 30A, which is a subordinate location, regarding communication data from the server location 40A that is the source. Measure in pairs. In addition, the VPN GW 10A measures, in pairs, the amount of traffic input via the relay NW 50 and the amount of traffic output to the user location 30A, which is a subordinate location, regarding communication data from the server location 40B that is the transmission source.
 また、VPN GW10は、コントローラ20からの指示に応じて、配下の拠点である拠点から他の拠点へ送信されるデータのトラフィックを制御する。例えば、VPN GW10は、コントローラ20からの指示に応じて、配下の拠点であるユーザ拠点30Aからサーバ拠点40Aまたはサーバ拠点40Bへ送信されるデータのトラフィック量を制限するように通信を制御する。 Additionally, the VPN GW 10 controls data traffic transmitted from a base under its control to other bases in accordance with instructions from the controller 20. For example, the VPN GW 10 controls communication to limit the amount of data traffic transmitted from the user base 30A, which is a subordinate base, to the server base 40A or the server base 40B, in response to an instruction from the controller 20.
 コントローラ20は、各VPN GW10A~10Cのトラフィックを制御する指示を行う。例えば、コントローラ20は、VPN GW10から輻輳が発生している旨の通知を受信した場合には、送信元の拠点を配下とするVPN GW10に対して、トラフィック量を制限するように指示する。具体例を挙げて説明すると、コントローラ20は、送信元のサーバ拠点40Aと送信先のユーザ拠点30Aとの間で輻輳が発生している旨の通知をVPN GW10Aから受信した場合には、送信元のサーバ拠点40Aに対してトラフィック量を制限するように指示する。 The controller 20 issues instructions to control the traffic of each VPN GW 10A to 10C. For example, when the controller 20 receives a notification from the VPN GW 10 that congestion has occurred, it instructs the VPN GW 10 that serves the transmission source base to limit the amount of traffic. To explain with a specific example, when the controller 20 receives a notification from the VPN GW 10A that congestion has occurred between the source server base 40A and the destination user base 30A, the controller 20 The server base 40A is instructed to limit the amount of traffic.
[VPN GWの構成]
 図2は、本実施形態のVPN GWの構成を例示するブロック図である。図2に例示するように、本実施形態のVPN GW10は、通信処理部11、制御部12、および記憶部13を有する。
[VPN GW configuration]
FIG. 2 is a block diagram illustrating the configuration of the VPN GW of this embodiment. As illustrated in FIG. 2, the VPN GW 10 of this embodiment includes a communication processing section 11, a control section 12, and a storage section 13.
 通信処理部11は、NIC(Network Interface Card)等で実現され、LAN(Local Area Network)やインターネットなどの電気通信回線を介して通信を制御する。 The communication processing unit 11 is realized by a NIC (Network Interface Card) or the like, and controls communication via a telecommunication line such as a LAN (Local Area Network) or the Internet.
 記憶部13は、制御部12による各種処理に必要なデータおよびプログラムを格納し、トラフィック記憶部13aを有する。例えば、記憶部13は、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、又は、ハードディスク、光ディスク等の記憶装置などである。 The storage unit 13 stores data and programs necessary for various processing by the control unit 12, and has a traffic storage unit 13a. For example, the storage unit 13 is a semiconductor memory element such as a RAM (Random Access Memory) or a flash memory, or a storage device such as a hard disk or an optical disk.
 トラフィック記憶部13aは、送信元の拠点から送信先の拠点へ送信されたデータのトラフィック量を記憶する。例えば、図3に例示するように、トラフィック記憶部13aは、送信元の拠点を識別する情報を示す「送信元」と、送信先の拠点を識別する情報を示す「送信先」と、中継NW50を介して入力されたデータであるのか配下の拠点へ出力したデータであるのかを示す「入出力」と、入力または出力されたデータのトラフィック量を示す「トラフィック量」とを対応付けて記憶する。図2は、本実施形態のVPN GWの構成を例示するブロック図である。 The traffic storage unit 13a stores the traffic amount of data transmitted from the source base to the destination base. For example, as illustrated in FIG. 3, the traffic storage unit 13a stores "source" indicating information identifying the base of the transmission source, "destination" indicating information identifying the base of the transmission destination, and the relay NW 50. ``Input/Output'' indicating whether the data was input via a server or output to a subordinate base, and ``Traffic Volume'' indicating the traffic volume of the input or output data are stored in association with each other. . FIG. 2 is a block diagram illustrating the configuration of the VPN GW of this embodiment.
 制御部12は、各種の処理手順などを規定したプログラムおよび所要データを格納するための内部メモリを有し、これらによって種々の処理を実行する。例えば、制御部12は、トラフィック計測部12a、測定結果収集部12b、輻輳判定部12c、制限設定部12dおよびトラフィック制御部12eを有する。ここで、制御部12は、CPU(Central Processing Unit)やMPU(Micro Processing Unit)などの電子回路やASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの集積回路である。 The control unit 12 has an internal memory for storing programs that define various processing procedures and required data, and executes various processes using these. For example, the control unit 12 includes a traffic measurement unit 12a, a measurement result collection unit 12b, a congestion determination unit 12c, a limit setting unit 12d, and a traffic control unit 12e. Here, the control unit 12 is an electronic circuit such as a CPU (Central Processing Unit) or an MPU (Micro Processing Unit), or an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
 トラフィック計測部12aは、拠点間の通信を中継する中継ネットワーク50から入力された入力トラフィック量と、中継ネットワーク50から入力されたデータを送信先の拠点へ出力する出力トラフィック量とを計測する。つまり、トラフィック計測部12aは、送信元と送信先の拠点のペア毎に、中継ネットワーク50から自装置への入力のトラフィック量と、自装置から配下の拠点への出力のトラフィック量とをそれぞれ計測する。 The traffic measurement unit 12a measures the amount of input traffic input from the relay network 50 that relays communication between bases, and the amount of output traffic that outputs the data input from the relay network 50 to the destination base. In other words, the traffic measuring unit 12a measures the amount of input traffic from the relay network 50 to the own device and the amount of traffic output from the own device to the subordinate points for each pair of source and destination locations. do.
 測定結果収集部12bは、トラフィック計測部12aによって計測された入力トラフィック量と出力トラフィック量とを収集し、送信元の拠点を識別する情報および送信先の拠点を識別する情報に対応付けて収集したトラフィック量をトラフィック記憶部13aに格納する。例えば、測定結果収集部12bは、一定間隔(例えば5秒間隔)で、トラフィック計測部12aで計測した拠点ペア毎の入力および出力のトラフィック量を収集して保持する。 The measurement result collection unit 12b collects the input traffic volume and output traffic volume measured by the traffic measurement unit 12a, and collects the input traffic volume and output traffic volume in association with information identifying the transmission source base and information identifying the transmission destination base. The traffic amount is stored in the traffic storage unit 13a. For example, the measurement result collection unit 12b collects and holds the input and output traffic amounts for each base pair measured by the traffic measurement unit 12a at regular intervals (for example, every 5 seconds).
 輻輳判定部12cは、トラフィック計測部12bによって計測された入力トラフィック量と出力トラフィック量との差分が所定の閾値以上であるか否かを判定し、入力トラフィック量と出力トラフィック量との差分が所定の閾値以上である場合には、所定の通知をコントローラ20に送信する。例えば、輻輳判定部12cは、入力トラフィック量と出力トラフィック量との差分が所定の閾値以上である場合には、トラフィック記憶部13aに記憶された送信元の拠点を識別する情報を含む通知をコントローラ20に送信する。 The congestion determination unit 12c determines whether the difference between the input traffic volume and the output traffic volume measured by the traffic measurement unit 12b is greater than or equal to a predetermined threshold, and determines whether the difference between the input traffic volume and the output traffic volume is a predetermined value. , a predetermined notification is sent to the controller 20. For example, if the difference between the input traffic amount and the output traffic amount is greater than or equal to a predetermined threshold, the congestion determination unit 12c sends a notification containing information identifying the source base stored in the traffic storage unit 13a to the controller. Send to 20.
 具体的に説明すると、輻輳判定部12cは、一定間隔で測定結果収集部12bの内容から、拠点ペア毎の入力と出力のトラフィック量について、その差分として、入力トラフィック量から出力トラフィック量を減算した値を算出する。そして、輻輳判定部12cは、算出した差分のうち、輻輳判断のために予め設定された閾値を超えるものがある場合に輻輳が発生していると判定する。 Specifically, the congestion determination unit 12c subtracts the output traffic amount from the input traffic amount as the difference between the input and output traffic amounts for each base pair based on the contents of the measurement result collection unit 12b at regular intervals. Calculate the value. Then, the congestion determination unit 12c determines that congestion has occurred if any of the calculated differences exceeds a threshold value set in advance for congestion determination.
 例えば、輻輳判定部12cは、一定間隔(例えば5秒間隔)で、測定結果収集部12bの内容から、拠点ペア毎の入力と出力のトラフィック量について、その差分を算出する。ここで、送信元が「ユーザ拠点1」であり送信先が「サーバ拠点1」となる出力トラフィック量について入力が100Mbps、出力が50Mbpsであったとする。この場合、輻輳判定部12cは、当該差分が輻輳判定の閾値(10Mbps)を超える場合、輻輳が発生していると判定する。 For example, the congestion determination unit 12c calculates the difference between the input and output traffic amounts for each base pair from the contents of the measurement result collection unit 12b at regular intervals (for example, every 5 seconds). Here, it is assumed that the output traffic volume is 100 Mbps for input and 50 Mbps for output when the source is "user base 1" and the destination is "server base 1." In this case, the congestion determination unit 12c determines that congestion has occurred if the difference exceeds the congestion determination threshold (10 Mbps).
 続いて、輻輳判定部12cは、輻輳発生と判定した拠点ペアの送信元、および当該拠点ペアのうち送信先(以降、適宜「輻輳発生拠点」という)を同一とする他の拠点ペアの送信元をトラフィック制限対象と判定する。 Next, the congestion determination unit 12c determines the transmission source of the base pair that has been determined to have congestion, and the transmission sources of other base pairs that have the same transmission destination (hereinafter referred to as "congestion occurrence base") among the base pairs. is determined to be subject to traffic restriction.
 例えば、輻輳判定部12cは、輻輳発生と判定した拠点ペアの送信元である「ユーザ拠点1」、および当該拠点ペアの送信先であり輻輳発生拠点となる「サーバ拠点1」を送信先とする他の拠点ペアの送信元である「ユーザ拠点2」をトラフィック制限対象と判定する。 For example, the congestion determination unit 12c sets the transmission destination to "user base 1" which is the transmission source of the base pair that has been determined to have congestion, and "server base 1" which is the transmission destination of the base pair and is the congestion occurrence base. "User base 2", which is the source of the other base pair, is determined to be subject to traffic restriction.
 そして、輻輳判定部12cは、このトラフィック制限対象の送信元における、中継ネットワーク50への出力トラフィック量を制限するために、コントローラ20に対して、所定の通知を送信する。例えば、輻輳判定部12cは、図4に例示するように、当該トラフィック制限対象の送信元ごとに、送信先である輻輳発生拠点および当該輻輳発生拠点への出力トラフィック量を、輻輳フラグを1として通知する。図4の例では、輻輳判定部12cは、コントローラ20に対して、送信元を「ユーザ拠点1」、送信先を「サーバ拠点1」、出力トラフィック量を「50Mbps」、輻輳フラグを「1」とする通知を送信する。 Then, the congestion determination unit 12c transmits a predetermined notification to the controller 20 in order to limit the amount of output traffic to the relay network 50 at the transmission source targeted for traffic restriction. For example, as illustrated in FIG. 4, the congestion determination unit 12c determines, for each transmission source targeted for traffic restriction, the congestion occurrence base that is the transmission destination and the output traffic amount to the congestion occurrence base, with the congestion flag set to 1. Notice. In the example of FIG. 4, the congestion determination unit 12c tells the controller 20 that the transmission source is "user base 1", the transmission destination is "server base 1", the output traffic volume is "50 Mbps", and the congestion flag is "1". and send notifications regarding the same.
 そして、輻輳判定部12cは、コントローラ20への通知内容を記憶部13に記録する。また、輻輳判定部12cは、輻輳が発生している送信先に対する送信元が複数ある場合は、送信元の数だけ上述した所定の通知をコントローラ20に送信する。 Then, the congestion determination unit 12c records the content of the notification to the controller 20 in the storage unit 13. Furthermore, if there are multiple transmission sources for the transmission destination where congestion has occurred, the congestion determination unit 12c transmits the above-mentioned predetermined notifications to the controller 20 for the number of transmission sources.
 そして、輻輳判定部12cは、記録した通知内容に含まれる輻輳発生拠点に合致する拠点を送信先とする拠点ペアのいずれかにおいて、所定の条件に合致する場合、当該送信先へのトラフィックの輻輳が解消されたと判定する。例えば、輻輳判定部12cは、所定の条件として、入力トラフィック量から出力トラフィック量を減算した値が所定の閾値を下回る場合であって、かつ、中継ネットワーク方向の出力トラフィックが、所定の制限値を下回った場合には、送信先へのトラフィックの輻輳が解消されたと判定する。 Then, if a predetermined condition is met in any of the base pairs whose transmission destination is a base that matches the congestion occurrence base included in the recorded notification content, the congestion determination unit 12c determines whether the traffic to the destination is congested. is determined to have been resolved. For example, the congestion determination unit 12c determines, as a predetermined condition, that the value obtained by subtracting the output traffic amount from the input traffic amount is less than a predetermined threshold value, and the output traffic in the relay network direction exceeds a predetermined limit value. If it is below, it is determined that the traffic congestion to the destination has been resolved.
 そして、輻輳判定部12cは、送信先へのトラフィックの輻輳が解消されたと判定した場合には、コントローラ20に対して、所定の通知を送信する。例えば、輻輳判定部12cは、図5に例示するように、輻輳が解消された送信先について、出力トラフィック量をブランクとし、輻輳フラグを0に変更した情報を通知する。なお、輻輳判定部12cは、輻輳が解消された送信先が複数ある場合には、複数の通知をコントローラ20に送信する。そして、輻輳判定部12cは、コントローラ20への通知内容を記憶部13から削除する。 Then, when the congestion determination unit 12c determines that the congestion of traffic to the destination has been resolved, it transmits a predetermined notification to the controller 20. For example, as illustrated in FIG. 5, the congestion determining unit 12c notifies information in which the output traffic volume is blank and the congestion flag is changed to 0 for a destination where congestion has been resolved. Note that the congestion determination unit 12c transmits multiple notifications to the controller 20 when there are multiple destinations for which congestion has been resolved. The congestion determination unit 12c then deletes the content of the notification to the controller 20 from the storage unit 13.
 制限設定部12dは、送信元の拠点を収容する通信装置として、トラフィック量を制限する旨の通知をコントローラ20から受信した場合には、当該通知に含まれるトラフィック量の制限値を設定する。例えば、制限設定部12dは、コントローラ20からの通知に基づき、対象となる送信元・送信先に合致する中継NW出力方向のトラフィック制御に対して、設定フラグが「1」の場合は出力トラフィック量の制限値を設定し、設定フラグが「0」の場合は制限値の設定を解除する。 When the limit setting unit 12d, as a communication device accommodating a transmission source base, receives a notification to limit the amount of traffic from the controller 20, it sets a limit value for the amount of traffic included in the notification. For example, based on the notification from the controller 20, the limit setting unit 12d controls the output traffic amount when the setting flag is "1" for traffic control in the output direction of the relay NW that matches the target transmission source/destination. The limit value is set, and if the setting flag is "0", the limit value setting is canceled.
 トラフィック制御部12eは、トラフィック量を制限する旨の通知を受信した場合には、出力トラフィック量を制限して通信を行うように制御する。例えば、トラフィック制御部12eは、制限設定部12dによって設定された制限値に出力トラフィック量を制限して通信を行うように制御する。 When the traffic control unit 12e receives a notification to limit the amount of traffic, it controls the amount of output traffic to be limited and performs communication. For example, the traffic control unit 12e controls the output traffic amount to be limited to the limit value set by the limit setting unit 12d, and performs communication.
[コントローラの構成]
 図6は、本実施形態のコントローラの構成を例示するブロック図である。図6に例示するように、本実施形態のコントローラ20は、通信処理部21、制御部22、および記憶部23を有する。
[Controller configuration]
FIG. 6 is a block diagram illustrating the configuration of the controller of this embodiment. As illustrated in FIG. 6, the controller 20 of this embodiment includes a communication processing section 21, a control section 22, and a storage section 23.
 通信処理部21は、NIC等で実現され、LANやインターネットなどの電気通信回線を介して通信を制御する。 The communication processing unit 21 is realized by a NIC or the like, and controls communication via a telecommunication line such as a LAN or the Internet.
 記憶部23は、制御部22による各種処理に必要なデータおよびプログラムを格納し、構成情報記憶部23aを有する。例えば、記憶部23は、RAM、フラッシュメモリ等の半導体メモリ素子、又は、ハードディスク、光ディスク等の記憶装置などである。 The storage unit 23 stores data and programs necessary for various processes by the control unit 22, and has a configuration information storage unit 23a. For example, the storage unit 23 is a semiconductor memory device such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk.
 構成情報記憶部23aは、拠点を識別する情報と拠点を収容するVPN GW10を識別する情報とを対応付けて記憶する。例えば、構成情報記憶部23aは、図7に例示するように、拠点を識別する情報である「拠点」と、拠点を収容するVPN GW10を識別する情報である「収容VPN GW」とを対応付けて記憶する。 The configuration information storage unit 23a stores information that identifies the base and information that identifies the VPN GW 10 that accommodates the base in association with each other. For example, as illustrated in FIG. 7, the configuration information storage unit 23a associates "base", which is information that identifies a base, with "accommodating VPN GW", which is information that identifies the VPN GW 10 that accommodates the base. memorize it.
 制御部22は、各種の処理手順などを規定したプログラムおよび所要データを格納するための内部メモリを有し、これらによって種々の処理を実行する。例えば、制御部22は、制御指示部22aを有する。ここで、制御部22は、CPUやMPUなどの電子回路やASICやFPGAなどの集積回路である。 The control unit 22 has an internal memory for storing programs that define various processing procedures and required data, and executes various processes using these. For example, the control section 22 includes a control instruction section 22a. Here, the control unit 22 is an electronic circuit such as a CPU or MPU, or an integrated circuit such as an ASIC or FPGA.
 制御指示部22aは、送信先の拠点を収容するVPN GWから輻輳発生時の通知を受信した場合には、送信元の拠点を収容するVPN GWに対して、トラフィック量を制限する旨の通知を通知する。例えば、制御指示部22aは、VPN GW10から輻輳発生時の通知を受信した場合には、構成情報記憶部23aに記憶された情報を参照し、通知に含まれる送信元の拠点を収容するVPN GWを検索する。図4および図6の例を用いて説明すると、例えば、制御指示部22aは、VPN GW10からの輻輳フラグが「1」の通知を受信した場合には、通知に含まれる送信元が「ユーザ拠点1」である場合には、構成情報記憶部23aに記憶された情報を参照し、「ユーザ拠点1」に対応する収容VPN GWとして「VPN GW1」を検索する。 When the control instruction unit 22a receives a notification of the occurrence of congestion from the VPN GW that accommodates the destination base, it sends a notification to the VPN GW that accommodates the source base to limit the amount of traffic. Notice. For example, when the control instruction unit 22a receives a congestion occurrence notification from the VPN GW 10, the control instruction unit 22a refers to the information stored in the configuration information storage unit 23a and selects the VPN GW that accommodates the source base included in the notification. Search for. To explain using the examples of FIGS. 4 and 6, for example, when the control instruction unit 22a receives a notification with a congestion flag of "1" from the VPN GW 10, the control instruction unit 22a determines that the transmission source included in the notification is "user base". 1", the information stored in the configuration information storage unit 23a is referred to and "VPN GW1" is searched as the accommodating VPN GW corresponding to "user base 1".
 そして、制御指示部22aは、検索したVPN GW10に対して、出力トラフィック量を制限する旨の通知を送信する。例えば、制御指示部22aは、図8に例示するように、当該通知の送信元、送信先および、当該通知の出力トラフィック量を制限値とし、設定フラグを「1」とした情報を含む通知を送信する。図8は、輻輳発生時にコントローラからVPN GWへ通知するデータの一例を示す図である。 Then, the control instruction unit 22a transmits a notification to the searched VPN GW 10 to limit the amount of output traffic. For example, as illustrated in FIG. 8, the control instruction unit 22a sends a notification that includes the source and destination of the notification, the output traffic volume of the notification as limit values, and the setting flag as "1". Send. FIG. 8 is a diagram showing an example of data notified from the controller to the VPN GW when congestion occurs.
 また、制御指示部22aは、送信先の拠点を収容するVPN GWから輻輳解消時の通知を受信した場合には、送信元の拠点を収容するVPN GWに対して、トラフィック量を制限する旨の通知を通知する。例えば、制御指示部22aは、VPN GW10から輻輳解消時の通知を受信した場合には、構成情報記憶部23aに記憶された情報を参照し、通知に含まれる送信元の拠点を収容するVPN GWを検索する。 Furthermore, when the control instruction unit 22a receives a congestion resolution notification from the VPN GW that accommodates the destination base, the control instruction unit 22a instructs the VPN GW that accommodates the source base to limit the amount of traffic. Notify me of notifications. For example, when the control instruction unit 22a receives a congestion resolution notification from the VPN GW 10, the control instruction unit 22a refers to the information stored in the configuration information storage unit 23a and selects the VPN GW that accommodates the source base included in the notification. Search for.
 そして、制御指示部22aは、検索したVPN GW10に対して、出力トラフィック量の制限を解除する旨の通知を送信する。例えば、制御指示部22aは、図9に例示するように、当該通知の送信元、送信先および、制限値をブランクとし、設定フラグを「0」とした情報を含む通知を送信する。図9は、輻輳解消時にコントローラからVPN GWへ通知するデータの一例を示す図である。 Then, the control instruction unit 22a sends a notification to the searched VPN GW 10 that the restriction on the amount of output traffic is lifted. For example, as illustrated in FIG. 9, the control instruction unit 22a transmits a notification that includes information in which the source, destination, and limit value of the notification are blank, and the setting flag is set to "0." FIG. 9 is a diagram showing an example of data notified from the controller to the VPN GW when congestion is resolved.
 ここで、図1の通信システムの例を用いて、一連の処理を具体的に説明する。各VPN GW10A~10Cの測定結果収集部12bは、一定間隔(例えば5秒間隔)で、トラフィック計測部12aで計測した拠点ペア毎の入力および出力のトラフィック量を収集して保持する。 Here, a series of processes will be specifically explained using the example of the communication system shown in FIG. The measurement result collection unit 12b of each VPN GW 10A to 10C collects and holds the input and output traffic amounts for each base pair measured by the traffic measurement unit 12a at regular intervals (for example, every 5 seconds).
 そして、各VPN GW10A~10Cの輻輳判定部12cは、一定間隔(例えば5秒間隔)で、測定結果収集部12bの内容から、拠点ペア毎の入力と出力のトラフィック量について、その差分を算出する。ここで、送信元が「ユーザ拠点1」であり送信先が「サーバ拠点1」となる出力トラフィック量について入力が100Mbps、出力が50Mbpsであったとする。この場合、輻輳判定部12cは、当該差分が輻輳判定の閾値(10Mbps)を超える場合、輻輳が発生していると判定する。 Then, the congestion determination unit 12c of each VPN GW 10A to 10C calculates the difference between the input and output traffic volumes for each base pair from the contents of the measurement result collection unit 12b at regular intervals (for example, every 5 seconds). . Here, it is assumed that the output traffic volume is 100 Mbps for input and 50 Mbps for output when the source is "user base 1" and the destination is "server base 1." In this case, the congestion determination unit 12c determines that congestion has occurred if the difference exceeds the congestion determination threshold (10 Mbps).
 この結果、例えば、VPN GW10Cの輻輳判定部12cは、輻輳発生と判定した拠点ペアの送信元である「ユーザ拠点1」、および当該拠点ペアの送信先であり輻輳発生拠点となる「サーバ拠点1」を送信先とする他の拠点ペアの送信元である「ユーザ拠点2」をトラフィック制限対象と判定する。また、VPN GW10Cの輻輳判定部12cは、コントローラ20に対して、送信元を「ユーザ拠点1」、送信先を「サーバ拠点1」、出力トラフィック量を「50Mbps」、輻輳フラグを「1」とする通知を送信する。また、同様に、VPN GW10Cの輻輳判定部12cは、コントローラ20に対して、送信元を「ユーザ拠点2」、送信先を「サーバ拠点1」、出力トラフィック量を「30Mbps」、輻輳フラグを「1」とする通知を送信する。 As a result, for example, the congestion determination unit 12c of the VPN GW 10C determines that "user base 1" is the source of the base pair that has been determined to have congestion, and "server base 1" is the transmission destination of the base pair and is the congestion occurrence base. "User base 2", which is the transmission source of the other base pair whose transmission destination is "User base 2", is determined to be subject to traffic restriction. In addition, the congestion determination unit 12c of the VPN GW 10C informs the controller 20 that the source is "user base 1", the destination is "server base 1", the output traffic volume is "50 Mbps", and the congestion flag is "1". Send notifications to Similarly, the congestion determination unit 12c of the VPN GW 10C informs the controller 20 that the source is "user base 2", the destination is "server base 1", the output traffic volume is "30 Mbps", and the congestion flag is " 1” is sent.
 そして、コントローラ20の制御指示部22aは、上記通知を契機に、各通知に含まれる送信元の「ユーザ拠点1」を収容するVPN GW10Aと、送信元の「ユーザ拠点2」を収容するVPN GW10Bとを構成情報記憶部23Aから検索する。そして、制御指示部22aは、VPN GW10Aに対して、送信元を「ユーザ拠点1」、送信先を「サーバ拠点1」、制限値を「20Mbps」、設定フラグを「1」とする情報を含む通知を送信する。また、制御指示部22aは、VPN GW10Bに対して、送信元を「ユーザ拠点2」、送信先を「サーバ拠点1」、制限値を「30Mbps」、設定フラグを「1」とする情報を含む通知を送信する。なお、制限値は、予め決めてもよいし、輻輳の状態に応じて動的に決定してもよい。 Then, the control instruction unit 22a of the controller 20 uses the above notification as an opportunity to connect the VPN GW 10A that accommodates the sender "user base 1" included in each notification, and the VPN GW 10B that accommodates the sender "user base 2" included in each notification. is searched from the configuration information storage unit 23A. Then, the control instruction unit 22a includes information indicating that the transmission source is "user base 1", the transmission destination is "server base 1", the limit value is "20 Mbps", and the setting flag is "1" for the VPN GW 10A. Send notifications. In addition, the control instruction unit 22a includes information for the VPN GW 10B that sets the transmission source to "user base 2", the transmission destination to "server base 1", the limit value to "30 Mbps", and the setting flag to "1". Send notifications. Note that the limit value may be determined in advance or may be determined dynamically depending on the state of congestion.
 VPN GW10Aの制限設定部12dは、本通知を受け取ったのち、設定フラグが「1」であることから、本通知に含まれる送信元の「ユーザ拠点1」、送信先の「サーバ拠点1」の情報を基に当該トラフィックが経由するWAN方向のトラフィック制御部12eに対して、制限値である20Mbpsを設定する。 After receiving this notification, the restriction setting unit 12d of the VPN GW 10A sets the settings for the sender "user base 1" and the destination "server base 1" included in this notification, since the setting flag is "1". Based on the information, a limit value of 20 Mbps is set for the traffic control unit 12e in the WAN direction through which the relevant traffic passes.
 VPN GW10Bの制限設定部12dは、本通知を受け取ったのち、設定フラグが「1」であることから、本通知に含まれる送信元の「ユーザ拠点2」、送信先の「サーバ拠点1」の情報を基に当該トラフィックが経由するWAN方向のトラフィック制御部12eに対して、制限値である30Mbpsを設定する。 After receiving this notification, the restriction setting unit 12d of the VPN GW 10B sets the settings for the sender "user base 2" and the destination "server base 1" included in this notification, since the setting flag is "1". Based on the information, a limit value of 30 Mbps is set for the traffic control unit 12e in the WAN direction through which the relevant traffic passes.
 以降、ある程度の期間が経過して、「ユーザ拠点2」から「サーバ拠点1」方向の出力トラフィック量が10Mbpsまで減少したとする。VPN GW10Cの輻輳判定部12cは、「ユーザ拠点2」から「サーバ拠点1」宛のWAN方向と拠点方向の出力トラフィック量の差分が輻輳判定の閾値以下であること、および記録した制限値以下であることをもって、輻輳が解消されたと判定する。 Assume that a certain period of time has passed since then, and the amount of output traffic from "user base 2" to "server base 1" has decreased to 10 Mbps. The congestion determination unit 12c of the VPN GW 10C determines that the difference between the amount of output traffic from "user base 2" to "server base 1" in the WAN direction and in the base direction is less than the threshold for congestion determination, and that it is less than the recorded limit value. When something happens, it is determined that the congestion has been resolved.
 その結果、輻輳判定部12cは、コントローラ20に対して、送信元として「ユーザ拠点2」、送信先として「サーバ拠点1」、出力トラフィック量をブランク、輻輳フラグを「0」とする情報を通知する。 As a result, the congestion determination unit 12c notifies the controller 20 of the information that the source is "user base 2", the destination is "server base 1", the output traffic volume is blank, and the congestion flag is set to "0". do.
 そして、コントローラ20の制御指示部22aは、送信元として「ユーザ拠点1」、送信先として「サーバ拠点1」、出力トラフィック量をブランク、輻輳フラグを「0」とする情報を通知する。コントローラ20の制御指示部22aは、VPN GW10Aに対して、送信元を「ユーザ拠点1」、送信先を「ユーザ拠点1」、制限値をブランク、設定フラグを「0」とする情報を含む通知を送信する。 Then, the control instruction unit 22a of the controller 20 notifies the information that the source is "user base 1", the destination is "server base 1", the output traffic amount is blank, and the congestion flag is set to "0". The control instruction unit 22a of the controller 20 sends a notification to the VPN GW 10A including information indicating that the source is "user base 1", the destination is "user base 1", the limit value is blank, and the setting flag is "0". Send.
 また、コントローラ20の制御指示部22aは、VPN GW10Bに対して、送信元を「ユーザ拠点2」、送信先を「サーバ拠点1」、制限値をブランク、設定フラグを「0」とする情報を含む通知を送信する。そして、VPN GW10Aの制限設定部12dは、本通知を受け取ったのち、設定フラグが「0」であることから、本通知に含まれる送信元の「ユーザ拠点1」、送信先の「サーバ拠点1」の情報を基に当該トラフィックが経由するWAN方向のトラフィック制御部12eに対して、制限値の設定を解除する。また、VPN GW10Bの制限設定部12dは、本通知を受け取ったのち、設定フラグが「0」であることから、本通知に含まれる送信元の「ユーザ拠点2」、送信先の「サーバ拠点1」の情報を基に当該トラフィックが経由するWAN方向のトラフィック制御部12eに対して、制限値の設定を解除する。 In addition, the control instruction unit 22a of the controller 20 sends information to the VPN GW 10B specifying that the source is "user base 2", the destination is "server base 1", the limit value is blank, and the setting flag is "0". Send notifications containing. Then, after receiving this notification, the restriction setting unit 12d of the VPN GW 10A sets the sending source "user base 1" and the destination "server base 1" included in this notification because the setting flag is "0". Based on the information, the limit value setting is canceled for the traffic control unit 12e in the WAN direction through which the relevant traffic passes. In addition, after receiving this notification, the restriction setting unit 12d of the VPN GW 10B also determines that the setting flag is "0", so the limit setting unit 12d of the VPN GW 10B also sets the "user base 2" of the transmission source and the "server base 1" of the transmission destination included in this notification. Based on the information, the limit value setting is canceled for the traffic control unit 12e in the WAN direction through which the relevant traffic passes.
 つまり、通信システム1では、ユーザ拠点30A、30BにおけるVPNユーザとサーバ拠点40A、40BにおけるVPN提供事業者との間の契約等により割当されるVPN GW10A~10Cが持つ回線帯域や転送処理性能をVPN内のトラフィック量が超過して輻輳することがある。このため、通信システム1では、中継NW50通過後にVPN GW10A~10Cで輻輳により破棄されるトラフィックを、中継NW50に流入することを防ぐことが可能である。 In other words, in the communication system 1, the line bandwidth and transfer processing performance of the VPN GWs 10A to 10C, which are allocated by the contract between the VPN users at the user bases 30A and 30B and the VPN provider at the server bases 40A and 40B, are used as VPNs. The amount of traffic within the network may exceed and cause congestion. Therefore, in the communication system 1, it is possible to prevent traffic that is discarded due to congestion at the VPN GWs 10A to 10C after passing through the relay NW 50 from flowing into the relay NW 50.
[VPN GW10の処理手順]
 次に、図10および図11を用いて、VPN GW10が実行する処理の処理手順の一例について説明する。図10および図11は、本実施形態のVPN GWによる処理手順の一例を示すフローチャートである。
[VPN GW10 processing procedure]
Next, an example of a processing procedure executed by the VPN GW 10 will be described using FIGS. 10 and 11. FIGS. 10 and 11 are flowcharts showing an example of a processing procedure by the VPN GW of this embodiment.
 図10に例示するように、VPN GW10のトラフィック計測部12aは、拠点間の通信を中継する中継ネットワーク50から入力された入力トラフィック量と、中継ネットワーク50から入力されたデータを送信先の拠点へ出力する出力トラフィック量とを計測する(ステップS101)。 As illustrated in FIG. 10, the traffic measurement unit 12a of the VPN GW 10 transmits the amount of input traffic input from the relay network 50 that relays communication between bases and the data input from the relay network 50 to the destination base. The amount of output traffic to be output is measured (step S101).
 トラフィック計測部12aは、計測したトラフィック量を収集する(ステップS102)。例えば、測定結果収集部12bは、計測部12aによって計測された入力トラフィック量と出力トラフィック量とを収集し、送信元の拠点を識別する情報および送信先の拠点を識別する情報に対応付けて収集したトラフィック量をトラフィック記憶部13aに格納する。 The traffic measuring unit 12a collects the measured traffic amount (step S102). For example, the measurement result collection unit 12b collects the input traffic volume and output traffic volume measured by the measurement unit 12a, and collects the input traffic volume and output traffic volume in association with information identifying the transmission source base and information identifying the transmission destination base. The traffic amount is stored in the traffic storage unit 13a.
 そして、輻輳判定部12cは、輻輳が発生したか否かを判定する(ステップS103)。例えば、輻輳判定部12cは、計測部12bによって計測された入力トラフィック量と出力トラフィック量との差分が所定の閾値以上であるか否かを判定し、入力トラフィック量と出力トラフィック量との差分が所定の閾値以上である場合には、輻輳が発生したと判定する。この結果、輻輳判定部12cは、輻輳が発生したと判定した場合には(ステップS103肯定)、ステップS104の処理に進む。また、輻輳判定部12cは、輻輳が発生していないと判定した場合には(ステップS103否定)、処理を終了する。 Then, the congestion determination unit 12c determines whether congestion has occurred (step S103). For example, the congestion determination unit 12c determines whether the difference between the input traffic volume and the output traffic volume measured by the measurement unit 12b is greater than or equal to a predetermined threshold, and determines whether the difference between the input traffic volume and the output traffic volume is equal to or greater than a predetermined threshold. If it is greater than or equal to a predetermined threshold, it is determined that congestion has occurred. As a result, if the congestion determination unit 12c determines that congestion has occurred (Yes at step S103), the process proceeds to step S104. Further, when the congestion determining unit 12c determines that congestion has not occurred (No in step S103), the process ends.
 ステップS104において、輻輳判定部12cは、所定の通知をコントローラ20に送信する。例えば、輻輳判定部12cは、入力トラフィック量と出力トラフィック量との差分が所定の閾値以上である場合には、トラフィック記憶部13aに記憶された送信元の拠点を識別する情報を含む通知をコントローラ20に送信する。 In step S104, the congestion determination unit 12c transmits a predetermined notification to the controller 20. For example, if the difference between the input traffic amount and the output traffic amount is greater than or equal to a predetermined threshold, the congestion determination unit 12c sends a notification containing information identifying the source base stored in the traffic storage unit 13a to the controller. Send to 20.
 そして、輻輳判定部12cは、輻輳が解消したか否かを判定する(ステップS105)。例えば、輻輳判定部12cは、入力トラフィック量から出力トラフィック量を減算した値が所定の閾値を下回る場合であって、かつ、中継ネットワーク方向の出力トラフィックが、所定の制限値を下回った場合には、送信先へのトラフィックの輻輳が解消されたと判定する。この結果、輻輳判定部12cは、輻輳が解消したと判定した場合には(ステップS105肯定)、ステップS106の処理に進む。また、輻輳判定部12cは、輻輳が解消していないと判定した場合には(ステップS105否定)、ステップS105の処理を繰り返す。 Then, the congestion determination unit 12c determines whether the congestion has been resolved (step S105). For example, when the value obtained by subtracting the output traffic amount from the input traffic amount is less than a predetermined threshold value, and the output traffic toward the relay network is less than a predetermined limit value, the congestion determination unit 12c determines that , it is determined that the traffic congestion to the destination has been resolved. As a result, if the congestion determining unit 12c determines that the congestion has been resolved (Yes in step S105), the process proceeds to step S106. Further, if the congestion determining unit 12c determines that the congestion has not been resolved (No in step S105), the congestion determining unit 12c repeats the process in step S105.
 ステップS106において、輻輳判定部12cは、コントローラ20に対して、所定の通知を送信する(ステップS106)。例えば、輻輳判定部12cは、輻輳が解消された送信先について、出力トラフィック量をブランクとし、輻輳フラグを0に変更した情報を通知する。 In step S106, the congestion determination unit 12c transmits a predetermined notification to the controller 20 (step S106). For example, the congestion determination unit 12c notifies information in which the output traffic volume is blank and the congestion flag is changed to 0 for a destination where congestion has been resolved.
 また、図11に例示するように、VPN GW10の制限設定部12dは、コントローラ20からトラフィック量を制限する旨の通知を受信すると(ステップS201肯定)、トラフィック量の制限値を設定する(ステップS202)。 Further, as illustrated in FIG. 11, when the limit setting unit 12d of the VPN GW 10 receives a notification to limit the traffic amount from the controller 20 (Yes in step S201), the limit setting unit 12d of the VPN GW 10 sets a limit value for the traffic amount (step S202). ).
 そして、制限設定部12dは、コントローラ20からトラフィック制限を解除する旨の通知を受信すると(ステップS203肯定)、トラフィック量の制限値を解除する(ステップS204)。 When the limit setting unit 12d receives a notification from the controller 20 to cancel the traffic limit (Yes at step S203), the limit setting unit 12d cancels the limit value of the traffic amount (step S204).
[実施の形態の効果]
 このように、実施形態に係る通信システム1のVPN GW10は、拠点間の通信を中継する中継ネットワーク50から入力された入力トラフィック量と、中継ネットワーク50から入力されたデータを送信先の拠点へ出力する出力トラフィック量とを計測する。そして、VPN GW10は、計測された入力トラフィック量と出力トラフィック量との差分が所定の閾値以上であるか否かを判定し、入力トラフィック量と出力トラフィック量との差分が所定の閾値以上である場合には、所定の通知を外部のコントローラ20に送信する。そして、VPN GW10は、トラフィック量を制限する旨の通知を受信した場合には、出力トラフィック量を制限して通信を行うように制御する。このため、VPN GW10は、コントローラ20の負荷を軽減しつつ、トラフィックの輻輳の判定精度を向上させることが可能である。
[Effects of embodiment]
In this way, the VPN GW 10 of the communication system 1 according to the embodiment outputs the input traffic amount input from the relay network 50 that relays communication between bases and the data input from the relay network 50 to the destination base. Measure the amount of output traffic. Then, the VPN GW 10 determines whether the difference between the measured input traffic amount and output traffic amount is greater than or equal to a predetermined threshold, and determines whether the difference between the input traffic amount and output traffic amount is greater than or equal to the predetermined threshold. In this case, a predetermined notification is sent to the external controller 20. When the VPN GW 10 receives a notification to limit the amount of traffic, it controls the amount of output traffic to be limited and performs communication. Therefore, the VPN GW 10 can improve the accuracy of determining traffic congestion while reducing the load on the controller 20.
 ここで、図12と図13とを用いて、従来技術と比較して、本実施形態に係る通信システム1の効果を説明する。図12は、従来の課題を説明する図である。図13は、実施の形態に係る通信システムによる効果を説明する図である。図12に例示するように、コントローラ200は、拠点のペア毎に中継・拠点の方向および、上り下りのデータを収集する必要があった。このため、コントローラ200は、拠点数が多くある場合、負荷が増大する。また、コントローラ200は、データ取得間隔の中で、トラフィック変動が大きくあると、データ取得時刻がずれることでVPN GW100A、100B間でトラフィック量に差分がある結果となる場合がある。この場合には、コントローラ200は、異なるVPN GW100A、100Bのトラフィックを取得する際に、取得時刻のズレが生じやすく、これによる差分により輻輳を誤判定する可能性があった。 Here, the effects of the communication system 1 according to this embodiment will be explained in comparison with the conventional technology using FIGS. 12 and 13. FIG. 12 is a diagram illustrating the conventional problem. FIG. 13 is a diagram illustrating the effects of the communication system according to the embodiment. As illustrated in FIG. 12, the controller 200 needed to collect relay/base direction and up/down data for each pair of bases. Therefore, when there are many locations, the load on the controller 200 increases. Further, in the controller 200, if there is a large traffic fluctuation during the data acquisition interval, the data acquisition time may be shifted, which may result in a difference in the amount of traffic between the VPN GWs 100A and 100B. In this case, when the controller 200 acquires the traffic of the different VPN GWs 100A and 100B, there is likely to be a lag in the acquisition time, and there is a possibility that congestion may be incorrectly determined due to the difference caused by this.
 これに対して、本実施形態に係る通信システム1では、図13に例示するように、トラフィック量を収集して輻輳判定を行う機能をVPN GW10に分散配備する。また、VPN GW10に輻輳判定の機能を分散配備するために、従来技術で中継NW500への出力ポイントで測定していたトラフィック量を、中継NW50からの入力ポイントに変更する。 In contrast, in the communication system 1 according to the present embodiment, as illustrated in FIG. 13, the function of collecting traffic volume and determining congestion is distributed and deployed in the VPN GW 10. Furthermore, in order to distribute the congestion determination function in the VPN GW 10, the traffic volume measured at the output point to the relay NW 500 in the conventional technology is changed to the input point from the relay NW 50.
 本実施形態に係る通信システム1では、例えば、中継NW50内で輻輳が無いようにプロビジョニングされているとき拠点出力トラフィック量と中継入力トラフィック量が一致することから、中継出力を中継入力のトラフィック量で代替することで、VPN GW10A、10C内でトラフィック量収集・輻輳判定を実施する。また、通信システム1では、VPN GWと拠点との間の帯域不足やVPN GW10A、10C内の帯域逼迫時に、中継入力トラフィック量に対して拠点出力トラフィック量に差分が生じることからこれに基づき輻輳と判定する。 In the communication system 1 according to the present embodiment, for example, when the relay NW 50 is provisioned so that there is no congestion, the base output traffic volume and the relay input traffic volume match, so that the relay output is determined by the relay input traffic volume. By replacing it, traffic volume collection and congestion determination are performed within the VPN GWs 10A and 10C. In addition, in the communication system 1, when there is a shortage of bandwidth between the VPN GW and the base or when the bandwidth within the VPN GWs 10A and 10C is tight, a difference occurs in the amount of traffic output from the base compared to the amount of relay input traffic, so based on this, congestion is determined. judge.
 このため、通信システム1では、各VPN GW10A、10Cでの分散処理およびトラフィック量収集処理および輻輳判定処理のローカル処理により、従来技術の課題を解決する。本実施形態に係るVPN GW10は、コントローラ20の負荷を軽減しつつ、トラフィックの輻輳の判定精度を向上させることが可能である。つまり、通信システム1では、トラフィック量を収集して輻輳判定を行う機能をVPN GW10に分散配備し、VPN GW10から輻輳発生を通知することで、コントローラ20の負荷を減らすことができる。また、各VPN GW10での分散処理およびトラフィック量収集および輻輳判定処理はVPN GW10内での処理となるため、取得時刻のズレが生じず誤判定する可能性を下げることが可能である。 Therefore, in the communication system 1, the problems of the prior art are solved by distributed processing and local processing of traffic volume collection processing and congestion determination processing in each VPN GW 10A, 10C. The VPN GW 10 according to the present embodiment can reduce the load on the controller 20 and improve the accuracy of determining traffic congestion. That is, in the communication system 1, the load on the controller 20 can be reduced by distributing the function of collecting traffic volume and determining congestion in the VPN GW 10, and notifying the VPN GW 10 of the occurrence of congestion. Furthermore, since the distributed processing, traffic volume collection, and congestion determination processing in each VPN GW 10 are performed within the VPN GW 10, there is no deviation in acquisition time and it is possible to reduce the possibility of erroneous determination.
〔システム構成等〕
 上記実施形態に係る図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示のごとく構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPUおよび当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
[System configuration, etc.]
The components of the illustrated devices according to the above embodiments are functional and conceptual, and do not necessarily need to be physically configured as illustrated. In other words, the specific form of distributing and integrating each device is not limited to what is shown in the diagram, and all or part of the devices can be functionally or physically distributed or integrated in arbitrary units depending on various loads and usage conditions. Can be integrated and configured. Furthermore, all or any part of each processing function performed by each device may be realized by a CPU and a program that is analyzed and executed by the CPU, or may be realized as hardware using wired logic.
 また、上記実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。 Furthermore, among the processes described in the above embodiments, all or part of the processes described as being performed automatically can be performed manually, or the processes described as being performed manually can be performed manually. All or part of the process can also be performed automatically using known methods. In addition, information including processing procedures, control procedures, specific names, and various data and parameters shown in the above documents and drawings may be changed arbitrarily, unless otherwise specified.
〔プログラム〕
 また、上記実施形態において説明したVPN GW10またはコントローラ20が実行する処理をコンピュータが実行可能な言語で記述したプログラムを作成することもできる。この場合、コンピュータがプログラムを実行することにより、上記実施形態と同様の効果を得ることができる。さらに、かかるプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータに読み込ませて実行することにより上記実施形態と同様の処理を実現してもよい。
〔program〕
Furthermore, it is also possible to create a program in which the processing executed by the VPN GW 10 or the controller 20 described in the above embodiments is written in a computer-executable language. In this case, when the computer executes the program, the same effects as in the above embodiment can be obtained. Furthermore, the same processing as in the above embodiments may be realized by recording such a program on a computer-readable recording medium and having the computer read and execute the program recorded on this recording medium.
 図14は、プログラムを実行するコンピュータを示す図である。図14に例示するように、コンピュータ1000は、例えば、メモリ1010と、CPU1020と、ハードディスクドライブインタフェース1030と、ディスクドライブインタフェース1040と、シリアルポートインタフェース1050と、ビデオアダプタ1060と、ネットワークインタフェース1070とを有し、これらの各部はバス1080によって接続される。 FIG. 14 is a diagram showing a computer that executes the program. As illustrated in FIG. 14, the computer 1000 includes, for example, a memory 1010, a CPU 1020, a hard disk drive interface 1030, a disk drive interface 1040, a serial port interface 1050, a video adapter 1060, and a network interface 1070. However, each of these parts is connected by a bus 1080.
 メモリ1010は、図14に例示するように、ROM(Read Only Memory)1011及びRAM1012を含む。ROM1011は、例えば、BIOS(Basic Input Output System)等のブートプログラムを記憶する。ハードディスクドライブインタフェース1030は、図14に例示するように、ハードディスクドライブ1031に接続される。ディスクドライブインタフェース1040は、図14に例示するように、ディスクドライブ1041に接続される。例えば、磁気ディスクや光ディスク等の着脱可能な記憶媒体が、ディスクドライブ1041に挿入される。シリアルポートインタフェース1050は、図14に例示するように、例えば、マウス1051、キーボード1052に接続される。ビデオアダプタ1060は、図14に例示するように、例えばディスプレイ1061に接続される。 The memory 1010 includes a ROM (Read Only Memory) 1011 and a RAM 1012, as illustrated in FIG. The ROM 1011 stores, for example, a boot program such as BIOS (Basic Input Output System). Hard disk drive interface 1030 is connected to hard disk drive 1031, as illustrated in FIG. Disk drive interface 1040 is connected to disk drive 1041, as illustrated in FIG. For example, a removable storage medium such as a magnetic disk or an optical disk is inserted into the disk drive 1041. The serial port interface 1050 is connected to, for example, a mouse 1051 and a keyboard 1052, as illustrated in FIG. Video adapter 1060 is connected to display 1061, for example, as illustrated in FIG.
 ここで、図14に例示するように、ハードディスクドライブ1031は、例えば、OS1091、アプリケーションプログラム1092、プログラムモジュール1093、プログラムデータ1094を記憶する。すなわち、上記のプログラムは、コンピュータ1000によって実行される指令が記述されたプログラムモジュールとして、例えば、ハードディスクドライブ1031に記憶される。 Here, as illustrated in FIG. 14, the hard disk drive 1031 stores, for example, an OS 1091, an application program 1092, a program module 1093, and program data 1094. That is, the above program is stored, for example, in the hard disk drive 1031 as a program module in which commands to be executed by the computer 1000 are written.
 また、上記実施形態で説明した各種データは、プログラムデータとして、例えば、メモリ1010やハードディスクドライブ1031に記憶される。そして、CPU1020が、メモリ1010やハードディスクドライブ1031に記憶されたプログラムモジュール1093やプログラムデータ1094を必要に応じてRAM1012に読み出し、各種処理手順を実行する。 Further, the various data described in the above embodiments are stored as program data in, for example, the memory 1010 or the hard disk drive 1031. Then, the CPU 1020 reads out the program module 1093 and program data 1094 stored in the memory 1010 and the hard disk drive 1031 to the RAM 1012 as necessary, and executes various processing procedures.
 なお、プログラムに係るプログラムモジュール1093やプログラムデータ1094は、ハードディスクドライブ1031に記憶される場合に限られず、例えば着脱可能な記憶媒体に記憶され、ディスクドライブ等を介してCPU1020によって読み出されてもよい。あるいは、プログラムに係るプログラムモジュール1093やプログラムデータ1094は、ネットワーク(LAN(Local Area Network)、WAN(Wide Area Network)等)を介して接続された他のコンピュータに記憶され、ネットワークインタフェース1070を介してCPU1020によって読み出されてもよい。 Note that the program module 1093 and program data 1094 related to the program are not limited to being stored in the hard disk drive 1031, but may be stored in a removable storage medium, for example, and read by the CPU 1020 via a disk drive or the like. . Alternatively, the program module 1093 and program data 1094 related to the program are stored in another computer connected via a network (LAN (Local Area Network), WAN (Wide Area Network), etc.), and are transmitted via the network interface 1070. It may be read by the CPU 1020.
 以上、本発明者によってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本発明の範疇に含まれる。 Although embodiments to which the invention made by the present inventor is applied have been described above, the present invention is not limited by the description and drawings that form part of the disclosure of the present invention by this embodiment. That is, all other embodiments, examples, operational techniques, etc. made by those skilled in the art based on this embodiment are included in the scope of the present invention.
 10、10A~10C VPN GW
 11、21 通信処理部
 12、22 制御部
 12a トラフィック計測部
 12b 測定結果収集部
 12c 輻輳判定部
 12d 制限設定部
 12e トラフィック制御部
 13、23 記憶部
 13a トラフィック記憶部
 22a 制御指示部
 23a 構成情報記憶部
 30A、30B ユーザ拠点
 40A、40B サーバ拠点
 50 中継NW
10, 10A-10C VPN GW
11, 21 Communication processing unit 12, 22 Control unit 12a Traffic measurement unit 12b Measurement result collection unit 12c Congestion determination unit 12d Limit setting unit 12e Traffic control unit 13, 23 Storage unit 13a Traffic storage unit 22a Control instruction unit 23a Configuration information storage unit 30A, 30B User base 40A, 40B Server base 50 Relay NW

Claims (6)

  1.  拠点間の通信を中継する中継ネットワークから入力された入力トラフィック量と、前記中継ネットワークから入力されたデータを送信先の拠点へ出力する出力トラフィック量とを計測する計測部と、
     前記計測部によって計測された前記入力トラフィック量と前記出力トラフィック量との差分が所定の閾値以上であるか否かを判定し、前記入力トラフィック量と前記出力トラフィック量との差分が所定の閾値以上である場合には、所定の通知を外部の装置に送信する判定部と、
     トラフィック量を制限する旨の通知を受信した場合には、前記出力トラフィック量を制限して通信を行うように制御するトラフィック制御部と
     を有することを特徴とする通信装置。
    a measurement unit that measures an input traffic amount input from a relay network that relays communication between bases, and an output traffic volume that outputs data input from the relay network to a destination base;
    determining whether a difference between the input traffic amount and the output traffic amount measured by the measurement unit is equal to or greater than a predetermined threshold, and determining whether the difference between the input traffic amount and the output traffic amount is equal to or greater than a predetermined threshold If so, a determination unit that transmits a predetermined notification to an external device;
    A communication device, comprising: a traffic control section that controls communication by limiting the output traffic amount when receiving a notification to limit the amount of traffic.
  2.  前記計測部によって計測された前記入力トラフィック量と前記出力トラフィック量とを収集し、送信元の拠点を識別する情報および送信先の拠点を識別する情報に対応付けて収集したトラフィック量を記憶部に格納する収集部をさらに有することを特徴とする請求項1に記載の通信装置。 Collecting the input traffic volume and the output traffic volume measured by the measurement unit, and storing the collected traffic volume in a storage unit in association with information identifying a transmission source base and information identifying a transmission destination base. The communication device according to claim 1, further comprising a collection unit for storing information.
  3.  前記判定部は、前記入力トラフィック量と前記出力トラフィック量との差分が所定の閾値以上である場合には、前記記憶部に記憶された送信元の拠点を識別する情報を含む通知をコントローラに送信することを特徴とする請求項2に記載の通信装置。 If the difference between the input traffic volume and the output traffic volume is equal to or greater than a predetermined threshold, the determination unit transmits a notification containing information for identifying a transmission source base stored in the storage unit to the controller. The communication device according to claim 2, characterized in that:
  4.  前記送信元の拠点を収容する通信装置として、トラフィック量を制限する旨の通知を前記コントローラから受信した場合には、当該通知に含まれるトラフィック量の制限値を設定する制限設定部をさらに有し、
     前記トラフィック制御部は、前記制限設定部によって設定された制限値に前記出力トラフィック量を制限して通信を行うように制御することを特徴とする請求項3に記載の通信装置。
    The communication device accommodating the transmission source base further includes a limit setting unit that sets a limit value of the traffic amount included in the notification when the communication device receives a notification to limit the traffic amount from the controller. ,
    4. The communication device according to claim 3, wherein the traffic control unit controls the output traffic amount to be limited to a limit value set by the limit setting unit to perform communication.
  5.  通信装置によって実行される通信方法であって、
     拠点間の通信を中継する中継ネットワークから入力された入力トラフィック量と、前記中継ネットワークから入力されたデータを送信先の拠点へ出力する出力トラフィック量とを計測する計測工程と、
     前記計測工程によって計測された前記入力トラフィック量と前記出力トラフィック量との差分が所定の閾値以上であるか否かを判定し、前記入力トラフィック量と前記出力トラフィック量との差分が所定の閾値以上である場合には、所定の通知を外部の装置に送信する判定工程と、
     トラフィック量を制限する旨の通知を受信した場合には、前記出力トラフィック量を制限して通信を行うように制御するトラフィック制御工程と
     を含むことを特徴とする通信方法。
    A communication method performed by a communication device, the method comprising:
    a measurement step of measuring the amount of input traffic input from a relay network that relays communication between the bases, and the amount of output traffic that outputs the data input from the relay network to the destination base;
    Determining whether the difference between the input traffic amount and the output traffic amount measured in the measurement step is greater than or equal to a predetermined threshold, and the difference between the input traffic amount and the output traffic amount is greater than or equal to the predetermined threshold. If so, a determination step of transmitting a predetermined notification to an external device;
    A communication method comprising: a traffic control step of controlling communication by limiting the output traffic amount when a notification to limit the traffic amount is received.
  6.  拠点間の通信を中継する中継ネットワークから入力された入力トラフィック量と、前記中継ネットワークから入力されたデータを送信先の拠点へ出力する出力トラフィック量とを計測する計測ステップと、
     前記計測ステップによって計測された前記入力トラフィック量と前記出力トラフィック量との差分が所定の閾値以上であるか否かを判定し、前記入力トラフィック量と前記出力トラフィック量との差分が所定の閾値以上である場合には、所定の通知を外部の装置に送信する判定ステップと、
     トラフィック量を制限する旨の通知を受信した場合には、前記出力トラフィック量を制限して通信を行うように制御するトラフィック制御ステップと
     をコンピュータに実行させることを特徴とする通信プログラム。
    a measuring step of measuring the amount of input traffic input from a relay network that relays communication between the bases, and the amount of output traffic that outputs the data input from the relay network to the destination base;
    determining whether the difference between the input traffic amount and the output traffic amount measured in the measuring step is greater than or equal to a predetermined threshold; and the difference between the input traffic amount and the output traffic amount is greater than or equal to the predetermined threshold. If so, a determining step of transmitting a predetermined notification to an external device;
    A communication program that causes a computer to perform a traffic control step of controlling the communication by limiting the output traffic amount when a notification to limit the amount of traffic is received.
PCT/JP2022/017193 2022-04-06 2022-04-06 Communication device, communication method and communication program WO2023195106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017193 WO2023195106A1 (en) 2022-04-06 2022-04-06 Communication device, communication method and communication program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017193 WO2023195106A1 (en) 2022-04-06 2022-04-06 Communication device, communication method and communication program

Publications (1)

Publication Number Publication Date
WO2023195106A1 true WO2023195106A1 (en) 2023-10-12

Family

ID=88242785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017193 WO2023195106A1 (en) 2022-04-06 2022-04-06 Communication device, communication method and communication program

Country Status (1)

Country Link
WO (1) WO2023195106A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025640A (en) * 2010-12-24 2011-04-20 北京星网锐捷网络技术有限公司 Flow control method, device and network device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025640A (en) * 2010-12-24 2011-04-20 北京星网锐捷网络技术有限公司 Flow control method, device and network device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAMURA, TAKAYUKI ET AL.: "B-6-36 A Proposal of a Traffic Reducing Method for VPNs Shared Relay Network", 2022 IEICE GENERAL CONFERENCE: COMMUNICATION; ONRAIN, JAPAN; MARCH 15-18, 2022, 1 March 2022 (2022-03-01) - 18 March 2022 (2022-03-18), pages 36, XP009549619 *

Similar Documents

Publication Publication Date Title
EP1847080B1 (en) Method and apparatus for distributed admission control
US9178794B2 (en) Communication quality monitoring system, communication quality monitoring method and recording medium
US7406532B2 (en) Auto control of network monitoring and simulation
KR20170062452A (en) Load balancing in a wireless network with multiple access points
JP2015149578A (en) operation management apparatus
US20150222561A1 (en) Bandwidth control apparatus
US7260634B2 (en) Storage device band control apparatus, method, and program
US20160057659A1 (en) Traffic management system and wireless network system
US8520534B2 (en) In-service throughput testing in distributed router/switch architectures
JP2010141794A (en) Transport control server, network system, and method of determining aggregate path
JP2012199729A (en) Data synchronization server, system, and data transfer band control method
KR20230003403A (en) Method and apparatus for detecting internet connection problems
US9225792B2 (en) System and method for caching mobile services database objects
WO2023195106A1 (en) Communication device, communication method and communication program
JP4749392B2 (en) Communication route determination method and overlay node, overlay network and program in overlay network
US20230105168A1 (en) Gateway apparatus, method and program
US20210274383A1 (en) Controlling apparatus, controlling method, terminal apparatus, and communication method
JP2012124871A (en) Congestion control program, information processing apparatus, and congestion control method
JP2007227997A (en) Communication path determining method and communication path determining system in overlay network
JP2013240017A (en) Network delay measuring device and network delay measuring method
US9088530B2 (en) Maximizing bottleneck link utilization under constraint of minimizing queuing delay for targeted delay-sensitive traffic
US9860791B1 (en) Long term evolution communication policies based on explicit congestion notification
JP6973405B2 (en) Measurement control server, communication quality measurement system, measurement agent, method and program
EP4366268A1 (en) Relay device, relay method, and communication system
JP7338693B2 (en) SIGNAL TRANSFER CONTROL DEVICE AND SIGNAL TRANSFER CONTROL METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936506

Country of ref document: EP

Kind code of ref document: A1