WO2023191265A1 - Reciprocating compressor - Google Patents

Reciprocating compressor Download PDF

Info

Publication number
WO2023191265A1
WO2023191265A1 PCT/KR2023/000305 KR2023000305W WO2023191265A1 WO 2023191265 A1 WO2023191265 A1 WO 2023191265A1 KR 2023000305 W KR2023000305 W KR 2023000305W WO 2023191265 A1 WO2023191265 A1 WO 2023191265A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
discharge
muffler
partition wall
reciprocating compressor
Prior art date
Application number
PCT/KR2023/000305
Other languages
French (fr)
Korean (ko)
Inventor
손영부
김진국
이종목
장석종
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220039309A external-priority patent/KR20230140719A/en
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2023191265A1 publication Critical patent/WO2023191265A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections

Definitions

  • This specification relates to a reciprocating compressor, and more specifically, to a reciprocating compressor with an improved structure of a discharge section that discharges high-temperature and high-pressure refrigerant gas compressed in the compression section.
  • a closed compressor is a compressor that is equipped with an electric part that generates power inside a sealed container and a compression part that operates by receiving the power of the electric part.
  • the sealed compressor can be classified into reciprocating type, rotary type, vane type, scroll type, etc. depending on the method of compressing the refrigerant, which is a compressible fluid.
  • a crankshaft is coupled to the rotor of the electric drive unit, a connecting rod is coupled to the crankshaft, and the piston coupled to the connecting rod compresses the refrigerant while reciprocating in a straight line inside the cylinder.
  • the reciprocating compressor includes a sealed container that forms a closed space, a motor unit that is provided in the sealed vessel and rotates, a compression unit that is installed on the upper side of the motor unit and compresses the refrigerant by receiving the rotational force of the motor unit, and sucks the refrigerant. It includes a suction unit that supplies the compression unit, and a discharge unit that discharges the refrigerant compressed in the compression unit.
  • the discharge unit includes a discharge muffler installed on the discharge side where the high-temperature and high-pressure refrigerant gas compressed in the compression unit is discharged to reduce noise generated by pulsation when discharging the refrigerant gas, and a discharge hose connected to the discharge muffler. , which is fixed to a sealed container and includes a discharge pipe connected to a discharge hose.
  • the technical problem to be solved by this specification is to provide a reciprocating compressor that effectively reduces pulsation caused by periodically discharged high-pressure refrigerant.
  • Another technical problem to be solved by the present specification is to provide a reciprocating compressor including a discharge unit with a pulsation reduction member that can effectively reduce pulsation caused by periodically discharged high-pressure refrigerant.
  • a discharge unit provided in a reciprocating compressor includes a discharge muffler including a muffler body and a muffler cover coupled to the muffler body to form an internal space; a discharge hose connecting a discharge pipe coupled to a sealed container with the discharge muffler; And it may include a pulsation reduction member located inside the discharge muffler.
  • the pulsation reduction member includes a first partition located on the inner surface of the bottom of the muffler cover and protruding toward the muffler body, and a second partition located on the inner surface of the bottom of the muffler body and protruding toward the muffler cover. can do.
  • At least one factor among the number of partitions provided in the internal space of the discharge muffler, the spacing between partitions, the length of the partitions in the vertical direction, the location of the partitions, and the length of the flow path in the vertical direction can be appropriately changed as needed. there is.
  • the first partition wall and the second partition wall may be provided one each.
  • any one of the first partition wall and the second partition wall may be provided in plural numbers.
  • first partition wall and the second partition wall may each be provided in equal numbers.
  • first partition wall and the second partition wall are provided one each, the first partition wall and the second partition wall are located adjacent to each other in the horizontal direction within the internal space of the discharge muffler, or are located adjacent to each other in the inner space of the first partition wall. They may be positioned to face each other within the interior space so that a flow path is formed between the ends and the ends of the second partition.
  • the vertical length of the flow path formed between the end of the first partition wall and the inner surface of the bottom of the muffler body may be equal to each other.
  • the vertical direction of the flow path formed between the end of the first partition wall and the inner surface of the bottom of the muffler body may be formed to be different from each other.
  • the vertical length of the flow path formed between the end of the first partition and the inner surface of the bottom of the muffler body is the vertical direction of the flow path formed between the end of the second partition and the inner surface of the bottom of the muffler cover. It can be formed larger than the length of .
  • first partition wall and the second partition wall are They may be located adjacent to each other in the horizontal direction within the internal space.
  • the plurality of partition walls among the first partition wall and the second partition wall may each be formed to have the same length in the vertical direction, or may be formed to have different lengths in the vertical direction.
  • the vertical length of the flow path formed between the end of the first partition and the inner surface of the bottom of the muffler body is the vertical direction of the flow path formed between the end of the second partition and the inner surface of the bottom of the muffler cover.
  • the length may be the same as the length of the passage, or it may be formed to be different from the vertical length of the flow path formed between the end of the second partition and the inner surface of the bottom of the muffler cover.
  • spacing between the first and second partition walls that are adjacent to each other in the horizontal direction may be formed to be equal to each other, or may be formed to be different from each other.
  • the plurality of first partition walls and the plurality of second partition walls are positioned between the end of the first partition wall and the end of the second partition wall. They may be positioned to face each other within the internal space to form a flow path.
  • the length in the vertical direction of the flow path formed between the first partition of any one of the plurality of first partitions and the second partition of any one of the plurality of second partitions is the length of the other of the plurality of first partitions.
  • a length in the vertical direction of a flow path formed between one first partition wall and another second partition wall among the plurality of second partition walls is formed to be equal to each other, or a first partition wall of another one among the plurality of first partition walls.
  • the vertical length of the flow path formed between the second partition wall and another one of the plurality of second partition walls may be formed to be different from each other.
  • the plurality of first partition walls may be formed to have the same length in the vertical direction
  • the plurality of second partition walls may be formed to have the same length in the vertical direction
  • the plurality of first partition walls may be formed to have the same length in the vertical direction, and the plurality of second partition walls may be formed to have different lengths in the vertical direction.
  • the plurality of first partition walls may be formed to have different lengths in the vertical direction, and the plurality of second partition walls may be formed to have the same length in the vertical direction.
  • the plurality of first partition walls may be formed to have different lengths in the vertical direction
  • the plurality of second partition walls may be formed to have different lengths in the vertical direction
  • the distance between the first partition walls that are adjacent to each other in the horizontal direction may be formed to be equal to the distance between the second partition walls that are adjacent to each other in the horizontal direction.
  • the ends of the first partition wall and the end part of the second partition wall forming the flow passage may be provided with a nozzle unit.
  • the pulsation reduction member may include an extension portion located in the internal space of the discharge muffler.
  • the extension may be a part of the discharge hose.
  • the extension part may be manufactured separately from the discharge hose and connected to the discharge hose.
  • a first inlet hole may be formed at an end of the extension part.
  • An end of the extension portion where the first inlet hole is formed may be formed in a funnel shape.
  • the extension part may include at least one of a vertical extension part extending in a vertical direction, a horizontal extension part extending in a horizontal direction, and an inclined extension part extending in an oblique direction.
  • the extension portion may be provided with a plurality of second inlet holes.
  • a fixing part for fixing the extension part may be provided on the inner wall of the muffler body.
  • the pulsation reduction member may include all of the first and second partition walls and the extension portion located inside the discharge muffler.
  • the pulsation reduction member includes a partition
  • at least one factor may be changed among the number of partitions, the spacing between partitions, the length of the partitions in the vertical direction, the position of the partitions, and the length of the flow path in the vertical direction.
  • the high-pressure refrigerant is periodically discharged. Pulsation caused by can be effectively reduced.
  • the height, direction, etc. of the first inlet hole formed at the end of the extension can be adjusted in various ways in the internal space of the discharge muffler.
  • FIG. 1 is an external perspective view of a reciprocating compressor according to an embodiment of the present specification.
  • Figure 2 is an exploded perspective view of a reciprocating compressor according to an embodiment of the present specification.
  • Figure 3 is a cross-sectional view of a reciprocating compressor according to an embodiment of the present specification.
  • Figure 4 is a diagram showing a partial configuration of a reciprocating compressor according to an embodiment of the present specification.
  • Figure 5 is a front perspective view showing the connection of a muffler assembly with a pulsation reduction member and a discharge hose according to an embodiment of the present specification.
  • Figure 6 is a rear perspective view showing the connection of a muffler assembly with a pulsation reduction member and a discharge hose according to an embodiment of the present specification.
  • Figure 7 is a cross-sectional view showing a first example of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • Figure 8 is a cross-sectional view showing a second embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • Figure 9 is a cross-sectional view showing a third embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • Figure 10 is a cross-sectional view showing a fourth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • Figure 11 is a cross-sectional view showing a fifth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • Figure 12 is a cross-sectional view showing a sixth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • Figure 13 is a cross-sectional view showing a seventh embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • Figure 14 is a cross-sectional view showing an eighth example of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • Figure 15 is a cross-sectional view showing a ninth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • Figure 16 is a graph showing the pulsation reduction effect of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • Figure 17 is a front perspective view showing the connection of a muffler assembly with a pulsation reduction member and a discharge hose according to another embodiment of the present specification.
  • Figure 18 is a rear perspective view showing the connection of a muffler assembly with a pulsation reduction member and a discharge hose according to another embodiment of the present specification.
  • Figure 19 is a cross-sectional view showing the connection of a discharge muffler and a discharge hose equipped with a pulsation reduction member according to another embodiment of the present specification.
  • Figure 20 is a graph showing the pulsation reduction effect of a discharge muffler equipped with a pulsation reduction member according to another embodiment of the present specification.
  • FIG. 21 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the first modified embodiment of FIG. 19.
  • FIG. 22 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the second modified embodiment of FIG. 19.
  • FIG. 23 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the third modified embodiment of FIG. 19.
  • FIG. 24 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the fourth modified embodiment of FIG. 19.
  • FIG. 25 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the fifth modified embodiment of FIG. 19.
  • FIG. 26 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the sixth modified embodiment of FIG. 19.
  • FIG. 27 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the seventh modified embodiment of FIG. 19.
  • FIG. 28 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the eighth modified embodiment of FIG. 19.
  • Figure 29 is a cross-sectional view showing a modified example of the discharge hose.
  • FIG. 1 is a perspective view of a reciprocating compressor according to an embodiment of the present specification
  • FIG. 2 is an exploded perspective view of a reciprocating compressor according to an embodiment of the present specification
  • FIG. 3 is a cross-sectional view of a reciprocating compressor according to an embodiment of the present specification. am.
  • the reciprocating compressor 10 includes a sealed container 100 forming the exterior, an electric motor provided in the internal space of the sealed container 100 and providing driving force.
  • the compression unit 300 receives the driving force from the eastern unit 200 and the electric drive unit 200 and compresses the refrigerant through a linear reciprocating motion, and the refrigerant for compressing the refrigerant in the compression unit 300 is sucked in and the compression unit ( It includes a suction/discharge unit 400 that discharges the compressed refrigerant from 300).
  • the sealed container 100 forms a sealed space inside, and various parts of the compressor 10 are accommodated in this sealed space.
  • the sealed container 100 is made of a metal material and includes a lower sealed container 110 and an upper sealed container 160.
  • the lower sealed container 110 has a roughly hemispherical shape and includes various parts forming the electric unit 200, compressed unit 300, discharge unit 400, and compressor 10 together with the upper sealed container 160. Create a space to accommodate.
  • the lower sealed container 110 may be referred to as a “compressor body” and the upper sealed container 160 may be referred to as a “compressor cover.”
  • the lower sealed container 110 is provided with a suction pipe 120, a discharge pipe 130, a process pipe 140, and a power supply unit (not shown).
  • the suction pipe 120 introduces refrigerant into the sealed container 100 and is mounted through the lower sealed container 110.
  • the suction pipe 120 may be separately mounted on the lower sealed container 110 or may be formed integrally with the lower sealed container 110.
  • the discharge pipe 130 discharges the refrigerant compressed in the sealed container 100 and is installed through the lower sealed container 110.
  • the discharge pipe 130 may also be separately mounted on the lower sealed container 110 or may be formed integrally with the lower sealed container 110.
  • the discharge hose 800 of the suction/discharge unit 400 which will be described later, is connected to the discharge pipe 130.
  • the refrigerant that flows into the suction pipe 120 and is compressed through the compression unit 300 may be discharged to the discharge pipe 130 through the discharge hose 800 of the intake and discharge unit 400.
  • the process pipe 140 is a device provided to charge refrigerant into the sealed container 100 after sealing the inside of the sealed container 100, and includes the suction pipe 120 and the discharge pipe 130 Together, they can be mounted through the lower sealed container 110.
  • the upper sealed container 160 forms a receiving space together with the lower sealed container 110, and is formed in a substantially hemispherical shape like the lower sealed container 110.
  • the upper sealed container 160 packages the lower sealed container 110 on the upper side of the lower sealed container 110, forming a sealed space therein.
  • the transmission unit 200 includes stators 210 and 220, an insulator 230, a rotor 240, and a rotating shaft 250.
  • the stators 210 and 220 are fixed parts during driving of the electric motor 200 and include a stator core 210 and a stator coil 220.
  • the stator core 210 is made of a metal material and may have an approximately cylindrical shape with an internal hollow.
  • stator coil 220 is mounted inside the stator core 210.
  • the stator coil 220 When power is applied from the outside, the stator coil 220 generates electromagnetic force and performs electromagnetic interaction with the stator core 220 and the rotor 240.
  • the transmission unit 200 can generate a driving force for the reciprocating movement of the compression unit 300.
  • the insulator 230 is disposed between the stator core 210 and the stator coil 220 and prevents direct contact between the stator core 210 and the stator coil 220.
  • stator coil 220 If the stator coil 220 is in direct contact with the stator core 210, the generation of electromagnetic force from the stator coil 220 may be interrupted, and this is to prevent this.
  • the insulator 230 may space the stator core 210 and the stator coil 220 apart from each other by a predetermined distance.
  • the rotor 240 is rotatably provided inside the stator coil 220 and may be installed within the insulator 230.
  • the rotor 240 is provided with a magnet.
  • the rotor 240 rotates through electromagnetic interaction with the stator core 210 and the stator coil 220.
  • the rotational force resulting from the rotation of the rotor 240 acts as a driving force that can drive the compression unit 200.
  • the rotation shaft 250 is installed within the rotor 240, is mounted to penetrate the rotor 240 along the vertical direction, and can rotate together with the rotor 240.
  • the rotation shaft 250 is connected to a connecting rod 340, which will be described later, and transmits the rotational force generated by the rotor 240 to the compression unit 300.
  • the rotating shaft 250 includes a base shaft 252, a rotating plate 254, and an eccentric shaft 256.
  • the base shaft 252 is mounted in the rotor 240 in the vertical direction (Z-axis direction) or vertical direction. When the rotor 240 rotates, the base shaft 252 may rotate together with the rotor 240.
  • the rotation plate 254 is installed on one side of the base shaft 252 and can be rotatably mounted on the rotation plate seating portion 320 of the cylinder block 310.
  • the eccentric shaft 256 protrudes upward from the upper surface of the rotating plate 254.
  • the eccentric shaft 256 protrudes at a position eccentric from the axial center of the base shaft 252 and rotates eccentrically when the rotation plate 254 rotates.
  • a connecting rod 340 is mounted on the eccentric shaft 256. According to the eccentric rotation of the eccentric shaft 256, the connecting rod 340 reciprocates linearly in the front-back direction (X-axis direction).
  • the compression unit 300 includes a cylinder block 310, a connecting rod 340, a piston 350, and a piston pin 370.
  • the cylinder block 310 is provided on the upper side of the electric drive unit 200, more specifically, the rotor 240, and is mounted inside the sealed container 100.
  • the cylinder block 310 includes a rotating plate seating portion 320 and a cylinder 330.
  • the rotation plate seating portion 320 is formed at the lower part of the cylinder block 310 and rotatably accommodates the rotation plate 254.
  • a shaft opening 322 through which the rotating shaft 250 can pass is formed in the rotating plate seating portion 320.
  • the cylinder 330 is provided in the front part of the cylinder block 310 and is arranged to accommodate a piston 350, which will be described later.
  • the piston 350 can reciprocate in the front-back direction (X-axis direction), and a compression space C that can compress the refrigerant is formed inside the cylinder 330.
  • the cylinder 330 may be made of aluminum.
  • the cylinder 330 may be made of aluminum or aluminum alloy.
  • the magnetic flux generated by the rotor 240 is not transmitted to the cylinder 330. Accordingly, the magnetic flux generated in the rotor 240 can be prevented from being transmitted to the cylinder 330 and leaking to the outside of the cylinder 330.
  • the connecting rod 340 is a device for transmitting the driving force provided from the transmission unit 200 to the piston 350, and converts the rotational motion of the rotary shaft 250 into a linear reciprocating motion.
  • the connecting rod 340 reciprocates linearly in the front-back direction (X-axis direction) when the rotary shaft 250 rotates.
  • the connecting rod 340 may be made of a sintered alloy material.
  • the piston 350 is a device for compressing refrigerant, and is accommodated within the cylinder 330 to be capable of reciprocating movement in the front-back direction (X-axis direction).
  • the piston 350 is connected to the connecting rod 340.
  • the piston 350 reciprocates linearly within the cylinder 330 according to the movement of the connecting rod 340. According to the reciprocating motion of the piston 350, the refrigerant introduced from the suction pipe 120 may be compressed within the cylinder 330.
  • the piston 350 may be made of an aluminum material, for example, aluminum or an aluminum alloy.
  • the magnetic flux generated in the rotor 240 can be prevented from leaking to the outside through the piston 350.
  • the piston 350 is made of the same material as the cylinder 330 and may have a thermal expansion coefficient substantially the same as that of the cylinder 330.
  • the piston pin 370 couples the piston 350 and the connecting rod 340.
  • the piston pin 370 penetrates the piston 350 and the connecting rod 340 in the vertical direction (Z-axis direction) to connect the piston 350 and the connecting rod 340.
  • the intake/discharge unit 400 includes a muffler assembly 410, a valve assembly 480, a discharge hose 800, a plurality of gaskets 485, 488, an elastic member 490, and a clamp 492. .
  • the muffler assembly 410 delivers the refrigerant sucked from the suction pipe 120 to the inside of the cylinder 330, and delivers the refrigerant compressed in the compression space C of the cylinder 330 to the discharge pipe 130. .
  • the muffler assembly 410 includes a suction space (S) that accommodates the refrigerant sucked from the suction pipe 120 and a discharge space (D) that accommodates the refrigerant compressed in the compression space (C) of the cylinder 330. This is prepared.
  • the refrigerant sucked from the suction pipe 120 flows into the suction space S of the suction and discharge tank 426 through suction mufflers 430 and 420, which will be described later.
  • the refrigerant compressed in the cylinder 330 passes through the discharge space D of the suction and discharge tank 426 through the discharge mufflers 425 and 438, and is discharged from the compressor 10 through the discharge hose 800. It is discharged to the outside.
  • the valve assembly 480 guides the refrigerant in the suction space (S) into the cylinder 330 or guides the refrigerant compressed in the cylinder 330 to the discharge space (D).
  • a discharge valve 483 is provided on the front of the valve assembly 480 to be openable and closed to discharge the compressed refrigerant from the compression space C to the discharge space D, and the valve assembly 480 At the rear, an intake valve 481 is provided that can be opened and closed to export the refrigerant from the intake space (S) to the compression space (C) of the cylinder (330).
  • a discharge valve 483 is provided on the front of the valve assembly 480, and an intake valve 481 is provided on the rear of the valve assembly 420.
  • the discharge valve 483 When the compressed refrigerant is discharged from the compression space C within the cylinder 330, the discharge valve 483 is opened and the intake valve 481 is closed. Accordingly, the refrigerant compressed within the cylinder 330 may flow into the discharge space (D) rather than into the suction space (S).
  • the discharge valve 483 is closed and the suction valve 481 is opened. Accordingly, the refrigerant in the suction space (S) may flow into the cylinder 330 without flowing into the discharge space (D).
  • the discharge hose 800 is a device that delivers compressed refrigerant contained in the discharge space D to the discharge pipe 130, and is coupled to the muffler assembly 410.
  • One side of the discharge hose 800 is coupled to the muffler assembly 410 to communicate with the discharge space D, and the other side of the discharge hose 800 is coupled to the discharge pipe 130.
  • the plurality of gaskets 485 and 488 are devices for preventing refrigerant leakage, and are mounted on one side and the other side of the valve assembly 420, respectively.
  • the plurality of gaskets 485 and 488 include a first gasket 485 and a second gasket 488.
  • the first gasket 485 is mounted on the front of the valve assembly 480
  • the second gasket 488 is mounted on the rear of the valve assembly 420.
  • the elastic member 490 is used to support the muffler assembly 410 when the compressor 10 is driven, and is mounted on the front of the muffler assembly 410.
  • the elastic member 490 may include a Belleville Spring.
  • the clamp 492 secures the valve assembly 480, the first gasket 485, the second gasket 488, and the elastic member 490 to the muffler assembly 410.
  • the clamp 492 has an approximate tripod shape and can be mounted on the muffler assembly 410 through a fastening means such as a screw member.
  • the compressor 10 further includes a plurality of damper members 500, 550, 600, and 650 and a balance weight 700.
  • the plurality of damper members 500, 550, 600, and 650 cushion vibrations of internal structures generated when the compressor 10 is driven.
  • the plurality of damper members 500, 550, 600, and 650 include a front damper 500, a rear damper 550, and a lower damper 600, 650.
  • the front damper 500 cushions the vibration of the suction/discharge unit 400 and may be made of a rubber material.
  • the front damper 500 may be coupled to the front upper portion of the cylinder block 310 through a fastening means coupled to the clamp 492.
  • the rear damper 550 cushions the vibration of the compression unit 300 and is mounted on the rear upper part of the cylinder block 310.
  • the rear damper 550 may be made of rubber material.
  • the lower dampers 600 and 650 cushion the vibration of the electric drive unit 200 and are provided in plural pieces.
  • the plurality of lower dampers 600 and 650 include a front lower damper 600 and a rear lower damper 650.
  • the front lower damper 600 cushions vibration on the front side of the transmission unit 200 and is mounted on the front lower side of the stator core 210.
  • the rear lower damper 650 cushions vibration on the rear side of the transmission unit 200 and is mounted on the rear lower side of the stator core 210.
  • the balance weight 700 is a device for controlling rotational vibration when the rotation shaft 250 of the electric drive unit 200 rotates, and is coupled to the eccentric shaft 256 of the rotation shaft 250 on the upper side of the connecting rod 340. do.
  • FIG. 4 is a diagram showing a partial configuration of a reciprocating compressor according to an embodiment of the present specification
  • FIG. 5 is a front perspective view showing the connection of a muffler assembly and discharge hose with a pulsation reduction member according to an embodiment of the present specification. .
  • Figure 6 is a rear perspective view showing the connection of the muffler assembly and discharge hose with a pulsation reduction member according to an embodiment of the present specification
  • Figure 7 is a rear perspective view of the discharge muffler with a pulsation reduction member according to an embodiment of the present specification. This is a cross-sectional view showing the first embodiment.
  • the discharge unit provided in the reciprocating compressor of the present specification includes a pulsation reduction member located inside the discharge muffler. It may be possible, and the pulsation reduction member may include a first partition located on the inner surface of the bottom of the muffler cover and protruding toward the muffler body, and a second partition located on the inner surface of the bottom of the muffler body and protruding toward the muffler cover. You can.
  • the first partition wall and the second partition wall are each provided one at a time, either one of the first partition wall and the second partition wall is provided in plural numbers, or each of the first partition wall and the second partition wall is provided in plural numbers, the same number as each other. It can be provided with .
  • the muffler assembly 410 includes a first assembly unit 430, a second assembly unit 420, a third assembly unit 425, and a fourth assembly unit. Part 438 is included.
  • the first assembly part 430 includes a suction hole 432 that communicates with the suction pipe 120.
  • the suction hole 432 is located adjacent to the inside of a point of the lower sealed container 110 where the suction pipe 120 is coupled.
  • An internal pipe 450 is installed inside the first assembly unit 430.
  • the internal pipe 450 may be composed of a pipe having a substantially cylindrical shape.
  • a first fixing part 441 for fixing the internal pipe 450 is installed inside the first assembly part 430.
  • a through hole 442 corresponding to the suction hole 432 is formed in the first fixing part 441. Accordingly, when the first fixing part 441 is installed inside the first assembly part 430, the suction hole 432 and the through hole 442 may be aligned with each other.
  • the inner pipe 450 includes a first coupling part 454 coupled to the first fixing part 441.
  • the internal pipe 450 may extend upward from the first assembly part 430 and be coupled to the second assembly part 420.
  • the second assembly part 420 includes a second fixing part coupled to the internal pipe 450.
  • the inner pipe 455 includes a second coupling portion 455 coupled to the second fixing portion.
  • the second assembly part 420 is coupled to the upper side of the first assembly part 430. At least a portion of the inner pipe 450 may be located inside the first assembly portion 430, and the remaining portion may be located inside the second assembly portion 420.
  • the first and second assembly parts 430 and 420 can be collectively referred to as a “suction muffler.”
  • the third assembly part 425 is arranged to be spaced apart from one side of the second assembly part 420. And, between the second assembly part 420 and the third assembly part 425, a suction/discharge tank 426 forming the suction space (S) and the discharge space (D) is installed.
  • the suction and discharge tank 426 includes a partition portion 427 that divides the internal space of the suction and discharge tank 426 into the suction space (S) and the discharge space (D). Additionally, the valve assembly 480 may be installed on one side of the suction/discharge tank 426.
  • the suction space (S) may be shielded by the suction valve 481, and the discharge space (D) may be shielded by the discharge valve 483.
  • the third assembly portion 425 is provided with a gas inlet 425A communicating with the discharge space D of the suction/discharge tank 426.
  • the fourth assembly part 438 is coupled to the lower side of the third assembly part 425.
  • the refrigerant discharged from the cylinder 330 is inside the third and fourth assembly parts 425 and 438 through the discharge pipe.
  • a discharge passage flowing toward (130) is formed.
  • the fourth assembly portion 438 is provided with a gas discharge port 438A to which the discharge hose 800 is coupled.
  • the third and fourth assembly parts 425 and 438 can be collectively referred to as a “discharge muffler.”
  • the third assembly part 425 can be said to be the “muffler body” of the discharge muffler
  • the fourth assembly part 438 can be said to be the “muffler cover” of the discharge muffler.
  • a plurality of partition walls W1 and W2 constituting the pulsation reduction member of this embodiment are located in the internal space of the discharge muffler.
  • the plurality of partition walls (W1, W2) includes a first partition (W1) located on the inner surface of the bottom of the fourth assembly part 438 and protruding toward the third assembly part 425, and a third assembly part 425. It is located on the inner surface of the bottom and includes a second partition W2 protruding toward the fourth assembly part 438.
  • the first partition W1 and the second partition W2 are located adjacent to each other in the horizontal direction (Y-axis direction) within the internal space of the discharge muffler, and the first partition W1 and the third assembly part ( The gap between the right inner wall of the 425), the gap between the first partition W1 and the second partition W2, the gap between the second partition W2 and the left inner wall of the third assembly part 425, etc. are appropriately determined. can be designed.
  • An end of the second partition W2 is spaced apart from the inner surface of the bottom of the fourth assembly portion 438. Accordingly, the first flow path OP1 is formed between the end of the second partition W2 and the inner surface of the bottom of the fourth assembly portion 438.
  • the end of the first partition W1 is spaced apart from the inner surface of the bottom of the third assembly part 425. Accordingly, the second flow path OP2 is formed between the end of the first partition W1 and the inner surface of the bottom of the third assembly portion 425.
  • the vertical length OPL1 of the first flow path OP1 and the vertical length OPL2 of the second flow path OP2 may be formed to be the same, but may be formed differently.
  • the second flow path ( The second length (OPL2) of OP2) may be formed to be larger than the first length (OPL1) of the first flow path (OP1).
  • first length OPL1 of the first flow path OP1 is formed to be larger than the second length OPL2 of the second flow path OP2.
  • the second length OPL2 of the second flow path OP2 can be adjusted by changing the vertical length WL1 of the first partition W1, and the first length OPL1 of the first flow path OP1 can be adjusted by changing the vertical length WL2 of the second partition W2.
  • the first partition W1 may be formed integrally with the fourth assembly part 438 through injection, and the second partition W2 may be formed integrally with the third assembly part 425 through injection. It can be formed as
  • the three attenuation spaces (M1, M2, M3) include a third attenuation space (M3) located last along the flow direction of the discharged gas, a first attenuation space (M1) spaced apart from the third attenuation space, and It includes a second attenuation space (M2) located between the first attenuation space (M1) and the third attenuation space.
  • the discharge hose 800 coupled to the discharge muffler is connected to the gas discharge port 438A formed in the third attenuation space M3, which is located last along the flow direction of the discharge gas among the three attenuation spaces M1, M2, and M3.
  • the discharge hose 800 delivers refrigerant (or discharge gas) in the discharge muffler to the discharge pipe 130.
  • the discharge hose 800 extends somewhat long from the fourth assembly portion 438 toward the discharge pipe 130, and is curved or bent at least once in order to be placed in the limited internal space of the sealed container 100. It can be configured as follows.
  • the discharge hose 800 is preferably made of a flexible material, but this is not essential.
  • a portion of the discharge hose 800 may be supported by the hose fixing part 553.
  • the hose fixing part 553 is coupled to the rear damper 550 and is configured to clamp the discharge hose 800.
  • the hose fixing part 553 has a pincer shape and may be arranged to surround at least a portion of the outer peripheral surface of the discharge hose 800.
  • the discharge hose 800 can be guided to be positioned away from the inner surface of the sealed container 100.
  • the discharge pipe 130 penetrates the lower sealed container 110 and extends into the interior of the lower sealed container 110, and the discharge hose 800 is connected to the discharge pipe 130.
  • the discharge pipe 130 may be bent through the lower sealed container 110 and extend upward.
  • the discharge hose 800 may be made of a flexible rubber material, and the discharge pipe 130 may be made of a metal material, for example, copper (Cu).
  • Figure 8 is a cross-sectional view showing a second embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • the first partition W1 and the second partition W2 are, unlike the first embodiment of FIG. 7 described above, the end of the first partition W1 and the second partition wall (W1). They are positioned facing each other so that a third flow path OP3 is formed between the ends of W2).
  • the vertical length WL1 of the first partition W1 and the vertical length WL2 of the second partition W2 are changed to change the vertical length WL2 of the third flow path OP3.
  • the length (OPL3) can be adjusted.
  • nozzle parts W11 and W21 are formed at the ends of the first partition W1 and the second partition W2, respectively.
  • the cross-sectional area of the third flow path OP3 decreases toward the right in FIG. 8.
  • Figure 9 is a cross-sectional view showing a third embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • first partition walls (W1) are provided, and only one second partition wall (W2) is provided.
  • this embodiment includes only one first partition W1 and two second partition walls W2.
  • either one of the first partition W1 and the second partition W2 may be provided in three or more units.
  • the two first partitions W1 are positioned to be spaced apart from each other in the horizontal direction (Y-axis direction), and the second partition W2 is located in the space between the two first partitions W1.
  • the two first partition walls (W1) and one second partition wall (W2) are located adjacent to each other in the horizontal direction (Y-axis direction) within the internal space of the discharge muffler, and the first partition wall (W1) on the left and The gap between the left inner wall of the third assembly unit 425, the gap between the first partition W1 and the second partition W2 on the left, and the gap between the second partition W2 and the first partition W1 on the right.
  • the spacing, the spacing between the first partition W1 on the right side and the right inner wall of the third assembly portion 425, etc. may be designed appropriately.
  • the end of the first partition W1 on the left side is spaced apart from the inner surface of the bottom of the third assembly part 425. Accordingly, a fourth flow path OP4 is formed between the end of the first partition W1 on the left and the inner surface of the bottom of the third assembly portion 425.
  • a fifth flow path OP5 is formed between the end of the second partition W2 and the inner surface of the bottom of the fourth assembly portion 438.
  • a sixth flow path OP6 is formed between the end of the first partition W1 on the right side and the inner surface of the bottom of the third assembly portion 425.
  • the vertical length OPL4 of the fourth flow path OP4, the vertical length OPL5 of the fifth flow path OP5, and the vertical length of the sixth flow path OP6 are the vertical lengths of the corresponding partition walls. It can be adjusted by changing .
  • the two first partitions W1 may be formed to have the same length in the vertical direction as shown in FIG. 9, but may also be formed to have different lengths in the vertical direction.
  • Figure 10 is a cross-sectional view showing a fourth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • first partitions W1 are provided, and only one second partition W2 is provided.
  • this embodiment includes only one first partition W1 and two second partition walls W2.
  • either one of the first partition W1 and the second partition W2 may be provided in three or more units.
  • the two first partitions (W1) are located spaced apart from each other in the horizontal direction (Y-axis direction), and a second partition ( W2) is located.
  • the two first partition walls W1 are located adjacent to each other in the horizontal direction (Y-axis direction) within the internal space of the discharge muffler.
  • the gap between the first partition W1 on the left and the left inner wall of the third assembly unit 425, the gap between the first partition W1 on the left and the first partition W1 on the right, the first partition on the right ( The gap between W1) and the right inner wall of the third assembly portion 425 can be appropriately designed.
  • the end of the first partition W1 on the left side is spaced apart from the inner surface of the bottom of the third assembly part 425. Accordingly, a seventh flow path OP7 is formed between the end of the first partition W1 on the left and the inner surface of the bottom of the third assembly portion 425.
  • first partition W1 and the second partition W2 on the right side are formed such that an eighth flow path OP8 is formed between the end of the first partition W1 on the right side and the end of the second partition W2. are located opposite each other.
  • the second partition wall W2 may be located at a position opposite to the first partition wall W1 located on the left of the two first partition walls W1.
  • the vertical length OPL7 of the seventh passage OP7 can be adjusted by changing the vertical length of the left first partition W1, and the right first partition W1 )
  • the vertical length OPL8 of the eighth flow path OP8 can be adjusted by changing the vertical length of the second partition W2.
  • the two first partition walls W1 may be formed to have different lengths in the vertical direction, but may also be formed to have the same length in the vertical direction.
  • first partition W1 and the ends of the second partition W2 facing each other may be provided with nozzle parts.
  • Figure 11 is a cross-sectional view showing a fifth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • first partition walls (W1) and two second partition walls (W2) are each provided.
  • first partition W1 and the second partition W2 may be provided in the same number as each other.
  • the two first partition walls (W1) are located spaced apart from each other in the horizontal direction (Y-axis direction), one second partition wall (W2) is located in the space between the two first partition walls (W1), and two first partition walls (W2) are located in the space between the two first partition walls (W1).
  • the remaining second partition wall W2 is located between the first partition wall W1 on the right side and the right inner wall of the third assembly part 425.
  • the two first partitions W1 and the two second partitions W2 are alternately positioned next to each other in the horizontal direction (Y-axis direction) within the internal space of the discharge muffler.
  • the gap between the first partition W1 on the left and the left inner wall of the third assembly part 425, the gap between the first partition W1 on the left and the second partition W2 on the left, the second partition on the left ( The gap between W2) and the first partition W1 on the right, the gap between the first partition W1 on the right and the second partition W2 on the right, the second partition W2 on the right and the third assembly part ( 425), the gap between the right inner walls, etc. can be designed appropriately.
  • the end of the first partition W1 on the left side is spaced apart from the inner surface of the bottom of the third assembly part 425. Accordingly, a ninth flow path OP9 is formed between the end of the first partition W1 on the left and the inner surface of the bottom of the third assembly portion 425.
  • a tenth flow path OP10 is formed between the end of the second partition W2 on the left and the inner surface of the bottom of the fourth assembly portion 438.
  • an 11th flow path OP11 is formed between the end of the first partition W1 on the right side and the inner surface of the bottom of the third assembly part 425.
  • a twelfth flow path OP12 is formed between the end of the second partition W2 on the right side and the inner surface of the bottom of the fourth assembly portion 438.
  • the vertical length OPL9 of the ninth passage OP9 can be adjusted by changing the vertical length of the left first partition W1, and the left second partition W2 )
  • the vertical length (OPL10) of the tenth flow path (OP10) can be adjusted by changing the vertical length of the .
  • the vertical length OPL11 of the 11th flow path OP11 can be adjusted by changing the vertical length of the first partition W1 on the right, and the vertical length OPL11 of the second partition W2 on the right can be adjusted. By changing the length, the vertical length OPL12 of the twelfth flow path OP12 can be adjusted.
  • the two first partition walls W1 may have the same length in the vertical direction, but may also have different lengths in the vertical direction.
  • Figure 12 is a cross-sectional view showing a sixth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • first partition walls (W1) and two second partition walls (W2) are each provided.
  • the two first partitions W1 are positioned to be spaced apart from each other in the horizontal direction (Y-axis direction), and the two second partitions W2 are positioned opposite to the two first partitions W1.
  • the first partition W1 on the left and the second partition W2 on the left are positioned facing each other to form the thirteenth flow path OP13, and the first partition W1 on the right and the second partition W2 on the right are They are located opposite each other to form the 14th flow path (OP14).
  • the gap between the first partition W1 on the left and the left inner wall of the third assembly unit 425, the gap between the first partition W1 on the left and the first partition W1 on the right, the first partition on the right ( The gap between W1) and the right inner wall of the third assembly portion 425 can be appropriately designed.
  • the vertical length of the 13th flow path OP13 OPL13
  • the vertical length of the fourteenth flow path OP14 can be adjusted by changing the vertical length of the first partition W1 on the right and the vertical length of the second partition W2 on the right. (OPL14) can be adjusted.
  • the ends of the first partition W1 and the ends of the second partition W2 facing each other may be provided with nozzle parts.
  • the two first partitions W1 may be formed to have the same length in the vertical direction
  • the two second partitions W2 may be formed to have the same length in the vertical direction. there is.
  • the two first partitions W1 may be formed to have the same length in the vertical direction, but the two second partitions W2 may be formed to have different lengths in the vertical direction. It may be possible.
  • the ends of the first partition W1 and the ends of the second partition W2 facing each other may be provided with nozzle parts.
  • the vertical length OPL15 of the 15th flow path OP15 formed between the first partition W1 on the left and the second partition W2 on the left, and the first partition W1 on the right may be formed differently.
  • the two second partitions W2 may be formed to have the same length in the vertical direction, but the two first partitions W1 may be formed to have the same length in the vertical direction. You can.
  • the ends of the first partition W1 and the ends of the second partition W2 facing each other may be provided with nozzle parts.
  • the vertical length OPL17 of the 17th flow path OP17 formed between the first partition W1 on the left and the second partition W2 on the left, and the first partition W1 on the right may be formed differently.
  • the two first partitions W1 may be formed to have different lengths in the vertical direction
  • the two second partitions W2 may be formed to have different lengths in the vertical direction. there is.
  • first partition W1 and the ends of the second partition W2 facing each other may be provided with nozzle parts.
  • the vertical length OPL19 of the 19th flow path OP19 formed between the first partition W1 on the left and the second partition W2 on the left, and the first partition W1 on the right may be formed differently.
  • the vertical length OPL19 of the 19th flow path OP19 formed between the first partition W1 on the left and the second partition W2 on the left, and the The vertical length OPL20 of the 20th flow path OP20 formed between the second partitions W2 may be formed to be equal to each other.
  • the length in the vertical direction of the flow path formed by the first and second partitions W1 and W2 facing each other can be adjusted by changing the length in the vertical direction of the partition.
  • the plurality of flow paths may be at least partially aligned with each other in the horizontal direction as shown in FIGS. 12 to 14, but may not be aligned with each other in the horizontal direction as shown in FIG. 15.
  • Figure 16 is a graph showing the pulsation reduction effect of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
  • the pulsation reduction effect is excellent in the discharge muffler according to the embodiment of the present specification compared to the conventional case in which a partition is not provided in the internal space of the discharge muffler.
  • Figure 17 is a front perspective view showing the connection of a muffler assembly with a pulsation reduction member and a discharge hose according to another embodiment of the present specification.
  • Figure 18 is a rear perspective view showing the connection of the muffler assembly and discharge hose with a pulsation reduction member according to another embodiment of the present specification
  • Figure 19 is a discharge with a pulsation reduction member according to another embodiment of the present specification. This is a cross-sectional view showing the connection between the muffler and discharge hose.
  • the pulsation reduction member provided in the discharge part of the reciprocating compressor of this embodiment is located in the internal space of the discharge muffler. It may include an extension part.
  • the extension may be a part of the discharge hose.
  • the extension part may be manufactured separately from the discharge hose and connected to the discharge hose.
  • a first inlet hole may be formed at an end of the extension portion.
  • the reciprocating compressor of this configuration has an extension located inside the discharge muffler, the height, direction, etc. of the first inlet hole formed at the end of the extension in the internal space of the discharge muffler are adjusted in various ways, Pulsations caused by periodically discharged high-pressure refrigerant can be effectively reduced.
  • the discharge hose 800 coupled to the discharge muffler is coupled to the gas discharge port 438A and transfers the refrigerant (or discharge gas) within the discharge muffler to the discharge pipe 130.
  • the discharge hose 800 extends somewhat long from the fourth assembly portion 438 toward the discharge pipe 130, and is curved or bent at least once in order to be placed in the limited internal space of the sealed container 100. It can be configured as follows.
  • the discharge hose 800 is preferably made of a flexible material, but this is not essential.
  • a portion of the discharge hose 800 may be supported by the hose fixing part 553.
  • the hose fixing part 553 is coupled to the rear damper 550 and is configured to clamp the discharge hose 800.
  • the hose fixing part 553 has a pincer shape and may be arranged to surround at least a portion of the outer peripheral surface of the discharge hose 800.
  • the discharge hose 800 can be guided to be positioned away from the inner surface of the sealed container 100.
  • the discharge hose 800 extends into the internal space of the discharge mufflers 425 and 438 and has an extension portion with a first inlet hole H1 formed at the end, and the extension portion extends in the vertical direction (Z-axis direction). It is provided with a vertical extension portion (800A) extending to.
  • the vertical length L1 of the vertical extension portion 800A may be 0.1 to 0.9 times the vertical length L2 of the internal space of the discharge mufflers 425 and 438.
  • a fixing part 425B for fixing the vertical extension part 800A may be provided on the inner wall of the third assembly part 425 of the discharge muffler.
  • the vertical extension part 800A of the discharge hose 800 can be reliably fixed.
  • a partition wall may be located in the internal space of the discharge mufflers 425 and 438 to divide the internal space into a plurality of attenuation spaces.
  • first and second partition walls of the above-described embodiment may be further formed in the internal space of the discharge mufflers 425 and 438.
  • FIG. 19 shows that the inner diameter of the extension portion 800A is the same as the inner diameter of the other portion of the discharge hose 800, the end of the extension portion 800A where the first inlet hole H1 is formed is shown in FIG. 29. As shown, it may be formed in a funnel shape.
  • connection structure of the discharge muffler and the discharge hose according to the above-described embodiment of FIG. 19 can improve pulsation compared to the prior art in which the discharge hose does not have an extension part.
  • FIG. 21 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the first modified embodiment of FIG. 19.
  • the vertical extension portion 800A provided in the discharge hose of this embodiment is provided with a plurality of second inlet holes H2.
  • the second inlet hole H2 may be formed in a horizontal direction as shown in FIG. 21, but may also be formed in an inclined direction.
  • the diameter of the second inlet hole (H2) is shown to be smaller than the inner diameter of the first inlet hole (H2), but the diameter of the second inlet hole (H2) is smaller than that of the first inlet hole (H1). It can be formed to have the same size as the inner diameter.
  • the plurality of second inlet holes H2 may be formed with different diameters.
  • first and second partition walls of the above-described embodiment may be located inside the discharge muffler, and the end of the vertical extension portion 800A may be formed in a funnel shape.
  • FIG. 22 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the second modified embodiment of FIG. 19.
  • the discharge hose of this embodiment further includes a horizontal extension portion 800B extending in the horizontal direction (X-axis direction) from an end of the vertical extension portion 800A.
  • first and second partition walls of the above-described embodiment may be located inside the discharge muffler, and the end of the horizontal extension portion 800B may be formed in a funnel shape.
  • FIG. 23 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the third modified embodiment of FIG. 19.
  • a plurality of second inlet holes H2 are formed in the vertical extension portion 800A.
  • a plurality of second inlet holes H2 may also be formed in the horizontal extension portion 800B.
  • the second inlet hole H2 may be formed in a horizontal direction as shown in FIG. 23, but may also be formed in an inclined direction.
  • the diameter of the second inlet hole (H2) is shown to be smaller than the inner diameter of the first inlet hole (H2), but the diameter of the second inlet hole (H2) is smaller than that of the first inlet hole (H1). It can be formed to have the same size as the inner diameter.
  • the plurality of second inlet holes H2 may be formed with different diameters.
  • first and second partition walls of the above-described embodiment may be located inside the discharge muffler, and the end of the horizontal extension portion 800B may be formed in a funnel shape.
  • FIG. 24 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the fourth modified embodiment of FIG. 19.
  • the extension portion includes an inclined extension portion 800C extending in an inclined direction.
  • the vertical length L3 of the inclined extension portion 800C may be 0.1 to 0.9 times the vertical length L2 of the internal space of the discharge mufflers 425 and 438.
  • a fixing part 425B may be provided on the inner wall of the third assembly part 425.
  • a plurality of second inlet holes H2 may be formed in the inclined extension portion 800C, and an end of the inclined extension portion 800C where the first inlet hole H1 is located may be formed in a funnel shape.
  • first and second partition walls of the above-described embodiment may be located inside the discharge muffler.
  • FIG. 25 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the fifth modified embodiment of FIG. 19.
  • a horizontal extension portion 800B is further provided at the end of the inclined extension portion 800C.
  • a vertical extension portion 800A may be further provided at the end of the inclined extension portion 800C.
  • a plurality of second inlet holes H2 may be formed in at least one of the vertical extension portion 800A, the horizontal extension portion 800B, and the inclined extension portion 800C. And, the end of the extension portion where the first inlet hole H1 is located may be formed in a funnel shape.
  • first and second partition walls of the above-described embodiment may be located inside the discharge muffler.
  • FIG. 27 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the seventh modified embodiment of FIG. 19.
  • the extension portion includes a horizontal extension portion 800B and a vertical extension portion 800A.
  • the vertical length L1 of the vertical extension portion 800A may be 0.1 to 0.9 times the vertical length L2 of the internal space of the discharge mufflers 425 and 438.
  • a fixing part 425B may be provided on the inner wall of the third assembly part 425.
  • a plurality of second inlet holes (H2) may be formed in at least one of the horizontal extension portion (800B) and the vertical extension portion (800A), and the vertical extension portion ( The end of 800A) may be formed in a funnel shape.
  • first and second partition walls of the above-described first embodiment may be located inside the discharge muffler.
  • FIG. 28 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the eighth modified embodiment of FIG. 19.
  • another horizontal extension part (800B) is further provided at the end of the vertical extension part (800A).
  • a plurality of second inlet holes (H2) may be formed in at least one of the vertical extension portion (800A) and the two horizontal extension portions (800B), and the horizontal extension portion where the first inlet hole (H1) is located.
  • the end of 800B may be formed in a funnel shape.
  • first and second partition walls of the above-described embodiment may be located inside the discharge muffler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

A discharge unit of a reciprocating compressor according to an embodiment of the present specification may include a pulsation reducing member located inside a discharge muffler, wherein the pulsation reducing member may include a partition wall member and/or an extension part. The partition wall member may include a first partition wall located on the inner surface of the bottom portion of a muffler cover and protruding toward a muffler body, and a second partition wall located on the inner surface of the bottom portion of the muffler body and protruding toward the muffler cover. In addition, the extension part may be formed as a part of a discharge hose or may be a part manufactured separately from and connected to the discharge hose. The extension part may have a first inlet hole in an end thereof. In the reciprocating compressor having this configuration, pulsation caused by a high-pressure refrigerant discharged periodically can be effectively reduced by varying at least one factor among the number of partition walls provided in the internal space of the discharge muffler, the distance between the partition walls, the length in the vertical direction of the partition walls, the position of the partition walls, and the length in the vertical direction of a flow path, or by adjusting the height, direction, and the like of the first inlet hole formed in the end of the extension part in various ways.

Description

왕복동식 압축기reciprocating compressor
본 명세서는 왕복동식 압축기에 관한 것으로서, 보다 상세하게는 압축부에서 압축된 고온 및 고압의 냉매 가스를 토출하는 토출부의 구조를 개선한 왕복동식 압축기에 관한 것이다.This specification relates to a reciprocating compressor, and more specifically, to a reciprocating compressor with an improved structure of a discharge section that discharges high-temperature and high-pressure refrigerant gas compressed in the compression section.
일반적으로 밀폐형 압축기는 밀폐된 용기의 내부에 동력을 발생하는 전동부와 그 전동부의 동력을 전달받아 작동하는 압축부가 함께 구비되는 압축기이다. In general, a closed compressor is a compressor that is equipped with an electric part that generates power inside a sealed container and a compression part that operates by receiving the power of the electric part.
상기 밀폐형 압축기는 압축성 유체인 냉매를 압축하는 방식에 따라 왕복동식, 로터리식, 베인식, 스크롤식 등으로 구분할 수 있다.The sealed compressor can be classified into reciprocating type, rotary type, vane type, scroll type, etc. depending on the method of compressing the refrigerant, which is a compressible fluid.
상기 왕복동식 압축기는 전동부의 회전자에 크랭크축이 결합되고, 그 크랭크축에 커넥팅 로드가 결합되어 그 커넥팅 로드에 결합된 피스톤이 실린더의 내부에서 직선으로 왕복운동을 하면서 냉매를 압축하는 방식이다.In the reciprocating compressor, a crankshaft is coupled to the rotor of the electric drive unit, a connecting rod is coupled to the crankshaft, and the piston coupled to the connecting rod compresses the refrigerant while reciprocating in a straight line inside the cylinder. .
상기 왕복동식 압축기는 밀폐공간을 형성하는 밀폐 용기, 밀폐 용기 내에 구비되며 회전 운동을 하는 전동부, 전동부의 상측에 설치되어 전동부의 회전력을 전달받아 냉매를 압축하는 압축부, 냉매를 흡입하여 압축부에 공급하는 흡입부, 및 압축부에서 압축된 냉매를 토출하는 토출부를 포함한다.The reciprocating compressor includes a sealed container that forms a closed space, a motor unit that is provided in the sealed vessel and rotates, a compression unit that is installed on the upper side of the motor unit and compresses the refrigerant by receiving the rotational force of the motor unit, and sucks the refrigerant. It includes a suction unit that supplies the compression unit, and a discharge unit that discharges the refrigerant compressed in the compression unit.
그리고 토출부는, 압축부에서 압축된 고온 및 고압의 냉매 가스가 토출되는 토출 측에 설치되어 냉매 가스의 토출 시 맥동에 의해 발생하는 소음을 감소시키기 위한 토출 머플러와, 토출 머플러에 연결되는 토출 호스와, 밀폐 용기에 고정되며 토출 호스에 연결되는 토출 파이프를 포함한다.And the discharge unit includes a discharge muffler installed on the discharge side where the high-temperature and high-pressure refrigerant gas compressed in the compression unit is discharged to reduce noise generated by pulsation when discharging the refrigerant gas, and a discharge hose connected to the discharge muffler. , which is fixed to a sealed container and includes a discharge pipe connected to a discharge hose.
따라서, 주기적으로 배출되는 고압의 냉매에 의한 맥동을 효과적으로 감소시키기 위해, 토출부에 대한 다양한 연구 개발이 진행되고 있다.Therefore, in order to effectively reduce pulsation caused by periodically discharged high-pressure refrigerant, various research and development efforts are being conducted on the discharge part.
본 명세서가 해결하고자 하는 기술적 과제는, 주기적으로 배출되는 고압의 냉매에 의한 맥동을 효과적으로 감소시킨 왕복동식 압축기를 제공하는 것이다.The technical problem to be solved by this specification is to provide a reciprocating compressor that effectively reduces pulsation caused by periodically discharged high-pressure refrigerant.
본 명세서가 해결하고자 하는 다른 기술적 과제는, 주기적으로 배출되는 고압의 냉매에 의한 맥동을 효과적으로 감소시킬 수 있는 맥동 저감 부재를 구비한 토출부를 포함하는 왕복동식 압축기를 제공하는 것이다.Another technical problem to be solved by the present specification is to provide a reciprocating compressor including a discharge unit with a pulsation reduction member that can effectively reduce pulsation caused by periodically discharged high-pressure refrigerant.
본 명세서에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 명세서가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in this specification are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by those skilled in the art from the description below. You will be able to.
본 명세서의 일 양상에 따른 왕복동식 압축기에 구비되는 토출부는, 머플러 본체 및 상기 머플러 본체와 결합되어 내부 공간을 형성하는 머플러 커버를 포함하는 토출 머플러; 밀폐 용기에 결합된 토출 파이프를 상기 토출 머플러와 연결하는 토출 호스; 및 상기 토출 머플러의 내부에 위치하는 맥동 저감 부재를 포함할 수 있다.A discharge unit provided in a reciprocating compressor according to an aspect of the present specification includes a discharge muffler including a muffler body and a muffler cover coupled to the muffler body to form an internal space; a discharge hose connecting a discharge pipe coupled to a sealed container with the discharge muffler; And it may include a pulsation reduction member located inside the discharge muffler.
상기 맥동 저감 부재는, 상기 머플러 커버의 바닥부 내면에 위치하며 상기 머플러 본체를 향해 돌출된 제1 격벽과, 상기 머플러 본체의 바닥부 내면에 위치하며 상기 머플러 커버를 향해 돌출된 제2 격벽을 포함할 수 있다.The pulsation reduction member includes a first partition located on the inner surface of the bottom of the muffler cover and protruding toward the muffler body, and a second partition located on the inner surface of the bottom of the muffler body and protruding toward the muffler cover. can do.
토출 머플러의 내부 공간에 제1 격벽 및 제2 격벽을 구비하면, 주기적으로 배출되는 고압의 냉매에 의한 맥동을 효과적으로 감소시킬 수 있다.By providing a first partition and a second partition in the internal space of the discharge muffler, pulsation caused by high-pressure refrigerant that is periodically discharged can be effectively reduced.
토출 머플러의 내부 공간에 구비되는 격벽의 개수, 격벽 간의 간격, 격벽의 상하 방향으로의 길이, 격벽의 위치, 유로의 상하 방향으로의 길이 중에서 적어도 하나의 팩터(factor)는 필요에 따라 적절히 변경할 수 있다.At least one factor among the number of partitions provided in the internal space of the discharge muffler, the spacing between partitions, the length of the partitions in the vertical direction, the location of the partitions, and the length of the flow path in the vertical direction can be appropriately changed as needed. there is.
상기 제1 격벽과 상기 제2 격벽은 각각 1개씩 구비될 수 있다.The first partition wall and the second partition wall may be provided one each.
이와 달리, 상기 제1 격벽과 상기 제2 격벽 중에서 어느 하나는 복수 개로 구비될 수 있다.Alternatively, any one of the first partition wall and the second partition wall may be provided in plural numbers.
이와 달리, 상기 제1 격벽과 상기 제2 격벽은 각각 복수 개의 서로 동일한 개수로 구비될 수 있다.Alternatively, the first partition wall and the second partition wall may each be provided in equal numbers.
상기 제1 격벽과 상기 제2 격벽이 각각 1개씩 구비되는 경우, 상기 제1 격벽과 상기 제2 격벽은, 토출 머플러의 상기 내부 공간 내에서 수평 방향으로 서로 이웃하여 위치하거나, 상기 제1 격벽의 단부와 상기 제2 격벽의 단부 사이에 유로가 형성되도록 상기 내부 공간 내에서 서로 마주하도록 위치할 수 있다.When the first partition wall and the second partition wall are provided one each, the first partition wall and the second partition wall are located adjacent to each other in the horizontal direction within the internal space of the discharge muffler, or are located adjacent to each other in the inner space of the first partition wall. They may be positioned to face each other within the interior space so that a flow path is formed between the ends and the ends of the second partition.
상기 제1 격벽과 상기 제2 격벽이 상기 내부 공간 내에서 수평 방향으로 서로 이웃하여 위치할 때, 상기 제1 격벽의 단부와 상기 머플러 본체의 바닥부 내면 사이에 형성되는 유로의 상하 방향으로의 길이와 상기 제2 격벽의 단부와 상기 머플러 커버의 바닥부 내면 사이에 형성되는 유로의 상하 방향으로의 길이는 서로 동일하게 형성될 수 있다.When the first partition wall and the second partition wall are located next to each other in the horizontal direction within the interior space, the vertical length of the flow path formed between the end of the first partition wall and the inner surface of the bottom of the muffler body The vertical length of the flow path formed between the end of the second partition wall and the inner surface of the bottom of the muffler cover may be equal to each other.
이와 달리, 상기 제1 격벽과 상기 제2 격벽이 상기 내부 공간 내에서 수평 방향으로 서로 이웃하여 위치할 때, 상기 제1 격벽의 단부와 상기 머플러 본체의 바닥부 내면 사이에 형성되는 유로의 상하 방향으로의 길이와 상기 제2 격벽의 단부와 상기 머플러 커버의 바닥부 내면 사이에 형성되는 유로의 상하 방향으로의 길이는 서로 다르게 형성될 수 있다.In contrast, when the first partition wall and the second partition wall are located next to each other in the horizontal direction within the interior space, the vertical direction of the flow path formed between the end of the first partition wall and the inner surface of the bottom of the muffler body The length of the flow path and the vertical length of the flow path formed between the end of the second partition and the inner surface of the bottom of the muffler cover may be formed to be different from each other.
이때, 상기 제1 격벽의 단부와 상기 머플러 본체의 바닥부 내면 사이에 형성되는 유로의 상하 방향으로의 길이는 상기 제2 격벽의 단부와 상기 머플러 커버의 바닥부 내면 사이에 형성되는 유로의 상하 방향으로의 길이보다 크게 형성될 수 있다.At this time, the vertical length of the flow path formed between the end of the first partition and the inner surface of the bottom of the muffler body is the vertical direction of the flow path formed between the end of the second partition and the inner surface of the bottom of the muffler cover. It can be formed larger than the length of .
상기 제1 격벽 및 상기 제2 격벽 중에서 선택된 어느 하나가 복수 개로 구비되거나, 상기 제1 격벽 및 상기 제2 격벽이 서로 동일한 개수의 복수 개로 각각 구비될 때, 상기 제1 격벽과 상기 제2 격벽은 상기 내부 공간 내에서 수평 방향으로 서로 이웃하여 위치할 수 있다.When any one of the first and second partition walls is provided in plurality, or when the first partition wall and the second partition wall are each provided in plurality with the same number, the first partition wall and the second partition wall are They may be located adjacent to each other in the horizontal direction within the internal space.
이때, 상기 제1 격벽 및 상기 제2 격벽 중에서 복수 개로 구비되는 격벽은, 각각 상하 방향으로의 길이가 서로 동일하게 형성되거나, 각각 상하 방향으로의 길이가 서로 다르게 형성될 수 있다.At this time, the plurality of partition walls among the first partition wall and the second partition wall may each be formed to have the same length in the vertical direction, or may be formed to have different lengths in the vertical direction.
그리고 상기 제1 격벽의 단부와 상기 머플러 본체의 바닥부 내면 사이에 형성되는 유로의 상하 방향으로의 길이는, 상기 제2 격벽의 단부와 상기 머플러 커버의 바닥부 내면 사이에 형성되는 유로의 상하 방향으로의 길이와 서로 동일하게 형성되거나, 상기 제2 격벽의 단부와 상기 머플러 커버의 바닥부 내면 사이에 형성되는 유로의 상하 방향으로의 길이와 서로 다르게 형성될 수 있다.And the vertical length of the flow path formed between the end of the first partition and the inner surface of the bottom of the muffler body is the vertical direction of the flow path formed between the end of the second partition and the inner surface of the bottom of the muffler cover. The length may be the same as the length of the passage, or it may be formed to be different from the vertical length of the flow path formed between the end of the second partition and the inner surface of the bottom of the muffler cover.
그리고 상기 수평방향으로 서로 이웃하는 상기 제1 격벽과 상기 제2 격벽 간의 간격은, 서로 동일하게 형성되거나, 서로 다르게 형성될 수 있다.In addition, the spacing between the first and second partition walls that are adjacent to each other in the horizontal direction may be formed to be equal to each other, or may be formed to be different from each other.
상기 제1 격벽 및 상기 제2 격벽이 서로 동일한 개수의 복수 개로 각각 구비될 때, 상기 복수 개의 제1 격벽과 상기 복수 개의 제2 격벽은 상기 제1 격벽의 단부와 상기 제2 격벽의 단부 사이에 유로가 형성되도록 하기 위해 상기 내부 공간 내에서 서로 마주하도록 위치할 수 있다.When the first partition wall and the second partition wall are each provided in equal numbers, the plurality of first partition walls and the plurality of second partition walls are positioned between the end of the first partition wall and the end of the second partition wall. They may be positioned to face each other within the internal space to form a flow path.
이때, 상기 복수 개의 제1 격벽 중 어느 하나의 제1 격벽과 상기 복수 개의 제2 격벽 중 어느 하나의 제2 격벽 사이에 형성되는 유로의 상하 방향으로의 길이는, 상기 복수 개의 제1 격벽 중 다른 하나의 제1 격벽과 상기 복수 개의 제2 격벽 중 다른 하나의 제2 격벽 사이에 형성되는 유로의 상하 방향으로의 길이와 서로 동일하게 형성되거나, 상기 복수 개의 제1 격벽 중 다른 하나의 제1 격벽과 상기 복수 개의 제2 격벽 중 다른 하나의 제2 격벽 사이에 형성되는 유로의 상하 방향으로의 길이와 서로 다르게 형성될 수 있다.At this time, the length in the vertical direction of the flow path formed between the first partition of any one of the plurality of first partitions and the second partition of any one of the plurality of second partitions is the length of the other of the plurality of first partitions. A length in the vertical direction of a flow path formed between one first partition wall and another second partition wall among the plurality of second partition walls is formed to be equal to each other, or a first partition wall of another one among the plurality of first partition walls. The vertical length of the flow path formed between the second partition wall and another one of the plurality of second partition walls may be formed to be different from each other.
그리고 상기 복수 개의 제1 격벽은 상하 방향으로의 길이가 서로 동일하게 형성될 수 있고, 상기 복수 개의 제2 격벽은 상하 방향으로의 길이가 서로 동일하게 형성될 수 있다.Additionally, the plurality of first partition walls may be formed to have the same length in the vertical direction, and the plurality of second partition walls may be formed to have the same length in the vertical direction.
이와 달리, 상기 복수 개의 제1 격벽은 상하 방향으로의 길이가 서로 동일하게 형성될 수 있고, 상기 복수 개의 제2 격벽은 상하 방향으로의 길이가 서로 다르게 형성될 수 있다.Alternatively, the plurality of first partition walls may be formed to have the same length in the vertical direction, and the plurality of second partition walls may be formed to have different lengths in the vertical direction.
이와 달리, 상기 복수 개의 제1 격벽은 상하 방향으로의 길이가 서로 다르게 형성될 수 있고, 상기 복수 개의 제2 격벽은 상하 방향으로의 길이가 서로 동일하게 형성될 수 있다.Alternatively, the plurality of first partition walls may be formed to have different lengths in the vertical direction, and the plurality of second partition walls may be formed to have the same length in the vertical direction.
이와 달리, 상기 복수 개의 제1 격벽은 상하 방향으로의 길이가 서로 다르게 형성될 수 있고, 상기 복수 개의 제2 격벽은 상하 방향으로의 길이가 서로 다르게 형성될 수 있다.Alternatively, the plurality of first partition walls may be formed to have different lengths in the vertical direction, and the plurality of second partition walls may be formed to have different lengths in the vertical direction.
그리고 수평방향으로 서로 이웃하는 상기 제1 격벽 간의 간격이 수평방향으로 서로 이웃하는 제2 격벽 간의 간격과 서로 동일하게 형성될 수 있다.Additionally, the distance between the first partition walls that are adjacent to each other in the horizontal direction may be formed to be equal to the distance between the second partition walls that are adjacent to each other in the horizontal direction.
그리고 상기 제1 격벽과 상기 제2 격벽이 서로 마주하도록 위치하는 경우, 상기 유로를 형성하는 상기 제1 격벽의 단부와 상기 제2 격벽의 단부는 노즐부를 구비할 수 있다.And when the first partition wall and the second partition wall are positioned to face each other, the ends of the first partition wall and the end part of the second partition wall forming the flow passage may be provided with a nozzle unit.
상기 맥동 저감 부재는, 상기 토출 머플러의 내부 공간에 위치하는 연장부를 포함할 수 있다.The pulsation reduction member may include an extension portion located in the internal space of the discharge muffler.
상기 연장부는 상기 토출 호스의 일 부분일 수 있다. 이와 달리, 상기 연장부는 상기 토출 호스와 별도로 제작되어 상기 토출 호스에 연결된 부분일 수 있다.The extension may be a part of the discharge hose. Alternatively, the extension part may be manufactured separately from the discharge hose and connected to the discharge hose.
상기 연장부의 단부에는 제1 유입공이 형성될 수 있다.A first inlet hole may be formed at an end of the extension part.
상기 제1 유입공이 형성된 상기 연장부의 단부는 깔때기 형상으로 형성될 수 있다.An end of the extension portion where the first inlet hole is formed may be formed in a funnel shape.
상기 연장부는, 수직 방향으로 연장된 수직 연장부와, 수평 방향으로 연장된 수평 연장부, 및 경사 방향으로 연장된 경사 연장부 중에서 적어도 하나를 포함할 수 있다.The extension part may include at least one of a vertical extension part extending in a vertical direction, a horizontal extension part extending in a horizontal direction, and an inclined extension part extending in an oblique direction.
상기 연장부에는 복수의 제2 유입공이 구비될 수 있다.The extension portion may be provided with a plurality of second inlet holes.
상기 머플러 본체의 벽부 내면에는 상기 연장부를 고정하기 위한 고정부가 구비될 수 있다.A fixing part for fixing the extension part may be provided on the inner wall of the muffler body.
상기 맥동 저감 부재는, 상기 토출 머플러의 내부에 위치하는 제1, 2 격벽 및 상기 연장부를 모두 포함할 수 있다.The pulsation reduction member may include all of the first and second partition walls and the extension portion located inside the discharge muffler.
본 명세서의 왕복동식 압축기에 따르면, 토출 머플러의 내부 공간에 맥동 저감 부재가 구비되므로, 주기적으로 배출되는 고압의 냉매에 의한 맥동을 효과적으로 감소시킬 수 있다.According to the reciprocating compressor of the present specification, since a pulsation reduction member is provided in the inner space of the discharge muffler, pulsation caused by high-pressure refrigerant that is periodically discharged can be effectively reduced.
맥동 저감 부재가 격벽을 포함하는 경우, 격벽의 개수, 격벽 간의 간격, 격벽의 상하 방향으로의 길이, 격벽의 위치, 유로의 상하 방향으로의 길이 중에서 적어도 하나의 팩터(factor)를 변경할 수 있다.When the pulsation reduction member includes a partition, at least one factor may be changed among the number of partitions, the spacing between partitions, the length of the partitions in the vertical direction, the position of the partitions, and the length of the flow path in the vertical direction.
그리고, 격벽의 개수, 격벽 간의 간격, 격벽의 상하 방향으로의 길이, 격벽의 위치, 유로의 상하 방향으로의 길이 중에서 적어도 하나의 팩터(factor)를 변경하는 것에 의해, 주기적으로 배출되는 고압의 냉매에 의한 맥동을 효과적으로 감소시킬 수 있다.In addition, by changing at least one factor among the number of partitions, the spacing between partitions, the vertical length of the partitions, the position of the partitions, and the vertical length of the flow path, the high-pressure refrigerant is periodically discharged. Pulsation caused by can be effectively reduced.
맥동 저감 부재가 연장부를 포함하는 경우, 토출 머플러의 내부 공간에서, 연장부의 단부에 형성된 제1 유입공의 높이, 방향 등을 다양한 방식으로 조절할 수 있다.When the pulsation reduction member includes an extension, the height, direction, etc. of the first inlet hole formed at the end of the extension can be adjusted in various ways in the internal space of the discharge muffler.
또한, 연장부의 단부에 형성된 제1 유입공의 높이, 방향 등을 다양한 방식으로 조절하는 것에 의해, 주기적으로 배출되는 고압의 냉매에 의한 맥동을 효과적으로 감소시킬 수 있다.Additionally, by adjusting the height and direction of the first inlet hole formed at the end of the extension in various ways, pulsation caused by high-pressure refrigerant that is periodically discharged can be effectively reduced.
본 명세서에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 명세서가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects that can be obtained in this specification are not limited to the effects mentioned above, and other effects not mentioned can be clearly understood by those skilled in the art from the description below. .
본 명세서에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 명세서에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 명세서의 기술적 특징을 설명한다.The accompanying drawings, which are included as part of the detailed description to aid understanding of the present specification, provide examples of the present specification and explain technical features of the present specification together with the detailed description.
도 1은 본 명세서의 실시 예에 따른 왕복동식 압축기의 외관 사시도이다.1 is an external perspective view of a reciprocating compressor according to an embodiment of the present specification.
도 2는 본 명세서의 실시 예에 따른 왕복동식 압축기의 분해 사시도이다.Figure 2 is an exploded perspective view of a reciprocating compressor according to an embodiment of the present specification.
도 3은 본 명세서의 실시 예에 따른 왕복동식 압축기의 단면도이다.Figure 3 is a cross-sectional view of a reciprocating compressor according to an embodiment of the present specification.
도 4는 본 명세서의 실시 예에 따른 왕복동식 압축기의 일부 구성을 보여주는 도면이다.Figure 4 is a diagram showing a partial configuration of a reciprocating compressor according to an embodiment of the present specification.
도 5는 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 머플러 조립체 및 토출 호스의 연결 모습을 보여주는 전방 사시도이다.Figure 5 is a front perspective view showing the connection of a muffler assembly with a pulsation reduction member and a discharge hose according to an embodiment of the present specification.
도 6은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 머플러 조립체 및 토출 호스의 연결 모습을 보여주는 후방 사시도이다.Figure 6 is a rear perspective view showing the connection of a muffler assembly with a pulsation reduction member and a discharge hose according to an embodiment of the present specification.
도 7은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제1 실시 예를 보여주는 단면도이다.Figure 7 is a cross-sectional view showing a first example of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
도 8은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제2 실시 예를 보여주는 단면도이다.Figure 8 is a cross-sectional view showing a second embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
도 9는 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제3 실시 예를 보여주는 단면도이다.Figure 9 is a cross-sectional view showing a third embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
도 10은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제4 실시 예를 보여주는 단면도이다.Figure 10 is a cross-sectional view showing a fourth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
도 11은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제5 실시 예를 보여주는 단면도이다.Figure 11 is a cross-sectional view showing a fifth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
도 12는 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제6 실시 예를 보여주는 단면도이다.Figure 12 is a cross-sectional view showing a sixth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
도 13은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제7 실시 예를 보여주는 단면도이다.Figure 13 is a cross-sectional view showing a seventh embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
도 14는 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제8 실시 예를 보여주는 단면도이다.Figure 14 is a cross-sectional view showing an eighth example of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
도 15는 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제9 실시 예를 보여주는 단면도이다.Figure 15 is a cross-sectional view showing a ninth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
도 16은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 맥동 저감 효과를 나타내는 그래프이다.Figure 16 is a graph showing the pulsation reduction effect of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
도 17은 본 명세서의 다른 실시 예에 따른 맥동 저감 부재를 구비한 머플러 조립체 및 토출 호스의 연결 모습을 보여주는 전방 사시도이다.Figure 17 is a front perspective view showing the connection of a muffler assembly with a pulsation reduction member and a discharge hose according to another embodiment of the present specification.
도 18은 본 명세서의 다른 실시 예에 따른 맥동 저감 부재를 구비한 머플러 조립체 및 토출 호스의 연결 모습을 보여주는 후방 사시도이다.Figure 18 is a rear perspective view showing the connection of a muffler assembly with a pulsation reduction member and a discharge hose according to another embodiment of the present specification.
도 19는 본 명세서의 다른 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.Figure 19 is a cross-sectional view showing the connection of a discharge muffler and a discharge hose equipped with a pulsation reduction member according to another embodiment of the present specification.
도 20은 본 명세서의 다른 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 맥동 저감 효과를 나타내는 그래프이다.Figure 20 is a graph showing the pulsation reduction effect of a discharge muffler equipped with a pulsation reduction member according to another embodiment of the present specification.
도 21은 도 19의 제1 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 21 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the first modified embodiment of FIG. 19.
도 22는 도 19의 제2 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 22 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the second modified embodiment of FIG. 19.
도 23은 도 19의 제3 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 23 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the third modified embodiment of FIG. 19.
도 24는 도 19의 제4 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 24 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the fourth modified embodiment of FIG. 19.
도 25는 도 19의 제5 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 25 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the fifth modified embodiment of FIG. 19.
도 26은 도 19의 제6 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 26 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the sixth modified embodiment of FIG. 19.
도 27은 도 19의 제7 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 27 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the seventh modified embodiment of FIG. 19.
도 28은 도 19의 제8 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 28 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the eighth modified embodiment of FIG. 19.
도 29는 토출 호스의 변형 실시 예를 보여주는 단면도이다.Figure 29 is a cross-sectional view showing a modified example of the discharge hose.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. Hereinafter, embodiments disclosed in the present specification will be described in detail with reference to the attached drawings. However, identical or similar components will be assigned the same reference numbers regardless of reference numerals, and duplicate descriptions thereof will be omitted.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "어셈블리" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. The suffixes “assembly” and “part” for components used in the following description are given or used interchangeably only considering the ease of preparing the specification, and do not have distinct meanings or roles in themselves.
또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. Additionally, in describing the embodiments disclosed in this specification, if it is determined that detailed descriptions of related known technologies may obscure the gist of the embodiments disclosed in this specification, the detailed descriptions will be omitted.
또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 명세서의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. In addition, the attached drawings are only for easy understanding of the embodiments disclosed in this specification, and the technical idea disclosed in this specification is not limited by the attached drawings, and all changes included in the spirit and technical scope of this specification are not limited. , should be understood to include equivalents or substitutes.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms containing ordinal numbers, such as first, second, etc., may be used to describe various components, but the components are not limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
어떤 구성요소가 다른 구성요소에 "결합되어" 있다거나 "조립되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 결합되어 있거나 또는 조립되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. When a component is said to be “coupled” or “assembled” to another component, it is understood that it may be directly connected to or assembled with the other component, but that other components may also exist in between. It should be.
반면에, 어떤 구성요소가 다른 구성요소에 "직접 결합되어" 있다거나 "직접 조립되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.On the other hand, when a component is referred to as being “directly coupled” or “directly assembled” to another component, it should be understood that there are no other components in between.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 출원에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
이하, 첨부된 도면을 참조하여 본 명세서에 따른 바람직한 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, preferred embodiments according to the present specification will be described in detail with reference to the attached drawings. However, identical or similar components will be assigned the same reference numbers regardless of the reference numerals, and duplicate descriptions thereof will be omitted.
이하, 본 명세서에 의한 왕복동식 압축기를 첨부도면을 참조하여 상세하게 설명한다.Hereinafter, the reciprocating compressor according to the present specification will be described in detail with reference to the accompanying drawings.
도 1는 본 명세서의 실시 예에 따른 왕복동식 압축기의 사시도이고, 도 2는 본 명세서의 실시 예에 따른 왕복동식 압축기의 분해 사시도이고, 도 3는 본 명세서의 실시 예에 따른 왕복동식 압축기의 단면도이다.FIG. 1 is a perspective view of a reciprocating compressor according to an embodiment of the present specification, FIG. 2 is an exploded perspective view of a reciprocating compressor according to an embodiment of the present specification, and FIG. 3 is a cross-sectional view of a reciprocating compressor according to an embodiment of the present specification. am.
도 1 내지 도 3을 참조하면, 본 명세서의 실시 예에 따른 왕복동식 압축기(10)는, 외관을 형성하는 밀폐 용기(100), 밀폐 용기(100)의 내부 공간에 구비되며 구동력을 제공하는 전동부(200), 전동부(200)로부터 구동력을 전달받아 직선 왕복운동을 통해 냉매를 압축하는 압축부(300), 및 상기 압축부(300)의 냉매 압축을 위한 냉매를 흡입하고 상기 압축부(300)으로부터 압축된 냉매를 토출하는 흡토출부(400)를 포함한다.Referring to FIGS. 1 to 3, the reciprocating compressor 10 according to an embodiment of the present specification includes a sealed container 100 forming the exterior, an electric motor provided in the internal space of the sealed container 100 and providing driving force. The compression unit 300 receives the driving force from the eastern unit 200 and the electric drive unit 200 and compresses the refrigerant through a linear reciprocating motion, and the refrigerant for compressing the refrigerant in the compression unit 300 is sucked in and the compression unit ( It includes a suction/discharge unit 400 that discharges the compressed refrigerant from 300).
상기 밀폐 용기(100)는 내부에 밀폐 공간을 형성하며, 이러한 밀폐 공간 내에 압축기(10)의 각종 부품들을 수용한다. 상기 밀폐 용기(100)는 금속 재질로 이루어지며, 하부 밀폐 용기(110) 및 상부 밀폐 용기(160)을 포함한다.The sealed container 100 forms a sealed space inside, and various parts of the compressor 10 are accommodated in this sealed space. The sealed container 100 is made of a metal material and includes a lower sealed container 110 and an upper sealed container 160.
상기 하부 밀폐 용기(110)는 대략 반구 형상으로서, 상기 상부 밀폐 용기(160)와 함께 전동부(200), 압축부(300), 토출부(400) 및 압축기(10)를 형성하는 각종 부품들을 수용하는 수용 공간을 형성한다. The lower sealed container 110 has a roughly hemispherical shape and includes various parts forming the electric unit 200, compressed unit 300, discharge unit 400, and compressor 10 together with the upper sealed container 160. Create a space to accommodate.
상기 하부 밀폐 용기(110)를 "압축기 본체", 상기 상부 밀폐 용기(160)을 "압축기 커버"라 말할 수 있다.The lower sealed container 110 may be referred to as a “compressor body” and the upper sealed container 160 may be referred to as a “compressor cover.”
상기 하부 밀폐 용기(110)에는 흡입 파이프(120), 토출 파이프(130), 프로세스 파이프(140) 및 전원부(미도시)가 구비된다.The lower sealed container 110 is provided with a suction pipe 120, a discharge pipe 130, a process pipe 140, and a power supply unit (not shown).
상기 흡입 파이프(120)는, 상기 밀폐 용기(100)의 내부로 냉매를 유입시키며, 상기 하부 밀폐 용기(110)를 관통하여 장착된다.The suction pipe 120 introduces refrigerant into the sealed container 100 and is mounted through the lower sealed container 110.
상기 흡입 파이프(120)는 상기 하부 밀폐 용기(110)에 별도로 장착되거나 또는 상기 하부 밀폐 용기(110)에 일체로 형성될 수 있다.The suction pipe 120 may be separately mounted on the lower sealed container 110 or may be formed integrally with the lower sealed container 110.
상기 토출 파이프(130)는, 상기 밀폐 용기(100) 내에서 압축된 냉매를 배출시키며, 상기 하부 밀폐 용기(110)를 관통하여 장착된다. The discharge pipe 130 discharges the refrigerant compressed in the sealed container 100 and is installed through the lower sealed container 110.
상기 토출 파이프(130) 또한 상기 하부 밀폐 용기(110)에 별도로 장착되거나 또는 상기 하부 밀폐 용기(110)에 일체로 형성될 수 있다.The discharge pipe 130 may also be separately mounted on the lower sealed container 110 or may be formed integrally with the lower sealed container 110.
상기 토출 파이프(130)에는 후술하는 흡토출부(400)의 토출 호스(800)가 연결된다. 상기 흡입 파이프(120)로 유입되어 상기 압축부(300)를 통해 압축된 냉매는 흡토출부(400)의 토출 호스(800)를 거쳐 토출 파이프(130)로 배출될 수 있다.The discharge hose 800 of the suction/discharge unit 400, which will be described later, is connected to the discharge pipe 130. The refrigerant that flows into the suction pipe 120 and is compressed through the compression unit 300 may be discharged to the discharge pipe 130 through the discharge hose 800 of the intake and discharge unit 400.
상기 프로세스 파이프(140)는 상기 밀폐 용기(100)의 내부를 밀폐시킨 이후 상기 밀폐 용기(100) 내부로 냉매를 충전시키기 위하여 구비되는 장치로서, 상기 흡입 파이프(120) 및 토출 파이프(130)와 함께 상기 하부 밀폐 용기(110)를 관통하여 장착될 수 있다.The process pipe 140 is a device provided to charge refrigerant into the sealed container 100 after sealing the inside of the sealed container 100, and includes the suction pipe 120 and the discharge pipe 130 Together, they can be mounted through the lower sealed container 110.
상기 상부 밀폐 용기(160)는 상기 하부 밀폐 용기(110)와 함께 수용 공간을 형성하며, 상기 하부 밀폐 용기(110)와 같이 대략 반구 형상으로 형성된다. 상기 상부 밀폐 용기(160)는 하부 밀폐 용기(110)의 상측에서 상기 하부 밀폐 용기(110)를 패키징하여, 내부에 밀폐 공간을 형성한다.The upper sealed container 160 forms a receiving space together with the lower sealed container 110, and is formed in a substantially hemispherical shape like the lower sealed container 110. The upper sealed container 160 packages the lower sealed container 110 on the upper side of the lower sealed container 110, forming a sealed space therein.
상기 전동부(200)에는, 스테이터(210, 220), 인슐레이터(230), 로터(240) 및 회전 샤프트(250)가 포함된다.The transmission unit 200 includes stators 210 and 220, an insulator 230, a rotor 240, and a rotating shaft 250.
상기 스테이터(210, 220)는 전동부(200)의 구동 중 고정되어 있는 부분으로서, 스테이터 코어(210) 및 스테이터 코일(220)을 포함한다.The stators 210 and 220 are fixed parts during driving of the electric motor 200 and include a stator core 210 and a stator coil 220.
상기 스테이터 코어(210)는 금속 재질로 이루어지며, 내부 중공을 갖는 대략 원통 형상을 이룰 수 있다.The stator core 210 is made of a metal material and may have an approximately cylindrical shape with an internal hollow.
그리고, 상기 스테이터 코일(220)은 스테이터 코어(210) 내측에 장착된다. 상기 스테이터 코일(220)은, 외부로부터 전원이 인가되면 전자기력을 발생시켜 상기 스테이터 코어(220) 및 로터(240)와 함께 전자기적 상호 작용을 수행한다. 이를 통해, 전동부(200)는 압축부(300)의 왕복 운동을 위한 구동력을 발생시킬 수 있다.And, the stator coil 220 is mounted inside the stator core 210. When power is applied from the outside, the stator coil 220 generates electromagnetic force and performs electromagnetic interaction with the stator core 220 and the rotor 240. Through this, the transmission unit 200 can generate a driving force for the reciprocating movement of the compression unit 300.
상기 인슐레이터(230)는 스테이터 코어(210)와 스테이터 코일(220) 사이에 배치되며, 스테이터 코어(210)와 스테이터 코일(220)의 직접적인 접촉을 방지한다.The insulator 230 is disposed between the stator core 210 and the stator coil 220 and prevents direct contact between the stator core 210 and the stator coil 220.
상기 스테이터 코일(220)이 스테이터 코어(210)와 직접적으로 접촉될 경우, 스테이터 코일(220)로부터의 전자기력 발생이 방해될 수 있는 바, 이를 방지하기 위함이다. If the stator coil 220 is in direct contact with the stator core 210, the generation of electromagnetic force from the stator coil 220 may be interrupted, and this is to prevent this.
상기 인슐레이터(230)는 스테이터 코어(210)와 스테이터 코일(220)을 서로 소정 거리 이격시킬 수 있다.The insulator 230 may space the stator core 210 and the stator coil 220 apart from each other by a predetermined distance.
상기 로터(240)는 스테이터 코일(220) 내측에 회전 가능하게 구비되며, 상기 인슐레이터(230) 내에 설치될 수 있다. 상기 로터(240)에는 마그네트(magnet)가 구비된다. The rotor 240 is rotatably provided inside the stator coil 220 and may be installed within the insulator 230. The rotor 240 is provided with a magnet.
상기 로터(240)는, 외부로부터 전원이 공급되면 상기 스테이터 코어(210) 및 스테이터 코일(220)과의 전자기적 상호 작용을 통해 회전하게 된다. When power is supplied from the outside, the rotor 240 rotates through electromagnetic interaction with the stator core 210 and the stator coil 220.
상기 로터(240)의 회전에 따른 회전력은 압축부(200)를 구동시킬 수 있는 구동력으로 작용한다.The rotational force resulting from the rotation of the rotor 240 acts as a driving force that can drive the compression unit 200.
상기 회전 샤프트(250)는 로터(240) 내에 설치되며, 상하 방향을 따라 상기 로터(240)를 관통하도록 장착되며, 상기 로터(240)와 함께 회전될 수 있다. 그리고, 상기 회전 샤프트(250)는 후술하는 커넥팅 로드(340)와 연결되어, 상기 로터(240)에서 발생하는 회전력을 상기 압축부(300)로 전달한다.The rotation shaft 250 is installed within the rotor 240, is mounted to penetrate the rotor 240 along the vertical direction, and can rotate together with the rotor 240. In addition, the rotation shaft 250 is connected to a connecting rod 340, which will be described later, and transmits the rotational force generated by the rotor 240 to the compression unit 300.
이에 대해 설명하면, 상기 회전 샤프트(250)는 베이스 샤프트(252), 회전 플레이트(254) 및 편심 샤프트(256)를 포함한다.To explain this, the rotating shaft 250 includes a base shaft 252, a rotating plate 254, and an eccentric shaft 256.
상기 베이스 샤프트(252)는 로터(240) 내에 상하 방향(Z축 방향) 또는 세로 방향으로 장착된다. 상기 로터(240)가 회전하면, 상기 베이스 샤프트(252)는 상기 로터(240)와 함께 회전될 수 있다.The base shaft 252 is mounted in the rotor 240 in the vertical direction (Z-axis direction) or vertical direction. When the rotor 240 rotates, the base shaft 252 may rotate together with the rotor 240.
상기 회전 플레이트(254)는 상기 베이스 샤프트(252)의 일측에 설치되며, 실린더 블럭(310)의 회전 플레이트 안착부(320)에 회전 가능하게 장착될 수 있다.The rotation plate 254 is installed on one side of the base shaft 252 and can be rotatably mounted on the rotation plate seating portion 320 of the cylinder block 310.
상기 편심 샤프트(256)는 회전 플레이트(254)의 상면으로부터 상방으로 돌출된다. The eccentric shaft 256 protrudes upward from the upper surface of the rotating plate 254.
구체적으로, 상기 편심 샤프트(256)는 베이스 샤프트(252)의 축 중심으로부터 편심되는 위치에서 돌출되어, 회전 플레이트(254)의 회전시 편심 회전된다. Specifically, the eccentric shaft 256 protrudes at a position eccentric from the axial center of the base shaft 252 and rotates eccentrically when the rotation plate 254 rotates.
상기 편심 샤프트(256)에는 커넥팅 로드(340)가 장착된다. 편심 샤프트(256)의 편심 회전에 따라, 커넥팅 로드(340)는 전후 방향(X축 방향)으로 직선 왕복 운동하게 된다.A connecting rod 340 is mounted on the eccentric shaft 256. According to the eccentric rotation of the eccentric shaft 256, the connecting rod 340 reciprocates linearly in the front-back direction (X-axis direction).
상기 압축부(300)는 실린더 블럭(310), 커넥팅 로드(340), 피스톤(350) 및 피스톤 핀(370)을 포함한다.The compression unit 300 includes a cylinder block 310, a connecting rod 340, a piston 350, and a piston pin 370.
상기 실린더 블럭(310)은 전동부(200), 더 구체적으로, 상기 로터(240)의 상측에 구비되며 상기 밀폐 용기(100)의 내부에 장착된다. 상기 실린더 블럭(310)은 회전 플레이트 안착부(320) 및 실린더(330)를 포함한다.The cylinder block 310 is provided on the upper side of the electric drive unit 200, more specifically, the rotor 240, and is mounted inside the sealed container 100. The cylinder block 310 includes a rotating plate seating portion 320 and a cylinder 330.
상기 회전 플레이트 안착부(320)는 실린더 블럭(310)의 하부에 형성되며, 회전 플레이트(254)를 회전 가능하게 수용한다. 상기 회전 플레이트 안착부(320)에는 회전 샤프트(250)가 관통될 수 있는 샤프트 개구(322)가 형성된다.The rotation plate seating portion 320 is formed at the lower part of the cylinder block 310 and rotatably accommodates the rotation plate 254. A shaft opening 322 through which the rotating shaft 250 can pass is formed in the rotating plate seating portion 320.
상기 실린더(330)는 실린더 블럭(310)의 전방부에 제공되며, 후술하는 피스톤(350)을 수용하도록 배치된다. 상기 피스톤(350)은 전후 방향(X축 방향)으로 왕복 운동 가능하며, 상기 실린더(330)의 내부에는 냉매를 압축시킬 수 있는 압축 공간(C)이 형성된다.The cylinder 330 is provided in the front part of the cylinder block 310 and is arranged to accommodate a piston 350, which will be described later. The piston 350 can reciprocate in the front-back direction (X-axis direction), and a compression space C that can compress the refrigerant is formed inside the cylinder 330.
상기 실린더(330)는 알루미늄 소재로 이루어질 수 있다. 일례로, 상기 실린더(330)는 알루미늄 또는 알루미늄 합금으로 이루어질 수 있다. The cylinder 330 may be made of aluminum. For example, the cylinder 330 may be made of aluminum or aluminum alloy.
비자성체인 알루미늄 소재로 인해 실린더(330)에는 로터(240)에서 발생되는 자속이 전달되지 않는다. 이에 따라, 상기 로터(240)에서 발생되는 자속이 실린더(330)에 전달되어 상기 실린더(330)의 외부로 누설되는 것을 방지할 수 있다.Due to the non-magnetic aluminum material, the magnetic flux generated by the rotor 240 is not transmitted to the cylinder 330. Accordingly, the magnetic flux generated in the rotor 240 can be prevented from being transmitted to the cylinder 330 and leaking to the outside of the cylinder 330.
상기 커넥팅 로드(340)는 전동부(200)로부터 제공된 구동력을 피스톤(350)으로 전달하기 위한 장치로서, 상기 회전 샤프트(250)의 회전 운동을 직선 왕복 운동으로 전환한다. The connecting rod 340 is a device for transmitting the driving force provided from the transmission unit 200 to the piston 350, and converts the rotational motion of the rotary shaft 250 into a linear reciprocating motion.
상기 커넥팅 로드(340)는 회전 샤프트(250)의 회전 시 전후 방향(X축 방향)으로 직선 왕복 운동한다. 상기 커넥팅 로드(340)는 소결 합금 재질로 이루어질 수 있다.The connecting rod 340 reciprocates linearly in the front-back direction (X-axis direction) when the rotary shaft 250 rotates. The connecting rod 340 may be made of a sintered alloy material.
상기 피스톤(350)은 냉매를 압축하기 위한 장치로서, 실린더(330) 내에서 전후 방향(X축 방향)으로 왕복운동 가능하게 수용된다. 상기 피스톤(350)은 커넥팅 로드(340)와 연결된다. 피스톤(350)은 커넥팅 로드(340)의 움직임에 따라 실린더(330) 내에서 직선 왕복 운동하게 된다. 피스톤(350)의 왕복운동에 따라, 실린더(330) 내에는 흡입 파이프(120)로부터 유입된 냉매가 압축될 수 있다.The piston 350 is a device for compressing refrigerant, and is accommodated within the cylinder 330 to be capable of reciprocating movement in the front-back direction (X-axis direction). The piston 350 is connected to the connecting rod 340. The piston 350 reciprocates linearly within the cylinder 330 according to the movement of the connecting rod 340. According to the reciprocating motion of the piston 350, the refrigerant introduced from the suction pipe 120 may be compressed within the cylinder 330.
피스톤(350)은 실린더(330)와 같이 알루미늄 소재, 일례로 알루미늄 또는 알루미늄 합금으로 이루어질 수 있다.The piston 350, like the cylinder 330, may be made of an aluminum material, for example, aluminum or an aluminum alloy.
따라서, 로터(240)에서 발생되는 자속이 피스톤(350)을 통하여 외부로 누설되는 것을 방지할 수 있다.Accordingly, the magnetic flux generated in the rotor 240 can be prevented from leaking to the outside through the piston 350.
아울러, 피스톤(350)은 실린더(330)와 동일한 소재로 구성되어 실린더(330)와 거의 동일한 열팽창 계수를 가질 수 있다. In addition, the piston 350 is made of the same material as the cylinder 330 and may have a thermal expansion coefficient substantially the same as that of the cylinder 330.
거의 동일한 열팽창 계수를 가짐에 따라, 압축기(10) 구동 시, 고온(일반적으로, 대략 100℃)의 상기 밀폐 용기(100) 내부 환경에서, 피스톤(350)은 실린더(330)와 거의 동일한 양만큼 열 변형된다. 따라서, 실린더(330) 내에서의 피스톤(350)의 왕복 운동시, 피스톤(350)과 실린더(330)의 간섭이 발생되는 것을 방지할 수 있다.As it has almost the same coefficient of thermal expansion, when the compressor 10 is driven, in the internal environment of the sealed container 100 at a high temperature (generally, approximately 100° C.), the piston 350 expands by almost the same amount as the cylinder 330. It is thermally deformed. Therefore, when the piston 350 reciprocates within the cylinder 330, interference between the piston 350 and the cylinder 330 can be prevented.
피스톤 핀(370)은 피스톤(350)과 커넥팅 로드(340)를 결합시킨다. 상세히, 상기 피스톤 핀(370)은 피스톤(350)과 커넥팅 로드(340)를 상하 방향(Z축 방향)으로 관통하여 피스톤(350)과 커넥팅 로드(340)를 연결한다.The piston pin 370 couples the piston 350 and the connecting rod 340. In detail, the piston pin 370 penetrates the piston 350 and the connecting rod 340 in the vertical direction (Z-axis direction) to connect the piston 350 and the connecting rod 340.
상기 흡토출부(400)는, 머플러 조립체(410), 밸브 조립체(480), 토출 호스(800), 복수 개의 개스킷들(485, 488), 탄성부재(490) 및 클램프(492)를 포함한다.The intake/discharge unit 400 includes a muffler assembly 410, a valve assembly 480, a discharge hose 800, a plurality of gaskets 485, 488, an elastic member 490, and a clamp 492. .
상기 머플러 조립체(410)는 흡입 파이프(120)로부터 흡입된 냉매를 실린더(330)의 내부로 전달하고, 실린더(330)의 압축 공간(C)에서 압축된 냉매를 토출 파이프(130)로 전달한다. The muffler assembly 410 delivers the refrigerant sucked from the suction pipe 120 to the inside of the cylinder 330, and delivers the refrigerant compressed in the compression space C of the cylinder 330 to the discharge pipe 130. .
이를 위해, 상기 머플러 조립체(410)에는 흡입 파이프(120)로부터 흡입된 냉매를 수용하는 흡입 공간(S) 및 실린더(330)의 압축 공간(C)에서 압축된 냉매를 수용하는 토출 공간(D)이 마련된다.To this end, the muffler assembly 410 includes a suction space (S) that accommodates the refrigerant sucked from the suction pipe 120 and a discharge space (D) that accommodates the refrigerant compressed in the compression space (C) of the cylinder 330. This is prepared.
상기 흡입 파이프(120)로부터 흡입된 냉매는, 후술할 흡입 머플러(430, 420)를 거쳐 흡토출 탱크(426)의 흡입 공간(S)으로 유입된다. 그리고, 상기 실린더(330)에서 압축된 냉매는 상기 흡토출 탱크(426)의 토출 공간(D)을 거쳐 토출 머플러(425, 438)를 경유하며, 토출 호스(800)를 통하여 압축기(10)의 외부로 토출된다.The refrigerant sucked from the suction pipe 120 flows into the suction space S of the suction and discharge tank 426 through suction mufflers 430 and 420, which will be described later. In addition, the refrigerant compressed in the cylinder 330 passes through the discharge space D of the suction and discharge tank 426 through the discharge mufflers 425 and 438, and is discharged from the compressor 10 through the discharge hose 800. It is discharged to the outside.
상기 밸브 조립체(480)는 상기 흡입 공간(S)의 냉매를 실린더(330) 내부로 안내하거나 또는 실린더(330) 내에서 압축된 냉매를 토출 공간(D)으로 안내한다. The valve assembly 480 guides the refrigerant in the suction space (S) into the cylinder 330 or guides the refrigerant compressed in the cylinder 330 to the discharge space (D).
이를 위해, 상기 밸브 조립체(480)의 전면에는 압축 공간(C)에서 압축된 냉매를 토출 공간(D)으로 내보내기 위해 개폐 가능하게 장착되는 토출 밸브(483)가 마련되며, 밸브 조립체(480)의 후면에는 흡입 공간(S)의 냉매를 실린더(330)의 압축 공간(C)으로 내보내기 위해 개폐 가능하게 장착되는 흡입 밸브(481)가 마련된다. For this purpose, a discharge valve 483 is provided on the front of the valve assembly 480 to be openable and closed to discharge the compressed refrigerant from the compression space C to the discharge space D, and the valve assembly 480 At the rear, an intake valve 481 is provided that can be opened and closed to export the refrigerant from the intake space (S) to the compression space (C) of the cylinder (330).
즉, 밸브 조립체(480)의 전면에는 토출 밸브(483)가 구비되며, 밸브 조립체(420)의 후면에는 흡입 밸브(481)가 구비된다.That is, a discharge valve 483 is provided on the front of the valve assembly 480, and an intake valve 481 is provided on the rear of the valve assembly 420.
토출 밸브(483)와 흡입 밸브(481)의 작용을 간단하게 설명한다.The operation of the discharge valve 483 and the suction valve 481 will be briefly explained.
상기 실린더(330) 내의 압축 공간(C)에서 압축된 냉매의 토출 시, 토출 밸브(483)는 개방되고 흡입 밸브(481)는 폐쇄된다. 이에 따라, 상기 실린더(330) 내에서 압축된 냉매는 흡입 공간(S)으로 유입되지 않고 토출 공간(D)으로 유입될 수 있다. When the compressed refrigerant is discharged from the compression space C within the cylinder 330, the discharge valve 483 is opened and the intake valve 481 is closed. Accordingly, the refrigerant compressed within the cylinder 330 may flow into the discharge space (D) rather than into the suction space (S).
반대로, 흡입 공간(S)으로 유입된 냉매가 실린더(330) 내로 흡입 시, 토출 밸브(483)는 폐쇄되고 흡입 밸브(481)는 개방된다. 이에 따라, 흡입 공간(S)의 냉매는 토출 공간(D)으로 유입되지 않고 실린더(330) 내로 유입될 수 있다.Conversely, when the refrigerant flowing into the suction space S is sucked into the cylinder 330, the discharge valve 483 is closed and the suction valve 481 is opened. Accordingly, the refrigerant in the suction space (S) may flow into the cylinder 330 without flowing into the discharge space (D).
토출 호스(800)는 토출 공간(D)에 수용된 압축된 냉매를 토출 파이프(130)로 전달하는 장치로서, 머플러 조립체(410)에 결합된다. 상기 토출 호스(800)의 일 측부는 토출 공간(D)에 연통되도록 머플러 조립체(410)에 결합되며, 토출 호스(800)의 타 측부는 토출 파이프(130)에 결합된다.The discharge hose 800 is a device that delivers compressed refrigerant contained in the discharge space D to the discharge pipe 130, and is coupled to the muffler assembly 410. One side of the discharge hose 800 is coupled to the muffler assembly 410 to communicate with the discharge space D, and the other side of the discharge hose 800 is coupled to the discharge pipe 130.
상기 복수 개의 개스킷(485,488)은 냉매 누설을 방지하기 위한 장치로서, 밸브 조립체(420)의 일 측 및 타 측에 각각 장착된다.The plurality of gaskets 485 and 488 are devices for preventing refrigerant leakage, and are mounted on one side and the other side of the valve assembly 420, respectively.
상세히, 상기 복수 개의 개스킷(485, 488)은 제1 개스킷(485) 및 제2 개스킷(488)을 포함한다. 상기 제1 개스킷(485)은 밸브 조립체(480)의 전방에 장착되며, 제2 개스킷(488)은 밸브 조립체(420)의 후방에 장착된다.In detail, the plurality of gaskets 485 and 488 include a first gasket 485 and a second gasket 488. The first gasket 485 is mounted on the front of the valve assembly 480, and the second gasket 488 is mounted on the rear of the valve assembly 420.
상기 탄성부재(490)는 압축기(10)의 구동 시, 머플러 조립체(410)를 지지하기 위한 것으로서, 머플러 조립체(410)의 전방에 장착된다. 상기 탄성부재(490)는 접시 스프링(Belleville Spring)을 포함할 수 있다.The elastic member 490 is used to support the muffler assembly 410 when the compressor 10 is driven, and is mounted on the front of the muffler assembly 410. The elastic member 490 may include a Belleville Spring.
상기 클램프(492)는 밸브 조립체(480), 제1 개스킷(485), 제2 개스킷(488) 및 탄성부재(490)를 머플러 조립체(410)에 고정한다. 상기 클램프(492)는 대략 삼발이 형상으로 이루어지며, 스크류부재 등의 체결 수단을 통해 머플러 조립체(410)에 장착될 수 있다.The clamp 492 secures the valve assembly 480, the first gasket 485, the second gasket 488, and the elastic member 490 to the muffler assembly 410. The clamp 492 has an approximate tripod shape and can be mounted on the muffler assembly 410 through a fastening means such as a screw member.
아울러, 압축기(10)는, 복수의 댐퍼부재(500, 550, 600, 650) 및 밸런스 웨이트(700)를 더 포함한다.In addition, the compressor 10 further includes a plurality of damper members 500, 550, 600, and 650 and a balance weight 700.
상기 복수의 댐퍼부재(500, 550, 600, 650)는 압축기(10) 구동 시 발생되는 내부 구조물들의 진동 등을 완충시킨다. 상기 복수의 댐퍼부재(500, 550, 600, 650)는 전방 댐퍼(500), 후방 댐퍼(550) 및 하부 댐퍼(600, 650)를 포함한다.The plurality of damper members 500, 550, 600, and 650 cushion vibrations of internal structures generated when the compressor 10 is driven. The plurality of damper members 500, 550, 600, and 650 include a front damper 500, a rear damper 550, and a lower damper 600, 650.
상기 전방 댐퍼(500)는 흡토출부(400)의 진동을 완충시키며, 고무 재질로 이루어질 수 있다. 상기 전방 댐퍼(500)는 상기 클램프(492)에 결합되는 체결수단을 통하여 상기 실린더 블럭(310)의 전방 상부에 결합될 수 있다.The front damper 500 cushions the vibration of the suction/discharge unit 400 and may be made of a rubber material. The front damper 500 may be coupled to the front upper portion of the cylinder block 310 through a fastening means coupled to the clamp 492.
상기 후방 댐퍼(550)는 압축부(300)의 진동을 완충시키며, 실린더 블럭(310)의 후방 상부에 장착된다. 상기 후방 댐퍼(550)는 고무 재질로 이루어질 수 있다.The rear damper 550 cushions the vibration of the compression unit 300 and is mounted on the rear upper part of the cylinder block 310. The rear damper 550 may be made of rubber material.
상기 하부 댐퍼(600, 650)는 전동부(200)의 진동을 완충시키며, 복수 개로 구비된다. 복수의 하부댐퍼(600, 650)는 전방 하부댐퍼(600) 및 후방 하부댐퍼(650)를 포함한다. The lower dampers 600 and 650 cushion the vibration of the electric drive unit 200 and are provided in plural pieces. The plurality of lower dampers 600 and 650 include a front lower damper 600 and a rear lower damper 650.
상기 전방 하부댐퍼(600)는 전동부(200)의 전방 측 진동을 완충시키며, 스테이터 코어(210)의 전방 하측에 장착된다. 후방 하부댐퍼(650)는 전동부(200)의 후방 측 진동을 완충시키며, 스테이터 코어(210)의 후방 하측에 장착된다.The front lower damper 600 cushions vibration on the front side of the transmission unit 200 and is mounted on the front lower side of the stator core 210. The rear lower damper 650 cushions vibration on the rear side of the transmission unit 200 and is mounted on the rear lower side of the stator core 210.
상기 밸런스 웨이트(700)는 전동부(200)의 회전 샤프트(250)의 회전 시 회전 진동을 제어하기 장치로서, 커넥팅 로드(340)의 상측에서 회전 샤프트(250)의 편심 샤프트(256)에 결합된다.The balance weight 700 is a device for controlling rotational vibration when the rotation shaft 250 of the electric drive unit 200 rotates, and is coupled to the eccentric shaft 256 of the rotation shaft 250 on the upper side of the connecting rod 340. do.
이하에서는, 본 명세서의 일 실시 예에 따른 맥동 저감 부재에 대해 상세히 설명한다.Below, a pulsation reduction member according to an embodiment of the present specification will be described in detail.
도 4는 본 명세서의 실시 예에 따른 왕복동식 압축기의 일부 구성을 보여주는 도면이고, 도 5는 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 머플러 조립체 및 토출 호스의 연결 모습을 보여주는 전방 사시도이다.FIG. 4 is a diagram showing a partial configuration of a reciprocating compressor according to an embodiment of the present specification, and FIG. 5 is a front perspective view showing the connection of a muffler assembly and discharge hose with a pulsation reduction member according to an embodiment of the present specification. .
그리고 도 6은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 머플러 조립체 및 토출 호스의 연결 모습을 보여주는 후방 사시도이고, 도 7은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제1 실시 예를 보여주는 단면도이다.Figure 6 is a rear perspective view showing the connection of the muffler assembly and discharge hose with a pulsation reduction member according to an embodiment of the present specification, and Figure 7 is a rear perspective view of the discharge muffler with a pulsation reduction member according to an embodiment of the present specification. This is a cross-sectional view showing the first embodiment.
본 명세서의 구체적인 실시 예를 설명하기에 앞서 본 명세서의 왕복동식 압축기가 구비한 특징을 간략하게 설명하면, 본 명세서의 왕복동식 압축기에 구비되는 토출부는 토출 머플러의 내부에 위치하는 맥동 저감 부재를 포함할 수 있고, 맥동 저감 부재는, 머플러 커버의 바닥부 내면에 위치하며 머플러 본체를 향해 돌출된 제1 격벽과, 머플러 본체의 바닥부 내면에 위치하며 머플러 커버를 향해 돌출된 제2 격벽을 포함할 수 있다.Before explaining specific embodiments of the present specification, briefly describe the features provided by the reciprocating compressor of the present specification. The discharge unit provided in the reciprocating compressor of the present specification includes a pulsation reduction member located inside the discharge muffler. It may be possible, and the pulsation reduction member may include a first partition located on the inner surface of the bottom of the muffler cover and protruding toward the muffler body, and a second partition located on the inner surface of the bottom of the muffler body and protruding toward the muffler cover. You can.
상기 제1 격벽과 상기 제2 격벽은 각각 1개씩 구비되거나, 상기 제1 격벽과 상기 제2 격벽 중에서 어느 하나가 복수 개로 구비되거나, 상기 제1 격벽과 상기 제2 격벽이 각각 복수 개의 서로 동일한 개수로 구비될 수 있다.The first partition wall and the second partition wall are each provided one at a time, either one of the first partition wall and the second partition wall is provided in plural numbers, or each of the first partition wall and the second partition wall is provided in plural numbers, the same number as each other. It can be provided with .
따라서, 토출 머플러의 내부 공간에 구비되는 격벽의 개수, 격벽 간의 간격, 격벽의 상하 방향으로의 길이, 격벽의 위치, 유로의 상하 방향으로의 길이 중에서 적어도 하나의 팩터(factor)를 변경하는 것에 의해, 주기적으로 배출되는 고압의 냉매에 의한 맥동을 효과적으로 감소시킬 수 있다.Therefore, by changing at least one factor among the number of partitions provided in the internal space of the discharge muffler, the spacing between partitions, the length of the partitions in the vertical direction, the position of the partitions, and the length of the flow path in the vertical direction. , it can effectively reduce pulsation caused by high-pressure refrigerant that is periodically discharged.
본 명세서의 왕복동식 압축기에 구비된 다양한 구조의 토출 머플러에 대해 설명한다.Discharge mufflers of various structures provided in the reciprocating compressor of this specification will be described.
도 4 내지 도 7을 참조하면, 본 명세서의 실시 예에 따른 머플러 조립체(410)에는, 제1 조립부(430), 제2 조립부(420), 제3 조립부(425) 및 제4 조립부(438)가 포함된다.4 to 7, the muffler assembly 410 according to an embodiment of the present specification includes a first assembly unit 430, a second assembly unit 420, a third assembly unit 425, and a fourth assembly unit. Part 438 is included.
상기 제1 조립부(430)에는, 상기 흡입 파이프(120)와 연통되는 흡입공(432)이 포함된다. 상기 흡입공(432)은 상기 흡입 파이프(120)가 결합되는 하부 밀폐 용기(110)의 일 지점의 내측에 인접하게 위치된다. 상기 제1 조립부(430)의 내부에는, 내부 파이프(450)가 설치된다. 일례로, 상기 내부 파이프(450)는 대략 원통 형상의 배관으로 구성될 수 있다.The first assembly part 430 includes a suction hole 432 that communicates with the suction pipe 120. The suction hole 432 is located adjacent to the inside of a point of the lower sealed container 110 where the suction pipe 120 is coupled. An internal pipe 450 is installed inside the first assembly unit 430. For example, the internal pipe 450 may be composed of a pipe having a substantially cylindrical shape.
상기 제1 조립부(430)의 내부에는, 상기 내부 파이프(450)를 고정하기 위한 제1 고정부(441)가 설치된다. 상기 제1 고정부(441)에는, 상기 흡입공(432)에 대응하는 관통공(442)이 형성된다. 따라서, 제1 고정부(441)가 상기 제1 조립부(430)의 내부에 설치된 상태에서, 상기 흡입공(432)과 관통공(442)은 서로 정렬될 수 있다.Inside the first assembly part 430, a first fixing part 441 for fixing the internal pipe 450 is installed. A through hole 442 corresponding to the suction hole 432 is formed in the first fixing part 441. Accordingly, when the first fixing part 441 is installed inside the first assembly part 430, the suction hole 432 and the through hole 442 may be aligned with each other.
그리고, 상기 내부 파이프(450)에는, 상기 제1 고정부(441)에 결합되는 제1 결합부(454)가 포함된다.And, the inner pipe 450 includes a first coupling part 454 coupled to the first fixing part 441.
상기 내부 파이프(450)는 상기 제1 조립부(430)로부터 상방으로 연장되어, 상기 제2 조립부(420)에 결합될 수 있다. 상기 제2 조립부(420)에는 상기 내부 파이프(450)와 결합되는 제2 고정부가 포함된다. 그리고, 상기 내부 파이프(455)에는, 상기 제2 고정부에 결합되는 제2 결합부(455)가 포함된다.The internal pipe 450 may extend upward from the first assembly part 430 and be coupled to the second assembly part 420. The second assembly part 420 includes a second fixing part coupled to the internal pipe 450. Additionally, the inner pipe 455 includes a second coupling portion 455 coupled to the second fixing portion.
상기 제2 조립부(420)는 상기 제1 조립부(430)의 상측에 결합된다. 상기 내부 파이프(450)의 적어도 일부분은 상기 제1 조립부(430)의 내부에 위치되며, 나머지 일부분은 상기 제2 조립부(420)의 내부에 위치될 수 있다.The second assembly part 420 is coupled to the upper side of the first assembly part 430. At least a portion of the inner pipe 450 may be located inside the first assembly portion 430, and the remaining portion may be located inside the second assembly portion 420.
상기 제1 조립부(430)와 제2 조립부(420)가 결합되면, 상기 제1 및 제2 조립부(430,420)의 내부에는, 압축기(10)로 흡입된 냉매가 상기 실린더(330)를 향하여 유동될 수 있는 흡입 유로가 형성된다. 따라서, 상기 제1 및 제2 조립부(430, 420)를 합하여, "흡입 머플러"라 말할 수 있다.When the first assembly part 430 and the second assembly part 420 are combined, the refrigerant sucked into the compressor 10 is inside the first and second assembly parts 430 and 420, and the cylinder 330 A suction flow path that can flow toward is formed. Accordingly, the first and second assembly parts 430 and 420 can be collectively referred to as a “suction muffler.”
상기 제3 조립부(425)는 상기 제2 조립부(420)의 일측에 이격되어 배치된다. 그리고, 상기 제2 조립부(420)와 제3 조립부(425)의 사이에는, 상기 흡입공간(S) 및 토출공간(D)을 형성하는 흡토출 탱크(426)가 설치된다.The third assembly part 425 is arranged to be spaced apart from one side of the second assembly part 420. And, between the second assembly part 420 and the third assembly part 425, a suction/discharge tank 426 forming the suction space (S) and the discharge space (D) is installed.
상기 흡토출 탱크(426)에는, 흡토출 탱크(426)의 내부공간을 상기 흡입공간(S)과 토출공간(D)으로 구획하는 구획부(427)가 포함된다. 그리고, 상기 흡토출 탱크(426)의 일 측에는, 상기 밸브 조립체(480)가 설치될 수 있다.The suction and discharge tank 426 includes a partition portion 427 that divides the internal space of the suction and discharge tank 426 into the suction space (S) and the discharge space (D). Additionally, the valve assembly 480 may be installed on one side of the suction/discharge tank 426.
상기 흡입공간(S)은 상기 흡입 밸브(481)에 의하여 차폐될 수 있고, 상기 토출공간(D)은 상기 토출 밸브(483)에 의하여 차폐될 수 있다.The suction space (S) may be shielded by the suction valve 481, and the discharge space (D) may be shielded by the discharge valve 483.
상기 제3 조립부(425)에는 흡토출 탱크(426)의 토출공간(D)에 연통하는 가스 유입구(425A)가 구비된다.The third assembly portion 425 is provided with a gas inlet 425A communicating with the discharge space D of the suction/discharge tank 426.
상기 제4 조립부(438)는 상기 제3 조립부(425)의 하측에 결합된다. 상기 제3 조립부(425)와 제4 조립부(438)가 결합되면, 상기 제3 및 제4 조립부(425, 438)의 내부에는, 상기 실린더(330)로부터 토출된 냉매가 상기 토출 파이프(130)를 향하여 유동하는 토출 유로가 형성된다. The fourth assembly part 438 is coupled to the lower side of the third assembly part 425. When the third assembly part 425 and the fourth assembly part 438 are combined, the refrigerant discharged from the cylinder 330 is inside the third and fourth assembly parts 425 and 438 through the discharge pipe. A discharge passage flowing toward (130) is formed.
그리고 제4 조립부(438)에는 토출 호스(800)가 결합되는 가스 토출구(438A)가 구비된다.And the fourth assembly portion 438 is provided with a gas discharge port 438A to which the discharge hose 800 is coupled.
따라서, 상기 제3 및 제4 조립부(425, 438)를 합하여, "토출 머플러"라 말할 수 있다.Accordingly, the third and fourth assembly parts 425 and 438 can be collectively referred to as a “discharge muffler.”
여기에서, 제3 조립부(425)는 토출 머플러의 "머플러 본체"라 말할 수 있고, 제4 조립부(438)는 토출 머플러의 "머플러 커버"라 말할 수 있다.Here, the third assembly part 425 can be said to be the “muffler body” of the discharge muffler, and the fourth assembly part 438 can be said to be the “muffler cover” of the discharge muffler.
토출 머플러의 내부 공간에는 본 실시 예의 맥동 저감 부재를 구성하는 복수 개의 격벽(W1, W2)이 위치한다.A plurality of partition walls W1 and W2 constituting the pulsation reduction member of this embodiment are located in the internal space of the discharge muffler.
복수 개의 격벽(W1, W2)은, 제4 조립부(438)의 바닥부 내면에 위치하며 제3 조립부(425)를 향해 돌출된 제1 격벽(W1)과, 제3 조립부(425)의 바닥부 내면에 위치하며 제4 조립부(438)를 향해 돌출된 제2 격벽(W2)을 포함한다.The plurality of partition walls (W1, W2) includes a first partition (W1) located on the inner surface of the bottom of the fourth assembly part 438 and protruding toward the third assembly part 425, and a third assembly part 425. It is located on the inner surface of the bottom and includes a second partition W2 protruding toward the fourth assembly part 438.
상기 제1 격벽(W1)과 상기 제2 격벽(W2)은 토출 머플러의 상기 내부 공간 내에서 수평 방향(Y축 방향)으로 서로 이웃하여 위치하며, 제1 격벽(W1)과 제3 조립부(425)의 우측 내벽 사이의 간격, 제1 격벽(W1)과 제2 격벽(W2) 사이의 간격, 제2 격벽(W2)와 제3 조립부(425)의 좌측 내벽 사이의 간격 등은 적절하게 설계될 수 있다.The first partition W1 and the second partition W2 are located adjacent to each other in the horizontal direction (Y-axis direction) within the internal space of the discharge muffler, and the first partition W1 and the third assembly part ( The gap between the right inner wall of the 425), the gap between the first partition W1 and the second partition W2, the gap between the second partition W2 and the left inner wall of the third assembly part 425, etc. are appropriately determined. can be designed.
상기 제2 격벽(W2)의 단부는 제4 조립부(438)의 바닥부 내면과 이격되어 있다. 따라서, 제2 격벽(W2)의 단부와 제4 조립부(438)의 바닥부 내면 사이에는 제1 유로(OP1)가 형성된다.An end of the second partition W2 is spaced apart from the inner surface of the bottom of the fourth assembly portion 438. Accordingly, the first flow path OP1 is formed between the end of the second partition W2 and the inner surface of the bottom of the fourth assembly portion 438.
그리고 상기 제1 격벽(W1)의 단부는 상기 제3 조립부(425)의 바닥부 내면과 이격되어 있다. 따라서, 제1 격벽(W1)의 단부와 제3 조립부(425)의 바닥부 내면 사이에는 제2 유로(OP2)가 형성된다.And the end of the first partition W1 is spaced apart from the inner surface of the bottom of the third assembly part 425. Accordingly, the second flow path OP2 is formed between the end of the first partition W1 and the inner surface of the bottom of the third assembly portion 425.
제1 유로(OP1)의 상하 방향으로의 길이(OPL1)와 제2 유로(OP2)의 상하 방향으로의 길이(OPL2)는, 서로 동일하게 형성될 수 있지만, 서로 다르게 형성될 수 있다.The vertical length OPL1 of the first flow path OP1 and the vertical length OPL2 of the second flow path OP2 may be formed to be the same, but may be formed differently.
제1 유로(OP1)의 상하 방향으로의 길이(OPL1)와 제2 유로(OP2)의 상하 방향으로의 길이(OPL2)가 서로 다르게 형성되는 경우에는 도 7에 도시한 바와 같이, 제2 유로(OP2)의 제2 길이(OPL2)가 제1 유로(OP1)의 제1 길이(OPL1)보다 크게 형성될 수 있다.When the vertical length OPL1 of the first flow path OP1 and the vertical length OPL2 of the second flow path OP2 are formed differently from each other, as shown in FIG. 7, the second flow path ( The second length (OPL2) of OP2) may be formed to be larger than the first length (OPL1) of the first flow path (OP1).
하지만, 제1 유로(OP1)의 제1 길이(OPL1)가 제2 유로(OP2)의 제2 길이(OPL2)보다 크게 형성되는 것도 가능하다.However, it is also possible that the first length OPL1 of the first flow path OP1 is formed to be larger than the second length OPL2 of the second flow path OP2.
제2 유로(OP2)의 제2 길이(OPL2)는 제1 격벽(W1)의 상하 방향의 길이(WL1)를 변경하는 것에 의해 조절할 수 있고, 제1 유로(OP1)의 제1 길이(OPL1)는 제2 격벽(W2)의 상하 방향의 길이(WL2)를 변경하는 것에 의해 조절할 수 있다.The second length OPL2 of the second flow path OP2 can be adjusted by changing the vertical length WL1 of the first partition W1, and the first length OPL1 of the first flow path OP1 can be adjusted by changing the vertical length WL2 of the second partition W2.
토출 머플러의 내부에 2개의 격벽(W1, W2)이 위치하는 경우, 토출 머플러의 내부 공간은 3개의 감쇄 공간(M1, M2, M3)이 형성된다.When two partition walls (W1, W2) are located inside the discharge muffler, three attenuation spaces (M1, M2, M3) are formed in the internal space of the discharge muffler.
그리고 3개의 감쇄 공간(M1, M2, M3)는 제1 유로(OP1)와 제2 유로(OP2)에 의해 서로 연통한다. And the three attenuation spaces (M1, M2, M3) communicate with each other through the first flow path (OP1) and the second flow path (OP2).
제1 격벽(W1)은 사출(射出)에 의해 제4 조립부(438)와 일체로 형성될 수 있고, 제2 격벽(W2)은 사출(射出)에 의해 제3 조립부(425)와 일체로 형성될 수 있다.The first partition W1 may be formed integrally with the fourth assembly part 438 through injection, and the second partition W2 may be formed integrally with the third assembly part 425 through injection. It can be formed as
그리고 3개의 감쇄 공간(M1, M2, M3)은 토출 가스의 유동 방향을 따라 가장 마지막에 위치하는 제3 감쇄 공간(M3)과, 제3 감쇄 공간과 이격한 제1 감쇄 공간(M1)과, 제1 감쇄 공간(M1)과 제3 감쇄 공간 사이에 위치하는 제2 감쇄 공간(M2)을 포함한다.And the three attenuation spaces (M1, M2, M3) include a third attenuation space (M3) located last along the flow direction of the discharged gas, a first attenuation space (M1) spaced apart from the third attenuation space, and It includes a second attenuation space (M2) located between the first attenuation space (M1) and the third attenuation space.
토출 머플러에 결합되는 토출 호스(800)는 3개의 감쇄 공간(M1, M2, M3) 중에서 토출 가스의 유동 방향을 따라 가장 마지막에 위치하는 제3 감쇄 공간(M3)에 형성된 가스 토출구(438A)에 결합될 수 있다.The discharge hose 800 coupled to the discharge muffler is connected to the gas discharge port 438A formed in the third attenuation space M3, which is located last along the flow direction of the discharge gas among the three attenuation spaces M1, M2, and M3. can be combined
상기 토출 호스(800)는 토출 머플러 내의 냉매(또는 토출 가스)를 상기 토출 파이프(130)로 전달한다.The discharge hose 800 delivers refrigerant (or discharge gas) in the discharge muffler to the discharge pipe 130.
상기 토출 호스(800)는 상기 제4 조립부(438)로부터 상기 토출 파이프(130)를 향하여 다소 길게 연장되며, 제한된 밀폐 용기(100)의 내부 공간에 배치되기 위하여, 적어도 1회 이상 만곡 또는 절곡되도록 구성될 수 있다.The discharge hose 800 extends somewhat long from the fourth assembly portion 438 toward the discharge pipe 130, and is curved or bent at least once in order to be placed in the limited internal space of the sealed container 100. It can be configured as follows.
상기 토출 호스(800)는 가요성 재질로 형성되는 것이 바람직하지만, 이는 필수적이지 않다.The discharge hose 800 is preferably made of a flexible material, but this is not essential.
상기 토출 호스(800)의 일부는 호스 고정부(553)에 의하여 지지될 수 있다. 상기 호스 고정부(553)는 상기 후방 댐퍼(550)에 결합되며, 상기 토출 호스(800)를 클램핑(clamping) 할 수 있도록 구성된다. A portion of the discharge hose 800 may be supported by the hose fixing part 553. The hose fixing part 553 is coupled to the rear damper 550 and is configured to clamp the discharge hose 800.
한 예로, 상기 호스 고정부(553)는 집게 형상을 가지며, 상기 토출 호스(800)의 외주면 중 적어도 일부분을 둘러싸도록 배치될 수 있다. 상기 호스 고정부(553)에 의하여, 상기 토출 호스(800)는 상기 밀폐 용기(100)의 내측면으로부터 이격된 상태에서 위치하도록 가이드 될 수 있다.As an example, the hose fixing part 553 has a pincer shape and may be arranged to surround at least a portion of the outer peripheral surface of the discharge hose 800. By the hose fixing part 553, the discharge hose 800 can be guided to be positioned away from the inner surface of the sealed container 100.
상기 토출 파이프(130)는 상기 하부 밀폐 용기(110)을 관통하여, 상기 하부 밀폐 용기(110)의 내부로 연장되며, 상기 토출 파이프(130)에는 상기 토출 호스(800)가 연결된다. The discharge pipe 130 penetrates the lower sealed container 110 and extends into the interior of the lower sealed container 110, and the discharge hose 800 is connected to the discharge pipe 130.
상기 토출 파이프(130)와 토출 호스(800)의 연결이 용이하도록 하기 위하여, 상기 토출 파이프(130)는 상기 하부 밀폐 용기(110)을 관통하여 절곡되고, 상방으로 연장될 수 있다.In order to facilitate connection between the discharge pipe 130 and the discharge hose 800, the discharge pipe 130 may be bent through the lower sealed container 110 and extend upward.
상기 토출 호스(800)는 가요성의 고무 재질로 형성될 수 있으며, 상기 토출 파이프(130)는 금속재질, 일례로 구리(Cu)로 구성될 수 있다.The discharge hose 800 may be made of a flexible rubber material, and the discharge pipe 130 may be made of a metal material, for example, copper (Cu).
이하에서는 본 명세서의 다른 실시 예에 따른 토출 머플러에 대해 설명한다.Hereinafter, a discharge muffler according to another embodiment of the present specification will be described.
이하의 실시 예들을 설명함에 있어서, 전술한 실시 예와 동일한 구성 요소에 대해서는 동일한 도면 부호를 부여하며, 이에 대한 상세한 설명은 생략한다.In describing the following embodiments, the same reference numerals are assigned to the same components as those of the above-described embodiments, and detailed descriptions thereof are omitted.
도 8은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제2 실시 예를 보여주는 단면도이다.Figure 8 is a cross-sectional view showing a second embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
본 실시 예의 토출 머플러에 있어서, 제1 격벽(W1)과 제2 격벽(W2)은, 전술한 도 7의 제1 실시 예와 달리, 상기 제1 격벽(W1)의 단부와 상기 제2 격벽(W2)의 단부 사이에 제3 유로(OP3)가 형성되도록 서로 마주하여 위치한다.In the discharge muffler of this embodiment, the first partition W1 and the second partition W2 are, unlike the first embodiment of FIG. 7 described above, the end of the first partition W1 and the second partition wall (W1). They are positioned facing each other so that a third flow path OP3 is formed between the ends of W2).
이러한 실시 예에 있어서, 제1 격벽(W1)의 상하 방향의 길이(WL1)와 제2 격벽(W2)의 상하 방향의 길이(WL2)를 변경하는 것에 의해 제3 유로(OP3)의 상하 방향의 길이(OPL3)를 조절할 수 있다.In this embodiment, the vertical length WL1 of the first partition W1 and the vertical length WL2 of the second partition W2 are changed to change the vertical length WL2 of the third flow path OP3. The length (OPL3) can be adjusted.
그리고 상기 제1 격벽(W1)의 단부와 상기 제2 격벽(W2)의 단부에는 각각 노즐부(W11, W21)가 형성된다.And nozzle parts W11 and W21 are formed at the ends of the first partition W1 and the second partition W2, respectively.
상기 노즐부(W11, W21)에 의하면, 도 8에서 우측으로 갈수록 제3 유로(OP3)의 단면적이 감소한다.According to the nozzle units W11 and W21, the cross-sectional area of the third flow path OP3 decreases toward the right in FIG. 8.
도 9는 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제3 실시 예를 보여주는 단면도이다.Figure 9 is a cross-sectional view showing a third embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
본 실시 예의 토출 머플러에 있어서, 제1 격벽(W1)은 2개가 구비되고, 제2 격벽(W2)은 1개만 구비된다.In the discharge muffler of this embodiment, two first partition walls (W1) are provided, and only one second partition wall (W2) is provided.
하지만, 제1 격벽(W1)이 1개만 구비되고, 제2 격벽(W2)이 2개가 구비되는 것도 본 실시 예에 포함된다.However, this embodiment includes only one first partition W1 and two second partition walls W2.
그리고, 제1 격벽(W1)과 제2 격벽(W2) 중 어느 하나는 3개 이상 구비될 수도 있다.Additionally, either one of the first partition W1 and the second partition W2 may be provided in three or more units.
2개의 제1 격벽(W1)은 수평 방향(Y축 방향)으로 서로 이격하여 위치하고, 2개의 제1 격벽(W1)의 사이 공간에는 제2 격벽(W2)이 위치한다.The two first partitions W1 are positioned to be spaced apart from each other in the horizontal direction (Y-axis direction), and the second partition W2 is located in the space between the two first partitions W1.
따라서, 2개의 제1 격벽(W1)과 1개의 제2 격벽(W2)은 토출 머플러의 내부 공간 내에서 수평 방향(Y축 방향)으로 서로 이웃하여 위치하며, 좌측의 제1 격벽(W1)과 제3 조립부(425)의 좌측 내벽 사이의 간격, 좌측의 제1 격벽(W1)과 제2 격벽(W2) 사이의 간격, 제2 격벽(W2)와 우측의 제1 격벽(W1) 사이의 간격, 우측의 제1 격벽(W1)과 제3 조립부(425)의 우측 내벽 사이의 간격 등은 적절하게 설계될 수 있다.Accordingly, the two first partition walls (W1) and one second partition wall (W2) are located adjacent to each other in the horizontal direction (Y-axis direction) within the internal space of the discharge muffler, and the first partition wall (W1) on the left and The gap between the left inner wall of the third assembly unit 425, the gap between the first partition W1 and the second partition W2 on the left, and the gap between the second partition W2 and the first partition W1 on the right. The spacing, the spacing between the first partition W1 on the right side and the right inner wall of the third assembly portion 425, etc. may be designed appropriately.
상기 좌측의 제1 격벽(W1)의 단부는 상기 제3 조립부(425)의 바닥부 내면과 이격되어 있다. 따라서, 좌측의 제1 격벽(W1)의 단부와 제3 조립부(425)의 바닥부 내면 사이에는 제4 유로(OP4)가 형성된다.The end of the first partition W1 on the left side is spaced apart from the inner surface of the bottom of the third assembly part 425. Accordingly, a fourth flow path OP4 is formed between the end of the first partition W1 on the left and the inner surface of the bottom of the third assembly portion 425.
그리고 제2 격벽(W2)의 단부는 제4 조립부(438)의 바닥부 내면과 이격되어 있다. 따라서, 제2 격벽(W2)의 단부와 제4 조립부(438)의 바닥부 내면 사이에는 제5 유로(OP5)가 형성된다.And the end of the second partition W2 is spaced apart from the inner surface of the bottom of the fourth assembly portion 438. Accordingly, a fifth flow path OP5 is formed between the end of the second partition W2 and the inner surface of the bottom of the fourth assembly portion 438.
그리고 우측의 제1 격벽(W1)의 단부는 상기 제3 조립부(425)의 바닥부 내면과 이격되어 있다. 따라서, 우측의 제1 격벽(W1)의 단부와 제3 조립부(425)의 바닥부 내면 사이에는 제6 유로(OP6)가 형성된다.And the end of the first partition W1 on the right side is spaced apart from the inner surface of the bottom of the third assembly part 425. Accordingly, a sixth flow path OP6 is formed between the end of the first partition W1 on the right side and the inner surface of the bottom of the third assembly portion 425.
제4 유로(OP4)의 상하 방향의 길이(OPL4), 제5 유로(OP5)의 상하 방향의 길이(OPL5), 및 제6 유로(OP6)의 상하 방향의 길이는 해당 격벽의 상하 방향의 길이를 변경하는 것에 의해 조절할 수 있다.The vertical length OPL4 of the fourth flow path OP4, the vertical length OPL5 of the fifth flow path OP5, and the vertical length of the sixth flow path OP6 are the vertical lengths of the corresponding partition walls. It can be adjusted by changing .
그리고 2개의 제1 격벽(W1)은, 도 9에 도시한 바와 같이 상하 방향의 길이가 서로 동일하게 형성될 수도 있지만, 상하 방향의 길이가 서로 다르게 형성될 수도 있다.Additionally, the two first partitions W1 may be formed to have the same length in the vertical direction as shown in FIG. 9, but may also be formed to have different lengths in the vertical direction.
도 10는 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제4 실시 예를 보여주는 단면도이다.Figure 10 is a cross-sectional view showing a fourth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
본 실시 예에 있어서, 제1 격벽(W1)은 2개가 구비되고, 제2 격벽(W2)은 1개만 구비된다.In this embodiment, two first partitions W1 are provided, and only one second partition W2 is provided.
하지만, 제1 격벽(W1)이 1개만 구비되고, 제2 격벽(W2)이 2개가 구비되는 것도 본 실시 예에 포함된다.However, this embodiment includes only one first partition W1 and two second partition walls W2.
그리고, 제1 격벽(W1)과 제2 격벽(W2) 중 어느 하나는 3개 이상 구비될 수도 있다.Additionally, either one of the first partition W1 and the second partition W2 may be provided in three or more units.
2개의 제1 격벽(W1)은 수평 방향(Y축 방향)으로 서로 이격하여 위치하고, 2개의 제1 격벽(W1) 중 우측에 위치한 제1 격벽(W1)과 서로 마주하는 위치에 제2 격벽(W2)이 위치한다.The two first partitions (W1) are located spaced apart from each other in the horizontal direction (Y-axis direction), and a second partition ( W2) is located.
따라서, 2개의 제1 격벽(W1)은 토출 머플러의 내부 공간 내에서 수평 방향(Y축 방향)으로 서로 이웃하여 위치한다.Accordingly, the two first partition walls W1 are located adjacent to each other in the horizontal direction (Y-axis direction) within the internal space of the discharge muffler.
좌측의 제1 격벽(W1)과 제3 조립부(425)의 좌측 내벽 사이의 간격, 좌측의 제1 격벽(W1)과 우측의 제1 격벽(W1) 사이의 간격, 우측의 제1 격벽(W1)과 제3 조립부(425)의 우측 내벽 사이의 간격 등은 적절하게 설계될 수 있다.The gap between the first partition W1 on the left and the left inner wall of the third assembly unit 425, the gap between the first partition W1 on the left and the first partition W1 on the right, the first partition on the right ( The gap between W1) and the right inner wall of the third assembly portion 425 can be appropriately designed.
상기 좌측의 제1 격벽(W1)의 단부는 상기 제3 조립부(425)의 바닥부 내면과 이격되어 있다. 따라서, 좌측의 제1 격벽(W1)의 단부와 제3 조립부(425)의 바닥부 내면 사이에는 제7 유로(OP7)가 형성된다.The end of the first partition W1 on the left side is spaced apart from the inner surface of the bottom of the third assembly part 425. Accordingly, a seventh flow path OP7 is formed between the end of the first partition W1 on the left and the inner surface of the bottom of the third assembly portion 425.
그리고 우측의 제1 격벽(W1)과 제2 격벽(W2)은, 상기 우측의 제1 격벽(W1)의 단부와 상기 제2 격벽(W2)의 단부 사이에 제8 유로(OP8)가 형성되도록 서로 마주하여 위치한다.And the first partition W1 and the second partition W2 on the right side are formed such that an eighth flow path OP8 is formed between the end of the first partition W1 on the right side and the end of the second partition W2. are located opposite each other.
하지만, 제2 격벽(W2)은 2개의 제1 격벽(W1) 중 좌측에 위치한 제1 격벽(W1)과 서로 마주하는 위치에 위치할 수도 있다.However, the second partition wall W2 may be located at a position opposite to the first partition wall W1 located on the left of the two first partition walls W1.
이러한 실시 예에 있어서, 좌측의 제1 격벽(W1)의 상하 방향의 길이를 변경하는 것에 의해 제7 유로(OP7)의 상하 방향의 길이(OPL7)를 조절할 수 있고, 우측의 제1 격벽(W1)의 상하 방향의 길이와 제2 격벽(W2)의 상하 방향의 길이를 변경하는 것에 의해 제8 유로(OP8)의 상하 방향의 길이(OPL8)를 조절할 수 있다.In this embodiment, the vertical length OPL7 of the seventh passage OP7 can be adjusted by changing the vertical length of the left first partition W1, and the right first partition W1 ) The vertical length OPL8 of the eighth flow path OP8 can be adjusted by changing the vertical length of the second partition W2.
그리고 2개의 제1 격벽(W1)은 도 10에 도시한 바와 같이, 상하 방향의 길이가 서로 다르게 형성될 수 있지만, 상하 방향의 길이가 서로 동일하게 형성될 수도 있다.And, as shown in FIG. 10, the two first partition walls W1 may be formed to have different lengths in the vertical direction, but may also be formed to have the same length in the vertical direction.
그리고 서로 마주하는 제1 격벽(W1)의 단부와 제2 격벽(W2)의 단부는 노즐부를 구비할 수 있다.And the ends of the first partition W1 and the ends of the second partition W2 facing each other may be provided with nozzle parts.
도 11은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제5 실시 예를 보여주는 단면도이다.Figure 11 is a cross-sectional view showing a fifth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
본 실시 예에 있어서, 제1 격벽(W1)과 제2 격벽(W2)은 각각 2개씩 구비된다.In this embodiment, two first partition walls (W1) and two second partition walls (W2) are each provided.
하지만, 제1 격벽(W1)과 제2 격벽(W2)은 서로 동일한 개수로 복수 개가 각각 구비될 수도 있다.However, the first partition W1 and the second partition W2 may be provided in the same number as each other.
2개의 제1 격벽(W1)은 수평 방향(Y축 방향)으로 서로 이격하여 위치하고, 2개의 제1 격벽(W1)의 사이 공간에 1개의 제2 격벽(W2)이 위치하며, 2개의 제1 격벽(W1) 중 우측의 제1 격벽(W1)과 제3 조립부(425)의 우측 내벽 사이에 나머지 1개의 제2 격벽(W2)이 위치한다.The two first partition walls (W1) are located spaced apart from each other in the horizontal direction (Y-axis direction), one second partition wall (W2) is located in the space between the two first partition walls (W1), and two first partition walls (W2) are located in the space between the two first partition walls (W1). Among the partition walls W1, the remaining second partition wall W2 is located between the first partition wall W1 on the right side and the right inner wall of the third assembly part 425.
따라서, 2개의 제1 격벽(W1)과 2개의 제2 격벽(W2)은 토출 머플러의 내부 공간 내에서 수평 방향(Y축 방향)으로 서로 번갈아 가며 이웃하여 위치한다.Accordingly, the two first partitions W1 and the two second partitions W2 are alternately positioned next to each other in the horizontal direction (Y-axis direction) within the internal space of the discharge muffler.
좌측의 제1 격벽(W1)과 제3 조립부(425)의 좌측 내벽 사이의 간격, 좌측의 제1 격벽(W1)과 좌측의 제2 격벽(W2) 사이의 간격, 좌측의 제2 격벽(W2)와 우측의 제1 격벽(W1) 사이의 간격, 우측의 제1 격벽(W1)과 우측의 제2 격벽(W2) 사이의 간격, 우측의 제2 격벽(W2)과 제3 조립부(425)의 우측 내벽 사이의 간격 등은 적절하게 설계될 수 있다.The gap between the first partition W1 on the left and the left inner wall of the third assembly part 425, the gap between the first partition W1 on the left and the second partition W2 on the left, the second partition on the left ( The gap between W2) and the first partition W1 on the right, the gap between the first partition W1 on the right and the second partition W2 on the right, the second partition W2 on the right and the third assembly part ( 425), the gap between the right inner walls, etc. can be designed appropriately.
상기 좌측의 제1 격벽(W1)의 단부는 상기 제3 조립부(425)의 바닥부 내면과 이격되어 있다. 따라서, 좌측의 제1 격벽(W1)의 단부와 제3 조립부(425)의 바닥부 내면 사이에는 제9 유로(OP9)가 형성된다.The end of the first partition W1 on the left side is spaced apart from the inner surface of the bottom of the third assembly part 425. Accordingly, a ninth flow path OP9 is formed between the end of the first partition W1 on the left and the inner surface of the bottom of the third assembly portion 425.
그리고 상기 좌측의 제2 격벽(W2)의 단부는 상기 제4 조립부(438)의 바닥부 내면과 이격되어 있다. 따라서, 좌측의 제2 격벽(W2)의 단부와 제4 조립부(438)의 바닥부 내면 사이에는 제10 유로(OP10)가 형성된다.And the end of the second partition W2 on the left side is spaced apart from the inner surface of the bottom of the fourth assembly part 438. Accordingly, a tenth flow path OP10 is formed between the end of the second partition W2 on the left and the inner surface of the bottom of the fourth assembly portion 438.
그리고 우측의 제1 격벽(W1)의 단부는 상기 제3 조립부(425)의 바닥부 내면과 이격되어 있다. 따라서, 우측의 제1 격벽(W1)의 단부와 제3 조립부(425)의 바닥부 내면 사이에는 제11 유로(OP11)가 형성된다.And the end of the first partition W1 on the right side is spaced apart from the inner surface of the bottom of the third assembly part 425. Accordingly, an 11th flow path OP11 is formed between the end of the first partition W1 on the right side and the inner surface of the bottom of the third assembly part 425.
그리고 상기 우측의 제2 격벽(W2)의 단부는 상기 제4 조립부(438)의 바닥부 내면과 이격되어 있다. 따라서, 우측의 제2 격벽(W2)의 단부와 제4 조립부(438)의 바닥부 내면 사이에는 제12 유로(OP12)가 형성된다.And the end of the second partition W2 on the right side is spaced apart from the inner surface of the bottom of the fourth assembly part 438. Accordingly, a twelfth flow path OP12 is formed between the end of the second partition W2 on the right side and the inner surface of the bottom of the fourth assembly portion 438.
이러한 실시 예에 있어서, 좌측의 제1 격벽(W1)의 상하 방향의 길이를 변경하는 것에 의해 제9 유로(OP9)의 상하 방향의 길이(OPL9)를 조절할 수 있고, 좌측의 제2 격벽(W2)의 상하 방향의 길이를 변경하는 것에 의해 제10 유로(OP10)의 상하 방향의 길이(OPL10)를 조절할 수 있다.In this embodiment, the vertical length OPL9 of the ninth passage OP9 can be adjusted by changing the vertical length of the left first partition W1, and the left second partition W2 ) The vertical length (OPL10) of the tenth flow path (OP10) can be adjusted by changing the vertical length of the .
그리고 우측의 제1 격벽(W1)의 상하 방향의 길이를 변경하는 것에 의해 제11 유로(OP11)의 상하 방향의 길이(OPL11)를 조절할 수 있고, 우측의 제2 격벽(W2)의 상하 방향의 길이를 변경하는 것에 의해 제12 유로(OP12)의 상하 방향의 길이(OPL12)를 조절할 수 있다.Additionally, the vertical length OPL11 of the 11th flow path OP11 can be adjusted by changing the vertical length of the first partition W1 on the right, and the vertical length OPL11 of the second partition W2 on the right can be adjusted. By changing the length, the vertical length OPL12 of the twelfth flow path OP12 can be adjusted.
그리고 2개의 제1 격벽(W1)은 도 11에 도시한 바와 같이, 상하 방향의 길이가 서로 동일하게 형성될 수도 있지만, 상하 방향의 길이가 서로 다르게 형성될 수도 있다.As shown in FIG. 11, the two first partition walls W1 may have the same length in the vertical direction, but may also have different lengths in the vertical direction.
도 12는 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 제6 실시 예를 보여주는 단면도이다.Figure 12 is a cross-sectional view showing a sixth embodiment of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
본 실시 예에 있어서, 제1 격벽(W1)과 제2 격벽(W2)은 각각 2개씩 구비된다.In this embodiment, two first partition walls (W1) and two second partition walls (W2) are each provided.
2개의 제1 격벽(W1)은 수평 방향(Y축 방향)으로 서로 이격하여 위치하고, 2개의 제2 격벽(W2)은 2개의 제1 격벽(W1)과 서로 마주하는 위치에 각각 위치한다.The two first partitions W1 are positioned to be spaced apart from each other in the horizontal direction (Y-axis direction), and the two second partitions W2 are positioned opposite to the two first partitions W1.
좌측의 제1 격벽(W1)과 좌측의 제2 격벽(W2)은 제13 유로(OP13)를 형성하도록 서로 마주하여 위치하고, 우측의 제1 격벽(W1)과 우측의 제2 격벽(W2)은 제14 유로(OP14)를 형성하도록 서로 마주하여 위치한다.The first partition W1 on the left and the second partition W2 on the left are positioned facing each other to form the thirteenth flow path OP13, and the first partition W1 on the right and the second partition W2 on the right are They are located opposite each other to form the 14th flow path (OP14).
좌측의 제1 격벽(W1)과 제3 조립부(425)의 좌측 내벽 사이의 간격, 좌측의 제1 격벽(W1)과 우측의 제1 격벽(W1) 사이의 간격, 우측의 제1 격벽(W1)과 제3 조립부(425)의 우측 내벽 사이의 간격 등은 적절하게 설계될 수 있다.The gap between the first partition W1 on the left and the left inner wall of the third assembly unit 425, the gap between the first partition W1 on the left and the first partition W1 on the right, the first partition on the right ( The gap between W1) and the right inner wall of the third assembly portion 425 can be appropriately designed.
이러한 실시 예에 있어서, 좌측의 제1 격벽(W1)의 상하 방향의 길이와 좌측의 제2 격벽(W2)의 상하 방향의 길이를 변경하는 것에 의해 제13 유로(OP13)의 상하 방향의 길이(OPL13)를 조절할 수 있고, 우측의 제1 격벽(W1)의 상하 방향의 길이와 우측의 제2 격벽(W2)의 상하 방향의 길이를 변경하는 것에 의해 제14 유로(OP14)의 상하 방향의 길이(OPL14)를 조절할 수 있다.In this embodiment, by changing the vertical length of the first partition W1 on the left and the vertical length of the second partition W2 on the left, the vertical length of the 13th flow path OP13 ( OPL13) can be adjusted, and the vertical length of the fourteenth flow path OP14 can be adjusted by changing the vertical length of the first partition W1 on the right and the vertical length of the second partition W2 on the right. (OPL14) can be adjusted.
그리고 서로 마주하는 제1 격벽(W1)의 단부와 제2 격벽(W2)의 단부는 노즐부를 구비할 수 있다.And, the ends of the first partition W1 and the ends of the second partition W2 facing each other may be provided with nozzle parts.
도 12에 도시한 바와 같이, 2개의 제1 격벽(W1)은 상하 방향의 길이가 서로 동일하게 형성될 수 있고, 2개의 제2 격벽(W2)은 상하 방향의 길이가 서로 동일하게 형성될 수 있다.As shown in FIG. 12, the two first partitions W1 may be formed to have the same length in the vertical direction, and the two second partitions W2 may be formed to have the same length in the vertical direction. there is.
하지만, 도 13에 도시한 바와 같이, 2개의 제1 격벽(W1)은 상하 방향의 길이가 서로 동일하게 형성될 수 있지만, 2개의 제2 격벽(W2)은 상하 방향의 길이가 서로 다르게 형성될 수도 있다.However, as shown in FIG. 13, the two first partitions W1 may be formed to have the same length in the vertical direction, but the two second partitions W2 may be formed to have different lengths in the vertical direction. It may be possible.
그리고 서로 마주하는 제1 격벽(W1)의 단부와 제2 격벽(W2)의 단부는 노즐부를 구비할 수 있다.And, the ends of the first partition W1 and the ends of the second partition W2 facing each other may be provided with nozzle parts.
이러한 구성에 따르면, 좌측의 제1 격벽(W1)과 좌측의 제2 격벽(W2) 사이에 형성되는 제15 유로(OP15)의 상하 방향의 길이(OPL15)와, 우측의 제1 격벽(W1)과 우측의 제2 격벽(W2) 사이에 형성되는 제16 유로(OP16)의 상하 방향의 길이(OPL16)는 서로 다르게 형성될 수 있다.According to this configuration, the vertical length OPL15 of the 15th flow path OP15 formed between the first partition W1 on the left and the second partition W2 on the left, and the first partition W1 on the right The vertical length OPL16 of the 16th flow path OP16 formed between and the second partition wall W2 on the right side may be formed differently.
그리고 도 14에 도시한 바와 같이, 2개의 제2 격벽(W2)은 상하 방향의 길이가 서로 동일하게 형성될 수 있지만, 2개의 제1 격벽(W1)은 상하 방향의 길이가 서로 동일하게 형성될 수 있다.And as shown in FIG. 14, the two second partitions W2 may be formed to have the same length in the vertical direction, but the two first partitions W1 may be formed to have the same length in the vertical direction. You can.
그리고 서로 마주하는 제1 격벽(W1)의 단부와 제2 격벽(W2)의 단부는 노즐부를 구비할 수 있다.And, the ends of the first partition W1 and the ends of the second partition W2 facing each other may be provided with nozzle parts.
이러한 구성에 따르면, 좌측의 제1 격벽(W1)과 좌측의 제2 격벽(W2) 사이에 형성되는 제17 유로(OP17)의 상하 방향의 길이(OPL17)와, 우측의 제1 격벽(W1)과 우측의 제2 격벽(W2) 사이에 형성되는 제18 유로(OP18)의 상하 방향의 길이(OPL18)는 서로 다르게 형성될 수 있다.According to this configuration, the vertical length OPL17 of the 17th flow path OP17 formed between the first partition W1 on the left and the second partition W2 on the left, and the first partition W1 on the right The vertical length OPL18 of the 18th flow path OP18 formed between and the second partition wall W2 on the right side may be formed differently.
그리고, 도 15에 도시한 바와 같이, 2개의 제1 격벽(W1)은 상하 방향의 길이가 서로 다르게 형성될 수 있고, 2개의 제2 격벽(W2)은 상하 방향의 길이가 서로 다르게 형성될 수 있다.And, as shown in FIG. 15, the two first partitions W1 may be formed to have different lengths in the vertical direction, and the two second partitions W2 may be formed to have different lengths in the vertical direction. there is.
그리고 서로 마주하는 제1 격벽(W1)의 단부와 제2 격벽(W2)의 단부는 노즐부를 구비할 수 있다.And the ends of the first partition W1 and the ends of the second partition W2 facing each other may be provided with nozzle parts.
이러한 구성에 따르면, 좌측의 제1 격벽(W1)과 좌측의 제2 격벽(W2) 사이에 형성되는 제19 유로(OP19)의 상하 방향의 길이(OPL19)와, 우측의 제1 격벽(W1)과 우측의 제2 격벽(W2) 사이에 형성되는 제20 유로(OP20)의 상하 방향의 길이(OPL20)는 서로 다르게 형성될 수 있다.According to this configuration, the vertical length OPL19 of the 19th flow path OP19 formed between the first partition W1 on the left and the second partition W2 on the left, and the first partition W1 on the right The vertical length OPL20 of the 20th flow path OP20 formed between and the second partition wall W2 on the right side may be formed differently.
하지만, 좌측의 제1 격벽(W1)과 좌측의 제2 격벽(W2) 사이에 형성되는 제19 유로(OP19)의 상하 방향의 길이(OPL19)와, 우측의 제1 격벽(W1)과 우측의 제2 격벽(W2) 사이에 형성되는 제20 유로(OP20)의 상하 방향의 길이(OPL20)는 서로 동일하게 형성될 수도 있다.However, the vertical length OPL19 of the 19th flow path OP19 formed between the first partition W1 on the left and the second partition W2 on the left, and the The vertical length OPL20 of the 20th flow path OP20 formed between the second partitions W2 may be formed to be equal to each other.
도 13 내지 도 15의 실시 예에서, 서로 마주하는 제1 격벽(W1)과 제2 격벽(W2)에 의해 형성되는 유로의 상하 방향의 길이는 해당 격벽의 상하 방향의 길이를 변경하는 것에 의해 조절할 수 있으며, 복수의 유로들은 도 12 내지 도 14에 도시한 바와 같이 수평 방향으로 적어도 일부가 서로 정렬될 수도 있지만, 도 15에 도시한 바와 같이 수평 방향으로 서로 정렬되지 않을 수도 있다.13 to 15, the length in the vertical direction of the flow path formed by the first and second partitions W1 and W2 facing each other can be adjusted by changing the length in the vertical direction of the partition. The plurality of flow paths may be at least partially aligned with each other in the horizontal direction as shown in FIGS. 12 to 14, but may not be aligned with each other in the horizontal direction as shown in FIG. 15.
도 16은 본 명세서의 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러의 맥동 저감 효과를 나타내는 그래프이다.Figure 16 is a graph showing the pulsation reduction effect of a discharge muffler equipped with a pulsation reduction member according to an embodiment of the present specification.
도 16을 참조하면, 토출 머플러의 내부 공간에 격벽이 구비되지 않은 종래의 경우에 비해 본 명세서의 실시 예에 따른 토출 머플러에서 맥동 저감 효과가 우수한 것을 알 수 있다.Referring to FIG. 16, it can be seen that the pulsation reduction effect is excellent in the discharge muffler according to the embodiment of the present specification compared to the conventional case in which a partition is not provided in the internal space of the discharge muffler.
그리고 토출 호스(800)에는 복수 개의 감쇄 공간을 모두 통과한 후의 토출 가스가 유입되므로, 압축기의 작동 시에 발생하는 소음을 효과적으로 감쇄할 수 있다.And since the discharge gas after passing through all of the plurality of attenuation spaces flows into the discharge hose 800, noise generated during operation of the compressor can be effectively attenuated.
이하에서는, 본 명세서의 다른 실시 예에 따른 맥동 저감 부재에 대해 상세히 설명한다.Below, a pulsation reduction member according to another embodiment of the present specification will be described in detail.
이하의 실시 예를 설명함에 있어서, 전술한 실시 예와 동일한 구성 요소에 대해서는 동일한 도면 부호를 부여하며, 이에 대한 상세한 설명은 생략한다.In describing the following embodiments, the same reference numerals are assigned to the same components as those of the above-described embodiments, and detailed descriptions thereof are omitted.
도 17은 본 명세서의 다른 실시 예에 따른 맥동 저감 부재를 구비한 머플러 조립체 및 토출 호스의 연결 모습을 보여주는 전방 사시도이다.Figure 17 is a front perspective view showing the connection of a muffler assembly with a pulsation reduction member and a discharge hose according to another embodiment of the present specification.
그리고 도 18은 본 명세서의 다른 실시 예에 따른 맥동 저감 부재를 구비한 머플러 조립체 및 토출 호스의 연결 모습을 보여주는 후방 사시도이고, 도 19는 본 명세서의 다른 실시 예에 따른 맥동 저감 부재를 구비한 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.And Figure 18 is a rear perspective view showing the connection of the muffler assembly and discharge hose with a pulsation reduction member according to another embodiment of the present specification, and Figure 19 is a discharge with a pulsation reduction member according to another embodiment of the present specification. This is a cross-sectional view showing the connection between the muffler and discharge hose.
본 실시 예를 구체적으로 설명하기에 앞서 본 실시 예의 왕복동식 압축기가 구비한 특징을 간략하게 설명하면, 본 실시 예의 왕복동식 압축기의 토출부에 구비되는 맥동 저감 부재는 토출 머플러의 내부 공간에 위치하는 연장부를 포함할 수 있다.Before explaining this embodiment in detail, briefly explaining the features provided by the reciprocating compressor of this embodiment, the pulsation reduction member provided in the discharge part of the reciprocating compressor of this embodiment is located in the internal space of the discharge muffler. It may include an extension part.
상기 연장부는 상기 토출 호스의 일 부분일 수 있다. 이와 달리, 상기 연장부는 상기 토출 호스와 별도로 제작되어 상기 토출 호스에 연결된 부분일 수 있다.The extension may be a part of the discharge hose. Alternatively, the extension part may be manufactured separately from the discharge hose and connected to the discharge hose.
상기 연장부의 단부에는 제1 유입공이 형성될 수 있다.A first inlet hole may be formed at an end of the extension portion.
이러한 구성의 왕복동식 압축기는 토출 머플러의 내부에 위치하는 연장부를 구비하고 있으므로, 토출 머플러의 내부 공간에서, 연장부의 단부에 형성된 제1 유입공의 높이, 방향 등을 다양한 방식으로 조절하는 것에 의해, 주기적으로 배출되는 고압의 냉매에 의한 맥동을 효과적으로 감소시킬 수 있다.Since the reciprocating compressor of this configuration has an extension located inside the discharge muffler, the height, direction, etc. of the first inlet hole formed at the end of the extension in the internal space of the discharge muffler are adjusted in various ways, Pulsations caused by periodically discharged high-pressure refrigerant can be effectively reduced.
본 명세서의 왕복동식 압축기에 구비된 다양한 구조의 토출 호스에 대해 설명한다.Discharge hoses of various structures provided in the reciprocating compressor of this specification will be described.
토출 머플러에 결합되는 토출 호스(800)는, 가스 토출구(438A)에 결합되며, 토출 머플러 내의 냉매(또는 토출 가스)를 상기 토출 파이프(130)로 전달한다.The discharge hose 800 coupled to the discharge muffler is coupled to the gas discharge port 438A and transfers the refrigerant (or discharge gas) within the discharge muffler to the discharge pipe 130.
상기 토출 호스(800)는 상기 제4 조립부(438)로부터 상기 토출 파이프(130)를 향하여 다소 길게 연장되며, 제한된 밀폐 용기(100)의 내부 공간에 배치되기 위하여, 적어도 1회 이상 만곡 또는 절곡되도록 구성될 수 있다.The discharge hose 800 extends somewhat long from the fourth assembly portion 438 toward the discharge pipe 130, and is curved or bent at least once in order to be placed in the limited internal space of the sealed container 100. It can be configured as follows.
상기 토출 호스(800)는 가요성 재질로 형성되는 것이 바람직하지만, 이는 필수적이지 않다.The discharge hose 800 is preferably made of a flexible material, but this is not essential.
상기 토출 호스(800)의 일부는 호스 고정부(553)에 의하여 지지될 수 있다. 상기 호스 고정부(553)는 상기 후방 댐퍼(550)에 결합되며, 상기 토출 호스(800)를 클램핑(clamping) 할 수 있도록 구성된다. A portion of the discharge hose 800 may be supported by the hose fixing part 553. The hose fixing part 553 is coupled to the rear damper 550 and is configured to clamp the discharge hose 800.
한 예로, 상기 호스 고정부(553)는 집게 형상을 가지며, 상기 토출 호스(800)의 외주면 중 적어도 일부분을 둘러싸도록 배치될 수 있다. 상기 호스 고정부(553)에 의하여, 상기 토출 호스(800)는 상기 밀폐 용기(100)의 내측면으로부터 이격된 상태에서 위치하도록 가이드 될 수 있다.As an example, the hose fixing part 553 has a pincer shape and may be arranged to surround at least a portion of the outer peripheral surface of the discharge hose 800. By the hose fixing part 553, the discharge hose 800 can be guided to be positioned away from the inner surface of the sealed container 100.
본 실시 예에서, 토출 호스(800)는 토출 머플러(425, 438)의 내부 공간으로 연장되며 단부에 제1 유입공(H1)이 형성된 연장부를 구비하며, 상기 연장부는 수직 방향(Z축 방향)으로 연장된 수직 연장부(800A)를 구비한다.In this embodiment, the discharge hose 800 extends into the internal space of the discharge mufflers 425 and 438 and has an extension portion with a first inlet hole H1 formed at the end, and the extension portion extends in the vertical direction (Z-axis direction). It is provided with a vertical extension portion (800A) extending to.
수직 연장부(800A)의 수직 방향 길이(L1)는 토출 머플러(425, 438)의 내부 공간의 수직 방향 길이(L2)의 0.1배 내지 0.9배일 수 있다.The vertical length L1 of the vertical extension portion 800A may be 0.1 to 0.9 times the vertical length L2 of the internal space of the discharge mufflers 425 and 438.
그리고 토출 머플러의 제3 조립부(425)의 벽부 내면에는 수직 연장부(800A)를 고정하기 위한 고정부(425B)가 구비될 수 있다.In addition, a fixing part 425B for fixing the vertical extension part 800A may be provided on the inner wall of the third assembly part 425 of the discharge muffler.
상기 고정부(425B)에 의하면, 상기 토출 호스(800)의 상기 수직 연장부(800A)가 확실하게 고정될 수 있다.According to the fixing part 425B, the vertical extension part 800A of the discharge hose 800 can be reliably fixed.
이러한 구성에 있어서, 토출 머플러(425, 438)의 내부 공간에는 상기 내부 공간을 복수의 감쇄 공간으로 구획하기 위한 격벽이 위치할 수 있다.In this configuration, a partition wall may be located in the internal space of the discharge mufflers 425 and 438 to divide the internal space into a plurality of attenuation spaces.
즉, 전술한 실시 예의 제1, 2 격벽이 토출 머플러(425, 438)의 내부 공간에 더 형성될 수 있다.That is, the first and second partition walls of the above-described embodiment may be further formed in the internal space of the discharge mufflers 425 and 438.
도 19에서는 연장부(800A)의 내경이 토출 호스(800)의 다른 부분의 내경과 동일한 것을 도시하고 있지만, 제1 유입공(H1)이 형성된 연장부(800A)의 단부는 도 29에 도시한 바와 같이 깔때기 형상으로 형성될 수 있다.Although FIG. 19 shows that the inner diameter of the extension portion 800A is the same as the inner diameter of the other portion of the discharge hose 800, the end of the extension portion 800A where the first inlet hole H1 is formed is shown in FIG. 29. As shown, it may be formed in a funnel shape.
연장부(800A)의 단부가 깔때기 형상으로 형성되면, 제1 유입공(H1)은 도 29에 도시한 바와 같이 내경이 변화한다. 따라서, 토출 가스가 토출 호스(800)로 원활히 유입될 수 있다.When the end of the extension portion 800A is formed in a funnel shape, the inner diameter of the first inlet hole H1 changes as shown in FIG. 29. Therefore, the discharge gas can smoothly flow into the discharge hose 800.
도 20을 참조하면, 전술한 도 19의 실시 예에 따른 토출 머플러 및 토출 호스의 연결 구조는 토출 호스가 연장부를 구비하지 않는 종래에 비해 맥동을 개선할 수 있음을 알 수 있다.Referring to FIG. 20, it can be seen that the connection structure of the discharge muffler and the discharge hose according to the above-described embodiment of FIG. 19 can improve pulsation compared to the prior art in which the discharge hose does not have an extension part.
이하에서는 토출 호스의 다양한 변형 실시 예들을 설명한다. 이하의 변형 실시 예들을 설명함에 있어서 전술한 도 19의 실시 예와 동일한 구성 요소에 대해서는 동일한 도면 부호를 부여하며, 이에 대한 상세한 설명은 생략한다.Hereinafter, various modified embodiments of the discharge hose will be described. In describing the following modified embodiments, the same reference numerals are assigned to the same components as those of the above-described embodiment of FIG. 19, and detailed descriptions thereof are omitted.
도 21은 도 19의 제1 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 21 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the first modified embodiment of FIG. 19.
본 실시 예의 토출 호스에 구비되는 수직 연장부(800A)에는 복수의 제2 유입공(H2)이 구비된다.The vertical extension portion 800A provided in the discharge hose of this embodiment is provided with a plurality of second inlet holes H2.
제2 유입공(H2)은 도 21에 도시한 바와 같이 수평 방향으로 형성될 수 있지만, 경사 방향으로 형성될 수도 있다.The second inlet hole H2 may be formed in a horizontal direction as shown in FIG. 21, but may also be formed in an inclined direction.
그리고 도 21에서는 제2 유입공(H2)의 직경이 제1 유입공(H2)의 내경에 비해 작게 형성되는 것을 도시하였지만, 제2 유입공(H2)의 직경은 제1 유입공(H1)의 내경과 동일한 크기로 형성될 수 있다.And in Figure 21, the diameter of the second inlet hole (H2) is shown to be smaller than the inner diameter of the first inlet hole (H2), but the diameter of the second inlet hole (H2) is smaller than that of the first inlet hole (H1). It can be formed to have the same size as the inner diameter.
그리고, 복수의 제2 유입공(H2)은 서로 다른 직경으로 형성될 수도 있다.Additionally, the plurality of second inlet holes H2 may be formed with different diameters.
그리고 토출 머플러의 내부에는 전술한 실시 예의 제1, 2 격벽이 위치할 수 있으며, 수직 연장부(800A)의 단부는 깔때기 형상으로 형성될 수 있다.In addition, the first and second partition walls of the above-described embodiment may be located inside the discharge muffler, and the end of the vertical extension portion 800A may be formed in a funnel shape.
도 22는 도 19의 제2 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 22 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the second modified embodiment of FIG. 19.
본 실시 예의 토출 호스는 전술한 도 19의 실시 예와 달리, 수직 연장부(800A)의 단부에서 수평 방향(X축 방향)으로 연장된 수평 연장부(800B)를 더 포함한다.Unlike the embodiment of FIG. 19 described above, the discharge hose of this embodiment further includes a horizontal extension portion 800B extending in the horizontal direction (X-axis direction) from an end of the vertical extension portion 800A.
그리고 토출 머플러의 내부에는 전술한 실시 예의 제1, 2 격벽이 위치할 수 있으며, 수평 연장부(800B)의 단부는 깔때기 형상으로 형성될 수 있다.In addition, the first and second partition walls of the above-described embodiment may be located inside the discharge muffler, and the end of the horizontal extension portion 800B may be formed in a funnel shape.
도 23은 도 19의 제3 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 23 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the third modified embodiment of FIG. 19.
본 실시 예의 토출 호스에 있어서, 수직 연장부(800A)에는 복수의 제2 유입공(H2)이 형성된다. 하지만, 복수의 제2 유입공(H2)은 수평 연장부(800B)에도 형성될 수 있다.In the discharge hose of this embodiment, a plurality of second inlet holes H2 are formed in the vertical extension portion 800A. However, a plurality of second inlet holes H2 may also be formed in the horizontal extension portion 800B.
제2 유입공(H2)은 도 23에 도시한 바와 같이 수평 방향으로 형성될 수 있지만, 경사 방향으로 형성될 수도 있다.The second inlet hole H2 may be formed in a horizontal direction as shown in FIG. 23, but may also be formed in an inclined direction.
그리고 도 23에서는 제2 유입공(H2)의 직경이 제1 유입공(H2)의 내경에 비해 작게 형성되는 것을 도시하였지만, 제2 유입공(H2)의 직경은 제1 유입공(H1)의 내경과 동일한 크기로 형성될 수 있다.And in Figure 23, the diameter of the second inlet hole (H2) is shown to be smaller than the inner diameter of the first inlet hole (H2), but the diameter of the second inlet hole (H2) is smaller than that of the first inlet hole (H1). It can be formed to have the same size as the inner diameter.
그리고, 복수의 제2 유입공(H2)은 서로 다른 직경으로 형성될 수도 있다.Additionally, the plurality of second inlet holes H2 may be formed with different diameters.
그리고 토출 머플러의 내부에는 전술한 실시 예의 제1, 2 격벽이 위치할 수 있으며, 수평 연장부(800B)의 단부는 깔때기 형상으로 형성될 수 있다.In addition, the first and second partition walls of the above-described embodiment may be located inside the discharge muffler, and the end of the horizontal extension portion 800B may be formed in a funnel shape.
도 24는 도 19의 제4 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 24 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the fourth modified embodiment of FIG. 19.
본 실시 예의 토출 호스에 있어서, 연장부는 경사 방향으로 연장된 경사 연장부(800C)를 포함한다.In the discharge hose of this embodiment, the extension portion includes an inclined extension portion 800C extending in an inclined direction.
경사 연장부(800C)의 수직 방향 길이(L3)는 토출 머플러(425, 438)의 내부 공간의 수직 방향 길이(L2)의 0.1배 내지 0.9배일 수 있다.The vertical length L3 of the inclined extension portion 800C may be 0.1 to 0.9 times the vertical length L2 of the internal space of the discharge mufflers 425 and 438.
경사 연장부(800C)를 고정하기 위해, 제3 조립부(425)의 벽부 내면에는 고정부(425B)가 구비될 수 있다.In order to fix the inclined extension part 800C, a fixing part 425B may be provided on the inner wall of the third assembly part 425.
그리고 경사 연장부(800C)에는 복수의 제2 유입공(H2)이 형성될 수 있으며, 제1 유입공(H1)이 위치하는 경사 연장부(800C)의 단부는 깔때기 형상으로 형성될 수도 있다.Additionally, a plurality of second inlet holes H2 may be formed in the inclined extension portion 800C, and an end of the inclined extension portion 800C where the first inlet hole H1 is located may be formed in a funnel shape.
그리고 토출 머플러의 내부에는 전술한 실시 예의 제1, 2 격벽이 위치할 수 있다.And, the first and second partition walls of the above-described embodiment may be located inside the discharge muffler.
도 25는 도 19의 제5 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 25 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the fifth modified embodiment of FIG. 19.
본 실시 예의 토출 호스에 있어서, 경사 연장부(800C)의 단부에는 수평 연장부(800B)가 더 구비된다.In the discharge hose of this embodiment, a horizontal extension portion 800B is further provided at the end of the inclined extension portion 800C.
이와 달리, 도 26에 도시한 바와 같이, 경사 연장부(800C)의 단부에는 수직 연장부(800A)가 더 구비될 수도 있다.Alternatively, as shown in FIG. 26, a vertical extension portion 800A may be further provided at the end of the inclined extension portion 800C.
도 25 및 도 26의 실시 예에서, 수직 연장부(800A), 수평 연장부(800B) 및 경사 연장부(800C) 중에서 적어도 하나의 연장부에는 복수의 제2 유입공(H2)이 형성될 수 있으며, 제1 유입공(H1)이 위치하는 연장부의 단부는 깔때기 형상으로 형성될 수 있다.25 and 26, a plurality of second inlet holes H2 may be formed in at least one of the vertical extension portion 800A, the horizontal extension portion 800B, and the inclined extension portion 800C. And, the end of the extension portion where the first inlet hole H1 is located may be formed in a funnel shape.
그리고 토출 머플러의 내부에는 전술한 실시 예의 제1, 2 격벽이 위치할 수 있다.And, the first and second partition walls of the above-described embodiment may be located inside the discharge muffler.
도 27은 도 19의 제7 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 27 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the seventh modified embodiment of FIG. 19.
본 실시 예의 토출 호스에 있어서, 연장부는 수평 연장부(800B)와 수직 연장부(800A)를 포함한다.In the discharge hose of this embodiment, the extension portion includes a horizontal extension portion 800B and a vertical extension portion 800A.
수직 연장부(800A)의 수직 방향 길이(L1)는 토출 머플러(425, 438)의 내부 공간의 수직 방향 길이(L2)의 0.1배 내지 0.9배일 수 있다.The vertical length L1 of the vertical extension portion 800A may be 0.1 to 0.9 times the vertical length L2 of the internal space of the discharge mufflers 425 and 438.
수직 연장부(800A)를 고정하기 위해, 제3 조립부(425)의 벽부 내면에는 고정부(425B)가 구비될 수 있다.In order to fix the vertical extension part 800A, a fixing part 425B may be provided on the inner wall of the third assembly part 425.
그리고 수평 연장부(800B)와 수직 연장부(800A) 중에서 적어도 하나의 연장부에는 복수의 제2 유입공(H2)이 형성될 수 있으며, 제1 유입공(H1)이 위치하는 수직 연장부(800A)의 단부는 깔때기 형상으로 형성될 수 있다.And a plurality of second inlet holes (H2) may be formed in at least one of the horizontal extension portion (800B) and the vertical extension portion (800A), and the vertical extension portion ( The end of 800A) may be formed in a funnel shape.
그리고 토출 머플러의 내부에는 전술한 제1 실시 예의 제1, 2 격벽이 위치할 수 있다.And the first and second partition walls of the above-described first embodiment may be located inside the discharge muffler.
도 28은 도 19의 제8 변형 실시 예에 따른 토출 머플러 및 토출 호스의 연결 모습을 보여주는 단면도이다.FIG. 28 is a cross-sectional view showing the connection of the discharge muffler and discharge hose according to the eighth modified embodiment of FIG. 19.
본 실시 예의 토출 호스에 있어서, 수직 연장부(800A)의 단부에는 다른 하나의 수평 연장부(800B)가 더 구비된다.In the discharge hose of this embodiment, another horizontal extension part (800B) is further provided at the end of the vertical extension part (800A).
수직 연장부(800A)와 2개의 수평 연장부(800B) 중에서 적어도 하나의 연장부에는 복수의 제2 유입공(H2)이 형성될 수 있으며, 제1 유입공(H1)이 위치하는 수평 연장부(800B)의 단부는 깔때기 형상으로 형성될 수 있다.A plurality of second inlet holes (H2) may be formed in at least one of the vertical extension portion (800A) and the two horizontal extension portions (800B), and the horizontal extension portion where the first inlet hole (H1) is located. The end of 800B may be formed in a funnel shape.
그리고 토출 머플러의 내부에는 전술한 실시 예의 제1, 2 격벽이 위치할 수 있다.And, the first and second partition walls of the above-described embodiment may be located inside the discharge muffler.
본 명세서는 본 명세서의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 명세서의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 명세서의 등가적 범위 내에서의 모든 변경은 본 명세서의 범위에 포함된다.It is obvious to those skilled in the art that the present specification can be embodied in other specific forms without departing from the essential features of the present specification. Accordingly, the above detailed description should not be construed as restrictive in all respects and should be considered illustrative. The scope of this specification should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of this specification are included in the scope of this specification.

Claims (20)

  1. 압축부에서 압축된 냉매를 전달받아 토출하는 토출부를 포함하는 왕복동식 압축기에 있어서,In a reciprocating compressor including a discharge unit that receives and discharges the compressed refrigerant from the compression unit,
    상기 토출부는,The discharge part,
    머플러 본체 및 상기 머플러 본체와 결합되어 내부 공간을 형성하는 머플러 커버를 포함하는 토출 머플러;A discharge muffler including a muffler body and a muffler cover coupled with the muffler body to form an internal space;
    밀폐 용기에 결합된 토출 파이프를 상기 토출 머플러와 연결하는 토출 호스; 및a discharge hose connecting a discharge pipe coupled to a sealed container with the discharge muffler; and
    상기 토출 머플러의 내부에 위치하는 맥동 저감 부재Pulsation reduction member located inside the discharge muffler
    를 포함하는 왕복동식 압축기.A reciprocating compressor comprising a.
  2. 제1항에서,In paragraph 1:
    상기 맥동 저감 부재는, 상기 머플러 커버의 바닥부 내면에 위치하며 상기 머플러 본체를 향해 돌출된 제1 격벽과, 상기 머플러 본체의 바닥부 내면에 위치하며 상기 머플러 커버를 향해 돌출된 제2 격벽을 포함하는 왕복동식 압축기.The pulsation reduction member includes a first partition located on the inner surface of the bottom of the muffler cover and protruding toward the muffler body, and a second partition located on the inner surface of the bottom of the muffler body and protruding toward the muffler cover. reciprocating compressor.
  3. 제2항에서,In paragraph 2,
    상기 제1 격벽과 상기 제2 격벽은 상기 내부 공간 내에서 수평 방향으로 서로 이웃하여 위치하며,The first partition wall and the second partition wall are located adjacent to each other in the horizontal direction within the interior space,
    상기 제1 격벽의 단부와 상기 머플러 본체의 바닥부 내면 사이 및 상기 제2 격벽의 단부와 상기 머플러 커버의 바닥부 내면 사이에 유로가 각각 형성되는 왕복동식 압축기.A reciprocating compressor in which a flow path is formed between an end of the first partition wall and an inner surface of the bottom of the muffler body and between an end of the second partition wall and an inner surface of the bottom of the muffler cover.
  4. 제2항에서,In paragraph 2,
    상기 제1 격벽과 상기 제2 격벽은 상기 내부 공간 내에서 서로 마주하도록 위치하며, 상기 제1 격벽의 단부와 상기 제2 격벽의 단부 사이에는 유로가 형성되는 왕복동식 압축기.The first partition wall and the second partition wall are positioned to face each other within the internal space, and a flow path is formed between an end of the first partition wall and an end of the second partition wall.
  5. 제2항에서,In paragraph 2,
    상기 제1 격벽 및 상기 제2 격벽 중에서 적어도 하나는 복수 개로 구비되는 왕복동식 압축기.A reciprocating compressor wherein at least one of the first and second partition walls is provided in plural numbers.
  6. 제5항에서,In paragraph 5,
    상기 제1 격벽 및 상기 제2 격벽은 서로 동일한 개수의 복수 개로 각각 구비되는 왕복동식 압축기.A reciprocating compressor wherein the first partition wall and the second partition wall are each provided in equal numbers.
  7. 제5항에서,In paragraph 5,
    상기 제1 격벽과 상기 제2 격벽은 상기 내부 공간 내에서 수평 방향으로 서로 이웃하여 위치하며,The first partition wall and the second partition wall are located adjacent to each other in the horizontal direction within the interior space,
    상기 제1 격벽의 단부와 상기 머플러 본체의 바닥부 내면 사이 및 상기 제2 격벽의 단부와 상기 머플러 커버의 바닥부 내면 사이에 유로가 각각 형성되는 왕복동식 압축기.A reciprocating compressor in which a flow path is formed between an end of the first partition wall and an inner surface of the bottom of the muffler body and between an end of the second partition wall and an inner surface of the bottom of the muffler cover.
  8. 제6항에서,In paragraph 6:
    상기 복수 개의 제1 격벽과 상기 복수 개의 제2 격벽은 상기 내부 공간 내에서 서로 마주하도록 위치하며, 상기 제1 격벽의 단부와 상기 제2 격벽의 단부 사이에는 유로가 형성되는 왕복동식 압축기.The plurality of first partition walls and the plurality of second partition walls are positioned to face each other within the interior space, and a flow path is formed between ends of the first partition wall and ends of the second partition wall.
  9. 제2항 내지 제8항 중 어느 한 항에서,In any one of paragraphs 2 to 8,
    상기 유로를 형성하는 상기 제1 격벽의 단부와 상기 제2 격벽의 단부는 노즐부를 구비하는 왕복동식 압축기.A reciprocating compressor wherein an end of the first partition and an end of the second partition forming the flow path are provided with a nozzle unit.
  10. 제1항에서,In paragraph 1:
    상기 맥동 저감 부재는 상기 토출 머플러의 내부 공간으로 연장되는 상기 토출 호스의 연장부를 포함하며, 상기 연장부의 단부에는 제1 유입공이 형성되는 왕복동식 압축기.The pulsation reduction member includes an extension of the discharge hose extending into an internal space of the discharge muffler, and a first inlet hole is formed at an end of the extension.
  11. 제10항에서,In paragraph 10:
    상기 제1 유입공이 형성된 상기 연장부의 단부는 깔때기 형상으로 형성되는 왕복동식 압축기.A reciprocating compressor wherein the end of the extension portion where the first inlet hole is formed is formed in a funnel shape.
  12. 제10항 또는 제11항에서,In paragraph 10 or 11:
    상기 연장부는 수직 방향으로 연장된 수직 연장부를 포함하며, 상기 수직 연장부의 수직 방향 길이는 상기 내부 공간의 수직 방향 길이의 0.1배 내지 0.9배인 왕복동식 압축기.A reciprocating compressor wherein the extension includes a vertical extension extending in a vertical direction, and the vertical length of the vertical extension is 0.1 to 0.9 times the vertical length of the internal space.
  13. 제12항에서,In paragraph 12:
    상기 수직 연장부에는 복수의 제2 유입공이 구비되는 왕복동식 압축기.A reciprocating compressor wherein the vertical extension portion is provided with a plurality of second inlet holes.
  14. 제12항에서,In paragraph 12:
    상기 연장부는, 상기 수직 연장부의 단부에서 수평 방향으로 연장된 수평 연장부를 더 포함하는 왕복동식 압축기.The extension portion further includes a horizontal extension portion extending in a horizontal direction from an end of the vertical extension portion.
  15. 제14항에서,In paragraph 14:
    상기 수직 연장부와 상기 수평 연장부 중 적어도 하나에는 복수의 제2 유입공이 구비되는 왕복동식 압축기.A reciprocating compressor wherein at least one of the vertical extension and the horizontal extension is provided with a plurality of second inlet holes.
  16. 제10항 또는 제11항에서,In paragraph 10 or 11:
    상기 연장부는 경사 방향으로 연장된 경사 연장부를 포함하며, 상기 경사 연장부의 수직 방향 길이는 상기 내부 공간의 수직 방향 길이의 0.1배 내지 0.9배인 왕복동식 압축기.A reciprocating compressor wherein the extension includes an inclined extension extending in an inclined direction, and the vertical length of the inclined extension is 0.1 to 0.9 times the vertical length of the internal space.
  17. 제16항에서,In paragraph 16:
    상기 경사 연장부에는 복수의 제2 유입공이 구비되는 왕복동식 압축기.A reciprocating compressor wherein the inclined extension portion is provided with a plurality of second inlet holes.
  18. 제16항에서,In paragraph 16:
    상기 연장부는, 상기 경사 연장부의 단부에서 수평 방향으로 연장된 수평 연장부와 상기 경사 연장부의 단부에서 수직 방향으로 연장된 수직 연장부 중 적어도 하나의 연장부를 더 포함하는 왕복동식 압축기.The extension portion further includes at least one extension portion of a horizontal extension portion extending in a horizontal direction from an end of the inclined extension portion and a vertical extension portion extending in a vertical direction from an end of the inclined extension portion.
  19. 제10항 또는 제11항에서,In paragraph 10 or 11:
    상기 연장부는, 수평 방향으로 연장된 수평 연장부와, 상기 수평 연장부의 단부에서 수직 방향으로 연장된 수직 연장부를 포함하며, 상기 수직 연장부의 수직 방향 길이는 상기 내부 공간의 수직 방향 길이의 0.1배 내지 0.9배인 왕복동식 압축기.The extension part includes a horizontal extension part extending in a horizontal direction and a vertical extension part extending in a vertical direction from an end of the horizontal extension part, and the vertical length of the vertical extension part is 0.1 times the vertical length of the internal space. 0.9x reciprocating compressor.
  20. 제19항에서,In paragraph 19:
    상기 수평 연장부와 상기 수직 연장부 중 적어도 하나에는 복수의 제2 유입공이 구비되는 왕복동식 압축기.A reciprocating compressor wherein at least one of the horizontal extension part and the vertical extension part is provided with a plurality of second inlet holes.
PCT/KR2023/000305 2022-03-30 2023-01-06 Reciprocating compressor WO2023191265A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220039309A KR20230140719A (en) 2022-03-30 2022-03-30 Reciprocating compressor
KR10-2022-0039309 2022-03-30
KR20220045370 2022-04-12
KR10-2022-0045370 2022-04-12

Publications (1)

Publication Number Publication Date
WO2023191265A1 true WO2023191265A1 (en) 2023-10-05

Family

ID=88203022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000305 WO2023191265A1 (en) 2022-03-30 2023-01-06 Reciprocating compressor

Country Status (1)

Country Link
WO (1) WO2023191265A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980029120A (en) * 1996-10-25 1998-07-15 김영귀 Drainage structure of automobile muffler
KR20000056231A (en) * 1999-02-18 2000-09-15 구자홍 muffler for rotary compressor
JP2004143963A (en) * 2002-10-22 2004-05-20 Sanyo Electric Co Ltd Air pump
JP2006070892A (en) * 2004-09-01 2006-03-16 Samsung Kwangju Electronics Co Ltd Intake muffler for compressor
KR20070096393A (en) * 2006-03-23 2007-10-02 삼성광주전자 주식회사 Hermetic type compressor
KR101891928B1 (en) * 2017-09-29 2018-08-24 엘지전자 주식회사 Muffler for compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980029120A (en) * 1996-10-25 1998-07-15 김영귀 Drainage structure of automobile muffler
KR20000056231A (en) * 1999-02-18 2000-09-15 구자홍 muffler for rotary compressor
JP2004143963A (en) * 2002-10-22 2004-05-20 Sanyo Electric Co Ltd Air pump
JP2006070892A (en) * 2004-09-01 2006-03-16 Samsung Kwangju Electronics Co Ltd Intake muffler for compressor
KR20070096393A (en) * 2006-03-23 2007-10-02 삼성광주전자 주식회사 Hermetic type compressor
KR101891928B1 (en) * 2017-09-29 2018-08-24 엘지전자 주식회사 Muffler for compressor

Similar Documents

Publication Publication Date Title
WO2019212176A1 (en) Cleaner nozzle
WO2019212177A1 (en) Cleaner nozzle
WO2019212188A1 (en) Nozzle of cleaner
WO2019212187A1 (en) Nozzle of cleaner
WO2019212189A1 (en) Nozzle of cleaner
WO2018182117A1 (en) Motor
WO2020246730A1 (en) Vacuum cleaner
WO2021230434A1 (en) Hair dryer
WO2015093787A1 (en) Oil detection device, compressor having the same and method of controlling the compressor
WO2017155309A1 (en) Washing machine
WO2019117630A1 (en) Gas heat pump system
WO2023191265A1 (en) Reciprocating compressor
WO2019212195A1 (en) Vacuum cleaner nozzle
WO2016148478A1 (en) Laundry processing apparatus
WO2020204270A1 (en) Motor part and electromotive compressor comprising same
WO2023224168A1 (en) Turbo compressor
WO2023243761A1 (en) Reciprocating compressor
WO2015186896A1 (en) Motor assembly
WO2023249160A1 (en) Reciprocating compressor
WO2024090621A1 (en) Automatic door opening/closing apparatus
WO2022145603A1 (en) Scroll compressor
WO2021215733A1 (en) Compressor
WO2021215734A1 (en) Compressor
WO2023210915A1 (en) Scroll compressor and manufacturing method therefor
WO2023172089A1 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23781127

Country of ref document: EP

Kind code of ref document: A1