WO2023191445A1 - Three-dimensional stacked dram array and manufacturing method therefor - Google Patents
Three-dimensional stacked dram array and manufacturing method therefor Download PDFInfo
- Publication number
- WO2023191445A1 WO2023191445A1 PCT/KR2023/004099 KR2023004099W WO2023191445A1 WO 2023191445 A1 WO2023191445 A1 WO 2023191445A1 KR 2023004099 W KR2023004099 W KR 2023004099W WO 2023191445 A1 WO2023191445 A1 WO 2023191445A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gate
- lines
- forming
- connection
- drain
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000003990 capacitor Substances 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 16
- 230000015572 biosynthetic process Effects 0.000 claims description 28
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 15
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 15
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 13
- 238000000151 deposition Methods 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 10
- 229910021332 silicide Inorganic materials 0.000 claims description 9
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 230000001681 protective effect Effects 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 2
- 238000002955 isolation Methods 0.000 claims description 2
- 238000001465 metallisation Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 30
- 239000004065 semiconductor Substances 0.000 description 6
- 102100036774 Afamin Human genes 0.000 description 5
- 101000928239 Homo sapiens Afamin Proteins 0.000 description 5
- 101000948431 Synechocystis sp. (strain PCC 6803 / Kazusa) Membrane protein insertase YidC Proteins 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 101150016901 ALB1 gene Proteins 0.000 description 4
- 101100274294 Arabidopsis thaliana CHLD gene Proteins 0.000 description 4
- 101100434646 Mus musculus Alb gene Proteins 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/50—Peripheral circuit region structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42384—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
- H01L29/42392—Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/05—Making the transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/48—Data lines or contacts therefor
Definitions
- the present invention relates to semiconductor memory DRAM (DRAM), and more specifically, to a three-dimensional stacked DRAM array and a method of manufacturing the same.
- DRAM semiconductor memory DRAM
- HBM High-Bandwidth Memory
- TSV Through-Silicon Vias
- 3D DRAM technology is Monolithic 3D DRAM technology, which has an array structure in which the DRAM cells themselves are stacked within a single substrate (chip).
- the capacitors of the stacked cells are limited to neighboring cells even if one electrode is independent or shared, and the capacitors are limited to those of cells stacked with word lines (WLs) or bit lines (BLs) in three dimensions.
- WLs word lines
- BLs bit lines
- the present invention ensures that the capacitors of the stacked cells are shared as much as possible not only between the top and bottom electrodes, but also between cells stacked horizontally spaced apart, and how to make connections for operating each layer independently and metal wiring for this efficiently in a limited space. We would like to solve the problem of whether to configure it as .
- the three-dimensional stacked DRAM array according to the present invention has two horizontally parallel connection lines, connected in the middle, and has a “ ⁇ ” shape, vertically spaced apart, and includes stacked Drain-BL Connection structures.
- the Drain-BL Connection structures are spaced apart along the length direction of the one connection line in one of the two connection lines, and a plurality of horizontal active lines are formed perpendicular to the one connection line, and the two connection lines Another one of them is electrically connected to one of a plurality of bit lines, and the plurality of horizontal active lines are stacked vertically side by side as many as the number of the Drain-BL Connection structures and spaced apart along the length direction of the one connection line.
- each of the plurality of active line blocks having a gate pillar that jointly forms each gate of a plurality of cell transistors vertically stacked on one side and a plurality of cells spaced apart from the gate pillar. It is characterized by a common ground plate of capacitors connected to each of the transistors.
- the common ground plate may include one that is symmetrically positioned and integrally formed between neighboring blocks among the plurality of active blocks.
- the Drain-BL Connection structures are stacked vertically and the length of the other one of the connection lines gradually becomes smaller to form a step shape, and a unit structure is formed including the Drain-BL Connection structures forming the step shape, and the unit
- the plurality of bit lines may be electrically connected using the staircase shape in which two or more structures are arranged in the direction of word lines and repeat.
- Each of the plurality of horizontal active lines may be composed of an active area where a cell transistor is formed and an electrode area of a capacitor connected to the active area.
- Drain-BL Connection structures and the electrode area of the capacitor may be formed of silicide.
- One of a plurality of common ground plates surrounded by a plurality of separators and a cell capacitor dielectric is positioned between the plurality of active line blocks, and is vertically connected to the plurality of cell transistors, respectively.
- a plurality of capacitors are stacked symmetrically with one of the plurality of separators interposed therebetween, and each of the plurality of cell transistors has a half-gate-all-around (GAA) channel structure in the active region.
- GAA half-gate-all-around
- the method of manufacturing a three-dimensional stacked DRAM array according to the present invention includes alternately stacking SiGe layers and Si layers on a silicon substrate, then sequentially stacking a silicon oxide film and a silicon nitride film, and forming a separator forming space divided into a plurality of unit sections.
- a selective etching process may be further performed to round the corners of the Si layer exposed in the recess so that the channel region has a half-gate GAA (Gate-All-Around) shape. .
- a self-aligned silicide process may be performed to further transform the exposed Si layer by doping with N+ into silicide.
- the plurality of unit sections are divided into an m x n matrix (m and n are natural numbers of 2 or more), the space for forming the cell transistor is formed at a regular interval of three or more on one side of each unit section, and the isolation A plate formation space may be formed between the cell transistor formation spaces.
- the present invention is a “ ⁇ ” shaped Drain-BL Connection structure with two connection lines that is stacked vertically, with a plurality of horizontal active lines on one connection line and a step shape on the other connection line to form bit lines.
- By connecting them not only can space be efficiently utilized by sharing the ground electrode of the capacitor, but the cell capacitance can be increased horizontally, and this can be expanded into a unit structure, allowing for metal wiring processes such as bit lines by vertical stacking. It has the effect of resolving difficulties.
- Figure 1 is a perspective view showing the basic structure of a three-dimensional stacked DRAM array according to an embodiment of the present invention.
- FIG. 2(a) is an equivalent circuit diagram for the one-layer structure of FIG. 1, and FIG. 2(b) is a partially cut away perspective view showing the structure of FIG. 1 corresponding to the dotted line portion of FIG. 2(a).
- FIG. 3(a) is a horizontal cross-sectional view of a plurality of cell transistors and a plurality of capacitors stacked vertically on the first active line block and the second active line block with the first separator of FIG. 1 in between.
- FIG. 3(b) is a cross-sectional view cut vertically along line aa' in FIG. 3(a).
- Figure 4 is a perspective view showing the basic structure of Figure 1 expanded to four.
- FIGS. 5 to 18 are process diagrams showing a method of manufacturing a three-dimensional stacked DRAM array according to an embodiment of the present invention.
- (a) is a plan view of each step
- (b) is a plan view of (a). This is a perspective view showing a vertical cut along line bb' in .
- the three-dimensional stacked DRAM array has two connection lines 102 and 104 parallel to each other horizontally (in the x direction of FIG. 2) and connected in the middle. It has a “ ⁇ ” shape and includes vertically spaced and stacked Drain-BL Connection structures.
- Drain-BL Connection structures are spaced apart along the longitudinal direction (x direction) of the one connection line on one of the two connection lines (102) for each floor and include a plurality of horizontal active lines (110, 120, 130, 140, 150, 160) are formed perpendicular to the one connection line 102.
- connection lines (104) is electrically connected to one of the plurality of bit lines (BL1, BL2, BL3, BL4, BL5, BL6) (500) through a contact plug (510), etc. .
- the plurality of horizontal active lines 110, 120, 130, 140, 150, and 160 are stacked vertically (in the z direction of FIG. 2) as many as the number of stacked drain-BL connection structures. That is, as in the example shown in FIG. 1, a plurality of horizontal active lines 110, 120, 130, 140, 150, and 160 on the first floor maintain the same shape and distance in the x direction and form a “ ⁇ ” shape. It is connected to each of the Drain-BL Connection structures of the shape, is spaced a certain distance in the z direction, and has a repeatedly stacked structure.
- the vertical stacking structure of the plurality of horizontal active lines 110, 120, 130, 140, 150, and 160 is spaced apart along the longitudinal direction (x direction) of the one connection line 102, as shown in FIG. 1.
- a plurality of active line blocks (ALB1, ALB2, ALB3, etc.) are formed equal to the number of horizontal active lines 110, 120, 130, 140, 150, and 160.
- Each of the plurality of active line blocks (ALB1, ALB2, ALB3, etc.) has a gate pillar 312 formed on one side, that is, sharing the gate of a plurality of stacked cell transistors connected to one connection line 102, 322) and the common ground plates 412, 422, 432, and 442 of the capacitors spaced apart from the gate pillar and respectively connected to the plurality of cell transistors are formed to be shared vertically/horizontally.
- common ground plates are located symmetrically between neighboring active blocks among the plurality of active blocks (for example, between ALB2 and ALB3) and/or in a space between neighboring blocks. It may include those (422, 432) that are integrally formed and fill the .
- the Drain-BL Connection structures are stacked vertically, as shown in FIG. 1, and the length of the other one of the connection lines (104) gradually decreases to form a step shape, and the Drain-BL Connection structures forming the step shape are By including this, the unit structure 100 of the DRAM array can be formed.
- the entire array structure 1000 has two or more unit structures 100 arranged in the word line direction (x-direction) to form a plurality of bit lines using a staircase shape that is repeated in the x-direction.
- BLs can be electrically connected.
- the plurality of horizontal active lines 110, 120, 130, 140, 150, and 160 are respectively connected to active regions 112, 114, where cell transistors are formed, as shown in FIG. 3(a). It may be composed of 116; 122, 124, 126) and an electrode area 118; 128 of a capacitor connected to the active area.
- the “ ⁇ ” shaped Drain-BL Connection structures (102, 104) and the electrode areas (118; 128) of the capacitor are made of a conductive material such as a semiconductor line doped with metal or impurities (N+ doped silicon line). It can be formed, but as shown in Figure 3(a), it is preferable to form it with silicide because it can form a silicon line and lower the resistance.
- One of the common ground plates 422 and 432 may be located.
- a plurality of cell transistors formed in each of the plurality of active line blocks (ALB1, ALB2, ALB3, etc.) and a plurality of capacitors connected to the plurality of cell transistors and stacked vertically are connected to the plurality of separators. It may be formed symmetrically with one of the fields 210, 220, and 230 in between.
- the plurality of cell transistors may each have a half-gate-all-around (GAA) channel structure 114 and 124 in the active area, as shown in FIG. 3(b).
- GAA half-gate-all-around
- the cell transistors each have a first source/drain (112, 122), channels (114, 124), and a second source in the active area connected to one connection line (102) of the “ ⁇ ” shaped Drain-BL Connection structure.
- /Drains 116, 126 are formed and electrically isolated from the connection line 102, the first source/drain 112, 122, the channel 114, 124, and the second source/drain 116, 126.
- Gate pillars 312 and 322 are formed to be symmetrical to each other on the separator 210, preferably with the gate insulating films 314 and 324 in between.
- the capacitors each have electrode regions 118, 128 integrally connected to the second source/drain 116, 126 of the cell transistors with a separator 210 in between, and gates adjacent to the electrode regions 118, 128.
- Common ground plates 412 and 422 are formed to surround three sides of the electrode areas 118 and 128 with a capacitor dielectric (Cap. Dielectric, 414, 424) in between so as to be insulated from the pillars 312 and 322.
- Figure 4 shows an embodiment in which the basic structure 100 of Figure 1 described above has been expanded to four.
- word lines (WLs) and bit lines (BLs) are extended and connected to each other to form an arbitrary overall array. It can be seen that metal wiring such as compact BL metal line is possible, like existing 2D DRAM, without wasting space between bit lines.
- the word lines (WLs) and bit lines (BLs) are connected to the WL decoder circuit and the Sense Amplifier circuit, respectively.
- m and n are preferably natural numbers of 2 or more, but may be any combination of natural numbers.
- SiGe layers 11 and Si layers 12 are alternately stacked on the silicon substrate 10, and then a silicon oxide film 20 and a silicon nitride film 30 are sequentially stacked, and the entire array area is In (1000a), a separator forming space 36 is divided into a plurality of unit sections (100a, 100b, 100c, 100d), and a cell transistor forming space 32 and a separator forming space 34 of the same shape for each unit section. Make them at the same time (step 1).
- the SiGe layer 11 and the Si layer 12 can be formed through single crystal growth (epitaxial growth) by alternately repeating SiGe and Si from above the silicon substrate 10.
- the Si layer 12 corresponds to the single crystal silicon line of the active region formed by the DRAM cell, the electrode region of the capacitor, and the connection line region connecting them, and in-situ doping is performed simultaneously with single crystal growth. Through this, it is possible to have a desired channel doping concentration. Later, the SiGe layer 11 is selectively removed.
- Such single crystal growth like existing commercialized DRAM, it is composed of a single crystal silicon channel, so it can have high mobility and is excellent in terms of reliability.
- amorphous or polycrystalline semiconductors instead of single crystalline silicon lines.
- the silicon nitride film 30 at the top is intended to be used as a CMP stopper during the subsequent planarization process.
- Figure 5 illustrates that the unit sections 100a, 100b, 100c, and 100d are divided into a 2 x 2 matrix, but this is not limited to this and may be divided into an arbitrary m x n matrix.
- three cell transistor formation spaces 32 are formed on one side of each unit division, but more than three may be formed at regular intervals.
- the separator forming space 34 is formed between the cell transistor forming spaces 32.
- silicon oxide films 22, 24, and 26 are deposited on the structure of the silicon substrate 10 to form the cell transistor formation space 32, the separator formation space 34, and the separator formation space. (36) is filled and a planarization process is performed (second step).
- planarization process can be performed using known CMP.
- a hole 37 is formed by partially etching the silicon oxide film 22 filling the cell transistor formation space 32 through a photo process and an etching process (third step).
- a portion 11a of the SiGe layer 11 is recessed by selective isotropic etching using the hole 37 (step 4). .
- wet etching such as phosphoric acid solution or chemical dry etching process may be used.
- amorphous Si or poly Si is deposited on the recessed hole 37 by CVD to form a dummy gate 40 (step 5).
- an active protective silicon oxide film (not shown) can be deposited to a thickness of about 10 nm on the Si layer 12 exposed as a recess using LPCVD.
- This protective SiO 2 serves to protect the silicon area (channel and source/drain) of the cell transistor when the dummy gate is selectively removed later.
- amorphous Si or poly Si for forming the dummy gate (40) is deposited by CVD. Afterwards, it is flattened through the CMP process. Through this, a Dummy Gate (40) is formed, and this Dummy Gate (40) is scheduled to be removed in the future.
- the drain-BL connection structural trench 33 and the common ground plate formation space 35 are simultaneously created for each unit section through a photo process and an etching process (step 6).
- the SiGe layer 11 is selectively removed using the trench 33 and the common ground plate formation space 35, and the exposed Si layers 10a, 10b, 12a, and 12b are removed. Doped with N+ (step 7).
- wet etching such as a phosphoric acid solution or chemical dry etching can be used.
- a thin layer of screening oxide protective oxide before the ion implantation process
- the N+ doping process may use ion implantation, plasma doping, or gas phase doping process. After the doping process, annealing is performed and screening oxide is removed.
- the step of turning the Si layer exposed by doping with N+ into silicide (10a', 10b', 12a', 12b') can be further performed through a selective self-aligned silicide process.
- a cell capacitor dielectric (not shown) is deposited on the exposed Si layers 10a', 10b', 12a', and 12b', and the trench 52 is filled with a metal for forming a common ground plate. After filling the common ground plate forming space 54, a planarization process is performed (step 8).
- ALD or LPCVD may be used to deposit the cell capacitor dielectric.
- the metal for forming the common ground plate may be TiN, W, etc.
- the planarization process may use a CMP process.
- the metal for forming the common ground plate is partially etched to lower its height, protective silicon oxide films 21 and 23 are deposited, and then a planarization process is performed again (step 9).
- step 10 the dummy gate 40 and the active protective silicon oxide film (not shown) are removed (step 10).
- gate pillars 60 are formed by sequentially depositing a gate insulating film (not shown) and a gate material on the area exposed by removing the dummy gate 40 (step 11).
- the gate insulating film may be SiO 2 or a high-k dielectric, and the gate material may be TiN, W, etc. for the metal gate.
- ALD and LPCVD can also be used for these depositions.
- a CMP process is performed and the height of the gate pillar 60 is lowered through additional dry etching.
- a step structure 39 for contacting the Si layer 12a' is formed on one side of the Drain-BL Connection structural trench 21 for each unit section through a photo process and an etching process. Make them at the same time (step 12).
- the step structure 39 of the Si layer 12a', the gate pillar 60, and the common ground plate 54 are connected to predetermined contact plugs 510, 610, 630, and 710. And/or perform a metal process to electrically connect to the bit lines 500, word lines 600, and capacitor ground line 700 through the connection lines 620 and 720, respectively (step 13).
- the unit sections are divided into an arbitrary m x n matrix form in the entire array area 1000a, the basic structures 100 of the unit sections are made simultaneously through the same process, and later, one metal process is performed. It is possible to form all bit lines, word lines, and capacitor ground lines.
- the present invention relates to a semiconductor memory DRAM and has industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Abstract
The present invention relates to a three-dimensional stacked DRAM array and a manufacturing method therefor, wherein, by vertically stacking a "U"-shaped drain-BL connection structure having two connection lines, a plurality of horizontal active lines are formed on one connection line while the plurality of horizontal active lines are stacked on the other connection line in a stepped shape and connected to bit lines, and accordingly, space can be efficiently used by sharing a ground electrode of a capacitor, and cell capacitance can be horizontally increased as much as possible and can be expanded as much as possible with a unit structure, such that difficulties in a metal wiring process such as bit lines due to vertical stacking can be solved.
Description
본 발명은 반도체 메모리 디램(DRAM)에 관한 것으로, 더욱 상세하게는 3차원 적층형 디램 어레이 및 그 제조방법에 관한 것이다.The present invention relates to semiconductor memory DRAM (DRAM), and more specifically, to a three-dimensional stacked DRAM array and a method of manufacturing the same.
현재, DRAM 기술에서 DRAM 셀의 소형화를 통한 고집적화는 한계에 도달하였다. 이를 해결하기 위한 방법으로 3차원 DRAM 기술이 주목받고 있다. Currently, in DRAM technology, high integration through miniaturization of DRAM cells has reached its limit. 3D DRAM technology is attracting attention as a way to solve this problem.
대표적으로 다수의 DRAM 칩을 적층하고, 이를 TSV(Through-Silicon Vias)로 연결한 형태를 갖는 HBM(High-Bandwidth Memory)가 대표적이다. 이 때, HBM을 구성하는 각각의 기판(칩)은 단일층의 어레이로 구성되어 있다. A representative example is HBM (High-Bandwidth Memory), which stacks multiple DRAM chips and connects them with TSV (Through-Silicon Vias). At this time, each substrate (chip) constituting the HBM is composed of a single-layer array.
또 다른 3차원 DRAM 기술로는 하나의 기판(칩) 내에 DRAM 셀 자체가 적층된 어레이 구조를 가지는 Monolithic 3D DRAM 기술이다. Another 3D DRAM technology is Monolithic 3D DRAM technology, which has an array structure in which the DRAM cells themselves are stacked within a single substrate (chip).
3차원 DRAM 기술과 관련하여, 한국 등록특허 10-2237739, 10-2368332 및 공개특허 10-2021-0102094 등이 있다.Regarding 3D DRAM technology, there are Korean registered patents 10-2237739, 10-2368332 and published patent 10-2021-0102094.
그러나, 상기 특허들을 포함한 선행기술에는 적층되는 셀들의 커패시터가 일측 전극이 독립적으로 또는 공유되어도 이웃 셀 정도로 제한적이고, 3차원에서 워드 라인들(WLs)이나 비트 라인들(BLs)과 적층되는 셀들과의 컨택(contact)과 상호 연결(interconnection) 구조가 제대로 제시되지 않았다.However, in the prior art, including the above patents, the capacitors of the stacked cells are limited to neighboring cells even if one electrode is independent or shared, and the capacitors are limited to those of cells stacked with word lines (WLs) or bit lines (BLs) in three dimensions. The contact and interconnection structure was not properly presented.
이에 본 발명은 적층되는 셀들의 커패시터가 일측 전극이 상하 적층은 물론 수평으로 이격되어 적층된 셀들 간에도 최대한 공유되도록 하고, 각 층을 독립적으로 동작시키기 위한 연결과 이를 위한 금속 배선을 어떻게 제한된 공간에 효율적으로 구성하느냐의 문제를 해결하고자 한다.Accordingly, the present invention ensures that the capacitors of the stacked cells are shared as much as possible not only between the top and bottom electrodes, but also between cells stacked horizontally spaced apart, and how to make connections for operating each layer independently and metal wiring for this efficiently in a limited space. We would like to solve the problem of whether to configure it as .
상기 목적을 달성하기 위하여, 본 발명에 의한 3차원 적층형 디램 어레이는 수평으로 나란한 두 접속 라인들을 갖고 가운데 연결되어 “ㄷ”자 형태를 가진 것이 수직으로 이격되며 적층된 Drain-BL Connection 구조들을 포함하고, 상기 Drain-BL Connection 구조들은 각각 상기 두 접속 라인들 중 하나에는 상기 하나의 접속 라인의 길이 방향을 따라 이격되며 복수의 수평 액티브 라인들이 상기 하나의 접속 라인과 수직하게 형성되고, 상기 두 접속 라인들 중 다른 하나에는 복수의 비트 라인들 중 하나와 전기적으로 연결되고, 상기 복수의 수평 액티브 라인들은 상기 Drain-BL Connection 구조들의 수만큼 수직으로 나란히 적층되어 상기 하나의 접속 라인의 길이 방향을 따라 이격되며 복수의 액티브 라인 블록들을 구성하고, 상기 복수의 액티브 라인 블록들에는 각각 일측에 수직으로 적층된 복수의 셀 트랜지스터들의 각 게이트를 공동으로 형성하는 게이트 기둥과 상기 게이트 기둥에 이격되어 상기 복수의 셀 트랜지스터들에 각각 연결된 커패시터의 공통 접지판이 형성된 것을 특징으로 한다.In order to achieve the above object, the three-dimensional stacked DRAM array according to the present invention has two horizontally parallel connection lines, connected in the middle, and has a “ㄷ” shape, vertically spaced apart, and includes stacked Drain-BL Connection structures. , the Drain-BL Connection structures are spaced apart along the length direction of the one connection line in one of the two connection lines, and a plurality of horizontal active lines are formed perpendicular to the one connection line, and the two connection lines Another one of them is electrically connected to one of a plurality of bit lines, and the plurality of horizontal active lines are stacked vertically side by side as many as the number of the Drain-BL Connection structures and spaced apart along the length direction of the one connection line. and constitutes a plurality of active line blocks, each of the plurality of active line blocks having a gate pillar that jointly forms each gate of a plurality of cell transistors vertically stacked on one side and a plurality of cells spaced apart from the gate pillar. It is characterized by a common ground plate of capacitors connected to each of the transistors.
상기 공통 접지판은 상기 복수의 액티브 블록들 중 이웃한 블록들 사이에 대칭적으로 위치하여 일체로 형성된 것을 포함할 수 있다.The common ground plate may include one that is symmetrically positioned and integrally formed between neighboring blocks among the plurality of active blocks.
상기 Drain-BL Connection 구조들은 수직으로 적층되며 상기 접속 라인들 중 다른 하나의 길이가 점점 작아져 계단 형상을 이루고, 상기 계단 형상을 이루는 상기 Drain-BL Connection 구조들을 포함한 것으로 단위 구조를 이루고, 상기 단위 구조가 둘 이상 워드 라인 방향으로 배치되어 반복되는 상기 계단 형상을 이용하여 상기 복수의 비트 라인들이 전기적으로 연결될 수 있다.The Drain-BL Connection structures are stacked vertically and the length of the other one of the connection lines gradually becomes smaller to form a step shape, and a unit structure is formed including the Drain-BL Connection structures forming the step shape, and the unit The plurality of bit lines may be electrically connected using the staircase shape in which two or more structures are arranged in the direction of word lines and repeat.
상기 복수의 수평 액티브 라인들은 각각 셀 트랜지스터가 형성되는 액티브 영역과 상기 액티브 영역에 연결된 커패시터의 전극 영역으로 구성될 수 있다.Each of the plurality of horizontal active lines may be composed of an active area where a cell transistor is formed and an electrode area of a capacitor connected to the active area.
상기 상기 Drain-BL Connection 구조들과 상기 커패시터의 전극 영역은 실리사이드로 형성될 수 있다.The Drain-BL Connection structures and the electrode area of the capacitor may be formed of silicide.
상기 복수의 액티브 라인 블록들 사이에는 복수의 격리판들 및 셀 커패시터 유전체로 둘러쌓인 복수의 공통 접지판들 중 하나가 위치하고, 상기 복수의 셀 트랜지스터들과 상기 복수의 셀 트랜지스터들에 각각 연결되어 수직으로 적층된 복수의 커패시터들은 상기 복수의 격리판들 중 하나를 사이에 두고 대칭적으로 형성되고, 상기 복수의 셀 트랜지스터들은 각각 상기 액티브 영역에 반쪽짜리 GAA(Gate-All-Around) 채널 구조를 가질 수 있다.One of a plurality of common ground plates surrounded by a plurality of separators and a cell capacitor dielectric is positioned between the plurality of active line blocks, and is vertically connected to the plurality of cell transistors, respectively. A plurality of capacitors are stacked symmetrically with one of the plurality of separators interposed therebetween, and each of the plurality of cell transistors has a half-gate-all-around (GAA) channel structure in the active region. You can.
본 발명에 의한 3차원 적층형 디램 어레이의 제조방법은 실리콘 기판에 SiGe층과 Si층을 교대로 적층한 후 실리콘 산화막과 실리콘 질화막을 순차로 적층하고, 복수의 단위 구획들로 나누는 분리막 형성 공간과 상기 단위 구획마다 같은 모양의 셀 트랜지스터 형성 공간과 격리판 형성 공간을 동시에 만드는 제 1 단계; 상기 실리콘 기판의 구조물 위에 실리콘 산화막을 증착하여 상기 분리막 형성 공간, 상기 셀 트랜지스터 형성 공간과 상기 격리판 형성 공간을 메우고 평탄화 공정을 수행하는 제 2 단계; 상기 셀 트랜지스터 형성 공간에 채운 실리콘 산화막을 일부 식각하여 홀(hole)을 형성하는 제 3 단계; 상기 홀을 이용하여 상기 SiGe층을 선택적 등방성 식각으로 상기 SiGe층의 일부를 리세스(recess) 시켜주는 제 4 단계; 리세스된 상기 홀에 amorphous Si 또는 poly Si을 CVD로 증착하여 Dummy Gate를 형성하는 제 5 단계; 상기 단위 구획마다 Drain-BL Connection 구조용 트렌치와 공통 접지판 형성 공간을 동시에 만드는 제 6 단계; 상기 트렌치와 상기 공통 접지판 형성 공간을 이용하여 상기 SiGe층을 선택적으로 제거하고, 노출된 Si층을 N+로 도핑하는 제 7 단계; 상기 노출된 Si층 상에 셀 커패시터 유전체를 증착하고, 공통 접지판 형성용 금속으로 상기 트렌치와 상기 공통 접지판 형성 공간을 채운 후 평탄화 공정을 수행하는 제 8 단계; 상기 공통 접지판 형성용 금속을 일부 식각하여 높이를 낮추고, 보호용 실리콘 산화막을 증착 한 후 다시 평탄화 공정을 수행하는 제 9 단계; 상기 Dummy Gate를 제거하는 제 10 단계; 상기 Dummy Gate의 제거로 드러난 부위에 게이트 절연막과 게이트 물질을 순차로 증착하여 게이트 기둥을 형성하는 제 11 단계; 상기 단위 구획마다 상기 Drain-BL Connection 구조용 트렌치의 일측으로 상기 Si층을 컨택하기 위한 계단 구조를 동시에 만드는 제 12 단계; 및 상기 Si층의 계단 구조, 상기 게이트 및 상기 공통 접지판을 각각 비트 라인들, 워드 라인들 및 커패시터 접지 라인에 전기적으로 연결하기 위한 금속공정을 수행하는 제 13 단계를 포함하는 것을 특징으로 한다.The method of manufacturing a three-dimensional stacked DRAM array according to the present invention includes alternately stacking SiGe layers and Si layers on a silicon substrate, then sequentially stacking a silicon oxide film and a silicon nitride film, and forming a separator forming space divided into a plurality of unit sections. A first step of simultaneously creating a cell transistor formation space and a separator formation space of the same shape for each unit block; A second step of depositing a silicon oxide film on the structure of the silicon substrate to fill the separator formation space, the cell transistor formation space, and the separator formation space, and performing a planarization process; a third step of forming a hole by partially etching the silicon oxide film filling the cell transistor formation space; A fourth step of recessing a portion of the SiGe layer by selective isotropic etching using the hole; A fifth step of forming a dummy gate by depositing amorphous Si or poly Si in the recessed hole by CVD; A sixth step of simultaneously creating a Drain-BL Connection structural trench and a common ground plate formation space for each unit section; A seventh step of selectively removing the SiGe layer using the trench and the common ground plate formation space and doping the exposed Si layer with N+; An eighth step of depositing a cell capacitor dielectric on the exposed Si layer, filling the trench and the space for forming the common ground plate with metal for forming a common ground plate, and then performing a planarization process; A ninth step of partially etching the metal for forming the common ground plate to lower its height, depositing a protective silicon oxide film, and then performing a planarization process again; Step 10 of removing the Dummy Gate; An 11th step of forming a gate pillar by sequentially depositing a gate insulating film and a gate material on the area exposed by removal of the dummy gate; A twelfth step of simultaneously creating a staircase structure for contacting the Si layer with one side of the Drain-BL Connection structural trench for each unit section; and a 13th step of performing a metallization process to electrically connect the step structure of the Si layer, the gate, and the common ground plate to bit lines, word lines, and capacitor ground lines, respectively.
상기 제 4 단계와 상기 제 5 단계 사이에는 선택적 식각 공정을 더 진행하여 리세스로 노출된 상기 Si층의 모서리를 둥글게 하여 채널 영역이 반쪽자리 GAA(Gate-All-Around) 형태가 되도록 할 수 있다.Between the fourth step and the fifth step, a selective etching process may be further performed to round the corners of the Si layer exposed in the recess so that the channel region has a half-gate GAA (Gate-All-Around) shape. .
상기 제 7 단계와 상기 제 8 단계 사이에는 Self-aligned Silicide 공정을 통해 상기 N+로 도핑되어 노출된 Si층에 실리사이드로 만드는 단계를 더 진행할 수 있다.Between the seventh and eighth steps, a self-aligned silicide process may be performed to further transform the exposed Si layer by doping with N+ into silicide.
상기 제 1 단계에서 상기 복수의 단위 구획들은 m x n 행렬 형태로 나누고(m과 n은 2 이상 자연수), 상기 셀 트랜지스터 형성 공간은 상기 단위 구획마다 일측에 3개 이상이 일정 간격으로 형성하고, 상기 격리판 형성 공간은 상기 셀 트랜지스터 형성 공간 사이에 형성할 수 있다.In the first step, the plurality of unit sections are divided into an m x n matrix (m and n are natural numbers of 2 or more), the space for forming the cell transistor is formed at a regular interval of three or more on one side of each unit section, and the isolation A plate formation space may be formed between the cell transistor formation spaces.
본 발명은 두 접속 라인들을 갖는 “ㄷ”자 형태의 Drain-BL Connection 구조를 수직으로 적층하여 한 쪽 접속 라인에는 복수의 수평 액티브 라인들, 다른 쪽 접속 라인에는 계단 형상으로 적층되어 비트 라인들에 연결되도록 함으로써, 커패시터의 접지전극 공유로 공간의 효율적 활용은 물론, 수평으로 셀 커패시턴스를 얼마든지 높일 수 있으며, 이를 단위 구조로 얼마든지 확장할 수 있어 수직 적층에 따른 비트 라인 등의 금속 배선공정의 어려움을 해소할 수 있는 효과가 있다.The present invention is a “ㄷ” shaped Drain-BL Connection structure with two connection lines that is stacked vertically, with a plurality of horizontal active lines on one connection line and a step shape on the other connection line to form bit lines. By connecting them, not only can space be efficiently utilized by sharing the ground electrode of the capacitor, but the cell capacitance can be increased horizontally, and this can be expanded into a unit structure, allowing for metal wiring processes such as bit lines by vertical stacking. It has the effect of resolving difficulties.
도 1은 본 발명의 일 실시예에 따른 3차원 적층형 디램 어레이의 기본 구조를 보인 사시도이다.Figure 1 is a perspective view showing the basic structure of a three-dimensional stacked DRAM array according to an embodiment of the present invention.
도 2(a)는 도 1의 1층 구조에 대한 등가 회로도이고, 도 2(b)는 도 2(a)의 점선 부분에 해당하는 도 1의 구조를 보인 부분 절단 사시도이다.FIG. 2(a) is an equivalent circuit diagram for the one-layer structure of FIG. 1, and FIG. 2(b) is a partially cut away perspective view showing the structure of FIG. 1 corresponding to the dotted line portion of FIG. 2(a).
도 3(a)는 도 1의 첫 번째 격리판을 사이에 두고 첫 번째 액티브 라인 블록과 두 번째 액티브 라인 블록 상에 수직으로 적층된 복수의 셀 트랜지스터들과 복수의 캐패시터들을 수평으로 절단한 단면도이고, 도 3(b)는 도 3(a)의 aa'선을 따라 수직으로 절단한 단면도이다.FIG. 3(a) is a horizontal cross-sectional view of a plurality of cell transistors and a plurality of capacitors stacked vertically on the first active line block and the second active line block with the first separator of FIG. 1 in between. , FIG. 3(b) is a cross-sectional view cut vertically along line aa' in FIG. 3(a).
도 4는 도 1의 기본 구조를 4개로 확장한 모습을 보인 사시도이다.Figure 4 is a perspective view showing the basic structure of Figure 1 expanded to four.
도 5 내지 도 18은 본 발명의 일 실시예에 따른 3차원 적층형 디램 어레이의 제조방법을 보인 공정도로, 도 5 내지 도 17에서 (a)는 각 단계의 평면도이고, (b)는 (a)에서 bb'선을 따라 수직으로 절단한 모습을 함께 보인 사시도이다.FIGS. 5 to 18 are process diagrams showing a method of manufacturing a three-dimensional stacked DRAM array according to an embodiment of the present invention. In FIGS. 5 to 17, (a) is a plan view of each step, and (b) is a plan view of (a). This is a perspective view showing a vertical cut along line bb' in .
이하, 첨부한 도면을 참조하며 본 발명의 바람직한 실시예에 대하여 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the attached drawings.
본 발명의 일 실시예에 따른 3차원 적층형 디램 어레이는, 도 1 및 도 2에 예시된 바와 같이, 수평으로(도 2의 x 방향으로) 나란한 두 접속 라인들(102, 104)을 갖고 가운데 연결되어 “ㄷ”자 형태를 가진 것이 수직으로 이격되며 적층된 Drain-BL Connection 구조들을 포함한다.As illustrated in FIGS. 1 and 2, the three-dimensional stacked DRAM array according to an embodiment of the present invention has two connection lines 102 and 104 parallel to each other horizontally (in the x direction of FIG. 2) and connected in the middle. It has a “ㄷ” shape and includes vertically spaced and stacked Drain-BL Connection structures.
상기 Drain-BL Connection 구조들은 각각 층마다 상기 두 접속 라인들 중 하나(102)에는 상기 하나의 접속 라인의 길이 방향(x 방향)을 따라 이격되며 복수의 수평 액티브 라인들(110, 120, 130, 140, 150, 160)이 상기 하나의 접속 라인(102)과 수직하게 형성된다.The Drain-BL Connection structures are spaced apart along the longitudinal direction (x direction) of the one connection line on one of the two connection lines (102) for each floor and include a plurality of horizontal active lines (110, 120, 130, 140, 150, 160) are formed perpendicular to the one connection line 102.
한편, 상기 두 접속 라인들 중 다른 하나(104)에는 복수의 비트 라인들( BL1, BL2, BL3, BL4, BL5, BL6) 중 하나(500)와 컨택 플러그(510) 등을 통해 전기적으로 연결된다.Meanwhile, the other one of the two connection lines (104) is electrically connected to one of the plurality of bit lines (BL1, BL2, BL3, BL4, BL5, BL6) (500) through a contact plug (510), etc. .
상기 복수의 수평 액티브 라인들(110, 120, 130, 140, 150, 160)은 상기 Drain-BL Connection 구조들의 적층된 수만큼 수직으로(도 2의 z 방향으로) 나란히 적층된다. 즉, 도 1에 도시된 예와 같이, 1층에 있는 복수의 수평 액티브 라인들(110, 120, 130, 140, 150, 160)이 동일한 형상과 x 방향으로 이격 거리를 유지하며 “ㄷ”자 형상의 Drain-BL Connection 구조들에 각각 연결된 상태로 z 방향으로 일정 거리 이격되며 반복 적층된 구조를 갖는다. 이러한 복수의 수평 액티브 라인들(110, 120, 130, 140, 150, 160)의 수직 적층 구조는, 도 1과 같이, 상기 하나의 접속 라인(102)의 길이 방향(x 방향)을 따라 이격되며 상기 복수의 수평 액티브 라인들(110, 120, 130, 140, 150, 160)의 수만큼 복수의 액티브 라인 블록들(ALB1, ALB2, ALB3 등)을 구성하게 된다.The plurality of horizontal active lines 110, 120, 130, 140, 150, and 160 are stacked vertically (in the z direction of FIG. 2) as many as the number of stacked drain-BL connection structures. That is, as in the example shown in FIG. 1, a plurality of horizontal active lines 110, 120, 130, 140, 150, and 160 on the first floor maintain the same shape and distance in the x direction and form a “ㄷ” shape. It is connected to each of the Drain-BL Connection structures of the shape, is spaced a certain distance in the z direction, and has a repeatedly stacked structure. The vertical stacking structure of the plurality of horizontal active lines 110, 120, 130, 140, 150, and 160 is spaced apart along the longitudinal direction (x direction) of the one connection line 102, as shown in FIG. 1. A plurality of active line blocks (ALB1, ALB2, ALB3, etc.) are formed equal to the number of horizontal active lines 110, 120, 130, 140, 150, and 160.
상기 복수의 액티브 라인 블록들(ALB1, ALB2, ALB3 등)에는 각각 일측, 즉 하나의 접속 라인(102)에 연결된 복수의 적층된 셀 트랜지스터들의 게이트를 공유하는 형태로 형성되어 있는 게이트 기둥(312, 322)과 상기 게이트 기둥에 이격되어 상기 복수의 셀 트랜지스터들에 각각 연결된 커패시터의 공통 접지판(412, 422, 432, 442)이 수직/수평으로 서로 공유하도록 형성된다.Each of the plurality of active line blocks (ALB1, ALB2, ALB3, etc.) has a gate pillar 312 formed on one side, that is, sharing the gate of a plurality of stacked cell transistors connected to one connection line 102, 322) and the common ground plates 412, 422, 432, and 442 of the capacitors spaced apart from the gate pillar and respectively connected to the plurality of cell transistors are formed to be shared vertically/horizontally.
상기 공통 접지판 중에는, 도 1을 참조하면, 상기 복수의 액티브 블록들 중 이웃한 액티브 블록들 사이에(예를 들어, ALB2와 ALB3 사이) 대칭적으로 위치하여 및/또는 이웃한 블록들 사이 공간을 메우며 일체로 형성된 것(422, 432)을 포함할 수 있다.Among the common ground plates, referring to FIG. 1, are located symmetrically between neighboring active blocks among the plurality of active blocks (for example, between ALB2 and ALB3) and/or in a space between neighboring blocks. It may include those (422, 432) that are integrally formed and fill the .
상기 Drain-BL Connection 구조들은, 도 1과 같이, 수직으로 적층되며 상기 접속 라인들 중 다른 하나(104)의 길이가 점점 작아져 계단 형상을 이루고, 상기 계단 형상을 이루는 상기 Drain-BL Connection 구조들을 포함한 것으로 디램 어레이의 단위 구조(100)를 이룰 수 있다.The Drain-BL Connection structures are stacked vertically, as shown in FIG. 1, and the length of the other one of the connection lines (104) gradually decreases to form a step shape, and the Drain-BL Connection structures forming the step shape are By including this, the unit structure 100 of the DRAM array can be formed.
실시예에 따라, 도 4와 같이, 전체 어레이 구조(1000)는 상기 단위 구조(100)가 둘 이상 워드 라인 방향(x 방향)으로 배치되어 x 방향으로 반복되는 계단 형상을 이용하여 복수의 비트 라인들(BLs)이 전기적으로 연결될 수 있다. 이렇게 함으로써, 액티브 라인들의 수직 적층의 수가 많아 질수록 비트 라인 컨택이 어려운 점을 해소할 수 있게 된다.Depending on the embodiment, as shown in FIG. 4, the entire array structure 1000 has two or more unit structures 100 arranged in the word line direction (x-direction) to form a plurality of bit lines using a staircase shape that is repeated in the x-direction. BLs can be electrically connected. By doing this, it is possible to solve the problem of making bit line contact difficult as the number of vertical stacks of active lines increases.
상술한 각 실시예에서, 상기 복수의 수평 액티브 라인들(110, 120, 130, 140, 150, 160)은 각각, 도 3(a)와 같이, 셀 트랜지스터가 형성되는 액티브 영역(112, 114, 116; 122, 124, 126)과 상기 액티브 영역에 연결된 커패시터의 전극 영역(118; 128)으로 구성될 수 있다.In each of the above-described embodiments, the plurality of horizontal active lines 110, 120, 130, 140, 150, and 160 are respectively connected to active regions 112, 114, where cell transistors are formed, as shown in FIG. 3(a). It may be composed of 116; 122, 124, 126) and an electrode area 118; 128 of a capacitor connected to the active area.
상기 “ㄷ”자 형태의 Drain-BL Connection 구조들(102, 104)과 상기 커패시터의 전극 영역(118; 128)은 금속이나 불순물이 도핑된 반도체 라인(N+로 도핑된 실리콘 라인) 등 도전성 물질로 형성될 수 있으나, 도 3(a)와 같이, 실리사이드(Silicide)로 형성함이 실리콘 라인으로 형성하며 저항을 낮출 수 있어 바람직하다.The “ㄷ” shaped Drain-BL Connection structures (102, 104) and the electrode areas (118; 128) of the capacitor are made of a conductive material such as a semiconductor line doped with metal or impurities (N+ doped silicon line). It can be formed, but as shown in Figure 3(a), it is preferable to form it with silicide because it can form a silicon line and lower the resistance.
상기 복수의 액티브 라인 블록들(ALB1, ALB2, ALB3 등) 사이에는, 도 1과 같이, 절연체로 형성된 복수의 격리판들(210, 220, 230)과 셀 커패시터 유전체(미도시)로 둘러쌓인 복수의 공통 접지판들(422, 432) 중 하나가 위치할 수 있다. 여기서, 상기 복수의 액티브 라인 블록들(ALB1, ALB2, ALB3 등) 각각에 형성되는 복수의 셀 트랜지스터들과 상기 복수의 셀 트랜지스터들에 각각 연결되어 수직으로 적층된 복수의 커패시터들은 상기 복수의 격리판들(210, 220, 230) 중 하나를 사이에 두고 대칭적으로 형성될 수 있다. 상기 복수의 셀 트랜지스터들은, 또한 실시예에 따라, 도 3(b)와 같이, 각각 상기 액티브 영역에 반쪽짜리 GAA(Gate-All-Around) 채널 구조(114, 124)를 가질 수 있다. 이렇게 함으로써, 셀 트랜지스터들은 GAA 구조가 가지는 여러 가지 장점들(large current drivability 및 short channel effect 억제 등)을 가질 수 있게 된다.Between the plurality of active line blocks (ALB1, ALB2, ALB3, etc.), as shown in FIG. 1, a plurality of separators 210, 220, 230 formed of an insulator and surrounded by a cell capacitor dielectric (not shown) One of the common ground plates 422 and 432 may be located. Here, a plurality of cell transistors formed in each of the plurality of active line blocks (ALB1, ALB2, ALB3, etc.) and a plurality of capacitors connected to the plurality of cell transistors and stacked vertically are connected to the plurality of separators. It may be formed symmetrically with one of the fields 210, 220, and 230 in between. Depending on the embodiment, the plurality of cell transistors may each have a half-gate-all-around (GAA) channel structure 114 and 124 in the active area, as shown in FIG. 3(b). By doing this, cell transistors can have various advantages of the GAA structure (large current drivability and suppression of short channel effect, etc.).
도 3(a) 및 도 3(b)를 참조하며, 셀 트랜지스터들과 이에 각각 연결된 커패시터들에 대해 보충 설명한다. 먼저, 셀 트랜지스터들은 각각 “ㄷ”자 형태의 Drain-BL Connection 구조의 한쪽 접속 라인(102)에 연결된 액티브 영역에 제 1 소스/드레인(112, 122), 채널(114, 124) 및 제 2 소스/드레인(116, 126)이 형성되고, 상기 접속 라인(102)과 제 1 소스/드레인(112, 122), 채널(114, 124) 및 제 2 소스/드레인(116, 126)에 전기적으로 격리되도록 게이트 절연막(314, 324)을 사이에 두고, 게이트 기둥(312, 322)으로 격리판(210)에 서로 대칭되게 형성된다. 커패시터들은 각각 격리판(210)을 사이에 두고 셀 트랜지스터들의 제 2 소스/드레인(116, 126)에 일체로 연결된 전극 영역(118, 128)과 상기 전극 영역(118, 128) 상에 이웃한 게이트 기둥(312, 322)과도 절연되도록 커패시터 유전체(Cap. Dielectric, 414, 424)를 사이에 두고 공통 접지판(412, 422)이 전극 영역(118, 128)의 3면을 감싸며 형성된다.Referring to FIGS. 3(a) and 3(b), a supplementary description will be given of the cell transistors and the capacitors respectively connected thereto. First, the cell transistors each have a first source/drain (112, 122), channels (114, 124), and a second source in the active area connected to one connection line (102) of the “ㄷ” shaped Drain-BL Connection structure. /Drains 116, 126 are formed and electrically isolated from the connection line 102, the first source/ drain 112, 122, the channel 114, 124, and the second source/ drain 116, 126. Gate pillars 312 and 322 are formed to be symmetrical to each other on the separator 210, preferably with the gate insulating films 314 and 324 in between. The capacitors each have electrode regions 118, 128 integrally connected to the second source/ drain 116, 126 of the cell transistors with a separator 210 in between, and gates adjacent to the electrode regions 118, 128. Common ground plates 412 and 422 are formed to surround three sides of the electrode areas 118 and 128 with a capacitor dielectric (Cap. Dielectric, 414, 424) in between so as to be insulated from the pillars 312 and 322.
도 4는 상술한 도 1의 기본 구조(100)를 4개로 확장한 실시예를 보여준다. 기본 구조(100)에서 워드 라인들(WLs)과 비트 라인들(BLs)이 연장되어서 서로 연결되면서 임의 전체 어레이가 형성될 수 있다. 비트 라인들 사이에 소모되는 공간 없이, 기존의 2차원 DRAM과 마찬가지로 compact한 BL metal line 등의 금속 배선이 가능함을 알 수 있다. 이후, 워드 라인들(WLs)과 비트 라인들(BLs)은 각각 WL decoder 회로 및 Sense Amplifier 회로로 연결된다. 당연하지만, 도 4에서 보인 기본 구조(100)의 4개로 제한되지 않고, m x n 행렬 형태로 기본 구조(100)를 활용하여 얼마든지 다양하게 실시될 수 있다. 여기서, m과 n은 2 이상의 자연수가 바람직하나, 임의 자연수 조합으로 실시될 수 있다.Figure 4 shows an embodiment in which the basic structure 100 of Figure 1 described above has been expanded to four. In the basic structure 100, word lines (WLs) and bit lines (BLs) are extended and connected to each other to form an arbitrary overall array. It can be seen that metal wiring such as compact BL metal line is possible, like existing 2D DRAM, without wasting space between bit lines. Afterwards, the word lines (WLs) and bit lines (BLs) are connected to the WL decoder circuit and the Sense Amplifier circuit, respectively. Of course, it is not limited to the four basic structures 100 shown in FIG. 4, and can be implemented in any number of ways by utilizing the basic structures 100 in the form of an m x n matrix. Here, m and n are preferably natural numbers of 2 or more, but may be any combination of natural numbers.
다음으로, 도 5 내지 도 18을 참조하며, 상술한 3차원 적층형 디램 어레이의 바람직한 제조방법에 대하여 설명한다.Next, referring to FIGS. 5 to 18, a preferred manufacturing method of the above-described three-dimensional stacked DRAM array will be described.
먼저, 도 5와 같이, 실리콘 기판(10)에 SiGe층(11)과 Si층(12)을 교대로 적층한 후 실리콘 산화막(20)과 실리콘 질화막(30)을 순차로 적층하고, 전체 어레이 영역(1000a)에 복수의 단위 구획들(100a, 100b, 100c, 100d)로 나누는 분리막 형성 공간(36)과 상기 단위 구획마다 같은 모양의 셀 트랜지스터 형성 공간(32)과 격리판 형성 공간(34)을 동시에 만든다(제 1 단계).First, as shown in Figure 5, SiGe layers 11 and Si layers 12 are alternately stacked on the silicon substrate 10, and then a silicon oxide film 20 and a silicon nitride film 30 are sequentially stacked, and the entire array area is In (1000a), a separator forming space 36 is divided into a plurality of unit sections (100a, 100b, 100c, 100d), and a cell transistor forming space 32 and a separator forming space 34 of the same shape for each unit section. Make them at the same time (step 1).
여기서, SiGe층(11)과 Si층(12)의 형성은 실리콘 기판(10) 위에서부터 SiGe과 Si을 교대로 반복하여 단결정 성장(epitaxial growth)으로 할 수 있다. 이 때, Si층(12)은 DRAM Cell이 형성하게 되는 액티브 영역(active region), 커패시터의 전극 영역 및 이들을 연결하는 접속 라인 영역의 단결정 실리콘 라인에 해당하며, 단결정 성장과 동시에 in-situ doping을 통하여 원하는 채널 도핑 농도를 가질 수 있게 할 수 있다. 추후에 SiGe층(11)은 선택적으로 제거가 이루어지게 된다. 이와 같은 단결정 성장을 이용하게 되면, 기존의 상용화된 DRAM과 마찬가지로 단결정 실리콘 채널로 구성이 되므로 높은 mobility를 가질 수 있으며, 신뢰성 측면에서 우수하게 된다. Here, the SiGe layer 11 and the Si layer 12 can be formed through single crystal growth (epitaxial growth) by alternately repeating SiGe and Si from above the silicon substrate 10. At this time, the Si layer 12 corresponds to the single crystal silicon line of the active region formed by the DRAM cell, the electrode region of the capacitor, and the connection line region connecting them, and in-situ doping is performed simultaneously with single crystal growth. Through this, it is possible to have a desired channel doping concentration. Later, the SiGe layer 11 is selectively removed. When such single crystal growth is used, like existing commercialized DRAM, it is composed of a single crystal silicon channel, so it can have high mobility and is excellent in terms of reliability.
또한, 단결정 실리콘 라인 대신에 amorphous 또는 polycrystalline 반도체로도 제작이 가능하다. 예를 들어, amorphous 반도체(또는 polycrystalline 반도체)와 실리콘 산화막(SiO2)을 교대로 증착하여 상술한 3차원 적층형 디램 어레이의 제작도 가능하다. 최상단부의 실리콘 질화막(30)은 차후 평탄화 공정시 CMP stopper로 사용하기 위함이다. Photo 공정 및 식각 공정을 통하여, 도 5와 같이, 분리막 형성 공간(36)외에 셀 트랜지스터 형성 공간(32) 및 격리판 형성 공간(34)을 동시에 같은 공정으로 만든다.Additionally, it can be manufactured with amorphous or polycrystalline semiconductors instead of single crystalline silicon lines. For example, it is possible to manufacture the three-dimensional stacked DRAM array described above by alternately depositing an amorphous semiconductor (or polycrystalline semiconductor) and a silicon oxide film (SiO 2 ). The silicon nitride film 30 at the top is intended to be used as a CMP stopper during the subsequent planarization process. Through the photo process and the etching process, as shown in FIG. 5, in addition to the separator formation space 36, the cell transistor formation space 32 and the separator formation space 34 are created simultaneously through the same process.
도 5에서는 단위 구획들(100a, 100b, 100c, 100d)이 2 x 2 행렬로 나눈 것을 예시하고 있으나, 이에 제한되지 않고 임의 m x n 행렬 형태로 나누어 질 수 있다. 또한, 상기 셀 트랜지스터 형성 공간(32)은 상기 단위 구획마다 일측에 3개로 형성되었으나, 3개를 초과하여 일정 간격으로 형성할 수 있다. 상기 격리판 형성 공간(34)은 상기 셀 트랜지스터 형성 공간(32) 사이에 형성한다.Figure 5 illustrates that the unit sections 100a, 100b, 100c, and 100d are divided into a 2 x 2 matrix, but this is not limited to this and may be divided into an arbitrary m x n matrix. In addition, three cell transistor formation spaces 32 are formed on one side of each unit division, but more than three may be formed at regular intervals. The separator forming space 34 is formed between the cell transistor forming spaces 32.
이어, 도 6과 같이, 상기 실리콘 기판(10)의 구조물 위에 실리콘 산화막(22, 24, 26)을 증착하여 상기 셀 트랜지스터 형성 공간(32), 상기 격리판 형성 공간(34) 및 상기 분리막 형성 공간(36)을 메우고 평탄화 공정을 수행한다(제 2 단계).Then, as shown in FIG. 6, silicon oxide films 22, 24, and 26 are deposited on the structure of the silicon substrate 10 to form the cell transistor formation space 32, the separator formation space 34, and the separator formation space. (36) is filled and a planarization process is performed (second step).
여기서, 평탄화 공정은 공지의 CMP로 수행할 수 있다.Here, the planarization process can be performed using known CMP.
이후, 도 7과 같이, Photo 공정 및 식각 공정을 통하여, 상기 셀 트랜지스터 형성 공간(32)에 채운 실리콘 산화막(22)을 일부 식각하여 홀(hole, 37)을 형성한다(제 3 단계).Thereafter, as shown in FIG. 7, a hole 37 is formed by partially etching the silicon oxide film 22 filling the cell transistor formation space 32 through a photo process and an etching process (third step).
다음, 도 8과 같이, 상기 홀(37)을 이용하여 상기 SiGe층(11)을 선택적 등방성 식각으로 상기 SiGe층(11)의 일부(11a)를 리세스(recess) 시켜준다(제 4 단계).Next, as shown in FIG. 8, a portion 11a of the SiGe layer 11 is recessed by selective isotropic etching using the hole 37 (step 4). .
이 때, 인산용액과 같은 wet etching이나 chemical dry etching 공정이 이용될 수 있다. At this time, wet etching such as phosphoric acid solution or chemical dry etching process may be used.
이어서, 선택적으로, Si층(12)의 선택적 식각을 이용하여 노출된 Si층(14)의 모서리 영역을 둥글게 만들어 주는 공정을 더 진행하는 것이 바람직하다. 이 때, SC1과 같은 wet etching을 이용하거나, Chemical dry etching 공정이 이용될 수 있다. 이를 통하여, 반쪽짜리 GAA(Gate-All-Around) 형태를 가지는 채널을 형성할 수 있다.Subsequently, it is preferable to further proceed with a process of rounding the corner area of the exposed Si layer 14 using selective etching of the Si layer 12. At this time, wet etching such as SC1 can be used, or a chemical dry etching process can be used. Through this, a channel having a half GAA (Gate-All-Around) format can be formed.
이후, 도 9와 같이, 리세스된 상기 홀(37)에 amorphous Si 또는 poly Si을 CVD로 증착하여 Dummy Gate(40)를 형성한다(제 5 단계).Thereafter, as shown in FIG. 9, amorphous Si or poly Si is deposited on the recessed hole 37 by CVD to form a dummy gate 40 (step 5).
상기 Dummy Gate(40)를 형성하기 직전에 리세스로 드러난 Si층(12)에 액티브 보호용 실리콘 산화막(미도시)을 LPCVD를 이용하여 약 10 nm 정도 증착할 수 있다. 이 보호용 SiO2는 추후에 dummy gate를 선택적으로 제거할 때, 셀 트랜지스터의 실리콘 영역(채널 및 소스/드레인)을 보호하는 역할을 하게 된다. 이어서, Dummy Gate(40) 형성용 amorphous Si 또는 poly Si을 CVD로 증착한다. 이후, CMP 공정을 통하여 평탄화하여 준다. 이를 통하여, Dummy Gate(40)를 형성하게 되며, 이 Dummy Gate(40)는 추후에 제거가 될 예정이다.Immediately before forming the dummy gate 40, an active protective silicon oxide film (not shown) can be deposited to a thickness of about 10 nm on the Si layer 12 exposed as a recess using LPCVD. This protective SiO 2 serves to protect the silicon area (channel and source/drain) of the cell transistor when the dummy gate is selectively removed later. Next, amorphous Si or poly Si for forming the dummy gate (40) is deposited by CVD. Afterwards, it is flattened through the CMP process. Through this, a Dummy Gate (40) is formed, and this Dummy Gate (40) is scheduled to be removed in the future.
다음, 도 10과 같이, 상기 단위 구획마다 Drain-BL Connection 구조용 트렌치(33)와 공통 접지판 형성 공간(35)을, photo 공정 및 식각 공정을 통하여, 동시에 만든다(제 6 단계).Next, as shown in FIG. 10, the drain-BL connection structural trench 33 and the common ground plate formation space 35 are simultaneously created for each unit section through a photo process and an etching process (step 6).
이후, 도 11과 같이, 상기 트렌치(33)와 상기 공통 접지판 형성 공간(35)을 이용하여 상기 SiGe층(11)을 선택적으로 제거하고, 노출된 Si층(10a, 10b, 12a, 12b)을 N+로 도핑한다(제 7 단계).Thereafter, as shown in FIG. 11, the SiGe layer 11 is selectively removed using the trench 33 and the common ground plate formation space 35, and the exposed Si layers 10a, 10b, 12a, and 12b are removed. Doped with N+ (step 7).
이 때, SiGe층(11)의 선택적 제거시는 인산용액과 같은 Wet etching 또는 chemical dry etching이 이용할 수 있다. 그리고 N+ 도핑시 screening oxide(이온 주입 공정하기 전에 보호용 oxide)를 얇게 증착하고, 도핑 공정을 수행함이 바람직하다. N+ 도핑 공정은 ion implantation 또는 plasma doping 또는 gas phase doping process 등이 이용될 수 있다. 상기 도핑 공정 이후 annealing을 하여 주고, screening oxide를 제거하여 준다. At this time, when selectively removing the SiGe layer 11, wet etching such as a phosphoric acid solution or chemical dry etching can be used. Also, during N+ doping, it is desirable to deposit a thin layer of screening oxide (protective oxide before the ion implantation process) and then perform the doping process. The N+ doping process may use ion implantation, plasma doping, or gas phase doping process. After the doping process, annealing is performed and screening oxide is removed.
이어, 도 12와 같이, 선택적으로 Self-aligned Silicide 공정을 통해, 상기 N+로 도핑되어 노출된 Si층을 실리사이드(10a', 10b', 12a', 12b')로 만드는 단계를 더 진행할 수 있다.Subsequently, as shown in FIG. 12, the step of turning the Si layer exposed by doping with N+ into silicide (10a', 10b', 12a', 12b') can be further performed through a selective self-aligned silicide process.
다음, 도 13과 같이, 상기 노출된 Si층(10a', 10b', 12a', 12b') 상에 셀 커패시터 유전체(미도시)를 증착하고, 공통 접지판 형성용 금속으로 상기 트렌치(52)와 상기 공통 접지판 형성 공간(54)을 채운 후 평탄화 공정을 수행한다(제 8 단계). Next, as shown in FIG. 13, a cell capacitor dielectric (not shown) is deposited on the exposed Si layers 10a', 10b', 12a', and 12b', and the trench 52 is filled with a metal for forming a common ground plate. After filling the common ground plate forming space 54, a planarization process is performed (step 8).
이 때, 상기 셀 커패시터 유전체 증착은 ALD 또는 LPCVD 등이 이용될 수 있다. 그리고 상기 공통 접지판 형성용 금속은 TiN, W 등일 수 있다. 상기 평탄화 공정은 CMP 공정을 이용할 수 있다.At this time, ALD or LPCVD may be used to deposit the cell capacitor dielectric. And the metal for forming the common ground plate may be TiN, W, etc. The planarization process may use a CMP process.
이어, 도 14와 같이, 상기 공통 접지판 형성용 금속은 일부 식각하여 높이를 낮추고, 보호용 실리콘 산화막(21, 23)을 증착 한 후 다시 평탄화 공정을 수행한다(제 9 단계).Next, as shown in Figure 14, the metal for forming the common ground plate is partially etched to lower its height, protective silicon oxide films 21 and 23 are deposited, and then a planarization process is performed again (step 9).
다음, 도 15와 같이, 상기 Dummy Gate(40)와 상기 액티브 보호용 실리콘 산화막(미도시)을 제거한다(제 10 단계)Next, as shown in FIG. 15, the dummy gate 40 and the active protective silicon oxide film (not shown) are removed (step 10).
이어, 도 16과 같이, 상기 Dummy Gate(40)의 제거로 드러난 부위에 게이트 절연막(미도시)과 게이트 물질을 순차로 증착하여 게이트 기둥(60)을 형성한다(제 11 단계).Next, as shown in FIG. 16, gate pillars 60 are formed by sequentially depositing a gate insulating film (not shown) and a gate material on the area exposed by removing the dummy gate 40 (step 11).
여기서, 상기 게이트 절연막은 SiO2 또는 high-k dielectric 등일 수 있고, 상기 게이트 물질은 metal gate를 위해 TiN, W 등을 이용할 수 있다. 이들 증착은 역시 ALD 및 LPCVD가 이용될 수 있다. 이후, CMP 공정을 수행하고 추가적인 dry etching을 통하여 게이트 기둥(60)의 높이를 낮추어 준다.Here, the gate insulating film may be SiO 2 or a high-k dielectric, and the gate material may be TiN, W, etc. for the metal gate. ALD and LPCVD can also be used for these depositions. Afterwards, a CMP process is performed and the height of the gate pillar 60 is lowered through additional dry etching.
다음, 도 17과 같이, 상기 단위 구획마다 상기 Drain-BL Connection 구조용 트렌치(21)의 일측으로, photo 공정 및 식각 공정을 통하여, 상기 Si층(12a')을 컨택하기 위한 계단 구조(39)를 동시에 만든다(제 12 단계). Next, as shown in FIG. 17, a step structure 39 for contacting the Si layer 12a' is formed on one side of the Drain-BL Connection structural trench 21 for each unit section through a photo process and an etching process. Make them at the same time (step 12).
마지막으로, 도 18과 같이, 상기 Si층(12a')의 계단 구조(39), 상기 게이트 기둥(60) 및 상기 공통 접지판(54)을 소정의 컨택 플러그(510, 610, 630, 710) 및/또는 연결 라인(620, 720)을 통하여 각각 비트 라인들(500), 워드 라인들(600) 및 커패시터 접지 라인(700)에 전기적으로 연결하기 위한 금속공정을 수행한다(제 13 단계).Finally, as shown in FIG. 18, the step structure 39 of the Si layer 12a', the gate pillar 60, and the common ground plate 54 are connected to predetermined contact plugs 510, 610, 630, and 710. And/or perform a metal process to electrically connect to the bit lines 500, word lines 600, and capacitor ground line 700 through the connection lines 620 and 720, respectively (step 13).
이상 언급한 바와 같이, 상술한 실시예에 다르면, 전체 어레이 영역(1000a)에 단위 구획들을 임의 m x n 행렬 형태로 나누어, 단위 구획들의 기본 구조(100)들을 동시에 같은 공정으로 만들고, 나중에 한 번의 금속공정으로 전체 비트 라인들, 워드 라인들 및 커패시터 접지 라인을 형성할 수 있게 된다.As mentioned above, according to the above-described embodiment, the unit sections are divided into an arbitrary m x n matrix form in the entire array area 1000a, the basic structures 100 of the unit sections are made simultaneously through the same process, and later, one metal process is performed. It is possible to form all bit lines, word lines, and capacitor ground lines.
본 발명은 반도체 메모리 디램에 관한 것이어서 산업상 이용가능성이 있다.The present invention relates to a semiconductor memory DRAM and has industrial applicability.
Claims (10)
- 수평으로 나란한 두 접속 라인들을 갖고 가운데 연결되어 “ㄷ”자 형태를 가진 것이 수직으로 이격되며 적층된 Drain-BL Connection 구조들을 포함하고,It has two horizontally parallel connection lines connected in the middle and has a “ㄷ” shape, which is vertically spaced and includes stacked Drain-BL Connection structures,상기 Drain-BL Connection 구조들은 각각 상기 두 접속 라인들 중 하나에는 상기 하나의 접속 라인의 길이 방향을 따라 이격되며 복수의 수평 액티브 라인들이 상기 하나의 접속 라인과 수직하게 형성되고, 상기 두 접속 라인들 중 다른 하나에는 복수의 비트 라인들 중 하나와 전기적으로 연결되고,The Drain-BL Connection structures are spaced apart from each other along the length direction of the one connection line, and a plurality of horizontal active lines are formed perpendicular to the one connection line, and the two connection lines The other one is electrically connected to one of the plurality of bit lines,상기 복수의 수평 액티브 라인들은 상기 Drain-BL Connection 구조들의 수만큼 수직으로 나란히 적층되어 상기 하나의 접속 라인의 길이 방향을 따라 이격되며 복수의 액티브 라인 블록들을 구성하고,The plurality of horizontal active lines are stacked vertically side by side as many as the number of the Drain-BL Connection structures and are spaced apart along the longitudinal direction of the single connection line to form a plurality of active line blocks,상기 복수의 액티브 라인 블록들에는 각각 일측에 수직으로 적층된 복수의 셀 트랜지스터들의 각 게이트를 공동으로 형성하는 게이트 기둥과 상기 게이트 기둥에 이격되어 상기 복수의 셀 트랜지스터들에 각각 연결된 커패시터의 공통 접지판이 형성된 것을 특징으로 하는 3차원 적층형 디램 어레이.The plurality of active line blocks each include a gate pillar that jointly forms each gate of a plurality of cell transistors vertically stacked on one side, and a common ground plate of a capacitor spaced apart from the gate pillar and connected to each of the plurality of cell transistors. A three-dimensional stacked DRAM array, characterized in that formed.
- 제 1 항에 있어서,According to claim 1,상기 공통 접지판은 상기 복수의 액티브 블록들 중 이웃한 블록들 사이에 대칭적으로 위치하여 일체로 형성된 것을 포함하는 것을 특징으로 하는 3차원 적층형 디램 어레이.The common ground plate is symmetrically positioned between neighboring blocks among the plurality of active blocks and is formed integrally with them.
- 제 1 항에 있어서,According to claim 1,상기 Drain-BL Connection 구조들은 수직으로 적층되며 상기 접속 라인들 중 다른 하나의 길이가 점점 작아져 계단 형상을 이루고,The Drain-BL Connection structures are stacked vertically, and the length of the other one of the connection lines gradually decreases to form a step shape,상기 계단 형상을 이루는 상기 Drain-BL Connection 구조들을 포함한 것으로 단위 구조를 이루고,Forms a unit structure including the Drain-BL Connection structures forming the step shape,상기 단위 구조가 둘 이상 워드 라인 방향으로 배치되어 반복되는 상기 계단 형상을 이용하여 상기 복수의 비트 라인들이 전기적으로 연결된 것을 특징으로 하는 3차원 적층형 디램 어레이.A three-dimensional stacked DRAM array, wherein the unit structures are arranged in the direction of two or more word lines and the plurality of bit lines are electrically connected using the repeated staircase shape.
- 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,상기 복수의 수평 액티브 라인들은 각각 셀 트랜지스터가 형성되는 액티브 영역과 상기 액티브 영역에 연결된 커패시터의 전극 영역으로 구성되는 것을 특징으로 하는 3차원 적층형 디램 어레이.The plurality of horizontal active lines are each composed of an active area where a cell transistor is formed and an electrode area of a capacitor connected to the active area.
- 제 4 항에 있어서,According to claim 4,상기 상기 Drain-BL Connection 구조들과 상기 커패시터의 전극 영역은 실리사이드로 형성된 것을 특징으로 하는 3차원 적층형 디램 어레이.A three-dimensional stacked DRAM array, wherein the Drain-BL Connection structures and the electrode area of the capacitor are formed of silicide.
- 제 4 항에 있어서,According to claim 4,상기 복수의 액티브 라인 블록들 사이에는 복수의 격리판들 및 셀 커패시터 유전체로 둘러쌓인 복수의 공통 접지판들 중 하나가 위치하고,One of a plurality of common ground plates surrounded by a plurality of separators and a cell capacitor dielectric is positioned between the plurality of active line blocks,상기 복수의 셀 트랜지스터들과 상기 복수의 셀 트랜지스터들에 각각 연결되어 수직으로 적층된 복수의 커패시터들은 상기 복수의 격리판들 중 하나를 사이에 두고 대칭적으로 형성되고,The plurality of cell transistors and a plurality of vertically stacked capacitors respectively connected to the plurality of cell transistors are formed symmetrically with one of the plurality of separators interposed therebetween,상기 복수의 셀 트랜지스터들은 각각 상기 액티브 영역에 반쪽짜리 GAA(Gate-All-Around) 채널 구조를 갖는 것을 특징으로 하는 3차원 적층형 디램 어레이.A three-dimensional stacked DRAM array, wherein each of the plurality of cell transistors has a half-gate-all-around (GAA) channel structure in the active area.
- 실리콘 기판에 SiGe층과 Si층을 교대로 적층한 후 실리콘 산화막과 실리콘 질화막을 순차로 적층하고, 복수의 단위 구획들로 나누는 분리막 형성 공간과 상기 단위 구획마다 같은 모양의 셀 트랜지스터 형성 공간과 격리판 형성 공간을 동시에 만드는 제 1 단계;SiGe layers and Si layers are alternately stacked on a silicon substrate, and then a silicon oxide film and a silicon nitride film are sequentially stacked, a separator forming space divided into a plurality of unit sections, a cell transistor forming space of the same shape in each unit section, and a separator plate. The first step is to simultaneously create a forming space;상기 실리콘 기판의 구조물 위에 실리콘 산화막을 증착하여 상기 분리막 형성 공간, 상기 셀 트랜지스터 형성 공간과 상기 격리판 형성 공간을 메우고 평탄화 공정을 수행하는 제 2 단계;A second step of depositing a silicon oxide film on the structure of the silicon substrate to fill the separator formation space, the cell transistor formation space, and the separator formation space, and performing a planarization process;상기 셀 트랜지스터 형성 공간에 채운 실리콘 산화막을 일부 식각하여 홀(hole)을 형성하는 제 3 단계;a third step of forming a hole by partially etching the silicon oxide film filling the cell transistor formation space;상기 홀을 이용하여 상기 SiGe층을 선택적 등방성 식각으로 상기 SiGe층의 일부를 리세스(recess) 시켜주는 제 4 단계;A fourth step of recessing a portion of the SiGe layer by selective isotropic etching using the hole;리세스된 상기 홀에 amorphous Si 또는 poly Si을 CVD로 증착하여 Dummy Gate를 형성하는 제 5 단계;A fifth step of forming a dummy gate by depositing amorphous Si or poly Si in the recessed hole by CVD;상기 단위 구획마다 Drain-BL Connection 구조용 트렌치와 공통 접지판 형성 공간을 동시에 만드는 제 6 단계;A sixth step of simultaneously creating a Drain-BL Connection structural trench and a common ground plate formation space for each unit section;상기 트렌치와 상기 공통 접지판 형성 공간을 이용하여 상기 SiGe층을 선택적으로 제거하고, 노출된 Si층을 N+로 도핑하는 제 7 단계;A seventh step of selectively removing the SiGe layer using the trench and the common ground plate formation space and doping the exposed Si layer with N+;상기 노출된 Si층 상에 셀 커패시터 유전체를 증착하고, 공통 접지판 형성용 금속으로 상기 트렌치와 상기 공통 접지판 형성 공간을 채운 후 평탄화 공정을 수행하는 제 8 단계;An eighth step of depositing a cell capacitor dielectric on the exposed Si layer, filling the trench and the space for forming the common ground plate with metal for forming a common ground plate, and then performing a planarization process;상기 공통 접지판 형성용 금속을 일부 식각하여 높이를 낮추고, 보호용 실리콘 산화막을 증착 한 후 다시 평탄화 공정을 수행하는 제 9 단계;A ninth step of partially etching the metal for forming the common ground plate to lower its height, depositing a protective silicon oxide film, and then performing a planarization process again;상기 Dummy Gate를 제거하는 제 10 단계;Step 10 of removing the Dummy Gate;상기 Dummy Gate의 제거로 드러난 부위에 게이트 절연막과 게이트 물질을 순차로 증착하여 게이트 기둥을 형성하는 제 11 단계;An 11th step of forming a gate pillar by sequentially depositing a gate insulating film and a gate material on the area exposed by removal of the dummy gate;상기 단위 구획마다 상기 Drain-BL Connection 구조용 트렌치의 일측으로 상기 Si층을 컨택하기 위한 계단 구조를 동시에 만드는 제 12 단계; 및 A twelfth step of simultaneously creating a staircase structure for contacting the Si layer with one side of the Drain-BL Connection structural trench for each unit section; and상기 Si층의 계단 구조, 상기 게이트 및 상기 공통 접지판을 각각 비트 라인들, 워드 라인들 및 커패시터 접지 라인에 전기적으로 연결하기 위한 금속공정을 수행하는 제 13 단계를 포함하는 것을 특징으로 하는 3차원 적층형 디램 어레이의 제조방법.A 13th step of performing a metallization process to electrically connect the step structure of the Si layer, the gate, and the common ground plate to bit lines, word lines, and capacitor ground lines, respectively. Method for manufacturing a stacked DRAM array.
- 제 7 항에 있어서,According to claim 7,상기 제 4 단계와 상기 제 5 단계 사이에 선택적 식각 공정을 더 진행하여 리세스로 노출된 상기 Si층의 모서리를 둥글게 하여 채널 영역이 반쪽자리 GAA(Gate-All-Around) 형태가 되도록 하는 것을 특징으로 하는 3차원 적층형 디램 어레이의 제조방법.A selective etching process is further performed between the fourth step and the fifth step to round the corners of the Si layer exposed by the recess so that the channel region has a half-gate GAA (Gate-All-Around) shape. A method of manufacturing a three-dimensional stacked DRAM array.
- 제 7 항에 있어서,According to claim 7,상기 제 7 단계와 상기 제 8 단계 사이에 Self-aligned Silicide 공정을 통해 상기 N+로 도핑되어 노출된 Si층에 실리사이드로 만드는 단계를 더 진행하는 것을 특징으로 하는 3차원 적층형 디램 어레이의 제조방법.A method of manufacturing a three-dimensional stacked DRAM array, characterized in that between the seventh step and the eighth step, a step of making silicide is performed on the exposed Si layer by doping with N+ through a self-aligned silicide process.
- 제 7 항 내지 제 9 항 중 어느 한 항에 있어서,The method according to any one of claims 7 to 9,상기 제 1 단계에서 상기 복수의 단위 구획들은 m x n 행렬 형태로 나누고(m과 n은 2 이상 자연수), 상기 셀 트랜지스터 형성 공간은 상기 단위 구획마다 일측에 3개 이상이 일정 간격으로 형성하고, 상기 격리판 형성 공간은 상기 셀 트랜지스터 형성 공간 사이에 형성하는 것을 특징으로 하는 3차원 적층형 디램 어레이의 제조방법.In the first step, the plurality of unit sections are divided into an m x n matrix (m and n are natural numbers of 2 or more), the space for forming the cell transistor is formed at a regular interval of three or more on one side of each unit section, and the isolation A method of manufacturing a three-dimensional stacked DRAM array, characterized in that the plate formation space is formed between the cell transistor formation spaces.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0040746 | 2022-03-31 | ||
KR1020220040746A KR102622628B1 (en) | 2022-03-31 | 2022-03-31 | Three-dimensional stacked dram array and fabricating method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023191445A1 true WO2023191445A1 (en) | 2023-10-05 |
Family
ID=88202792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/004099 WO2023191445A1 (en) | 2022-03-31 | 2023-03-28 | Three-dimensional stacked dram array and manufacturing method therefor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102622628B1 (en) |
WO (1) | WO2023191445A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090118299A (en) * | 2008-05-13 | 2009-11-18 | 재단법인서울대학교산학협력재단 | And type flash memory array having vertically stacked structure and manufacturing method and operating method of the same |
KR20130097562A (en) * | 2012-02-24 | 2013-09-03 | 서울대학교산학협력단 | Nand flash memory array having 3d star structure and operation method thereof |
KR20210030969A (en) * | 2018-07-20 | 2021-03-18 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | 3d memory device |
KR20210098198A (en) * | 2020-01-31 | 2021-08-10 | 에스케이하이닉스 주식회사 | Memory device |
KR20220031321A (en) * | 2020-09-04 | 2022-03-11 | 에스케이하이닉스 주식회사 | Memory device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101263313B1 (en) * | 2011-10-18 | 2013-05-15 | 서울대학교산학협력단 | Nand flash memory having star structure with vertically stacked ssl and fabrication method thereof |
CN115088073A (en) * | 2020-02-10 | 2022-09-20 | 应用材料公司 | 3D DRAM structure and method of manufacture |
-
2022
- 2022-03-31 KR KR1020220040746A patent/KR102622628B1/en active IP Right Grant
-
2023
- 2023-03-28 WO PCT/KR2023/004099 patent/WO2023191445A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090118299A (en) * | 2008-05-13 | 2009-11-18 | 재단법인서울대학교산학협력재단 | And type flash memory array having vertically stacked structure and manufacturing method and operating method of the same |
KR20130097562A (en) * | 2012-02-24 | 2013-09-03 | 서울대학교산학협력단 | Nand flash memory array having 3d star structure and operation method thereof |
KR20210030969A (en) * | 2018-07-20 | 2021-03-18 | 양쯔 메모리 테크놀로지스 씨오., 엘티디. | 3d memory device |
KR20210098198A (en) * | 2020-01-31 | 2021-08-10 | 에스케이하이닉스 주식회사 | Memory device |
KR20220031321A (en) * | 2020-09-04 | 2022-03-11 | 에스케이하이닉스 주식회사 | Memory device |
Also Published As
Publication number | Publication date |
---|---|
KR20230141326A (en) | 2023-10-10 |
KR102622628B1 (en) | 2024-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10453859B2 (en) | Methods of manufacturing vertical memory devices | |
US20110180866A1 (en) | Nonvolatile semiconductor memory device and method for manufacturing same | |
US11557603B2 (en) | Semiconductor devices | |
CN110400805B (en) | Semiconductor memory device with a memory cell having a memory cell with a memory cell having a memory cell | |
US20130020647A1 (en) | Semiconductor devices and methods of fabricating the same | |
KR20210077098A (en) | Semiconductor memory device and method for manufacturing the same | |
CN108389865B (en) | Three-dimensional semiconductor memory device having inclined gate electrode | |
US4737829A (en) | Dynamic random access memory device having a plurality of one-transistor type memory cells | |
US11348941B2 (en) | Memory device and method of fabricating the same | |
US20120211815A1 (en) | Semiconductor device and method of forming the same | |
US20230282600A1 (en) | Vertical memory devices | |
KR20210014828A (en) | Semiconductor memory and method for forming the same | |
US11456313B2 (en) | Three-dimensional semiconductor memory devices with increased integration | |
CN111009528B (en) | Three-dimensional semiconductor memory device | |
JP2003124344A (en) | Memory element and its manufacturing method | |
JP2003179161A (en) | Semiconductor storage device and manufacturing method therefor | |
US20230354583A1 (en) | Method of fabricating semiconductor device | |
WO2023191445A1 (en) | Three-dimensional stacked dram array and manufacturing method therefor | |
WO2011096601A1 (en) | Stacked nor flash memory array and method of manufacturing same | |
US11600622B2 (en) | Method of forming semiconductor memory device comprises a bit line having a plurality of pins extending along a direction being perpendicular to a substrate | |
US7119390B2 (en) | Dynamic random access memory and fabrication thereof | |
US6773983B2 (en) | Memory cell arrangement and method for its fabrication | |
CN111341780B (en) | 3D NAND memory and manufacturing method thereof | |
CN109390346B (en) | 3D memory device and method of manufacturing the same | |
KR20210129426A (en) | Vertical memory devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23781300 Country of ref document: EP Kind code of ref document: A1 |