WO2023193627A1 - 器械驱动控制系统及方法 - Google Patents

器械驱动控制系统及方法 Download PDF

Info

Publication number
WO2023193627A1
WO2023193627A1 PCT/CN2023/084109 CN2023084109W WO2023193627A1 WO 2023193627 A1 WO2023193627 A1 WO 2023193627A1 CN 2023084109 W CN2023084109 W CN 2023084109W WO 2023193627 A1 WO2023193627 A1 WO 2023193627A1
Authority
WO
WIPO (PCT)
Prior art keywords
degree
motion information
target motor
freedom
driver
Prior art date
Application number
PCT/CN2023/084109
Other languages
English (en)
French (fr)
Inventor
李庚益
Original Assignee
瑞龙诺赋(上海)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞龙诺赋(上海)医疗科技有限公司 filed Critical 瑞龙诺赋(上海)医疗科技有限公司
Publication of WO2023193627A1 publication Critical patent/WO2023193627A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters

Definitions

  • This application relates to the technical field of instrument control, for example, to an instrument drive control system and method.
  • Surgical robots usually require special surgical robot instruments when performing operations.
  • Surgical robot instruments are usually multi-degree-of-freedom medical instruments composed of multiple mechanical parts, such as Maryland forceps for robots, window grasping forceps, large needle holders, etc.
  • Each instrument contains multiple degrees of freedom.
  • each degree of freedom requires a corresponding motion system for control.
  • the surgical robot instrument drive system does not have the ability to detect faults.
  • the driver When the driver itself of the mechanical part is damaged, the driver will lose the ability to detect sensor information. Furthermore, it will cause abnormalities in the motor controlled by the driver, posing safety risks. .
  • This application provides an instrument drive control system and method.
  • an instrument drive control system includes a main controller and at least two degree-of-freedom drive modules.
  • Each degree-of-freedom drive module includes a driver, a first encoder, a target motor, a reduction gear, and a driver. encoder and a second encoder, where;
  • the first encoder is mechanically connected to the target motor and is configured to detect the first motion information corresponding to the target motor and send the first motion information to the driver;
  • the reducer is mechanically connected to the target motor and configured to convert the current motion information of the target motor
  • the second encoder is mechanically connected to the reducer, and is configured to detect the second motion information corresponding to the target motor output by the reducer, and send the second motion information to a destination other than where the target motor is located.
  • the main controller connected to each of the actuators, is configured to drive from the at least two degrees of freedom. Obtain the first motion information and the second motion information corresponding to the target motor from the corresponding drivers of the moving modules, and determine whether the degree of freedom driving module where the target motor is located is based on the first motion information and the second motion information. There is a glitch.
  • an instrument drive control method which method includes:
  • the current motion information of the target motor is converted, and the target motor output by the reducer is detected through the second encoder in the degree of freedom drive module.
  • the second motion information sending the second motion information to drivers of other degree-of-freedom driving modules except the degree-of-freedom driving module;
  • the first motion information and the second motion information corresponding to the target motor are obtained from the corresponding drivers of the at least two degrees of freedom driving modules, and the judgment is made based on the first motion information and the second motion information. Whether there is a fault in the degree of freedom drive module where the target motor is located.
  • FIG. 1 is a schematic structural diagram of an instrument drive control system provided in Embodiment 1 of the present application;
  • Figure 2 is a schematic connection diagram of some components in a degree-of-freedom driving module provided in Embodiment 1 of the present application;
  • Figure 3 is a schematic connection diagram of some components in the multiple degrees of freedom driving module provided by Embodiment 1 of the present application;
  • FIG. 4 is a schematic structural diagram of an instrument drive control system provided in Embodiment 1 of the present application.
  • FIG. 5 is a schematic structural diagram of an instrument drive control system provided in Embodiment 3 of the present application.
  • FIG. 6 is a schematic flowchart of an instrument drive control method provided in Embodiment 4 of the present application.
  • FIG. 7 is a schematic structural diagram of another instrument drive control system provided in Embodiment 3 of the present application.
  • Figure 1 is a schematic structural diagram of an instrument drive control system provided in Embodiment 1 of the present application.
  • the system includes a main controller 11 and at least two degrees of freedom drive modules 12.
  • the degrees of freedom drive module 12 includes a driver. 121.
  • the first encoder 122 is mechanically connected to the target motor 123 and is used to detect the first motion information corresponding to the target motor 123 and send the first motion information to the driver 121; the reducer 124 is mechanically connected to the target motor 123.
  • the second encoder 125 is mechanically connected to the reducer 124, used to detect the second motion information corresponding to the target motor 123 output by the reducer 124, and send the second motion information To the drivers of other degree-of-freedom driving modules except the degree-of-freedom driving module 12 where the target motor 123 is located; the main controller 11 is connected to each driver 121 and is used to obtain the third corresponding to the target motor 123 from each driver 121 First movement information and second movement information, based on the first movement information and the second movement information, it is determined whether there is a fault in the degree of freedom driving module 12 where the target motor 123 is located.
  • the instrument drive control system provided in this embodiment can be a system used to control surgical robot instruments, such as robotic Maryland forceps, window grasping forceps, large needle holders, etc.
  • the instrument drive control system includes a degree-of-freedom drive module 12 used to control each mechanical part, and each degree-of-freedom drive module 12 is used to control the movement of its corresponding mechanical part.
  • the main controller 11 can directly establish a communication connection or an electrical connection with each driver 121; or, the main controller 11 can establish a communication connection with one of the drivers 121, and establish a communication connection between the driver 121 and other drivers 121. 121 can forward data that other drivers 121 need to send to the main controller 11 to the main controller 11 .
  • the driver 121 can be electrically connected to the first encoder 122 to obtain the first motion information of the target motor detected by the first encoder 122; the first encoder 122 can be mechanically connected to the target motor 123.
  • the target motor 123 may be mechanically connected to the reducer 124 , and the reducer 124 may be mechanically connected to the second encoder 125 .
  • Mechanical connection methods include but are not limited to coaxial connection and gear connection.
  • the main controller 11 may include a central processing unit (Central Processing Unit, CPU), a random access memory (Random Access Memory, RAM), a read-only memory (Read-Only Memory, ROM), etc.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read-Only Memory
  • the first encoder 122 may be an incremental encoder, an absolute encoder, a Sin/Cos encoder, etc.
  • the first encoder 122 can obtain the mechanical angle of the motor, thereby calculating the electrical angle of the motor, so that the driver can control the operation of the motor.
  • the reducer 124 may be a mechanical component that amplifies or reduces the speed and torque of the output end of the reducer in equal proportions through gears, screws, levers, etc.
  • the second encoder 125 may be an incremental encoder, an absolute encoder, a Sin/Cos encoder, etc.
  • a schematic diagram showing the connection of some components in a degree of freedom drive module is shown, in which the first encoder is coaxially connected to the target motor, the target motor is coaxially connected to the reducer, and the reducer is coaxially connected to the target motor.
  • the second encoder is connected coaxially.
  • Figure 3 taking the system including five degrees of freedom driving modules 12 as an example, a schematic diagram showing the connection of some components in the multiple degrees of freedom driving modules is shown.
  • the driver 121 obtains the first motion information of the target motor 123 detected by the first encoder 122, and drives the target motor 123 to run according to the first motion information.
  • the target motor 123 drives the reducer 124 to run. After the output of the target motor 123 passes through the reducer 124, the rotation speed is reduced and the output torque of the motor is increased in equal proportions. That is, the current motion information of the target motor 123 by the reducer 124 is Convert; for example, if the current speed of the target motor 123 is 1000 rpm, and the reduction ratio of the reducer 124 is 1:100, then the output speed of the reducer 124 is 10 rpm, and at the same time, the output torque increases by 100 times.
  • the second encoder 125 can detect the motion information output by the reducer 124, that is, obtain the second motion information corresponding to the target motor output by the reducer 124.
  • the second encoder 125 can also send the second motion information of the target motor 123 to other places where the target motor 123 is located. in any one or more degree-of-freedom drive modules other than the degree-of-freedom drive module 12, so as to perform the first motion in the driver 121 corresponding to the target motor 123 (the driver 121 of the degree-of-freedom drive module 12 where the target motor 123 is located). information, and the second motion information in the driver that does not correspond to the target motor 123 is cross-validated.
  • the main controller 11 can obtain the first motion information of the target motor 123 from the driver 121 corresponding to the target motor 123, and obtain the second motion information of the target motor 123 from one or more drivers that do not correspond to the target motor 123. 2. Movement information. Since the second motion information should be the motion information after the first motion information has been processed by the reducer 124, if there is no fault in the degree of freedom driving module where the target motor 123 is located, the relationship between the first motion information and the second motion information should satisfy The reduction ratio corresponding to the reducer 124.
  • the main controller 11 can determine whether the relationship between the second motion information and the first motion information satisfies the corresponding reduction ratio of the reducer 124, and determine whether the degree of freedom driving module is faulty. Considering that there may be certain errors during the actual operation of the system, the main controller 11 can also be used to obtain the preset proportion range corresponding to the reducer 124 and determine the target motor based on the first motion information and the second motion information. The actual deceleration ratio corresponding to 123 is determined based on the preset ratio range and the actual deceleration ratio to determine whether there is a fault in the degree of freedom drive module 12 where the target motor 123 is located.
  • the preset proportion range may be a preset allowed range of reduction ratio corresponding to the reducer 124. For example, if the reduction ratio corresponding to the reducer 124 is 100, the preset proportion range may be [99.5, 100.5].
  • the main controller 11 can automatically determine the preset proportion range according to the reduction ratio corresponding to the reducer 124.
  • the reduction ratio corresponding to the reducer 124 can be sent by the driver 121 to the main controller 11, or the main controller can 11 is read from its internal storage unit.
  • the actual deceleration ratio can be calculated from the first operating information and the second motion information; where the first motion information and the second motion information include but are not limited to the position and speed of the target motor.
  • the main controller 11 after the main controller 11 obtains the preset proportion range and the actual deceleration ratio, if the actual deceleration ratio is within the preset proportion range, the main controller 11 can determine that there is no fault in the degree of freedom driving module 12 , if the actual deceleration ratio is not within the preset ratio range, the main controller 11 may determine that there is a fault in the degree of freedom driving module 12 . In this way, the fault of the degree of freedom drive module can be accurately detected.
  • any one or more of the driver 121, the first encoder 122, the target motor 123, the reducer 124 and the second encoder 125 in the degree of freedom driving module 12 fails, it may cause the third The actual deceleration ratio between the first motion information and the second motion information is not within the preset ratio range, or the actual deceleration ratio between the first motion information and the second motion information is not equal to the deceleration The reduction ratio corresponding to the converter 124.
  • each degree-of-freedom driving module implements cross-connection.
  • the above connection is only an example of a cross-connection method, and this embodiment does not limit it.
  • driver 1 obtains the running speed and position of target motor 1 detected by first encoder 1 (the first motion information of target motor 1), and sends it to the computer via bus communication.
  • the main controller and the driver 2 obtain the operating speed and position (second motion information of the target motor 1) detected by the second encoder 1, and send them to the main controller in the form of bus communication.
  • the main controller receives the position and speed calculated by driver 1 and the position and speed calculated by driver 2, it determines whether the proportional relationship between the two is within the preset proportion range. If it is, the system is considered to be operating normally. If it is within the threshold If it is outside the range, it is judged that the degree of freedom driving module of driver 1 is abnormal.
  • the degree of freedom driving module 12 where the target motor 123 is located does not exist.
  • the driver that receives the second motion information is faulty. Therefore, in order to exclude the possibility that the driver that receives the second motion information is faulty, the second motion information of the target motor 123 can be sent to a destination other than where the target motor 123 is located.
  • each driver that receives the second motion information performs cross-validation based on the received second motion information to exclude receiving the second motion information.
  • the drive may be faulty.
  • the main controller 11 is also configured to obtain the first motion information corresponding to the target motor 123 from the driver 121, and obtain the first motion information from at least two other freedom degree drive modules 12 in which the target motor 123 is located.
  • the second motion information corresponding to the target motor 123 is obtained from the driver of the high-speed driving module, and based on each second motion information, it is determined whether the driver that receives the second motion information has a fault.
  • the main controller 11 can compare the second motion information. If the second motion information is consistent, it can determine that the driver that receives the second motion information does not have a fault. At this time, the main controller 11 eliminates the problem of receiving the second motion information. There is a possibility of failure in the information driver. Whether the DOF drive module 12 where the target motor 123 is located can be directly determined based on the first motion information and the second motion information whether the DOF drive module 12 is faulty, which improves the accuracy of fault detection of the DOF drive module.
  • the main controller 11 may also adopt another implementation manner to exclude the drive storage that receives the second motion information. possible malfunction. For example, for a driver that receives the second motion information, the main controller 11 obtains the first motion information and the second motion information of the target motor in the degree of freedom driving module where the driver is located. If it is judged that there is no fault in the degree-of-freedom drive module where the driver is located, the possibility of a fault in the driver can be eliminated.
  • the main controller 11 can send a shutdown command to stop the motor operation of the system to protect patient safety.
  • the main controller 11 is also configured to send a shutdown instruction to the driver of the degree-of-freedom driving module 12 where the target motor 123 is located if it is determined that the degree-of-freedom driving module 12 where the target motor 123 is located has a fault, or, Send a shutdown command to all drives in the system.
  • the main controller 11 can stop the operation of the motor in the faulty degree-of-freedom drive module through the driver in the faulty degree-of-freedom drive module, or stop the operation of all motors through the drivers in all the degree-of-freedom drive modules in the system. , which enables timely control to ensure operational safety when an abnormality occurs in the degree of freedom drive module in the system.
  • the instrument drive control system includes a main controller and at least two degree-of-freedom drive modules.
  • the degree-of-freedom drive module includes a driver, a first encoder, a target motor, a reducer, and a second encoder.
  • the first encoder that is mechanically connected detects the first motion information corresponding to the target motor, sends the first motion information to the driver, and converts the current motion information of the target motor through the reducer that is mechanically connected to the target motor, and then through
  • the second encoder which is mechanically connected to the reducer, detects the second motion information corresponding to the target motor output by the reducer, and sends the second motion information to other degree-of-freedom drive modules except the degree-of-freedom drive module where the target motor is located.
  • the driver obtains the first motion information and the second motion information corresponding to the target motor from each driver through the main controller, and determines whether the degree of freedom drive module where the target motor is located is faulty based on the first motion information and the second motion information. , realizes automatic fault detection of each degree of freedom drive module in the instrument drive control system, avoids the situation in related technologies that the fault cannot be discovered in time and the time required to determine the fault location is long, which facilitates fault elimination and fault repair, and improves improve the control security of the system.
  • the encoder will lose the ability to be detected, which will lead to abnormal phenomena such as motor speeding. At this time, the system cannot know that the driver is faulty.
  • the fault detection of the degree of freedom drive module can then realize the fault detection of the driver, avoiding the situation where the driver fault cannot be detected.
  • the system provided by this embodiment can support a variety of surgical robot instruments with different degrees of freedom. It uses multi-channel signal verification to ensure system safety. At the same time, it can accurately detect the faulty degree of freedom drive module to facilitate troubleshooting and maintenance. , saving troubleshooting time.
  • the main controller 11 can also determine the operating status of the system by detecting the current operating degrees of freedom of each degree of freedom drive module.
  • the main controller 11 is also used to determine the current operating degrees of freedom of each degree of freedom drive module for two degree-of-freedom drive modules that have a degree-of-freedom operating proportional relationship, and determine the operating status of the system based on each current operating degree of freedom.
  • the two degree-of-freedom drive modules with a degree-of-freedom operation proportional relationship may refer to a degree-of-freedom drive module that has a dependency relationship between the degrees of freedom that the system operates when driving the instrument.
  • the degree of freedom that the degree of freedom driving module 1 operates is 200 degrees
  • the degree of freedom that the degree of freedom driving module 2 operates is -200 degrees
  • the degree of freedom driving module 3 slides upward by 10 mm
  • the degree of freedom driving module 4 slides downward by 10 mm, then there is a degree of freedom operation proportional relationship between the degree of freedom driving module 3 and the degree of freedom driving module 4.
  • the main controller 11 can store the degree-of-freedom operation proportional relationship between the two degree-of-freedom operating proportional relationships between the two degree-of-freedom operating proportional relationships, and then when the system drives the instrument to move, the main controller 11 can monitor each degree-of-freedom drive in real time.
  • the current operating degree of freedom of the module is verified according to each current operating degree of freedom.
  • the degree of freedom drive module with a degree of freedom operating proportional relationship is verified. If the current operating degree of freedom meets the preset operating degree of freedom operating proportional relationship, the degree of freedom drive module can be determined.
  • the module operates normally and the operating status of the system is normal operation.
  • the main controller detects the current operating degrees of freedom of the two degree-of-freedom drive modules that have a degree-of-freedom operating proportional relationship, and detects the current operating degrees of freedom that have a degree-of-freedom operating proportional relationship based on the detected current operating degrees of freedom.
  • the operating status of the two degrees of freedom drive module is judged. If the current operating degrees of freedom of the two degrees of freedom drive modules that have a degree-of-freedom operating proportional relationship conform to the degree-of-freedom operating proportional relationship, it can be determined that the operating state of the system is normal and the system can be realized.
  • the detection of operating status ensures the safe operation of each degree of freedom drive module in the system.
  • the number of degree-of-freedom driving module pairs with a degree-of-freedom operating proportional relationship can be It is one or more, which can be determined by the structural relationship between the mechanical parts corresponding to each degree of freedom driving module. If there are multiple pairs of degree-of-freedom drive modules in a system, the main controller can determine the operating status of the system when it determines that the current operating degrees of freedom between each pair of degree-of-freedom drive modules satisfy the degree-of-freedom operating proportional relationship. is normal.
  • the driver 121 can also determine whether mechanical jamming occurs when the system controls the instrument by detecting the actual operating current value of the target motor 123 .
  • drive 121 also use In order to detect the actual operating current value of the target motor 123, it is determined whether there is a fault in the system based on the preset operating threshold corresponding to the target motor 123 and the actual operating current value.
  • the preset operating threshold may be a preset standard operating maximum current value of the target motor 123 .
  • the driver 121 can obtain the current value of the corresponding target motor 123 when it is running, that is, the actual operating current value, and judge the actual operating current value. If the actual operating current value exceeds the preset operating threshold, it can be determined that there is a fault in the system. , the cause of the failure may be that a certain mechanical part jams during the system's control of the movement of the device. Through this method, the detection of operating faults of each target motor in the system is achieved, ensuring the safe operation of the system.
  • FIG. 5 is a schematic structural diagram of an instrument drive control system provided in Embodiment 3 of the present application.
  • the system includes a main controller 51, at least two degrees of freedom drive modules 52 and an instrument identifier 53.
  • the driving module 52 includes a driver 521, a first encoder 522, a target motor 523, a reducer 524 and a second encoder 525.
  • the first encoder 522 is mechanically connected to the target motor 523 and is used to detect the first motion information corresponding to the target motor 523 and send the first motion information to the driver 521;
  • the reducer 524 is mechanically connected to the target motor 523. Used to convert the current motion information of the target motor 523;
  • the second encoder 525 is mechanically connected to the reducer 524, used to detect the second motion information corresponding to the target motor 523 output by the reducer 524, and send the second motion information To the driver of other degree-of-freedom driving modules except the degree-of-freedom driving module 52 where the target motor 523 is located;
  • the instrument identifier 53 is used to identify the instrument associated information corresponding to the instrument to be controlled stored in the label unit of the instrument to be controlled.
  • the main controller 51 Read and send the instrument related information to the main controller 51; the main controller 51 is connected to each driver 521 and is used to obtain the first motion information and the second motion information corresponding to the target motor 523 from each driver 521, based on The first movement information and the second movement information determine whether the degree of freedom driving module 52 where the target motor 523 is located has a fault, and determine whether the instrument to be controlled matches the system based on the instrument type identification in the instrument related information.
  • the instrument identifier 53 can detect the label unit in the instrument to be controlled, where the instrument associated information corresponding to the instrument to be controlled is stored in the label unit. When the instrument identifier 53 detects the label unit, it can read The device related information stored in the tag unit is used to determine whether the device to be controlled matches the system.
  • the instrument identifier 53 can send the instrument related information to the main controller 51, where the instrument identifier 53 can directly send the instrument related information to the main controller 51 based on communication, or signal processing can also be set in the system. unit, the instrument identifier 53 sends the identified instrument related information sent to the signal processing unit, which forwards the device-related information to the main controller 51.
  • the instrument identifier 53 may be a radio frequency identification (Radio Frequency Identification, RFID) device, a near field communication (Near Field Communication, NFC) module plus an antenna device, or a magnetic induction device.
  • RFID Radio Frequency Identification
  • NFC Near Field Communication
  • the device may be an integrated wireless card reader device.
  • the tag unit may be a wireless storage unit, and the antenna integrated in the tag unit matches the RFID and NFC wireless devices.
  • RFID and NFC communicate with the tag unit through the antenna and read and write the content stored in the tag unit.
  • the main controller 51 can determine the device type corresponding to the device to be controlled based on the device type identifier in the device-related information, and then determine whether the device to be controlled is compatible with the system based on the device type. match. For example, the main controller 51 can compare the instrument type of the instrument to be controlled with each pre-stored matching type. If they are consistent, it can be determined that the instrument to be controlled matches the system.
  • the main controller 51 can maintain a relationship table internally.
  • the relationship table stores various device identifiers that match the system.
  • the main controller 51 can query the relationship table to see whether there is a device type identifier that is consistent with the device to be controlled. If the device identification exists, it can be determined that the device to be controlled matches the system.
  • each different instrument such as Maryland forceps, fenestrated forceps, large needle holder, etc.
  • the main controller 51 can also determine whether the instrument to be controlled matches the system based on the instrument usage identifier in the instrument related information.
  • the device usage identification may include at least one of the number of times the device has been used, device production time, device expiration time, and device maintenance times.
  • the main controller 51 can determine whether the instrument to be controlled matches the system based on the number of times the instrument is used and the preset usage threshold. Alternatively, the main controller 51 can determine whether the device to be controlled matches the system based on the device production time and the preset production time range of the device to be controlled. Alternatively, the main controller 51 can determine whether the device to be controlled is expired based on the device expiration time of the device to be controlled and the current time, and determine whether the device to be controlled matches the system based on whether the device is expired. Alternatively, the main controller 51 can determine whether the instrument to be controlled matches the system based on the number of instrument repairs of the instrument to be controlled and the preset maintenance number threshold. Through the device in the device association information of the device to be controlled The use of identification enables verification of equipment to be controlled, avoids the installation of unqualified equipment, and ensures system operation safety.
  • the main controller 51 can also determine whether the instrument to be controlled matches the system based on the instrument type identification and the instrument usage identification. In this embodiment, if the main controller 51 determines that the instrument to be controlled does not match the system, the main controller 51 can send an instruction to reject the instrument to be controlled, so that each degree of freedom driving module cannot drive the motor.
  • the system provided in this embodiment may also include a signal display, where the signal display may be a display screen of an electronic device, such as a computer display interface, or may be a lighting display, a voice alarm, and other devices.
  • the main controller determines that there is a fault in the degree of freedom drive module, abnormal system operation, or abnormal operating current of the target motor, it can generate a corresponding type of alarm signal and send it to the signal display for display, so as to realize the alarm of the fault.
  • the device identifier is used to read the device related information corresponding to the device to be controlled stored in the tag unit of the device to be controlled, and the device related information is sent to the main controller, and then through the main controller, according to the device related information Verifying whether the equipment to be controlled matches the system realizes the verification of the equipment to be controlled, avoids the installation of unqualified equipment, and ensures the safety of system operation.
  • the system provided by this embodiment may also include a zero control button, which is used to generate a zero request signal and send it to each degree of freedom driving module 52 when a user's trigger action is detected.
  • the driver 521 in the driver 521 is also used to adjust the target motor 523 in the degree-of-freedom driving module 52 where the driver 521 is located based on the preset initial zero position when the zero-return request signal is obtained.
  • the zero-return control button can directly send the zero-return request signal to each driver 521 , or can first send the zero-return request signal to the main controller 51 , and the main controller 51 forwards the zero-return request signal to each driver 521 .
  • each driver 521 when each driver 521 obtains the zero-return request signal, it can adjust the target motor 523 according to the preset initial zero position, so that the target motor 523 runs to the preset initial zero position.
  • all motors are set to the preset initial zero position, thereby realizing one-click zeroing of the operating angle of the instrument, which facilitates the disassembly of surgical instruments and can be suitable for installing instruments. , disassemble or replace equipment and other scenarios.
  • a zero control button 54 is shown in FIG. 7 .
  • FIG. 6 is a schematic flowchart of an instrument drive control method provided in Embodiment 4 of the present application. This method can control the instrument with multiple degrees of freedom and can be controlled by the instrument drive provided in the above embodiments. System execution, as shown in Figure 6, the method includes:
  • S620 Convert the current motion information of the target motor based on the reducer in the degree of freedom drive module, and detect the output of the reducer through the second encoder in the degree of freedom drive module.
  • the second motion information corresponding to the target motor is sent to drivers of other degree-of-freedom driving modules except the degree-of-freedom driving module.
  • the method further includes:
  • the main controller obtain the first motion information corresponding to the target motor from the driver, and obtain the first motion information corresponding to the target motor from the drivers of at least two other degree-of-freedom drive modules in addition to the degree-of-freedom drive module where the target motor is located.
  • Second motion information corresponding to the target motor is obtained, and based on each of the second motion information, it is determined whether the driver that receives the second motion information has a fault.
  • determining whether there is a fault in the degree-of-freedom driving module where the target motor is located based on the first motion information and the second motion information includes:
  • Obtain a preset proportion range corresponding to the reducer determine the actual deceleration ratio corresponding to the target motor based on the first motion information and the second motion information, and determine the actual deceleration ratio based on the preset proportion range and the actual deceleration The ratio determines whether the degree of freedom drive module where the target motor is located has a fault.
  • the method further includes:
  • a shutdown command is sent to the driver of the degree-of-freedom drive module where the target motor is located, or to all drivers in the system. Send a shutdown command.
  • the method further includes:
  • the current operating degree of freedom of each of the degree-of-freedom driving modules is determined, and the system is determined based on each of the current operating degrees of freedom. operating status.
  • the method further includes:
  • the driver Through the driver, the actual operating current value of the target motor is detected, and based on the preset operating threshold corresponding to the target motor and the actual operating current value, it is determined whether there is a fault in the system.
  • the method further includes:
  • the device-related information stored in the tag unit of the device to be controlled and corresponding to the device to be controlled is read, and the device-related information is sent to the main controller;
  • the main controller it is determined whether the instrument to be controlled matches the system based on the instrument type identification in the instrument related information.
  • the method further includes:
  • the main controller it is determined whether the instrument to be controlled matches the system based on the instrument usage identification in the instrument related information.
  • the method further includes:
  • a zeroing request signal is generated and sent to the driver in each of the degree-of-freedom driving modules;
  • the target motor in the degree-of-freedom driving module where the driver is located is adjusted based on the preset initial zero position.
  • the first motion information corresponding to the target motor is detected through the first encoder that is mechanically connected to the target motor, and the first motion information is sent to the driver, and the speed of the target motor is adjusted through the reducer that is mechanically connected to the target motor.
  • the current motion information is converted, and then through the second encoder mechanically connected to the reducer, the second motion information corresponding to the target motor output by the reducer is detected, and the second motion information is sent to the degree of freedom drive module where the target motor is located.
  • Drivers of other degree-of-freedom drive modules obtain the first motion information and second motion information corresponding to the target motor from each driver through the main controller, and determine the location of the target motor based on the first motion information and the second motion information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Robotics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本申请公开了一种器械驱动控制系统及方法。该系统包括主控制器(11)以及至少两个自由度驱动模块(12),自由度驱动模块(12)包括驱动器(121)、第一编码器(122)、目标电机(123)、减速器(124)以及第二编码器(125),通过第一编码器(122)检测目标电机(123)对应的第一运动信息,并通过减速器(124)对目标电机(123)的当前运动信息进行转换,进而通过第二编码器(125)检测减速器(124)输出的目标电机(123)对应的第二运动信息,并将第二运动信息发送至其它自由度驱动模块(12)的驱动器(121),通过主控制器(11),从各驱动器(121)中获取目标电机(123)的第一运动信息和第二运动信息,判断该目标电机(123)所在的自由度驱动模块(12)是否存在故障。

Description

器械驱动控制系统及方法
本申请要求在2022年04月06日提交中国专利局、申请号为202210355709.8的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及器械控制技术领域,例如涉及一种器械驱动控制系统及方法。
背景技术
手术机器人进行手术时通常需要专用的手术机器人器械,其中,手术机器人器械通常是由多个机械件组成的多自由度医用器械,例如机器人用马里兰钳,开窗抓钳,大号持针器等器械,均包含多个自由度,在对手术机器人器械的控制上,每个自由度均需要一个对应的运动系统来进行控制。
然而,手术机器人器械驱动系统不具备故障检测的能力,当机械件的驱动器本身损坏时,会使得驱动器失去检测传感器信息的能力,进一步的,会导致驱动器所控制的电机出现异常,带来安全隐患。
传统的器械驱动系统都是在故障发生之后,人为对系统进行故障检查,不能及时发现器械驱动系统的故障,存在安全隐患,并且,人为排查故障位置的方式所花费时间较长,步骤较多。
发明内容
本申请提供了一种器械驱动控制系统及方法。
根据本申请的一方面,提供了一种器械驱动控制系统,所述系统包括主控制器以及至少两个自由度驱动模块,每个自由度驱动模块包括驱动器、第一编码器、目标电机、减速器以及第二编码器,其中;
所述第一编码器,与所述目标电机机械连接,设置为检测所述目标电机对应的第一运动信息,并将所述第一运动信息发送至所述驱动器;
所述减速器,与所述目标电机机械连接,设置为对所述目标电机的当前运动信息进行转换;
所述第二编码器,与所述减速器机械连接,设置为检测所述减速器输出的所述目标电机对应的第二运动信息,将所述第二运动信息发送至除所述目标电机所在的自由度驱动模块之外的其它自由度驱动模块的驱动器;
所述主控制器,与每个所述驱动器连接,设置为从所述至少两个自由度驱 动模块分别对应的驱动器中获取所述目标电机对应的第一运动信息和第二运动信息,基于所述第一运动信息和所述第二运动信息判断所述目标电机所在的自由度驱动模块是否存在故障。
根据本申请的另一方面,提供了一种器械驱动控制方法,所述方法包括:
基于目标电机所在的自由度驱动模块中的第一编码器,检测所述目标电机对应的第一运动信息,将所述第一运动信息发送至所述自由度驱动模块中的驱动器;
基于所述自由度驱动模块中的减速器,对所述目标电机的当前运动信息进行转换,并通过所述自由度驱动模块中的第二编码器,检测所述减速器输出的所述目标电机对应的第二运动信息,将所述第二运动信息发送至除所述自由度驱动模块之外的其它自由度驱动模块的驱动器;
基于主控制器,从至少两个自由度驱动模块分别对应的驱动器中获取所述目标电机对应的第一运动信息和第二运动信息,基于所述第一运动信息和所述第二运动信息判断所述目标电机所在的自由度驱动模块是否存在故障。
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其它特征将通过以下的说明书而变得容易理解。
附图说明
下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例一提供的一种器械驱动控制系统的结构示意图;
图2是本申请实施例一提供的一种自由度驱动模块中部分部件的连接示意图;
图3是本申请实施例一提供的多个自由度驱动模块中部分部件的连接示意图;
图4是本申请实施例一提供的一种器械驱动控制系统的结构示意图;
图5是本申请实施例三提供的一种器械驱动控制系统的结构示意图;
图6是本申请实施例四提供的一种器械驱动控制方法的流程示意图;
图7是本申请实施例三提供的另一种器械驱动控制系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行清楚、完整地描述,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
实施例一
图1是本申请实施例一提供的一种器械驱动控制系统的结构示意图,如图1所示,该系统包括主控制器11以及至少两个自由度驱动模块12,自由度驱动模块12包括驱动器121、第一编码器122、目标电机123、减速器124以及第二编码器125。
其中,第一编码器122,与目标电机123机械连接,用于检测目标电机123对应的第一运动信息,并将第一运动信息发送至驱动器121;减速器124,与目标电机123机械连接,用于对目标电机123的当前运动信息进行转换;第二编码器125,与减速器124机械连接,用于检测减速器124输出的目标电机123对应的第二运动信息,将第二运动信息发送至除该目标电机123所在的自由度驱动模块12之外的其它自由度驱动模块的驱动器;主控制器11,与各驱动器121连接,用于从各驱动器121中获取该目标电机123对应的第一运动信息和第二运动信息,基于第一运动信息和第二运动信息判断该目标电机123所在的自由度驱动模块12是否存在故障。
本实施例提供的器械驱动控制系统,可以是用于控制手术机器人器械的系统,如,机器人用马里兰钳、开窗抓钳、大号持针器等。器械驱动控制系统包括用于对各机械件进行控制的自由度驱动模块12,每一个自由度驱动模块12用于控制与其对应的机械件的运动。
首先,对本实施例提供的器械驱动控制系统中各装置之间的连接关系进行 说明。其中,主控制器11可以与各驱动器121直接建立通信连接或电连接;或者,主控制器11可以与其中一个驱动器121建立通信连接,该驱动器121与其它驱动器121之间建立通信连接,该驱动器121可以将其它驱动器121需要发送至主控制器11的数据转发至主控制器11。在每一个自由度驱动模块12中,驱动器121可以与第一编码器122电连接,以获取第一编码器122检测的目标电机的第一运动信息;第一编码器122可以与目标电机123机械连接,目标电机123可以与减速器124机械连接,减速器124可以与第二编码器125机械连接。机械连接的方式包括但不限于同轴连接和齿轮连接。
在一示例中,主控制器11可以包括中央处理器(Central Processing Unit,CPU),随机存取存储器(Random Access Memory,RAM)以及只读存储器(Read-Only Memory,ROM)等。
在一示例中,第一编码器122可以为增量编码器,绝对值编码器,Sin/Cos编码器等。第一编码器122可以获取电机的机械角度,以此计算电机的电角度,从而可以让驱动器控制电机运行。
在一示例中,减速器124可以是一种机械件,通过齿轮、丝杠、杠杆等方式,让减速器的输出端的速度和力矩等比例放大或者缩小。
在一示例中,第二编码器125可以为增量编码器,绝对值编码器,Sin/Cos编码器等。
示例性的,如图2所示,展示了一种自由度驱动模块中部分部件的连接示意图,其中,第一编码器与目标电机同轴连接,目标电机与减速器同轴连接,减速器与第二编码器同轴连接。如图3所示,以系统包括五个自由度驱动模块12为例,展示了多个自由度驱动模块中部分部件的连接示意图。
例如,驱动器121获取第一编码器122检测到的目标电机123的第一运动信息,并根据第一运动信息驱动目标电机123运行。在一实施例中,目标电机123带动减速器124运行,目标电机123的输出经过减速器124后,等比例降低转速和增加电机的输出转矩,即减速器124对目标电机123的当前运动信息进行转换;例如,目标电机123的当前转速为1000转/分钟,减速器124的减速比例为1:100,则减速器124输出的转速为10转/分钟,同时,输出的力矩增大了100倍。
在一实施例中,第二编码器125可以对减速器124输出的运动信息进行检测,即获取到减速器124输出的目标电机对应的第二运动信息。第二编码器125还可以将该目标电机123的第二运动信息,发送至除该目标电机123所在的自 由度驱动模块12之外的其它任意一个或多个自由度驱动模块中,以便根据与目标电机123对应的驱动器121(目标电机123所在的自由度驱动模块12的驱动器121)中的第一运动信息,以及与目标电机123不对应的驱动器中的第二运动信息进行交叉验证。
例如,主控制器11可以从目标电机123对应的驱动器121中获取该目标电机123的第一运动信息,并且,从与目标电机123不对应的一个或多个驱动器中获取该目标电机123的第二运动信息。由于第二运动信息应为第一运动信息经过减速器124处理后的运动信息,若该目标电机123所在的自由度驱动模块不存在故障,则第一运动信息和第二运动信息之间应该满足减速器124对应的减速比。
因此,主控制器11可以判断第二运动信息和第一运动信息之间的关系是否满足减速器124对应的减速比,确定自由度驱动模块是否故障。考虑到系统在实际运行过程中可以存在一定的误差,因此,主控制器11,还可以用于获取与减速器124对应的预设比例范围,基于第一运动信息和第二运动信息确定目标电机123对应的实际减速比例,基于预设比例范围和实际减速比例确定目标电机123所在的自由度驱动模块12是否存在故障。
其中,预设比例范围可以是预先设置的与减速器124对应的减速比允许范围,例如,减速器124对应的减速比为100,则预设比例范围可以是[99.5,100.5]。例如,主控制器11可以根据与减速器124对应的减速比自动确定预设比例范围,其中,与减速器124对应的减速比可以是驱动器121向主控制器11发送的,也可以主控制器11从其内部存储单元中读取的。实际减速比例可以通过第一运行信息与第二运动信息计算得到;其中,第一运动信息、第二运动信息包括但不限于目标电机的位置以及速度。
在一实施例中,主控制器11在获取到预设比例范围和实际减速比例后,若实际减速比例在预设比例范围之内,则主控制器11可以确定自由度驱动模块12不存在故障,若实际减速比例不在预设比例范围之内,则主控制器11可以确定自由度驱动模块12存在故障。通过该方式,可以实现精准检测自由度驱动模块的故障。
可以理解的是,自由度驱动模块12中的驱动器121、第一编码器122、目标电机123、减速器124以及第二编码器125中的任意一种或多种出现故障时,均可以造成第一运动信息与第二运动信息之间的实际减速比例不在预设比例范围之内,或者,第一运动信息和第二运动信息之间的实际减速比例不等于减速 器124对应的减速比。
示例性的,如图4所示,以器械驱动控制系统中自由度驱动模块的数量为5为例,展示了一种器械驱动控制系统的结构示意图。其中,驱动器1与第二编码器2连接,驱动器2与第二编码器1连接,驱动器4与第二编码器3连接,驱动器5与第二编码器4连接,驱动器3与第二编码器5连接。即,各自由度驱动模块实现了交叉连接,但需说明的是,以上连接只是一种交叉连接方式的示例,本实施例不对其进行限定。以驱动器1的自由度驱动模块进行说明,驱动器1获取第一编码器1检测到的目标电机1的运行速度和位置(目标电机1的第一运动信息),以总线通信的方式将其发送给主控制器,驱动器2获取第二编码器1检测到的运行速度和位置(目标电机1的第二运动信息),以总线通信的方式将其发送至主控制器。主控制器接收到驱动器1计算的位置和速度,以及驱动器2计算的位置和速度后,判断二者的比例关系是否在预设比例范围之内,若在,则认为系统运行正常,若在阈值范围外,则判断驱动器1的自由度驱动模块出现异常。
需要说明的是,考虑到若目标电机123的第一运动信息与第二运动信息之间的实际减速比例不在预设比例范围之内,则存在该目标电机123所在的自由度驱动模块12不存在故障,但接收该第二运动信息的驱动器存在故障的可能,因此,为了排除接收第二运动信息的驱动器存在故障的可能,可以将目标电机123的第二运动信息发送至除该目标电机123所在的自由度驱动模块12之外的至少两个其它自由度驱动模块的驱动器中,以使接收该第二运动信息的各驱动器基于接收到的第二运动信息进行交叉验证,排除接收第二运动信息的驱动器存在故障的可能。
在一实施例中,主控制器11,还用于从驱动器121中获取目标电机123对应的第一运动信息,从除该目标电机123所在的自由度驱动模块12之外的至少两个其它自由度驱动模块的驱动器中获取目标电机123对应的第二运动信息,基于各第二运动信息确定接收所述第二运动信息的驱动器是否存在故障。例如,主控制器11可以比对各第二运动信息,若各个第二运动信息一致,则可以确定接收第二运动信息的驱动器不存在故障,此时,主控制器11剔除了接收第二运动信息的驱动器存在故障的可能性,可以直接根据第一运动信息和第二运动信息判断目标电机123所在的自由度驱动模块12是否故障,提高了自由度驱动模块的故障检测的准确性。
主控制器11还可以采用另一种实施方式排除接收第二运动信息的驱动器存 在故障的可能。如,针对接收第二运动信息的驱动器,主控制器11获取该驱动器所在的自由度驱动模块中的目标电机的第一运动信息和第二运动信息,若根据第一运动信息和第二运动信息判断该驱动器所在的自由度驱动模块不存在故障,则可以剔除该驱动器存在故障的可能。
在本实施例中,主控制器11在确定出自由度驱动模块存在故障后,可以发送停机指令,以停止系统的电机运行,保护患者安全。在一实施例中,主控制器11,还用于如果确定目标电机123所在的自由度驱动模块12存在故障,则向该目标电机123所在的自由度驱动模块12的驱动器发送停机指令,或者,向系统中的所有驱动器发送停机指令。
即,主控制器11可以通过产生故障的自由度驱动模块中的驱动器,停止产生故障的自由度驱动模块中的电机运行,或者,通过系统中所有自由度驱动模块中的驱动器,停止所有电机运行,实现了在系统中自由度驱动模块出现异常时,及时进行控制以保证操作安全。
本实施例提供的器械驱动控制系统,包括主控制器以及至少两个自由度驱动模块,自由度驱动模块包括驱动器、第一编码器、目标电机、减速器以及第二编码器,通过与目标电机机械连接的第一编码器,检测目标电机对应的第一运动信息,并将第一运动信息发送至驱动器,并通过与目标电机机械连接的减速器对目标电机的当前运动信息进行转换,进而通过与减速器机械连接的第二编码器,检测减速器输出的目标电机对应的第二运动信息,将第二运动信息发送至除该目标电机所在的自由度驱动模块之外的其它自由度驱动模块的驱动器,通过主控制器,从各驱动器中获取目标电机对应的第一运动信息和第二运动信息,根据第一运动信息和第二运动信息判断该目标电机所在的自由度驱动模块是否存在故障,实现了对器械驱动控制系统中各自由度驱动模块的故障自动检测,避免了相关技术中不能及时发现故障以及确定故障位置所需时间较长的状况,便于排除故障和故障维修,并且,提高了系统的控制安全性。
在相关技术中,若驱动器损坏,则会导致编码器失去被检测的能力,进而导致电机出现飞车等异常现象,此时系统无法得知驱动器出现故障,而采用本实施例提供的系统,可以实现对自由度驱动模块的故障检测,进而可以实现对驱动器的故障检测,避免了无法检测出驱动器故障的状况。本实施例提供的系统可以支持多种不同自由度的手术机器人器械,用多路信号校验的方式,保证了系统安全,同时,精准检测出产生故障的自由度驱动模块,便于排查故障和维修,节约了故障排查的时间。
实施例二
在上述各实施例的基础上,在一实施例中,所述主控制器11还可以通过检测各个自由度驱动模块的当前运行自由度,确定系统的运行状态。
例如,主控制器11,还用于针对存在自由度运行比例关系的两个自由度驱动模块,确定各自由度驱动模块的当前运行自由度,基于各当前运行自由度确定系统的运转状态。
其中,存在自由度运行比例关系的两个自由度驱动模块,可以是指系统在驱动器械运行时,所运行的自由度之间具备依赖关系的自由度驱动模块。例如,自由度驱动模块1运行的自由度为200度,自由度驱动模块2运行的自由度为-200度,则自由度驱动模块1和自由度驱动模块2存在自由度运行比例关系;或者,自由度驱动模块3向上滑行10毫米,自由度驱动模块4向下滑行10毫米,则自由度驱动模块3和自由度驱动模块4存在自由度运行比例关系。
主控制器11中可以对存在自由度运行比例关系的两个自由度驱动模块之间的自由度运行比例关系进行存储,进而在系统驱动器械运动时,主控制器11可以实时监测各自由度驱动模块的当前运行自由度,根据各当前运行自由度对存在自由度运行比例关系的自由度驱动模块进行校验,如果当前运行自由度满足预设的自由度运行比例关系,则可以确定自由度驱动模块正常运转,系统的运转状态为正常运转。
在本实施例中,通过主控制器,对存在自由度运行比例关系的两个自由度驱动模块的当前运行自由度进行检测,并根据检测到的当前运行自由度对存在自由度运行比例关系的两个自由度驱动模块的运转状态进行判断,若存在自由度运行比例关系的两个自由度驱动模块的当前运行自由度符合自由度运行比例关系,则可以确定系统的运转状态正常,实现了系统运转状态的检测,保证了系统中各自由度驱动模块的运行安全。
需要说明的是,在本实施例中,若将存在自由度运行比例关系的两个自由度驱动模块描述为自由度驱动模块对,则存在自由度运行比例关系的自由度驱动模块对的数量可以是一个或多个,可以由各自由度驱动模块所对应的机械件之间的结构关系确定。若在一个系统中,存在多个自由度驱动模块对,则主控制器可以在确定出每一个自由度驱动模块对之间的当前运行自由度满足自由度运行比例关系时,确定系统的运转状态为正常。
在一种实施方式中,驱动器121还可以通过检测目标电机123的实际运行电流值,判断在系统控制器械时是否出现机械卡顿现象。如,驱动器121,还用 于检测目标电机123的实际运行电流值,基于目标电机123对应的预设运行阈值以及实际运行电流值,判断系统是否存在故障。
其中,预设运行阈值可以是预先设置的目标电机123的标准运行最大电流值。例如,驱动器121可以获取与其对应的目标电机123运行时的电流值,即实际运行电流值,并对实际运行电流值进行判断,若实际运行电流值超过预设运行阈值,则可以确定系统存在故障,故障原因可以是系统控制器械运动的过程中某一机械件出现卡顿。通过该方式,实现了对系统中各目标电机的运行故障的检测,保证了系统运行安全。
实施例三
图5是本申请实施例三提供的一种器械驱动控制系统的结构示意图,如图5所示,该系统包括主控制器51、至少两个自由度驱动模块52以及器械识别器53,自由度驱动模块52包括驱动器521、第一编码器522、目标电机523、减速器524以及第二编码器525。
其中,第一编码器522,与目标电机523机械连接,用于检测目标电机523对应的第一运动信息,并将第一运动信息发送至驱动器521;减速器524,与目标电机523机械连接,用于对目标电机523的当前运动信息进行转换;第二编码器525,与减速器524机械连接,用于检测减速器524输出的目标电机523对应的第二运动信息,将第二运动信息发送至除该目标电机523所在的自由度驱动模块52之外的其它自由度驱动模块的驱动器;器械识别器53,用于对待控制器械的标签单元中存储的与待控制器械对应的器械关联信息进行读取,将器械关联信息发送至主控制器51;主控制器51,与各驱动器521连接,用于从各驱动器521中获取该目标电机523对应的第一运动信息和第二运动信息,基于第一运动信息和第二运动信息判断该目标电机523所在的自由度驱动模块52是否存在故障,以及,基于器械关联信息中的器械类型标识,确定待控制器械是否与系统匹配。
在本实施例中,器械识别器53可以检测到待控制器械中的标签单元,其中,标签单元中存储有待控制器械对应的器械关联信息,器械识别器53可以在检测到标签单元时,读取该标签单元中存储的器械关联信息,以判断该待控制器械是否与系统匹配。
例如,器械识别器53可以将器械关联信息发送至主控制器51,其中,器械识别器53可以基于通信的方式直接向主控制器51发送器械关联信息,或者,还可以在系统中设置信号处理单元,器械识别器53将识别到的器械关联信息发 送至信号处理单元,由信号处理单元将该器械关联信息转发至主控制器51。
在一示例中,器械识别器53可以是一种射频识别(Radio Frequency Identification,RFID)设备,可以是一种近场通信(Near Field Communication,NFC)模组加天线的设备,可以是一种磁感应设备,可以是一种集成的无线读卡器设备。
在一示例中,当器械识别器53为无线设备时,标签单元可以是一种无线存储单元,标签单元集成的天线和RFID、NFC无线设备匹配。RFID、NFC通过天线和标签单元进行通信,对标签单元存储的内容进行读写。
在一实施例中,主控制器51在获取到器械关联信息后,可以根据器械关联信息中的器械类型标识,确定待控制器械对应的器械类型,进而根据器械类型判断该待控制器械是否与系统匹配。示例性的,主控制器51可以将待控制器械的器械类型,与预先存储的各个可匹配类型进行比对,若一致,则可以确定该待控制器械与系统匹配。
又或者,主控制器51可以在其内部维护一个关系表,关系表中存储有与系统匹配的各个器械标识,主控制器51可以在关系表中查询是否存在与待控制器械的器械类型标识一致的器械标识,若存在,则可以确定该待控制器械与系统匹配。
例如,就器械类型标识而言,每一种不同的器械,例如马里兰钳、开窗抓钳、大号持针器等,其标签单元存储的信息不同。例如可以定义标签存储单元中某一个数据的某三个比特位是0还是1进而来识别装载的是马里兰钳还是开窗抓钳还是大号持针器等。例如如果识别到001,则认为是马里兰钳。如果识别到010,则认为是开窗抓钳等。
在一实施例中,主控制器51,还可以基于所述器械关联信息中的器械使用标识,确定待控制器械是否与系统匹配。其中,器械使用标识可以包括器械使用次数、器械生产时间、器械过期时间以及器械维修次数中的至少一种。
示例性的,主控制器51可以根据待控制器械的器械使用次数以及预设使用次数阈值,判断该待控制器械是否与系统匹配。或者,主控制器51可以根据待控制器械的器械生产时间以及预设生产时间范围,判断该待控制器械是否与系统匹配。或者,主控制器51可以根据待控制器械的器械过期时间以及当前时间,判断该待控制器械是否过期,根据是否过期确定待控制器械是否与系统匹配。或者,主控制器51可以根据待控制器械的器械维修次数以及预设维修次数阈值,判断该待控制器械是否与系统匹配。通过待控制器械的器械关联信息中的器械 使用标识,实现了对待控制器械的验证,避免了不合格器械设备的安装,保证了系统操作安全。
主控制器51还可以根据器械类型标识和器械使用标识确定待控制器械是否与系统匹配。在本实施例中,若主控制器51确定出待控制器械与系统不匹配,则主控制器51可以发送拒绝该待控制器械的指令,以使各自由度驱动模块无法驱动电机运行。
本实施例提供的系统还可以包括信号显示器,其中,信号显示器可以是电子设备的显示屏幕,如电脑显示界面,也可以是灯光显示器、语音报警器等装置。例如,主控制器可以在确定出自由度驱动模块存在故障、系统运转异常或目标电机的运行电流异常等故障时,生成相应类型的报警信号发送至信号显示器进行显示,以实现对故障的报警。
本实施例,通过器械识别器,读取待控制器械的标签单元中存储的待控制器械对应的器械关联信息,并将器械关联信息发送至主控制器,进而通过主控制器,根据器械关联信息对待控制器械是否与系统匹配进行校验,实现了对待控制器械的验证,避免了不合格器械设备的安装,保证了系统操作安全。
在一种实施方式中,本实施例提供的系统还可以包括归零控制按钮,归零控制按钮,用于在检测到用户的触发动作时,生成归零请求信号发送至各自由度驱动模块52中的驱动器521,驱动器521,还用于在获取到归零请求信号时,基于预设初始零位对驱动器521所在的自由度驱动模块52中的目标电机523进行调整。
其中,归零控制按钮可以直接将归零请求信号发送至各个驱动器521中,还可以先将归零请求信号发送至主控制器51,主控制器51将归零请求信号转发至各个驱动器521。
在一实施例中,各个驱动器521在获取到归零请求信号时,可以根据预设初始零位调整目标电机523,使得目标电机523运行到预设初始零位。在一实施例中,通过检测用户触发归零控制按钮的动作,将所有电机设置为预设初始零位,实现了器械运行角度的一键归零,便于手术器械的拆卸,可以适用于安装器械、拆卸器械或更换器械等场景。
在一实施例中,图7中示出了归零控制按钮54。
实施例四
图6是本申请实施例四提供的一种器械驱动控制方法的流程示意图,该方法可以对器械进行多自由度的控制,可以由上述各实施例提供的器械驱动控制 系统执行,如图6所示,该方法包括:
S610、基于目标电机所在的自由度驱动模块中的第一编码器,检测所述目标电机对应的第一运动信息,将所述第一运动信息发送至所述自由度驱动模块中的驱动器。
S620、基于所述自由度驱动模块中的减速器,对所述目标电机的当前运动信息进行转换,并通过所述自由度驱动模块中的第二编码器,检测所述减速器输出的所述目标电机对应的第二运动信息,将所述第二运动信息发送至除所述自由度驱动模块之外的其它自由度驱动模块的驱动器。
S630、基于主控制器,从各所述驱动器中获取所述目标电机对应的第一运动信息和第二运动信息,基于所述第一运动信息和所述第二运动信息判断所述目标电机所在的自由度驱动模块是否存在故障。
在一实施例中,所述方法还包括:
通过所述主控制器,从所述驱动器中获取所述目标电机对应的第一运动信息,从除所述目标电机所在的自由度驱动模块之外的至少两个其它自由度驱动模块的驱动器中获取所述目标电机对应的第二运动信息,基于各所述第二运动信息确定接收所述第二运动信息的驱动器是否存在故障。
在一实施例中,所述基于所述第一运动信息和所述第二运动信息判断所述目标电机所在的自由度驱动模块是否存在故障,包括:
获取与所述减速器对应的预设比例范围,基于所述第一运动信息和所述第二运动信息确定所述目标电机对应的实际减速比例,基于所述预设比例范围和所述实际减速比例确定所述目标电机所在的自由度驱动模块是否存在故障。
在一实施例中,所述方法还包括:
通过所述主控制器,若确定所述目标电机所在的自由度驱动模块存在故障,则向所述目标电机所在的自由度驱动模块的驱动器发送停机指令,或者,向所述系统中的所有驱动器发送停机指令。
在一实施例中,所述方法还包括:
通过所述主控制器,针对存在自由度运行比例关系的两个所述自由度驱动模块,确定各所述自由度驱动模块的当前运行自由度,基于各所述当前运行自由度确定所述系统的运转状态。
在一实施例中,所述方法还包括:
通过所述驱动器,检测所述目标电机的实际运行电流值,基于所述目标电机对应的预设运行阈值以及所述实际运行电流值,判断所述系统是否存在故障。
在一实施例中,所述方法还包括:
通过器械识别器,对待控制器械的标签单元中存储的与所述待控制器械对应的器械关联信息进行读取,将所述器械关联信息发送至所述主控制器;
通过所述主控制器,基于所述器械关联信息中的器械类型标识,确定所述待控制器械是否与所述系统匹配。
在一实施例中,所述方法还包括:
通过所述主控制器,基于所述器械关联信息中的器械使用标识,确定所述待控制器械是否与所述系统匹配。
在一实施例中,所述方法还包括:
通过归零控制按钮,在检测到用户的触发动作时,生成归零请求信号发送至各所述自由度驱动模块中的驱动器;
通过所述驱动器,在获取到所述归零请求信号时,基于预设初始零位对所述驱动器所在的自由度驱动模块中的目标电机进行调整。
本实施例,通过与目标电机机械连接的第一编码器,检测目标电机对应的第一运动信息,并将第一运动信息发送至驱动器,并通过与目标电机机械连接的减速器对目标电机的当前运动信息进行转换,进而通过与减速器机械连接的第二编码器,检测减速器输出的目标电机对应的第二运动信息,将第二运动信息发送至除该目标电机所在的自由度驱动模块之外的其它自由度驱动模块的驱动器,通过主控制器,从各驱动器中获取目标电机对应的第一运动信息和第二运动信息,根据第一运动信息和第二运动信息判断该目标电机所在的自由度驱动模块是否存在故障,实现了对器械驱动控制系统中各自由度驱动模块的故障自动检测,避免了相关技术中不能及时发现故障以及确定故障位置所需时间较长的状况,便于排除故障和故障维修,并且,提高了器械的控制安全性。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的实施例所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本申请保护范围的限制。根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。

Claims (10)

  1. 一种器械驱动控制系统,包括主控制器(11)以及至少两个自由度驱动模块(12),每个自由度驱动模块(12)包括驱动器(121)、第一编码器(122)、目标电机(123)、减速器(124)以及第二编码器(125),其中;
    所述第一编码器(122),与所述目标电机(123)机械连接,设置为检测所述目标电机(123)对应的第一运动信息,并将所述第一运动信息发送至所述驱动器(121);
    所述减速器(124),与所述目标电机(123)机械连接,设置为对所述目标电机(123)的当前运动信息进行转换;
    所述第二编码器(125),与所述减速器(124)机械连接,设置为检测所述减速器(124)输出的所述目标电机(123)对应的第二运动信息,将所述第二运动信息发送至除所述目标电机(123)所在的自由度驱动模块(12)之外的其它自由度驱动模块(12)的驱动器(121);
    所述主控制器(11),与每个所述驱动器(121)连接,设置为从所述至少两个自由度驱动模块(12)分别对应的驱动器(121)中获取所述目标电机(123)对应的第一运动信息和第二运动信息,基于所述第一运动信息和所述第二运动信息判断所述目标电机(123)所在的自由度驱动模块(12)是否存在故障。
  2. 根据权利要求1所述的系统,其中,所述主控制器(11),还设置为从所述驱动器(121)中获取所述目标电机(123)对应的第一运动信息,从除所述目标电机(123)所在的自由度驱动模块(12)之外的至少两个其它自由度驱动模块(12)的驱动器(121)中获取所述目标电机(123)对应的第二运动信息,基于所述第二运动信息确定接收所述第二运动信息的驱动器(121)是否存在故障。
  3. 根据权利要求1所述的系统,其中,所述主控制器(11),还设置为获取与所述减速器(124)对应的预设比例范围,基于所述第一运动信息和所述第二运动信息确定所述目标电机(123)对应的实际减速比例,基于所述预设比例范围和所述实际减速比例确定所述目标电机(123)所在的自由度驱动模块(12)是否存在故障。
  4. 根据权利要求1所述的系统,其中,所述主控制器(11),还设置为响应于确定所述目标电机(123)所在的自由度驱动模块(12)存在故障,向所述目标电机(123)所在的自由度驱动模块(12)的驱动器(121)发送停机指令,或者,向所述系统中的所有驱动器(121)发送停机指令。
  5. 根据权利要求1所述的系统,其中,所述主控制器(11),还设置为针 对存在自由度运行比例关系的两个所述自由度驱动模块(12),确定每个自由度驱动模块(12)的当前运行自由度,基于所述当前运行自由度确定所述系统的运转状态。
  6. 根据权利要求1所述的系统,其中,所述驱动器(121),还设置为检测所述目标电机(123)的实际运行电流值,基于所述目标电机(123)对应的预设运行阈值以及所述实际运行电流值,判断所述系统是否存在故障。
  7. 根据权利要求1所述的系统,还包括器械识别器(53),所述器械识别器(53),设置为对待控制器械的标签单元中存储的与所述待控制器械对应的器械关联信息进行读取,将所述器械关联信息发送至所述主控制器(11);
    所述主控制器(11),还设置为基于所述器械关联信息中的器械类型标识,确定所述待控制器械是否与所述系统匹配。
  8. 根据权利要求7所述的系统,其中,所述主控制器(11),还设置为基于所述器械关联信息中的器械使用标识,确定所述待控制器械是否与所述系统匹配。
  9. 根据权利要求1所述的系统,还包括归零控制按钮(54),所述归零控制按钮(54),设置为响应于检测到用户的触发动作,生成归零请求信号发送至所述至少两个自由度驱动模块(12)中的驱动器(121);
    所述驱动器(121),设置为响应于获取到所述归零请求信号,基于预设初始零位对所述驱动器(121)所在的自由度驱动模块(12)中的目标电机(123)进行调整。
  10. 一种器械驱动控制方法,包括:
    基于目标电机(123)所在的自由度驱动模块(12)中的第一编码器(122),检测所述目标电机(123)对应的第一运动信息,将所述第一运动信息发送至所述自由度驱动模块(12)中的驱动器(121);
    基于所述自由度驱动模块(12)中的减速器(124),对所述目标电机(123)的当前运动信息进行转换,并通过所述自由度驱动模块(12)中的第二编码器(125),检测所述减速器(124)输出的所述目标电机(123)对应的第二运动信息,将所述第二运动信息发送至除所述自由度驱动模块(12)之外的其它自由度驱动模块(12)的驱动器(121);
    基于主控制器(11),从至少两个自由度驱动模块(12)分别对应的驱动器(121)中获取所述目标电机(123)对应的第一运动信息和第二运动信息,基于所述第一运动信息和所述第二运动信息判断所述目标电机(123)所在的自 由度驱动模块(12)是否存在故障。
PCT/CN2023/084109 2022-04-06 2023-03-27 器械驱动控制系统及方法 WO2023193627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210355709.8 2022-04-06
CN202210355709.8A CN116919602A (zh) 2022-04-06 2022-04-06 器械驱动控制系统及方法

Publications (1)

Publication Number Publication Date
WO2023193627A1 true WO2023193627A1 (zh) 2023-10-12

Family

ID=88244002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084109 WO2023193627A1 (zh) 2022-04-06 2023-03-27 器械驱动控制系统及方法

Country Status (2)

Country Link
CN (1) CN116919602A (zh)
WO (1) WO2023193627A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102889A (ja) * 2004-10-06 2006-04-20 Yaskawa Electric Corp 減速機の異常判定装置及び減速機の異常判定方法
JP2006281421A (ja) * 2005-04-05 2006-10-19 Yaskawa Electric Corp ロボットおよびロボットの異常検出方法
CN113567857A (zh) * 2021-07-19 2021-10-29 首钢京唐钢铁联合有限责任公司 一种电机编码器故障检测方法和装置
CN113696229A (zh) * 2021-10-12 2021-11-26 上海非夕机器人科技有限公司 安全系统、关节组件及机器人
CN113829384A (zh) * 2021-10-29 2021-12-24 南京佗道医疗科技有限公司 一种机械臂关节模组及其机械臂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102889A (ja) * 2004-10-06 2006-04-20 Yaskawa Electric Corp 減速機の異常判定装置及び減速機の異常判定方法
JP2006281421A (ja) * 2005-04-05 2006-10-19 Yaskawa Electric Corp ロボットおよびロボットの異常検出方法
CN113567857A (zh) * 2021-07-19 2021-10-29 首钢京唐钢铁联合有限责任公司 一种电机编码器故障检测方法和装置
CN113696229A (zh) * 2021-10-12 2021-11-26 上海非夕机器人科技有限公司 安全系统、关节组件及机器人
CN113829384A (zh) * 2021-10-29 2021-12-24 南京佗道医疗科技有限公司 一种机械臂关节模组及其机械臂

Also Published As

Publication number Publication date
CN116919602A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN102208888B (zh) 电动机驱动系统、电动机控制器和安全功能扩展器
JP5062925B2 (ja) 技術設備のための監視・制御装置
US8659254B2 (en) Servo system, servo motor driving device, safety unit and method for controlling servo system
US9488687B2 (en) Multiaxial motor driving apparatus and multiaxial motor drive device for determining whether or not there is a miswiring
JP3896237B2 (ja) 制御システム
JP6607098B2 (ja) 速度監視装置と速度監視方法
JP2016062611A (ja) プロセス制御システム内で、オンオフバルブをコントローラに通信可能に接続する方法、装置、及び記憶媒体
JP2008009872A (ja) 機械制御装置
US10020769B2 (en) Apparatus for actuating and/or monitoring a brushless DC motor
CN1828118A (zh) 具有单独的输出信号的光电栅栏
US10879831B1 (en) Method and system for real-time anomaly detection in a motor drive
WO2023193627A1 (zh) 器械驱动控制系统及方法
CN111505933B (zh) 伺服驱动器和伺服系统
US5676055A (en) Control device for a printing machine
CN109565250A (zh) 软启动器、运行方法和开关系统
US20220410389A1 (en) Robot system and erroneous wiring detection method thereof
CN105897118A (zh) 电动机控制装置
JP2001100805A (ja) ロボット制御装置
CN101224830A (zh) 电梯设备
CN114734438A (zh) 一种机器人关节的故障诊断方法及系统
KR20170104696A (ko) 로봇 케이블의 진단모듈을 구비한 로봇용 제어기 및 로봇 케이블의 진단방법
US20080319705A1 (en) Method For Reliable Position Monitoring
KR100834699B1 (ko) 자동차의 캔 통신 라인의 에러 진단 장치
JP2016220323A (ja) 診断装置、診断方法、及びプログラム
KR101662665B1 (ko) 파워버스를 이용한 무대설비의 자기진단 및 긴급대체 운전시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784191

Country of ref document: EP

Kind code of ref document: A1