WO2023191456A1 - Thin film solid oxide fuel cell and manufacturing method therefor - Google Patents

Thin film solid oxide fuel cell and manufacturing method therefor Download PDF

Info

Publication number
WO2023191456A1
WO2023191456A1 PCT/KR2023/004120 KR2023004120W WO2023191456A1 WO 2023191456 A1 WO2023191456 A1 WO 2023191456A1 KR 2023004120 W KR2023004120 W KR 2023004120W WO 2023191456 A1 WO2023191456 A1 WO 2023191456A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon substrate
dielectric film
electrode
electrolyte membrane
solid oxide
Prior art date
Application number
PCT/KR2023/004120
Other languages
French (fr)
Korean (ko)
Inventor
김영현
이준영
Original Assignee
주식회사 에이엠엑스랩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220039238A external-priority patent/KR20230140285A/en
Priority claimed from KR1020220039239A external-priority patent/KR20230140286A/en
Application filed by 주식회사 에이엠엑스랩 filed Critical 주식회사 에이엠엑스랩
Publication of WO2023191456A1 publication Critical patent/WO2023191456A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a thin-film solid oxide fuel cell and a method of manufacturing the same.
  • a solid oxide fuel cell is a type of highly efficient energy conversion device that converts chemical energy into electrical energy. It is a fuel cell that uses a solid oxide membrane as an electrolyte.
  • the electrolyte used in the electrolyte membrane of SOFC is mainly YSZ (Yttria Stabilized Zirconia), and thin film SOFC manufactured through the Micro-electro-mechanical System (MEMS) process is a free standing electrolyte membrane on a silicon substrate. It consists of a back-etched membrane structure that forms an electrode (see, for example, Japanese Patent Registration No. 4,914,831).
  • MEMS Micro-electro-mechanical System
  • the lower part of the electrolyte thin film is exposed through back etching, and then electrodes are formed on the top and bottom of the electrolyte thin film to allow the reaction gas to reach both sides of the electrolyte.
  • MEMS-based thin-film SOFC has the advantage of improving operation performance at low temperatures by minimizing ohmic loss due to ion conduction in the electrolyte by forming the membrane and electrode into a thin film, but stress is concentrated near the edge during operation, causing this problem. There is a disadvantage in that nearby cells are damaged (for example, see US Patent Publication No. 10,637,088).
  • the electrolyte reduces the thickness to reduce resistance to offset the decrease in ionic conductivity at low temperatures
  • the electrode is nano-structured to increase the specific surface area to reduce the low activity at low temperature by reducing the reaction point density. This can be offset by an increase.
  • the unit cell in the form of a nanomembrane which forms an electrolyte film and electrode in a free standing manner on a silicon substrate, is composed of a plurality of subcells formed in the form of a trench.
  • the density of subcells can affect the performance of the final solid oxide fuel cell.
  • the present invention was designed to solve the above problems, and one technical problem to be achieved by the present invention is to provide a thin film solid oxide fuel cell having a stress relaxation structure at the edge of the membrane.
  • Another technical problem to be achieved by the present invention is to provide a method of manufacturing a thin film solid oxide fuel cell having a stress relaxation structure at the edge of the membrane.
  • Another technical problem to be achieved by the present invention is to provide a unit cell having subcells in a honeycomb arrangement.
  • Another technical problem to be achieved by the present invention is to provide a thin-film solid oxide fuel cell including a unit cell with subcells in a honeycomb arrangement.
  • a silicon substrate an electrolyte membrane formed on the first side of the silicon substrate, a first electrode formed on at least a portion of the first side of the electrolyte membrane, and the first side of the silicon substrate.
  • a recess formed to expose a portion of the second side opposite to the first side of the electrolyte membrane from the second side, which is the opposite side, to the first electrode, and a recess formed on at least the exposed second side of the electrolyte membrane.
  • a solid oxide fuel cell is provided, including two electrodes, wherein the silicon substrate includes a porous portion formed to be porous at least near an edge of the recess portion.
  • a method for manufacturing a solid oxide fuel cell comprising forming a second electrode on a second surface that is opposite to the first surface.
  • a porous silicon substrate an electrolyte membrane formed on a first side of the porous silicon substrate, a first electrode formed on at least a portion of the first side of the electrolyte membrane, and the first electrode of the porous silicon substrate.
  • a recess formed to expose a portion of the second side of the electrolyte membrane opposite to the first side from the second side of the first side, and facing the first electrode, and at least the exposed second side of the electrolyte membrane.
  • a solid oxide fuel cell is provided, including a second electrode formed on the.
  • a dielectric film on a first surface of a single crystal silicon substrate and a second surface opposite to the first surface, and forming the dielectric film deposited on the second surface in a predetermined pattern. removing the dielectric film, forming an electrolyte film on the first surface of the dielectric film deposited on the first surface, etching the removed portion of the second surface to expose the dielectric film deposited on the first surface.
  • a method for manufacturing a solid oxide fuel cell comprising forming a second electrode on a second surface.
  • a silicon substrate an electrolyte membrane formed on the first side of the silicon substrate, a first electrode formed on at least a portion of the first side of the electrolyte membrane, and the first side of the silicon substrate.
  • a recess formed to expose a portion of the second side opposite to the first side of the electrolyte membrane from the second side, which is the opposite side, to the first electrode, and a recess formed on at least the exposed second side of the electrolyte membrane.
  • the multilayer structure formed by the first electrode, the electrolyte membrane, and the second electrode includes a plurality of sub cells in the form of a trench formed at a predetermined depth, and each of the plurality of sub cells is formed of the silicon
  • a unit cell for a solid oxide fuel cell is provided, arranged to be located at the center of each regular hexagon of a virtual honeycomb pattern on the first side of a substrate.
  • six sub cells surrounding one sub cell are arranged so that a line connecting the centers of each sub cell forms a regular hexagon.
  • a groove formed at an intermediate position of each subcell is further provided.
  • the silicon substrate includes a porous portion formed to be porous at least near an edge of the recess portion.
  • the silicon substrate includes a porous silicon substrate.
  • a solid oxide fuel cell including the unit cell is provided.
  • a thin-film solid oxide fuel cell including a unit cell with subcells in a honeycomb arrangement.
  • FIG. 1 is a side cross-sectional view of a thin-film solid oxide fuel cell according to at least one embodiment of the present invention.
  • FIGS. 2A to 2G are conceptual diagrams for explaining the manufacturing process of a thin film solid oxide fuel cell according to at least one embodiment of the present invention.
  • Figure 3 is a conceptual diagram of a unit cell having subcells in a honeycomb arrangement according to at least one embodiment of the present invention.
  • FIG. 4 is an enlarged top view of a unit cell with subcells in a honeycomb arrangement according to at least one embodiment of the present invention.
  • Figure 5 is a detailed diagram of a honeycomb array structure of a unit cell having subcells in a honeycomb array according to at least one embodiment of the present invention.
  • FIG. 1 is a side cross-sectional view of a thin-film solid oxide fuel cell 100 according to at least one embodiment of the present invention.
  • a thin-film solid oxide fuel cell 100 includes a silicon substrate 110 and a first surface of the silicon substrate 110 (the example shown in FIG. 1).
  • the first electrode 130 formed on at least a portion of the first side of the electrolyte membrane 120, and the second side opposite to the first side of the silicon substrate 110 (FIG. 1)
  • a recess portion 140 formed so that a portion opposing the first electrode 130 on the second side, which is the opposite side of the first side of the electrolyte membrane 120, is exposed from the lower surface), and at least the recess portion. It consists of a second electrode 150 formed on the second surface of the electrolyte membrane 120 exposed through 140.
  • the thin-film solid oxide fuel cell 100 is a MEMS-based thin-film SOFC.
  • a MEMS-based thin-film SOFC By forming the membrane and electrodes into thin films, ohmic loss due to ion conduction in the electrolyte is minimized, thereby improving operating performance at low temperatures. It has a structure that improves.
  • the thin film solid oxide fuel cell 100 includes a porous portion 160 formed to be porous at least near the edge of the recess portion 140 of the silicon substrate 110.
  • a porous portion 160 is formed near the edge of the recessed portion 140 of the silicon substrate 110 and concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane).
  • An example of dispersing the stress is shown, but the entire silicon substrate 110 can be made porous to disperse the stress concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane).
  • the thin film solid oxide fuel cell 100 includes a porous silicon substrate 110, an electrolyte membrane 120 formed on the first side of the porous silicon substrate 110, and an electrolyte.
  • a first electrode 130 formed on at least a portion of the first side of the membrane 120, opposing the first electrode 130 on the second side of the electrolyte membrane 120 from the second side of the porous silicon substrate 110. It consists of a recess 140 formed to be partially exposed, and a second electrode 150 formed on at least the second surface of the electrolyte membrane 120 exposed through the recess 140.
  • the electrolyte membrane 120 may be formed of an ion-conducting ceramic electrolyte membrane using a MEMS process, and the first electrode 130 and the second electrode 150 may be made of a porous platinum material. It can be formed using .
  • electrolyte membrane 120 may be formed from a solid oxygen ion conductor such as yttria stabilized zirconia (YSZ) or a proton conductor such as yttrium doped BaZrO 3 (BYZ).
  • YSZ yttria stabilized zirconia
  • BYZ yttrium doped BaZrO 3
  • Figures 2A to 2G are conceptual diagrams for explaining the manufacturing process of the thin film solid oxide fuel cell 100 according to at least one embodiment of the present invention.
  • a silicon substrate 110 of which both sides are polished has a first side (the top side in the example shown in FIG. 2A) and a second side opposite the first side (the bottom side in the example shown in FIG. 2A). ) and deposit a dielectric film 111 and a dielectric film 112, respectively.
  • SiN can be used for the dielectric films 111 and 112.
  • the dielectric film 112 deposited on the second surface is removed according to a predetermined pattern. That is, the SiN dielectric film 112 is patterned through photolithography using a mask with a predetermined pattern on the dielectric film deposited on the second surface, and then etched using an appropriate etchant to form a dielectric film according to the pattern ( 112) is removed.
  • the electrolyte film 120 is formed on the first side of the dielectric film 111 deposited on the first side.
  • the steps of removing the dielectric film 112 deposited on the second side according to a predetermined pattern and forming the electrolyte film 120 on the first side of the dielectric film 111 deposited on the first side are sequentially performed. You could do it differently.
  • the portion from which the dielectric film 112 on the second side was removed is etched to form a recess 140 to expose the dielectric film 111 deposited on the first side.
  • wet etching may be performed using a KOH solution to etch the silicon substrate 110 from the bottom.
  • the dielectric film 111 deposited on the first side exposed through the recess portion 140 and the dielectric film 112 remaining on the second side are removed.
  • At least the edge of the recessed portion 140 of the silicon substrate 110 is made porous.
  • a method may be used to form porous silicon by immersing single crystal silicon in a hydrofluoric acid solution of a predetermined concentration and then anodizing it.
  • the first electrode 130 is formed on at least a portion of the first side of the electrolyte membrane 120, and a dielectric is deposited on the first side exposed through the recess portion 140.
  • a second electrode 150 is formed on the second surface of the electrolyte membrane 120 exposed by removing the membrane 111.
  • the thin-film solid oxide fuel cell 100 manufactured in this way is a MEMS-based thin-film SOFC.
  • ohmic loss due to ion conduction in the electrolyte can be minimized and operating performance at low temperatures can be improved.
  • At least the recessed portion In order to prevent stress from being concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane) during operation and damaging the cells located in this vicinity, at least the recessed portion ( By forming the porous portion 160 near the edge of the membrane 140, the stress concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane) can be dispersed.
  • the electrolyte membrane 120 may be formed of an ion-conducting ceramic electrolyte membrane using a MEMS process, and the first electrode 130 and the second electrode 150 may be made of a porous platinum material. It can be formed using .
  • electrolyte membrane 120 may be formed from a solid oxygen ion conductor such as yttria stabilized zirconia (YSZ) or a proton conductor such as yttrium doped BaZrO 3 (BYZ).
  • YSZ yttria stabilized zirconia
  • BYZ yttrium doped BaZrO 3
  • a porous portion 160 is formed near the edge of the recess portion 140 of the silicon substrate 110, and is formed near the edge of the membrane (near the edge of the recess portion 140 in the membrane). ) is shown as an example of dispersing the stress concentrated in the silicon substrate 110, but the entire silicon substrate 110 can be made porous to disperse the stress concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane). .
  • a dielectric film 111 and a dielectric film 112 are deposited on the first and second surfaces of a single crystal silicon substrate 110 of which both sides are polished, respectively.
  • SiN can be used for the dielectric films 111 and 112.
  • the dielectric film 112 deposited on the second surface is removed according to a predetermined pattern. That is, the SiN dielectric film 112 is patterned through photolithography using a mask with a predetermined pattern on the dielectric film deposited on the second surface, and then etched using an appropriate etchant to form a dielectric film according to the pattern ( 112) is removed.
  • the electrolyte film 120 is formed on the first side of the dielectric film 111 deposited on the first side.
  • the steps of removing the dielectric film 112 deposited on the second side according to a predetermined pattern and forming the electrolyte film 120 on the first side of the dielectric film 111 deposited on the first side are sequentially performed. You could do it differently.
  • wet etching may be performed using a KOH solution to etch the silicon substrate 110 from the bottom.
  • the dielectric film 111 deposited on the first side exposed through the recess 140 and the dielectric film 112 remaining on the second side are removed.
  • the silicon substrate 110 is formed to be porous.
  • a method may be used to form porous silicon by immersing single crystal silicon in a hydrofluoric acid solution of a predetermined concentration and then anodizing it.
  • the first electrode 130 is formed on at least a portion of the first surface of the electrolyte membrane 120, and the dielectric film 111 deposited on the first surface exposed through the recess portion 140 is removed to expose the electrolyte membrane 120.
  • a second electrode 150 is formed on the second side of the electrolyte membrane 120.
  • the thin-film solid oxide fuel cell 100 manufactured in this way is a MEMS-based thin-film SOFC.
  • ohmic loss due to ion conduction in the electrolyte can be minimized and operating performance at low temperatures can be improved.
  • the silicon substrate 110 is made porous, Stress concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane) can be distributed.
  • the electrolyte membrane 120 may be formed of an ion-conducting ceramic electrolyte membrane using a MEMS process, and the first electrode 130 and the second electrode 150 may be made of a porous platinum material. It can be formed using .
  • electrolyte membrane 120 may be formed from a solid oxygen ion conductor such as yttria stabilized zirconia (YSZ) or a proton conductor such as yttrium doped BaZrO 3 (BYZ).
  • YSZ yttria stabilized zirconia
  • BYZ yttrium doped BaZrO 3
  • FIG. 3 is a conceptual diagram of a unit cell 300 having subcells 301 in a honeycomb arrangement according to at least one embodiment of the present invention.
  • Figure 4 is an enlarged top view of a unit cell 300 with subcells 301 in a honeycomb arrangement according to at least one embodiment of the present invention.
  • FIG. 5 is a detailed diagram of a honeycomb array structure of a unit cell 300 having subcells 301 in a honeycomb array according to at least one embodiment of the present invention.
  • a unit cell 300 having subcells 301 in a honeycomb arrangement includes a silicon substrate 310 and a first surface (top surface in the example of FIG. 3) of the silicon substrate 310.
  • An electrolyte membrane 320 formed on the electrolyte membrane 320, a first electrode 330 formed on at least a portion of the first side of the electrolyte membrane 320, and an electrolyte membrane 320 formed on the second side opposite to the first side of the silicon substrate 310. It consists of a recess portion 340 formed so that a portion of the second side opposite the first side of the first side exposed to the first electrode is exposed, and a second electrode 350 formed on at least the exposed second side of the electrolyte membrane.
  • the multilayer structure formed by the first electrode 330, the electrolyte membrane 320, and the second electrode 350 of the unit cell 300 is in the form of a trench formed at a predetermined depth. It includes a plurality of subcells 301.
  • the plurality of sub cells 301 are arranged to be located at the center of each regular hexagon of the virtual honeycomb pattern 401 on the first side of the silicon substrate 310.
  • six sub cells 301 surrounding one sub cell 301 are arranged so that a line connecting the centers of each sub cell 301 forms a regular hexagon.
  • the distance between each subcell 301 may affect the formation of a gas flow path, so it is necessary to set the distance taking this into consideration.
  • a groove 502 may be formed in the middle position of each subcell 301 to form a gas flow path.
  • the unit cell 300 having the subcells 301 in a honeycomb arrangement according to at least one embodiment of the present invention may have the same structure as the thin film solid oxide fuel cell 100 shown in FIG. 1.
  • a method of manufacturing a thin film solid oxide fuel cell having a stress relaxation structure at the edge of the membrane using porous silicon can be provided.
  • a unit cell having subcells in a honeycomb arrangement can be provided.
  • a thin-film solid oxide fuel cell including a unit cell with subcells in a honeycomb arrangement.
  • the present invention provides a unit cell with a stress relaxation structure at the edge of the membrane using porous silicon, a unit cell with subcells in a honeycomb arrangement, and a manufacturing method thereof, so it can be applied to the field of thin film solid oxide fuel cells.

Abstract

The solid oxide fuel cell comprises: a silicon substrate; an electrolyte film formed on a first surface of the silicon substrate; a first electrode formed on at least a portion of a first surface of the electrolyte film; a recess part formed such that a portion, facing the first electrode, of a second surface opposite to the first surface is exposed at a second surface opposite to the first surface of the silicon substrate; and a second electrode formed on at least the exposed second surface of the electrolyte film, wherein the silicon substrate includes, near the edge of the recess part, a porous part formed to be porous.

Description

박막형 고체산화물 연료전지 및 이의 제조 방법Thin-film solid oxide fuel cell and method of manufacturing the same
본 발명은 박막형 고체산화물 연료전지 및 이의 제조 방법에 관한 것이다.The present invention relates to a thin-film solid oxide fuel cell and a method of manufacturing the same.
고체산화물 연료전지(Solid Oxide Fuel Cell: SOFC)는 화학 에너지를 전기 에너지로 변환하는 고효율의 에너지 변환 장치의 일종으로, 전해질로 고체산화물 막을 사용하는 연료전지다.A solid oxide fuel cell (SOFC) is a type of highly efficient energy conversion device that converts chemical energy into electrical energy. It is a fuel cell that uses a solid oxide membrane as an electrolyte.
SOFC의 전해질 막에 사용되는 전해질로는 YSZ(Yttria Stabilized Zirconia)가 주로 사용되며, Micro-electro-mechanical System(MEMS) 공정을 통해 제작하는 박막형(Thinfilm) SOFC는 실리콘 기판에 Free Standing 방식으로 전해질 막과 전극을 형성하는 후면 에칭 멤브레인 구조로 이루어진다(예를 들어, 일본 등록특허공보 제4,914,831호 참조).The electrolyte used in the electrolyte membrane of SOFC is mainly YSZ (Yttria Stabilized Zirconia), and thin film SOFC manufactured through the Micro-electro-mechanical System (MEMS) process is a free standing electrolyte membrane on a silicon substrate. It consists of a back-etched membrane structure that forms an electrode (see, for example, Japanese Patent Registration No. 4,914,831).
즉, 실리콘 기판 상에 전해질 박막을 형성한 후, 후면 에칭을 통해 전해질 박막의 하부를 노출시킨 다음, 전해질 박막의 상하에 전극을 형성함으로써 전해질의 양면에 반응 기체가 도달할 수 있도록 한다.That is, after forming an electrolyte thin film on a silicon substrate, the lower part of the electrolyte thin film is exposed through back etching, and then electrodes are formed on the top and bottom of the electrolyte thin film to allow the reaction gas to reach both sides of the electrolyte.
이와 같이 MEMS 기반의 박막형 SOFC는 멤브레인과 전극을 박막으로 형성함으로써 전해질 내의 이온 전도로 인한 오믹 손실을 최소화하여 저온에서의 동작 성능을 향상시키는 장점이 있으나, 동작 시에 가장자리 부근에 응력이 집중되어 이 부근에 위치하는 셀들이 손상되는 단점이 있다(예를 들어, 미국 등록특허공보 제10,637,088호 참조).In this way, MEMS-based thin-film SOFC has the advantage of improving operation performance at low temperatures by minimizing ohmic loss due to ion conduction in the electrolyte by forming the membrane and electrode into a thin film, but stress is concentrated near the edge during operation, causing this problem. There is a disadvantage in that nearby cells are damaged (for example, see US Patent Publication No. 10,637,088).
이와 같은 박막형 고체산화물 연료전지에서, 효과적인 미세구조를 위해 전해질은 두께를 감소시켜 저항을 감소시킴으로써 저온에서 이온전도도 저하를 상쇄시키고, 전극은 나노 구조화하여 비표면적을 증가시켜 저온의 낮은 활성을 반응점 밀도 증가로 상쇄시킬 수 있다.In such a thin-film solid oxide fuel cell, for an effective microstructure, the electrolyte reduces the thickness to reduce resistance to offset the decrease in ionic conductivity at low temperatures, and the electrode is nano-structured to increase the specific surface area to reduce the low activity at low temperature by reducing the reaction point density. This can be offset by an increase.
실리콘 기판에 Free Standing 방식으로 전해질 막과 전극을 형성하는 나노 멤브레인 형태의 유닛 셀은 트렌치 형태로 형성된 복수의 서브 셀로 구성된다. 이러한 유닛 셀 구조에서 서브 셀의 밀도는 최종적인 고체산화물 연료전지의 성능에 영향을 미칠 수 있다.The unit cell in the form of a nanomembrane, which forms an electrolyte film and electrode in a free standing manner on a silicon substrate, is composed of a plurality of subcells formed in the form of a trench. In this unit cell structure, the density of subcells can affect the performance of the final solid oxide fuel cell.
본 발명은 위와 같은 문제를 해결하기 위해 고안된 것으로, 본 발명이 이루고자 하는 하나의 기술적 과제는, 멤브레인 가장자리의 응력 이완 구조를 갖는 박막형 고체산화물 연료전지를 제공하는 데 있다.The present invention was designed to solve the above problems, and one technical problem to be achieved by the present invention is to provide a thin film solid oxide fuel cell having a stress relaxation structure at the edge of the membrane.
본 발명이 이루고자 하는 또 하나의 기술적 과제는, 멤브레인 가장자리의 응력 이완 구조를 갖는 박막형 고체산화물 연료전지의 제조 방법을 제공하는 데 있다.Another technical problem to be achieved by the present invention is to provide a method of manufacturing a thin film solid oxide fuel cell having a stress relaxation structure at the edge of the membrane.
본 발명이 이루고자 하는 또 하나의 기술적 과제는, 벌집 배열의 서브 셀을 갖는 유닛 셀을 제공하는 데 있다.Another technical problem to be achieved by the present invention is to provide a unit cell having subcells in a honeycomb arrangement.
본 발명이 이루고자 하는 또 하나의 기술적 과제는, 벌집 배열의 서브 셀을 갖는 유닛 셀을 포함하는 박막형 고체 산화물 연료 전지를 제공하는 데 있다.Another technical problem to be achieved by the present invention is to provide a thin-film solid oxide fuel cell including a unit cell with subcells in a honeycomb arrangement.
본 발명의 해결과제는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당해 기술분야에 있어서의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present invention are not limited to those mentioned above, and other problems not mentioned can be clearly understood by those skilled in the art from the description below.
본 발명의 최소한 하나의 실시예에 의하면, 실리콘 기판, 상기 실리콘 기판의 제1 면에 형성된 전해질 막, 상기 전해질 막의 제1 면의 적어도 일부에 형성된 제1 전극, 상기 실리콘 기판의 상기 제1 면의 반대 면인 제2 면으로부터 상기 전해질 막의 상기 제1 면의 반대 면인 제2 면의 상기 제1 전극에 대향하는 일부가 노출되도록 형성된 리세스부, 및 적어도 상기 전해질 막의 노출된 상기 제2 면에 형성된 제2 전극을 구비하고, 상기 실리콘 기판은 적어도 상기 리세스부의 가장자리 부근에 다공성으로 형성된 다공질부를 포함하는, 고체산화물 연료전지를 제공한다.According to at least one embodiment of the present invention, there is provided a silicon substrate, an electrolyte membrane formed on the first side of the silicon substrate, a first electrode formed on at least a portion of the first side of the electrolyte membrane, and the first side of the silicon substrate. A recess formed to expose a portion of the second side opposite to the first side of the electrolyte membrane from the second side, which is the opposite side, to the first electrode, and a recess formed on at least the exposed second side of the electrolyte membrane. A solid oxide fuel cell is provided, including two electrodes, wherein the silicon substrate includes a porous portion formed to be porous at least near an edge of the recess portion.
본 발명의 최소한 하나의 실시예에 의하면, 실리콘 기판의 제1 면 및 상기 제1 면의 반대 면인 제2 면에 각각 유전체 막을 증착하는 단계, 상기 제2 면에 증착된 유전체 막을 소정의 패턴에 따라 제거하는 단계, 상기 제1 면에 증착된 상기 유전체 막의 제1 면에 전해질 막을 형성하는 단계, 상기 제2 면의 상기 유전체 막이 제거된 부분을 에칭하여 상기 제1 면에 증착된 상기 유전체 막이 노출되도록 리세스부를 형성하는 단계, 상기 리세스부를 통해 노출된 상기 제1 면에 증착된 상기 유전체 막 및 상기 제2 면에 남아있는 상기 유전체 막을 제거하는 단계, 상기 실리콘 기판의 적어도 상기 리세스부의 가장자리 부근을 다공성으로 형성하는 단계, 상기 전해질 막의 제1 면의 적어도 일부에 제1 전극을 형성하는 단계, 및 상기 리세스부를 통해 노출된 상기 제1 면에 증착된 상기 유전체 막을 제거함으로써 노출된 상기 전해질 막의 상기 제1 면의 반대 면인 제2 면에 제2 전극을 형성하는 단계를 구비하는, 고체산화물 연료전지의 제조 방법을 제공한다.According to at least one embodiment of the present invention, depositing a dielectric film on a first surface of a silicon substrate and a second surface opposite to the first surface, respectively, depositing a dielectric film on the second surface according to a predetermined pattern. removing, forming an electrolyte film on the first side of the dielectric film deposited on the first side, etching the removed portion of the dielectric film on the second side to expose the dielectric film deposited on the first side. forming a recess, removing the dielectric film deposited on the first side exposed through the recess and the dielectric film remaining on the second side, at least near an edge of the recess of the silicon substrate. forming a porous layer, forming a first electrode on at least a portion of a first side of the electrolyte membrane, and removing the dielectric layer deposited on the first side exposed through the recess, thereby exposing the electrolyte membrane. A method for manufacturing a solid oxide fuel cell is provided, comprising forming a second electrode on a second surface that is opposite to the first surface.
본 발명의 최소한 하나의 실시예에 의하면, 다공성 실리콘 기판, 상기 다공성 실리콘 기판의 제1 면에 형성된 전해질 막, 상기 전해질 막의 제1 면의 적어도 일부에 형성된 제1 전극, 상기 다공성 실리콘 기판의 상기 제1 면의 반대 면인 제2 면으로부터 상기 전해질 막의 상기 제1 면의 반대 면인 제2 면의 상기 제1 전극에 대향하는 일부가 노출되도록 형성된 리세스부, 및 적어도 상기 전해질 막의 노출된 상기 제2 면에 형성된 제2 전극을 구비하는, 고체산화물 연료전지를 제공한다.According to at least one embodiment of the present invention, there is provided a porous silicon substrate, an electrolyte membrane formed on a first side of the porous silicon substrate, a first electrode formed on at least a portion of the first side of the electrolyte membrane, and the first electrode of the porous silicon substrate. A recess formed to expose a portion of the second side of the electrolyte membrane opposite to the first side from the second side of the first side, and facing the first electrode, and at least the exposed second side of the electrolyte membrane. A solid oxide fuel cell is provided, including a second electrode formed on the.
본 발명의 최소한 하나의 실시예에 의하면, 단결정 실리콘 기판의 제1 면 및 상기 제1 면의 반대 면인 제2 면에 각각 유전체 막을 증착하는 단계, 상기 제2 면에 증착된 유전체 막을 소정의 패턴에 따라 제거하는 단계, 상기 제1 면에 증착된 상기 유전체 막의 제1 면에 전해질 막을 형성하는 단계, 상기 제2 면의 상기 유전체 막이 제거된 부분을 에칭하여 상기 제1 면에 증착된 상기 유전체 막이 노출되도록 리세스부를 형성하는 단계, 상기 리세스부를 통해 노출된 상기 제1 면에 증착된 상기 유전체 막 및 상기 제2 면에 남아있는 상기 유전체 막을 제거하는 단계, 상기 실리콘 기판을 다공성으로 형성하는 단계, 상기 전해질 막의 제1 면의 적어도 일부에 제1 전극을 형성하는 단계, 및 상기 리세스부를 통해 노출된 상기 제1 면에 증착된 상기 유전체 막을 제거함으로써 노출된 상기 전해질 막의 상기 제1 면의 반대 면인 제2 면에 제2 전극을 형성하는 단계를 구비하는, 고체산화물 연료전지의 제조 방법을 제공한다.According to at least one embodiment of the present invention, depositing a dielectric film on a first surface of a single crystal silicon substrate and a second surface opposite to the first surface, and forming the dielectric film deposited on the second surface in a predetermined pattern. removing the dielectric film, forming an electrolyte film on the first surface of the dielectric film deposited on the first surface, etching the removed portion of the second surface to expose the dielectric film deposited on the first surface. forming a recess as much as possible, removing the dielectric film deposited on the first surface exposed through the recess and the dielectric film remaining on the second surface, forming the silicon substrate to be porous, forming a first electrode on at least a portion of the first side of the electrolyte membrane, and a side opposite the first side of the electrolyte membrane exposed by removing the dielectric film deposited on the first side exposed through the recess. A method for manufacturing a solid oxide fuel cell is provided, comprising forming a second electrode on a second surface.
본 발명의 최소한 하나의 실시예에 의하면, 실리콘 기판, 상기 실리콘 기판의 제1 면에 형성된 전해질 막, 상기 전해질 막의 제1 면의 적어도 일부에 형성된 제1 전극, 상기 실리콘 기판의 상기 제1 면의 반대 면인 제2 면으로부터 상기 전해질 막의 상기 제1 면의 반대 면인 제2 면의 상기 제1 전극에 대향하는 일부가 노출되도록 형성된 리세스부, 및 적어도 상기 전해질 막의 노출된 상기 제2 면에 형성된 제2 전극을 구비하고, 상기 제1 전극, 상기 전해질 막, 및 상기 제2 전극으로 형성된 다층 구조는 소정의 깊이로 형성된 트렌치 형태의 복수의 서브 셀을 포함하고, 상기 복수의 서브 셀은 각각 상기 실리콘 기판의 상기 제1 면 상의 가상의 벌집 모양 패턴의 정육각형 각각의 중심에 위치하도록 배열된, 고체 산화물 연료 전지용 유닛 셀을 제공한다.According to at least one embodiment of the present invention, there is provided a silicon substrate, an electrolyte membrane formed on the first side of the silicon substrate, a first electrode formed on at least a portion of the first side of the electrolyte membrane, and the first side of the silicon substrate. A recess formed to expose a portion of the second side opposite to the first side of the electrolyte membrane from the second side, which is the opposite side, to the first electrode, and a recess formed on at least the exposed second side of the electrolyte membrane. It has two electrodes, and the multilayer structure formed by the first electrode, the electrolyte membrane, and the second electrode includes a plurality of sub cells in the form of a trench formed at a predetermined depth, and each of the plurality of sub cells is formed of the silicon A unit cell for a solid oxide fuel cell is provided, arranged to be located at the center of each regular hexagon of a virtual honeycomb pattern on the first side of a substrate.
본 발명의 최소한 하나의 실시예에 있어서, 하나의 서브 셀을 둘러싼 여섯 개의 서브 셀은 각각의 중심을 잇는 선이 정육각형을 형성하도록 배치된다.In at least one embodiment of the present invention, six sub cells surrounding one sub cell are arranged so that a line connecting the centers of each sub cell forms a regular hexagon.
본 발명의 최소한 하나의 실시예에 있어서, 각각의 서브 셀의 중간 위치에 형성된 홈을 더 구비한다.In at least one embodiment of the present invention, a groove formed at an intermediate position of each subcell is further provided.
본 발명의 최소한 하나의 실시예에 있어서, 상기 실리콘 기판은 적어도 상기 리세스부의 가장자리 부근에 다공성으로 형성된 다공질부를 포함한다.In at least one embodiment of the present invention, the silicon substrate includes a porous portion formed to be porous at least near an edge of the recess portion.
본 발명의 최소한 하나의 실시예에 있어서, 상기 실리콘 기판은 다공성 실리콘 기판을 포함한다.In at least one embodiment of the present invention, the silicon substrate includes a porous silicon substrate.
본 발명의 최소한 하나의 실시예에 의하면, 상기 유닛 셀을 구비하는 고체 산화물 연료 전지를 제공한다.According to at least one embodiment of the present invention, a solid oxide fuel cell including the unit cell is provided.
본 명세서에서 각각의 실시예는 독립적으로 기재되어 있으나 각각의 실시예는 상호 조합이 가능하며 조합된 실시예도 본 발명의 권리 범위에 포함된다.In this specification, each embodiment is described independently, but each embodiment can be combined with each other, and the combined embodiments are also included in the scope of the present invention.
상술한 요약은 단지 설명을 위한 것이며 어떠한 방식으로도 제한을 의도하는 것은 아니다. 상술한 설명적 양태, 실시예 및 특징에 덧붙여 추가의 양태, 실시예 및 특징이 도면 및 아래의 상세한 설명을 참조함으로써 명백해질 것이다.The foregoing summary is for illustrative purposes only and is not intended to be limiting in any way. In addition to the illustrative aspects, embodiments and features described above, additional aspects, embodiments and features will become apparent by reference to the drawings and the detailed description below.
본 발명의 최소한 하나의 실시예에 따르면, 다공성 실리콘을 이용한 멤브레인 가장자리의 응력 이완 구조를 갖는 박막형 고체산화물 연료전지를 제공할 수 있는 효과가 있다.According to at least one embodiment of the present invention, it is possible to provide a thin film solid oxide fuel cell having a stress relaxation structure at the edge of the membrane using porous silicon.
또한, 본 발명의 최소한 하나의 실시예에 따르면, 다공성 실리콘을 이용한 멤브레인 가장자리의 응력 이완 구조를 갖는 박막형 고체산화물 연료전지의 제조 방법을 제공할 수 있는 효과가 있다.In addition, according to at least one embodiment of the present invention, there is an effect of providing a method of manufacturing a thin film solid oxide fuel cell having a stress relaxation structure at the edge of the membrane using porous silicon.
또한, 본 발명의 최소한 하나의 실시예에 따르면, 벌집 배열의 서브 셀을 갖는 유닛 셀을 제공할 수 있는 효과가 있다.Additionally, according to at least one embodiment of the present invention, it is possible to provide a unit cell having subcells in a honeycomb arrangement.
또한, 본 발명의 최소한 하나의 실시예에 따르면, 벌집 배열의 서브 셀을 갖는 유닛 셀을 포함하는 박막형 고체 산화물 연료 전지를 제공할 수 있는 효과가 있다.In addition, according to at least one embodiment of the present invention, it is possible to provide a thin-film solid oxide fuel cell including a unit cell with subcells in a honeycomb arrangement.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당해 기술분야에 있어서의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to those mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.
도 1은 본 발명의 최소한 하나의 실시예에 따른 박막형 고체산화물 연료전지의 측단면도이다.1 is a side cross-sectional view of a thin-film solid oxide fuel cell according to at least one embodiment of the present invention.
도 2A 내지 도 2G는 본 발명의 최소한 하나의 실시예에 따른 박막형 고체산화물 연료전지의 제조 과정을 설명하기 위한 개념도이다.2A to 2G are conceptual diagrams for explaining the manufacturing process of a thin film solid oxide fuel cell according to at least one embodiment of the present invention.
도 3은 본 발명의 최소한 하나의 실시예에 따른 벌집 배열의 서브 셀을 갖는 유닛 셀의 개념도이다.Figure 3 is a conceptual diagram of a unit cell having subcells in a honeycomb arrangement according to at least one embodiment of the present invention.
도 4는 본 발명의 최소한 하나의 실시예에 따른 벌집 배열의 서브 셀을 갖는 유닛 셀의 상부 확대도이다.4 is an enlarged top view of a unit cell with subcells in a honeycomb arrangement according to at least one embodiment of the present invention.
도 5는 본 발명의 최소한 하나의 실시예에 따른 벌집 배열의 서브 셀을 갖는 유닛 셀의 벌집 배열 구조의 상세도이다.Figure 5 is a detailed diagram of a honeycomb array structure of a unit cell having subcells in a honeycomb array according to at least one embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.
도 1은 본 발명의 최소한 하나의 실시예에 따른 박막형 고체산화물 연료전지(100)의 측단면도이다.1 is a side cross-sectional view of a thin-film solid oxide fuel cell 100 according to at least one embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 최소한 하나의 실시예에 따른 박막형 고체산화물 연료전지(100)는, 실리콘 기판(110), 실리콘 기판(110)의 제1 면(도 1에 도시된 예에서는 상면)에 형성된 전해질 막(120), 전해질 막(120)의 제1 면의 적어도 일부에 형성된 제1 전극(130), 실리콘 기판(110)의 제1 면의 반대 면인 제2 면(도 1에 도시된 예에서는 하면)으로부터 전해질 막(120)의 제1 면의 반대 면인 제2 면의 제1 전극(130)에 대향하는 일부가 노출되도록 형성된 리세스부(140), 및 적어도 리세스부(140)를 통해 노출된 전해질 막(120)의 제2 면에 형성된 제2 전극(150)으로 구성된다.As shown in FIG. 1, a thin-film solid oxide fuel cell 100 according to at least one embodiment of the present invention includes a silicon substrate 110 and a first surface of the silicon substrate 110 (the example shown in FIG. 1). In the electrolyte membrane 120 formed on the upper surface), the first electrode 130 formed on at least a portion of the first side of the electrolyte membrane 120, and the second side opposite to the first side of the silicon substrate 110 (FIG. 1) In the example shown, a recess portion 140 formed so that a portion opposing the first electrode 130 on the second side, which is the opposite side of the first side of the electrolyte membrane 120, is exposed from the lower surface), and at least the recess portion. It consists of a second electrode 150 formed on the second surface of the electrolyte membrane 120 exposed through 140.
본 발명의 최소한 하나의 실시예에 따른 박막형 고체산화물 연료전지(100)는 MEMS 기반의 박막형 SOFC로, 멤브레인과 전극을 박막으로 형성함으로써 전해질 내의 이온 전도로 인한 오믹 손실을 최소화하여 저온에서의 동작 성능을 향상시키는 구조를 갖는다.The thin-film solid oxide fuel cell 100 according to at least one embodiment of the present invention is a MEMS-based thin-film SOFC. By forming the membrane and electrodes into thin films, ohmic loss due to ion conduction in the electrolyte is minimized, thereby improving operating performance at low temperatures. It has a structure that improves.
동작 시에 멤브레인의 가장자리 부근(멤브레인에 있어서 리세스부(140)의 가장자리 부근)에 응력이 집중되어 이 부근에 위치하는 셀들이 손상되는 단점을 극복하기 위해, 본 발명의 최소한 하나의 실시예에 따른 박막형 고체산화물 연료전지(100)는 실리콘 기판(110)의 적어도 리세스부(140)의 가장자리 부근에 다공성으로 형성된 다공질부(160)를 포함한다.In order to overcome the disadvantage that the stress is concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane) during operation and the cells located in this vicinity are damaged, at least one embodiment of the present invention is used. The thin film solid oxide fuel cell 100 includes a porous portion 160 formed to be porous at least near the edge of the recess portion 140 of the silicon substrate 110.
이와 같이 실리콘 기판(110)의 적어도 리세스부(140)의 가장자리 부근에 다공성으로 형성된 다공질부(160)를 형성함으로써, 멤브레인의 가장자리 부근(멤브레인에 있어서 리세스부(140)의 가장자리 부근)에 집중되는 응력을 분산시킬 수 있다.In this way, by forming the porous portion 160 at least near the edge of the recess portion 140 of the silicon substrate 110, near the edge of the membrane (near the edge of the recess portion 140 in the membrane) Concentrated stress can be dispersed.
도 1에서는 실리콘 기판(110)의 리세스부(140)의 가장자리 부근에 다공성으로 형성된 다공질부(160)를 형성하여 멤브레인의 가장자리 부근(멤브레인에 있어서 리세스부(140)의 가장자리 부근)에 집중되는 응력을 분산시키는 예를 보이고 있으나, 실리콘 기판(110) 전체를 다공성으로 해서 멤브레인의 가장자리 부근(멤브레인에 있어서 리세스부(140)의 가장자리 부근)에 집중되는 응력을 분산시킬 수도 있다.In Figure 1, a porous portion 160 is formed near the edge of the recessed portion 140 of the silicon substrate 110 and concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane). An example of dispersing the stress is shown, but the entire silicon substrate 110 can be made porous to disperse the stress concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane).
이를 위해, 본 발명의 최소한 하나의 실시예에 있어서, 박막형 고체산화물 연료전지(100)는, 다공성 실리콘 기판(110), 다공성 실리콘 기판(110)의 제1 면에 형성된 전해질 막(120), 전해질 막(120)의 제1 면의 적어도 일부에 형성된 제1 전극(130), 다공성 실리콘 기판(110)의 제2 면으로부터 전해질 막(120)의 제2 면의 제1 전극(130)에 대향하는 일부가 노출되도록 형성된 리세스부(140), 및 적어도 리세스부(140)를 통해 노출된 전해질 막(120)의 제2 면에 형성된 제2 전극(150)으로 구성된다.To this end, in at least one embodiment of the present invention, the thin film solid oxide fuel cell 100 includes a porous silicon substrate 110, an electrolyte membrane 120 formed on the first side of the porous silicon substrate 110, and an electrolyte. A first electrode 130 formed on at least a portion of the first side of the membrane 120, opposing the first electrode 130 on the second side of the electrolyte membrane 120 from the second side of the porous silicon substrate 110. It consists of a recess 140 formed to be partially exposed, and a second electrode 150 formed on at least the second surface of the electrolyte membrane 120 exposed through the recess 140.
본 발명의 최소한 하나의 실시예에 있어서, 전해질 막(120)은 MEMS 공정을 활용한 이온 전도성 세라믹 전해질 막으로 형성할 수 있으며, 제1 전극(130) 및 제2 전극(150)은 다공성 백금 재질을 사용하여 형성할 수 있다.In at least one embodiment of the present invention, the electrolyte membrane 120 may be formed of an ion-conducting ceramic electrolyte membrane using a MEMS process, and the first electrode 130 and the second electrode 150 may be made of a porous platinum material. It can be formed using .
본 발명의 최소한 하나의 실시예에 있어서, 전해질 막(120)은 이트리아 안정화 지르코니아(YSZ)와 같은 고체 산소 이온 전도체 또는 이트륨 도핑된 BaZrO3(BYZ)와 같은 양성자 전도체로 형성할 수 있다.In at least one embodiment of the invention, electrolyte membrane 120 may be formed from a solid oxygen ion conductor such as yttria stabilized zirconia (YSZ) or a proton conductor such as yttrium doped BaZrO 3 (BYZ).
도 2A 내지 도 2G는 본 발명의 최소한 하나의 실시예에 따른 박막형 고체산화물 연료전지(100)의 제조 과정을 설명하기 위한 개념도이다.Figures 2A to 2G are conceptual diagrams for explaining the manufacturing process of the thin film solid oxide fuel cell 100 according to at least one embodiment of the present invention.
도 2A에 도시된 바와 같이, 양면이 폴리싱된 실리콘 기판(110)의 제1 면(도 2A에 도시된 예에서는 상면) 및 제1 면의 반대 면인 제2 면(도 2A에 도시된 예에서는 하면)에 각각 유전체 막(111) 및 유전체 막(112)을 증착한다. 여기서, 유전체 막(111) 및 유전체 막(112)에는 SiN을 사용할 수 있다.As shown in FIG. 2A, a silicon substrate 110 of which both sides are polished has a first side (the top side in the example shown in FIG. 2A) and a second side opposite the first side (the bottom side in the example shown in FIG. 2A). ) and deposit a dielectric film 111 and a dielectric film 112, respectively. Here, SiN can be used for the dielectric films 111 and 112.
이후, 도 2B에 도시된 바와 같이, 제2 면에 증착된 유전체 막(112)을 소정의 패턴에 따라 제거한다. 즉, 제2 면에 증착된 유전체 막에 소정의 패턴을 가진 마스크를 사용하여 포토리소그래피를 통해 SiN 유전체 막(112)에 패터닝을 한 다음에 적절한 에천트를 사용한 에칭을 통해 패턴에 따른 유전체 막(112)을 제거한다.Thereafter, as shown in FIG. 2B, the dielectric film 112 deposited on the second surface is removed according to a predetermined pattern. That is, the SiN dielectric film 112 is patterned through photolithography using a mask with a predetermined pattern on the dielectric film deposited on the second surface, and then etched using an appropriate etchant to form a dielectric film according to the pattern ( 112) is removed.
이후, 도 2C에 도시된 바와 같이, 제1 면에 증착된 유전체 막(111)의 제1 면에 전해질 막(120)을 형성한다. 제2 면에 증착된 유전체 막(112)을 소정의 패턴에 따라 제거하는 단계와 제1 면에 증착된 유전체 막(111)의 제1 면에 전해질 막(120)을 형성하는 단계는 서로 순서를 달리 할 수도 있다.Thereafter, as shown in FIG. 2C, the electrolyte film 120 is formed on the first side of the dielectric film 111 deposited on the first side. The steps of removing the dielectric film 112 deposited on the second side according to a predetermined pattern and forming the electrolyte film 120 on the first side of the dielectric film 111 deposited on the first side are sequentially performed. You could do it differently.
이후, 도 2D에 도시된 바와 같이, 제2 면의 유전체 막(112)이 제거된 부분을 에칭하여 제1 면에 증착된 유전체 막(111)이 노출되도록 리세스부(140)를 형성한다. 이 때, 하부로부터 실리콘 기판(110)을 에칭하기 위해 KOH 용액을 사용하여 습식 에칭을 수행할 수 있다.Thereafter, as shown in FIG. 2D, the portion from which the dielectric film 112 on the second side was removed is etched to form a recess 140 to expose the dielectric film 111 deposited on the first side. At this time, wet etching may be performed using a KOH solution to etch the silicon substrate 110 from the bottom.
이후, 도 2E에 도시된 바와 같이, 리세스부(140)를 통해 노출된 제1 면에 증착된 유전체 막(111) 및 제2 면에 남아있는 유전체 막(112)을 제거한다.Thereafter, as shown in FIG. 2E, the dielectric film 111 deposited on the first side exposed through the recess portion 140 and the dielectric film 112 remaining on the second side are removed.
이후, 도 2F에 도시된 바와 같이, 실리콘 기판(110)의 적어도 리세스부(140)의 가장자리 부근을 다공성으로 형성한다. 이 때, 예를 들어 단결정 실리콘을 소정 농도의 불산 용액에 침지시킨 다음에 양극 처리하여 다공성 실리콘을 형성하는 방법을 사용할 수 있다.Thereafter, as shown in FIG. 2F, at least the edge of the recessed portion 140 of the silicon substrate 110 is made porous. At this time, for example, a method may be used to form porous silicon by immersing single crystal silicon in a hydrofluoric acid solution of a predetermined concentration and then anodizing it.
이후, 도 2G에 도시된 바와 같이, 전해질 막(120)의 제1 면의 적어도 일부에 제1 전극(130)을 형성하고, 리세스부(140)를 통해 노출된 제1 면에 증착된 유전체 막(111)을 제거함으로써 노출된 전해질 막(120)의 제2 면에 제2 전극(150)을 형성한다.Then, as shown in FIG. 2G, the first electrode 130 is formed on at least a portion of the first side of the electrolyte membrane 120, and a dielectric is deposited on the first side exposed through the recess portion 140. A second electrode 150 is formed on the second surface of the electrolyte membrane 120 exposed by removing the membrane 111.
이와 같이 제작된 박막형 고체산화물 연료전지(100)는 MEMS 기반의 박막형 SOFC로, 멤브레인과 전극을 박막으로 형성함으로써 전해질 내의 이온 전도로 인한 오믹 손실을 최소화하여 저온에서의 동작 성능을 향상시킬 수 있다.The thin-film solid oxide fuel cell 100 manufactured in this way is a MEMS-based thin-film SOFC. By forming the membrane and electrodes into thin films, ohmic loss due to ion conduction in the electrolyte can be minimized and operating performance at low temperatures can be improved.
동작 시에 멤브레인의 가장자리 부근(멤브레인에 있어서 리세스부(140)의 가장자리 부근)에 응력이 집중되어 이 부근에 위치하는 셀들이 손상되는 것을 방지하기 위해 실리콘 기판(110)의 적어도 리세스부(140)의 가장자리 부근에 다공성으로 형성된 다공질부(160)를 형성함으로써, 멤브레인의 가장자리 부근(멤브레인에 있어서 리세스부(140)의 가장자리 부근)에 집중되는 응력을 분산시킬 수 있다.In order to prevent stress from being concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane) during operation and damaging the cells located in this vicinity, at least the recessed portion ( By forming the porous portion 160 near the edge of the membrane 140, the stress concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane) can be dispersed.
본 발명의 최소한 하나의 실시예에 있어서, 전해질 막(120)은 MEMS 공정을 활용한 이온 전도성 세라믹 전해질 막으로 형성할 수 있으며, 제1 전극(130) 및 제2 전극(150)은 다공성 백금 재질을 사용하여 형성할 수 있다.In at least one embodiment of the present invention, the electrolyte membrane 120 may be formed of an ion-conducting ceramic electrolyte membrane using a MEMS process, and the first electrode 130 and the second electrode 150 may be made of a porous platinum material. It can be formed using .
본 발명의 최소한 하나의 실시예에 있어서, 전해질 막(120)은 이트리아 안정화 지르코니아(YSZ)와 같은 고체 산소 이온 전도체 또는 이트륨 도핑된 BaZrO3(BYZ)와 같은 양성자 전도체로 형성할 수 있다.In at least one embodiment of the invention, electrolyte membrane 120 may be formed from a solid oxygen ion conductor such as yttria stabilized zirconia (YSZ) or a proton conductor such as yttrium doped BaZrO 3 (BYZ).
도 2A 내지 도 2G에서는 실리콘 기판(110)의 리세스부(140)의 가장자리 부근에 다공성으로 형성된 다공질부(160)를 형성하여 멤브레인의 가장자리 부근(멤브레인에 있어서 리세스부(140)의 가장자리 부근)에 집중되는 응력을 분산시키는 예를 보이고 있으나, 실리콘 기판(110) 전체를 다공성으로 해서 멤브레인의 가장자리 부근(멤브레인에 있어서 리세스부(140)의 가장자리 부근)에 집중되는 응력을 분산시킬 수도 있다.2A to 2G, a porous portion 160 is formed near the edge of the recess portion 140 of the silicon substrate 110, and is formed near the edge of the membrane (near the edge of the recess portion 140 in the membrane). ) is shown as an example of dispersing the stress concentrated in the silicon substrate 110, but the entire silicon substrate 110 can be made porous to disperse the stress concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane). .
예를 들어, 양면이 폴리싱된 단결정 실리콘 기판(110)의 제1 면 및 제2 면에 각각 유전체 막(111) 및 유전체 막(112)을 증착한다. 여기서, 유전체 막(111) 및 유전체 막(112)에는 SiN을 사용할 수 있다.For example, a dielectric film 111 and a dielectric film 112 are deposited on the first and second surfaces of a single crystal silicon substrate 110 of which both sides are polished, respectively. Here, SiN can be used for the dielectric films 111 and 112.
이후, 제2 면에 증착된 유전체 막(112)을 소정의 패턴에 따라 제거한다. 즉, 제2 면에 증착된 유전체 막에 소정의 패턴을 가진 마스크를 사용하여 포토리소그래피를 통해 SiN 유전체 막(112)에 패터닝을 한 다음에 적절한 에천트를 사용한 에칭을 통해 패턴에 따른 유전체 막(112)을 제거한다.Thereafter, the dielectric film 112 deposited on the second surface is removed according to a predetermined pattern. That is, the SiN dielectric film 112 is patterned through photolithography using a mask with a predetermined pattern on the dielectric film deposited on the second surface, and then etched using an appropriate etchant to form a dielectric film according to the pattern ( 112) is removed.
이후, 제1 면에 증착된 유전체 막(111)의 제1 면에 전해질 막(120)을 형성한다. 제2 면에 증착된 유전체 막(112)을 소정의 패턴에 따라 제거하는 단계와 제1 면에 증착된 유전체 막(111)의 제1 면에 전해질 막(120)을 형성하는 단계는 서로 순서를 달리 할 수도 있다.Afterwards, the electrolyte film 120 is formed on the first side of the dielectric film 111 deposited on the first side. The steps of removing the dielectric film 112 deposited on the second side according to a predetermined pattern and forming the electrolyte film 120 on the first side of the dielectric film 111 deposited on the first side are sequentially performed. You could do it differently.
이후, 제2 면의 유전체 막(112)이 제거된 부분을 에칭하여 제1 면에 증착된 유전체 막(111)이 노출되도록 리세스부(140)를 형성한다. 이 때, 하부로부터 실리콘 기판(110)을 에칭하기 위해 KOH 용액을 사용하여 습식 에칭을 수행할 수 있다.Thereafter, the portion from which the dielectric film 112 on the second side was removed is etched to form a recess 140 to expose the dielectric film 111 deposited on the first side. At this time, wet etching may be performed using a KOH solution to etch the silicon substrate 110 from the bottom.
이후, 리세스부(140)를 통해 노출된 제1 면에 증착된 유전체 막(111) 및 제2 면에 남아있는 유전체 막(112)을 제거한다.Thereafter, the dielectric film 111 deposited on the first side exposed through the recess 140 and the dielectric film 112 remaining on the second side are removed.
이후, 실리콘 기판(110)을 다공성으로 형성한다. 이 때, 예를 들어 단결정 실리콘을 소정 농도의 불산 용액에 침지시킨 다음에 양극 처리하여 다공성 실리콘을 형성하는 방법을 사용할 수 있다.Afterwards, the silicon substrate 110 is formed to be porous. At this time, for example, a method may be used to form porous silicon by immersing single crystal silicon in a hydrofluoric acid solution of a predetermined concentration and then anodizing it.
이후, 전해질 막(120)의 제1 면의 적어도 일부에 제1 전극(130)을 형성하고, 리세스부(140)를 통해 노출된 제1 면에 증착된 유전체 막(111)을 제거함으로써 노출된 전해질 막(120)의 제2 면에 제2 전극(150)을 형성한다.Thereafter, the first electrode 130 is formed on at least a portion of the first surface of the electrolyte membrane 120, and the dielectric film 111 deposited on the first surface exposed through the recess portion 140 is removed to expose the electrolyte membrane 120. A second electrode 150 is formed on the second side of the electrolyte membrane 120.
이와 같이 제작된 박막형 고체산화물 연료전지(100)는 MEMS 기반의 박막형 SOFC로, 멤브레인과 전극을 박막으로 형성함으로써 전해질 내의 이온 전도로 인한 오믹 손실을 최소화하여 저온에서의 동작 성능을 향상시킬 수 있다.The thin-film solid oxide fuel cell 100 manufactured in this way is a MEMS-based thin-film SOFC. By forming the membrane and electrodes into thin films, ohmic loss due to ion conduction in the electrolyte can be minimized and operating performance at low temperatures can be improved.
동작 시에 멤브레인의 가장자리 부근(멤브레인에 있어서 리세스부(140)의 가장자리 부근)에 응력이 집중되어 이 부근에 위치하는 셀들이 손상되는 것을 방지하기 위해 실리콘 기판(110)을 다공성으로 형성함으로써, 멤브레인의 가장자리 부근(멤브레인에 있어서 리세스부(140)의 가장자리 부근)에 집중되는 응력을 분산시킬 수 있다.In order to prevent stress from being concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane) during operation and damaging the cells located in this vicinity, the silicon substrate 110 is made porous, Stress concentrated near the edge of the membrane (near the edge of the recessed portion 140 in the membrane) can be distributed.
본 발명의 최소한 하나의 실시예에 있어서, 전해질 막(120)은 MEMS 공정을 활용한 이온 전도성 세라믹 전해질 막으로 형성할 수 있으며, 제1 전극(130) 및 제2 전극(150)은 다공성 백금 재질을 사용하여 형성할 수 있다.In at least one embodiment of the present invention, the electrolyte membrane 120 may be formed of an ion-conducting ceramic electrolyte membrane using a MEMS process, and the first electrode 130 and the second electrode 150 may be made of a porous platinum material. It can be formed using .
본 발명의 최소한 하나의 실시예에 있어서, 전해질 막(120)은 이트리아 안정화 지르코니아(YSZ)와 같은 고체 산소 이온 전도체 또는 이트륨 도핑된 BaZrO3(BYZ)와 같은 양성자 전도체로 형성할 수 있다.In at least one embodiment of the invention, electrolyte membrane 120 may be formed from a solid oxygen ion conductor such as yttria stabilized zirconia (YSZ) or a proton conductor such as yttrium doped BaZrO 3 (BYZ).
도 3은 본 발명의 최소한 하나의 실시예에 따른 벌집 배열의 서브 셀(301)을 갖는 유닛 셀(300)의 개념도이다. 도 4는 본 발명의 최소한 하나의 실시예에 따른 벌집 배열의 서브 셀(301)을 갖는 유닛 셀(300)의 상부 확대도이다. 도 5는 본 발명의 최소한 하나의 실시예에 따른 벌집 배열의 서브 셀(301)을 갖는 유닛 셀(300)의 벌집 배열 구조의 상세도이다.FIG. 3 is a conceptual diagram of a unit cell 300 having subcells 301 in a honeycomb arrangement according to at least one embodiment of the present invention. Figure 4 is an enlarged top view of a unit cell 300 with subcells 301 in a honeycomb arrangement according to at least one embodiment of the present invention. FIG. 5 is a detailed diagram of a honeycomb array structure of a unit cell 300 having subcells 301 in a honeycomb array according to at least one embodiment of the present invention.
본 발명의 최소한 하나의 실시예에 따른 벌집 배열의 서브 셀(301)을 갖는 유닛 셀(300)은, 실리콘 기판(310), 실리콘 기판(310)의 제1 면(도 3의 예에서는 상면)에 형성된 전해질 막(320), 전해질 막(320)의 제1 면의 적어도 일부에 형성된 제1 전극(330), 실리콘 기판(310)의 제1 면의 반대 면인 제2 면으로부터 전해질 막(320)의 제1 면의 반대 면인 제2 면의 제1 전극에 대향하는 일부가 노출되도록 형성된 리세스부(340), 및 적어도 전해질 막의 노출된 제2 면에 형성된 제2 전극(350)으로 구성된다.A unit cell 300 having subcells 301 in a honeycomb arrangement according to at least one embodiment of the present invention includes a silicon substrate 310 and a first surface (top surface in the example of FIG. 3) of the silicon substrate 310. An electrolyte membrane 320 formed on the electrolyte membrane 320, a first electrode 330 formed on at least a portion of the first side of the electrolyte membrane 320, and an electrolyte membrane 320 formed on the second side opposite to the first side of the silicon substrate 310. It consists of a recess portion 340 formed so that a portion of the second side opposite the first side of the first side exposed to the first electrode is exposed, and a second electrode 350 formed on at least the exposed second side of the electrolyte membrane.
도 3 내지 도 5에 도시된 바와 같이, 유닛 셀(300)의 제1 전극(330), 전해질 막(320), 및 제2 전극(350)으로 형성된 다층 구조는 소정의 깊이로 형성된 트렌치 형태의 복수의 서브 셀(301)을 포함한다.3 to 5, the multilayer structure formed by the first electrode 330, the electrolyte membrane 320, and the second electrode 350 of the unit cell 300 is in the form of a trench formed at a predetermined depth. It includes a plurality of subcells 301.
본 발명의 최소한 하나의 실시예에 있어서, 복수의 서브 셀(301)은 각각 실리콘 기판(310)의 제1 면 상의 가상의 벌집 모양 패턴(401)의 정육각형 각각의 중심에 위치하도록 배열된다.In at least one embodiment of the present invention, the plurality of sub cells 301 are arranged to be located at the center of each regular hexagon of the virtual honeycomb pattern 401 on the first side of the silicon substrate 310.
본 발명의 최소한 하나의 실시예에 있어서, 하나의 서브 셀(301)을 둘러싼 여섯 개의 서브 셀(301)은 각각의 중심을 잇는 선이 정육각형을 형성하도록 배치된다.In at least one embodiment of the present invention, six sub cells 301 surrounding one sub cell 301 are arranged so that a line connecting the centers of each sub cell 301 forms a regular hexagon.
본 발명의 최소한 하나의 실시예에 있어서, 각각의 서브 셀(301) 간의 간격은 가스의 유로 형성에 영향을 미칠 수 있기에 이를 고려한 거리 설정이 필요하다. 이를 위해 각각의 서브 셀(301)의 중간 위치에는 홈(502)이 형성되어 가스의 유로를 형성할 수 있다.In at least one embodiment of the present invention, the distance between each subcell 301 may affect the formation of a gas flow path, so it is necessary to set the distance taking this into consideration. To this end, a groove 502 may be formed in the middle position of each subcell 301 to form a gas flow path.
본 발명의 최소한 하나의 실시예에 따른 벌집 배열의 서브 셀(301)을 갖는 유닛 셀(300)은 도 1에 도시된 박막형 고체산화물 연료전지(100)와 동일한 구조를 가질 수 있다.The unit cell 300 having the subcells 301 in a honeycomb arrangement according to at least one embodiment of the present invention may have the same structure as the thin film solid oxide fuel cell 100 shown in FIG. 1.
이상 설명한 바와 같이, 본 발명의 최소한 하나의 실시예에 따르면, 다공성 실리콘을 이용한 멤브레인 가장자리의 응력 이완 구조를 갖는 박막형 고체산화물 연료전지를 제공할 수 있다.As described above, according to at least one embodiment of the present invention, it is possible to provide a thin-film solid oxide fuel cell having a stress relaxation structure at the edge of the membrane using porous silicon.
또한, 본 발명의 최소한 하나의 실시예에 따르면, 다공성 실리콘을 이용한 멤브레인 가장자리의 응력 이완 구조를 갖는 박막형 고체산화물 연료전지의 제조 방법을 제공할 수 있다.In addition, according to at least one embodiment of the present invention, a method of manufacturing a thin film solid oxide fuel cell having a stress relaxation structure at the edge of the membrane using porous silicon can be provided.
또한, 본 발명의 최소한 하나의 실시예에 따르면, 벌집 배열의 서브 셀을 갖는 유닛 셀을 제공할 수 있다.Additionally, according to at least one embodiment of the present invention, a unit cell having subcells in a honeycomb arrangement can be provided.
또한, 본 발명의 최소한 하나의 실시예에 따르면, 벌집 배열의 서브 셀을 갖는 유닛 셀을 포함하는 박막형 고체 산화물 연료 전지를 제공할 수 있다.Additionally, according to at least one embodiment of the present invention, it is possible to provide a thin-film solid oxide fuel cell including a unit cell with subcells in a honeycomb arrangement.
이상 본 발명을 몇 가지 실시예를 사용하여 설명하였으나, 이들 실시예는 예시적인 것이며 한정적인 것이 아니다. 이와 같이, 본 발명이 속하는 기술분야에서 통상의 지식을 지닌 자라면 본 발명의 사상과 첨부된 특허청구범위에 제시된 권리범위에서 벗어나지 않으면서 균등론에 따라 다양한 변화와 수정을 가할 수 있음을 이해할 것이다.Although the present invention has been described above using several examples, these examples are illustrative and not limiting. As such, those of ordinary skill in the technical field to which the present invention pertains will understand that various changes and modifications can be made according to the theory of equivalents without departing from the spirit of the present invention and the scope of rights set forth in the appended claims.
본 발명은, 다공성 실리콘을 이용한 멤브레인 가장자리의 응력 이완 구조를 갖는 유닛 셀, 벌집 배열의 서브 셀을 갖는 유닛 셀, 및 이의 제조 방법을 제공하므로, 박막형 고체산화물 연료전지 분야에 적용할 수 있다.The present invention provides a unit cell with a stress relaxation structure at the edge of the membrane using porous silicon, a unit cell with subcells in a honeycomb arrangement, and a manufacturing method thereof, so it can be applied to the field of thin film solid oxide fuel cells.

Claims (10)

  1. 실리콘 기판;silicon substrate;
    상기 실리콘 기판의 제1 면에 형성된 전해질 막;an electrolyte film formed on a first side of the silicon substrate;
    상기 전해질 막의 제1 면의 적어도 일부에 형성된 제1 전극;a first electrode formed on at least a portion of the first side of the electrolyte membrane;
    상기 실리콘 기판의 상기 제1 면의 반대 면인 제2 면으로부터 상기 전해질 막의 상기 제1 면의 반대 면인 제2 면의 상기 제1 전극에 대향하는 일부가 노출되도록 형성된 리세스부; 및a recess portion formed to expose a portion of the second side of the electrolyte membrane opposite to the first side, which faces the first electrode, from a second side of the silicon substrate that is opposite to the first side; and
    적어도 상기 전해질 막의 노출된 상기 제2 면에 형성된 제2 전극a second electrode formed on at least the exposed second side of the electrolyte membrane
    을 구비하고,Equipped with
    상기 실리콘 기판은 적어도 상기 리세스부의 가장자리 부근에 다공성으로 형성된 다공질부를 포함하는,The silicon substrate includes a porous portion formed to be porous at least near the edge of the recess portion,
    고체산화물 연료전지.Solid oxide fuel cell.
  2. 실리콘 기판의 제1 면 및 상기 제1 면의 반대 면인 제2 면에 각각 유전체 막을 증착하는 단계;Depositing a dielectric film on a first side of a silicon substrate and a second side opposite the first side, respectively;
    상기 제2 면에 증착된 유전체 막을 소정의 패턴에 따라 제거하는 단계;removing the dielectric film deposited on the second surface according to a predetermined pattern;
    상기 제1 면에 증착된 상기 유전체 막의 제1 면에 전해질 막을 형성하는 단계;forming an electrolyte film on a first side of the dielectric film deposited on the first side;
    상기 제2 면의 상기 유전체 막이 제거된 부분을 에칭하여 상기 제1 면에 증착된 상기 유전체 막이 노출되도록 리세스부를 형성하는 단계;forming a recess by etching a portion of the second surface from which the dielectric film has been removed to expose the dielectric film deposited on the first surface;
    상기 리세스부를 통해 노출된 상기 제1 면에 증착된 상기 유전체 막 및 상기 제2 면에 남아있는 상기 유전체 막을 제거하는 단계;removing the dielectric film deposited on the first surface exposed through the recess and the dielectric film remaining on the second surface;
    상기 실리콘 기판의 적어도 상기 리세스부의 가장자리 부근을 다공성으로 형성하는 단계;forming at least an area near the edge of the recess portion of the silicon substrate to be porous;
    상기 전해질 막의 제1 면의 적어도 일부에 제1 전극을 형성하는 단계; 및forming a first electrode on at least a portion of the first side of the electrolyte membrane; and
    상기 리세스부를 통해 노출된 상기 제1 면에 증착된 상기 유전체 막을 제거함으로써 노출된 상기 전해질 막의 상기 제1 면의 반대 면인 제2 면에 제2 전극을 형성하는 단계forming a second electrode on a second side of the exposed electrolyte membrane opposite to the first side by removing the dielectric film deposited on the first side exposed through the recessed portion.
    를 구비하는,Equipped with,
    고체산화물 연료전지의 제조 방법.Manufacturing method of solid oxide fuel cell.
  3. 다공성 실리콘 기판;Porous silicon substrate;
    상기 다공성 실리콘 기판의 제1 면에 형성된 전해질 막;an electrolyte membrane formed on a first side of the porous silicon substrate;
    상기 전해질 막의 제1 면의 적어도 일부에 형성된 제1 전극;a first electrode formed on at least a portion of the first side of the electrolyte membrane;
    상기 다공성 실리콘 기판의 상기 제1 면의 반대 면인 제2 면으로부터 상기 전해질 막의 상기 제1 면의 반대 면인 제2 면의 상기 제1 전극에 대향하는 일부가 노출되도록 형성된 리세스부; 및a recess formed to expose a portion of the second surface of the electrolyte membrane opposite to the first electrode from a second surface of the porous silicon substrate opposite to the first surface; and
    적어도 상기 전해질 막의 노출된 상기 제2 면에 형성된 제2 전극a second electrode formed on at least the exposed second side of the electrolyte membrane
    을 구비하는,Equipped with,
    고체산화물 연료전지.Solid oxide fuel cell.
  4. 단결정 실리콘 기판의 제1 면 및 상기 제1 면의 반대 면인 제2 면에 각각 유전체 막을 증착하는 단계;Depositing a dielectric film on a first side of a single crystal silicon substrate and a second side opposite the first side;
    상기 제2 면에 증착된 유전체 막을 소정의 패턴에 따라 제거하는 단계;removing the dielectric film deposited on the second surface according to a predetermined pattern;
    상기 제1 면에 증착된 상기 유전체 막의 제1 면에 전해질 막을 형성하는 단계;forming an electrolyte film on a first side of the dielectric film deposited on the first side;
    상기 제2 면의 상기 유전체 막이 제거된 부분을 에칭하여 상기 제1 면에 증착된 상기 유전체 막이 노출되도록 리세스부를 형성하는 단계;forming a recess by etching a portion of the second surface from which the dielectric film has been removed to expose the dielectric film deposited on the first surface;
    상기 리세스부를 통해 노출된 상기 제1 면에 증착된 상기 유전체 막 및 상기 제2 면에 남아있는 상기 유전체 막을 제거하는 단계;removing the dielectric film deposited on the first surface exposed through the recess and the dielectric film remaining on the second surface;
    상기 실리콘 기판을 다공성으로 형성하는 단계;Forming the silicon substrate to be porous;
    상기 전해질 막의 제1 면의 적어도 일부에 제1 전극을 형성하는 단계; 및forming a first electrode on at least a portion of the first side of the electrolyte membrane; and
    상기 리세스부를 통해 노출된 상기 제1 면에 증착된 상기 유전체 막을 제거함으로써 노출된 상기 전해질 막의 상기 제1 면의 반대 면인 제2 면에 제2 전극을 형성하는 단계forming a second electrode on a second side of the exposed electrolyte membrane opposite to the first side by removing the dielectric film deposited on the first side exposed through the recessed portion.
    를 구비하는,Equipped with,
    고체산화물 연료전지의 제조 방법.Manufacturing method of solid oxide fuel cell.
  5. 실리콘 기판;silicon substrate;
    상기 실리콘 기판의 제1 면에 형성된 전해질 막;an electrolyte film formed on a first side of the silicon substrate;
    상기 전해질 막의 제1 면의 적어도 일부에 형성된 제1 전극;a first electrode formed on at least a portion of the first side of the electrolyte membrane;
    상기 실리콘 기판의 상기 제1 면의 반대 면인 제2 면으로부터 상기 전해질 막의 상기 제1 면의 반대 면인 제2 면의 상기 제1 전극에 대향하는 일부가 노출되도록 형성된 리세스부; 및a recess portion formed to expose a portion of the second side of the electrolyte membrane opposite to the first side, which faces the first electrode, from a second side of the silicon substrate that is opposite to the first side; and
    적어도 상기 전해질 막의 노출된 상기 제2 면에 형성된 제2 전극a second electrode formed on at least the exposed second side of the electrolyte membrane
    을 구비하고,Equipped with
    상기 제1 전극, 상기 전해질 막, 및 상기 제2 전극으로 형성된 다층 구조는 소정의 깊이로 형성된 트렌치 형태의 복수의 서브 셀을 포함하고,The multilayer structure formed by the first electrode, the electrolyte membrane, and the second electrode includes a plurality of subcells in the form of a trench formed at a predetermined depth,
    상기 복수의 서브 셀은 각각 상기 실리콘 기판의 상기 제1 면 상의 가상의 벌집 모양 패턴의 정육각형 각각의 중심에 위치하도록 배열된,The plurality of sub cells are each arranged to be located at the center of each regular hexagon of a virtual honeycomb pattern on the first side of the silicon substrate,
    고체 산화물 연료 전지용 유닛 셀.Unit cell for solid oxide fuel cells.
  6. 제5항에 있어서,According to clause 5,
    하나의 서브 셀을 둘러싼 여섯 개의 서브 셀은 각각의 중심을 잇는 선이 정육각형을 형성하도록 배치된,The six subcells surrounding one subcell are arranged so that the lines connecting their centers form a regular hexagon,
    고체 산화물 연료 전지용 유닛 셀.Unit cell for solid oxide fuel cells.
  7. 제5항에 있어서,According to clause 5,
    각각의 서브 셀의 중간 위치에 형성된 홈을 더 구비하는,Further comprising a groove formed at the middle position of each subcell,
    고체 산화물 연료 전지용 유닛 셀.Unit cell for solid oxide fuel cells.
  8. 제5항에 있어서,According to clause 5,
    상기 실리콘 기판은 적어도 상기 리세스부의 가장자리 부근에 다공성으로 형성된 다공질부를 포함하는,The silicon substrate includes a porous portion formed to be porous at least near the edge of the recess portion,
    고체 산화물 연료 전지용 유닛 셀.Unit cell for solid oxide fuel cells.
  9. 제5항에 있어서,According to clause 5,
    상기 실리콘 기판은 다공성 실리콘 기판을 포함하는,The silicon substrate includes a porous silicon substrate,
    고체 산화물 연료 전지용 유닛 셀.Unit cell for solid oxide fuel cells.
  10. 제5항에서 제9항의 어느 한 항에 기재된 유닛 셀을 구비하는,Equipped with the unit cell according to any one of claims 5 to 9,
    고체 산화물 연료 전지.Solid oxide fuel cell.
PCT/KR2023/004120 2022-03-29 2023-03-28 Thin film solid oxide fuel cell and manufacturing method therefor WO2023191456A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0039238 2022-03-29
KR10-2022-0039239 2022-03-29
KR1020220039238A KR20230140285A (en) 2022-03-29 2022-03-29 Thinfilm Solid Oxide Fuel Cell with Stress-Relaxing Structure Using Porous Silicon and Method of Manufacturing the Same
KR1020220039239A KR20230140286A (en) 2022-03-29 2022-03-29 Unit Cell Having Sub-Cells Arranged in Honeycomb Pattern and Thinfilm Solid Oxide Fuel Cell Including the Same

Publications (1)

Publication Number Publication Date
WO2023191456A1 true WO2023191456A1 (en) 2023-10-05

Family

ID=88202704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/004120 WO2023191456A1 (en) 2022-03-29 2023-03-28 Thin film solid oxide fuel cell and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2023191456A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213565A (en) * 1994-10-28 1996-08-20 Internatl Business Mach Corp <Ibm> Semiconductor capacitor structure and its forming method
US20020012825A1 (en) * 2000-05-08 2002-01-31 Jun Sasahara Fuel cell with patterned electrolyte/electrode interface
JP2003059496A (en) * 2001-08-13 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell and its manufacturing method
US20040048128A1 (en) * 1999-02-01 2004-03-11 The Regents Of The University Of California Solid polymer mems-based fuel cells
KR20080085092A (en) * 2006-01-19 2008-09-22 더 보드 오브 트러스티스 오브 더 리랜드 스탠포드 주니어 유니버시티 Membrane electrode assembly in solid oxide fuel cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213565A (en) * 1994-10-28 1996-08-20 Internatl Business Mach Corp <Ibm> Semiconductor capacitor structure and its forming method
US20040048128A1 (en) * 1999-02-01 2004-03-11 The Regents Of The University Of California Solid polymer mems-based fuel cells
US20020012825A1 (en) * 2000-05-08 2002-01-31 Jun Sasahara Fuel cell with patterned electrolyte/electrode interface
JP2003059496A (en) * 2001-08-13 2003-02-28 Nissan Motor Co Ltd Solid electrolyte fuel cell and its manufacturing method
KR20080085092A (en) * 2006-01-19 2008-09-22 더 보드 오브 트러스티스 오브 더 리랜드 스탠포드 주니어 유니버시티 Membrane electrode assembly in solid oxide fuel cells

Similar Documents

Publication Publication Date Title
WO2016080681A1 (en) Method for manufacturing solid oxide fuel cell
WO2014208869A1 (en) Solid oxide fuel cell stack
WO2021172962A1 (en) Fuel cell system
WO2014098335A1 (en) Solid oxide fuel cell having vertical channel and transverse channel
WO2004034493A2 (en) Fuel cell assembly and method of making the same
WO2020138847A1 (en) Battery module having structure in which energy density is improved, and battery pack and vehicle comprising same
WO2010123219A2 (en) Stack for a solid oxide fuel cell using a flat tubular structure
WO2023191456A1 (en) Thin film solid oxide fuel cell and manufacturing method therefor
WO2011013870A1 (en) Metal separator for fuel cell, and fuel cell stack provided with same
WO2018034490A1 (en) Solid oxide fuel cell
WO2013183885A1 (en) Stack structure for fuel cell and composition thereof
WO2023191464A1 (en) Thin film solid oxide fuel cell package
WO2012015113A1 (en) Flat tubular solid oxide cell stack
WO2011149174A1 (en) Laminated structure for solid oxide fuel cell
WO2012115485A2 (en) Flat tubular solid-oxide fuel cell, and flat tubular solid-oxide water electrolysis apparatus
WO2009134039A2 (en) Inorganic ion conductive membrane, fuel cell containing the same and manufacturing method thereof
WO2021070979A1 (en) Method for manufacturing metal separator for hydrogen fuel cell stack
KR20230140286A (en) Unit Cell Having Sub-Cells Arranged in Honeycomb Pattern and Thinfilm Solid Oxide Fuel Cell Including the Same
KR20230140285A (en) Thinfilm Solid Oxide Fuel Cell with Stress-Relaxing Structure Using Porous Silicon and Method of Manufacturing the Same
WO2023106663A1 (en) All-solid-state battery and manufacturing method thereof
WO2018216847A1 (en) Cell for measuring ion conductivity of ion exchange membrane and method for measuring ion conductivity by using same
WO2018101754A1 (en) Separator and fuel cell stack comprising same
WO2019240313A1 (en) Hydrogen generating device
WO2023120982A1 (en) All-solid-state battery
KR20230141311A (en) Fuel Cell Package Having Insulating Structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781311

Country of ref document: EP

Kind code of ref document: A1