WO2023193371A1 - 一种无线电能与数据同步传输系统及数据调制方法 - Google Patents

一种无线电能与数据同步传输系统及数据调制方法 Download PDF

Info

Publication number
WO2023193371A1
WO2023193371A1 PCT/CN2022/107334 CN2022107334W WO2023193371A1 WO 2023193371 A1 WO2023193371 A1 WO 2023193371A1 CN 2022107334 W CN2022107334 W CN 2022107334W WO 2023193371 A1 WO2023193371 A1 WO 2023193371A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
circuit
wireless power
primary
stage
Prior art date
Application number
PCT/CN2022/107334
Other languages
English (en)
French (fr)
Inventor
何湘宁
刘胜
冯跃
吴建德
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US18/278,074 priority Critical patent/US20240048185A1/en
Publication of WO2023193371A1 publication Critical patent/WO2023193371A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • H04B5/266One coil at each side, e.g. with primary and secondary coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/12Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits

Definitions

  • the invention belongs to the technical fields of power electronics, wireless power transmission and carrier communication, and specifically relates to a wireless power and data synchronous transmission system and a data modulation method.
  • Wireless power transmission includes capacitively coupled power transfer (CCPT) and inductively coupled power transfer (ICPT). Inductively coupled power transmission is divided into magnetic induction wireless power transmission and magnetic resonance. Wireless power transmission.
  • CCPT capacitively coupled power transfer
  • ICPT inductively coupled power transfer
  • Wireless power transmission is divided into magnetic induction wireless power transmission and magnetic resonance.
  • Wireless power transmission At present, the magnetic induction wireless power transmission system has higher output power and high transmission efficiency, but the signal frequency is lower and the transmission distance is shorter; the magnetic resonance wireless power transmission system has higher signal frequency and longer transmission distance, but the output power Smaller, lower transmission efficiency.
  • wireless power transmission systems in addition to efficient power conversion circuits, also need to have functions such as feedback control, status monitoring, coil positioning, and foreign object detection. Therefore, it is necessary to connect the power supply side (primary side) and the power receiving side ( One-way or two-way data communication between secondary sides).
  • the use of power coupling coils to achieve communication between the primary and secondary sides has the advantages of easy installation and good safety.
  • Typical load modulation methods include the communication method adopted by the Qi standard, which is to add an additional switch on the secondary side and realize reverse communication by switching the load impedance; for example, the Chinese patent with the publication number CN106787244A uses a controllable rectifier circuit on the secondary side and switches on by adjusting The angle method realizes data transmission from the secondary side to the primary side.
  • this type of load modulation technology causes large power loss, reduces the energy transmission efficiency of the wireless energy transmission system, and is difficult to be suitable for larger power transmission occasions.
  • the Chinese patent with publication number CN103595145A proposes a method to achieve high-speed communication and wireless energy transmission based on common inductive coupling.
  • this method requires the communication carrier frequency to be much larger than the power transmission frequency, so it is suitable for lower frequency wireless energy transmission (such as 85kHz), and in some wireless power transmission systems using higher frequencies (such as 6.78MHz), this method cannot be applied.
  • the traditional wireless power transmission system includes the primary inverter circuit (including compensation circuit), primary coil, secondary coil and secondary rectifier circuit (including compensation circuit).
  • the secondary rectifier circuit converts the electrical energy into DC energy
  • the output usually needs to go through a first-level converter to adjust the impedance to achieve high-efficiency power transmission.
  • the primary side often uses an independent front-end converter to adjust the input voltage and power of the inverter circuit.
  • the present invention provides a wireless power and data synchronous transmission system and a data modulation method, which uses power/information composite modulation technology to control power electronics.
  • the power PWM signal inside the converter performs information modulation, thereby directly modulating the digital signal to the input or output port of the converter without requiring additional signal modulation circuits. It has the advantages of simple structure and high reliability.
  • a wireless power and data synchronous transmission system including a primary side and a secondary side.
  • the primary side consists of a DC power supply, a primary side front-stage DC/DC conversion circuit U 1 , a primary side back-stage inverter circuit U 2 and a primary side
  • the coil L 1 is connected in sequence.
  • the secondary part is composed of the secondary coil L 2 , the secondary front-stage rectifier circuit U 3 , the secondary-side DC/DC conversion circuit U 4 and the load.
  • the primary side and the secondary side are two parts. Wireless synchronous transmission of power and data is achieved through the coupling of the primary coil L 1 and the secondary coil L 2 ;
  • the data modulation method of the system is: the primary side front-end DC/DC conversion circuit U 1 uses the power and information composite modulation method to superimpose the data signal on the DC output end of U 1 , and passes through the primary side After the secondary modulation of the rear-stage inverter circuit U2 , the main frequency band of the data signal moves to near the working frequency of wireless power transmission and the power carrier accompanying the wireless power transmission is transmitted to the secondary coil through the primary coil L1 and the secondary coil L2 . side, and then perform signal demodulation on the output voltage ripple or output current ripple of the secondary side front-stage rectifier circuit U 3 , and then the data sent by the primary side can be received;
  • the data modulation method of the system is: the secondary side DC/DC conversion circuit U4 uses the power and information composite modulation method to superimpose the data signal on the DC input end of U4 , and passes through the secondary side front-end DC/DC conversion circuit U4. After the secondary modulation of the rectifier circuit U3 , the main frequency band of the data signal moves to near the working frequency of wireless power transmission and is transmitted to the primary side through the secondary coil L2 and the primary coil L1 , and then to the primary side DC /DC conversion circuit U1 output voltage ripple or output current ripple signal demodulation, you can receive the data sent by the secondary side.
  • the secondary modulation is a mixing modulation process using the primary-side inverter circuit U2 or the secondary-side front-stage rectifier circuit U3 , that is, the primary-side rear-stage inverter circuit U2 or the secondary-side front-stage rectifier
  • the high-frequency switching process of circuit U3 is equivalent to the process of square wave modulation of the DC side low-frequency data signal and moving the low-frequency data signal to near the coil operating frequency in the frequency domain.
  • the power and information composite modulation method used by the primary-side front-stage DC/DC conversion circuit U 1 and the secondary-side back-stage DC/DC conversion circuit U 4 can be realized in the following two ways:
  • Method 1 Keep the frequency and phase of the PWM carrier fixed, and superimpose the baseband or frequency band modulated data signal into the power control loop of U 1 or U 4 ;
  • Method 2 Modulate the data in the PWM carrier of U 1 or U 4.
  • the carrier modulation method can be FSK or PSK.
  • the data modulation method is suitable for inductively coupled power transmission systems and capacitively coupled power transmission systems.
  • the inductively coupled power transmission systems include magnetic induction wireless power transmission systems and magnetic resonance wireless power transmission systems.
  • the coil can be a single coil structure or a multi-coil structure.
  • the primary-side front-stage DC/DC conversion circuit U 1 and the secondary-side back-stage DC/DC conversion circuit U 4 can adopt circuit topologies such as Buck, Boost, Buck-Boost, LLC, half-bridge, and full-bridge.
  • the primary-side back-stage inverter circuit U 2 can adopt a full-bridge inverter, a half-bridge inverter, a Class-E inverter and other circuit topologies
  • the secondary-side front-stage rectifier circuit U 3 can adopt a full-bridge inverter. Rectifier, half-bridge rectifier, Class-E rectifier and other circuit topologies.
  • the data modulation method is suitable for wireless power transmission systems with operating frequencies from 1kHz to 100MHz.
  • the secondary side DC/DC conversion circuit U 4 in the system can be eliminated.
  • the primary side front-stage DC/DC conversion circuit U 1 in the system can be eliminated.
  • the wireless energy information simultaneous transmission system is an analog communication method based on sinusoidal carrier waves.
  • the carrier power component greatly consumes receiver energy; in the present invention, the carrier wave is exactly the carrier power of wireless energy transmission and can be used to drive load, so the present invention not only does not consume additional power of the demodulation device, but also provides a carrier for information transmission; and the inverter and rectifier in the system serve as square wave modulators and act as analog signal modulators in the information transmission process.
  • the demodulator function gives power electronic switching devices new functions of information modulation.
  • the present invention utilizes the power/information composite modulation technology of the front-end/last-stage conversion circuit to realize communication between the power supply side (primary side) and the power receiving side (secondary side).
  • This primary-secondary side communication includes forward communication (the primary side sends data to the secondary side) and reverse communication (the secondary side sends data to the primary side). Therefore, the system and method of the present invention can be used for both reverse communication and forward communication.
  • Figure 1 is a schematic structural diagram of a wireless power transmission system with front and rear stage converters.
  • Figure 2 is a schematic diagram of the architecture of the forward wireless energy and data simultaneous transmission system.
  • Figure 3 is a schematic diagram of the architecture of the reverse wireless energy and data simultaneous transmission system.
  • Figure 4 is a schematic diagram of the frequency band modulation principle for data transmission using front and rear stage converters.
  • Figure 5 is a schematic diagram of the PSK/FSK modulation principle using data transmission between the front and rear stage converters.
  • Figure 6 is a schematic diagram of signal spectrum slicing of the wireless information energy fusion transmission system.
  • Figure 7(a) is a schematic diagram of the principle of wireless energy transmission based on the energy and data simultaneous transmission system.
  • Figure 7(b) is a schematic diagram of the principle of wireless information transmission based on the energy and data simultaneous transmission system.
  • Figure 8 is an example diagram of a wireless energy and data simultaneous transmission system based on converter ripple modulation.
  • the wireless power and data simultaneous transmission system of the present invention includes primary and secondary parts.
  • the primary part consists of a DC power supply, a primary-side front-stage DC/DC conversion circuit U 1 , and a primary-side rear-stage inverter circuit.
  • U 2 (including the compensation circuit) and the primary coil L 1 are composed of;
  • the secondary part is composed of the secondary coil L 2 , the secondary front-stage rectifier circuit U 3 (including the compensation circuit) and the secondary-side DC/DC conversion circuit U 4 , load composition.
  • the primary side DC/DC conversion circuit U1 uses the power and information composite modulation method to superimpose the data signal on the DC output end.
  • the main frequency band of the data signal moves to near the working frequency of wireless power transmission, and along with the power carrier of wireless power transmission, it is transmitted to the secondary side through the wireless power transmission coil; and then to the secondary side
  • the output terminal voltage or output current ripple of the front-stage rectifier circuit U3 performs signal demodulation and receives the data sent by the primary side.
  • the secondary side DC/DC conversion circuit U4 uses the power and information composite modulation method to superimpose the data signal on the DC input end, and the signal is rectified by the secondary side front stage In the secondary modulation process of circuit U 3 , the main frequency band of the data signal moves to near the working frequency of wireless power transmission, and is transmitted to the primary side through the wireless power transmission coil; then the output of the primary side front-end DC/DC conversion circuit U 1 The terminal voltage or output current ripple is used to demodulate the signal and receive the data sent by the secondary side.
  • the primary-side front-stage DC/DC conversion circuit U 1 and the secondary-side back-stage DC/DC conversion circuit U 4 use the following two methods to achieve power/information modulation:
  • the energy input at 1 is defined as e 1
  • the AC signal is defined as v 1 . Since the input energy is DC, the input AC signal is a complex exponential signal, and E 1 >
  • the baseband signal given in a in Figure 6 is a narrowband signal, the signal bandwidth is B, and the signal bandwidth satisfies B ⁇ 0/ 2 ⁇ ( ⁇ 0 is the carrier frequency), so the amplitude and phase of the information are relative to the switching frequency ⁇ 0 They are all "slow-changing" time functions.
  • the inverter and rectifier can be regarded as square wave modulators (or sine wave modulators), and the modulator output voltage amplitude depends on the input voltage amplitude and gate PWM control
  • the duty cycle of the signal is assumed to be 50%. Therefore, the Fourier expansion form of the modulator output voltage is written as:
  • c 1 and c 3 in Figure 6 give the frequency domain model of the square wave modulator in the above formula (taking the full-bridge inverter as an example).
  • the fundamental wave component occupies the main component.
  • the use of the frequency domain convolution theorem helps to explain the basic principles of modulation. For example, to shift the spectrum of a narrowband signal to ⁇ 0 , one only needs to multiply the narrowband signal by the carrier signal cos( ⁇ 0 t), so the signal output at 2
  • the time domain and frequency domain components can be written as:
  • b 2 and d 2 in Figure 6 correspond to the spectrum slices of the above formula.
  • the spectrum shows that both energy and information are moved to the frequency domain centered on ⁇ 0.
  • it is called a bandpass modulation signal. Therefore, it has the foundation for propagation in high-frequency channels.
  • the intermediate resonant cavity is usually composed of capacitors and inductors connected in series and parallel. It has the function of frequency selection, mainly to improve the Q value of the system in a specific frequency band and to improve the distance and efficiency of energy transmission.
  • the filter system can process the input signal at 2 into the output signal at 3, and its characteristics can be characterized by impulse response h(t) or Fourier transform H(j ⁇ ):
  • the bandwidth of the bandpass filter is 2 ⁇ m and the baseband signal satisfies ⁇ 1 ⁇ m .
  • the spectral gain of the signal at ⁇ 0 ⁇ 1 is recorded as H 0 (j ⁇ ). Therefore, the bandpass propagation process can be expressed by the frequency domain product of the input signal and the filter. In other words, the input spectrum is modified or filtered.
  • the energy and information amplitude at 3 are recorded as:
  • the bandpass filter filters out the very high frequency components and retains the fundamental wave component and the signal components near it.
  • the rectifier circuit can also be regarded as a square wave modulator similar to the inverter. The difference from 1 is that due to the frequency selection characteristics of the ideal bandpass filter, the energy and information amplitude The value can be expressed as:
  • the spectrum output corresponding to e 2 and v 2 is shown as b 4 and d 4 in Figure 6, and the recovery process of energy and information is different.
  • the energy signal can be output as a DC signal through a rectifier in parallel with a suitable large capacitor to power the load. This process is similar to the envelope detection process; for the information demodulation process, since there is no need to retain Its twice-frequency component, so choosing a low-pass filter circuit with a cutoff frequency of ⁇ m2 ( ⁇ 1 ⁇ m2 ⁇ 0 ) or a frequency-selective network for filtering can restore the signal information, recorded as:
  • wireless energy and data simultaneous transmission coil means that the coil between the transmitting device and the receiving device has no electrical contact and only transmits energy and data through a magnetic field. Therefore, in addition to Mhz wireless charging in this embodiment, the wireless energy and data simultaneous transmission method proposed by the present invention can also be implemented at other frequencies.
  • one end of the DC energy E 1 is connected in parallel with the voltage stabilizing capacitor C d1 and the series inductor L s1 and the inverter input end, and the other end is connected in parallel with the voltage stabilizing capacitor C d1 and the other end of the inverter input to form DC energy.
  • one end of the inverter output is connected to one end of the wireless energy transmission system, and the transmitting side coil composed of a series and parallel compensation circuit and the other end of the inverter output connection form an energy emitter loop; one end of the receiving side induction coil is connected in series and parallel The compensation circuit is connected to the input end of the rectifier, and the other end of the induction coil is connected to the other end of the rectifier input to form an energy receiving pole loop; one end of the output side of the rectifier is connected to the inductor L s2 in series, the parallel capacitor C d2 and one end of the load R L , and the other end of the rectifier is connected to the capacitor in parallel. And the other end of the load forms a DC energy power supply loop.
  • the information source is connected in series with an inverter, a wireless energy and data simultaneous transmission coil system, a rectifier, and an information demodulation circuit composed of a digital frequency selective network through a digital demodulation network composed of a frequency selective network. to the information transmission loop.
  • one end of the information source v 1 is connected in series with the capacitor C d1 and one end of the inverter input side, and the other end is connected in series with a set of frequency selection networks Z s0 based on parallel RLC and the inverter to form an information loading loop;
  • One end of the inverter output is connected to one end of the wireless information transmission system, and the information emitter loop is formed through the series-parallel connection of the transmitting side coil and the other end of the inverter output connection;
  • one end of the receiving side induction coil is connected to the rectifier through a series-parallel compensation circuit
  • the other end of the induction coil is connected to the other end of the rectifier input to form an information receiving pole loop;
  • one end of the rectifier output is connected in series with a set of parallel frequency selection networks Z l0 and series capacitor C d2 , and the other end is connected in series with capacitor C d2 to form an information recovery path;
  • the information source forms a reverse signal through a digital demodulation network composed of a frequency-selective network, a series rectifier, a wireless energy and data simultaneous transmission coil, an inverter, and an information demodulation circuit composed of a frequency-selective network.
  • Information transmission loop a digital demodulation network composed of a frequency-selective network, a series rectifier, a wireless energy and data simultaneous transmission coil, an inverter, and an information demodulation circuit composed of a frequency-selective network.
  • one end of the information source v 2 is connected through the series capacitor C d2 and one end of the rectifier output side, and the other end is connected in series through a set of frequency selection networks Z l0 based on parallel RLC and the rectifier to form an information loading loop;
  • one end of the rectifier input Connect one end of the wireless information transmission system, the transmitting side coil composed of a series and parallel compensation circuit, and the other end connected to the inverter output to form an information emitter loop;
  • a section of the receiving side induction coil is connected to the inverter output through a series and parallel compensation circuit end, the other end of the induction coil is connected to the other end of the inverter output to form an information receiving pole loop;
  • one end of the inverter input is connected in series with a set of frequency selection networks based on parallel RLC Z s0 and capacitor C d1 , and the other end is connected in series with capacitor C d1 .
  • Information recovery path by detecting the voltage on R 1 and through the digital demodulation circuit
  • the resonant wireless energy and data simultaneous transmission system in this embodiment includes a DC power supply, a high-frequency inverter, an information receiving and demodulation circuit, a charging induction coil and a compensation capacitor, a rectifier, a DC conversion circuit, and a load.
  • the high-frequency inverter outputs the input DC power energy into high-frequency AC power, transmits high-frequency AC power through resonance/coupling of the sending and receiving induction coils, and supplies power to the load through the rectifier and DC conversion circuit.
  • the information transmission process is loaded into the DC energy before and after the inverter or rectifier through the power electronic switch.
  • Figure 8 shows an example of a wireless energy and data simultaneous transmission system based on converter ripple modulation.
  • the system consists of: DC power supply, Boost DC converter, emitter demodulation circuit, Class-E inverter, wireless charging resonance cavity, rectifier, receiver demodulation circuit, buck DC converter and load.
  • the Boost/Buck DC converter adjusts the DC power supply/receiving side input DC voltage to a suitable supply voltage to ensure that the system works at the optimal efficiency point; the information passes through the DC converter Duty cycle disturbance or frequency disturbance, inject low-frequency signals (1k ⁇ 200k) into the DC energy path; modulate it through the inverter/rectifier to the high-frequency carrier band, and pass through the wireless energy and data transmission coil (channel) with bandpass function ), then demodulated to a low-frequency analog signal through a rectifier/inverter, and finally restored to a digital signal through the sampling and digital demodulation module.
  • the energy and data transmitting unit includes a DC power supply, Boost DC conversion circuit, Class-E inverter and transmitting coil charging circuit.
  • the energy and data receiving unit includes a receiving coil charging circuit, rectifier, Buck DC conversion circuit and DC load.
  • Wireless energy and The data simultaneous transmission coil includes the self-inductance parameter of the transmitting side excitation coil L 1 , the resistance parameter R p1 , the transmitting side coil L 2 , the resistance parameter R p2 , the receiving side coil L 3 , the resistance parameter R p3 and the load coil self-inductance
  • the parameter L 4 and the resistance parameter are R p4
  • the mutual inductance coupling coefficient parameters between the resonant coils are k 12 , k 23 , and k 34
  • the mutual inductances M 12 , M 23 , and M 34 between the coils are determined by the following formula:
  • the wireless field is "near field” and "mid-to-long distance".
  • the near field exists within the electromagnetic field area excited by the excitation and transmitting coils, thereby sending energy and data out, and its corresponding wavelength is within about one wavelength or fractional range. .
  • the medium and long distance is different from the several millimeters or tens of centimeters used in electric vehicles and consumer electronics usage scenarios. It should reach the distance in this example (more than one meter). With appropriate adjustments, it is also applicable to several millimeters or tens of centimeters. of wireless charging.
  • the resonant coil includes the resonant capacitors C 1 , C 2 , C 3 and C 4 connected in series, or obtained from the coil self-resonance design.
  • the mass production methods are PCB design or skeleton design.
  • the compensation resonant capacitor parameters are determined by the following formula:
  • ⁇ 0 is the resonant angular frequency of the wireless energy transmission system, usually 6.78Mhz or 13.56Mhz.
  • the Class - E inverter circuit includes filter inductor L x , filter capacitor C Square wave inverter replacement, the compensation capacitor parameter of C x is determined by the following formula:
  • the inverter circuit converts DC energy into high-frequency AC square waves, which are output to the excitation coil through the inverter.
  • low-frequency communication signals are loaded near the high-frequency carrier band through the inverter.
  • the principle is similar to that of a mixer, so the inverter functions as a square wave modulation circuit or a sine wave modulation circuit.
  • the digital demodulation circuit includes transformer loops L s1 and L l2 , parallel frequency selection capacitors C s1 and C l2 and receiving resistors Rs1 and R l1 .
  • other filter circuits can also be selected as the receiving loop. Since there are power electronic switching ripples and inverter harmonic interference in the receiving loop, it needs to be filtered through the frequency selection network, and at the same time to avoid the frequency selection network from interfering with the power circuit.
  • the frequency selection capacitor and resistance parameters are determined by the following formula:
  • ⁇ 1 is the cut-off frequency resonant angular frequency of the frequency selective network
  • Q 1 and Q 2 are the quality factors of the frequency selective network, generally within 10
  • this Q value is different from the Q value of the wireless transmission system coil
  • demodulation The Q value of the receiving device is used to adjust the gain of the receiving circuit signal, which is generally small, while the transmitting and receiving coils are used to increase the gain of the power circuit, which is generally large, and needs to be distinguished.
  • the rectifier is composed of Schottky diodes d 1 ⁇ d 4 , and the load equivalent internal resistance R L is a battery load.
  • the rectifier can also be replaced by Class-E rectifier, half-bridge, and full-wave rectifier circuits;
  • the Boost DC converter circuit is composed of energy storage inductors L d1 , filter capacitors C d1 , C p1 and power electronic switches S d11 and S d12 ;
  • Buck DC converter circuit is composed of filter inductor L d2 , filter capacitors C d2 , C s and power electronic switches S d21 and S d22 .
  • the above-mentioned DC conversion circuit can also be replaced by other suitable circuits, such as Buck-Boost, Cuk and other circuits.
  • the DC conversion circuit acts as a power regulator, regulating functions such as maximum power tracking and energy supply on the power generation side. It also plays a role in battery management by receiving and maintaining constant load power or constant voltage and current.
  • the duty cycle disturbance or frequency disturbance of the power electronic switch acts as a signal source, and the simultaneous transmission function of energy and data is realized through the DC conversion circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

一种无线电能与数据同步传输系统及数据调制方法,其对原边前级变换器与副边后级变换器进行功率/信息复合调制,输出的功率/信息流可以跨无线电能传输电路传输,从而实现原边与副边之间的通信。通过将数字频带信号调制于直流母线,利用逆变/整流电路的混频效应,将调制的数字信号频谱迁移至功率传输频率附近,并传输至异侧电路,异侧电路对该信号解调得到基带信号。适用性广,可用于各种无线电能传输系统,尤其适合于高频系统。

Description

一种无线电能与数据同步传输系统及数据调制方法 技术领域
本发明属于电力电子、无线电能传输及载波通信技术领域,具体涉及一种无线电能与数据同步传输系统及数据调制方法。
背景技术
无线电能传输技术作为一种新型的电能传输方式,在许多领域得到越来越多的应用。无线电能传输包括容性耦合式电能传输(Capacitively Coupled Power Transfer,CCPT)和感性耦合式电能传输(Inductively Coupled Power Transfer,ICPT),感性耦合式电能传输又分为磁感应式无线电能传输和磁谐振式无线电能传输。目前,磁感应式无线电能传输系统的输出功率较大、传输效率高,但是信号频率较低、传输距离较近;磁谐振式无线电能传输系统的信号频率较高、传输距离较远,但是输出功率较小、传输效率较低。
无线电能传输系统在实际应用中,除了需要具有高效的电能转换电路外,还需具备反馈控制、状态监控、线圈定位、异物检测等功能,因此需要在供电侧(原边)与受电侧(副边)之间实现单向或双向数据通信。利用功率耦合线圈实现原副边之间的通信,具有安装方便、安全性好的优点,目前主要有以下几类方法:
(1)通信与无线电能传输使用公共耦合线圈,但信号与能量采用时分复用方式传输。如公开号为CN102318136A的中国专利采用了该方式,这种方式不断切换工作方式,通常存在较长的过渡过程,影响传输功率和效率,因此不适用于较大功率传输,且通信速率也较低。
(2)通信与无线电能传输共用耦合电感线圈并公用一个频段,采用负载调制方法从副边向原边传输数据。典型的负载调制方法包括Qi标准采用的通信方式,即在副边增加额外开关,通过切换负载阻抗实现反向通信;如公开号为CN106787244A的中国专利在副边采用可控整流电路,通过调整开通角的方法实 现副边向原边的数据传输,但是这类负载调制技术造成较大的功率损耗,降低了无线能量传输系统的能量传输效率,难以适用于较大功率传输场合。
(3)信息与电能传输共用耦合线圈,但功率与信号采用不同的传输频率。如公开号为CN103595145A的中国专利提出了一种基于公共电感耦合实现高速通讯和无线能量传输的方法,但该方法要求通信载波频率远大于功率传输频率,因此适合于较低频率的无线电能传输(如85kHz),而在一些采用较高频率(如6.78MHz)的无线电能传输系统中,该方法无法适用。
(4)此外,公开号为CN113013999A的中国专利提出了一种通过直流侧串联调制信号实现无线电能与数据同传的方法和电路,但是该方法需要额外增加一组信号耦合电路。
传统的无线电能传输系统包括原边逆变电路(含补偿电路)、原边线圈、副边线圈和副边整流电路(含补偿电路)。但是,为了提高无线电能传输系统的传输效率,副边整流电路将电能转换为直流能量后,输出端通常还需再经过一级变换器,通过调节阻抗以实现高效率的功率传输。此外,为了调节输出功率,原边还经常采用独立的前级变换器,对逆变电路的输入电压以及功率进行调节。
发明内容
针对存在前级/后级变换电路的高频大功率无线电能传输应用场景,本发明提供了一种无线电能与数据同步传输系统及数据调制方法,其采用功率/信息复合调制技术通过对电力电子变换器内部的功率PWM信号进行信息调制,从而将数字信号直接调制于变换器的输入或输出端口,而不需要额外的信号调制电路,具有结构简单、可靠性高的优点。
一种无线电能与数据同步传输系统,包括原边和副边两部分,原边部分由直流电源、原边前级DC/DC变换电路U 1、原边后级逆变电路U 2以及原边线圈L 1依次连接构成,副边部分由副边线圈L 2、副边前级整流电路U 3、副边后级DC/DC变换电路U 4以及负载依次连接构成,原边和副边两部分通过原边线圈L 1与副边线圈L 2耦合实现电能与数据无线同步传输;
当原边向副边发送数据时,系统的数据调制方法为:原边前级DC/DC变换电路U 1采用功率与信息复合调制方法将数据信号叠加于U 1的直流输出端,经原 边后级逆变电路U 2二次调制后,数据信号的主频带搬迁至无线电能传输的工作频率附近并伴随无线电能传输的功率载波经原边线圈L 1与副边线圈L 2传递至副边,进而对副边前级整流电路U 3的输出电压纹波或输出电流纹波进行信号解调,即可接收到原边所发送的数据;
当副边向原边发送数据时,系统的数据调制方法为:副边后级DC/DC变换电路U 4采用功率与信息复合调制方法将数据信号叠加于U 4的直流输入端,经副边前级整流电路U 3二次调制后,数据信号的主频带搬迁至无线电能传输的工作频率附近并经副边线圈L 2与原边线圈L 1传递至原边,进而对原边前级DC/DC变换电路U 1的输出电压纹波或输出电流纹波进行信号解调,即可接收到副边所发送的数据。
进一步地,所述二次调制为利用原边后级逆变电路U 2或副边前级整流电路U 3的混频调制过程,即原边后级逆变电路U 2或副边前级整流电路U 3的高频开关过程等效于对直流侧低频数据信号进行方波调制,在频域上将低频数据信号搬移到线圈工作频率附近的过程。
进一步地,所述原边前级DC/DC变换电路U 1和副边后级DC/DC变换电路U 4采用的功率与信息复合调制方法可通过以下两种方式实现:
方式1:使PWM载波的频率和相位固定不变,将经基带或频带调制后的数据信号叠加至U 1或U 4的功率控制环中;
方式2:将数据调制于U 1或U 4的PWM载波中,其载波调制方法可采用FSK或PSK。
进一步地,所述数据调制方法适用于感性耦合式电能传输系统和容性耦合式电能传输系统,感性耦合式电能传输系统包括磁感应式无线电能传输系统和磁谐振式无线电能传输系统,系统中的线圈可以是单线圈结构或多线圈结构。
进一步地,所述原边前级DC/DC变换电路U 1和副边后级DC/DC变换电路U 4可采用Buck、Boost、Buck-Boost、LLC、半桥、全桥等电路拓扑结构。
进一步地,所述原边后级逆变电路U 2可采用全桥逆变、半桥逆变、Class-E逆变等电路拓扑结构,所述副边前级整流电路U 3可采用全桥整流、半桥整流、Class-E整流等电路拓扑结构。
进一步地,所述数据调制方法适用于工作频率从1kHz~100MHz的无线电能 传输系统。
进一步地,当所述数据调制方法应用于原边向副边传输数据的单向通信系统时,可取消系统中的副边后级DC/DC变换电路U 4
进一步地,当所述数据调制方法应用于副边向原边传输数据的单向通信系统时,可取消系统中的原边前级DC/DC变换电路U 1
无线能量信息同传系统是基于正弦载波的模拟通信方式,传统的载波调制中,载波功率分量极大地消耗接收机能量;在本发明中,载波正是无线能量传输的载波功率,可以用于驱动负载,因此本发明不仅不会额外消耗解调装置的功率,还可以为信息传输提供载体;而系统中的逆变器和整流器作为方波调制器,充当了信息传输过程中的模拟信号调制器和解调器的功能,为电力电子开关器件赋予了信息调制的新功能。
此外,本发明利用前级/后级变换电路的功率/信息复合调制技术,实现了供电侧(原边)与受电侧(副边)之间的通信,这种原副边通信包括正向通信(原边向副边发送数据)和反向通信(副边向原边发送数据),因此本发明系统及方法既可以用于反向通信,也可以用于正向通信。
附图说明
图1为具有前后级变换器的无线电能传输系统结构示意图。
图2为正向无线能量与数据同传系统的架构示意图。
图3为反向无线能量与数据同传系统的架构示意图。
图4为利用前后级变换器数据传输的频带调制原理示意图。
图5为利用前后级变换器数据传输的PSK/FSK调制原理示意图。
图6为无线信息能量融合传输系统的信号频谱切片示意图。
图7(a)为基于能量与数据同传系统的无线能量传输原理示意图。
图7(b)为基于能量与数据同传系统的无线信息传输原理示意图。
图8为基于变流器纹波调制的无线能量与数据同传系统示例图。
具体实施方式
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技 术方案进行详细说明。
如图1所示,本发明无线电能与数据同传系统包含了原边与副边部分,原边部分由直流电源、原边前级DC/DC变换电路U 1、原边后级逆变电路U 2(包含补偿电路)以及原边线圈L 1构成;副边部分由副边线圈L 2、副边前级整流电路U 3(包含补偿电路)以及副边后级DC/DC变换电路U 4、负载组成。
如图2所示,原边向副边发送数据时,原边前级DC/DC变换电路U 1采用功率与信息复合调制方法,将数据信号叠加于直流输出端,该信号经原边后级逆变电路U 2的二次调制后,数据信号的主频带搬迁至无线电能传输的工作频率附近,并伴随无线电能传输的功率载波,经无线电能传输线圈传递到副边;进而对副边前级整流电路U 3的输出端电压或输出电流纹波进行信号解调,接收原边发送的数据。
如图3所示,副边向原边发送数据时,副边后级DC/DC变换电路U 4采用功率与信息复合调制方法,将数据信号叠加在直流输入端,该信号经副边前级整流电路U 3的二次调制过程,数据信号的主频带搬迁至无线电能传输的工作频率附近,经无线电能传输线圈传递至原边;进而对原边前级DC/DC变换电路U 1的输出端电压或输出电流纹波进行信号解调,接收副边发送的数据。
原边前级DC/DC变换电路U 1和副边后级DC/DC变换电路U 4采用以下两种方法实现功率/信息调制:
①PWM载波的频率和相位固定不变,将基带或频带调制后的数据信号叠加到U 1和U 4的功率控制环,如图4所示。
②将数据调制于U 1和U 4的PWM载波,包括载波的FSK调制和PSK调制,如图5所示。
以下我们通过图6来说明无线能量信息同传系统中能量与信息在传输过程的异同。在①处输入的能量定义为e 1,交流信号定义为v 1,由于输入的能量为直流量,输入的交流信号复指数信号,且E 1>|V 1|,记为:
e 1+v 1=E 1+V 1cos(ω 1t+θ 1)
在给出的频谱图中,图6中的b 1和d 1分别对应上式中的能量与信息信号,为简化分析,θ 1=0。
图6中a给出的基带信号为一个窄带信号,信号带宽为B,信号带宽满足 B<<ω 0/2π(ω 0为载波频率),因此信息的幅值和相位相对于开关频率ω 0都是“慢变化”的时间函数。假设电力电子开关均由理想元件组成,因此可以将逆变器和整流器视为方波调制器(或者正弦波调制器),且调制器输出电压幅值取决于输入电压幅值以及门极PWM控制信号的占空比,假设为50%。因此,调制器输出电压的傅里叶展开形式记为:
Figure PCTCN2022107334-appb-000001
图6中的c 1和c 3给出了上式中方波调制器的频域模型(以全桥逆变器为例),在调制器输出电压的频谱分量中,基波分量占据主要成分。此外,利用频域卷积定理有助于说明调制的基本原理,例如将窄带信号频谱平移到ω 0处,只需要将窄带信号乘以载波信号cos(ω 0t),因此②处输出的信号时域以及频域分量可以记为:
Figure PCTCN2022107334-appb-000002
图6中的b 2和d 2对应为上式的频谱切片,图谱显示无论是能量还是信息,均被搬移到以ω 0为中心的频域范围内,通信中称之为带通调制信号,因此具备了在高频信道传播的基础。在无线能量传输模型中,中间级谐振腔通常以电容电感串并联构成,具有选频的功能,主要是为了提高系统在特定频段的Q值,用来提升能量传递的距离以及效率。我们将其抽象为一个线性相位的带通滤波器,其频率图谱切片如图6中c 2所示。滤波器系统可以将②处输入信号处理为③处输出信号,其特性可以通过脉冲响应h(t)或者傅里叶变换H(jω)来表征:
Figure PCTCN2022107334-appb-000003
带通滤波器的带宽2ω m且基带信号满足ω 1m,信号在ω 0±ω 1处的频谱增益记为H 0(jω)。因此,带通传播过程可以用输入信号与滤波器的频域乘积表示,换言之是对输入频谱进行了修改或者过滤,③处的能量和信息的幅值记为:
Figure PCTCN2022107334-appb-000004
带通调制信号经过滤波器后如图6中b 3和d 3所示,从频域看,带通滤波器滤去了甚高频的分量,保留了基波分量以及其附近的信号分量。考虑到无线电 能传输系统的对称性,因此整流电路也可视为与逆变器相似的方波调制器,与①处所不同的是,由于理想带通滤波器的选频特性,能量和信息幅值可表示为:
Figure PCTCN2022107334-appb-000005
e 2以及v 2对应的频谱输出如图6中的b 4和d 4所示,且能量与信息的恢复过程有所差异。先分析能量的恢复过程,能量信号通过整流器并联一个合适的大电容即可输出为直流信号为负载进行供能,该过程与包络检波的过程类似;而对于信息解调的过程,由于无需保留其二倍频的分量,因此选择一个截止频率为±ω m2的低通滤波电路(ω 1m2<<ω 0)或者选频网络进行滤波即可恢复信号信息,记为:
Figure PCTCN2022107334-appb-000006
实施例1
在本实施例中,“无线能量与数据同传线圈”是指发射装置与接收装置之间的线圈无电气接触,仅通过磁场进行能量与数据的传输。因此,除本实施例中的Mhz无线充电中,其他频率下同样可以实现本发明提出的无线能量与数据同传方法。
从电路结构上看,无线能量与无线信息传输过程非常相似;图7(a)所示为无线能量传输方法的实施例程,图7(b)所示为无线信息传输方法的实施例程。
(1)直流能量通过滤波电路、逆变器、无线能量与数据同传线圈、整流器、输出滤波系统以及负载构成能量传输回路。
图7(a)中,直流能量E 1的一端并联稳压电容C d1以及串联电感L s1以及逆变器输入端,另一端并联稳压电容C d1以及逆变器输入的另一端构成直流能量回路;逆变器输出的一端连接无线能量传输系统的一端,通过串并联补偿电路组成的发射侧线圈以及逆变器输出连接的另一端构成能量发射极回路;接收侧感应线圈的一端通过串并联补偿电路连接整流器输入端,感应线圈的另一端与整流器输入另一端相连构成能量接收极回路;整流器输出侧一端串联电感L s2以及并联电容C d2以及负载R L的一端,整流器的另一端并联电容以及负载的另一端 构成直流能量供电回路。
(2)正向信息传输过程中,信源通过选频网络构成的数字解调网络串联逆变器、无线能量与数据同传线圈系统、整流器以及数字选频网络构成的信息解调电路构成正向信息传输回路。
图7(b)中,信息源v 1一端通过串联电容C d1以及逆变器输入侧的一端,另一端通过串联一组基于并联RLC的选频网络Z s0以及逆变器构成信息加载回路;逆变器输出的一端连接无线信息传输系统的一端,通过串并联组成的发射侧线圈以及逆变器输出连接的另一端构成信息发射极回路;接收侧感应线圈的一端通过串并联补偿电路连接整流器输入端,感应线圈的另一端与整流器输入另一端相连构成信息接收极回路;整流器输出一端串联一组并联的选频网络Z l0以及串联电容C d2,另一端串联电容C d2构成信息恢复通路;通过检测R 2上的电压,通过数字解调电路,可以恢复v 1中的信息信号。
(3)反向信息传输过程中,信源通过选频网络构成的数字解调网络串联整流器器、无线能量与数据同传线圈、逆变器以及选频网络构成的信息解调电路构成反向信息传输回路。
图7(b)中,信息源v 2一端通过串联电容C d2以及整流器输出侧的一端,另一端通过串联一组基于并联RLC的选频网络Z l0以及整流器构成信息加载回路;整流器输入的一端连接无线信息传输系统的一端,通过串并联补偿电路组成的发射侧线圈,以及逆变器输出连接的另一端构成信息发射极回路;接收侧感应线圈的一段通过串并联补偿电路连接逆变器输出端,感应线圈的另一端与逆变器输出另一端相连构成信息接收极回路;逆变器输入一端串联一组基于并联RLC的选频网络Z s0以及电容C d1,另一端串联电容C d1构成信息恢复通路;通过检测R 1上的电压,通过数字解调电路,可以恢复v 2中的信息信号。
本实施例中的谐振式无线能量与数据同传系统包括了直流电源、高频逆变器、信息接收与解调电路、充电感应线圈与补偿电容、整流器、直流转换电路、负载。高频逆变器将输入直流电源能量输出为高频交流电源,通过发送与接收感应线圈谐振/耦合传输高频交流电能,经过整流器以及直流转换电路向负载供电。信息传输过程则通过电力电子开关加载到逆变器或整流器前后的直流能量中,首先通过逆变器/整流器调制为高频交流信号,再通过能量与数据同传信道, 最后经过接收侧的整流器/逆变器解调恢复至低频段,最后通过数字接收与解调电路恢复为数字信号。
实施例2
图8所示为基于变流器纹波调制的无线能量和数据同传系统示例,系统构成包括:直流电源、Boost直流变换器、发射极解调电路、Class-E逆变器、无线充电谐振腔、整流器、接收极解调电路、buck直流转换器以及负载。
本实例中能量与数据的同传工作原理:Boost/Buck直流变换器通过将直流电源/接收侧输入直流电压调理为合适的供电电压,保证系统工作在最优效率点;信息通过直流变换器的占空比扰动或者频率扰动,注入低频信号(1k~200k)到直流能量通路中;通过逆变器/整流器的调制到高频载波频段,经过具有带通功能的无线能量与数据传输线圈(信道),再经过整流器/逆变器解调至低频模拟信号,最后通过采样与数字解调模块恢复至数字信号。
能量与数据发射单元包括直流电源、Boost直流转换电路、Class-E逆变器和发射线圈充电回路,能量与数据接收单元包括接收线圈充电回路、整流器、Buck直流转换电路和直流负载,无线能量与数据同传线圈包括发射侧激励线圈自感参数为L 1、电阻参数为R p1、发射侧线圈L 2、电阻参数为R p2、接收侧线圈L 3、电阻参数为R p3以及负载线圈自感参数L 4、电阻参数为R p4,谐振线圈之间的互感耦合系数参数为k 12、k 23、k 34,线圈之间的互感M 12、M 23、M 34由下式确定:
Figure PCTCN2022107334-appb-000007
无线场在本实例中为“近场”与“中远距离”,近场存在与激励与发射线圈激发的电磁场区域内,从而将能量与数据发送出去,其对应的波长大约一个波长或者分数范围内。中远距离则是有别于电动汽车以及消费电子使用场景中使用的几毫米或者几十厘米,应当达到本实例中的距离(一米以上),通过适当调整,同样适用于几毫米或者几十厘米的无线充电。
谐振式线圈包括与谐振电容C 1、C 2、C 3、C 4串联,或者由线圈自谐振设计 获取。虽然当前谐振式无线充电方式多选择自谐振方式,但容易造成无法大批量生产,可大规模生产方式为PCB设计或者骨架设计等。补偿谐振电容参数由下式确定:
Figure PCTCN2022107334-appb-000008
式中:ω 0为无线能量传输系统的谐振角频率,通常为6.78Mhz或者13.56Mhz。
Class-E逆变器电路包括滤波电感L x、滤波电容C x以及电力电子开关L p、开关电容C p2、扼流电感L p,该逆变器可以由半桥或者全桥等DC-AC方波逆变器替代,C x的补偿电容参数由下式确定:
Figure PCTCN2022107334-appb-000009
在能量传输模式时,逆变器电路将直流能量转化为高频交流方波,通过逆变器输出至激励线圈。在无线通信模式下,低频的通信信号通过逆变器加载到高频载波频段附近,其原理类似与混频器,因此逆变器功能为方波调制电路或者是正弦波调制电路。
数字解调电路包括变压器回路L s1、L l2、并联选频电容C s1、C l2以及接收电阻R s1、R l1,除了本实例外,还可以选择其他滤波电路作为接收回路。由于接收回路中存在电力电子开关纹波以及逆变器谐波干扰,需要通过选频网络加以滤除,同时避免选频网络对功率电路产生干扰,选频电容以及电阻参数由下式确定:
Figure PCTCN2022107334-appb-000010
式中:ω 1为选频网络的截止频率谐振角频率,Q 1和Q 2为选频网络的品质因素, 一般取10以内,该Q值与无线传输系统线圈Q值有所不同,解调接收装置的Q值是为了调整接收电路信号的增益,一般较小,而发射与接收线圈则是为提高功率电路的增益,一般较大,需要加以区分。
整流器由肖特基二极管d 1~d 4构成,负载等效内阻R L采用电池负载,整流器还可用Class-E整流、半桥、全波整流电路替代;Boost直流转换器电路由储能电感L d1、滤波电容C d1、C p1以及电力电子开关S d11、S d12构成;Buck直流转换器电路由滤波电感L d2、滤波电容C d2、C s以及电力电子开关S d21、S d22构成。
上述直流变换电路还可以使用其他合适的电路替代,例如Buck-Boost、Cuk等电路。在能量传输过程中,直流转换电路充当功率调节器,在发电侧充当调节最大功率追踪、能量供应等功能,在接收及维持负载功率恒定或者电压电流恒定等功能,起到电池管理的作用。在信息传输过程中,通过电力电子开关的占空比扰动或者频率扰动,充当信源的作用,通过直流转换电路实现能量与数据的同传功能。
上述对实施例的描述是为便于本技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对上述实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (9)

  1. 一种无线电能与数据同步传输系统,包括原边和副边两部分,其特征在于:原边部分由直流电源、原边前级DC/DC变换电路U 1、原边后级逆变电路U 2以及原边线圈L 1依次连接构成,副边部分由副边线圈L 2、副边前级整流电路U 3、副边后级DC/DC变换电路U 4以及负载依次连接构成,原边和副边两部分通过原边线圈L 1与副边线圈L 2耦合实现电能与数据无线同步传输;
    当原边向副边发送数据时,系统的数据调制方法为:原边前级DC/DC变换电路U 1采用功率与信息复合调制方法将数据信号叠加于U 1的直流输出端,经原边后级逆变电路U 2二次调制后,数据信号的主频带搬迁至无线电能传输的工作频率附近并伴随无线电能传输的功率载波经原边线圈L 1与副边线圈L 2传递至副边,进而对副边前级整流电路U 3的输出电压纹波或输出电流纹波进行信号解调,即可接收到原边所发送的数据;
    当副边向原边发送数据时,系统的数据调制方法为:副边后级DC/DC变换电路U 4采用功率与信息复合调制方法将数据信号叠加于U 4的直流输入端,经副边前级整流电路U 3二次调制后,数据信号的主频带搬迁至无线电能传输的工作频率附近并经副边线圈L 2与原边线圈L 1传递至原边,进而对原边前级DC/DC变换电路U 1的输出电压纹波或输出电流纹波进行信号解调,即可接收到副边所发送的数据。
  2. 根据权利要求1所述的无线电能与数据同步传输系统,其特征在于:所述二次调制为利用原边后级逆变电路U 2或副边前级整流电路U 3的混频调制过程,即原边后级逆变电路U 2或副边前级整流电路U 3的高频开关过程等效于对直流侧低频数据信号进行方波调制,在频域上将低频数据信号搬移到线圈工作频率附近的过程。
  3. 根据权利要求1所述的无线电能与数据同步传输系统,其特征在于:所述原边前级DC/DC变换电路U 1和副边后级DC/DC变换电路U 4采用的功率与信息复合调制方法可通过以下两种方式实现:
    方式1:使PWM载波的频率和相位固定不变,将经基带或频带调制后的数据信号叠加至U 1或U 4的功率控制环中;
    方式2:将数据调制于U 1或U 4的PWM载波中,其载波调制方法可采用FSK或PSK。
  4. 根据权利要求1所述的无线电能与数据同步传输系统,其特征在于:所述数据调制方法适用于感性耦合式电能传输系统和容性耦合式电能传输系统,感性耦合式电能传输系统包括磁感应式无线电能传输系统和磁谐振式无线电能传输系统,系统中的线圈可以是单线圈结构或多线圈结构。
  5. 根据权利要求1所述的无线电能与数据同步传输系统,其特征在于:所述原边前级DC/DC变换电路U 1和副边后级DC/DC变换电路U 4可采用Buck、Boost、Buck-Boost、LLC、半桥、全桥等电路拓扑结构。
  6. 根据权利要求1所述的无线电能与数据同步传输系统,其特征在于:所述原边后级逆变电路U 2可采用全桥逆变、半桥逆变、Class-E逆变等电路拓扑结构,所述副边前级整流电路U 3可采用全桥整流、半桥整流、Class-E整流等电路拓扑结构。
  7. 根据权利要求1所述的无线电能与数据同步传输系统,其特征在于:所述数据调制方法适用于工作频率从1kHz~100MHz的无线电能传输系统。
  8. 根据权利要求1所述的无线电能与数据同步传输系统,其特征在于:当所述数据调制方法应用于原边向副边传输数据的单向通信系统时,可取消系统中的副边后级DC/DC变换电路U 4
  9. 根据权利要求1所述的无线电能与数据同步传输系统,其特征在于:当所述数据调制方法应用于副边向原边传输数据的单向通信系统时,可取消系统中的原边前级DC/DC变换电路U 1
PCT/CN2022/107334 2022-04-06 2022-07-22 一种无线电能与数据同步传输系统及数据调制方法 WO2023193371A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/278,074 US20240048185A1 (en) 2022-04-06 2022-07-22 Wireless power and data synchronous transfer system and data modulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210354741.4A CN114825656B (zh) 2022-04-06 2022-04-06 一种无线电能与数据同步传输系统及数据调制方法
CN202210354741.4 2022-04-06

Publications (1)

Publication Number Publication Date
WO2023193371A1 true WO2023193371A1 (zh) 2023-10-12

Family

ID=82532215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107334 WO2023193371A1 (zh) 2022-04-06 2022-07-22 一种无线电能与数据同步传输系统及数据调制方法

Country Status (3)

Country Link
US (1) US20240048185A1 (zh)
CN (1) CN114825656B (zh)
WO (1) WO2023193371A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116405065A (zh) * 2023-03-14 2023-07-07 哈尔滨工业大学 一种无线座椅能量与信息同步传输系统、信号传输方法及回传方法
CN116418373B (zh) * 2023-04-17 2024-05-17 东南大学 一种基于机械谐振的无线能量和数据同步传输系统及负载
CN116827385B (zh) * 2023-07-03 2024-03-22 华北电力大学(保定) Dc-dc变换器功率控制环扰动的功率信息融合装置
CN116979708B (zh) * 2023-09-12 2024-03-26 重庆大学 一种耦合机构、bcpt系统及其频相同步控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065336A (zh) * 2014-06-25 2014-09-24 浙江大学 一种集成数据通信功能的光伏优化器
CN111901052A (zh) * 2020-07-28 2020-11-06 中国矿业大学 多调制波复合spwm控制的电能与信号并行无线传输系统
GB2585440A (en) * 2019-04-11 2021-01-13 Apple Inc Wireless Power System With in-Band Communications
CN113013999A (zh) * 2021-02-09 2021-06-22 浙江大学 一种基于直流纹波调制的无线电能和数据同步传输系统
CN114243942A (zh) * 2021-12-20 2022-03-25 浙江大学 一种基于能量信息复合调制技术的无线光伏发电系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10097041B2 (en) * 2013-10-31 2018-10-09 Lg Electronics Inc. Wireless power transmission device and control method therefor
US10476372B2 (en) * 2014-12-22 2019-11-12 Futurewei Technologies, Inc. Buck-boost power converter and method of operation thereof
US10090709B2 (en) * 2015-03-23 2018-10-02 Mitsubishi Electric Corporation Bidirectional non-contact power supply device and bidirectional non-contact power supply system
JP7233424B2 (ja) * 2017-11-02 2023-03-06 エルジー イノテック カンパニー リミテッド 無線充電方法およびそのための装置
US10998776B2 (en) * 2019-04-11 2021-05-04 Apple Inc. Wireless power system with in-band communications
US11641158B2 (en) * 2020-03-05 2023-05-02 Texas Instruments Incorporated Closed loop commutation control for a switching power converter
TW202224327A (zh) * 2020-09-30 2022-06-16 日商Flosfia股份有限公司 電力轉換電路及控制系統
EP4344024A4 (en) * 2021-08-30 2024-09-25 Samsung Electronics Co Ltd WIRELESS POWER TRANSMITTER FOR WIRELESS POWER TRANSMISSION, WIRELESS POWER RECEIVER FOR WIRELESS POWER RECEPTION AND METHOD FOR OPERATING THE SAME
US20230104202A1 (en) * 2021-09-28 2023-04-06 Samsung Electronics Co., Ltd. Power reception device and method for controlling charging of power reception device
US11742808B1 (en) * 2022-09-15 2023-08-29 University Of Houston System Compact pulsed power supplies

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104065336A (zh) * 2014-06-25 2014-09-24 浙江大学 一种集成数据通信功能的光伏优化器
GB2585440A (en) * 2019-04-11 2021-01-13 Apple Inc Wireless Power System With in-Band Communications
CN111901052A (zh) * 2020-07-28 2020-11-06 中国矿业大学 多调制波复合spwm控制的电能与信号并行无线传输系统
CN113013999A (zh) * 2021-02-09 2021-06-22 浙江大学 一种基于直流纹波调制的无线电能和数据同步传输系统
CN114243942A (zh) * 2021-12-20 2022-03-25 浙江大学 一种基于能量信息复合调制技术的无线光伏发电系统

Also Published As

Publication number Publication date
CN114825656B (zh) 2023-06-27
CN114825656A (zh) 2022-07-29
US20240048185A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
WO2023193371A1 (zh) 一种无线电能与数据同步传输系统及数据调制方法
CN107707036B (zh) 双通道无线电能传输系统及其能量与信号同步传输方法
CN107618388B (zh) 一种电动汽车无线充电系统
CN111987813B (zh) 基于单线圈耦合机构的同步全双工通信无线功率传输系统
CN112701800B (zh) 共享通道式单电容耦合无线电能与信号并行传输系统
CN103166474B (zh) 原边串联副边串并联补偿非接触谐振变换器
CN104716752A (zh) 一种感应电能传输控制装置及其控制方法
CN108808875B (zh) 一种适用于电池特性的恒流、恒压无线充电系统及无线充电的方法
CN107453612A (zh) 一种适用于宽输入范围的高效dc/dc转换功率电路
CN109495137B (zh) 一种海底直流输电电缆的信号耦合系统及方法
CN114421646A (zh) 基于混合调制的磁耦合无线能量信号同步传输系统
Xia et al. Simultaneous wireless power and information transfer based on phase-shift modulation in ICPT system
CN113013999B (zh) 一种基于直流纹波调制的无线电能和数据同步传输系统
Guo et al. High-bandwidth-utilization wireless power and information transmission based on DDPSK modulation
CN213243835U (zh) 一种半桥双向隔离式ac-dc变换器
WO2024036599A1 (zh) 基于集成式磁路耦合结构的能量与信号同步无线传输系统
CN105305866B (zh) 一种具有无功能量吸收装置的正弦波差频逆变器
Wu et al. Constant output design for double-sided LCC WPT system based on switch controlled capacitor and novel active rectifier
CN210806860U (zh) 一种具有恒压输出特性的无线电能传输系统
CN207241475U (zh) 一种电动汽车无线充电系统
Zhuo et al. A Novel Simultaneous Wireless Power and Data Transfer Scheme for Two-stage Inductive Power Transfer Systems
US11855464B1 (en) Wireless synchronous transmission system of energy and signal based on integrated magnetic circuit coupling structure
CN116260485B (zh) 一种两级式无线能信同传系统及方法
US20230202319A1 (en) On-Board Charging Device for Electric Vehicle, System, and Methods for Wirelessly Charging Electric Vehicle
CN116760203A (zh) 一种磁谐电能传输与通信系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18278074

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936301

Country of ref document: EP

Kind code of ref document: A1