WO2023190877A1 - Assistance device, work machine, program - Google Patents

Assistance device, work machine, program Download PDF

Info

Publication number
WO2023190877A1
WO2023190877A1 PCT/JP2023/013195 JP2023013195W WO2023190877A1 WO 2023190877 A1 WO2023190877 A1 WO 2023190877A1 JP 2023013195 W JP2023013195 W JP 2023013195W WO 2023190877 A1 WO2023190877 A1 WO 2023190877A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
unit
shovel
image
target
Prior art date
Application number
PCT/JP2023/013195
Other languages
French (fr)
Japanese (ja)
Inventor
竜次 續木
大稀 安達
孝介 原
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022060273A external-priority patent/JP2023150920A/en
Priority claimed from JP2022058984A external-priority patent/JP2023150082A/en
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2023190877A1 publication Critical patent/WO2023190877A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Definitions

  • the present disclosure relates to a support device for a working machine, etc.
  • an acquisition unit that acquires data regarding the shape of a work target around the work machine; a proposal unit that proposes to the user an operation among a plurality of candidate operations of the working machine in a predetermined work based on the data acquired by the acquisition unit; Assistive equipment is provided.
  • an acquisition unit that acquires data regarding the shape of a work target around the work machine; a proposal unit that proposes to the user an operation among a plurality of candidate operations of the working machine in a predetermined work based on the data acquired by the acquisition unit; Working machinery is provided.
  • support equipment an acquisition step of acquiring data regarding the shape of the work object around the work machine; a proposing step of proposing to a user an action among a plurality of candidate actions of the working machine in a predetermined work based on the data obtained in the obtaining step; program will be provided.
  • the work machine can be operated more appropriately.
  • FIG. 1 is a diagram showing an example of a shovel operation support system. It is a top view showing an example of a shovel.
  • FIG. 2 is a diagram showing an example of a configuration related to remote control of an excavator.
  • FIG. 2 is a block diagram showing an example of the hardware configuration of an excavator.
  • FIG. 1 is a diagram illustrating an example of a hardware configuration of an information processing device.
  • FIG. 2 is a functional block diagram showing a first example of a functional configuration regarding a motion proposal function of the excavator operation support system. 2 is a flowchart schematically showing a first example of processing related to a motion suggestion function of the shovel.
  • FIG. 1 is a diagram showing an example of a shovel operation support system. It is a top view showing an example of a shovel.
  • FIG. 2 is a diagram showing an example of a configuration related to remote control of an excavator.
  • FIG. 2 is a block diagram showing an example of the hardware configuration
  • FIG. 3 is a functional block diagram showing a second example of a functional configuration regarding a motion proposal function of the excavator operation support system.
  • 12 is a flowchart schematically showing a second example of processing related to a motion suggestion function of the shovel.
  • FIG. 3 is a diagram illustrating a first example of display content on a display device regarding a shovel motion suggestion function.
  • FIG. 7 is a diagram illustrating a second example of display content on the display device regarding the shovel motion suggestion function. It is a figure which shows the 3rd example of the display content of a display device regarding the motion suggestion function of an excavator. It is a figure which shows the 3rd example of the display content of a display device regarding the motion suggestion function of an excavator.
  • FIG. 2 is a functional block diagram illustrating an example of a functional configuration related to generation of a target trajectory of a working part of an excavator.
  • FIG. 3 is a diagram illustrating an example of a screen related to generation of a target trajectory of a working part of an excavator.
  • FIG. 7 is a diagram illustrating another example of a screen related to generation of a target trajectory of a working part of an excavator.
  • FIG. 7 is a diagram illustrating still another example of a screen related to generation of a target trajectory of a working part of an excavator.
  • 2 is a flowchart schematically showing an example of processing related to generation of a target trajectory of a working part of an excavator.
  • FIG. 1 is a diagram showing an example of the operation support system SYS.
  • the excavator 100 is shown in a left side view.
  • FIG. 2 is a top view showing an example of the shovel 100.
  • FIG. 3 is a diagram showing an example of a configuration related to remote control of an excavator.
  • the direction on the shovel 100 or the direction seen from the shovel 100 may be described by defining the direction in which the attachment AT extends (upward direction in FIG. 2) as seen from the top of the shovel 100 as "front".
  • the operation support system SYS includes an excavator 100 and an information processing device 200.
  • the operation support system SYS uses the information processing device 200 to cooperate with the excavator 100 and provides support regarding the operation of the excavator 100.
  • the number of excavators 100 included in the operation support system SYS may be one or multiple.
  • the excavator 100 is a work machine to which operation support is provided in the operation support system SYS.
  • the excavator 100 includes a lower traveling body 1, an upper rotating body 3, an attachment AT including a boom 4, an arm 5, and a bucket 6, and a cabin 10.
  • the lower traveling body 1 causes the excavator 100 to travel using the crawler 1C.
  • the crawler 1C includes a left crawler 1CL and a right crawler 1CR.
  • the crawler 1CL is hydraulically driven by a travel hydraulic motor 1ML.
  • the crawler 1CL is hydraulically driven by a travel hydraulic motor 1MR.
  • the lower traveling body 1 can self-propel.
  • the upper rotating body 3 is rotatably mounted on the lower traveling body 1 via the rotating mechanism 2.
  • the upper rotating structure 3 turns with respect to the lower traveling structure 1 by hydraulically driving the turning mechanism 2 by the turning hydraulic motor 2M.
  • the boom 4 is attached to the center of the front part of the upper revolving body 3 so that it can be raised and raised about a rotation axis along the left-right direction.
  • the arm 5 is attached to the tip of the boom 4 so as to be rotatable about a rotation axis extending in the left-right direction.
  • the bucket 6 is attached to the tip of the arm 5 so as to be rotatable about a rotation axis extending in the left-right direction.
  • the bucket 6 is an example of an end attachment, and is used, for example, in excavation work.
  • the bucket 6 is attached to the tip of the arm 5 in such a manner that it can be replaced as appropriate depending on the work content of the shovel 100. That is, instead of the bucket 6, a bucket of a different type than the bucket 6, such as a relatively large bucket, a slope bucket, a dredging bucket, etc., may be attached to the tip of the arm 5. Further, an end attachment of a type other than the bucket, such as an agitator, a breaker, a crusher, etc., may be attached to the tip of the arm 5. Furthermore, a preliminary attachment such as a quick coupling or a tiltrotator may be provided between the arm 5 and the end attachment.
  • the boom 4, arm 5, and bucket 6 are hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9, respectively.
  • the cabin 10 is a control room where an operator boards and operates the shovel 100.
  • the cabin 10 is mounted, for example, on the front left side of the upper revolving body 3.
  • the excavator 100 moves the lower traveling body 1 (that is, the pair of left and right crawlers 1CL, 1CR), the upper revolving body 3, the boom 4, the arm 5, the bucket 6, etc. to operate the driven element of.
  • the lower traveling body 1 that is, the pair of left and right crawlers 1CL, 1CR
  • the upper revolving body 3 that is, the pair of left and right crawlers 1CL, 1CR
  • the boom 4 the arm 5, the bucket 6, etc. to operate the driven element of.
  • the shovel 100 may be configured to be remotely controlled from outside the shovel 100.
  • the interior of the cabin 10 may be unmanned. The following description will proceed on the premise that the operator's operations include at least one of an operator's operation on the operating device 26 by an operator in the cabin 10 and a remote control by an external operator.
  • the remote control includes a mode in which the shovel 100 is operated by an operation input regarding the actuator of the shovel 100 performed by the remote control support device 300.
  • the remote operation support device 300 is provided, for example, in a management center or the like that manages the work of the excavator 100 from the outside. Further, the remote operation support device 300 may be a portable operation terminal, in which case the operator can remotely control the excavator 100 while directly checking the working status of the excavator 100 from around the excavator 100. can.
  • the excavator 100 transmits an image representing the surroundings including the front of the excavator 100 (hereinafter referred to as "surrounding image") based on a captured image output by the imaging device 40 (described later) to the remote operation support device through the communication device 60 (described later). 300. Then, the remote operation support device 300 may display the image (surrounding image) received from the excavator 100 on the display device. Further, various information images (information screens) displayed on the output device 50 (display device 50A) inside the cabin 10 of the excavator 100 may be similarly displayed on the display device of the remote operation support device 300.
  • an operator using the remote operation support device 300 can, for example, remotely operate the shovel 100 while checking the display contents such as an image or information screen showing the surroundings of the shovel 100 displayed on the display device. I can do it. Then, the excavator 100 operates the actuators to operate the lower traveling structure 1, the upper rotating structure 3, and the boom 4 in response to a remote control signal indicating the content of the remote control received from the remote control support device 300 through the communication device 60. , arm 5, and bucket 6 may be driven.
  • the remote control may include, for example, a mode in which the shovel 100 is operated by external voice input or gesture input to the shovel 100 by a person (for example, a worker) around the shovel 100.
  • the excavator 100 receives sounds uttered by surrounding workers, etc. through an audio input device (for example, a microphone), a gesture input device (for example, an imaging device), etc. mounted on the excavator 100. Recognizes gestures etc. performed by Then, the excavator 100 operates the actuator according to the content of the recognized voice or gesture, and moves the lower traveling body 1 (left and right crawlers 1C), the upper rotating body 3, the boom 4, the arm 5, the bucket 6, etc.
  • the driven element may also be driven.
  • a remote monitoring support device having the same functions as remote operation support device 300 may be provided.
  • the remote monitoring support device is, for example, the information processing device 200.
  • the supervisor who is the user of the remote monitoring support device can monitor the working status of the excavator 100 while checking the peripheral image displayed on the display device of the remote monitoring support device. For example, if the supervisor determines that it is necessary from a safety perspective, the supervisor may intervene in the operator's operation of the excavator 100 and bring it to an emergency stop by inputting a predetermined input using the input device of the remote monitoring support device. be able to.
  • the information processing device 200 cooperates with the shovel 100 by communicating with the shovel 100, and provides support regarding the operation of the shovel 100.
  • the information processing device 200 is, for example, a server installed in a management office within the work site of the excavator 100 or a management center that manages the operating status of the excavator 100, etc. located at a location different from the work site of the excavator 100. It is a terminal device for management purposes.
  • the management terminal device may be a stationary terminal device such as a desktop PC (Personal Computer), or a portable terminal device such as a tablet terminal, smartphone, or laptop PC. terminal). In the latter case, workers at the work site, supervisors who supervise work, managers who manage the work site, and the like can carry the portable information processing device 200 and move around the work site.
  • the operator can, for example, bring the portable information processing device 200 into the cabin of the excavator 100.
  • a plurality of information processing apparatuses 200 may be provided depending on the purpose, for example, for remote monitoring, for processing regarding a function of suggesting the operation of the shovel 100 to an operator, which will be described later.
  • the information processing device 200 acquires data regarding the operating state from the excavator 100, for example. Thereby, the information processing device 200 can grasp the operating state of the shovel 100 and monitor whether there is any abnormality in the shovel 100 or the like. Further, the information processing device 200 can display data regarding the operating state of the excavator 100 for the user to confirm through a display device 208, which will be described later.
  • the information processing device 200 transmits to the shovel 100, for example, various data such as programs and reference data used in processing by the controller 30, etc. of the shovel 100.
  • the excavator 100 can perform various processes related to the operation of the excavator 100 using various data downloaded from the information processing device 200.
  • the information processing device 200 performs processing to support, for example, a function related to proposing a motion of the shovel 100 to an operator (hereinafter referred to as "motion proposal function”), which will be described later (see FIG. 6). Details will be described later.
  • motion proposal function a function related to proposing a motion of the shovel 100 to an operator
  • FIG. 4 is a block diagram showing an example of the hardware configuration of shovel 100.
  • the path through which mechanical power is transmitted is a double line
  • the path through which high-pressure hydraulic oil that drives the hydraulic actuator flows is a solid line
  • the path through which pilot pressure is transmitted is a broken line
  • the path through which electrical signals are transmitted is shown. Each route is indicated by a dotted line.
  • the excavator 100 includes a hydraulic drive system for hydraulically driving the driven elements, an operation system for operating the driven elements, a user interface system for exchanging information with the user, a communication system for communicating with the outside, a control system for various controls, etc. Contains each component of.
  • the hydraulic drive system of the excavator 100 includes hydraulic pressure for hydraulically driving each of the driven elements such as the lower traveling body 1 (left and right crawlers 1C), the upper rotating body 3, and the attachment AT, as described above. Includes actuator HA. Further, the hydraulic drive system of the excavator 100 according to the present embodiment includes an engine 11, a regulator 13, a main pump 14, and a control valve 17.
  • the hydraulic actuator HA includes travel hydraulic motors 1ML and 1MR, a swing hydraulic motor 2M, a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, and the like.
  • the excavator 100 part or all of the hydraulic actuator HA may be replaced with an electric actuator.
  • the excavator 100 may be a hybrid excavator or an electric excavator.
  • the engine 11 is the prime mover of the excavator 100 and is the main power source in the hydraulic drive system.
  • the engine 11 is, for example, a diesel engine that uses light oil as fuel.
  • the engine 11 is mounted, for example, at the rear of the upper revolving structure 3.
  • the engine 11 rotates at a predetermined target rotation speed under direct or indirect control by a controller 30, which will be described later, and drives the main pump 14 and the pilot pump 15.
  • the regulator 13 controls (adjusts) the discharge amount of the main pump 14 under the control of the controller 30.
  • the regulator 13 adjusts the angle of the swash plate (hereinafter referred to as "tilt angle") of the main pump 14 in accordance with a control command from the controller 30.
  • the main pump 14 supplies hydraulic oil to the control valve 17 through a high-pressure hydraulic line.
  • the main pump 14 is, for example, mounted at the rear of the upper revolving structure 3, like the engine 11.
  • the main pump 14 is driven by the engine 11 as described above.
  • the main pump 14 is, for example, a variable displacement hydraulic pump, and as described above, the stroke length of the piston is adjusted by adjusting the tilt angle of the swash plate by the regulator 13 under the control of the controller 30, and the stroke length of the piston is adjusted.
  • the flow rate and discharge pressure are controlled.
  • the control valve 17 drives the hydraulic actuator HA in accordance with the contents of the operator's operation on the operating device 26 or remote control, or the operation command corresponding to the automatic operation function.
  • the control valve 17 is mounted, for example, in the center of the upper revolving body 3.
  • the control valve 17 is connected to the main pump 14 via a high-pressure hydraulic line, and controls the hydraulic fluid supplied from the main pump 14 according to an operator's operation or an operation command corresponding to an automatic operation function. , selectively supplying each hydraulic actuator.
  • the control valve 17 includes a plurality of control valves (also referred to as "direction switching valves") that control the flow rate and flow direction of the hydraulic oil supplied from the main pump 14 to each of the hydraulic actuators HA.
  • the operating system of the excavator 100 includes a pilot pump 15, an operating device 26, a hydraulic control valve 31, a shuttle valve 32, and a hydraulic control valve 33.
  • the pilot pump 15 supplies pilot pressure to various hydraulic devices via the pilot line 25.
  • the pilot pump 15 is, for example, mounted at the rear of the upper revolving structure 3, like the engine 11.
  • the pilot pump 15 is, for example, a fixed capacity hydraulic pump, and is driven by the engine 11 as described above.
  • pilot pump 15 may be omitted.
  • the relatively high pressure hydraulic oil discharged from the main pump 14 may be reduced in pressure by a predetermined pressure reducing valve, and then the relatively low pressure hydraulic oil may be supplied as pilot pressure to various hydraulic devices.
  • the operating device 26 is provided near the cockpit of the cabin 10 and is used by the operator to operate various driven elements. Specifically, the operating device 26 is used for an operator to operate the hydraulic actuator HA that drives each driven element, and as a result, the operator operates the driven element to be driven by the hydraulic actuator HA. can be realized.
  • the operating device 26 includes a pedal device and a lever device for operating each driven element (hydraulic actuator HA).
  • the operating device 26 is of a hydraulic pilot type. Specifically, the operating device 26 utilizes hydraulic oil supplied from the pilot pump 15 through the pilot line 25 and a pilot line 25A branching from the pilot line 25, and applies pilot pressure according to the operation content to the pilot line 27A on the secondary side. Output to. Pilot line 27A is connected to one inlet port of shuttle valve 32 and connected to control valve 17 via pilot line 27, which is connected to an outlet port of shuttle valve 32. Thereby, a pilot pressure can be input to the control valve 17 via the shuttle valve 32 in accordance with the operation contents regarding various driven elements (hydraulic actuator HA) in the operating device 26. Therefore, the control valve 17 can drive each hydraulic actuator HA according to the operation performed on the operating device 26 by an operator or the like.
  • the operating device 26 may be electrical.
  • the pilot line 27A, shuttle valve 32, and hydraulic control valve 33 are omitted.
  • the operating device 26 outputs an electrical signal (hereinafter referred to as an "operating signal") according to the content of the operation, and the operating signal is taken into the controller 30.
  • the controller 30 outputs a control command according to the content of the operation signal, that is, a control signal according to the content of the operation on the operating device 26 to the hydraulic control valve 31.
  • pilot pressure corresponding to the operation details of the operating device 26 is inputted from the hydraulic control valve 31 to the control valve 17, and the control valve 17 drives each hydraulic actuator HA according to the operation details of the operating device 26. be able to.
  • control valves built into the control valve 17 and driving the respective hydraulic actuators HA may be of an electromagnetic solenoid type.
  • the operation signal output from the operation device 26 may be directly input to the control valve 17, that is, to an electromagnetic solenoid type control valve.
  • part or all of the hydraulic actuator HA may be replaced with an electric actuator.
  • the controller 30 may output a control command according to the operation content of the operating device 26 or the remote control content specified by the remote control signal to the electric actuator or a driver driving the electric actuator.
  • the operating device 26 may be omitted.
  • the hydraulic control valve 31 is provided for each driven element (hydraulic actuator HA) to be operated by the operating device 26 and for each drive direction of the driven element (hydraulic actuator HA) (for example, the raising direction and lowering direction of the boom 4). . That is, two hydraulic control valves 31 are provided for each double-acting hydraulic actuator HA.
  • the hydraulic control valve 31 is provided, for example, in the pilot line 25B between the pilot pump 15 and the control valve 17, and is configured to be able to change its flow path area (that is, the cross-sectional area through which hydraulic oil can flow). good. Thereby, the hydraulic control valve 31 can output a predetermined pilot pressure to the secondary side pilot line 27B using the hydraulic oil of the pilot pump 15 supplied through the pilot line 25B. Therefore, as shown in FIG.
  • the hydraulic control valve 31 indirectly applies a predetermined pilot pressure according to a control signal from the controller 30 to the control valve through the shuttle valve 32 between the pilot line 27B and the pilot line 27. 17. Therefore, the controller 30 can cause the hydraulic control valve 31 to supply pilot pressure to the control valve 17 according to the operation details of the operating device 26, thereby realizing the operation of the shovel 100 based on the operator's operation. Furthermore, the controller 30 can cause the hydraulic control valve 31 to supply pilot pressure to the control valve 17 according to an operation command corresponding to the automatic operation function, thereby realizing operation of the excavator 100 according to the automatic operation function.
  • the controller 30 may control the hydraulic control valve 31 to realize remote control of the excavator 100, for example. Specifically, the controller 30 outputs to the hydraulic control valve 31 a control signal corresponding to the content of the remote operation specified by the remote operation signal received from the remote operation support device 300, using the communication device 60. Thereby, the controller 30 can cause the hydraulic control valve 31 to supply pilot pressure corresponding to the content of the remote control to the control valve 17, and realize the operation of the shovel 100 based on the operator's remote control.
  • the shuttle valve 32 has two inlet ports and one outlet port, and outputs the hydraulic oil having the higher pilot pressure of the pilot pressures input to the two inlet ports to the outlet port.
  • the shuttle valve 32 is provided for each driven element (hydraulic actuator HA) to be operated by the operating device 26 and for each drive direction of the driven element (hydraulic actuator HA).
  • One of the two inlet ports of the shuttle valve 32 is connected to the pilot line 27A on the secondary side of the operating device 26 (specifically, the above-mentioned lever device or pedal device included in the operating device 26), and the other is It is connected to the pilot line 27B on the secondary side of the hydraulic control valve 31.
  • the outlet port of shuttle valve 32 is connected to the pilot port of the corresponding control valve of control valve 17 through pilot line 27 .
  • the corresponding control valve is a control valve that drives a hydraulic actuator that is operated by the above-mentioned lever device or pedal device connected to one inlet port of the shuttle valve 32. Therefore, these shuttle valves 32 each control the higher of the pilot pressure in the pilot line 27A on the secondary side of the operating device 26 and the pilot pressure on the pilot line 27B on the secondary side of the hydraulic control valve 31, respectively. It can act on the pilot port of the control valve.
  • the controller 30 controls the corresponding control valve by causing the hydraulic control valve 31 to output a pilot pressure higher than the pilot pressure on the secondary side of the operating device 26, regardless of the operator's operation on the operating device 26. be able to. Therefore, the controller 30 can control the operation of the driven elements (the lower traveling body 1, the upper rotating body 3, the attachment AT) and realize a remote control function, regardless of the operation state of the operating device 26 by the operator. .
  • the hydraulic control valve 33 is provided in the pilot line 27A that connects the operating device 26 and the shuttle valve 32.
  • the hydraulic control valve 33 is configured to be able to change its flow path area, for example.
  • the hydraulic control valve 33 operates according to a control signal input from the controller 30.
  • the controller 30 can forcibly reduce the pilot pressure output from the operating device 26 when the operating device 26 is being operated by the operator. Therefore, even when the operating device 26 is being operated, the controller 30 can forcibly suppress or stop the operation of the hydraulic actuator corresponding to the operation of the operating device 26.
  • the controller 30 can reduce the pilot pressure output from the operating device 26 to be lower than the pilot pressure output from the hydraulic control valve 31, for example, even when the operating device 26 is being operated. I can do it.
  • the controller 30 applies a desired pilot pressure to the pilot port of the control valve in the control valve 17, for example, regardless of the operation details of the operating device 26. It can be made to work reliably. Therefore, by controlling the hydraulic control valve 33 in addition to the hydraulic control valve 31, for example, the controller 30 can more appropriately realize the remote control function and automatic operation function of the excavator 100.
  • the user interface system of excavator 100 includes an operating device 26, an output device 50, and an input device 52.
  • the output device 50 outputs various information to the user of the excavator 100 (for example, the operator in the cabin 10 or an external remote control operator) and the people around the excavator 100 (for example, a worker or a driver of a work vehicle). Output.
  • the output device 50 includes a lighting device that outputs various information in a visual manner, a display device 50A (see FIG. 6), and the like.
  • the lighting equipment is, for example, a warning light (indicator lamp) or the like.
  • the display device 50A is, for example, a liquid crystal display or an organic EL (Electroluminescence) display.
  • lighting equipment and a display device 50A may be provided inside the cabin 10 and output various information visually to an operator inside the cabin 10.
  • the lighting equipment and the display device 50A may be provided, for example, on the side surface of the revolving upper structure 3, and may output various information visually to workers and the like around the excavator 100.
  • the output device 50 includes a sound output device 50B (see FIG. 6) that outputs various information in an auditory manner.
  • the sound output device 50B includes, for example, a buzzer, a speaker, and the like.
  • the sound output device 50B is provided, for example, in at least one of the interior and exterior of the cabin 10, and outputs various information in an auditory manner to the operator inside the cabin 10 and the people (workers, etc.) around the excavator 100. It's fine.
  • the output device 50 may include a device that outputs various information using a tactile method such as vibration of the cockpit.
  • the input device 52 accepts various inputs from the user of the excavator 100, and signals corresponding to the accepted inputs are taken into the controller 30.
  • the input device 52 is provided inside the cabin 10 , for example, and receives input from an operator inside the cabin 10 . Further, the input device 52 may be provided, for example, on a side surface of the revolving upper structure 3, and may receive input from a worker or the like around the excavator 100.
  • the input device 52 includes an operation input device that accepts operation input.
  • the operation input device may include a touch panel mounted on the display device, a touch pad installed around the display device, a button switch, a lever, a toggle, a knob switch provided on the operation device 26 (lever device), etc. .
  • the input device 52 may include a voice input device that accepts voice input from the user.
  • the audio input device includes, for example, a microphone.
  • the input device 52 may include a gesture input device that accepts gesture input from the user.
  • the gesture input device includes, for example, an imaging device that captures an image of a gesture performed by a user.
  • the input device 52 may include a biometric input device that receives biometric input from the user.
  • the biometric input includes, for example, input of biometric information such as a user's fingerprint or iris.
  • the communication system of the excavator 100 includes a communication device 60.
  • the communication device 60 is connected to an external communication line and communicates with a device provided separately from the excavator 100.
  • Devices provided separately from the excavator 100 may include devices external to the excavator 100 as well as portable terminal devices (portable terminals) brought into the cabin 10 by the user of the excavator 100.
  • the communication device 60 may include, for example, a mobile communication module that complies with standards such as 4G ( 4th Generation) and 5G ( 5th Generation). Further, the communication device 60 may include, for example, a satellite communication module. Further, the communication device 60 may include, for example, a WiFi communication module, a Bluetooth (registered trademark) communication module, or the like. Furthermore, the communication device 60 may include a plurality of communication devices depending on the communication lines to be connected.
  • the communication device 60 communicates with external devices such as the information processing device 200 and the remote operation support device 300 in the work site through a local communication line built at the work site.
  • the local communication line is, for example, a local 5G (so-called local 5G) mobile communication line built at a work site or a local area network (LAN) using WiFi 6.
  • the communication device 60 communicates with an information processing device 200, a remote operation support device 300, etc. located outside the work site through a wide area communication line that includes the work site, that is, a wide area network (WAN).
  • a wide area network includes, for example, a wide area mobile communication network, a satellite communication network, an Internet network, and the like.
  • control system of excavator 100 includes a controller 30. Further, the control system of the excavator 100 according to the present embodiment includes an operating pressure sensor 29, an imaging device 40, and sensors S1 to S5.
  • the controller 30 performs various controls regarding the shovel 100.
  • the controller 30 may be realized by arbitrary hardware or a combination of arbitrary hardware and software.
  • the controller 30 includes an auxiliary storage device 30A, a memory device 30B, a CPU (Central Processing Unit) 30C, and an interface device 30D, which are connected via a bus B1.
  • auxiliary storage device 30A a memory device 30B
  • CPU Central Processing Unit
  • interface device 30D an interface device 30D
  • the auxiliary storage device 30A is a non-volatile storage means, and stores installed programs as well as necessary files, data, etc.
  • the auxiliary storage device 30A is, for example, an EEPROM (Electrically Erasable Programmable Read-Only Memory) or a flash memory.
  • the memory device 30B loads the program in the auxiliary storage device 30A so that it can be read by the CPU 30C.
  • the memory device 30B is, for example, an SRAM (Static Random Access Memory).
  • the CPU 30C executes a program loaded into the memory device 30B, and implements various functions of the controller 30 according to instructions of the program.
  • the interface device 30D functions as a communication interface for connecting to a communication line inside the excavator 100, for example.
  • the interface device 30D may include a plurality of different types of communication interfaces depending on the type of communication line to be connected.
  • the interface device 30D functions as an external interface for reading data from and writing data to the recording medium.
  • the recording medium is, for example, a dedicated tool that is connected to a connector installed inside the cabin 10 with a detachable cable.
  • the recording medium may be a general-purpose recording medium such as an SD memory card or a USB (Universal Serial Bus) memory.
  • programs for realizing various functions of the controller 30 can be provided by, for example, a portable recording medium and installed in the auxiliary storage device 30A of the controller 30. Further, the program may be downloaded from another computer outside the excavator 100 through the communication device 60 and installed in the auxiliary storage device 30A.
  • controller 30 may be realized by another controller (control device). That is, the functions of the controller 30 may be realized in a distributed manner by a plurality of controllers.
  • the operating pressure sensor 29 detects the pilot pressure on the secondary side (pilot line 27A) of the hydraulic pilot type operating device 26, that is, the pilot pressure corresponding to the operating state of each driven element (hydraulic actuator) in the operating device 26. To detect. A detection signal of pilot pressure corresponding to the operating state of each driven element (hydraulic actuator HA) in the operating device 26 by the operating pressure sensor 29 is taken into the controller 30.
  • the operating device 26 is an electric type, the operating pressure sensor 29 is omitted. This is because the controller 30 can grasp the operating state of each driven element through the operating device 26 based on the operating signal taken in from the operating device 26.
  • the imaging device 40 acquires images around the excavator 100.
  • the imaging device 40 also generates three-dimensional data (hereinafter simply referred to as "the object's three-dimensional shape") representing the position and external shape of the object around the shovel 100 within the imaging range (angle of view) based on the acquired image and distance-related data described below. "original data”) may be obtained (generated).
  • the three-dimensional data of objects around the shovel 100 is, for example, coordinate information data of a point group representing the surface of the object, distance image data, and the like.
  • the imaging device 40 includes a camera 40F that images the front of the upper revolving structure 3, a camera 40B that images the rear of the upper revolving structure 3, and a camera 40L that images the left side of the upper revolving structure 3. , and a camera 40R that images the right side of the upper rotating body 3.
  • the imaging device 40 can image the entire circumference of the excavator 100, that is, the range covering the angular direction of 360 degrees, when the excavator 100 is viewed from above.
  • the operator visually recognizes peripheral images such as captured images of the cameras 40B, 40L, and 40R and processed images generated based on the captured images through the output device 50 (display device) and the remote control display device, and rotates the upper part. The left, right, and rear sides of the body 3 can be confirmed.
  • the operator can check the operation of the attachment AT including the bucket 6 by visually checking peripheral images such as images captured by the camera 40F and processed images generated based on the captured images through the remote control display device.
  • the excavator 100 can be remotely controlled.
  • the cameras 40F, 40B, 40L, and 40R may be collectively or individually referred to as "camera 40X.”
  • the camera 40X is, for example, a monocular camera.
  • the camera 40X acquires data regarding distance (depth) in addition to two-dimensional images, such as a stereo camera, a TOF (Time Of Flight) camera, etc. (hereinafter collectively referred to as a "3D camera"). It may be possible.
  • Output data (for example, image data, three-dimensional data of objects around the excavator 100, etc.) of the imaging device 40 (camera 40X) is taken into the controller 30 through a one-to-one communication line or an in-vehicle network.
  • the controller 30 can monitor objects around the excavator 100 based on the output data of the camera 40X.
  • the controller 30 can determine the surrounding environment of the excavator 100 based on the output data of the camera 40X.
  • the controller 30 can determine the posture state of the attachment AT shown in the captured image based on the output data of the camera 40X (camera 40F).
  • the controller 30 can determine the attitude state of the body of the excavator 100 (the upper revolving body 3) based on the output data of the camera 40X, with reference to objects around the excavator 100.
  • the cameras 40F, 40B, 40L, and 40R may be omitted.
  • the camera 40F and the camera 40L may be omitted. This is because it is relatively easy for the operator in the cabin 10 to check the front and left side of the excavator 100.
  • a distance sensor may be provided in the upper revolving body 3. The distance sensor is attached to the upper part of the upper revolving body 3, for example, and acquires data regarding the distance and direction of surrounding objects with respect to the shovel 100 as a reference.
  • the distance sensor may acquire (generate) three-dimensional data (for example, coordinate information data of a point group) of objects around the shovel 100 within the sensing range based on the acquired data.
  • the distance sensor is, for example, LIDAR (Light Detection and Ranging).
  • the distance sensor may be, for example, a millimeter wave radar, an ultrasonic sensor, an infrared sensor, or the like.
  • the sensor S1 is attached to the boom 4 and detects the attitude angle (hereinafter referred to as "boom angle") around the rotation axis of the base end corresponding to the connection part of the boom 4 with the upper revolving structure 3.
  • the sensor S1 includes, for example, a rotary potentiometer, a rotary encoder, an acceleration sensor, an angular acceleration sensor, a 6-axis sensor, an IMU (Inertial Measurement Unit), and the like. The same may apply to the sensors S2 to S4 below. Further, the sensor S1 may include a cylinder sensor that detects the extended/contracted position of the boom cylinder 7. The same may apply to the sensors S2 and S3 below.
  • a detection signal of the boom angle by the sensor S1 is taken into the controller 30. Thereby, the controller 30 can grasp the attitude state of the boom 4.
  • the sensor S2 is attached to the arm 5 and detects the posture angle (hereinafter referred to as "arm angle") around the rotation axis of the base end of the arm 5, which corresponds to the connection part with the boom 4.
  • the arm angle detection signal from the sensor S2 is taken into the controller 30. Thereby, the controller 30 can grasp the posture state of the arm 5.
  • the sensor S3 is attached to the bucket 6 and detects the attitude angle (hereinafter referred to as "arm angle") around the rotation axis of the base end corresponding to the connection part with the arm 5 of the bucket 6.
  • a detection signal of the arm angle by the sensor S3 is taken into the controller 30. Thereby, the controller 30 can grasp the attitude state of the bucket 6.
  • the sensor S4 detects the inclination state of the aircraft body (for example, the upper rotating body 3) with respect to a predetermined reference plane (for example, a horizontal plane).
  • the sensor S4 is attached to the revolving upper structure 3, and measures the inclination angle of the excavator 100 (i.e., the revolving upper structure 3) about two axes in the front-rear direction and the left-right direction (hereinafter, "front-rear inclination angle” and “lateral inclination angle”). ”) is detected.
  • a detection signal corresponding to the inclination angle (front/rear inclination angle and left/right inclination angle) detected by the sensor S ⁇ b>4 is taken into the controller 30 . Thereby, the controller 30 can grasp the tilting state of the aircraft body (upper rotating body 3).
  • the sensor S5 is attached to the revolving upper structure 3 and outputs detection information regarding the turning state of the revolving upper structure 3.
  • the sensor S5 detects, for example, the turning angular velocity and turning angle of the upper rotating body 3.
  • the sensor S5 includes, for example, a gyro sensor, a resolver, a rotary encoder, and the like. Detection information regarding the turning state detected by the sensor S5 is taken into the controller 30. Thereby, the controller 30 can grasp the turning state such as the turning angle of the upper rotating body 3.
  • the senor S4 includes a gyro sensor, a 6-axis sensor, an IMU, etc. that can detect angular velocity around three axes
  • the turning state for example, turning angular velocity
  • sensor S5 may be omitted.
  • at least some of the sensors S1 to S5 may be omitted.
  • FIG. 5 is a block diagram showing an example of the hardware configuration of the information processing device 200.
  • the functions of the information processing device 200 are realized by arbitrary hardware or a combination of arbitrary hardware and software.
  • the information processing device 200 includes an external interface 201, an auxiliary storage device 202, a memory device 203, a CPU 204, a high-speed arithmetic device 205, a communication interface 206, an input device 207, and and a display device 208.
  • the external interface 201 functions as an interface for reading data from and writing data to the recording medium 201A.
  • the recording medium 201A includes, for example, a flexible disk, a CD (Compact Disc), a DVD (Digital Versatile Disc), a BD (Blu-ray (registered trademark) Disc), an SD memory card, a USB memory, and the like.
  • the information processing device 200 can read various data used in processing through the recording medium 201A, store it in the auxiliary storage device 202, and install programs that implement various functions.
  • the information processing device 200 may obtain various data and programs used in processing from an external device through the communication interface 206.
  • the auxiliary storage device 202 stores various installed programs, as well as files, data, etc. necessary for various processes.
  • the auxiliary storage device 202 includes, for example, an HDD (Hard Disc Drive), an SSD (Solid State Disc), a flash memory, and the like.
  • the memory device 203 reads and stores the program from the auxiliary storage device 202 when there is an instruction to start the program.
  • the memory device 203 includes, for example, DRAM (Dynamic Random Access Memory) and SRAM.
  • the CPU 204 executes various programs loaded from the auxiliary storage device 202 to the memory device 203, and implements various functions related to the information processing device 200 according to the programs.
  • the high-speed arithmetic unit 205 works in conjunction with the CPU 204 and performs arithmetic processing at a relatively high speed.
  • the high-speed calculation device 205 includes, for example, a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), and the like.
  • the high-speed calculation device 205 may be omitted depending on the required speed of calculation processing.
  • the communication interface 206 is used as an interface for communicably connecting to an external device. Thereby, the information processing device 200 can communicate with an external device such as the excavator 100, for example, through the communication interface 206. Furthermore, the communication interface 206 may have a plurality of types of communication interfaces depending on the communication method with the connected device.
  • the input device 207 receives various inputs from the user.
  • the input device 207 includes, for example, an operation input device that accepts mechanical operation input from the user.
  • the operation input device includes, for example, a button, a toggle, a lever, and the like.
  • the operation input device includes, for example, a touch panel mounted on the display device 208, a touch pad provided separately from the display device 208, and the like.
  • the input device 207 includes, for example, a voice input device that can accept voice input from a user.
  • the voice input device includes, for example, a microphone that can collect the user's voice.
  • the input device 207 includes, for example, a gesture input device that can accept gesture input from the user.
  • the gesture input device includes, for example, a camera that can capture images of the user's gestures.
  • the input device 207 includes, for example, a biometric input device that can accept biometric input from a user.
  • the biometric input device includes, for example, a camera that can acquire image data that includes information about a user's fingerprint or iris.
  • the display device 208 displays information screens and operation screens for the user.
  • display device 208 includes the above-mentioned remote control display device.
  • the display device 208 is, for example, a liquid crystal display, an organic EL (Electroluminescence) display, or the like.
  • the remote operation support device 300 may also be realized by arbitrary hardware or a combination of arbitrary hardware and software, and a similar hardware configuration may be adopted.
  • the remote operation support device 300 is mainly configured with a computer including a CPU, a memory device, an auxiliary storage device, an interface device, an input device, and a display device.
  • the memory device is, for example, SRAM or DRAM.
  • the auxiliary storage device is, for example, an HDD, SSD, EEPROM, flash memory, or the like.
  • the interface device includes an external interface for connecting to an external recording medium and a communication interface for communicating with the outside, such as the shovel 100.
  • the input device includes, for example, a lever-type operation input device.
  • the operator can use the operation input device to perform operation input regarding the actuator of the shovel 100, and the remote operation support device 300 can use the communication interface to transmit a signal corresponding to the operation input to the shovel 100. can. Therefore, the operator can remotely control the excavator 100 using the remote control support device.
  • FIG. 6 is a functional block diagram showing a first example of a functional configuration related to the operation proposal function of the operation support system SYS.
  • the excavator 100 includes a support device 150.
  • Support device 150 supports operation of excavator 100 by an operator.
  • the support device 150 includes a controller 30, an imaging device 40, an output device 50, and a communication device 60.
  • the controller 30 includes an operation log providing unit 301 and a work support unit 302 as functional units.
  • the controller 30 includes only the former of the operation log providing unit 301 and the work support unit 302, and the excavator 100 that includes only the latter. May exist.
  • the former shovel 100 only has the function of acquiring the operation log of the shovel 100 and providing it to the information processing device 200, which is used for the operator operation support function (motion suggestion function) of the latter shovel 100.
  • the same may apply to the second example (FIG. 8) of the motion suggestion function described below.
  • the information processing device 200 includes an operation log acquisition unit 2001, an operation log storage unit 2002, a teacher data generation unit 2003, a machine learning unit 2004, a learned model storage unit 2005, and a distribution unit 2006 as functional units. include.
  • the operation log providing unit 301 is a functional unit that acquires the operation log of the excavator 100, which is the original data for realizing the operation proposal function, and provides it to the information processing device 200.
  • a relatively experienced operator hereinafter referred to as an "expert" for convenience
  • who has a long history of operating the excavator 100 obtains an operation log when operating the excavator 100 and stores it in the information processing device 200. provide.
  • the operation log of the shovel 100 includes data regarding the shape of the work target around the shovel 100 and data regarding the operation of the shovel 100 performed on the shape of the work target.
  • the data regarding the shape of the work target around the shovel 100 is, for example, data regarding the topographical shape of the ground at the work site as the work target of the shovel 100.
  • the data regarding the shape of the work target of the shovel 100 is, for example, image data of the imaging device 40 or three-dimensional data of the work target obtained from the image data.
  • the data regarding the operation of the shovel 100 is, for example, data representing the details of the operator's operation.
  • the data representing the contents of the operator's operation may be, for example, the output data of the operating pressure sensor 29 in the case of the hydraulic pilot type operating device 26 or the output data of the operating device 26 (operation signal data) in the case of the electric operating device 26. It is. Furthermore, the data regarding the operation of the shovel 100 may be data representing the operation state of the shovel 100 actually executed in response to an operation by an operator.
  • the data representing the operating state of the shovel 100 is, for example, the output data of the sensors S1 to S5, or the data related to the posture state of the shovel 100 obtained from the output data of the sensors S1 to S5.
  • the operation log providing section 301 includes an operation log recording section 301A, an operation log storage section 301B, and an operation log transmission section 301C.
  • the operation log recording unit 301A acquires the operation log of the shovel 100 and records it in the operation log storage unit 301B. For example, every time an operation of the shovel 100 is executed, the operation log recording unit 301A records data regarding the shape of the work target around the shovel 100 at the start of execution of the operation or immediately before execution, and data regarding the operation of the shovel 100. is recorded in the operation log storage unit 301B.
  • the operation log storage unit 301B stores operation logs of the shovel 100 in an accumulated manner.
  • the operation log storage unit 301B stores data regarding the shape of a work target around the shovel 100 for each operation of the shovel 100 and data regarding the operation of the shovel 100 in a linked form.
  • the operation log storage unit 301B stores record data representing the correspondence relationship between data regarding the shape of the work target around the shovel 100 and data regarding the operation of the shovel 100 for each operation of the shovel 100.
  • a database of logs may be constructed.
  • operation log in the operation log storage unit 301B that has been transmitted to the information processing device 200 by the operation log transmission unit 301C may be deleted after the fact.
  • the operation log transmission unit 301C transmits the operation log of the shovel 100, which is stored in the operation log storage unit 301B, to the information processing device 200 via the communication device 60.
  • the operation log transmitting unit 301C also transmits to the information processing device 200 data regarding the shape of the work target around the shovel 100 for each operation of the shovel 100 and record data representing the correspondence between the data regarding the operations of the shovel 100. You may.
  • the operation log transmitting unit 301C may store the operation log in the operation log storage unit 301B in response to a signal requesting transmission of the operation log of the excavator 100 (hereinafter referred to as a “transmission request signal”) received from the information processing device 200.
  • the operation log of the shovel 100 that has not been sent yet is sent to the information processing device 200.
  • the operation log transmitting unit 301C may automatically transmit the unsent operation log of the shovel 100, which is stored in the operation log storage unit 301B, to the information processing device 200 at a predetermined timing.
  • the predetermined timing is, for example, when the excavator 100 stops operating (the key switch is turned off) or when the excavator 100 starts operating (the key switch is turned on).
  • the operation log acquisition unit 2001 acquires the operation log of the shovel 100, which is received from the shovel 100.
  • the operation log acquisition unit 2001 acquires the operation log of the excavator 100 by transmitting a transmission request signal to the excavator 100 in response to an operation by the user of the information processing device 200 or automatically at a predetermined timing. Further, the operation log acquisition unit 2001 may acquire an operation log of the excavator 100 that is transmitted from the excavator 100 at a predetermined timing.
  • the operation log storage unit 2002 stores operation logs of the shovel 100 acquired by the operation log acquisition unit 2001 in an accumulated manner.
  • the operation log storage unit 2002 as in the case of the operation log storage unit 301B, data regarding the shape of the work object around the shovel 100 for each operation of the shovel 100 and data regarding the operation of the shovel 100 are linked. remembered in form.
  • the teacher data generation unit 2003 generates teacher data for machine learning based on the operation log of the excavator 100 in the operation log storage unit 2002.
  • the teacher data generation unit 2003 may automatically generate the teacher data by batch processing, or may generate the teacher data in response to input from the user of the information processing apparatus 200.
  • the training data includes data regarding the shape of the work target around the shovel 100 as input data, and data representing the operation of the shovel 100 corresponding to the shape of the work target corresponding to the input data as correct output data (hereinafter referred to as " This is the data in combination with "correct answer data").
  • the correct answer data includes, for example, data representing the type of motion selected from a plurality of candidate motions that can be performed in a predetermined task.
  • the plurality of candidate operations include a sweeping operation, a leveling operation, a compaction operation, a broom operation, and the like.
  • the sweeping operation is, for example, an operation in which the attachment AT is operated to push the bucket 6 forward along the ground, thereby sweeping out earth and sand forward on the back surface of the bucket 6.
  • the attachment AT performs a lowering operation of the boom 4 and an opening operation of the arm 5.
  • the horizontal pulling operation is, for example, an operation to smooth out irregularities on the ground (the surface of the terrain) by operating the attachment AT and moving the toe of the bucket 6 along the ground almost horizontally toward you. be.
  • the attachment AT performs a raising operation of the boom 4 and a closing operation of the arm 5.
  • the rolling operation is, for example, an operation of operating the attachment AT and pressing the back surface of the bucket 6 against the ground.
  • the compaction operation is performed by pushing the bucket 6 forward along the ground, sweeping the earth and sand to a predetermined position in front with the back of the bucket 6, and then rolling the ground at a predetermined position with the back of the bucket 6. It may also be a pressing motion.
  • the attachment AT lowers the boom 4 when pressing against the ground.
  • the broom operation is, for example, an operation in which the upper rotating body 3 is operated and the bucket 6 is rotated left and right while keeping it along the ground. Further, the broom operation may be, for example, an operation of pushing the bucket 6 forward while operating the attachment AT and the upper rotating body 3 and rotating the bucket 6 alternately left and right while keeping the bucket 6 along the ground.
  • the upper revolving body 3 alternately repeats left and right turning movements.
  • the attachment AT may perform a lowering operation of the boom 4 and an opening operation of the arm 5, as in the case of the sweeping operation.
  • the correct data may include, for example, data representing the trajectory of the bucket 6 during operation of the shovel 100.
  • the machine learning unit 2004 performs machine learning on the base learning model based on the set of teacher data generated by the teacher data generation unit 2003 to generate a learned model LM.
  • the learned model LM includes, for example, a neural network such as a DNN (Deep Neural Network).
  • the trained model LM outputs predicted probabilities for each of a plurality of candidate movements to be executed in a predetermined work, using, for example, data regarding the shape of a work target around the shovel 100 as an input condition.
  • This predicted probability represents the reliability of the candidate's motion. This is because, as described above, the learned model LM reflects the operation log when the shovel 100 is operated by an expert, and it is considered that the higher the prediction probability, the higher the reliability of selecting the candidate operation. Further, this predicted probability represents the degree of conformity to the shape of the work target around the shovel 100 as an input condition. This is because it is considered that the higher the prediction probability, the higher the possibility that the expert will judge that the candidate motion is suitable for the shape of the work target.
  • the learned model LM outputs data representing the trajectory of the bucket 6 for each of the plurality of candidate movements (hereinafter referred to as "target trajectory"), using data regarding the shape of the work target around the excavator 100 as an input condition.
  • target trajectory data representing the trajectory of the bucket 6 for each of the plurality of candidate movements
  • the trained model outputs a plurality of pieces of data representing the target trajectory of the bucket 6 for each of the plurality of candidate movements, using data regarding the shape of the work target around the excavator 100 as an input condition, and
  • the predicted probability for each target trajectory may be output.
  • this predicted probability represents the degree of reliability of the target trajectory of the object and the degree of conformity to the shape of the work object around the shovel 100 as an input condition.
  • the learned model LM may be generated for each of a plurality of different tasks. For example, the learned model LM is generated for each task such as land leveling work, slope construction work, and embankment work.
  • the trained model storage unit 2005 stores the trained model LM output by the machine learning unit 2004.
  • the distribution unit 2006 distributes the learned model LM to the excavator 100.
  • the distribution unit 2006 distributes the most recently generated learned model LM to the excavator 100. Further, the distribution unit 2006 may distribute the latest learned model LM in the learned model storage unit 2005 to the shovel 100 in response to a signal received from the excavator 100 requesting distribution of the learned model LM. .
  • the work support unit 302 is a functional unit that supports the work of the shovel 100 operated by the operator.
  • the work support unit 302 includes a learned model storage unit 302A, a work target shape acquisition unit 302B, an estimation unit 302C, and a proposal unit 302D.
  • the trained model storage unit 302A stores the trained model LM distributed from the information processing device 200 and received through the communication device 60.
  • the work target shape acquisition unit 302B acquires data regarding the shape of the work target (terrain shape) around the shovel 100 based on the output of the imaging device 40 and the distance sensor.
  • the estimation unit 302C determines the reliability of the shape of the work work around the shovel 100 among a plurality of candidate movements that can be performed in a predetermined work. and the motion with relatively high fitness. Furthermore, the estimating unit 302C determines the target trajectory of one or more buckets 6 with relatively high reliability and suitability for each of the plurality of candidate movements based on the data regarding the shape of the work target around the shovel 100. It may be estimated.
  • the estimation unit 302C uses the trained model LM to calculate the reliability and the shape of the work target around the shovel 100 using data regarding the shape of the work target around the shovel 100 as an input condition. A motion with a relatively high degree of fitness may be estimated.
  • the estimation unit 302C uses the learned model LM to set one or more goals for the bucket 6 with relatively high reliability and suitability, using data regarding the shape of the work target around the shovel 100 as an input condition. Orbits may be estimated.
  • the proposing section 302D suggests an operation of the excavator 100 that has a relatively high degree of reliability and conformity to the shape of the work target around the excavator 100 through the output device 50 such as the display device 50A.
  • a proposal is made to the operator of cabin 10. Thereby, even an inexperienced operator can select a more appropriate operation according to the shape of the current work target around the shovel 100. Therefore, the operator's convenience can be improved, and the working efficiency of the excavator 100 can be improved.
  • the number of actions suggested to the operator may be one or multiple.
  • the proposal unit 302D notifies the numerical value of the degree of conformity (reliability) to the shape of the work target around the shovel 100 for all or part of the motions of the plurality of candidates, so that An action is proposed (see FIG. 10 below).
  • the proposing unit 302D sends, via the output device 50, a list of buckets 6 in the motion of the proposed target that has a relatively high degree of reliability and conformity to the shape of the work target around the shovel 100.
  • One target trajectory may be proposed.
  • the proposal unit 302D proposes a plurality of target trajectories of the bucket 6 in the motion to be proposed, which have a relatively high degree of reliability and conformity to the shape of the work target around the shovel 100, through the output device 50 of the motion target. You may. This allows the operator to understand multiple target trajectories for the bucket 6 that are more appropriate according to the shape of the work target around the current excavator 100, and to move the excavator so that the operator can realize the one target trajectory that he/she selects. 100 can be operated. Therefore, the working efficiency of the excavator 100 can be improved in a manner that reflects the operator's intention.
  • the proposal unit 302D notifies the numerical value of the degree of conformity (reliability) to the shape of the work target around the shovel 100 for each of the plurality of target trajectories of the motion to be proposed.
  • a target trajectory for bucket 6 is proposed (see FIGS. 11 and 13 described later).
  • the proposal unit 302D provides the operator using the remote operation support device 300 with information on operations with relatively high reliability and suitability and the target trajectory of the bucket 6 via the communication device 60. You may make suggestions.
  • the proposal unit 302D transmits data representing the content of the proposal to the remote operation support device 300 via the communication device 60.
  • the remote operation support device 300 uses a display device, a sound output device, etc. to inform the operator using the remote operation support device 300 of operations with relatively high degrees of reliability and suitability and the target trajectory of the bucket 6. I can make suggestions.
  • FIG. 7 is a flowchart schematically showing a first example of processing related to the motion suggestion function of the shovel 100.
  • the flowchart in FIG. 7 is started when a predetermined input for starting the motion suggestion function is received, for example, through the input device 52 or the input device of the remote operation support device 300. The same may apply to the flowchart of FIG. 9, which will be described later.
  • step S102 an example of an acquisition step
  • the work target shape acquisition unit 302B acquires data regarding the shape of the work target around the shovel 100 based on the output of the imaging device 40.
  • step S102 Upon completion of the process in step S102, the controller 30 proceeds to step S104.
  • step S104 the estimating unit 302C estimates a motion that has a relatively high degree of suitability (reliability) for the shape of the work target around the current shovel 100, based on the data acquired in step S102.
  • step S104 Upon completion of the process in step S104, the controller 30 proceeds to step S106.
  • step S106 an example of a proposing step
  • the proposing unit 302D causes the display device 50A to display the proposed motion among the plurality of candidate motions and the target trajectory of the motion, based on the estimation result in step S104.
  • step S106 Upon completion of the process in step S106, the controller 30 proceeds to step S108.
  • step S108 the controller 30 determines whether the driven element (actuator) has been operated. If the driven element is not being operated, the controller 30 proceeds to step S110, and if the driven element is being operated, the process proceeds to step S112.
  • step S110 the controller 30 determines whether the termination condition is satisfied.
  • the termination condition is, for example, that a predetermined input indicating termination of the motion suggestion function is received from the operator through the input device 52 or the input device of the remote operation support device 300. Further, the termination condition may be that a predetermined input indicating the end of the work is received from the operator through the input device 52 or the input device of the remote operation support device 300. Further, the end condition may be that the controller 30 determines the end of the work based on the captured image of the imaging device 40. If the termination condition is satisfied, the controller 30 terminates the process of the current flowchart, and if the termination condition is not satisfied, the process returns to step S108.
  • step S112 the controller 30 determines whether or not the operation of the driven element corresponding to one operation of the shovel 100 has been completed, based on the operating state of the operating device 26, the operating state of the shovel 100, etc. .
  • the controller 30 can grasp the operating state of the operating device 26, the operating state of the shovel 100, etc. based on the output of the operating pressure sensor 29, the operating signal output from the operating device 26, the outputs of the sensors S1 to S5, etc. . If the operation of the driven element corresponding to one operation of the shovel 100 has been completed, the controller 30 proceeds to step S114, and if the operation has not been completed, the controller 30 waits until the operation is completed (repeat the process of step S112).
  • step S114 the controller 30 determines whether the termination condition is satisfied. If the termination condition is satisfied, the controller 30 terminates the process of the current flowchart, and if the termination condition is not satisfied, the process returns to step S102.
  • the support device 150 displays the operation of the shovel 100 and the target trajectory of the bucket 6 that have a high degree of conformity (reliability) to the shape of the work target around the shovel 100 on the display device 50A.
  • a proposal can be made to the operator through the remote operation support device 300.
  • FIG. 8 is a functional block diagram showing a first example of the functional configuration regarding the operation proposal function of the operation support system SYS.
  • the support device 150 of the excavator 100 includes a controller 30, a hydraulic control valve 31, an imaging device 40, an output device 50 (display device 50A), an input device 52, and a communication device 60. include.
  • the controller 30 includes, as functional units, an operation log providing unit 301 and a work support unit 302, as in the first example described above.
  • the work support unit 302 includes a learned model storage unit 302A, a work target shape acquisition unit 302B, an estimation unit 302C, a proposal unit 302D, and an operation control unit 302E.
  • the operation control unit 302E controls the hydraulic control valve 31 in response to instructions input from the operator received through the input device 52 and the communication device 60, and automatically performs the operation of the excavator 100 suggested to the operator by the suggestion unit 302D. Run it with As a result, the support device 150 can cause the shovel 100 to automatically perform the proposed operation in accordance with the shape of the current work target around the shovel 100, on the premise that instructions are input from the operator. Therefore, even an inexperienced operator can more appropriately operate the shovel 100 in accordance with the shape of the current work target around the shovel 100 by simply inputting instructions. Therefore, the operator's convenience can be further improved, and the working efficiency of the excavator 100 can be further improved.
  • the motion control unit 302E controls the hydraulic control valve 31 in response to an instruction input from the operator, and automatically controls the motion of the shovel 100 to be proposed by the suggestion unit 302D. Run it with Further, for example, when there are a plurality of motions to be proposed, the motion control unit 302E automatically executes one of the motions to be suggested, which is selected by inputting an instruction from the operator. Further, for example, when the proposal unit 302D proposes one target trajectory for the bucket 6, the motion control unit 302E controls the operation of the proposed shovel 100 so that the bucket 6 moves along the proposed target trajectory. Let it run automatically.
  • the operation control unit 302E selects one target trajectory for the bucket 6 from among the plurality of target trajectories, which is selected by inputting an instruction from the operator. Automatically execute the proposed action so that the object moves.
  • the action log recording unit 301A stores an action log including data regarding the shape of the work object acquired by the work object shape acquisition unit 302B, and data representing the actions and target trajectory performed by the action control unit 302E, into the action log storage unit 301B. to be recorded.
  • the operation log transmitter 301C transmits an operation log that includes data regarding the shape of the work target and data representing the target trajectory and the motion of the excavator 100 actually executed by the operator based on the shape of the work target. It can be stored in the log storage unit 301B.
  • the operation log transmitter 301C can then upload the accumulated operation logs to the information processing device 200. Therefore, the machine learning unit 2004 can update the learned model LM by relearning or additionally learning the learned model LM using the operation log.
  • the machine learning unit 2004 compares the trained model LM that has been retrained or additionally trained and the current trained model LM using predetermined evaluation data, and if the evaluation result of the former is high, the learning The trained model LM in the trained model storage unit 2005 may be updated.
  • FIG. 9 is a flowchart schematically showing a second example of processing related to the motion suggestion function of the shovel 100.
  • steps S202 to S206 are the same as steps S102 to S106 in FIG. 7, so the explanation will be omitted.
  • step S206 Upon completion of the process in step S206, the controller 30 proceeds to step S208.
  • step S208 the controller 30 determines whether an input from the operator instructing execution of the proposed action (hereinafter referred to as "input of execution instruction") is received through the input device 52 or the communication device 60. If the input of the execution instruction is not accepted, the controller 30 proceeds to step S210, and if the input is accepted, the process proceeds to step S212.
  • input of execution instruction an input from the operator instructing execution of the proposed action
  • step S210 the controller 30 determines whether the termination condition is satisfied. If the termination condition is satisfied, the controller 30 terminates the process of the current flowchart, and if the termination condition is not satisfied, the process returns to step S208.
  • step S212 the operation control unit 302E controls the hydraulic control valve 31 to automatically execute the operation specified by the input of the execution instruction.
  • the operation control unit 302E controls the shovel 100 specified by the input of the execution instruction so that the bucket 6 moves on the target trajectory specified by the input of the execution instruction. Execute the action.
  • step S212 Upon completion of the process in step S212, the controller 30 proceeds to step S214.
  • step S214 the action log recording unit 301A records an action log including data regarding the shape of the work object acquired by the work object shape acquisition unit 302B, and data representing the actions and target trajectory performed by the action control unit 302E. It is recorded in the operation log storage unit 301B.
  • step S214 Upon completion of the process in step S214, the controller 30 proceeds to step S216.
  • Step S216 The controller 30 determines whether the termination condition is satisfied. If the termination condition is satisfied, the controller 30 terminates the process of the current flowchart, and if the termination condition is not satisfied, the process returns to step S202.
  • the work target shape acquisition unit 302B may acquire data regarding the shape of the work target by predicting a change in the shape of the work target due to the operation of the shovel 100 in the previous process of step S212. .
  • the support device 150 determines the operation of the shovel 100 and the target of the bucket 6 that have a high degree of conformity (reliability) to the shape of the work target around the shovel 100, in accordance with instructions from the operator. Trajectories can be executed automatically.
  • the support device 150 can accumulate an operation log that includes data regarding the shape of the work target around the shovel 100, and data regarding the automatically executed actions of the shovel 100 and the target trajectory. Therefore, the support device 150 can update the learned model LM using the accumulated operation logs.
  • FIGS. 10 to 15 may be displayed on the display device of the remote operation support device 300.
  • FIG. 10 is a diagram showing a first example (screen 1000) of display content on the display device 50A regarding the motion suggestion function of the excavator 100.
  • Screen 1000 includes images 1001 to 1006.
  • Image 1001 is an image representing a work target around shovel 100.
  • the image 1001 is generated based on the output (image data) of the imaging device 40 using a known image processing technique, and is an image of the surroundings of the excavator 100 when viewed from a predetermined viewpoint. This is an image representing the work target (the ground at the work site).
  • Image 1002 is an image schematically representing shovel 100.
  • image 1002 is an image schematically representing shovel 100 when viewed from the same viewpoint as image 1001, and is displayed superimposed on image 1001.
  • the image 1003 is an image that represents, in a list format, the motions to be proposed by the proposal unit 302D among the plurality of candidate motions.
  • the image 1003 includes images 1003A to 1003D representing each row of a sweeping motion, a horizontal pulling motion, a rolling motion, and a broom motion from among a plurality of candidate motions as motions to be proposed.
  • the images 1003A to 1003D express the reliability (degree of suitability) for each of the broom operation, sweeping operation, horizontal pulling operation, and rolling operation. Thereby, the operator can select the operation to be performed by the excavator 100 by his own operation or automatically, taking into consideration the reliability (degree of suitability) from among the proposed operations.
  • the image 1003 may represent only the motion with the highest degree of reliability (degree of suitability) (in this example, the sweeping motion).
  • the suggestion unit 302D may suggest to the operator, through the image 1003, only the motion with the highest degree of reliability (degree of suitability) among the plurality of candidate motions for a predetermined task.
  • the plurality of candidate motions only motions (for example, sweeping motion and horizontal pulling motion) whose reliability (degree of suitability) is equal to or higher than a predetermined standard (for example, 30%) are expressed in the image 1003. Good too.
  • the proposal unit 302D may suggest to the operator only those operations whose reliability (degree of suitability) is equal to or higher than a predetermined standard among the plurality of candidate operations.
  • Image 1004 is an image representing the target trajectory for each proposed motion, which is represented in image 1003.
  • Image 1004 is displayed around image 1002, superimposed on image 1001. Thereby, the operator can easily grasp the target trajectory for each motion to be proposed while comparing the image 1001 representing the state of the ground at the work site around the shovel 100 and the image 1002 representing the shovel 100.
  • Image 1004 includes images 1004A to 1004D.
  • Image 1004A is an image representing the target trajectory of the sweeping operation.
  • Image 1004B is an image representing the target trajectory of the horizontal pulling operation.
  • Image 1004C is an image representing the target trajectory of the rolling operation.
  • Image 1004D is an image representing the target trajectory of the broom motion.
  • the images 1004A to 1004D may be expressed in such a manner that the portion of the target trajectory that contacts the work object (ground) and the other portions can be distinguished.
  • the images 1004A to 1004D may have different colors between the portion of the target trajectory that contacts the work object and the other portions. Thereby, it is possible to assist the sense of perspective on the image 1001 of the images 1004A to 1004D corresponding to the target trajectory.
  • a matte cursor is expressed in the image 1003A corresponding to the sweeping operation.
  • the image 1004A corresponding to the sweeping motion of the image 1004 is expressed by a thicker line than the images 1004B to 1004D corresponding to other motions.
  • a state in which the sweeping operation is selected is expressed.
  • the operator uses the input device 52 to specify any one of the images 1003A to 1003D, thereby selecting one of the sweeping operation, horizontal pulling operation, compaction operation, and broom operation. be able to.
  • the operator can perform any one of the sweeping operation, horizontal pulling operation, rolling operation, and broom operation. can be selected.
  • the image 1005 is an icon for confirming the execution of the action selected by the user (operator) from among the proposed actions.
  • the operator can cause the excavator 100 to automatically perform the selected operation.
  • Image 1006 is an icon for terminating the motion suggestion function of excavator 100. The same applies to images 1106, 1206, 1306, 1406, and 1506, which will be described later.
  • the controller 30 selects a plurality of motions from among a plurality of candidate motions in the ground leveling work based on the reliability (adaptability) of each of the current shape of the work target (terrain shape) around the excavator 100. degree) on the display device 50A. Thereby, the controller 30 can suggest to the operator an operation that has a relatively high degree of reliability (degree of suitability) for the current shape of the work target (terrain shape) around the excavator 100.
  • FIG. 11 is a diagram showing a second example (screen 1100) of display content on the display device 50A regarding the motion suggestion function of the shovel 100.
  • Screen 1100 includes images 1101 to 1106.
  • Image 110 is an image representing a work target around shovel 100.
  • Image 1102 is an image schematically representing shovel 100, similar to image 1002 in FIG.
  • the image 1103 is an image that represents, in a list format, a plurality of target trajectories of the bucket 6 for one motion to be proposed by the proposal unit 302D among the plurality of candidate motions.
  • the image 1103 includes images 1103A to 1103D representing each row of four target trajectories ("sweeping I" to "sweeping IV") of the bucket 6 regarding the sweeping motion as one of the motions to be proposed. included.
  • the reliability (degree of suitability) of each of the four target trajectories of the bucket 6 is expressed in the images 1103A to 1103D.
  • the operator can select the bucket 6 to be executed by the excavator 100 either by the operator's own operation or automatically, considering the reliability among the four target trajectories of the bucket 6 for one proposed operation (sweeping operation).
  • a target trajectory can be selected.
  • the image 1103 may represent only the target trajectory of the bucket 6 (in this example, "sweep I”), which has the highest degree of reliability (degree of suitability).
  • the proposal unit 302D may suggest to the operator, through the image 1103, only the motion with the highest degree of reliability (degree of suitability) among the plurality of target trajectories for one motion to be proposed in a predetermined task.
  • the image 1103 also includes target trajectories (for example, "Sweeping I” and "Sweeping II”) whose reliability (fitness) is higher than a predetermined standard (for example, 30%) among the plurality of target trajectories of the bucket 6. may be expressed only.
  • the proposal unit 302D may propose to the operator only those target trajectories whose reliability (degree of suitability) is equal to or higher than a predetermined standard among the plurality of target trajectories in the bucket 6 for one motion to be proposed. The same may apply to image 1203A, which will be described later.
  • Image 1104 is an image representing four target trajectories for one motion of the proposal target, which is represented in image 1103. Similar to the image 1004, the image 1104 is displayed in the vicinity of the image 1002, superimposed on the image 1001. As a result, the operator can easily determine multiple target trajectories for one motion (sweeping motion) to be proposed while comparing the image 1101 representing the ground condition of the work site around the shovel 100 and the image 1102 representing the shovel 100. can be grasped. Image 1104 includes images 1104A to 1104D.
  • Image 1104A is an image representing the target trajectory of the sweeping operation, which corresponds to image 1103A ("Sweeping I").
  • Image 1104B is an image representing the target trajectory of the sweeping operation, which corresponds to image 1103B ("Sweeping II").
  • Image 1104C is an image representing the target trajectory of the sweeping operation, which corresponds to image 1103C ("Sweeping III").
  • Image 1104D is an image representing the target trajectory of the sweeping operation, which corresponds to image 1103C ("Sweeping IV").
  • a matte cursor is expressed in the image 1103A corresponding to "sweeping operation I".
  • an image 1104A corresponding to the target trajectory of "sweeping operation I" in the image 1104 is expressed by a thicker line than images 1104B to 1104D corresponding to other target trajectories.
  • a state is expressed in which the "sweeping I" target trajectory is selected among the four target trajectories.
  • the operator can select any one of the four target trajectories by specifying any one of the images 1103A to 1103D using the input device 52.
  • the operator can select any one of the four target trajectories for the bucket 6 by specifying any one of the images 1104A to 1104D using the input device 52. .
  • the image 1105 is an icon for executing one of the proposed operations (sweeping operation) so that the bucket 6 moves on a target trajectory selected by the user (operator) from among a plurality of target trajectories.
  • the operator can cause the excavator 100 to automatically perform one of the proposed operations so that the bucket 6 moves along the selected target trajectory. .
  • the controller 30 determines the plurality of target trajectories of the bucket 6 for one operation related to the ground leveling work based on the reliability ( degree of suitability) on the display device 50A. Thereby, the controller 30 can suggest to the operator a plurality of target trajectories for the bucket 6 that have a relatively high degree of reliability (degree of suitability) for the shape of the work target (terrain shape) around the current excavator 100. .
  • ⁇ 3rd example> 12 and 13 are diagrams showing a third example (screens 1200, 1300) of display contents of the display device 50A regarding the motion suggestion function of the excavator 100.
  • Screen 1200 includes images 1201 to 1206.
  • Image 1201 is an image representing a work target around shovel 100.
  • Image 1202 is an image schematically representing shovel 100, similar to image 1002 in FIG.
  • the image 1203 is an image that represents, in a list format, the motions to be proposed by the proposal unit 302D among the plurality of candidate motions.
  • the image 1203 includes images 1203A to 1203D representing each row of a sweeping motion, a horizontal pulling motion, a rolling motion, and a broom motion from among a plurality of candidate motions as motions to be proposed.
  • the images 1203A to 1203D express the reliability (degree of suitability) for each of the broom operation, sweeping operation, horizontal pulling operation, and rolling operation.
  • the image 1203A is an image that represents a plurality of target trajectories of the bucket 6 in a list format for one motion (sweeping motion) to be proposed.
  • image 1203A shows each of the four target trajectories ("sweep I" to "sweep IV") of bucket 6 for the sweep motion with the highest degree of reliability (fitness) among the multiple candidate motions.
  • Images 1203A1 to 1203A4 representing rows of are included.
  • the reliability (degree of suitability) of each of the four target trajectories of the bucket 6 is expressed in the images 1203A1 to 1203A4.
  • Image 1204 is an image representing the target trajectory for each proposed motion, which is expressed in the image 1203.
  • Image 1204 includes images 1204A to 1204D.
  • Image 1204A is an image representing the target trajectory of the sweeping operation. Specifically, the image represents the target trajectory ("sweeping I") with the highest reliability among the target trajectories ("sweeping I” to "sweeping IV") of the bucket 6 corresponding to the sweeping operation.
  • the images 1204B to 1204D are the same as the images 1004B to 1004D in FIG. 10, so a description thereof will be omitted.
  • a matte cursor is expressed in the image 1003A corresponding to the sweeping operation. Furthermore, in this example, the image 1004A corresponding to the sweeping motion of the image 1004 is expressed by a thicker line than the images 1004B to 1004D corresponding to other motions. Thus, in this example, a state in which the sweeping operation is selected is expressed.
  • the image 1205 is an icon for confirming execution of the action selected by the user (operator) from among the proposed actions.
  • the image 1205 is for transitioning to a screen 1300 for selecting four target trajectories of the bucket 6 corresponding to the sweeping motion in a state where the sweeping motion with the highest reliability among the motions to be proposed is selected.
  • This is the icon. That is, when the image 1205 is operated through the input device 52 while the screen 1200 is displayed, the screen shifts to the screen 1300.
  • Screen 1300 includes images 1301 to 1306.
  • the image 1303 is an image that represents, in a list format, the motions to be proposed by the proposal unit 302D among the plurality of candidate motions.
  • the image 1303 includes images 1203A to 1203D representing each row of a sweeping motion, a horizontal pulling motion, a rolling motion, and a broom motion from among a plurality of candidate motions as motions to be proposed. It will be done.
  • the image 1303A is an image that represents a plurality of target trajectories of the bucket 6 in a list format for one motion (sweeping motion) to be proposed. Specifically, the image 1203A shows four target trajectories ("sweep I" to "sweep IV") of bucket 6 for the sweep motion with the highest degree of reliability (fitness) among the multiple candidate motions. Images 1303A1 to 1303A4 representing each row are included.
  • Image 1304 is similar to image 1104 in FIG. 11, and image 1104 is an image representing four target trajectories for one motion of the proposed object, which is expressed in image 1103. Specifically, image 1304 includes images 1304A to 1304D.
  • Images 1304A to 1304D are the same as images 1104A to 1104D in FIG. 11, respectively, so their description will be omitted.
  • a matte cursor is expressed in the image 1303A1 corresponding to "sweeping operation I". Further, in this example, an image 1304A corresponding to the target trajectory of "sweeping operation I" in the image 1304 is expressed by a thicker line than images 1304B to 1304D corresponding to other target trajectories. As a result, in this example, a state is expressed in which the "sweeping I" target trajectory is selected among the four target trajectories.
  • the image 1305 is an icon for executing one of the proposed operations (sweeping operation) so that the bucket 6 moves on a target trajectory selected by the user (operator) from among a plurality of target trajectories.
  • the controller 30 causes the display device 50A to display a plurality of motions among a plurality of candidate motions related to the ground leveling work together with their reliability, and also displays a plurality of targets for the motion with the highest reliability.
  • the trajectory is displayed on the display device 50A.
  • the controller 30 selects a plurality of operations that have a relatively high degree of reliability with respect to the current shape of the work target (terrain shape) around the excavator 100, and a plurality of target trajectories of the bucket 6 for the most reliable operation. can be proposed to the operator.
  • FIG. 14 is a diagram showing a fourth example (screen 1400) of display content on the display device 50A regarding the motion suggestion function of the shovel 100.
  • Screen 1400 includes images 1401 to 1406.
  • Image 1401 is an image representing a work target around shovel 100.
  • Image 1402 is an image schematically representing shovel 100, similar to image 1002 in FIG.
  • the image 1403 is an image that represents, in a list format, the motions to be proposed by the proposal unit 302D among the plurality of candidate motions.
  • the image 1403 includes images 1403A to 1403D representing each row of a sweeping motion, a horizontal pulling motion, a rolling motion, and a broom motion from among a plurality of candidate motions as motions to be proposed. It will be done.
  • image 1404 is an image representing the target trajectory for each proposed motion expressed in the image 1403. Specifically, image 1404 includes images 1404A to 1404D.
  • Images 1404A to 1404D are the same as images 1004A to 1004D in FIG. 10, respectively, so their description will be omitted.
  • the worker W is shown in the image area where the image 1403A of the image 1401 is displayed in a superimposed manner. Therefore, if the most reliable operation (sweeping operation) is selected, there is a possibility that the attachment AT will come too close to the worker W or that the attachment AT will come into contact with the worker W.
  • a satin-textured cursor is expressed in image 1403B corresponding to the horizontal pulling motion
  • image 1404B corresponding to the horizontal pulling motion is thicker than images 1404A, 1404C, and 1404D corresponding to other motions. It is represented by a line. That is, in this example, the operator selects an operation other than the sweeping operation (horizontal pulling operation) through the input device 52, and is about to have the excavator 100 execute it. Thereby, it is possible to prevent the attachment AT from coming too close to the worker W or coming into contact with the worker W.
  • the image 1405 is the same as the image 1005 in FIG. 10, so its description will be omitted.
  • the operator can compare the target trajectory with the worker W at the work site. It is possible to understand the relationship with obstacles. Therefore, the safety of the shovel 100 can be improved while improving the operator's convenience and the working efficiency of the shovel 100.
  • FIG. 15 is a diagram showing a fifth example (screen 1500) of display content on the display device 50A regarding the motion suggestion function of the shovel 100.
  • Screen 1500 includes images 1501 to 1506.
  • Image 1501 is an image representing a work target around shovel 100.
  • Image 1502 is an image schematically representing shovel 100, similar to image 1002 in FIG.
  • the image 1503 is an image that represents, in a list format, the motions to be proposed by the proposal unit 302D among the plurality of candidate motions.
  • the image 1503 includes images 1503A to 1503D representing each row of a horizontal pulling action, a sweeping action, a rolling action, and a broom action from among a plurality of candidate actions as suggested actions. It will be done.
  • image 1504 is an image representing the target trajectory for each proposed motion expressed in the image 1503. Specifically, image 1504 includes images 1504A to 1404D.
  • Images 1404A to 1404D are the same as images 1004A to 1004D in FIG. 10, respectively, so their description will be omitted.
  • Image 1004A is an image representing the target trajectory of the sweeping operation.
  • Image 1004B is an image representing the target trajectory of the horizontal pulling operation.
  • Image 1004C is an image representing the target trajectory of the rolling operation.
  • Image 1004D is an image representing the target trajectory of the broom motion.
  • the image area in which the images 1504A, 1504C, and 1504D of the image 1501 are displayed in a superimposed manner is included in the area 1501A in which the leveling work has already been completed. Therefore, if the operation with the highest reliability (the leveling operation corresponding to image 1504A) is selected, not only will wasteful work be performed on the area where the leveling work has already been completed, but also the impact of the wasteful work will be You will need to do some work to restore it. As a result, there is a possibility that the working efficiency of the shovel 100 will be reduced and the progress of the work at the work site will be delayed.
  • a matte cursor is expressed in the image 1503B corresponding to the sweeping motion, and the image 1504B corresponding to the sweeping motion is drawn with thicker lines than the images 1504A, 1504C, and 1504D corresponding to other motions. It is expressed. That is, in this example, the operator selects a different operation (horizontal pulling operation) from the sweeping operation and is trying to have the excavator 100 execute it. This can prevent the shovel 100 from performing work on an area where work has already been completed. Therefore, it is possible to suppress a decrease in the work efficiency of the shovel 100 and a delay in the progress of work at the work site.
  • an image (such as an image covering the area 1501A with diagonal lines) indicating that the area 1501A is an area where land leveling work has already been completed is displayed in a superimposed manner. This allows the operator to more reliably understand that the area 1501A is an area where the leveling work has been completed.
  • information regarding the area where the work has been completed at the work site is distributed from the information processing device 200 to the shovel 100, for example.
  • the image 1505 is the same as the image 1005 in FIG. 10, so its description will be omitted.
  • the operator can check the target trajectory and the completion status of the work at the work site. It is possible to understand the relationship between Therefore, the operator can select a more appropriate motion or target trajectory according to the completion status of the work at the work site.
  • the proposal unit 302D proposes only the motion to be proposed out of a plurality of candidate motions that can be performed in a predetermined task, and Proposal of a target trajectory corresponding to the motion may be omitted.
  • the proposal unit 302D only selects target trajectories that have a relatively high degree of reliability (degree of conformity) to the shape of the work target around the shovel 100. Instead, motions or target trajectories with relatively low reliability (fitness) may be intentionally proposed.
  • the motion with relatively low reliability (fitness) is the motion of the excavator 100 or the target trajectory of the bucket 6, which is estimated based on the trained model LM and whose reliability (fitness) is lower than a predetermined standard. .
  • a trained model other than the trained model LM that is, a trained model that has been machine learned using a teacher dataset that includes inappropriate motions and target trajectories.
  • the motion of the shovel 100 or the target trajectory of the bucket 6 estimated based on the model may be used.
  • a log to that effect may be recorded in the auxiliary storage device 30A of the controller 30 or the like. Further, the log may include identification information of the operator.
  • the support device 150 (controller 30) can label an operator who has a high probability of selecting an operation of the shovel 100 or a target trajectory of the bucket 6 that has a relatively low degree of reliability (degree of suitability). I can do it. Therefore, a manager or the like at a work site can manage the usage status of the motion suggestion function for each operator by checking logs, labels, etc. after the fact.
  • part or all of the functions of the support device 150 may be transferred to the remote operation support device 300.
  • the functions of the proposal unit 302D are transferred to the remote operation support device 300.
  • the functions of the estimation section 302C may be transferred to the remote operation support device 300.
  • the functions of the work object shape acquisition section 302B may be transferred to the remote operation support device 300.
  • image data of the imaging device 40 is transmitted from the excavator 100 to the remote operation support device 300.
  • part or all of the functions of the support device 150 may be transferred to the information processing device 200.
  • the work target shape acquisition unit 302B is transferred to the information processing device 200.
  • image data of the imaging device 40 is transmitted from the excavator 100 to the information processing device 200.
  • the function of the estimation unit 302C may be transferred to the information processing device 200.
  • the functions of the proposal section 302D may be transferred to the information processing apparatus 200.
  • the support device 150 may perform one or more of the plurality of candidate motions in a predetermined work of a working machine different from the excavator 100.
  • a plurality of actions may be suggested to the operator.
  • another working machine is a forestry machine with a harvester device.
  • the support device 150 may propose an operation for one or more trees to be operated by the harvester device from among operations for a plurality of candidate trees existing in the field.
  • the support device includes an acquisition unit and a proposal unit.
  • the support device is, for example, the support device 150.
  • the working machine is, for example, a shovel 100.
  • the acquisition unit is, for example, a work target shape acquisition unit 302B.
  • the proposal unit is, for example, the proposal unit 302D. Specifically, the acquisition unit acquires data regarding the shape of the work target (for example, topographic shape) around the working machine. Then, the proposal unit proposes to the user a motion among the plurality of candidate motions of the work machine in a predetermined work based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit.
  • the work machine may include the above-mentioned support device.
  • the support device can, for example, suggest to the operator of the work machine an action that is more suitable for the shape of the work target around the work machine, from among a plurality of candidate actions that can be performed in a predetermined work. Therefore, the work machine can be operated more appropriately. Therefore, the working efficiency of the working machine can be improved.
  • the support device includes an estimator.
  • the estimator is, for example, the estimator 302C.
  • the estimation unit uses a trained model that has been machine-learned using training data related to the operation of the work machine by operations of a relatively highly skilled operator, which is associated with the shape of the work target. Based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit, a motion matching the shape of the work target around the work machine is estimated from among the plurality of candidate motions.
  • the learned model is, for example, the learned model LM.
  • the proposal unit may propose a motion among the plurality of candidate motions based on the estimation result of the estimation unit.
  • the support device can use the learned model to suggest a motion that is more suitable for the shape of the work target around the work machine, from among a plurality of candidate motions that can be performed in a predetermined work.
  • the proposal unit may propose a plurality of motions among the plurality of candidate motions to the user based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. good.
  • the support device can provide options to the operator and encourage the operator to make a decision based on his or her own will. Therefore, by reflecting the operator's judgment, the work machine can be operated more appropriately.
  • the plurality of motions to be proposed may include motions that have a relatively low degree of adaptation to the shape of the work target around the work machine among the plurality of candidate motions. good.
  • the support device can encourage the operator to make a decision based on his or her own will. Therefore, by reflecting the operator's judgment, the work machine can be operated more appropriately.
  • the proposal unit selects a motion among the plurality of candidate motions based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. It may be proposed together with the degree of conformity to the shape of the work target.
  • the support device can provide the operator with information to decide whether or not to execute the operation. Therefore, the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
  • the proposal unit selects a plurality of motions among the plurality of candidate motions based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. It may be proposed together with the degree of conformity to the shape of the work object around the work machine.
  • the support device can provide the operator with a plurality of options regarding the operation of the work machine, and can also provide material for making decisions regarding the selection. Therefore, the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
  • the proposal unit selects a motion among the plurality of candidate motions based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. It may be proposed together with the trajectory of the part.
  • the work part is, for example, the bucket 6.
  • the support device can provide the operator with information to decide whether or not to execute the operation. Therefore, the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
  • the proposing unit selects a motion among the plurality of candidate motions based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. It may be proposed along with the orbit of .
  • the support device can provide the operator with multiple options regarding the trajectory of the work part that corresponds to the proposed motion. Therefore, the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
  • the proposing unit selects a motion among the plurality of candidate motions based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. It may be proposed together with the trajectory of the object and the degree of conformity to the shape of the work object around the working machine for each of the plurality of trajectories.
  • the support device can provide the operator with a plurality of options for the work part, and can also provide information for making a decision on the selection. Therefore, the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
  • the support device may include a display section.
  • the display section is, for example, a display device 50A.
  • the proposal unit may display the trajectory of the work part according to the motion to be proposed among the plurality of candidate motions on the display unit, superimposed on the image representing the surroundings of the work machine.
  • the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
  • the proposal unit displays on the display unit the trajectory portion that contacts the work target in the trajectory due to the proposed motion among the plurality of candidate motions and the other trajectory portions in different manners. You may let them.
  • the support device can assist the sense of perspective on the image representing the surroundings of the work machine, allowing the operator to grasp the trajectory more appropriately.
  • the support device includes a control section.
  • the control unit is, for example, the operation control unit 302E.
  • the control unit may cause the work machine to automatically execute the operation proposed by the suggestion unit in response to an input instruction from the user.
  • the acquisition unit obtains data regarding the shape of the work target around the work machine by predicting the shape of the work target around the work machine after the operation automatically executed by the control unit. may be obtained.
  • the support device can propose the operation of the work machine more smoothly when supporting the work of the work machine while repeatedly proposing the operation of the work machine. Therefore, the working efficiency of the working machine can be further improved.
  • FIG. 16 is a block diagram illustrating a first example of a functional configuration related to generation of a target trajectory of a working part of excavator 100.
  • FIG. 17 is a diagram illustrating an example of a screen (screen 700) related to generation of a target trajectory of a working part of excavator 100, which is displayed on display device 50A.
  • FIG. 18 is a diagram illustrating another example of a screen (screen 800) related to generation of a target trajectory of a working part of excavator 100, which is displayed on display device 50A.
  • FIG. 19 is a diagram showing still another example (screen 900) of a screen related to generation of a target trajectory of a working part of excavator 100, which is displayed on display device 50A.
  • the work area of the shovel 100 is, for example, the toe or back of the bucket 6.
  • the excavator 100 includes a support device 150.
  • the support device 150 provides support regarding the work of the excavator 100.
  • the support device 150 includes an operating device 26, a controller 30, an imaging device 40, and an output device 50. Further, when the excavator 100 is remotely controlled, the support device 150 may include the communication device 60.
  • the controller 30 includes an operation log providing unit 301 and a work support unit 302 as functional units.
  • the controller 30 includes only the former of the operation log providing unit 301 and the work support unit 302, and the excavator 100 that includes only the latter. May exist.
  • the former excavator 100 acquires an operation log of the excavator 100 used for the operator operation support function (a function related to generating the trajectory of the work part) of the latter excavator 100, and provides it to the information processing device 200. It has only a function.
  • the information processing device 200 includes an operation log acquisition unit 2001, an operation log storage unit 2002, a teacher data generation unit 2003, a machine learning unit 2004, a learned model storage unit 2005, and a distribution unit 2006 as functional units. include.
  • the operation log providing unit 301 is a functional unit that acquires the operation log of the shovel 100, which is the original data for realizing the function of generating the target trajectory of the working part of the excavator 100, and provides it to the information processing device 200.
  • a relatively experienced operator hereinafter referred to as an "expert" for convenience
  • who has a long history of operating the excavator 100 obtains an operation log when operating the excavator 100 and stores it in the information processing device 200. provide.
  • the operation log of the shovel 100 includes data regarding the shape of the work target around the shovel 100 and data regarding the operation of the shovel 100 performed on the shape of the work target.
  • the data regarding the shape of the work target around the shovel 100 is, for example, data regarding the topographical shape of the ground at the work site as the work target of the shovel 100.
  • the data regarding the shape of the work target of the shovel 100 is, for example, image data of the imaging device 40 or three-dimensional data of the work target obtained from the image data.
  • the data regarding the operation of the shovel 100 is, for example, data representing the details of the operator's operation.
  • the data representing the contents of the operator's operation may be, for example, the output data of the operating pressure sensor 29 in the case of the hydraulic pilot type operating device 26 or the output data of the operating device 26 (operation signal data) in the case of the electric operating device 26. It is. Furthermore, the data regarding the operation of the shovel 100 may be data representing the operation state of the shovel 100 actually executed in response to an operation by an operator.
  • the data representing the operating state of the shovel 100 is, for example, the output data of the sensors S1 to S5, or the data related to the posture state of the shovel 100 obtained from the output data of the sensors S1 to S5.
  • the operation log providing section 301 includes an operation log recording section 301A, an operation log storage section 301B, and an operation log transmission section 301C.
  • the operation log recording unit 301A acquires the operation log of the shovel 100 and records it in the operation log storage unit 301B. For example, every time an operation of the shovel 100 is executed, the operation log recording unit 301A records data regarding the shape of the work target around the shovel 100 at the start of execution of the operation or immediately before execution, and data regarding the operation of the shovel 100. is recorded in the operation log storage unit 301B.
  • the operation log storage unit 301B stores operation logs of the shovel 100 in an accumulated manner.
  • the operation log storage unit 301B stores data regarding the shape of a work target around the shovel 100 for each operation of the shovel 100 and data regarding the operation of the shovel 100 in a linked form.
  • the operation log storage unit 301B stores record data representing the correspondence relationship between data regarding the shape of the work target around the shovel 100 and data regarding the operation of the shovel 100 for each operation of the shovel 100.
  • a database of logs may be constructed.
  • operation log in the operation log storage unit 301B that has been transmitted to the information processing device 200 by the operation log transmission unit 301C may be deleted after the fact.
  • the operation log transmission unit 301C transmits the operation log of the shovel 100, which is stored in the operation log storage unit 301B, to the information processing device 200 via the communication device 60.
  • the operation log transmitting unit 301C also transmits to the information processing device 200 data regarding the shape of the work target around the shovel 100 for each operation of the shovel 100 and record data representing the correspondence between the data regarding the operations of the shovel 100. You may.
  • the operation log transmitting unit 301C may store the operation log in the operation log storage unit 301B in response to a signal requesting transmission of the operation log of the excavator 100 (hereinafter referred to as a “transmission request signal”) received from the information processing device 200.
  • the operation log of the shovel 100 that has not been sent yet is sent to the information processing device 200.
  • the operation log transmitting unit 301C may automatically transmit the unsent operation log of the shovel 100, which is stored in the operation log storage unit 301B, to the information processing device 200 at a predetermined timing.
  • the predetermined timing is, for example, when the excavator 100 stops operating (the key switch is turned off) or when the excavator 100 starts operating (the key switch is turned on).
  • the operation log acquisition unit 2001 acquires the operation log of the shovel 100, which is received from the shovel 100.
  • the operation log acquisition unit 2001 acquires the operation log of the excavator 100 by transmitting a transmission request signal to the excavator 100 in response to an operation by the user of the information processing device 200 or automatically at a predetermined timing. Further, the operation log acquisition unit 2001 may acquire an operation log of the excavator 100 that is transmitted from the excavator 100 at a predetermined timing.
  • the operation log storage unit 2002 stores operation logs of the shovel 100 acquired by the operation log acquisition unit 2001 in an accumulated manner.
  • the operation log storage unit 2002 as in the case of the operation log storage unit 301B, data regarding the shape of the work object around the shovel 100 for each operation of the shovel 100 and data regarding the operation of the shovel 100 are linked. remembered in form.
  • the teacher data generation unit 2003 generates teacher data for machine learning based on the operation log of the excavator 100 in the operation log storage unit 2002.
  • the teacher data generation unit 2003 may automatically generate the teacher data by batch processing, or may generate the teacher data in response to input from the user of the information processing apparatus 200.
  • the training data includes data regarding the shape of the work object around the shovel 100 as input data, and data representing the trajectory (trajectory) of the work part of the shovel 100 corresponding to the input data as correct answer output data (hereinafter referred to as "correct answer"). data").
  • the data representing the trajectory of the working part of the shovel 100 is generated based on the output data of the sensors S1 to S5, which is included in the data regarding the operation of the shovel 100, for example.
  • the machine learning unit 2004 performs machine learning on the base learning model based on the set of teacher data generated by the teacher data generation unit 2003 to generate a learned model LM.
  • the learned model LM includes, for example, a neural network such as a DNN (Deep Neural Network).
  • the learned model LM outputs data representing the target trajectory of the work part of the shovel 100 and predicted probabilities using, for example, data regarding the type of operation of the shovel 100 and the shape of the work object around the shovel 100 as input conditions. .
  • the trained model LM also includes data representing the target trajectory of the work area of the shovel 100, and the types of movements of the shovel 100, such as digging movement, sweeping movement, horizontal pulling movement, compaction movement, broom movement, etc. include.
  • the sweeping operation is, for example, an operation in which the attachment AT is operated to push the bucket 6 forward along the ground, thereby sweeping out earth and sand forward on the back surface of the bucket 6. In the sweeping operation, for example, the attachment AT lowers the boom 4 and opens the arm 5.
  • the horizontal pulling operation is, for example, an operation of smoothing out unevenness on the surface of the ground by operating the attachment AT and moving the toe of the bucket 6 along the ground substantially horizontally toward the user.
  • the attachment AT performs a raising operation of the boom 4 and a closing operation of the arm 5.
  • the rolling operation is, for example, an operation of operating the attachment AT and pressing the back surface of the bucket 6 against the ground.
  • the compaction operation is performed by pushing the bucket 6 forward along the ground, sweeping the earth and sand to a predetermined position in front with the back of the bucket 6, and then rolling the ground at a predetermined position with the back of the bucket 6. It may also be a pressing motion.
  • the attachment AT lowers the boom 4 when pressing against the ground.
  • the broom operation is, for example, an operation in which the upper rotating body 3 is operated and the bucket 6 is rotated left and right while keeping it along the ground. Further, the broom operation may be, for example, an operation of pushing the bucket 6 forward while operating the attachment AT and the upper rotating body 3 and rotating the bucket 6 alternately left and right while keeping the bucket 6 along the ground.
  • the upper revolving body 3 alternately repeats left and right turning movements.
  • the boom 4 may be lowered and the arm 5 may be opened, as in the case of the sweeping operation.
  • the predicted probability represents the reliability of the target trajectory of the work part. This is because, as described above, the learned model LM reflects the operation log when the shovel 100 is operated by an expert, and it is considered that the higher the prediction probability, the higher the reliability of the target trajectory of the work part. Furthermore, the predicted probability represents the degree of suitability of the target trajectory of the work area to the shape of the work object around the shovel 100 as an input condition.
  • the learned model LM is generated for each task such as land leveling work, slope construction work, and embankment work.
  • the trained model storage unit 2005 stores the trained model LM output by the machine learning unit 2004.
  • the distribution unit 2006 distributes the learned model LM to the excavator 100.
  • the distribution unit 2006 distributes the most recently generated learned model LM to the excavator 100. Further, the distribution unit 2006 may distribute the latest learned model LM in the learned model storage unit 2005 to the shovel 100 in response to a signal received from the excavator 100 requesting distribution of the learned model LM. .
  • the work support unit 302 is a functional unit that supports the work of the shovel 100 operated by the operator.
  • the work support unit 302 includes a learned model storage unit 302A, a work target shape acquisition unit 302B, a motion selection unit 302F, a condition setting unit 302G, a trajectory generation unit 302H, a display processing unit 302I, and a motion control unit 302E. including.
  • the trained model storage unit 302A stores the trained model LM distributed from the information processing device 200 and received through the communication device 60.
  • the work target shape acquisition unit 302B acquires data regarding the shape of the work target (terrain shape) around the shovel 100 based on the output of the imaging device 40 and the distance sensor.
  • the motion selection unit 302F selects (the type of motion) of the shovel 100 from among a plurality of motion candidates in response to input from the user (operator) received through the input device 52. Further, when the excavator 100 is remotely controlled, the motion selection unit 302F selects one of a plurality of motion candidates in response to an input from a user (operator) using the remote operation support device 300, which is received through the communication device 60.
  • the operation of the shovel 100 may be selected from the following.
  • the condition setting unit 302G sets preconditions regarding the generation of the target trajectory of the work area of the excavator 100 in response to input from the user (operator) received through the input device 52.
  • the condition setting unit 302G sets preconditions regarding the target trajectory of the excavator 100 in response to input from the user (operator) using the remote operation support device 300, which is received through the communication device 60. May be set.
  • the condition setting unit 302G may automatically set the preconditions without depending on input from the user.
  • the condition setting unit 302G uses a history of data of combinations of data regarding the shape of the work target and preconditions set for the shape of the work target as a training data set to create a trained model. Based on this, the preconditions may be automatically set. In this case, the condition setting unit 302G may automatically modify the preconditions that have already been set in response to input from the user.
  • the precondition is, for example, a point in the topographical shape around the shovel 100 that is a target during the operation of the shovel 100 (hereinafter referred to as a "target point").
  • the target points include, for example, a target point through which a work part passes when the shovel 100 is in operation, a point corresponding to a place where earth and sand from the bucket 6 is to be discharged when the shovel 100 is in operation, and the like.
  • the preconditions may include the attitude state of the bucket 6 at the target point (the attitude angle of the bucket 6).
  • the trajectory generation unit 302H generates a target shape of the excavator 100 based on the data acquired by the work target shape acquisition unit 302B, the target shape of the work target, the motion selected by the motion selection unit 302F, and the preconditions set by the condition setting unit 302G.
  • the target trajectory of the work part is generated.
  • the target shape of the work target is, for example, a target construction surface representing a flat or curved surface as a construction target, which is formed by work on the work target (the ground at the work site).
  • the target shape of the work object is set, for example, by inputting parameters representing a plane or a curved surface from the user through the input device 52 or the remote operation support device 300 (input device).
  • the target shape of the work object may be distributed to the excavator 100 from an external device such as the information processing device 200, for example.
  • the trajectory generation unit 302H uses as input data the data acquired by the work target shape acquisition unit 302B, the target shape of the work target, the motion selected by the motion selection unit 302F, and the preconditions set by the condition setting unit 302G. Apply the learned model LM.
  • the trajectory generation unit 302H uses the target shape of the work target, the motion selected by the motion selection unit 302F, and the data acquired by the work target shape acquisition unit 302B as input data, and generates a target shape of the work part from the learned model LM.
  • the trajectory may also be output. Then, the trajectory generation unit 302H may generate the target trajectory of the work area by optimizing the output target trajectory of the work area using the preconditions set by the condition setting unit 302G.
  • the display processing unit 302I causes the display device 50A to display a screen related to the generation of the target trajectory of the work area of the excavator 100 (see FIGS. 17 and 18).
  • the user can input operations related to the operation of the shovel 100 selected by the operation selection section 302F and the preconditions set by the condition setting section 302G, for example.
  • the screen related to the generation of the target trajectory of the working part of the shovel 100 includes a screen that displays the target trajectory of the working part of the shovel 100, which is generated by the trajectory generating section 302H.
  • the display processing unit 302I may transmit data related to a screen related to generation of a target trajectory of the work area of the excavator 100 to the remote operation support device 300 via the communication device 60. Thereby, the display processing unit 302I can cause the remote operation support device 300 (display device) to display a screen related to the generation of the target trajectory of the work part of the excavator 100.
  • the display processing unit 302I displays screens 700 and 800 on the display device 50A.
  • the screen 700 includes images TG, CG, SB, and PB1.
  • the image TG is an image representing the topographical shape around the excavator 100.
  • the image TG is generated based on data acquired by the work target shape acquisition unit 302B.
  • the image TG is an image representing the topographic shape around the shovel 100 as seen from a predetermined viewpoint outside the shovel 100.
  • the predetermined viewpoint can be changed, for example, according to input from the user (operator) through the input device 52 or the remote operation support device 300 (input device).
  • the image CG is an image representing the shovel 100.
  • the positional relationship between images TG and CG is set to be the same as the actual positional relationship between the topographical shape around the shovel 100 and the shovel 100.
  • Image SB is an image representing candidate motions that can be selected by motion selection section 302F.
  • the image SB includes images SB1 to SB5 representing operations of the excavator 100 candidate that may be performed during land leveling work.
  • the image SB1 is an operation icon for the user to select a combination of the excavation operation and the earth removal operation of the shovel 100.
  • the image SB2 is an operation icon for the user to select the sweeping operation of the shovel 100.
  • the image SB3 is an operation icon for the user to select the horizontal pulling operation of the shovel 100.
  • the image SB4 is an operation icon for the user to select the broom operation of the shovel 100.
  • the image SB5 is an operation icon for the user to select the rolling operation of the shovel 100.
  • the user can specify any one of the images SB1 to SB5 through the input device 52 or the remote operation support device 300 (input device), and select the operation of the shovel 100 through the operation selection section 302F.
  • the input device 52 or the remote operation support device 300 input device
  • the operation selection section 302F selects the operation of the shovel 100 through the operation selection section 302F.
  • there is a cursor (matte texture in the figure) on image SB1 and a state is represented in which a combination of excavation and earth removal operations of the shovel 100 is selected.
  • image SB may display operation icons for the user to select other actions different from the actions corresponding to images SB1 to SB5. Further, in place of at least one of the images SB1 to SB5, an operation icon for the user to select another operation different from the images SB1 to SB5 may be displayed on the image SB.
  • the image TG includes image regions TG1 and TG2.
  • the image region TG1 represents a convex portion on the ground around (in front of) the shovel 100.
  • the image region TG2 represents a recess on the ground around (in front of) the shovel 100.
  • the screen 700 includes images P1 and P2 corresponding to the target point.
  • Image P1 is displayed superimposed on image region TG1.
  • Image P2 is displayed superimposed on image region TG2.
  • the user can set the target points corresponding to the images P1 and P2 through the condition setting section 302G by specifying the image regions TG1 and TG2 through the input device 52 or the remote operation support device 300 (input device). I can do it.
  • the user may be able to set the target point in the entire range of the image TG through the input device 52 or the remote operation support device 300 (input device), or may be able to set the target point in the entire range of the image TG. It may be possible to set the target point within a range that can be reached. In the former case, when the target point is set in a range within the entire range of the image TG that can reach the work area of the bucket 6, display content indicating an error (warning) is displayed on the screen 700.
  • an image representing a range within the entire range of the image TG that can be reached by the work site of the bucket 6 may be displayed superimposed on the image TG. Further, the user may be able to delete a set target point through the input device 52 or the remote operation support device 300 (input device).
  • images RC1 and RC2 are displayed on the screen 700 so as to accompany images P1 and P2, respectively.
  • the image RC1 is an image representing the preconditions for the attitude angle of the bucket 6 corresponding to the target point corresponding to the image P1.
  • the image RC2 is an image representing the preconditions for the attitude angle of the bucket 6 corresponding to the target point corresponding to the image P2.
  • the user can set the premise of the posture angle of the bucket 6 corresponding to the images RC1 and RC2 through the condition setting unit 302G. Conditions can be set.
  • the image PB1 is an icon for operation to cause the trajectory generation unit 302H to generate the trajectory of the work part of the bucket 6 in accordance with the operation selected on the screen 800 and the preconditions set on the screen 800.
  • the user can generate the target trajectory of the bucket 6 through the trajectory generation unit 302H by operating the image PB1 through the input device 52 or the remote operation support device 300 (input device).
  • the screen 800 like the screen 700, includes images TG, CG, and SB. Further, like the screen 700, the screen 800 includes images P1 and P2. Further, the screen 800 includes images OG, CG1, and PB2.
  • Image OG is an image representing the target trajectory.
  • the image CG1 is an image representing the bucket 6 that is displayed along with the image OG corresponding to the target trajectory.
  • image OG represents a target trajectory for realizing an operation of scooping up earth and sand at a target point corresponding to image P1 by an excavation operation and discharging it to a target point corresponding to image P2.
  • the image OG may be expressed in such a way that the trajectory portion where the working part of the bucket 6 comes into contact with the earth and sand can be distinguished from the other trajectory portions.
  • the track portion where the working part of the bucket 6 comes into contact with earth and sand and the other track portions are displayed in different colors.
  • the image PB2 is an icon for operation to reproduce on the screen 800 with a moving image (animation) the operation of moving the work part of the bucket 6 along the target trajectory corresponding to the image OG.
  • the user can create a video in which the image CG1 corresponding to the bucket 6 moves along the image OG corresponding to the target trajectory.
  • the image can be displayed on screen 800. Therefore, the user can determine whether or not the target trajectory is appropriate by checking the moving image.
  • the shape of the work target (topographic shape) after the operation of the shovel 100 to move the bucket 6 along the target trajectory may be displayed.
  • the screen 800 shows the predicted shape of the work target around the shovel 100 (terrain shape) after the shovel 100 is operated so as to move the bucket 6 along the target trajectory corresponding to the image OG. may be displayed.
  • the user can more appropriately determine whether the target trajectory is appropriate by checking the moving image and the predicted change in topographical shape.
  • the screen 900 like the screen 800, includes images TG, CG, and SB. Further, like the screen 800, the screen 900 includes images P1 and P2. Further, the screen 900 includes images OG and CG1. Further, the screen 900 includes an image PB3.
  • the image PB3 is an operation icon for automatically operating the shovel 100 so as to move the working part of the bucket 6 along the target trajectory corresponding to the image OG.
  • the user can control the shovel so that the bucket 6 moves on a target trajectory corresponding to the image OG through the operation control unit 302E. 100 can be operated automatically.
  • the operation control unit 302E causes the work area of the bucket 6 to move along the target trajectory generated by the trajectory generation unit 302H in response to input from the user (operator) received through the input device 52.
  • the excavator 100 is operated as follows. Specifically, the operation control unit 302E controls the hydraulic control valve 31 while grasping the position of the work area of the bucket 6 from the outputs of the sensors S1 to S5, etc., so as to control the work of the bucket 6 along the target trajectory.
  • the shovel 100 can be operated so that the part moves.
  • the operation control unit 302E operates the shovel 100 so that the working part of the bucket 6 moves along the target trajectory generated by the trajectory generation unit 302H in response to an instruction to execute an operation from the user. .
  • the operation control unit 302E moves the work area of the bucket 6 along the target trajectory generated by the trajectory generation unit 302H in accordance with the operation of the operating device 26 or a remote control signal in a manner that assists the operator's operation.
  • the excavator 100 may be operated as follows.
  • FIG. 20 is a flowchart schematically illustrating an example of processing related to generation of a target trajectory of a working part of the excavator 100.
  • the flowchart in FIG. 20 is repeatedly executed, for example, during operation of a function related to generation of a target trajectory for the work area of the excavator 100.
  • the function related to the generation of the target trajectory of the working part of the excavator 100 is activated (activated) by inputting an instruction from the user, which is received through the input device 52 or the remote operation support device 300 (input device).
  • step S302 an example of an acquisition step
  • the work object shape acquisition unit 302B acquires data regarding the shape of the work object around the shovel 100 from the imaging device 40.
  • step S302 Upon completion of the process in step S302, the controller 30 proceeds to step S304.
  • step S304 an example of a display step
  • the display processing unit 302I displays a setting screen (for example, screen 700) including an image representing the topographical shape on the display device 50A or in a remote control support system based on the data acquired in step S302.
  • the information is displayed on the device 300 (display device).
  • step S304 Upon completion of the process in step S304, the controller 30 proceeds to step S306.
  • step S306 the motion selection unit 302F selects one motion from among the plurality of candidate motions of the shovel 100 in response to the input from the user.
  • step S306 Upon completion of the process in step S306, the controller 30 proceeds to step S308.
  • step S308 the condition setting unit 302G (an example of a setting step) sets preconditions regarding the generation of the target trajectory of the work area of the shovel 100 in response to input from the user.
  • step S308 Upon completion of the process in step S308, the controller 30 proceeds to step S310.
  • steps S306 and S308 may be changed depending on the input from the user.
  • step S310 (an example of a generation step), the trajectory generation unit 302H generates a target trajectory for the work area of the shovel 100 for the operation selected in step S306 under the preconditions set in step S308.
  • step S310 Upon completion of the process in step S310, the controller 30 proceeds to step S312.
  • step S312 the display processing unit 302I displays the image representing the target trajectory generated in step S310 on the display device 50A or the remote operation support device 300 (display device).
  • step S312 Upon completion of the process in step S312, the controller 30 proceeds to step S314.
  • step S314 the controller 30 determines whether an operation input instructing the shovel 100 to perform an operation to move the working part of the bucket 6 along the target trajectory generated in step S312 has been received. .
  • the controller 30 receives an operation input instructing the execution of the operation of the excavator 100, the process proceeds to step S316, and other operations, specifically, an operation for generating a target trajectory again, are accepted. If so, the process returns to step S306.
  • step S316 the operation control unit 302E controls the hydraulic control valve 31 to automatically operate the shovel 100 so that the working part of the bucket 6 moves on the target trajectory generated in the process of the most recent step S310. .
  • step S316 the controller 30 ends the process of the current flowchart.
  • the shovel 100 may be in a state where the working part of the bucket 6 is at the end point of the target trajectory.
  • the posture may be returned to the state before the start of the process in step S314.
  • the support device 150 (controller 30) can generate a target trajectory that matches the shape of the work target. Therefore, the working efficiency of the shovel 100 can be improved.
  • the support device 150 can generate a target trajectory that meets preconditions such as the target point and the attitude angle of the bucket 6. Therefore, a more appropriate target trajectory can be generated by reflecting the user's judgment and intention based on the shape of the work target.
  • the support device 150 can automatically operate the shovel 100 so that the working part of the bucket 6 moves along the generated target trajectory. Therefore, even an inexperienced operator can make the shovel 100 perform appropriate operations, and as a result, the working efficiency of the shovel 100 can be further improved.
  • the trajectory generation unit 302H may generate the target trajectory without using the learned model LM.
  • a trajectory that serves as a reference for a work part is defined in advance for each of a plurality of candidate motions, and the trajectory generation section 302H generates a trajectory that serves as a reference for the motion selected by the motion selection section 302F for a work target around the excavator 100.
  • the target trajectory of the work area may be generated by optimizing data on the shape (topographical shape) of the target area and preconditions.
  • data regarding the shape of the work target around the shovel 100 may be acquired based on data from an imaging device, a distance sensor, etc. installed outside the shovel 100.
  • data from an imaging device or a distance sensor installed at a work site is received by the excavator 100 through the communication device 60, so that the work object shape acquisition unit 302B acquires data regarding the shape of the work object around the shovel 100.
  • data from an imaging device or a distance sensor mounted on a drone flying above the work site is received by the excavator 100 through the communication device 60, so that the work object shape acquisition unit 302B acquires information about the surroundings of the excavator 100. It is possible to obtain data regarding the shape of the work target.
  • the support device 150 may generate a trajectory of a working part of a working machine other than the excavator 100.
  • the support device 150 may have the above-described function of proposing the operation of the working machine in addition to the function of generating the trajectory of the working part of the working machine.
  • part or all of the functions of the support device 150 may be transferred to the remote operation support device 300.
  • part or all of the functions of the support device 150 may be transferred to the information processing device 200.
  • Patent Document 1 it is necessary to set teaching points by operating a shovel and operating a working machine, and as a result, it takes a lot of time and effort to generate the target trajectory of the work part. There is a possibility that it will happen.
  • the support device includes an acquisition section, a display section, a setting section, and a generation section.
  • the support device is, for example, the support device 150.
  • the acquisition unit is, for example, a work target shape acquisition unit 302B.
  • the display section is, for example, a display device 50A.
  • the setting section is, for example, a condition setting section 302G.
  • the generation unit is, for example, a trajectory generation unit 302H.
  • the acquisition unit acquires data regarding the topographic shape of the construction target around the working machine.
  • the working machine is, for example, a shovel 100.
  • the display unit displays an image representing the topographical shape of the construction target based on the data acquired by the acquisition unit.
  • the setting unit sets a point (target point) that is a target during operation of the working machine in the topographical shape of the construction target. Then, the generation unit generates a trajectory of the working part of the working machine based on the data acquired by the acquisition unit, the target shape of the construction target, and the points set by the setting unit.
  • the trajectory of the working part of the working machine can be generated more easily. Further, since the target point is set, it is possible to generate a more appropriate trajectory of the work part that reflects the judgment and intention of the user who visually recognized the shape of the work target around the work machine, for example. Therefore, the working efficiency of the working machine can be improved.
  • the support device may include a selection section.
  • the selection unit may select one motion from among a plurality of candidate motions of the working machine in response to an input from the user.
  • the generation unit may generate a trajectory of the work part due to one operation of the work machine based on the data acquired by the acquisition unit and the points set by the setting unit.
  • the support device can define the operation of the work machine and generate the trajectory of the work part. Therefore, the working efficiency of the working machine can be further improved.
  • the setting unit determines, in response to input from the user, a point (target point) that is a target during operation of the working machine in the topographical shape around the working machine, and a work part corresponding to the point. You may also set the posture of
  • the support device can generate a more appropriate trajectory of the work part that reflects the user's judgment and intention regarding the posture of the work part.
  • the work efficiency of the working machine can be further improved.
  • the display unit may display an image representing the trajectory generated by the generation unit, superimposed on an image representing the topographical shape around the working machine.
  • the display unit may display a moving image of the work part moving along the trajectory generated by the generation unit, superimposed on an image representing the topographical shape around the work machine.
  • the user can more appropriately judge the validity of the generated trajectory by checking the moving image.
  • the display unit may display an image representing the predicted shape of the work target around the work machine after the work part moves on the trajectory generated by the generation unit.
  • the validity of the generated trajectory can be more appropriately determined by checking the shape of the work target after the work part moves along the generated trajectory.
  • the support device may include a control unit that automatically operates the work machine based on the trajectory generated by the generation unit in response to user input.
  • the control unit is, for example, the operation control unit 302E.
  • the working machine may include the above-mentioned operation support device.
  • the work machine can more easily generate the target trajectory and improve work efficiency.

Abstract

Provided is a technology that makes it possible to more appropriately operate a work machine. According to one embodiment of the present disclosure, a controller 30 comprises a work target shape acquisition unit 302B that acquires data about the shape of a work target in the surroundings of a shovel 100, an inference unit 302C that infers operations that are suited to the shape of the work target in the surroundings of the shovel 100 from among a plurality of candidate operations for the shovel 100 for prescribed work on the basis of the data about the shape of the work target in the surroundings of the shovel 100 using a trained model LM that has been trained by machine learning using training data about operations of the shovel 100 under operation by a relatively highly proficient operator as associated with the shapes of work targets, and a suggestion unit 302D that suggests one or more operations from among the plurality of candidate operations to a user on the basis of the inference results from the inference unit 302C.

Description

支援装置、作業機械、プログラムSupport equipment, working machines, programs
 本開示は、作業機械の支援装置等に関する。 The present disclosure relates to a support device for a working machine, etc.
 ショベル等の作業機械が知られている(例えば、特許文献1参照)。 Working machines such as shovels are known (for example, see Patent Document 1).
特開2020-029769号公報Japanese Patent Application Publication No. 2020-029769
 ところで、作業機械を用いてある作業を行う場合、地形形状等の作業対象の状態に応じて、複数の動作を使い分ける必要が生じる。例えば、ショベルの整地作業の場合、バケットの背面で土砂を前方に掃き出す動作、水平引き動作、転圧動作等が用いられる。そのため、例えば、経験の浅いオペレータの場合、複数の候補の動作の中から適切な動作を選択するのが難しい状況が生じ、その結果、作業効率の低下等を招来する可能性がある。 By the way, when performing a certain work using a work machine, it is necessary to use a plurality of motions depending on the state of the work object, such as the topographical shape. For example, in the case of soil leveling work with an excavator, the action of sweeping earth and sand forward with the back of the bucket, the horizontal pulling action, the compaction action, etc. are used. Therefore, for example, in the case of an inexperienced operator, it may be difficult to select an appropriate motion from among a plurality of candidate motions, which may result in a decrease in work efficiency.
 そこで、上記課題に鑑み、作業機械をより適切に動作させることが可能な技術を提供することを目的とする。 Therefore, in view of the above problems, it is an object of the present invention to provide a technology that allows working machines to operate more appropriately.
 上記目的を達成するため、本開示の一実施形態では、
 作業機械の周辺の作業対象の形状に関するデータを取得する取得部と、
 前記取得部により取得されるデータに基づき、所定の作業における作業機械の複数の候補の動作の中の動作をユーザに提案する提案部と、を備える、
 支援装置が提供される。
To achieve the above object, in one embodiment of the present disclosure,
an acquisition unit that acquires data regarding the shape of a work target around the work machine;
a proposal unit that proposes to the user an operation among a plurality of candidate operations of the working machine in a predetermined work based on the data acquired by the acquisition unit;
Assistive equipment is provided.
 また、本開示の他の実施形態では、
 作業機械の周辺の作業対象の形状に関するデータを取得する取得部と、
 前記取得部により取得されるデータに基づき、所定の作業における作業機械の複数の候補の動作の中の動作をユーザに提案する提案部と、を備える、
 作業機械が提供される。
Additionally, in other embodiments of the present disclosure,
an acquisition unit that acquires data regarding the shape of a work target around the work machine;
a proposal unit that proposes to the user an operation among a plurality of candidate operations of the working machine in a predetermined work based on the data acquired by the acquisition unit;
Working machinery is provided.
 また、本開示の更に他の実施形態では、
 支援装置に、
 作業機械の周辺の作業対象の形状に関するデータを取得する取得ステップと、
 前記取得ステップで取得されるデータに基づき、所定の作業における前記作業機械の複数の候補の動作の中の動作をユーザに提案する提案ステップと、を実行させる、
 プログラムが提供される。
In still other embodiments of the present disclosure,
support equipment,
an acquisition step of acquiring data regarding the shape of the work object around the work machine;
a proposing step of proposing to a user an action among a plurality of candidate actions of the working machine in a predetermined work based on the data obtained in the obtaining step;
program will be provided.
 上述の実施形態によれば、作業機械をより適切に動作させることができる。 According to the embodiment described above, the work machine can be operated more appropriately.
ショベル稼働支援システムの一例を示す図である。FIG. 1 is a diagram showing an example of a shovel operation support system. ショベルの一例を示す上面図である。It is a top view showing an example of a shovel. ショベルの遠隔操作に関する構成の一例を示す図である。FIG. 2 is a diagram showing an example of a configuration related to remote control of an excavator. ショベルのハードウェア構成の一例を示すブロック図である。FIG. 2 is a block diagram showing an example of the hardware configuration of an excavator. 情報処理装置のハードウェア構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a hardware configuration of an information processing device. ショベル稼働支援システムの動作提案機能に関する機能構成の第1例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing a first example of a functional configuration regarding a motion proposal function of the excavator operation support system. ショベルの動作提案機能に関する処理の第1例を概略的に示すフローチャートである。2 is a flowchart schematically showing a first example of processing related to a motion suggestion function of the shovel. ショベル稼働支援システムの動作提案機能に関する機能構成の第2例を示す機能ブロック図である。FIG. 3 is a functional block diagram showing a second example of a functional configuration regarding a motion proposal function of the excavator operation support system. ショベルの動作提案機能に関する処理の第2例を概略的に示すフローチャートである。12 is a flowchart schematically showing a second example of processing related to a motion suggestion function of the shovel. ショベルの動作提案機能に関する、表示装置の表示内容の第1例を示す図である。FIG. 3 is a diagram illustrating a first example of display content on a display device regarding a shovel motion suggestion function. ショベルの動作提案機能に関する、表示装置の表示内容の第2例を示す図である。FIG. 7 is a diagram illustrating a second example of display content on the display device regarding the shovel motion suggestion function. ショベルの動作提案機能に関する、表示装置の表示内容の第3例を示す図である。It is a figure which shows the 3rd example of the display content of a display device regarding the motion suggestion function of an excavator. ショベルの動作提案機能に関する、表示装置の表示内容の第3例を示す図である。It is a figure which shows the 3rd example of the display content of a display device regarding the motion suggestion function of an excavator. ショベルの動作提案機能に関する、表示装置の表示内容の第4例を示す図である。It is a figure which shows the 4th example of the display content of a display device regarding the motion suggestion function of an excavator. ショベルの動作提案機能に関する、表示装置の表示内容の第5例を示す図である。It is a figure which shows the 5th example of the display content of a display device regarding the motion suggestion function of an excavator. ショベルの作業部位の目標軌道の生成に関する機能構成の一例を示す機能ブロック図である。FIG. 2 is a functional block diagram illustrating an example of a functional configuration related to generation of a target trajectory of a working part of an excavator. ショベルの作業部位の目標軌道の生成に関する画面の一例を示す図である。FIG. 3 is a diagram illustrating an example of a screen related to generation of a target trajectory of a working part of an excavator. ショベルの作業部位の目標軌道の生成に関する画面の他の例を示す図である。FIG. 7 is a diagram illustrating another example of a screen related to generation of a target trajectory of a working part of an excavator. ショベルの作業部位の目標軌道の生成に関する画面の更に他の例を示す図である。FIG. 7 is a diagram illustrating still another example of a screen related to generation of a target trajectory of a working part of an excavator. ショベルの作業部位の目標軌道の生成に関する処理の一例を概略的に示すフローチャートである。2 is a flowchart schematically showing an example of processing related to generation of a target trajectory of a working part of an excavator.
 以下、図面を参照して実施形態について説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 [稼働支援システムの概要]
 まず、図1~図3を参照して、本実施形態に係る稼働支援システムSYSの概要について説明をする。
[Overview of operation support system]
First, an overview of the operation support system SYS according to this embodiment will be explained with reference to FIGS. 1 to 3.
 図1は、稼働支援システムSYSの一例を示す図である。図1において、ショベル100は、左側面図が示される。図2は、ショベル100の一例を示す上面図である。図3は、ショベルの遠隔操作に関する構成の一例を示す図である。以下、ショベル100の上面視でアタッチメントATが延び出す方向(図2の上方向)を"前"と規定して、ショベル100における方向、或いは、ショベル100から見た方向を説明する場合がある。 FIG. 1 is a diagram showing an example of the operation support system SYS. In FIG. 1, the excavator 100 is shown in a left side view. FIG. 2 is a top view showing an example of the shovel 100. FIG. 3 is a diagram showing an example of a configuration related to remote control of an excavator. Hereinafter, the direction on the shovel 100 or the direction seen from the shovel 100 may be described by defining the direction in which the attachment AT extends (upward direction in FIG. 2) as seen from the top of the shovel 100 as "front".
 図1に示すように、稼働支援システムSYSは、ショベル100と、情報処理装置200とを含む。 As shown in FIG. 1, the operation support system SYS includes an excavator 100 and an information processing device 200.
 稼働支援システムSYSは、情報処理装置200を用いて、ショベル100と連携し、ショベル100の稼働に関する支援を行う。 The operation support system SYS uses the information processing device 200 to cooperate with the excavator 100 and provides support regarding the operation of the excavator 100.
 稼働支援システムSYSに含まれるショベル100は、1台であってもよいし、複数台であってもよい。 The number of excavators 100 included in the operation support system SYS may be one or multiple.
 ショベル100は、稼働支援システムSYSにおいて、稼働に関する支援の対象の作業機械である。 The excavator 100 is a work machine to which operation support is provided in the operation support system SYS.
 図1、図2に示すように、ショベル100は、下部走行体1と、上部旋回体3と、ブーム4、アーム5、及び、バケット6を含むアタッチメントATと、キャビン10とを備える。 As shown in FIGS. 1 and 2, the excavator 100 includes a lower traveling body 1, an upper rotating body 3, an attachment AT including a boom 4, an arm 5, and a bucket 6, and a cabin 10.
 下部走行体1は、クローラ1Cを用いて、ショベル100を走行させる。クローラ1Cは、左側のクローラ1CL及び右側のクローラ1CRを含む。クローラ1CLは、走行油圧モータ1MLで油圧駆動される。同様に、クローラ1CLは、走行油圧モータ1MRで油圧駆動される。これにより、下部走行体1は、自走することができる。 The lower traveling body 1 causes the excavator 100 to travel using the crawler 1C. The crawler 1C includes a left crawler 1CL and a right crawler 1CR. The crawler 1CL is hydraulically driven by a travel hydraulic motor 1ML. Similarly, the crawler 1CL is hydraulically driven by a travel hydraulic motor 1MR. Thereby, the lower traveling body 1 can self-propel.
 上部旋回体3は、旋回機構2を介して下部走行体1に旋回可能に搭載される。例えば、上部旋回体3は、旋回油圧モータ2Mで旋回機構2が油圧駆動されることにより、下部走行体1に対して旋回する。 The upper rotating body 3 is rotatably mounted on the lower traveling body 1 via the rotating mechanism 2. For example, the upper rotating structure 3 turns with respect to the lower traveling structure 1 by hydraulically driving the turning mechanism 2 by the turning hydraulic motor 2M.
 ブーム4は、左右方向に沿う回転軸を中心として俯仰可能なように、上部旋回体3の前部中央に取り付けられる。アーム5は、左右方向に沿う回転軸を中心として回転可能なように、ブーム4の先端に取り付けられる。バケット6は、左右方向に沿う回転軸を中心として回転可能なように、アーム5の先端に取り付けられる。 The boom 4 is attached to the center of the front part of the upper revolving body 3 so that it can be raised and raised about a rotation axis along the left-right direction. The arm 5 is attached to the tip of the boom 4 so as to be rotatable about a rotation axis extending in the left-right direction. The bucket 6 is attached to the tip of the arm 5 so as to be rotatable about a rotation axis extending in the left-right direction.
 バケット6は、エンドアタッチメントの一例であり、例えば、掘削作業に用いられる。 The bucket 6 is an example of an end attachment, and is used, for example, in excavation work.
 バケット6は、ショベル100の作業内容に応じて、適宜交換可能な態様で、アーム5の先端に取り付けられている。つまり、アーム5の先端には、バケット6に代えて、バケット6とは異なる種類のバケット、例えば、相対的に大きい大型バケット、法面用バケット、浚渫用バケット等が取り付けられてもよい。また、アーム5の先端には、バケット以外の種類のエンドアタッチメント、例えば、攪拌機、ブレーカ、クラッシャー等が取り付けられてもよい。また、アーム5と、エンドアタッチメントとの間には、例えば、クイックカップリングやチルトローテータ等の予備アタッチメントが設けられてもよい。 The bucket 6 is attached to the tip of the arm 5 in such a manner that it can be replaced as appropriate depending on the work content of the shovel 100. That is, instead of the bucket 6, a bucket of a different type than the bucket 6, such as a relatively large bucket, a slope bucket, a dredging bucket, etc., may be attached to the tip of the arm 5. Further, an end attachment of a type other than the bucket, such as an agitator, a breaker, a crusher, etc., may be attached to the tip of the arm 5. Furthermore, a preliminary attachment such as a quick coupling or a tiltrotator may be provided between the arm 5 and the end attachment.
 ブーム4、アーム5、及び、バケット6は、それぞれ、ブームシリンダ7、アームシリンダ8、及び、バケットシリンダ9により油圧駆動される。 The boom 4, arm 5, and bucket 6 are hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9, respectively.
 キャビン10は、オペレータが搭乗し、ショベル100を操作するための操縦室である。キャビン10は、例えば、上部旋回体3の前部左側に搭載される。 The cabin 10 is a control room where an operator boards and operates the shovel 100. The cabin 10 is mounted, for example, on the front left side of the upper revolving body 3.
 例えば、ショベル100は、キャビン10に搭乗するオペレータの操作に応じて、下部走行体1(即ち、左右の一対のクローラ1CL,1CR)、上部旋回体3、ブーム4、アーム5、及びバケット6等の被駆動要素を動作させる。 For example, the excavator 100 moves the lower traveling body 1 (that is, the pair of left and right crawlers 1CL, 1CR), the upper revolving body 3, the boom 4, the arm 5, the bucket 6, etc. to operate the driven element of.
 また、ショベル100は、キャビン10に搭乗するオペレータによって操作可能に構成されるのに代えて、或いは、加えて、ショベル100の外部から遠隔操作(リモート操作)が可能に構成されてもよい。ショベル100が遠隔操作される場合、キャビン10の内部は、無人状態であってもよい。以下、オペレータの操作には、キャビン10のオペレータの操作装置26に対する操作、及び外部のオペレータの遠隔操作の少なくとも一方が含まれる前提で説明を進める。 Further, instead of being configured to be operable by an operator riding in the cabin 10, or in addition to being configured to be operable by an operator riding in the cabin 10, the shovel 100 may be configured to be remotely controlled from outside the shovel 100. When the excavator 100 is remotely controlled, the interior of the cabin 10 may be unmanned. The following description will proceed on the premise that the operator's operations include at least one of an operator's operation on the operating device 26 by an operator in the cabin 10 and a remote control by an external operator.
 例えば、図3に示すように、遠隔操作には、遠隔操作支援装置300で行われるショベル100のアクチュエータに関する操作入力によって、ショベル100が操作される態様が含まれる。 For example, as shown in FIG. 3, the remote control includes a mode in which the shovel 100 is operated by an operation input regarding the actuator of the shovel 100 performed by the remote control support device 300.
 遠隔操作支援装置300は、例えば、ショベル100の作業を外部から管理する管理センタ等に設けられる。また、遠隔操作支援装置300は、可搬型の操作端末であってもよく、この場合、オペレータは、ショベル100の周辺からショベル100の作業状況を直接確認しながらショベル100の遠隔操作を行うことができる。 The remote operation support device 300 is provided, for example, in a management center or the like that manages the work of the excavator 100 from the outside. Further, the remote operation support device 300 may be a portable operation terminal, in which case the operator can remotely control the excavator 100 while directly checking the working status of the excavator 100 from around the excavator 100. can.
 ショベル100は、例えば、後述の通信装置60を通じて、後述の撮像装置40が出力する撮像画像に基づくショベル100の前方を含む周辺の様子を表す画像(以下、「周辺画像」)を遠隔操作支援装置300に送信してよい。そして、遠隔操作支援装置300は、ショベル100から受信される画像(周辺画像)を表示装置に表示させてよい。また、ショベル100のキャビン10の内部の出力装置50(表示装置50A)に表示される各種の情報画像(情報画面)は、同様に、遠隔操作支援装置300の表示装置にも表示されてよい。これにより、遠隔操作支援装置300を利用するオペレータは、例えば、表示装置に表示されるショベル100の周辺の様子を表す画像や情報画面等の表示内容を確認しながら、ショベル100を遠隔操作することができる。そして、ショベル100は、通信装置60により遠隔操作支援装置300から受信される、遠隔操作の内容を表す遠隔操作信号に応じて、アクチュエータを動作させ、下部走行体1、上部旋回体3、ブーム4、アーム5、及びバケット6等の被駆動要素を駆動してよい。 For example, the excavator 100 transmits an image representing the surroundings including the front of the excavator 100 (hereinafter referred to as "surrounding image") based on a captured image output by the imaging device 40 (described later) to the remote operation support device through the communication device 60 (described later). 300. Then, the remote operation support device 300 may display the image (surrounding image) received from the excavator 100 on the display device. Further, various information images (information screens) displayed on the output device 50 (display device 50A) inside the cabin 10 of the excavator 100 may be similarly displayed on the display device of the remote operation support device 300. As a result, an operator using the remote operation support device 300 can, for example, remotely operate the shovel 100 while checking the display contents such as an image or information screen showing the surroundings of the shovel 100 displayed on the display device. I can do it. Then, the excavator 100 operates the actuators to operate the lower traveling structure 1, the upper rotating structure 3, and the boom 4 in response to a remote control signal indicating the content of the remote control received from the remote control support device 300 through the communication device 60. , arm 5, and bucket 6 may be driven.
 また、遠隔操作には、例えば、ショベル100の周囲の人(例えば、作業者)のショベル100に対する外部からの音声入力やジェスチャ入力等によって、ショベル100が操作される態様が含まれてよい。具体的には、ショベル100は、自機に搭載される音声入力装置(例えば、マイクロフォン)やジェスチャ入力装置(例えば、撮像装置)等を通じて、周囲の作業者等により発話される音声や作業者等により行われるジェスチャ等を認識する。そして、ショベル100は、認識した音声やジェスチャ等の内容に応じて、アクチュエータを動作させ、下部走行体1(左右のクローラ1C)、上部旋回体3、ブーム4、アーム5、及びバケット6等の被駆動要素を駆動してもよい。 Further, the remote control may include, for example, a mode in which the shovel 100 is operated by external voice input or gesture input to the shovel 100 by a person (for example, a worker) around the shovel 100. Specifically, the excavator 100 receives sounds uttered by surrounding workers, etc. through an audio input device (for example, a microphone), a gesture input device (for example, an imaging device), etc. mounted on the excavator 100. Recognizes gestures etc. performed by Then, the excavator 100 operates the actuator according to the content of the recognized voice or gesture, and moves the lower traveling body 1 (left and right crawlers 1C), the upper rotating body 3, the boom 4, the arm 5, the bucket 6, etc. The driven element may also be driven.
 また、ショベル100の作業が遠隔監視されてもよい。この場合、遠隔操作支援装置300と同様の機能を有する遠隔監視支援装置が設けられてもよい。遠隔監視支援装置は、例えば、情報処理装置200である。これにより、遠隔監視支援装置のユーザである監視者は、遠隔監視支援装置の表示装置に表示される周辺画像を確認しながら、ショベル100の作業の状況を監視することができる。また、例えば、監視者は、安全性の観点から必要と判断した場合、遠隔監視支援装置の入力装置を用いて、所定の入力を行うことによって、ショベル100のオペレータによる操作に介入し緊急停止させることができる。 Additionally, the work of the shovel 100 may be remotely monitored. In this case, a remote monitoring support device having the same functions as remote operation support device 300 may be provided. The remote monitoring support device is, for example, the information processing device 200. Thereby, the supervisor who is the user of the remote monitoring support device can monitor the working status of the excavator 100 while checking the peripheral image displayed on the display device of the remote monitoring support device. For example, if the supervisor determines that it is necessary from a safety perspective, the supervisor may intervene in the operator's operation of the excavator 100 and bring it to an emergency stop by inputting a predetermined input using the input device of the remote monitoring support device. be able to.
 情報処理装置200は、ショベル100と通信を行うことにより相互に連携し、ショベル100の稼働に関する支援を行う。 The information processing device 200 cooperates with the shovel 100 by communicating with the shovel 100, and provides support regarding the operation of the shovel 100.
 情報処理装置200は、例えば、ショベル100の作業現場内の管理事務所、或いは、ショベル100の作業現場とは異なる場所にある、ショベル100の稼働状況等を管理する管理センタ等に設置されるサーバや管理用の端末装置である。管理用の端末装置は、例えば、デスクトップ型のPC(Personal Computer)等の定置型の端末装置であってもよいし、タブレット端末、スマートフォン、ラップトップ型のPC等の可搬型の端末装置(携帯端末)であってもよい。後者の場合、作業現場の作業者や作業を監督する監督者や作業現場を管理する管理者等は、可搬型の情報処理装置200を所持して作業現場内を移動することができる。また、後者の場合、オペレータは、例えば、可搬型の情報処理装置200をショベル100のキャビンに持ち込むことができる。また、情報処理装置200は、例えば、遠隔監視用、後述のオペレータに対するショベル100の動作の提案機能に関する処理用等の用途に応じて、複数設けられてもよい。 The information processing device 200 is, for example, a server installed in a management office within the work site of the excavator 100 or a management center that manages the operating status of the excavator 100, etc. located at a location different from the work site of the excavator 100. It is a terminal device for management purposes. The management terminal device may be a stationary terminal device such as a desktop PC (Personal Computer), or a portable terminal device such as a tablet terminal, smartphone, or laptop PC. terminal). In the latter case, workers at the work site, supervisors who supervise work, managers who manage the work site, and the like can carry the portable information processing device 200 and move around the work site. In the latter case, the operator can, for example, bring the portable information processing device 200 into the cabin of the excavator 100. Further, a plurality of information processing apparatuses 200 may be provided depending on the purpose, for example, for remote monitoring, for processing regarding a function of suggesting the operation of the shovel 100 to an operator, which will be described later.
 情報処理装置200は、例えば、ショベル100から稼働状態に関するデータを取得する。これにより、情報処理装置200は、ショベル100の稼働状態を把握し、ショベル100の異常の有無等を監視することができる。また、情報処理装置200は、後述の表示装置208を通じて、ショベル100の稼働状態に関するデータを表示し、ユーザに確認させることができる。 The information processing device 200 acquires data regarding the operating state from the excavator 100, for example. Thereby, the information processing device 200 can grasp the operating state of the shovel 100 and monitor whether there is any abnormality in the shovel 100 or the like. Further, the information processing device 200 can display data regarding the operating state of the excavator 100 for the user to confirm through a display device 208, which will be described later.
 また、情報処理装置200は、例えば、ショベル100にコントローラ30等の処理で利用されるプログラムや参照データ等の各種データをショベル100に送信する。これにより、ショベル100は、情報処理装置200からダウンロードされる各種データを用いて、ショベル100の稼働に関する各種の処理を行うことができる。 Furthermore, the information processing device 200 transmits to the shovel 100, for example, various data such as programs and reference data used in processing by the controller 30, etc. of the shovel 100. Thereby, the excavator 100 can perform various processes related to the operation of the excavator 100 using various data downloaded from the information processing device 200.
 また、情報処理装置200は、例えば、後述のオペレータに対するショベル100の動作の提案に関する機能(以下、「動作提案機能」)を支援するための処理を行う(図6参照)。詳細は、後述する。 Additionally, the information processing device 200 performs processing to support, for example, a function related to proposing a motion of the shovel 100 to an operator (hereinafter referred to as "motion proposal function"), which will be described later (see FIG. 6). Details will be described later.
 [稼働支援システムのハードウェア構成]
 次に、図1~図3に加えて、図4、図5を参照して、稼働支援システムSYSのハードウェア構成について説明する。
[Hardware configuration of operation support system]
Next, the hardware configuration of the operation support system SYS will be described with reference to FIGS. 4 and 5 in addition to FIGS. 1 to 3.
  <ショベルのハードウェア構成>
 図4は、ショベル100のハードウェア構成の一例を示すブロック図である。
<Excavator hardware configuration>
FIG. 4 is a block diagram showing an example of the hardware configuration of shovel 100.
 尚、図4では、機械的動力が伝達される経路は二重線、油圧アクチュエータを駆動する高圧の作動油が流れる経路は実線、パイロット圧が伝達される経路は破線、電気信号が伝達される経路は点線でそれぞれ示される。 In Figure 4, the path through which mechanical power is transmitted is a double line, the path through which high-pressure hydraulic oil that drives the hydraulic actuator flows is a solid line, the path through which pilot pressure is transmitted is a broken line, and the path through which electrical signals are transmitted is shown. Each route is indicated by a dotted line.
 ショベル100は、被駆動要素の油圧駆動に関する油圧駆動系、被駆動要素の操作に関する操作系、ユーザとの情報のやり取りに関するユーザインタフェース系、外部との通信に関する通信系、及び各種制御に関する制御系等のそれぞれの構成要素を含む。 The excavator 100 includes a hydraulic drive system for hydraulically driving the driven elements, an operation system for operating the driven elements, a user interface system for exchanging information with the user, a communication system for communicating with the outside, a control system for various controls, etc. Contains each component of.
  ≪油圧駆動系≫
 図4に示すように、ショベル100の油圧駆動系は、上述の如く、下部走行体1(左右のクローラ1C)、上部旋回体3、及びアタッチメントAT等の被駆動要素のそれぞれを油圧駆動する油圧アクチュエータHAを含む。また、本実施形態に係るショベル100の油圧駆動系は、エンジン11と、レギュレータ13と、メインポンプ14と、コントロールバルブ17とを含む。
≪Hydraulic drive system≫
As shown in FIG. 4, the hydraulic drive system of the excavator 100 includes hydraulic pressure for hydraulically driving each of the driven elements such as the lower traveling body 1 (left and right crawlers 1C), the upper rotating body 3, and the attachment AT, as described above. Includes actuator HA. Further, the hydraulic drive system of the excavator 100 according to the present embodiment includes an engine 11, a regulator 13, a main pump 14, and a control valve 17.
 油圧アクチュエータHAには、走行油圧モータ1ML,1MR、旋回油圧モータ2M、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9等が含まれる。 The hydraulic actuator HA includes travel hydraulic motors 1ML and 1MR, a swing hydraulic motor 2M, a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, and the like.
 尚、ショベル100は、油圧アクチュエータHAの一部又は全部が電動アクチュエータに置換されてもよい。つまり、ショベル100は、ハイブリッドショベルや電動ショベルであってもよい。 Note that in the excavator 100, part or all of the hydraulic actuator HA may be replaced with an electric actuator. In other words, the excavator 100 may be a hybrid excavator or an electric excavator.
 エンジン11は、ショベル100の原動機であり、油圧駆動系におけるメイン動力源である。エンジン11は、例えば、軽油を燃料とするディーゼルエンジンである。エンジン11は、例えば、上部旋回体3の後部に搭載される。エンジン11は、後述するコントローラ30による直接或いは間接的な制御下で、予め設定される目標回転数で一定回転し、メインポンプ14及びパイロットポンプ15を駆動する。 The engine 11 is the prime mover of the excavator 100 and is the main power source in the hydraulic drive system. The engine 11 is, for example, a diesel engine that uses light oil as fuel. The engine 11 is mounted, for example, at the rear of the upper revolving structure 3. The engine 11 rotates at a predetermined target rotation speed under direct or indirect control by a controller 30, which will be described later, and drives the main pump 14 and the pilot pump 15.
 尚、エンジン11に代えて、或いは、加えて、他の原動機(例えば、電動機)等がショベル100に搭載されてもよい。 Note that in place of or in addition to the engine 11, another prime mover (for example, an electric motor) or the like may be mounted on the excavator 100.
 レギュレータ13は、コントローラ30の制御下で、メインポンプ14の吐出量を制御(調節)する。例えば、レギュレータ13は、コントローラ30からの制御指令に応じて、メインポンプ14の斜板の角度(以下、「傾転角」)を調節する。 The regulator 13 controls (adjusts) the discharge amount of the main pump 14 under the control of the controller 30. For example, the regulator 13 adjusts the angle of the swash plate (hereinafter referred to as "tilt angle") of the main pump 14 in accordance with a control command from the controller 30.
 メインポンプ14は、高圧油圧ラインを通じてコントロールバルブ17に作動油を供給する。メインポンプ14は、例えば、エンジン11と同様、上部旋回体3の後部に搭載される。メインポンプ14は、上述の如く、エンジン11により駆動される。メインポンプ14は、例えば、可変容量式油圧ポンプであり、上述の如く、コントローラ30の制御下で、レギュレータ13により斜板の傾転角が調節されることによりピストンのストローク長が調整され、吐出流量や吐出圧が制御される。 The main pump 14 supplies hydraulic oil to the control valve 17 through a high-pressure hydraulic line. The main pump 14 is, for example, mounted at the rear of the upper revolving structure 3, like the engine 11. The main pump 14 is driven by the engine 11 as described above. The main pump 14 is, for example, a variable displacement hydraulic pump, and as described above, the stroke length of the piston is adjusted by adjusting the tilt angle of the swash plate by the regulator 13 under the control of the controller 30, and the stroke length of the piston is adjusted. The flow rate and discharge pressure are controlled.
 コントロールバルブ17は、オペレータの操作装置26に対する操作や遠隔操作の内容、或いは、自動運転機能に対応する操作指令に応じて、油圧アクチュエータHAを駆動する。コントロールバルブ17は、例えば、上部旋回体3の中央部に搭載される。コントロールバルブ17は、上述の如く、高圧油圧ラインを介してメインポンプ14と接続され、メインポンプ14から供給される作動油を、オペレータの操作、或いは、自動運転機能に対応する操作指令に応じて、それぞれの油圧アクチュエータに選択的に供給する。具体的には、コントロールバルブ17は、メインポンプ14から油圧アクチュエータHAのそれぞれに供給される作動油の流量と流れる方向を制御する複数の制御弁(「方向切換弁」とも称する)を含む。 The control valve 17 drives the hydraulic actuator HA in accordance with the contents of the operator's operation on the operating device 26 or remote control, or the operation command corresponding to the automatic operation function. The control valve 17 is mounted, for example, in the center of the upper revolving body 3. As described above, the control valve 17 is connected to the main pump 14 via a high-pressure hydraulic line, and controls the hydraulic fluid supplied from the main pump 14 according to an operator's operation or an operation command corresponding to an automatic operation function. , selectively supplying each hydraulic actuator. Specifically, the control valve 17 includes a plurality of control valves (also referred to as "direction switching valves") that control the flow rate and flow direction of the hydraulic oil supplied from the main pump 14 to each of the hydraulic actuators HA.
  ≪操作系≫
 図4に示すように、ショベル100の操作系は、パイロットポンプ15と、操作装置26と、油圧制御弁31と、シャトル弁32と、油圧制御弁33とを含む。
≪Operation system≫
As shown in FIG. 4, the operating system of the excavator 100 includes a pilot pump 15, an operating device 26, a hydraulic control valve 31, a shuttle valve 32, and a hydraulic control valve 33.
 パイロットポンプ15は、パイロットライン25を介して各種油圧機器にパイロット圧を供給する。パイロットポンプ15は、例えば、エンジン11と同様、上部旋回体3の後部に搭載される。パイロットポンプ15は、例えば、固定容量式油圧ポンプであり、上述の如く、エンジン11により駆動される。 The pilot pump 15 supplies pilot pressure to various hydraulic devices via the pilot line 25. The pilot pump 15 is, for example, mounted at the rear of the upper revolving structure 3, like the engine 11. The pilot pump 15 is, for example, a fixed capacity hydraulic pump, and is driven by the engine 11 as described above.
 尚、パイロットポンプ15は、省略されてもよい。この場合、メインポンプ14から吐出される相対的に高い圧力の作動油が所定の減圧弁により減圧された後の相対的に低い圧力の作動油がパイロット圧として各種油圧機器に供給されてよい。 Note that the pilot pump 15 may be omitted. In this case, the relatively high pressure hydraulic oil discharged from the main pump 14 may be reduced in pressure by a predetermined pressure reducing valve, and then the relatively low pressure hydraulic oil may be supplied as pilot pressure to various hydraulic devices.
 操作装置26は、キャビン10の操縦席付近に設けられ、オペレータが各種被駆動要素の操作を行うために用いられる。具体的には、操作装置26は、オペレータがそれぞれの被駆動要素を駆動する油圧アクチュエータHAの操作を行うために用いられ、その結果として、油圧アクチュエータHAの駆動対象の被駆動要素のオペレータによる操作を実現することができる。操作装置26は、それぞれの被駆動要素(油圧アクチュエータHA)を操作するためのペダル装置やレバー装置を含む。 The operating device 26 is provided near the cockpit of the cabin 10 and is used by the operator to operate various driven elements. Specifically, the operating device 26 is used for an operator to operate the hydraulic actuator HA that drives each driven element, and as a result, the operator operates the driven element to be driven by the hydraulic actuator HA. can be realized. The operating device 26 includes a pedal device and a lever device for operating each driven element (hydraulic actuator HA).
 例えば、図4に示すように、操作装置26は、油圧パイロット式である。具体的には、操作装置26は、パイロットライン25及びそこから分岐するパイロットライン25Aを通じてパイロットポンプ15から供給される作動油を利用し、操作内容に応じたパイロット圧を二次側のパイロットライン27Aに出力する。パイロットライン27Aは、シャトル弁32の一方の入口ポートに接続され、シャトル弁32の出口ポートに接続されるパイロットライン27を介して、コントロールバルブ17に接続される。これにより、コントロールバルブ17には、シャトル弁32を介して、操作装置26における各種被駆動要素(油圧アクチュエータHA)に関する操作内容に応じたパイロット圧が入力されうる。そのため、コントロールバルブ17は、オペレータ等による操作装置26に対する操作内容に応じて、それぞれの油圧アクチュエータHAを駆動することができる。 For example, as shown in FIG. 4, the operating device 26 is of a hydraulic pilot type. Specifically, the operating device 26 utilizes hydraulic oil supplied from the pilot pump 15 through the pilot line 25 and a pilot line 25A branching from the pilot line 25, and applies pilot pressure according to the operation content to the pilot line 27A on the secondary side. Output to. Pilot line 27A is connected to one inlet port of shuttle valve 32 and connected to control valve 17 via pilot line 27, which is connected to an outlet port of shuttle valve 32. Thereby, a pilot pressure can be input to the control valve 17 via the shuttle valve 32 in accordance with the operation contents regarding various driven elements (hydraulic actuator HA) in the operating device 26. Therefore, the control valve 17 can drive each hydraulic actuator HA according to the operation performed on the operating device 26 by an operator or the like.
 また、操作装置26は、電気式であってもよい。この場合、パイロットライン27A、シャトル弁32、及び油圧制御弁33は省略される。具体的には、操作装置26は、操作内容に応じた電気信号(以下、「操作信号」)を出力し、操作信号は、コントローラ30に取り込まれる。そして、コントローラ30は、操作信号の内容に応じた制御指令、つまり、操作装置26に対する操作内容に応じた制御信号を油圧制御弁31に出力する。これにより、油圧制御弁31からコントロールバルブ17に操作装置26の操作内容に応じたパイロット圧が入力され、コントロールバルブ17は、操作装置26の操作内容に応じて、それぞれの油圧アクチュエータHAを駆動することができる。 Additionally, the operating device 26 may be electrical. In this case, the pilot line 27A, shuttle valve 32, and hydraulic control valve 33 are omitted. Specifically, the operating device 26 outputs an electrical signal (hereinafter referred to as an "operating signal") according to the content of the operation, and the operating signal is taken into the controller 30. Then, the controller 30 outputs a control command according to the content of the operation signal, that is, a control signal according to the content of the operation on the operating device 26 to the hydraulic control valve 31. As a result, pilot pressure corresponding to the operation details of the operating device 26 is inputted from the hydraulic control valve 31 to the control valve 17, and the control valve 17 drives each hydraulic actuator HA according to the operation details of the operating device 26. be able to.
 また、コントロールバルブ17に内蔵される、それぞれの油圧アクチュエータHAを駆動する制御弁(方向切換弁)は、電磁ソレノイド式であってもよい。この場合、操作装置26から出力される操作信号がコントロールバルブ17に、即ち、電磁ソレノイド式の制御弁に直接入力されてもよい。 Furthermore, the control valves (directional switching valves) built into the control valve 17 and driving the respective hydraulic actuators HA may be of an electromagnetic solenoid type. In this case, the operation signal output from the operation device 26 may be directly input to the control valve 17, that is, to an electromagnetic solenoid type control valve.
 また、上述の如く、油圧アクチュエータHAの一部又は全部は電動アクチュエータに置換されてもよい。この場合、コントローラ30は、操作装置26の操作内容や遠隔操作信号で規定される遠隔操作の内容に応じた制御指令を電動アクチュエータ或いは電動アクチュエータを駆動するドライバ等に出力してよい。また、ショベル100が遠隔操作される場合、操作装置26は省略されてもよい。 Furthermore, as described above, part or all of the hydraulic actuator HA may be replaced with an electric actuator. In this case, the controller 30 may output a control command according to the operation content of the operating device 26 or the remote control content specified by the remote control signal to the electric actuator or a driver driving the electric actuator. Moreover, when the shovel 100 is remotely controlled, the operating device 26 may be omitted.
 油圧制御弁31は、操作装置26の操作対象の被駆動要素(油圧アクチュエータHA)ごと且つ被駆動要素(油圧アクチュエータHA)の駆動方向(例えば、ブーム4の上げ方向及び下げ方向)ごとに設けられる。つまり、複動式である油圧アクチュエータHAごとに、2つの油圧制御弁31が設けられる。油圧制御弁31は、例えば、パイロットポンプ15とコントロールバルブ17との間のパイロットライン25Bに設けられ、その流路面積(即ち、作動油が通流可能な断面積)を変更可能に構成されてよい。これにより、油圧制御弁31は、パイロットライン25Bを通じて供給されるパイロットポンプ15の作動油を利用して、所定のパイロット圧を二次側のパイロットライン27Bに出力することができる。そのため、図4に示すように、油圧制御弁31は、パイロットライン27Bとパイロットライン27の間のシャトル弁32を通じて、間接的に、コントローラ30からの制御信号に応じた所定のパイロット圧をコントロールバルブ17に作用させることができる。よって、コントローラ30は、油圧制御弁31から操作装置26の操作内容に応じたパイロット圧をコントロールバルブ17に供給させ、オペレータの操作に基づくショベル100の動作を実現することができる。また、コントローラ30は、油圧制御弁31から自動運転機能に対応する操作指令に応じたパイロット圧をコントロールバルブ17に供給させ、自動運転機能によるショベル100の動作を実現することができる。 The hydraulic control valve 31 is provided for each driven element (hydraulic actuator HA) to be operated by the operating device 26 and for each drive direction of the driven element (hydraulic actuator HA) (for example, the raising direction and lowering direction of the boom 4). . That is, two hydraulic control valves 31 are provided for each double-acting hydraulic actuator HA. The hydraulic control valve 31 is provided, for example, in the pilot line 25B between the pilot pump 15 and the control valve 17, and is configured to be able to change its flow path area (that is, the cross-sectional area through which hydraulic oil can flow). good. Thereby, the hydraulic control valve 31 can output a predetermined pilot pressure to the secondary side pilot line 27B using the hydraulic oil of the pilot pump 15 supplied through the pilot line 25B. Therefore, as shown in FIG. 4, the hydraulic control valve 31 indirectly applies a predetermined pilot pressure according to a control signal from the controller 30 to the control valve through the shuttle valve 32 between the pilot line 27B and the pilot line 27. 17. Therefore, the controller 30 can cause the hydraulic control valve 31 to supply pilot pressure to the control valve 17 according to the operation details of the operating device 26, thereby realizing the operation of the shovel 100 based on the operator's operation. Furthermore, the controller 30 can cause the hydraulic control valve 31 to supply pilot pressure to the control valve 17 according to an operation command corresponding to the automatic operation function, thereby realizing operation of the excavator 100 according to the automatic operation function.
 また、コントローラ30は、例えば、油圧制御弁31を制御し、ショベル100の遠隔操作を実現してもよい。具体的には、コントローラ30は、通信装置60によって、遠隔操作支援装置300から受信される遠隔操作信号で指定される遠隔操作の内容に対応する制御信号を油圧制御弁31に出力する。これにより、コントローラ30は、油圧制御弁31から遠隔操作の内容に対応するパイロット圧をコントロールバルブ17に供給させ、オペレータの遠隔操作に基づくショベル100の動作を実現することができる。 Furthermore, the controller 30 may control the hydraulic control valve 31 to realize remote control of the excavator 100, for example. Specifically, the controller 30 outputs to the hydraulic control valve 31 a control signal corresponding to the content of the remote operation specified by the remote operation signal received from the remote operation support device 300, using the communication device 60. Thereby, the controller 30 can cause the hydraulic control valve 31 to supply pilot pressure corresponding to the content of the remote control to the control valve 17, and realize the operation of the shovel 100 based on the operator's remote control.
 シャトル弁32は、2つの入口ポートと1つの出口ポートを有し、2つの入口ポートに入力されたパイロット圧のうちの高い方のパイロット圧を有する作動油を出口ポートに出力させる。シャトル弁32は、操作装置26の操作対象の被駆動要素(油圧アクチュエータHA)ごと且つ被駆動要素(油圧アクチュエータHA)の駆動方向ごとに設けられる。シャトル弁32の2つの入口ポートのうちの一方が操作装置26(具体的には、操作装置26に含まれる上述のレバー装置やペダル装置)の二次側のパイロットライン27Aに接続され、他方が油圧制御弁31の二次側のパイロットライン27Bに接続される。シャトル弁32の出口ポートは、パイロットライン27を通じて、コントロールバルブ17の対応する制御弁のパイロットポートに接続される。対応する制御弁とは、シャトル弁32の一方の入口ポートに接続される上述のレバー装置或いはペダル装置の操作対象である油圧アクチュエータを駆動する制御弁である。そのため、これらのシャトル弁32は、それぞれ、操作装置26の二次側のパイロットライン27Aのパイロット圧と油圧制御弁31の二次側のパイロットライン27Bのパイロット圧のうちの高い方を、対応する制御弁のパイロットポートに作用させることができる。つまり、コントローラ30は、操作装置26の二次側のパイロット圧よりも高いパイロット圧を油圧制御弁31から出力させることで、オペレータの操作装置26に対する操作に依らず、対応する制御弁を制御することができる。よって、コントローラ30は、オペレータの操作装置26に対する操作状態に依らず、被駆動要素(下部走行体1、上部旋回体3、アタッチメントAT)の動作を制御し、遠隔操作機能を実現することができる。 The shuttle valve 32 has two inlet ports and one outlet port, and outputs the hydraulic oil having the higher pilot pressure of the pilot pressures input to the two inlet ports to the outlet port. The shuttle valve 32 is provided for each driven element (hydraulic actuator HA) to be operated by the operating device 26 and for each drive direction of the driven element (hydraulic actuator HA). One of the two inlet ports of the shuttle valve 32 is connected to the pilot line 27A on the secondary side of the operating device 26 (specifically, the above-mentioned lever device or pedal device included in the operating device 26), and the other is It is connected to the pilot line 27B on the secondary side of the hydraulic control valve 31. The outlet port of shuttle valve 32 is connected to the pilot port of the corresponding control valve of control valve 17 through pilot line 27 . The corresponding control valve is a control valve that drives a hydraulic actuator that is operated by the above-mentioned lever device or pedal device connected to one inlet port of the shuttle valve 32. Therefore, these shuttle valves 32 each control the higher of the pilot pressure in the pilot line 27A on the secondary side of the operating device 26 and the pilot pressure on the pilot line 27B on the secondary side of the hydraulic control valve 31, respectively. It can act on the pilot port of the control valve. In other words, the controller 30 controls the corresponding control valve by causing the hydraulic control valve 31 to output a pilot pressure higher than the pilot pressure on the secondary side of the operating device 26, regardless of the operator's operation on the operating device 26. be able to. Therefore, the controller 30 can control the operation of the driven elements (the lower traveling body 1, the upper rotating body 3, the attachment AT) and realize a remote control function, regardless of the operation state of the operating device 26 by the operator. .
 油圧制御弁33は、操作装置26とシャトル弁32とを接続するパイロットライン27Aに設けられる。油圧制御弁33は、例えば、その流路面積を変更可能なように構成される。油圧制御弁33は、コントローラ30から入力される制御信号に応じて動作する。これにより、コントローラ30は、オペレータにより操作装置26が操作されている場合に、操作装置26から出力されるパイロット圧を強制的に減圧させることができる。そのため、コントローラ30は、操作装置26が操作されている場合であっても、操作装置26の操作に対応する油圧アクチュエータの動作を強制的に抑制させたり停止させたりすることができる。また、コントローラ30は、例えば、操作装置26が操作されている場合であっても、操作装置26から出力されるパイロット圧を減圧させ、油圧制御弁31から出力されるパイロット圧よりも低くすることができる。そのため、コントローラ30は、油圧制御弁31及び油圧制御弁33を制御することで、例えば、操作装置26の操作内容とは無関係に、所望のパイロット圧をコントロールバルブ17内の制御弁のパイロットポートに確実に作用させることができる。よって、コントローラ30は、例えば、油圧制御弁31に加えて、油圧制御弁33を制御することで、ショベル100の遠隔操作機能や自動運転機能をより適切に実現することができる。 The hydraulic control valve 33 is provided in the pilot line 27A that connects the operating device 26 and the shuttle valve 32. The hydraulic control valve 33 is configured to be able to change its flow path area, for example. The hydraulic control valve 33 operates according to a control signal input from the controller 30. Thereby, the controller 30 can forcibly reduce the pilot pressure output from the operating device 26 when the operating device 26 is being operated by the operator. Therefore, even when the operating device 26 is being operated, the controller 30 can forcibly suppress or stop the operation of the hydraulic actuator corresponding to the operation of the operating device 26. Further, the controller 30 can reduce the pilot pressure output from the operating device 26 to be lower than the pilot pressure output from the hydraulic control valve 31, for example, even when the operating device 26 is being operated. I can do it. Therefore, by controlling the hydraulic control valve 31 and the hydraulic control valve 33, the controller 30 applies a desired pilot pressure to the pilot port of the control valve in the control valve 17, for example, regardless of the operation details of the operating device 26. It can be made to work reliably. Therefore, by controlling the hydraulic control valve 33 in addition to the hydraulic control valve 31, for example, the controller 30 can more appropriately realize the remote control function and automatic operation function of the excavator 100.
  ≪ユーザインタフェース系≫
 図4に示すように、ショベル100のユーザインタフェース系は、操作装置26と、出力装置50と、入力装置52とを含む。
≪User interface system≫
As shown in FIG. 4, the user interface system of excavator 100 includes an operating device 26, an output device 50, and an input device 52.
 出力装置50は、ショベル100のユーザ(例えば、キャビン10のオペレータや外部の遠隔操作のオペレータ)やショベル100の周辺の人(例えば、作業者や作業車両の運転者)等に向けて各種情報を出力する。 The output device 50 outputs various information to the user of the excavator 100 (for example, the operator in the cabin 10 or an external remote control operator) and the people around the excavator 100 (for example, a worker or a driver of a work vehicle). Output.
 例えば、出力装置50は、視覚的な方法で各種情報を出力する照明機器や表示装置50A(図6参照)等を含む。照明機器は、例えば、警告灯(インジケータランプ)等である。表示装置50Aは、例えば、液晶ディスプレイや有機EL(Electroluminescence)ディスプレイ等である。例えば、図2に示すように、照明機器や表示装置50Aは、キャビン10の内部に設けられ、キャビン10の内部のオペレータ等に視覚的な方法で各種情報を出力してよい。また、照明機器や表示装置50Aは、例えば、上部旋回体3の側面等に設けられ、ショベル100の周囲の作業者等に視覚的な方法で各種情報を出力してもよい。 For example, the output device 50 includes a lighting device that outputs various information in a visual manner, a display device 50A (see FIG. 6), and the like. The lighting equipment is, for example, a warning light (indicator lamp) or the like. The display device 50A is, for example, a liquid crystal display or an organic EL (Electroluminescence) display. For example, as shown in FIG. 2, lighting equipment and a display device 50A may be provided inside the cabin 10 and output various information visually to an operator inside the cabin 10. Further, the lighting equipment and the display device 50A may be provided, for example, on the side surface of the revolving upper structure 3, and may output various information visually to workers and the like around the excavator 100.
 また、例えば、出力装置50は、聴覚的な方法で各種情報を出力する音出力装置50B(図6参照)を含む。音出力装置50Bには、例えば、ブザーやスピーカ等が含まれる。音出力装置50Bは、例えば、キャビン10の内部及び外部の少なくとも一方に設けられ、キャビン10の内部のオペレータやショベル100の周囲の人(作業者等)に聴覚的な方法で各種情報を出力してよい。 Furthermore, for example, the output device 50 includes a sound output device 50B (see FIG. 6) that outputs various information in an auditory manner. The sound output device 50B includes, for example, a buzzer, a speaker, and the like. The sound output device 50B is provided, for example, in at least one of the interior and exterior of the cabin 10, and outputs various information in an auditory manner to the operator inside the cabin 10 and the people (workers, etc.) around the excavator 100. It's fine.
 また、例えば、出力装置50は、操縦席の振動等の触覚的な方法で各種情報を出力する装置を含んでもよい。 Furthermore, for example, the output device 50 may include a device that outputs various information using a tactile method such as vibration of the cockpit.
 入力装置52は、ショベル100のユーザからの各種入力を受け付け、受け付けられる入力に対応する信号は、コントローラ30に取り込まれる。入力装置52は、例えば、キャビン10の内部に設けられ、キャビン10の内部のオペレータ等からの入力を受け付ける。また、入力装置52は、例えば、上部旋回体3の側面等に設けられ、ショベル100の周辺の作業者等からの入力を受け付けてもよい。 The input device 52 accepts various inputs from the user of the excavator 100, and signals corresponding to the accepted inputs are taken into the controller 30. The input device 52 is provided inside the cabin 10 , for example, and receives input from an operator inside the cabin 10 . Further, the input device 52 may be provided, for example, on a side surface of the revolving upper structure 3, and may receive input from a worker or the like around the excavator 100.
 例えば、入力装置52は、操作入力を受け付ける操作入力装置を含む。操作入力装置には、表示装置に実装されるタッチパネル、表示装置の周囲に設置されるタッチパッド、ボタンスイッチ、レバー、トグル、操作装置26(レバー装置)に設けられるノブスイッチ等が含まれてよい。 For example, the input device 52 includes an operation input device that accepts operation input. The operation input device may include a touch panel mounted on the display device, a touch pad installed around the display device, a button switch, a lever, a toggle, a knob switch provided on the operation device 26 (lever device), etc. .
 また、例えば、入力装置52は、ユーザの音声入力を受け付ける音声入力装置を含んでもよい。音声入力装置には、例えば、マイクロフォンが含まれる。 Furthermore, for example, the input device 52 may include a voice input device that accepts voice input from the user. The audio input device includes, for example, a microphone.
 また、例えば、入力装置52は、ユーザのジェスチャ入力を受け付けるジェスチャ入力装置を含んでもよい。ジェスチャ入力装置には、例えば、ユーザが行うジェスチャの様子を撮像する撮像装置が含まれる。 Furthermore, for example, the input device 52 may include a gesture input device that accepts gesture input from the user. The gesture input device includes, for example, an imaging device that captures an image of a gesture performed by a user.
 また、例えば、入力装置52は、ユーザの生体入力を受け付ける生体入力装置を含んでもよい。生体入力には、例えば、ユーザの指紋、虹彩等の生体情報の入力が含まれる。 Furthermore, for example, the input device 52 may include a biometric input device that receives biometric input from the user. The biometric input includes, for example, input of biometric information such as a user's fingerprint or iris.
  ≪通信系≫
 図4に示すように、本実施形態に係るショベル100の通信系は、通信装置60を含む。
≪Communication system≫
As shown in FIG. 4, the communication system of the excavator 100 according to this embodiment includes a communication device 60.
 通信装置60は、外部の通信回線に接続し、ショベル100と別に設けられる装置と通信を行う。ショベル100と別に設けられる装置には、ショベル100の外部にある装置の他、ショベル100のユーザによってキャビン10に持ち込まれる可搬型の端末装置(携帯端末)が含まれてもよい。通信装置60は、例えば、4G(4th Generation)や5G(5th Generation)等の規格に準拠する移動体通信モジュールを含んでよい。また、通信装置60は、例えば、衛星通信モジュールを含んでもよい。また、通信装置60は、例えば、WiFi通信モジュールやブルートゥース(登録商標)通信モジュール等を含んでもよい。また、通信装置60は、接続対象の通信回線に合わせて、複数の通信装置を含んでもよい。 The communication device 60 is connected to an external communication line and communicates with a device provided separately from the excavator 100. Devices provided separately from the excavator 100 may include devices external to the excavator 100 as well as portable terminal devices (portable terminals) brought into the cabin 10 by the user of the excavator 100. The communication device 60 may include, for example, a mobile communication module that complies with standards such as 4G ( 4th Generation) and 5G ( 5th Generation). Further, the communication device 60 may include, for example, a satellite communication module. Further, the communication device 60 may include, for example, a WiFi communication module, a Bluetooth (registered trademark) communication module, or the like. Furthermore, the communication device 60 may include a plurality of communication devices depending on the communication lines to be connected.
 例えば、通信装置60は、作業現場に構築される局所的な通信回線を通じて、作業現場内の情報処理装置200や遠隔操作支援装置300等の外部装置と通信を行う。局所的な通信回線は、例えば、作業現場に構築される局所的な5G(いわゆるローカル5G)による移動体通信回線やWiFi6によるローカルネットワーク(LAN:Local Area Network)である。 For example, the communication device 60 communicates with external devices such as the information processing device 200 and the remote operation support device 300 in the work site through a local communication line built at the work site. The local communication line is, for example, a local 5G (so-called local 5G) mobile communication line built at a work site or a local area network (LAN) using WiFi 6.
 また、例えば、通信装置60は、作業現場を含む広域の通信回線、即ち、広域ネットワーク(WAN:Wide Area Network)を通じて、作業現場の外部にある情報処理装置200や遠隔操作支援装置300等と通信を行う。広域ネットワークは、例えば、広域の移動体通信網や衛星通信網やインターネット網等を含む。 Further, for example, the communication device 60 communicates with an information processing device 200, a remote operation support device 300, etc. located outside the work site through a wide area communication line that includes the work site, that is, a wide area network (WAN). I do. The wide area network includes, for example, a wide area mobile communication network, a satellite communication network, an Internet network, and the like.
  ≪制御系≫
 図4に示すように、ショベル100の制御系は、コントローラ30を含む。また、本実施形態に係るショベル100の制御系は、操作圧センサ29と、撮像装置40と、センサS1~S5とを含む。
≪Control system≫
As shown in FIG. 4, the control system of excavator 100 includes a controller 30. Further, the control system of the excavator 100 according to the present embodiment includes an operating pressure sensor 29, an imaging device 40, and sensors S1 to S5.
 コントローラ30は、ショベル100に関する各種制御を行う。 The controller 30 performs various controls regarding the shovel 100.
 コントローラ30の機能は、任意のハードウェア、或いは、任意のハードウェア及びソフトウェアの組み合わせ等により実現されてよい。例えば、図4に示すように、コントローラ30は、バスB1で接続される、補助記憶装置30A、メモリ装置30B、CPU(Central Processing Unit)30C、及びインタフェース装置30Dを含む。 The functions of the controller 30 may be realized by arbitrary hardware or a combination of arbitrary hardware and software. For example, as shown in FIG. 4, the controller 30 includes an auxiliary storage device 30A, a memory device 30B, a CPU (Central Processing Unit) 30C, and an interface device 30D, which are connected via a bus B1.
 補助記憶装置30Aは、不揮発性の記憶手段であり、インストールされるプログラムを格納すると共に、必要なファイルやデータ等を格納する。補助記憶装置30Aは、例えば、EEPROM(Electrically Erasable Programmable Read-Only Memory)やフラッシュメモリ等である。 The auxiliary storage device 30A is a non-volatile storage means, and stores installed programs as well as necessary files, data, etc. The auxiliary storage device 30A is, for example, an EEPROM (Electrically Erasable Programmable Read-Only Memory) or a flash memory.
 メモリ装置30Bは、例えば、プログラムの起動指示があった場合に、補助記憶装置30AのプログラムをCPU30Cが読み込み可能なようにロードする。メモリ装置30Bは、例えば、SRAM(Static Random Access Memory)である。 For example, when there is an instruction to start a program, the memory device 30B loads the program in the auxiliary storage device 30A so that it can be read by the CPU 30C. The memory device 30B is, for example, an SRAM (Static Random Access Memory).
 CPU30Cは、例えば、メモリ装置30Bにロードされるプログラムを実行し、プログラムの命令に従って、コントローラ30の各種機能を実現する。 For example, the CPU 30C executes a program loaded into the memory device 30B, and implements various functions of the controller 30 according to instructions of the program.
 インタフェース装置30Dは、例えば、ショベル100の内部の通信回線に接続するための通信インタフェースとして機能する。インタフェース装置30Dは、接続する通信回線の種類に合わせて、複数の異なる種類の通信インタフェースを含んでよい。 The interface device 30D functions as a communication interface for connecting to a communication line inside the excavator 100, for example. The interface device 30D may include a plurality of different types of communication interfaces depending on the type of communication line to be connected.
 また、インタフェース装置30Dは、記録媒体からのデータの読み取りや記録媒体へのデータの書き込みのための外部インタフェースとして機能する。記録媒体は、例えば、キャビン10の内部に設置されるコネクタに着脱可能なケーブルで接続される専用ツールである。また、記録媒体は、例えば、SDメモリカードやUSB(Universal Serial Bus)メモリ等の汎用の記録媒体であってもよい。これにより、コントローラ30の各種機能を実現するプログラムは、例えば、可搬型の記録媒体によって提供され、コントローラ30の補助記憶装置30Aにインストールされうる。また、プログラムは、通信装置60を通じて、ショベル100の外部の他のコンピュータからダウンロードされ、補助記憶装置30Aにインストールされてもよい。 Additionally, the interface device 30D functions as an external interface for reading data from and writing data to the recording medium. The recording medium is, for example, a dedicated tool that is connected to a connector installed inside the cabin 10 with a detachable cable. Further, the recording medium may be a general-purpose recording medium such as an SD memory card or a USB (Universal Serial Bus) memory. Thereby, programs for realizing various functions of the controller 30 can be provided by, for example, a portable recording medium and installed in the auxiliary storage device 30A of the controller 30. Further, the program may be downloaded from another computer outside the excavator 100 through the communication device 60 and installed in the auxiliary storage device 30A.
 尚、コントローラ30の機能の一部は、他のコントローラ(制御装置)により実現されてもよい。即ち、コントローラ30の機能は、複数のコントローラにより分散して実現される態様であってもよい。 Note that some of the functions of the controller 30 may be realized by another controller (control device). That is, the functions of the controller 30 may be realized in a distributed manner by a plurality of controllers.
 操作圧センサ29は、油圧パイロット式の操作装置26の二次側(パイロットライン27A)のパイロット圧、即ち、操作装置26におけるそれぞれの被駆動要素(油圧アクチュエータ)の操作状態に対応するパイロット圧を検出する。操作圧センサ29による操作装置26におけるそれぞれの被駆動要素(油圧アクチュエータHA)に関する操作状態に対応するパイロット圧の検出信号は、コントローラ30に取り込まれる。 The operating pressure sensor 29 detects the pilot pressure on the secondary side (pilot line 27A) of the hydraulic pilot type operating device 26, that is, the pilot pressure corresponding to the operating state of each driven element (hydraulic actuator) in the operating device 26. To detect. A detection signal of pilot pressure corresponding to the operating state of each driven element (hydraulic actuator HA) in the operating device 26 by the operating pressure sensor 29 is taken into the controller 30.
 尚、操作装置26が電気式である場合、操作圧センサ29は省略される。コントローラ30は、操作装置26から取り込まれる操作信号に基づき、操作装置26を通じたそれぞれの被駆動要素の操作状態を把握することができるからである。 Note that if the operating device 26 is an electric type, the operating pressure sensor 29 is omitted. This is because the controller 30 can grasp the operating state of each driven element through the operating device 26 based on the operating signal taken in from the operating device 26.
 撮像装置40は、ショベル100の周辺の画像を取得する。また、撮像装置40は、取得した画像及び後述の距離に関するデータに基づき、撮像範囲(画角)内におけるショベル100の周辺の物体の位置及び外形を表す三次元データ(以下、単に「物体の三次元データ」)を取得(生成)してもよい。ショベル100の周辺の物体の三次元データは、例えば、物体の表面を表す点群の座標情報のデータや距離画像データ等である。 The imaging device 40 acquires images around the excavator 100. The imaging device 40 also generates three-dimensional data (hereinafter simply referred to as "the object's three-dimensional shape") representing the position and external shape of the object around the shovel 100 within the imaging range (angle of view) based on the acquired image and distance-related data described below. "original data") may be obtained (generated). The three-dimensional data of objects around the shovel 100 is, for example, coordinate information data of a point group representing the surface of the object, distance image data, and the like.
 例えば、図2に示すように、撮像装置40は、上部旋回体3の前方を撮像するカメラ40F、上部旋回体3の後方を撮像するカメラ40B、上部旋回体3の左方を撮像するカメラ40L、及び上部旋回体3の右方を撮像するカメラ40Rを含む。これにより、撮像装置40は、ショベル100の上面視において、ショベル100を中心とする全周、即ち360度の角度方向に亘る範囲を撮像することができる。また、オペレータは、出力装置50(表示装置)や遠隔操作用表示装置を通じて、カメラ40B,40L,40Rの撮像画像や当該撮像画像に基づき生成される加工画像等の周辺画像を視認し、上部旋回体3の左方、右方、及び後方の様子を確認することができる。また、オペレータは、遠隔操作用表示装置を通じて、カメラ40Fの撮像画像や当該撮像画像に基づき生成される加工画像等の周辺画像を視認することで、バケット6を含むアタッチメントATの動作を確認しながら、ショベル100を遠隔操作することができる。以下、カメラ40F,40B,40L,40Rを包括的に、或いは、個別に、「カメラ40X」と称する場合がある。 For example, as shown in FIG. 2, the imaging device 40 includes a camera 40F that images the front of the upper revolving structure 3, a camera 40B that images the rear of the upper revolving structure 3, and a camera 40L that images the left side of the upper revolving structure 3. , and a camera 40R that images the right side of the upper rotating body 3. Thereby, the imaging device 40 can image the entire circumference of the excavator 100, that is, the range covering the angular direction of 360 degrees, when the excavator 100 is viewed from above. In addition, the operator visually recognizes peripheral images such as captured images of the cameras 40B, 40L, and 40R and processed images generated based on the captured images through the output device 50 (display device) and the remote control display device, and rotates the upper part. The left, right, and rear sides of the body 3 can be confirmed. In addition, the operator can check the operation of the attachment AT including the bucket 6 by visually checking peripheral images such as images captured by the camera 40F and processed images generated based on the captured images through the remote control display device. , the excavator 100 can be remotely controlled. Hereinafter, the cameras 40F, 40B, 40L, and 40R may be collectively or individually referred to as "camera 40X."
 カメラ40Xは、例えば、単眼カメラである。また、カメラ40Xは、例えば、ステレオカメラ、TOF(Time Of Flight)カメラ等(以下、包括的に「3Dカメラ」)のように、二次元の画像に加えて、距離(深度)に関するデータを取得可能であってもよい。 The camera 40X is, for example, a monocular camera. In addition, the camera 40X acquires data regarding distance (depth) in addition to two-dimensional images, such as a stereo camera, a TOF (Time Of Flight) camera, etc. (hereinafter collectively referred to as a "3D camera"). It may be possible.
 撮像装置40(カメラ40X)の出力データ(例えば、画像データやショベル100の周辺の物体の三次元データ等)は、一対一の通信線や車載ネットワークを通じて、コントローラ30に取り込まれる。これにより、例えば、コントローラ30は、カメラ40Xの出力データに基づき、ショベル100の周辺の物体に関する監視を行うことができる。また、例えば、コントローラ30は、カメラ40Xの出力データに基づき、ショベル100の周辺環境を判断することができる。また、例えば、コントローラ30は、カメラ40X(カメラ40F)の出力データに基づき、撮像画像に映るアタッチメントATの姿勢状態を判断することができる。また、例えば、コントローラ30は、カメラ40Xの出力データに基づき、ショベル100の周辺の物体を基準として、ショベル100の機体(上部旋回体3)の姿勢状態を判断することができる。 Output data (for example, image data, three-dimensional data of objects around the excavator 100, etc.) of the imaging device 40 (camera 40X) is taken into the controller 30 through a one-to-one communication line or an in-vehicle network. Thereby, for example, the controller 30 can monitor objects around the excavator 100 based on the output data of the camera 40X. Further, for example, the controller 30 can determine the surrounding environment of the excavator 100 based on the output data of the camera 40X. Further, for example, the controller 30 can determine the posture state of the attachment AT shown in the captured image based on the output data of the camera 40X (camera 40F). Further, for example, the controller 30 can determine the attitude state of the body of the excavator 100 (the upper revolving body 3) based on the output data of the camera 40X, with reference to objects around the excavator 100.
 尚、カメラ40F,40B,40L,40Rのうちの一部が省略されてもよい。例えば、ショベル100の遠隔操作が行われない場合、カメラ40Fやカメラ40Lは、省略されてもよい。ショベル100の前方や左側方の様子は、キャビン10のオペレータから見て、比較的確認しやすいからである。また、撮像装置40(カメラ40X)に代えて、或いは、加えて、距離センサが上部旋回体3に設けられてもよい。距離センサは、例えば、上部旋回体3の上部に取り付けられ、ショベル100を基準とする周辺の物体の距離及び方向に関するデータを取得する。また、距離センサは、取得したデータに基づき、センシング範囲内におけるショベル100の周辺の物体の三次元データ(例えば、点群の座標情報のデータ)を取得(生成)してもよい。距離センサは、例えば、LIDAR(Light Detection and Ranging)である。また、例えば、距離センサは、例えば、ミリ波レーダや超音波センサや赤外線センサ等であってもよい。 Note that some of the cameras 40F, 40B, 40L, and 40R may be omitted. For example, when the excavator 100 is not remotely controlled, the camera 40F and the camera 40L may be omitted. This is because it is relatively easy for the operator in the cabin 10 to check the front and left side of the excavator 100. Further, instead of or in addition to the imaging device 40 (camera 40X), a distance sensor may be provided in the upper revolving body 3. The distance sensor is attached to the upper part of the upper revolving body 3, for example, and acquires data regarding the distance and direction of surrounding objects with respect to the shovel 100 as a reference. Further, the distance sensor may acquire (generate) three-dimensional data (for example, coordinate information data of a point group) of objects around the shovel 100 within the sensing range based on the acquired data. The distance sensor is, for example, LIDAR (Light Detection and Ranging). Further, for example, the distance sensor may be, for example, a millimeter wave radar, an ultrasonic sensor, an infrared sensor, or the like.
 センサS1は、ブーム4に取り付けられ、ブーム4の上部旋回体3との連結部に相当する基端の回転軸回りの姿勢角度(以下、「ブーム角度」)を検出する。センサS1は、例えば、ロータリポテンショメータ、ロータリエンコーダ、加速度センサ、角加速度センサ、6軸センサ、IMU(Inertial Measurement Unit:慣性計測装置)等を含む。以下、センサS2~S4についても同様であってよい。また、センサS1は、ブームシリンダ7の伸縮位置を検出するシリンダセンサを含んでもよい。以下、センサS2,S3についても同様であってもよい。センサS1によるブーム角度の検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、ブーム4の姿勢状態を把握することができる。 The sensor S1 is attached to the boom 4 and detects the attitude angle (hereinafter referred to as "boom angle") around the rotation axis of the base end corresponding to the connection part of the boom 4 with the upper revolving structure 3. The sensor S1 includes, for example, a rotary potentiometer, a rotary encoder, an acceleration sensor, an angular acceleration sensor, a 6-axis sensor, an IMU (Inertial Measurement Unit), and the like. The same may apply to the sensors S2 to S4 below. Further, the sensor S1 may include a cylinder sensor that detects the extended/contracted position of the boom cylinder 7. The same may apply to the sensors S2 and S3 below. A detection signal of the boom angle by the sensor S1 is taken into the controller 30. Thereby, the controller 30 can grasp the attitude state of the boom 4.
 センサS2は、アーム5に取り付けられ、アーム5のブーム4との連結部に相当する基端の回転軸回りの姿勢角度(以下、「アーム角度」)を検出する。センサS2によるアーム角度の検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、アーム5の姿勢状態を把握することができる。 The sensor S2 is attached to the arm 5 and detects the posture angle (hereinafter referred to as "arm angle") around the rotation axis of the base end of the arm 5, which corresponds to the connection part with the boom 4. The arm angle detection signal from the sensor S2 is taken into the controller 30. Thereby, the controller 30 can grasp the posture state of the arm 5.
 センサS3は、バケット6に取り付けられ、バケット6のアーム5との連結部に相当する基端の回転軸回りの姿勢角度(以下、「アーム角度」)を検出する。センサS3によるアーム角度の検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、バケット6の姿勢状態を把握することができる。 The sensor S3 is attached to the bucket 6 and detects the attitude angle (hereinafter referred to as "arm angle") around the rotation axis of the base end corresponding to the connection part with the arm 5 of the bucket 6. A detection signal of the arm angle by the sensor S3 is taken into the controller 30. Thereby, the controller 30 can grasp the attitude state of the bucket 6.
 センサS4は、所定の基準面(例えば、水平面)に対する機体(例えば、上部旋回体3)の傾斜状態を検出する。センサS4は、例えば、上部旋回体3に取り付けられ、ショベル100(即ち、上部旋回体3)の前後方向及び左右方向の2軸回りの傾斜角度(以下、「前後傾斜角」及び「左右傾斜角」)を検出する。センサS4により検出される傾斜角度(前後傾斜角及び左右傾斜角)に対応する検出信号は、コントローラ30に取り込まれる。これにより、コントローラ30は、機体(上部旋回体3)の傾斜状態を把握することができる。 The sensor S4 detects the inclination state of the aircraft body (for example, the upper rotating body 3) with respect to a predetermined reference plane (for example, a horizontal plane). For example, the sensor S4 is attached to the revolving upper structure 3, and measures the inclination angle of the excavator 100 (i.e., the revolving upper structure 3) about two axes in the front-rear direction and the left-right direction (hereinafter, "front-rear inclination angle" and "lateral inclination angle"). ”) is detected. A detection signal corresponding to the inclination angle (front/rear inclination angle and left/right inclination angle) detected by the sensor S<b>4 is taken into the controller 30 . Thereby, the controller 30 can grasp the tilting state of the aircraft body (upper rotating body 3).
 センサS5は、上部旋回体3に取り付けられ、上部旋回体3の旋回状態に関する検出情報を出力する。センサS5は、例えば、上部旋回体3の旋回角速度や旋回角度を検出する。センサS5は、例えば、ジャイロセンサ、レゾルバ、ロータリエンコーダ等を含む。センサS5により検出される旋回状態に関する検出情報は、コントローラ30に取り込まれる。これにより、コントローラ30は、上部旋回体3の旋回角度等の旋回状態を把握することができる。 The sensor S5 is attached to the revolving upper structure 3 and outputs detection information regarding the turning state of the revolving upper structure 3. The sensor S5 detects, for example, the turning angular velocity and turning angle of the upper rotating body 3. The sensor S5 includes, for example, a gyro sensor, a resolver, a rotary encoder, and the like. Detection information regarding the turning state detected by the sensor S5 is taken into the controller 30. Thereby, the controller 30 can grasp the turning state such as the turning angle of the upper rotating body 3.
 尚、センサS4に3軸回りの角速度を検出可能なジャイロセンサ、6軸センサ、IMU等が含まれる場合、センサS4の検出信号に基づき上部旋回体3の旋回状態(例えば、旋回角速度)が検出されてもよい。この場合、センサS5は、省略されてもよい。また、撮像装置40や距離センサの出力に基づき、上部旋回体3やアタッチメントAT等の姿勢状態を把握することが可能な場合、センサS1~S5の少なくとも一部は省略されてもよい。 In addition, when the sensor S4 includes a gyro sensor, a 6-axis sensor, an IMU, etc. that can detect angular velocity around three axes, the turning state (for example, turning angular velocity) of the upper rotating structure 3 is detected based on the detection signal of the sensor S4. may be done. In this case, sensor S5 may be omitted. Further, if it is possible to grasp the attitude state of the upper rotating body 3, attachment AT, etc. based on the output of the imaging device 40 or the distance sensor, at least some of the sensors S1 to S5 may be omitted.
  <情報処理装置のハードウェア構成>
 図5は、情報処理装置200のハードウェア構成の一例を示すブロック図である。
<Hardware configuration of information processing device>
FIG. 5 is a block diagram showing an example of the hardware configuration of the information processing device 200.
 情報処理装置200の機能は、任意のハードウェア或いは任意のハードウェア及びソフトウェアの組み合わせ等により実現される。例えば、図5に示すように、情報処理装置200は、バスB2で接続される、外部インタフェース201、補助記憶装置202、メモリ装置203、CPU204、高速演算装置205、通信インタフェース206、入力装置207、及び表示装置208を含む。 The functions of the information processing device 200 are realized by arbitrary hardware or a combination of arbitrary hardware and software. For example, as shown in FIG. 5, the information processing device 200 includes an external interface 201, an auxiliary storage device 202, a memory device 203, a CPU 204, a high-speed arithmetic device 205, a communication interface 206, an input device 207, and and a display device 208.
 外部インタフェース201は、記録媒体201Aからデータの読み取りや記録媒体201Aへのデータの書き込みのためのインタフェースとして機能する。記録媒体201Aには、例えば、フレキシブルディスク、CD(Compact Disc)、DVD(Digital Versatile Disc)、BD(Blu-ray(登録商標) Disc)、SDメモリカード、USBメモリ等が含まれる。これにより、情報処理装置200は、記録媒体201Aを通じて、処理で利用する各種データを読み込み、補助記憶装置202に格納したり、各種機能を実現するプログラムをインストールしたりすることができる。 The external interface 201 functions as an interface for reading data from and writing data to the recording medium 201A. The recording medium 201A includes, for example, a flexible disk, a CD (Compact Disc), a DVD (Digital Versatile Disc), a BD (Blu-ray (registered trademark) Disc), an SD memory card, a USB memory, and the like. Thereby, the information processing device 200 can read various data used in processing through the recording medium 201A, store it in the auxiliary storage device 202, and install programs that implement various functions.
 尚、情報処理装置200は、通信インタフェース206を通じて、外部装置から処理で利用する各種データやプログラムを取得してもよい。 Note that the information processing device 200 may obtain various data and programs used in processing from an external device through the communication interface 206.
 補助記憶装置202は、インストールされた各種プログラムを格納すると共に、各種処理に必要なファイルやデータ等を格納する。補助記憶装置202は、例えば、HDD(Hard Disc Drive)やSSD(Solid State Disc)やフラッシュメモリ等を含む。 The auxiliary storage device 202 stores various installed programs, as well as files, data, etc. necessary for various processes. The auxiliary storage device 202 includes, for example, an HDD (Hard Disc Drive), an SSD (Solid State Disc), a flash memory, and the like.
 メモリ装置203は、プログラムの起動指示があった場合に、補助記憶装置202からプログラムを読み出して格納する。メモリ装置203は、例えば、DRAM(Dynamic Random Access Memory)やSRAMを含む。 The memory device 203 reads and stores the program from the auxiliary storage device 202 when there is an instruction to start the program. The memory device 203 includes, for example, DRAM (Dynamic Random Access Memory) and SRAM.
 CPU204は、補助記憶装置202からメモリ装置203にロードされた各種プログラムを実行し、プログラムに従って情報処理装置200に関する各種機能を実現する。 The CPU 204 executes various programs loaded from the auxiliary storage device 202 to the memory device 203, and implements various functions related to the information processing device 200 according to the programs.
 高速演算装置205は、CPU204と連動し、相対的に高い速度で演算処理を行う。高速演算装置205は、例えば、GPU(Graphics Processing Unit)やASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)等を含む。 The high-speed arithmetic unit 205 works in conjunction with the CPU 204 and performs arithmetic processing at a relatively high speed. The high-speed calculation device 205 includes, for example, a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), and the like.
 尚、高速演算装置205は、必要な演算処理の速度に応じて、省略されてもよい。 Note that the high-speed calculation device 205 may be omitted depending on the required speed of calculation processing.
 通信インタフェース206は、外部機器と通信可能に接続するためのインタフェースとして用いられる。これにより、情報処理装置200は、通信インタフェース206を通じて、例えば、ショベル100等の外部機器と通信することができる。また、通信インタフェース206は、接続される機器との間の通信方式等によって、複数の種類の通信インタフェースを有してもよい。 The communication interface 206 is used as an interface for communicably connecting to an external device. Thereby, the information processing device 200 can communicate with an external device such as the excavator 100, for example, through the communication interface 206. Furthermore, the communication interface 206 may have a plurality of types of communication interfaces depending on the communication method with the connected device.
 入力装置207は、ユーザから各種入力を受け付ける。 The input device 207 receives various inputs from the user.
 入力装置207は、例えば、ユーザからの機械的な操作入力を受け付ける操作入力装置を含む。操作入力装置は、例えば、ボタン、トグル、レバー等を含む。また、操作入力装置は、例えば、表示装置208に実装されるタッチパネル、表示装置208とは別に設けられるタッチパッド等を含む。 The input device 207 includes, for example, an operation input device that accepts mechanical operation input from the user. The operation input device includes, for example, a button, a toggle, a lever, and the like. Further, the operation input device includes, for example, a touch panel mounted on the display device 208, a touch pad provided separately from the display device 208, and the like.
 また、入力装置207は、例えば、ユーザからの音声入力を受付可能な音声入力装置を含む。音声入力装置は、例えば、ユーザの音声を集音可能なマイクロフォンを含む。 Furthermore, the input device 207 includes, for example, a voice input device that can accept voice input from a user. The voice input device includes, for example, a microphone that can collect the user's voice.
 また、入力装置207は、例えば、ユーザからのジェスチャ入力を受付可能なジェスチャ入力装置を含む。ジェスチャ入力装置は、例えば、ユーザのジェスチャの様子を撮像可能なカメラを含む。 Furthermore, the input device 207 includes, for example, a gesture input device that can accept gesture input from the user. The gesture input device includes, for example, a camera that can capture images of the user's gestures.
 また、入力装置207は、例えば、ユーザからの生体入力を受付可能な生体入力装置を含む。生体入力装置は、例えば、ユーザの指紋や虹彩に関する情報を内包する画像データを取得可能なカメラを含む。 Furthermore, the input device 207 includes, for example, a biometric input device that can accept biometric input from a user. The biometric input device includes, for example, a camera that can acquire image data that includes information about a user's fingerprint or iris.
 表示装置208は、ユーザに向けて、情報画面や操作画面を表示する。例えば、表示装置208には、上述の遠隔操作用表示装置が含まれる。表示装置208は、例えば、液晶ディスプレイや有機EL(Electroluminescence)ディスプレイ等である。 The display device 208 displays information screens and operation screens for the user. For example, display device 208 includes the above-mentioned remote control display device. The display device 208 is, for example, a liquid crystal display, an organic EL (Electroluminescence) display, or the like.
 尚、遠隔操作支援装置300についても、情報処理装置200と同様、任意のハードウェア或いは任意のハードウェア及びソフトウェアの組み合わせ等により実現され、同様のハードウェア構成が採用されてよい。例えば、遠隔操作支援装置300は、情報処理装置200(図5)と同様、CPU、メモリ装置、補助記憶装置、インタフェース装置、入力装置、及び表示装置を含むコンピュータを中心に構成される。メモリ装置は、例えば、SRAMやDRAM等である。補助記憶装置は、例えば、HDDやSSDやEEPROMやフラッシュメモリ等である。インタフェース装置は、外部の記録媒体と接続するための外部インタフェースやショベル100等の外部と通信を行う通信インタフェースを含む。入力装置は、例えば、レバー式の操作入力装置を含む。これにより、オペレータは、操作入力装置を用いて、ショベル100のアクチュエータに関する操作入力を行い、遠隔操作支援装置300は、通信インタフェースを用いて、操作入力に対応する信号をショベル100に送信することができる。そのため、オペレータは、遠隔操作支援装置を利用したショベル100の遠隔操作を行うことができる。 Note that, like the information processing device 200, the remote operation support device 300 may also be realized by arbitrary hardware or a combination of arbitrary hardware and software, and a similar hardware configuration may be adopted. For example, like the information processing device 200 (FIG. 5), the remote operation support device 300 is mainly configured with a computer including a CPU, a memory device, an auxiliary storage device, an interface device, an input device, and a display device. The memory device is, for example, SRAM or DRAM. The auxiliary storage device is, for example, an HDD, SSD, EEPROM, flash memory, or the like. The interface device includes an external interface for connecting to an external recording medium and a communication interface for communicating with the outside, such as the shovel 100. The input device includes, for example, a lever-type operation input device. As a result, the operator can use the operation input device to perform operation input regarding the actuator of the shovel 100, and the remote operation support device 300 can use the communication interface to transmit a signal corresponding to the operation input to the shovel 100. can. Therefore, the operator can remotely control the excavator 100 using the remote control support device.
 [動作提案機能の第1例]
 次に、図1~図5に加えて、図6、図7を参照して、ユーザ(オペレータ)に対するショベル100の動作に関する提案機能(動作提案機能)の第1例について説明する。
[First example of motion suggestion function]
Next, with reference to FIGS. 6 and 7 in addition to FIGS. 1 to 5, a first example of a function for suggesting the operation of the excavator 100 to the user (operator) (operation proposal function) will be described.
  <機能構成>
 図6は、稼働支援システムSYSの動作提案機能に関する機能構成の第1例を示す機能ブロック図である。
<Functional configuration>
FIG. 6 is a functional block diagram showing a first example of a functional configuration related to the operation proposal function of the operation support system SYS.
 ショベル100は、支援装置150を含む。支援装置150は、オペレータによるショベル100の操作を支援する。 The excavator 100 includes a support device 150. Support device 150 supports operation of excavator 100 by an operator.
 図6に示すように、支援装置150は、コントローラ30と、撮像装置40と、出力装置50と、通信装置60とを含む。 As shown in FIG. 6, the support device 150 includes a controller 30, an imaging device 40, an output device 50, and a communication device 60.
 コントローラ30は、機能部として、動作ログ提供部301と、作業支援部302とを含む。 The controller 30 includes an operation log providing unit 301 and a work support unit 302 as functional units.
 尚、稼働支援システムSYSに含まれるショベル100が複数台である場合、コントローラ30が動作ログ提供部301及び作業支援部302のうちの前者のみを含むショベル100と、後者のみを含むショベル100とが存在してもよい。この場合、前者のショベル100は、後者のショベル100におけるオペレータの操作支援機能(動作提案機能)のために用いられる、ショベル100の動作ログを取得し情報処理装置200に提供する機能のみを有する。以下、後述の動作提案機能の第2例(図8)の場合についても同様であってよい。 Note that when there are multiple excavators 100 included in the operation support system SYS, the controller 30 includes only the former of the operation log providing unit 301 and the work support unit 302, and the excavator 100 that includes only the latter. May exist. In this case, the former shovel 100 only has the function of acquiring the operation log of the shovel 100 and providing it to the information processing device 200, which is used for the operator operation support function (motion suggestion function) of the latter shovel 100. The same may apply to the second example (FIG. 8) of the motion suggestion function described below.
 情報処理装置200は、機能部として、動作ログ取得部2001と、動作ログ記憶部2002と、教師データ生成部2003と、機械学習部2004と、学習済みモデル記憶部2005と、配信部2006とを含む。 The information processing device 200 includes an operation log acquisition unit 2001, an operation log storage unit 2002, a teacher data generation unit 2003, a machine learning unit 2004, a learned model storage unit 2005, and a distribution unit 2006 as functional units. include.
 動作ログ提供部301は、動作提案機能を実現するための元データである、ショベル100の動作ログを取得し、情報処理装置200に提供するための機能部である。具体的には、ショベル100の運転歴が長く、相対的に経験のあるオペレータ(以下、便宜的に「熟練者」)がショベル100を操作したときの動作ログを取得し、情報処理装置200に提供する。 The operation log providing unit 301 is a functional unit that acquires the operation log of the excavator 100, which is the original data for realizing the operation proposal function, and provides it to the information processing device 200. Specifically, a relatively experienced operator (hereinafter referred to as an "expert" for convenience) who has a long history of operating the excavator 100 obtains an operation log when operating the excavator 100 and stores it in the information processing device 200. provide.
 ショベル100の動作ログは、ショベル100の周辺の作業対象の形状に関するデータと、その作業対象の形状に対して実行された、ショベル100の動作に関するデータとを含む。ショベル100の周辺の作業対象の形状に関するデータは、例えば、ショベル100の作業対象としての作業現場の地面の地形形状に関するデータである。ショベル100の作業対象の形状に関するデータは、例えば、撮像装置40の画像データやその画像データから得られる、作業対象の三次元データである。ショベル100の動作に関するデータは、例えば、オペレータの操作内容を表すデータである。オペレータの操作内容を表すデータは、例えば、油圧パイロット式の操作装置26の場合における操作圧センサ29の出力データや電気式の操作装置26の場合における操作装置26の出力データ(操作信号のデータ)である。また、ショベル100の動作に関するデータは、オペレータの操作に応じて実際に実行された、ショベル100の動作状態を表すデータであってもよい。ショベル100の動作状態を表すデータは、例えば、センサS1~S5の出力データ、或いは、センサS1~S5の出力データから取得される、ショベル100の姿勢状態に関するデータである。 The operation log of the shovel 100 includes data regarding the shape of the work target around the shovel 100 and data regarding the operation of the shovel 100 performed on the shape of the work target. The data regarding the shape of the work target around the shovel 100 is, for example, data regarding the topographical shape of the ground at the work site as the work target of the shovel 100. The data regarding the shape of the work target of the shovel 100 is, for example, image data of the imaging device 40 or three-dimensional data of the work target obtained from the image data. The data regarding the operation of the shovel 100 is, for example, data representing the details of the operator's operation. The data representing the contents of the operator's operation may be, for example, the output data of the operating pressure sensor 29 in the case of the hydraulic pilot type operating device 26 or the output data of the operating device 26 (operation signal data) in the case of the electric operating device 26. It is. Furthermore, the data regarding the operation of the shovel 100 may be data representing the operation state of the shovel 100 actually executed in response to an operation by an operator. The data representing the operating state of the shovel 100 is, for example, the output data of the sensors S1 to S5, or the data related to the posture state of the shovel 100 obtained from the output data of the sensors S1 to S5.
 動作ログ提供部301は、動作ログ記録部301Aと、動作ログ記憶部301Bと、動作ログ送信部301Cとを含む。 The operation log providing section 301 includes an operation log recording section 301A, an operation log storage section 301B, and an operation log transmission section 301C.
 動作ログ記録部301Aは、ショベル100の動作ログを取得し、動作ログ記憶部301Bに記録する。例えば、動作ログ記録部301Aは、ショベル100の動作が実行されるごとに、その動作の実行開始時或いは実行直前のショベル100の周辺の作業対象の形状に関するデータ、及びショベル100のその動作に関するデータを動作ログ記憶部301Bに記録する。 The operation log recording unit 301A acquires the operation log of the shovel 100 and records it in the operation log storage unit 301B. For example, every time an operation of the shovel 100 is executed, the operation log recording unit 301A records data regarding the shape of the work target around the shovel 100 at the start of execution of the operation or immediately before execution, and data regarding the operation of the shovel 100. is recorded in the operation log storage unit 301B.
 動作ログ記憶部301Bには、ショベル100の動作ログが蓄積される形で記憶される。例えば、動作ログ記憶部301Bには、ショベル100の動作ごとのショベル100の周辺の作業対象の形状に関するデータと、ショベル100の動作に関するデータとが紐づけられる形で記憶される。具体的には、動作ログ記憶部301Bには、ショベル100の動作ごとのショベル100の周辺の作業対象の形状に関するデータ、及びショベル100の動作に関するデータの対応関係を表すレコードデータが蓄積され、動作ログのデータベースが構築されてよい。 The operation log storage unit 301B stores operation logs of the shovel 100 in an accumulated manner. For example, the operation log storage unit 301B stores data regarding the shape of a work target around the shovel 100 for each operation of the shovel 100 and data regarding the operation of the shovel 100 in a linked form. Specifically, the operation log storage unit 301B stores record data representing the correspondence relationship between data regarding the shape of the work target around the shovel 100 and data regarding the operation of the shovel 100 for each operation of the shovel 100. A database of logs may be constructed.
 尚、後述の動作ログ送信部301Cにより情報処理装置200に送信済みの動作ログ記憶部301Bの動作ログは、事後的に消去されてもよい。 Note that the operation log in the operation log storage unit 301B that has been transmitted to the information processing device 200 by the operation log transmission unit 301C, which will be described later, may be deleted after the fact.
 動作ログ送信部301Cは、動作ログ記憶部301Bに記憶される、ショベル100の動作ログを、通信装置60を通じて情報処理装置200に送信する。また、動作ログ送信部301Cは、ショベル100の動作ごとのショベル100の周辺の作業対象の形状に関するデータ、及びショベル100の動作に関するデータの対応関係を表すレコードデータを併せて情報処理装置200に送信してもよい。 The operation log transmission unit 301C transmits the operation log of the shovel 100, which is stored in the operation log storage unit 301B, to the information processing device 200 via the communication device 60. In addition, the operation log transmitting unit 301C also transmits to the information processing device 200 data regarding the shape of the work target around the shovel 100 for each operation of the shovel 100 and record data representing the correspondence between the data regarding the operations of the shovel 100. You may.
 例えば、動作ログ送信部301Cは、情報処理装置200から受信される、ショベル100の動作ログの送信を要求する信号(以下、「送信要求信号」)に応じて、動作ログ記憶部301Bに記憶される、未送信のショベル100の動作ログを情報処理装置200に送信する。また、動作ログ送信部301Cは、所定のタイミングで、動作ログ記憶部301Bに記憶される、未送信のショベル100の動作ログを自動的に情報処理装置200に送信してもよい。所定のタイミングは、例えば、ショベル100の稼働停止(キースイッチのオフ)時や稼働開始(キースイッチのオン)時である。 For example, the operation log transmitting unit 301C may store the operation log in the operation log storage unit 301B in response to a signal requesting transmission of the operation log of the excavator 100 (hereinafter referred to as a “transmission request signal”) received from the information processing device 200. The operation log of the shovel 100 that has not been sent yet is sent to the information processing device 200. Further, the operation log transmitting unit 301C may automatically transmit the unsent operation log of the shovel 100, which is stored in the operation log storage unit 301B, to the information processing device 200 at a predetermined timing. The predetermined timing is, for example, when the excavator 100 stops operating (the key switch is turned off) or when the excavator 100 starts operating (the key switch is turned on).
 動作ログ取得部2001は、ショベル100から受信される、ショベル100の動作ログを取得する。 The operation log acquisition unit 2001 acquires the operation log of the shovel 100, which is received from the shovel 100.
 動作ログ取得部2001は、情報処理装置200のユーザの操作に応じて、或いは、所定のタイミングで自動的に、ショベル100に送信要求信号を送信することにより、ショベル100の動作ログを取得する。また、動作ログ取得部2001は、ショベル100から所定のタイミングで送信される、ショベル100の動作ログを取得してもよい。 The operation log acquisition unit 2001 acquires the operation log of the excavator 100 by transmitting a transmission request signal to the excavator 100 in response to an operation by the user of the information processing device 200 or automatically at a predetermined timing. Further, the operation log acquisition unit 2001 may acquire an operation log of the excavator 100 that is transmitted from the excavator 100 at a predetermined timing.
 動作ログ記憶部2002には、動作ログ取得部2001により取得された、ショベル100の動作ログが蓄積される形で記憶される。例えば、動作ログ記憶部2002には、動作ログ記憶部301Bの場合と同様、ショベル100の動作ごとのショベル100の周辺の作業対象の形状に関するデータと、ショベル100の動作に関するデータとが紐づけられる形で記憶される。 The operation log storage unit 2002 stores operation logs of the shovel 100 acquired by the operation log acquisition unit 2001 in an accumulated manner. For example, in the operation log storage unit 2002, as in the case of the operation log storage unit 301B, data regarding the shape of the work object around the shovel 100 for each operation of the shovel 100 and data regarding the operation of the shovel 100 are linked. remembered in form.
 教師データ生成部2003は、動作ログ記憶部2002のショベル100の動作ログに基づき、機械学習用の教師データを生成する。教師データ生成部2003は、バッチ処理によって、自動的に教師データを生成してもよいし、情報処理装置200のユーザからの入力に応じて、教師データを生成してもよい。教師データは、入力データとしてのショベル100の周辺の作業対象の形状に関するデータと、正解の出力データとしての入力データに相当する作業対象の形状に対応するショベル100の動作を表すデータ(以下、「正解データ」)との組み合わせのデータである。 The teacher data generation unit 2003 generates teacher data for machine learning based on the operation log of the excavator 100 in the operation log storage unit 2002. The teacher data generation unit 2003 may automatically generate the teacher data by batch processing, or may generate the teacher data in response to input from the user of the information processing apparatus 200. The training data includes data regarding the shape of the work target around the shovel 100 as input data, and data representing the operation of the shovel 100 corresponding to the shape of the work target corresponding to the input data as correct output data (hereinafter referred to as " This is the data in combination with "correct answer data").
 正解データは、例えば、所定の作業で実行されうる複数の候補の動作の中から選択される、動作の種類を表すデータを含む。複数の候補の動作は、例えば、作業現場の地面の整地作業の場合、掃出し動作、水平引き動作、転圧動作、及びほうき動作等を含む。掃出し動作は、例えば、アタッチメントATを動作させ、バケット6を地面に沿って前方に押し出すことで、バケット6の背面で土砂を前方に掃出す動作である。掃出し動作では、例えば、アタッチメントATは、ブーム4の下げ動作、及びアーム5の開き動作を行う。水平引き動作は、例えば、アタッチメントATを動作させ、バケット6の爪先を地面に沿って略水平に手前に向かって引きつけるように移動させることで、地面(地形の表面)の凹凸を均す動作である。水平引き動作では、例えば、アタッチメントATは、ブーム4の上げ動作、アーム5の閉じ動作を行う。転圧動作は、例えば、アタッチメントATを動作させ、バケット6の背面で地面を押し付ける動作である。また、転圧動作は、バケット6を地面に沿って前方に押し出すことで、バケット6の背面で土砂を前方の所定の位置まで掃出した後に、所定の位置の地面をバケット6の背面で地面を押し付ける動作であってもよい。転圧動作では、例えば、アタッチメントATは、地面を押し付ける際にブーム4の下げ動作を行う。ほうき動作は、例えば、上部旋回体3を動作させ、バケット6を地面に沿わせた状態で左右に旋回させる動作である。また、ほうき動作は、例えば、アタッチメントAT及び上部旋回体3を動作させ、バケット6を地面に沿わせた状態で左右交互に旋回させながら、バケット6を前方の押し出す動作であってもよい。ほうき動作では、例えば、上部旋回体3が左右の旋回動作を交互に繰り返す。また、ほうき動作では、例えば、上部旋回体3の左右交互の旋回動作に加えて、掃出し動作の場合と同様、アタッチメントATがブーム4の下げ動作及びアーム5の開き動作を行ってもよい。また、正解データは、例えば、ショベル100の動作時のバケット6の軌跡を表すデータを含んでもよい。 The correct answer data includes, for example, data representing the type of motion selected from a plurality of candidate motions that can be performed in a predetermined task. For example, in the case of leveling the ground at a work site, the plurality of candidate operations include a sweeping operation, a leveling operation, a compaction operation, a broom operation, and the like. The sweeping operation is, for example, an operation in which the attachment AT is operated to push the bucket 6 forward along the ground, thereby sweeping out earth and sand forward on the back surface of the bucket 6. In the sweeping operation, for example, the attachment AT performs a lowering operation of the boom 4 and an opening operation of the arm 5. The horizontal pulling operation is, for example, an operation to smooth out irregularities on the ground (the surface of the terrain) by operating the attachment AT and moving the toe of the bucket 6 along the ground almost horizontally toward you. be. In the horizontal pulling operation, for example, the attachment AT performs a raising operation of the boom 4 and a closing operation of the arm 5. The rolling operation is, for example, an operation of operating the attachment AT and pressing the back surface of the bucket 6 against the ground. In addition, the compaction operation is performed by pushing the bucket 6 forward along the ground, sweeping the earth and sand to a predetermined position in front with the back of the bucket 6, and then rolling the ground at a predetermined position with the back of the bucket 6. It may also be a pressing motion. In the rolling operation, for example, the attachment AT lowers the boom 4 when pressing against the ground. The broom operation is, for example, an operation in which the upper rotating body 3 is operated and the bucket 6 is rotated left and right while keeping it along the ground. Further, the broom operation may be, for example, an operation of pushing the bucket 6 forward while operating the attachment AT and the upper rotating body 3 and rotating the bucket 6 alternately left and right while keeping the bucket 6 along the ground. In the broom movement, for example, the upper revolving body 3 alternately repeats left and right turning movements. In addition, in the broom operation, for example, in addition to the alternating right and left turning operations of the upper revolving structure 3, the attachment AT may perform a lowering operation of the boom 4 and an opening operation of the arm 5, as in the case of the sweeping operation. Further, the correct data may include, for example, data representing the trajectory of the bucket 6 during operation of the shovel 100.
 機械学習部2004は、教師データ生成部2003により生成される教師データのセットに基づき、ベースの学習モデルに機械学習を行わせ、学習済みモデルLMを生成する。学習済みモデルLM(ベースの学習モデル)は、例えば、DNN(Deep Neural Network)等のニューラルネットワークを含む。 The machine learning unit 2004 performs machine learning on the base learning model based on the set of teacher data generated by the teacher data generation unit 2003 to generate a learned model LM. The learned model LM (base learning model) includes, for example, a neural network such as a DNN (Deep Neural Network).
 学習済みモデルLMは、例えば、ショベル100の周辺の作業対象の形状に関するデータを入力条件として、所定の作業で実行される複数の候補の動作ごとの予測確率を出力する。この予測確率は、候補の動作の信頼度を表す。学習済みモデルLMには、上述の如く、熟練者によるショベル100の操作時の動作ログが反映され、予測確率が高いほど、その候補の動作を選択する信頼度が高いと考えられるからである。また、この予測確率は、入力条件としてのショベル100の周辺の作業対象の形状に対する適合度を表す。予測確率が高いほど、熟練者が作業対象の形状に対してその候補の動作が適していると判断する可能性が高いと考えられるからである。また、学習済みモデルLMは、ショベル100の周辺の作業対象の形状に関するデータを入力条件として、複数の候補の動作ごとのバケット6の軌道(以下、「目標軌道」)を表すデータを出力してもよい。また、学習済みモデルは、ショベル100の周辺の作業対象の形状に関するデータを入力条件として、複数の候補の動作ごとに、バケット6の目標軌道を表すデータを複数出力すると共に、その複数のバケット6の目標軌道ごとの予測確率を出力してもよい。この予測確率は、候補の動作の予測確率の場合と同様、対象の目標軌道の信頼度や入力条件としてのショベル100の周辺の作業対象の形状に対する適合度を表す。また、学習済みモデルLMは、複数の異なる作業ごとに生成されてもよい。例えば、学習済みモデルLMは、整地作業、法面施工作業、及び盛土作業等の作業ごとに生成される。 The trained model LM outputs predicted probabilities for each of a plurality of candidate movements to be executed in a predetermined work, using, for example, data regarding the shape of a work target around the shovel 100 as an input condition. This predicted probability represents the reliability of the candidate's motion. This is because, as described above, the learned model LM reflects the operation log when the shovel 100 is operated by an expert, and it is considered that the higher the prediction probability, the higher the reliability of selecting the candidate operation. Further, this predicted probability represents the degree of conformity to the shape of the work target around the shovel 100 as an input condition. This is because it is considered that the higher the prediction probability, the higher the possibility that the expert will judge that the candidate motion is suitable for the shape of the work target. In addition, the learned model LM outputs data representing the trajectory of the bucket 6 for each of the plurality of candidate movements (hereinafter referred to as "target trajectory"), using data regarding the shape of the work target around the excavator 100 as an input condition. Good too. In addition, the trained model outputs a plurality of pieces of data representing the target trajectory of the bucket 6 for each of the plurality of candidate movements, using data regarding the shape of the work target around the excavator 100 as an input condition, and The predicted probability for each target trajectory may be output. As in the case of the predicted probability of the candidate motion, this predicted probability represents the degree of reliability of the target trajectory of the object and the degree of conformity to the shape of the work object around the shovel 100 as an input condition. Furthermore, the learned model LM may be generated for each of a plurality of different tasks. For example, the learned model LM is generated for each task such as land leveling work, slope construction work, and embankment work.
 学習済みモデル記憶部2005には、機械学習部2004により出力される学習済みモデルLMが記憶される。 The trained model storage unit 2005 stores the trained model LM output by the machine learning unit 2004.
 配信部2006は、学習済みモデルLMをショベル100に配信する。 The distribution unit 2006 distributes the learned model LM to the excavator 100.
 例えば、配信部2006は、機械学習部2004により学習済みモデルLMが生成されると、直近で生成された学習済みモデルLMをショベル100に配信する。また、配信部2006は、ショベル100から受信される、学習済みモデルLMの配信を要求する信号に応じて、学習済みモデル記憶部2005の最新の学習済みモデルLMをショベル100に配信してもよい。 For example, when the learned model LM is generated by the machine learning unit 2004, the distribution unit 2006 distributes the most recently generated learned model LM to the excavator 100. Further, the distribution unit 2006 may distribute the latest learned model LM in the learned model storage unit 2005 to the shovel 100 in response to a signal received from the excavator 100 requesting distribution of the learned model LM. .
 作業支援部302は、オペレータの操作によるショベル100の作業を支援するための機能部である。 The work support unit 302 is a functional unit that supports the work of the shovel 100 operated by the operator.
 作業支援部302は、学習済みモデル記憶部302Aと、作業対象形状取得部302Bと、推定部302Cと、提案部302Dとを含む。 The work support unit 302 includes a learned model storage unit 302A, a work target shape acquisition unit 302B, an estimation unit 302C, and a proposal unit 302D.
 学習済みモデル記憶部302Aには、情報処理装置200から配信され、通信装置60を通じて受信される学習済みモデルLMが記憶される。 The trained model storage unit 302A stores the trained model LM distributed from the information processing device 200 and received through the communication device 60.
 作業対象形状取得部302Bは、撮像装置40や距離センサの出力に基づき、ショベル100の周辺の作業対象の形状(地形形状)に関するデータを取得する。 The work target shape acquisition unit 302B acquires data regarding the shape of the work target (terrain shape) around the shovel 100 based on the output of the imaging device 40 and the distance sensor.
 推定部302Cは、ショベル100の周辺の作業対象の形状に関するデータに基づき、所定の作業で実施されうる複数の候補の動作の中で、ショベル100の周辺の作業対象の形状に対して、信頼度や適合度が相対的に高い動作を推定する。また、推定部302Cは、ショベル100の周辺の作業対象の形状に関するデータに基づき、複数の候補の動作ごとに、信頼度や適合度が相対的に高い、一又は複数のバケット6の目標軌道を推定してもよい。 Based on the data regarding the shape of the work object around the shovel 100, the estimation unit 302C determines the reliability of the shape of the work work around the shovel 100 among a plurality of candidate movements that can be performed in a predetermined work. and the motion with relatively high fitness. Furthermore, the estimating unit 302C determines the target trajectory of one or more buckets 6 with relatively high reliability and suitability for each of the plurality of candidate movements based on the data regarding the shape of the work target around the shovel 100. It may be estimated.
 具体的には、推定部302Cは、学習済みモデルLMを用いて、ショベル100の周辺の作業対象の形状に関するデータを入力条件として、ショベル100の周辺の作業対象の形状に対して、信頼度や適合度が相対的に高い動作を推定してよい。また、推定部302Cは、学習済みモデルLMを用いて、ショベル100の周辺の作業対象の形状に関するデータを入力条件として、信頼度や適合度が相対的に高い、一又は複数のバケット6の目標軌道を推定してもよい。 Specifically, the estimation unit 302C uses the trained model LM to calculate the reliability and the shape of the work target around the shovel 100 using data regarding the shape of the work target around the shovel 100 as an input condition. A motion with a relatively high degree of fitness may be estimated. In addition, the estimation unit 302C uses the learned model LM to set one or more goals for the bucket 6 with relatively high reliability and suitability, using data regarding the shape of the work target around the shovel 100 as an input condition. Orbits may be estimated.
 提案部302Dは、推定部302Cの推定結果に基づき、表示装置50A等の出力装置50を通じて、ショベル100の周辺の作業対象の形状に対する信頼度や適合度が相対的に高い、ショベル100の動作をキャビン10のオペレータに提案する。これにより、経験の浅いオペレータであっても、現在のショベル100の周辺の作業対象の形状に合わせて、より適切な動作を選択することができる。そのため、オペレータの利便性を向上させることができると共に、ショベル100の作業効率を向上させることができる。オペレータに提案される動作は、1つであってもよいし、複数であってもよい。例えば、提案部302Dは、複数の候補の動作の全部又は一部について、ショベル100の周辺の作業対象の形状に対する適合度(信頼度)の数値を通知することにより、相対的に適合度の高い動作を提案する(後述の図10参照)。 Based on the estimation result of the estimating section 302C, the proposing section 302D suggests an operation of the excavator 100 that has a relatively high degree of reliability and conformity to the shape of the work target around the excavator 100 through the output device 50 such as the display device 50A. A proposal is made to the operator of cabin 10. Thereby, even an inexperienced operator can select a more appropriate operation according to the shape of the current work target around the shovel 100. Therefore, the operator's convenience can be improved, and the working efficiency of the excavator 100 can be improved. The number of actions suggested to the operator may be one or multiple. For example, the proposal unit 302D notifies the numerical value of the degree of conformity (reliability) to the shape of the work target around the shovel 100 for all or part of the motions of the plurality of candidates, so that An action is proposed (see FIG. 10 below).
 また、提案部302Dは、推定部302Cの推定結果に基づき、出力装置50を通じて、ショベル100の周辺の作業対象の形状に対する信頼度や適合度が相対的に高い、提案対象の動作におけるバケット6の1つの目標軌道を提案してもよい。これにより、経験の浅いオペレータであっても、現在のショベル100の周辺の作業対象の形状に合わせて、より適切なバケット6の目標軌道を把握し、その目標軌道を実現するように、ショベル100を操作することができる。そのため、オペレータの利便性をより向上させることができると共に、ショベル100の作業効率をより向上させることができる。 Further, based on the estimation result of the estimating unit 302C, the proposing unit 302D sends, via the output device 50, a list of buckets 6 in the motion of the proposed target that has a relatively high degree of reliability and conformity to the shape of the work target around the shovel 100. One target trajectory may be proposed. As a result, even an inexperienced operator can understand a more appropriate target trajectory of the bucket 6 according to the shape of the current work target around the excavator 100, and can move the excavator 100 to realize the target trajectory. can be operated. Therefore, the operator's convenience can be further improved, and the working efficiency of the excavator 100 can be further improved.
 また、提案部302Dは、動作対象の出力装置50を通じて、ショベル100の周辺の作業対象の形状に対する信頼度や適合度が相対的に高い、提案対象の動作におけるバケット6の複数の目標軌道を提案してもよい。これにより、オペレータは、現在のショベル100の周辺の作業対象の形状に合わせて、より適切なバケット6の複数の目標軌道を把握し、自らが選択する1つの目標軌道を実現するように、ショベル100を操作することができる。そのため、オペレータの意思を反映させる形で、ショベル100の作業効率を向上させることができる。例えば、提案部302Dは、提案対象の動作の複数の目標軌道ごとに、ショベル100の周辺の作業対象の形状に対する適合度(信頼度)の数値を通知することにより、相対的に適合度の高いバケット6の目標軌道を提案する(後述の図11、図13参照)。 In addition, the proposal unit 302D proposes a plurality of target trajectories of the bucket 6 in the motion to be proposed, which have a relatively high degree of reliability and conformity to the shape of the work target around the shovel 100, through the output device 50 of the motion target. You may. This allows the operator to understand multiple target trajectories for the bucket 6 that are more appropriate according to the shape of the work target around the current excavator 100, and to move the excavator so that the operator can realize the one target trajectory that he/she selects. 100 can be operated. Therefore, the working efficiency of the excavator 100 can be improved in a manner that reflects the operator's intention. For example, the proposal unit 302D notifies the numerical value of the degree of conformity (reliability) to the shape of the work target around the shovel 100 for each of the plurality of target trajectories of the motion to be proposed. A target trajectory for bucket 6 is proposed (see FIGS. 11 and 13 described later).
 また、ショベル100が遠隔操作される場合、提案部302Dは、通信装置60を通じて、信頼度や適合度が相対的に高い動作やバケット6の目標軌道を、遠隔操作支援装置300を利用するオペレータに提案してもよい。この場合、提案部302Dは、通信装置60を通じて、提案内容を表すデータを遠隔操作支援装置300に送信する。これにより、遠隔操作支援装置300は、表示装置や音出力装置等を用いて、信頼度や適合度が相対的に高い動作やバケット6の目標軌道を、遠隔操作支援装置300を利用するオペレータに提案することができる。 In addition, when the excavator 100 is remotely controlled, the proposal unit 302D provides the operator using the remote operation support device 300 with information on operations with relatively high reliability and suitability and the target trajectory of the bucket 6 via the communication device 60. You may make suggestions. In this case, the proposal unit 302D transmits data representing the content of the proposal to the remote operation support device 300 via the communication device 60. As a result, the remote operation support device 300 uses a display device, a sound output device, etc. to inform the operator using the remote operation support device 300 of operations with relatively high degrees of reliability and suitability and the target trajectory of the bucket 6. I can make suggestions.
  <処理>
 図7は、ショベル100の動作提案機能に関する処理の第1例を概略的に示すフローチャートである。
<Processing>
FIG. 7 is a flowchart schematically showing a first example of processing related to the motion suggestion function of the shovel 100.
 図7のフローチャートは、例えば、入力装置52或いは遠隔操作支援装置300の入力装置を通じて、動作提案機能を開始させる所定の入力が受け付けられると開始される。以下、後述の図9のフローチャートについても同様であってよい。 The flowchart in FIG. 7 is started when a predetermined input for starting the motion suggestion function is received, for example, through the input device 52 or the input device of the remote operation support device 300. The same may apply to the flowchart of FIG. 9, which will be described later.
 図7に示すように、ステップS102(取得ステップの一例)にて、作業対象形状取得部302Bは、撮像装置40の出力に基づき、ショベル100の周辺の作業対象の形状に関するデータを取得する。 As shown in FIG. 7, in step S102 (an example of an acquisition step), the work target shape acquisition unit 302B acquires data regarding the shape of the work target around the shovel 100 based on the output of the imaging device 40.
 コントローラ30は、ステップS102の処理が完了すると、ステップS104に進む。 Upon completion of the process in step S102, the controller 30 proceeds to step S104.
 ステップS104にて、推定部302Cは、ステップS102で取得されるデータに基づき、現在のショベル100の周辺の作業対象の形状に対する適合度(信頼度)が相対的に高い動作を推定する。 In step S104, the estimating unit 302C estimates a motion that has a relatively high degree of suitability (reliability) for the shape of the work target around the current shovel 100, based on the data acquired in step S102.
 コントローラ30は、ステップS104の処理が完了すると、ステップS106に進む。 Upon completion of the process in step S104, the controller 30 proceeds to step S106.
 ステップS106(提案ステップの一例)にて、提案部302Dは、ステップS104の推定結果に基づき、複数の候補の動作のうちの提案対象の動作やその動作の目標軌道を表示装置50Aに表示させる。 In step S106 (an example of a proposing step), the proposing unit 302D causes the display device 50A to display the proposed motion among the plurality of candidate motions and the target trajectory of the motion, based on the estimation result in step S104.
 コントローラ30は、ステップS106の処理が完了すると、ステップS108に進む。 Upon completion of the process in step S106, the controller 30 proceeds to step S108.
 ステップS108にて、コントローラ30は、被駆動要素(アクチュエータ)の操作がされたか否かを判定する。コントローラ30は、被駆動要素の操作がされていない場合、ステップS110に進み、操作がされている場合、ステップS112に進む。 In step S108, the controller 30 determines whether the driven element (actuator) has been operated. If the driven element is not being operated, the controller 30 proceeds to step S110, and if the driven element is being operated, the process proceeds to step S112.
 ステップS110にて、コントローラ30は、終了条件が成立したか否かを判定する。終了条件は、例えば、入力装置52や遠隔操作支援装置300の入力装置を通じて、オペレータからの動作提案機能の終了を表す所定の入力が受け付けられることである。また、終了条件は、入力装置52や遠隔操作支援装置300の入力装置を通じて、オペレータからの作業終了を表す所定の入力が受け付けられることであってもよい。また、終了条件は、コントローラ30が撮像装置40の撮像画像に基づき作業の終了を判断することであってもよい。コントローラ30は、終了条件が成立している場合、今回のフローチャートの処理を終了し、終了条件が成立していない場合、ステップS108に戻る。 In step S110, the controller 30 determines whether the termination condition is satisfied. The termination condition is, for example, that a predetermined input indicating termination of the motion suggestion function is received from the operator through the input device 52 or the input device of the remote operation support device 300. Further, the termination condition may be that a predetermined input indicating the end of the work is received from the operator through the input device 52 or the input device of the remote operation support device 300. Further, the end condition may be that the controller 30 determines the end of the work based on the captured image of the imaging device 40. If the termination condition is satisfied, the controller 30 terminates the process of the current flowchart, and if the termination condition is not satisfied, the process returns to step S108.
 一方、ステップS112にて、コントローラ30は、操作装置26の操作状態やショベル100の動作状態等に基づき、ショベル100の1つの動作に対応する被駆動要素の操作が完了したか否かを判定する。コントローラ30は、操作圧センサ29の出力、操作装置26から出力される操作信号、センサS1~S5の出力等に基づき、操作装置26の操作状態やショベル100の動作状態等を把握することができる。コントローラ30は、ショベル100の1つの動作に対応する被駆動要素の操作が完了している場合、ステップS114に進み、完了していない場合、完了するまで待機する(ステップS112の処理を繰り返す)。 On the other hand, in step S112, the controller 30 determines whether or not the operation of the driven element corresponding to one operation of the shovel 100 has been completed, based on the operating state of the operating device 26, the operating state of the shovel 100, etc. . The controller 30 can grasp the operating state of the operating device 26, the operating state of the shovel 100, etc. based on the output of the operating pressure sensor 29, the operating signal output from the operating device 26, the outputs of the sensors S1 to S5, etc. . If the operation of the driven element corresponding to one operation of the shovel 100 has been completed, the controller 30 proceeds to step S114, and if the operation has not been completed, the controller 30 waits until the operation is completed (repeat the process of step S112).
 ステップS114にて、コントローラ30は、終了条件が成立したか否かを判定する。コントローラ30は、終了条件が成立している場合、今回のフローチャートの処理を終了し、終了条件が成立していない場合、ステップS102に戻る。 In step S114, the controller 30 determines whether the termination condition is satisfied. If the termination condition is satisfied, the controller 30 terminates the process of the current flowchart, and if the termination condition is not satisfied, the process returns to step S102.
 このように、本例では、支援装置150は、ショベル100の周辺の作業対象の形状に対して、適合度(信頼度)の高いショベル100の動作やバケット6の目標軌道を、表示装置50Aや遠隔操作支援装置300を通じてオペレータに提案することができる。 As described above, in this example, the support device 150 displays the operation of the shovel 100 and the target trajectory of the bucket 6 that have a high degree of conformity (reliability) to the shape of the work target around the shovel 100 on the display device 50A. A proposal can be made to the operator through the remote operation support device 300.
 [動作提案機能の第2例]
 次に、図1~図5に加えて、図8、図9を参照して、ユーザ(オペレータ)に対するショベル100の動作提案機能の第2例について説明する。
[Second example of motion suggestion function]
Next, with reference to FIGS. 8 and 9 in addition to FIGS. 1 to 5, a second example of the function of suggesting the operation of the excavator 100 to the user (operator) will be described.
 以下、上述の第1例と同じ或いは対応する構成には同一の符号を付すと共に、上述の第1例と異なる部分を中心に説明し、上述の第1例と同じ或いは対応する内容の説明を簡略化或いは省略する場合がある。 Hereinafter, the same reference numerals will be given to the same or corresponding configurations as in the above-mentioned first example, and the explanation will focus on the parts that are different from the above-mentioned first example, and the same or corresponding contents as in the above-mentioned first example will be explained. It may be simplified or omitted.
  <機能構成>
 図8は、稼働支援システムSYSの動作提案機能に関する機能構成の第1例を示す機能ブロック図である。
<Functional configuration>
FIG. 8 is a functional block diagram showing a first example of the functional configuration regarding the operation proposal function of the operation support system SYS.
 図8に示すように、ショベル100の支援装置150は、コントローラ30と、油圧制御弁31と、撮像装置40と、出力装置50(表示装置50A)と、入力装置52と、通信装置60とを含む。 As shown in FIG. 8, the support device 150 of the excavator 100 includes a controller 30, a hydraulic control valve 31, an imaging device 40, an output device 50 (display device 50A), an input device 52, and a communication device 60. include.
 コントローラ30は、機能部として、上述の第1例と同様、動作ログ提供部301と、作業支援部302とを含む。 The controller 30 includes, as functional units, an operation log providing unit 301 and a work support unit 302, as in the first example described above.
 作業支援部302は、学習済みモデル記憶部302Aと、作業対象形状取得部302Bと、推定部302Cと、提案部302Dと、動作制御部302Eとを含む。 The work support unit 302 includes a learned model storage unit 302A, a work target shape acquisition unit 302B, an estimation unit 302C, a proposal unit 302D, and an operation control unit 302E.
 動作制御部302Eは、入力装置52や通信装置60を通じて受け付けられる、オペレータからの指示の入力に応じて、油圧制御弁31を制御し、提案部302Dによりオペレータに提案されたショベル100の動作を自動で実行させる。これにより、支援装置150は、オペレータからの指示の入力を前提として、現在のショベル100の周辺の作業対象の形状に合わせて、提案対象の動作をショベル100に自動で実施させることができる。そのため、経験の浅いオペレータであっても、指示の入力行うだけで、現在のショベル100の周辺の作業対象の形状に合わせたショベル100の動作をより適切に実施させることができる。そのため、オペレータの利便性をより向上させることができると共に、ショベル100の作業効率をより向上させることができる。 The operation control unit 302E controls the hydraulic control valve 31 in response to instructions input from the operator received through the input device 52 and the communication device 60, and automatically performs the operation of the excavator 100 suggested to the operator by the suggestion unit 302D. Run it with As a result, the support device 150 can cause the shovel 100 to automatically perform the proposed operation in accordance with the shape of the current work target around the shovel 100, on the premise that instructions are input from the operator. Therefore, even an inexperienced operator can more appropriately operate the shovel 100 in accordance with the shape of the current work target around the shovel 100 by simply inputting instructions. Therefore, the operator's convenience can be further improved, and the working efficiency of the excavator 100 can be further improved.
 例えば、提案対象の動作が1つである場合、動作制御部302Eは、オペレータからの指示の入力に応じて、油圧制御弁31を制御し、提案部302Dによる提案対象のショベル100の動作を自動で実行させる。また、例えば、提案対象の動作が複数である場合、動作制御部302Eは、提案対象の複数の動作のうちのオペレータの指示の入力で選択される一の動作を自動で実行させる。また、例えば、提案部302Dによりバケット6の1つの目標軌道が提案される場合、動作制御部302Eは、提案対象のショベル100の動作をバケット6が提案対象の目標軌道に沿って移動するように自動で実行させる。また、例えば、提案部302Dによりバケット6の複数の目標軌道が提案される場合、動作制御部302Eは、複数の目標軌道のうちのオペレータの指示の入力で選択される一の目標軌道でバケット6が移動するように提案対象の動作を自動で実行させる。 For example, when there is one motion to be proposed, the motion control unit 302E controls the hydraulic control valve 31 in response to an instruction input from the operator, and automatically controls the motion of the shovel 100 to be proposed by the suggestion unit 302D. Run it with Further, for example, when there are a plurality of motions to be proposed, the motion control unit 302E automatically executes one of the motions to be suggested, which is selected by inputting an instruction from the operator. Further, for example, when the proposal unit 302D proposes one target trajectory for the bucket 6, the motion control unit 302E controls the operation of the proposed shovel 100 so that the bucket 6 moves along the proposed target trajectory. Let it run automatically. Further, for example, when the proposal unit 302D proposes a plurality of target trajectories for the bucket 6, the operation control unit 302E selects one target trajectory for the bucket 6 from among the plurality of target trajectories, which is selected by inputting an instruction from the operator. Automatically execute the proposed action so that the object moves.
 動作ログ記録部301Aは、作業対象形状取得部302Bにより取得される作業対象の形状に関するデータ、及び動作制御部302Eにより実施された動作や目標軌道を表すデータを含む動作ログを動作ログ記憶部301Bに記録する。これにより、動作ログ送信部301Cは、作業対象の形状に関するデータと、その作業対象の形状を前提として、実際にオペレータが実行させたショベル100の動作や目標軌道を表すデータを含む動作ログを動作ログ記憶部301Bに蓄積させることができる。そして、動作ログ送信部301Cは、その蓄積される動作ログを情報処理装置200にアップロードすることができる。そのため、機械学習部2004は、その動作ログを用いて、学習済みモデルLMを再学習させたり追加学習させたりして、学習済みモデルLMを更新することができる。 The action log recording unit 301A stores an action log including data regarding the shape of the work object acquired by the work object shape acquisition unit 302B, and data representing the actions and target trajectory performed by the action control unit 302E, into the action log storage unit 301B. to be recorded. As a result, the operation log transmitter 301C transmits an operation log that includes data regarding the shape of the work target and data representing the target trajectory and the motion of the excavator 100 actually executed by the operator based on the shape of the work target. It can be stored in the log storage unit 301B. The operation log transmitter 301C can then upload the accumulated operation logs to the information processing device 200. Therefore, the machine learning unit 2004 can update the learned model LM by relearning or additionally learning the learned model LM using the operation log.
 また、機械学習部2004は、再学習或いは追加学習させた学習済みモデルLMと現在の学習済みモデルLMとを所定の評価用のデータを用いて比較し、前者の評価結果が高い場合に、学習済みモデル記憶部2005の学習済みモデルLMを更新してもよい。 In addition, the machine learning unit 2004 compares the trained model LM that has been retrained or additionally trained and the current trained model LM using predetermined evaluation data, and if the evaluation result of the former is high, the learning The trained model LM in the trained model storage unit 2005 may be updated.
  <処理>
 図9は、ショベル100の動作提案機能に関する処理の第2例を概略的に示すフローチャートである。
<Processing>
FIG. 9 is a flowchart schematically showing a second example of processing related to the motion suggestion function of the shovel 100.
 図9に示すように、ステップS202~S206の処理は、図7のステップS102~S106と同じであるため、説明を省略する。 As shown in FIG. 9, the processing in steps S202 to S206 is the same as steps S102 to S106 in FIG. 7, so the explanation will be omitted.
 コントローラ30は、ステップS206の処理が完了すると、ステップS208に進む。 Upon completion of the process in step S206, the controller 30 proceeds to step S208.
 ステップS208にて、コントローラ30は、入力装置52や通信装置60を通じて、オペレータから提案対象の動作の実行を指示する入力(以下、「実行指示の入力」)が受け付けられたか否かを判定する。コントローラ30は、実行指示の入力が受け付けられていない場合、ステップS210に進み、受け付けられた場合、ステップS212に進む。 In step S208, the controller 30 determines whether an input from the operator instructing execution of the proposed action (hereinafter referred to as "input of execution instruction") is received through the input device 52 or the communication device 60. If the input of the execution instruction is not accepted, the controller 30 proceeds to step S210, and if the input is accepted, the process proceeds to step S212.
 ステップS210にて、コントローラ30は、終了条件が成立したか否かを判定する。コントローラ30は、終了条件が成立している場合、今回のフローチャートの処理を終了し、終了条件が成立していない場合、ステップS208に戻る。 In step S210, the controller 30 determines whether the termination condition is satisfied. If the termination condition is satisfied, the controller 30 terminates the process of the current flowchart, and if the termination condition is not satisfied, the process returns to step S208.
 一方、ステップS212にて、動作制御部302Eは、油圧制御弁31を制御し、実行指示の入力で指定される動作を自動で実行させる。また、動作制御部302Eは、実行指示の入力で目標軌道が指示される場合、実行指示の入力で指定される目標軌道でバケット6が移動するように、実行指示の入力で指定されるショベル100の動作を実行させる。 On the other hand, in step S212, the operation control unit 302E controls the hydraulic control valve 31 to automatically execute the operation specified by the input of the execution instruction. In addition, when the target trajectory is specified by inputting the execution instruction, the operation control unit 302E controls the shovel 100 specified by the input of the execution instruction so that the bucket 6 moves on the target trajectory specified by the input of the execution instruction. Execute the action.
 コントローラ30は、ステップS212の処理が完了すると、ステップS214に進む。 Upon completion of the process in step S212, the controller 30 proceeds to step S214.
 ステップS214にて、動作ログ記録部301Aは、作業対象形状取得部302Bにより取得される作業対象の形状に関するデータ、及び動作制御部302Eにより実施された動作や目標軌道を表すデータを含む動作ログを動作ログ記憶部301Bに記録する。 In step S214, the action log recording unit 301A records an action log including data regarding the shape of the work object acquired by the work object shape acquisition unit 302B, and data representing the actions and target trajectory performed by the action control unit 302E. It is recorded in the operation log storage unit 301B.
 コントローラ30は、ステップS214の処理が完了すると、ステップS216に進む。 Upon completion of the process in step S214, the controller 30 proceeds to step S216.
 ステップS216コントローラ30は、終了条件が成立したか否かを判定する。コントローラ30は、終了条件が成立している場合、今回のフローチャートの処理を終了し、終了条件が成立していない場合、ステップS202に戻る。 Step S216: The controller 30 determines whether the termination condition is satisfied. If the termination condition is satisfied, the controller 30 terminates the process of the current flowchart, and if the termination condition is not satisfied, the process returns to step S202.
 尚、本例では、作業対象形状取得部302Bは、前回のステップS212の処理のショベル100の動作による作業対象の形状の変化を予測することにより、作業対象の形状に関するデータを取得してもよい。 In this example, the work target shape acquisition unit 302B may acquire data regarding the shape of the work target by predicting a change in the shape of the work target due to the operation of the shovel 100 in the previous process of step S212. .
 このように、本例では、支援装置150は、オペレータの指示に応じて、ショベル100の周辺の作業対象の形状に対して、適合度(信頼度)の高いショベル100の動作やバケット6の目標軌道を自動で実行させることができる。 As described above, in this example, the support device 150 determines the operation of the shovel 100 and the target of the bucket 6 that have a high degree of conformity (reliability) to the shape of the work target around the shovel 100, in accordance with instructions from the operator. Trajectories can be executed automatically.
 また、本例では、支援装置150は、ショベル100の周辺の作業対象の形状に関するデータ、及び自動で実施されたショベル100の動作や目標軌道に関するデータを含む動作ログを蓄積させることができる。そのため、支援装置150は、蓄積される動作ログを用いて、学習済みモデルLMを更新させることができる。 Furthermore, in this example, the support device 150 can accumulate an operation log that includes data regarding the shape of the work target around the shovel 100, and data regarding the automatically executed actions of the shovel 100 and the target trajectory. Therefore, the support device 150 can update the learned model LM using the accumulated operation logs.
 [ショベルの動作提案機能に関する表示内容の具体例]
 次に、図10~図15を参照して、ショベル100の動作提案機能に関する、表示装置50Aの表示内容の具体例について説明する。
[Specific example of display content related to excavator motion suggestion function]
Next, with reference to FIGS. 10 to 15, a specific example of the display content of the display device 50A regarding the motion suggestion function of the shovel 100 will be described.
 尚、図10~図15の表示内容は、遠隔操作支援装置300の表示装置に表示されてもよい。 Note that the display contents of FIGS. 10 to 15 may be displayed on the display device of the remote operation support device 300.
  <第1例>
 図10は、ショベル100の動作提案機能に関する、表示装置50Aの表示内容の第1例(画面1000)を示す図である。
<First example>
FIG. 10 is a diagram showing a first example (screen 1000) of display content on the display device 50A regarding the motion suggestion function of the excavator 100.
 画面1000には、画像1001~1006が含まれる。 Screen 1000 includes images 1001 to 1006.
 画像1001は、ショベル100の周辺の作業対象を表す画像である。本例では、画像1001は、既知の画像処理技術を用いて、撮像装置40の出力(画像データ)に基づき生成される、ショベル100の周辺の所定の視点から見たときのショベル100の周辺の作業対象(作業現場の地面)を表す画像である。 Image 1001 is an image representing a work target around shovel 100. In this example, the image 1001 is generated based on the output (image data) of the imaging device 40 using a known image processing technique, and is an image of the surroundings of the excavator 100 when viewed from a predetermined viewpoint. This is an image representing the work target (the ground at the work site).
 画像1002は、ショベル100を模式的に表す画像である。本例では、画像1002は、画像1001と同じ視点から見たときのショベル100を模式的に表す画像であり、画像1001に重畳して表示される。 Image 1002 is an image schematically representing shovel 100. In this example, image 1002 is an image schematically representing shovel 100 when viewed from the same viewpoint as image 1001, and is displayed superimposed on image 1001.
 画像1003は、複数の候補の動作の中の提案部302Dによる提案対象の動作をリスト形式で表す画像である。本例では、画像1003には、提案対象の動作として、複数の候補の動作の中から掃出し動作、水平引き動作、転圧動作、及びほうき動作のそれぞれの行を表す画像1003A~1003Dが含まれる。また、本例では、画像1003A~1003Dには、ほうき動作、掃出し動作、水平引き動作、及び転圧動作ごとの信頼度(適合度)が表現されている。これにより、オペレータは、提案対象の動作の中から信頼度(適合度)を考慮して、自身の操作により或いは自動でショベル100に実行させる動作を選択することができる。 The image 1003 is an image that represents, in a list format, the motions to be proposed by the proposal unit 302D among the plurality of candidate motions. In this example, the image 1003 includes images 1003A to 1003D representing each row of a sweeping motion, a horizontal pulling motion, a rolling motion, and a broom motion from among a plurality of candidate motions as motions to be proposed. . Furthermore, in this example, the images 1003A to 1003D express the reliability (degree of suitability) for each of the broom operation, sweeping operation, horizontal pulling operation, and rolling operation. Thereby, the operator can select the operation to be performed by the excavator 100 by his own operation or automatically, taking into consideration the reliability (degree of suitability) from among the proposed operations.
 尚、画像1003には、信頼度(適合度)が最も高い動作(本例では、掃出し動作)のみが表現されてもよい。つまり、提案部302Dは、画像1003を通じて、所定の作業における複数の候補の動作のうちの信頼度(適合度)が最も高い動作のみをオペレータに提案してもよい。また、画像1003には、複数の候補の動作の中で、信頼度(適合度)が所定基準(例えば、30%)以上の動作(例えば、掃出し動作、及び水平引き動作)のみが表現されてもよい。つまり、提案部302Dは、複数の候補の動作の中で、信頼度(適合度)が所定基準以上の動作のみをオペレータに提案してもよい。 Note that the image 1003 may represent only the motion with the highest degree of reliability (degree of suitability) (in this example, the sweeping motion). In other words, the suggestion unit 302D may suggest to the operator, through the image 1003, only the motion with the highest degree of reliability (degree of suitability) among the plurality of candidate motions for a predetermined task. Furthermore, among the plurality of candidate motions, only motions (for example, sweeping motion and horizontal pulling motion) whose reliability (degree of suitability) is equal to or higher than a predetermined standard (for example, 30%) are expressed in the image 1003. Good too. In other words, the proposal unit 302D may suggest to the operator only those operations whose reliability (degree of suitability) is equal to or higher than a predetermined standard among the plurality of candidate operations.
 画像1004は、画像1003に表現される、提案対象の動作ごとの目標軌道を表す画像である。画像1004は、画像1002の周辺において、画像1001に重畳して表示される。これにより、オペレータは、ショベル100の周辺の作業現場の地面の状態を表す画像1001及びショベル100を表す画像1002と比較しながら、提案対象の動作ごとの目標軌道を容易に把握することができる。画像1004は、画像1004A~1004Dを含む。 Image 1004 is an image representing the target trajectory for each proposed motion, which is represented in image 1003. Image 1004 is displayed around image 1002, superimposed on image 1001. Thereby, the operator can easily grasp the target trajectory for each motion to be proposed while comparing the image 1001 representing the state of the ground at the work site around the shovel 100 and the image 1002 representing the shovel 100. Image 1004 includes images 1004A to 1004D.
 画像1004Aは、掃出し動作の目標軌道を表す画像である。 Image 1004A is an image representing the target trajectory of the sweeping operation.
 画像1004Bは、水平引き動作の目標軌道を表す画像である。 Image 1004B is an image representing the target trajectory of the horizontal pulling operation.
 画像1004Cは、転圧動作の目標軌道を表す画像である。 Image 1004C is an image representing the target trajectory of the rolling operation.
 画像1004Dは、ほうき動作の目標軌道を表す画像である。 Image 1004D is an image representing the target trajectory of the broom motion.
 尚、画像1004A~1004Dは、目標軌道の作業対象(地面)に接触する部分とそれ以外の部分とが区別可能な態様で表現されてもよい。例えば、画像1004A~1004Dは、目標軌道の作業対象に接触する部分とそれ以外の部分とで色を異ならせてもよい。これにより、目標軌道に対応する画像1004A~1004Dの画像1001上での遠近感を補助することができる。 Note that the images 1004A to 1004D may be expressed in such a manner that the portion of the target trajectory that contacts the work object (ground) and the other portions can be distinguished. For example, the images 1004A to 1004D may have different colors between the portion of the target trajectory that contacts the work object and the other portions. Thereby, it is possible to assist the sense of perspective on the image 1001 of the images 1004A to 1004D corresponding to the target trajectory.
 本例では、掃出し動作に対応する画像1003Aに梨地のカーソルが表現されている。また、本例では、画像1004の掃出し動作に対応する画像1004Aが他の動作に対応する画像1004B~1004Dより太い線で表現されている。これにより、本例では、掃出し動作が選択された状態が表現されている。例えば、オペレータは、入力装置52を用いて、画像1003A~1003Dの何れか一つを指定することにより、掃出し動作、水平引き動作、転圧動作、及びほうき動作の何れか一つの動作を選択することができる。同様に、例えば、オペレータは、入力装置52を用いて、画像1004A~1004Dの何れか一つを指定することにより、掃出し動作、水平引き動作、転圧動作、及びほうき動作の何れか一つの動作を選択することができる。 In this example, a matte cursor is expressed in the image 1003A corresponding to the sweeping operation. Furthermore, in this example, the image 1004A corresponding to the sweeping motion of the image 1004 is expressed by a thicker line than the images 1004B to 1004D corresponding to other motions. Thus, in this example, a state in which the sweeping operation is selected is expressed. For example, the operator uses the input device 52 to specify any one of the images 1003A to 1003D, thereby selecting one of the sweeping operation, horizontal pulling operation, compaction operation, and broom operation. be able to. Similarly, for example, by specifying any one of the images 1004A to 1004D using the input device 52, the operator can perform any one of the sweeping operation, horizontal pulling operation, rolling operation, and broom operation. can be selected.
 画像1005は、提案対象の動作の中からユーザ(オペレータ)により選択された動作の実行を確定させるためのアイコンである。 The image 1005 is an icon for confirming the execution of the action selected by the user (operator) from among the proposed actions.
 例えば、オペレータは、入力装置52を用いて、画像1005を操作することにより、選択済みの動作を自動でショベル100に実行させることができる。 For example, by operating the image 1005 using the input device 52, the operator can cause the excavator 100 to automatically perform the selected operation.
 画像1006は、ショベル100の動作提案機能を終了させるためのアイコンである。以下、後述の画像1106,1206,1306,1406,1506についても同様である。 Image 1006 is an icon for terminating the motion suggestion function of excavator 100. The same applies to images 1106, 1206, 1306, 1406, and 1506, which will be described later.
 このように、本例では、コントローラ30は、整地作業における複数の候補の動作の中から複数の動作を、それぞれの現在のショベル100の周辺の作業対象の形状(地形形状)に対する信頼度(適合度)と共に表示装置50Aに表示させる。これにより、コントローラ30は、現在のショベル100の周辺の作業対象の形状(地形形状)に対する信頼度(適合度)が相対的に高い動作をオペレータに提案することができる。 In this way, in this example, the controller 30 selects a plurality of motions from among a plurality of candidate motions in the ground leveling work based on the reliability (adaptability) of each of the current shape of the work target (terrain shape) around the excavator 100. degree) on the display device 50A. Thereby, the controller 30 can suggest to the operator an operation that has a relatively high degree of reliability (degree of suitability) for the current shape of the work target (terrain shape) around the excavator 100.
  <第2例>
 図11は、ショベル100の動作提案機能に関する、表示装置50Aの表示内容の第2例(画面1100)を示す図である。
<Second example>
FIG. 11 is a diagram showing a second example (screen 1100) of display content on the display device 50A regarding the motion suggestion function of the shovel 100.
 以下、上述の第1例と異なる部分を中心に説明し、上述の第1例と同じ或いは対応する内容の説明を簡略化或いは省略する場合がある。 Hereinafter, the explanation will focus on the parts that are different from the above-mentioned first example, and the explanation of the same or corresponding contents as the above-mentioned first example may be simplified or omitted.
 画面1100には、画像1101~1106が含まれる。 Screen 1100 includes images 1101 to 1106.
 画像1101は、図10の画像1001と同様、ショベル100の周辺の作業対象を表す画像である。 Image 1101, like image 1001 in FIG. 10, is an image representing a work target around shovel 100.
 画像1102は、図10の画像1002と同様、ショベル100を模式的に表す画像である。 Image 1102 is an image schematically representing shovel 100, similar to image 1002 in FIG.
 画像1103は、複数の候補の動作の中の提案部302Dによる提案対象の一の動作について、バケット6の複数の目標軌道をリスト形式で表す画像である。本例では、画像1103には、提案対象の一の動作としての掃出し動作について、バケット6の4つの目標軌道("掃出しI"~"掃出しIV")のそれぞれの行を表す画像1103A~1103Dが含まれる。また、本例では、画像1103A~1103Dには、バケット6の4つの目標軌道ごとの信頼度(適合度)が表現されている。これにより、オペレータは、提案対象の一の動作(掃出し動作)について、バケット6の4つの目標軌道の中から信頼度を考慮して、自身の動作により或いは自動でショベル100に実行させるバケット6の目標軌道を選択することができる。 The image 1103 is an image that represents, in a list format, a plurality of target trajectories of the bucket 6 for one motion to be proposed by the proposal unit 302D among the plurality of candidate motions. In this example, the image 1103 includes images 1103A to 1103D representing each row of four target trajectories ("sweeping I" to "sweeping IV") of the bucket 6 regarding the sweeping motion as one of the motions to be proposed. included. Further, in this example, the reliability (degree of suitability) of each of the four target trajectories of the bucket 6 is expressed in the images 1103A to 1103D. As a result, the operator can select the bucket 6 to be executed by the excavator 100 either by the operator's own operation or automatically, considering the reliability among the four target trajectories of the bucket 6 for one proposed operation (sweeping operation). A target trajectory can be selected.
 尚、画像1103には、信頼度(適合度)が最も高い、バケット6の目標軌道(本例では、"掃出しI")のみが表現されてもよい。つまり、提案部302Dは、画像1103を通じて、所定の作業における提案対象の一の動作についての複数の目標軌道のうちの信頼度(適合度)が最も高い動作のみをオペレータに提案してもよい。また、画像1103には、バケット6の複数の目標軌道の中で、信頼度(適合度)が所定基準(例えば、30%)以上の目標軌道(例えば、"掃出しI"及び"掃出しII")のみが表現されてもよい。つまり、提案部302Dは、提案対象の一の動作についてのバケット6の複数の目標軌道の中で、信頼度(適合度)が所定基準以上の目標軌道のみをオペレータに提案してもよい。以下、後述の画像1203Aについても同様であってよい。 Incidentally, the image 1103 may represent only the target trajectory of the bucket 6 (in this example, "sweep I"), which has the highest degree of reliability (degree of suitability). In other words, the proposal unit 302D may suggest to the operator, through the image 1103, only the motion with the highest degree of reliability (degree of suitability) among the plurality of target trajectories for one motion to be proposed in a predetermined task. The image 1103 also includes target trajectories (for example, "Sweeping I" and "Sweeping II") whose reliability (fitness) is higher than a predetermined standard (for example, 30%) among the plurality of target trajectories of the bucket 6. may be expressed only. That is, the proposal unit 302D may propose to the operator only those target trajectories whose reliability (degree of suitability) is equal to or higher than a predetermined standard among the plurality of target trajectories in the bucket 6 for one motion to be proposed. The same may apply to image 1203A, which will be described later.
 画像1104は、画像1103に表現される、提案対象の一の動作についての4つの目標軌道を表す画像である。画像1104は、画像1004と同様、画像1002の周辺において、画像1001に重畳して表示される。これにより、オペレータは、ショベル100の周辺の作業現場の地面の状態を表す画像1101及びショベル100を表す画像1102と比較しながら、提案対象の一の動作(掃出し動作)について複数の目標軌道を容易に把握することができる。画像1104は、画像1104A~1104Dを含む。 Image 1104 is an image representing four target trajectories for one motion of the proposal target, which is represented in image 1103. Similar to the image 1004, the image 1104 is displayed in the vicinity of the image 1002, superimposed on the image 1001. As a result, the operator can easily determine multiple target trajectories for one motion (sweeping motion) to be proposed while comparing the image 1101 representing the ground condition of the work site around the shovel 100 and the image 1102 representing the shovel 100. can be grasped. Image 1104 includes images 1104A to 1104D.
 画像1104Aは、画像1103A("掃出しI")に対応する、掃出し動作の目標軌道を表す画像である。 Image 1104A is an image representing the target trajectory of the sweeping operation, which corresponds to image 1103A ("Sweeping I").
 画像1104Bは、画像1103B("掃出しII")に対応する、掃出し動作の目標軌道を表す画像である。 Image 1104B is an image representing the target trajectory of the sweeping operation, which corresponds to image 1103B ("Sweeping II").
 画像1104Cは、画像1103C("掃出しIII")に対応する、掃出し動作の目標軌道を表す画像である。 Image 1104C is an image representing the target trajectory of the sweeping operation, which corresponds to image 1103C ("Sweeping III").
 画像1104Dは、画像1103C("掃出しIV")に対応する、掃出し動作の目標軌道を表す画像である。 Image 1104D is an image representing the target trajectory of the sweeping operation, which corresponds to image 1103C ("Sweeping IV").
 本例では、"掃出し動作I"に対応する画像1103Aに梨地のカーソルが表現されている。また、本例では、画像1104の中の"掃出し動作I"の目標軌道に対応する画像1104Aが他の目標軌道に対応する画像1104B~1104Dより太い線で表現されている。これにより、本例では、4つの目標軌道のうちの"掃出しI"の目標軌道が選択された状態が表現されている。例えば、オペレータは、入力装置52を用いて、画像1103A~1103Dの何れか一つを指定することにより、4つの目標軌道の何れか1つの目標軌道を選択することができる。同様に、例えば、オペレータは、入力装置52を用いて、画像1104A~1104Dの何れか一つを指定することにより、バケット6の4つの目標軌道の何れか1つの目標軌道を選択することができる。 In this example, a matte cursor is expressed in the image 1103A corresponding to "sweeping operation I". Further, in this example, an image 1104A corresponding to the target trajectory of "sweeping operation I" in the image 1104 is expressed by a thicker line than images 1104B to 1104D corresponding to other target trajectories. As a result, in this example, a state is expressed in which the "sweeping I" target trajectory is selected among the four target trajectories. For example, the operator can select any one of the four target trajectories by specifying any one of the images 1103A to 1103D using the input device 52. Similarly, for example, the operator can select any one of the four target trajectories for the bucket 6 by specifying any one of the images 1104A to 1104D using the input device 52. .
 画像1105は、複数の目標軌道の中からユーザ(オペレータ)により選択された目標軌道でバケット6が移動するように、提案対象の一の動作(掃出し動作)を実行させるためのアイコンである。 The image 1105 is an icon for executing one of the proposed operations (sweeping operation) so that the bucket 6 moves on a target trajectory selected by the user (operator) from among a plurality of target trajectories.
 例えば、オペレータは、入力装置52を用いて、画像1105を操作することにより、選択済みの目標軌道でバケット6が移動するように提案対象の一の動作を自動でショベル100に実行させることができる。 For example, by manipulating the image 1105 using the input device 52, the operator can cause the excavator 100 to automatically perform one of the proposed operations so that the bucket 6 moves along the selected target trajectory. .
 このように、本例では、コントローラ30は、整地作業に関する一の動作についてのバケット6の複数の目標軌道を、それぞれの現在のショベル100の周辺の作業対象の形状(地形形状)に対する信頼度(適合度)と共に表示装置50Aに表示させる。これにより、コントローラ30は、現在のショベル100の周辺の作業対象の形状(地形形状)に対する信頼度(適合度)が相対的に高い、バケット6の複数の目標軌道をオペレータに提案することができる。 As described above, in this example, the controller 30 determines the plurality of target trajectories of the bucket 6 for one operation related to the ground leveling work based on the reliability ( degree of suitability) on the display device 50A. Thereby, the controller 30 can suggest to the operator a plurality of target trajectories for the bucket 6 that have a relatively high degree of reliability (degree of suitability) for the shape of the work target (terrain shape) around the current excavator 100. .
  <第3例>
 図12、図13は、ショベル100の動作提案機能に関する、表示装置50Aの表示内容の第3例(画面1200,1300)を示す図である。
<3rd example>
12 and 13 are diagrams showing a third example (screens 1200, 1300) of display contents of the display device 50A regarding the motion suggestion function of the excavator 100.
 以下、上述の第1例、第2例と異なる部分を中心に説明し、上述の第1例、第2例と同じ或いは対応する内容の説明を簡略化或いは省略する場合がある。 Hereinafter, the explanation will focus on the parts that are different from the above-mentioned first and second examples, and the explanation of the same or corresponding contents as the above-mentioned first and second examples may be simplified or omitted.
 画面1200には、画像1201~1206が含まれる。 Screen 1200 includes images 1201 to 1206.
 画像1201は、図10の画像1001と同様、ショベル100の周辺の作業対象を表す画像である。 Image 1201, like image 1001 in FIG. 10, is an image representing a work target around shovel 100.
 画像1202は、図10の画像1002と同様、ショベル100を模式的に表す画像である。 Image 1202 is an image schematically representing shovel 100, similar to image 1002 in FIG.
 画像1203は、図10の画像1003と同様、複数の候補の動作の中の提案部302Dによる提案対象の動作をリスト形式で表す画像である。本例では、画像1203には、提案対象の動作として、複数の候補の動作の中から掃出し動作、水平引き動作、転圧動作、及びほうき動作のそれぞれの行を表す画像1203A~1203Dが含まれる。また、本例では、画像1203A~1203Dには、ほうき動作、掃出し動作、水平引き動作、及び転圧動作ごとの信頼度(適合度)が表現されている。 Similar to the image 1003 in FIG. 10, the image 1203 is an image that represents, in a list format, the motions to be proposed by the proposal unit 302D among the plurality of candidate motions. In this example, the image 1203 includes images 1203A to 1203D representing each row of a sweeping motion, a horizontal pulling motion, a rolling motion, and a broom motion from among a plurality of candidate motions as motions to be proposed. . Further, in this example, the images 1203A to 1203D express the reliability (degree of suitability) for each of the broom operation, sweeping operation, horizontal pulling operation, and rolling operation.
 また、画像1203Aには、図11の画像1103と同様、提案対象の一の動作(掃出し動作)について、バケット6の複数の目標軌道をリスト形式で表す画像である。本例では、画像1203Aには、複数の候補の動作の中で信頼度(適合度)が最も高い掃出し動作について、バケット6の4つの目標軌道("掃出しI"~"掃出しIV")のそれぞれの行を表す画像1203A1~1203A4が含まれる。また、本例では、画像1203A1~1203A4には、バケット6の4つの目標軌道ごとの信頼度(適合度)が表現されている。 Similarly to the image 1103 in FIG. 11, the image 1203A is an image that represents a plurality of target trajectories of the bucket 6 in a list format for one motion (sweeping motion) to be proposed. In this example, image 1203A shows each of the four target trajectories ("sweep I" to "sweep IV") of bucket 6 for the sweep motion with the highest degree of reliability (fitness) among the multiple candidate motions. Images 1203A1 to 1203A4 representing rows of are included. Further, in this example, the reliability (degree of suitability) of each of the four target trajectories of the bucket 6 is expressed in the images 1203A1 to 1203A4.
 画像1204は、図10の画像1004と同様、画像1203に表現される、提案対象の動作ごとの目標軌道を表す画像である。画像1204は、画像1204A~1204Dを含む。 Similar to the image 1004 in FIG. 10, the image 1204 is an image representing the target trajectory for each proposed motion, which is expressed in the image 1203. Image 1204 includes images 1204A to 1204D.
 画像1204Aは、掃出し動作の目標軌道を表す画像である。具体的には、掃出し動作に対応するバケット6の目標軌道("掃出しI"~"掃出しIV")のうちの信頼度が最も高い一の目標軌道("掃出しI")を表す画像である。 Image 1204A is an image representing the target trajectory of the sweeping operation. Specifically, the image represents the target trajectory ("sweeping I") with the highest reliability among the target trajectories ("sweeping I" to "sweeping IV") of the bucket 6 corresponding to the sweeping operation.
 画像1204B~1204Dは、図10の画像1004B~1004Dと同じであるため説明を省略する。 The images 1204B to 1204D are the same as the images 1004B to 1004D in FIG. 10, so a description thereof will be omitted.
 本例では、掃出し動作に対応する画像1003Aに梨地のカーソルが表現されている。また、本例では、画像1004の掃出し動作に対応する画像1004Aが他の動作に対応する画像1004B~1004Dより太い線で表現されている。これにより、本例では、掃出し動作が選択された状態が表現されている。 In this example, a matte cursor is expressed in the image 1003A corresponding to the sweeping operation. Furthermore, in this example, the image 1004A corresponding to the sweeping motion of the image 1004 is expressed by a thicker line than the images 1004B to 1004D corresponding to other motions. Thus, in this example, a state in which the sweeping operation is selected is expressed.
 画像1205は、提案対象の動作の中からユーザ(オペレータ)により選択された動作の実行を確定させるためのアイコンである。 The image 1205 is an icon for confirming execution of the action selected by the user (operator) from among the proposed actions.
 また、画像1205は、提案対象の動作のうちの最も信頼度が高い掃出し動作が選択された状態において、掃出し動作に対応するバケット6の4つの目標軌道を選択するための画面1300に移行させるためのアイコンである。つまり、画面1200の状態で、入力装置52を通じて、画像1205が操作されると、画面1300に移行する。 In addition, the image 1205 is for transitioning to a screen 1300 for selecting four target trajectories of the bucket 6 corresponding to the sweeping motion in a state where the sweeping motion with the highest reliability among the motions to be proposed is selected. This is the icon. That is, when the image 1205 is operated through the input device 52 while the screen 1200 is displayed, the screen shifts to the screen 1300.
 画面1300は、画像1301~1306を含む。 Screen 1300 includes images 1301 to 1306.
 画像1303は、図12の画像1203と同様、複数の候補の動作の中の提案部302Dによる提案対象の動作をリスト形式で表す画像である。具体的には、画像1303には、提案対象の動作として、複数の候補の動作の中から掃出し動作、水平引き動作、転圧動作、及びほうき動作のそれぞれの行を表す画像1203A~1203Dが含まれる。 Similar to the image 1203 in FIG. 12, the image 1303 is an image that represents, in a list format, the motions to be proposed by the proposal unit 302D among the plurality of candidate motions. Specifically, the image 1303 includes images 1203A to 1203D representing each row of a sweeping motion, a horizontal pulling motion, a rolling motion, and a broom motion from among a plurality of candidate motions as motions to be proposed. It will be done.
 また、画像1303Aには、図12の画像1203Aと同様、提案対象の一の動作(掃出し動作)について、バケット6の複数の目標軌道をリスト形式で表す画像である。具体的には、画像1203Aには、複数の候補の動作の中で信頼度(適合度)が最も高い掃出し動作について、バケット6の4つの目標軌道("掃出しI"~"掃出しIV")のそれぞれの行を表す画像1303A1~1303A4が含まれる。 Also, like the image 1203A in FIG. 12, the image 1303A is an image that represents a plurality of target trajectories of the bucket 6 in a list format for one motion (sweeping motion) to be proposed. Specifically, the image 1203A shows four target trajectories ("sweep I" to "sweep IV") of bucket 6 for the sweep motion with the highest degree of reliability (fitness) among the multiple candidate motions. Images 1303A1 to 1303A4 representing each row are included.
 画像1304は、図11の画像1104と同様、画像1104は、画像1103に表現される、提案対象の一の動作についての4つの目標軌道を表す画像である。具体的には、画像1304は、画像1304A~1304Dを含む。 Image 1304 is similar to image 1104 in FIG. 11, and image 1104 is an image representing four target trajectories for one motion of the proposed object, which is expressed in image 1103. Specifically, image 1304 includes images 1304A to 1304D.
 画像1304A~1304Dは、それぞれ、図11の画像1104A~1104Dと同じであるため、説明を省略する。 Images 1304A to 1304D are the same as images 1104A to 1104D in FIG. 11, respectively, so their description will be omitted.
 本例では、"掃出し動作I"に対応する画像1303A1に梨地のカーソルが表現されている。また、本例では、画像1304の中の"掃出し動作I"の目標軌道に対応する画像1304Aが他の目標軌道に対応する画像1304B~1304Dより太い線で表現されている。これにより、本例では、4つの目標軌道のうちの"掃出しI"の目標軌道が選択された状態が表現されている。 In this example, a matte cursor is expressed in the image 1303A1 corresponding to "sweeping operation I". Further, in this example, an image 1304A corresponding to the target trajectory of "sweeping operation I" in the image 1304 is expressed by a thicker line than images 1304B to 1304D corresponding to other target trajectories. As a result, in this example, a state is expressed in which the "sweeping I" target trajectory is selected among the four target trajectories.
 画像1305は、複数の目標軌道の中からユーザ(オペレータ)により選択された目標軌道でバケット6が移動するように、提案対象の一の動作(掃出し動作)を実行させるためのアイコンである。 The image 1305 is an icon for executing one of the proposed operations (sweeping operation) so that the bucket 6 moves on a target trajectory selected by the user (operator) from among a plurality of target trajectories.
 このように、本例では、コントローラ30は、整地作業に関する複数の候補の動作の中の複数の動作を、信頼度と共に表示装置50Aに表示させると共に、最も信頼度の高い動作についての複数の目標軌道を表示装置50Aに表示させる。これにより、コントローラ30は、現在のショベル100の周辺の作業対象の形状(地形形状)に対する信頼度が相対的に高い複数の動作、及び最も信頼度が高い動作についてのバケット6の複数の目標軌道をオペレータに提案することができる。 In this way, in this example, the controller 30 causes the display device 50A to display a plurality of motions among a plurality of candidate motions related to the ground leveling work together with their reliability, and also displays a plurality of targets for the motion with the highest reliability. The trajectory is displayed on the display device 50A. Thereby, the controller 30 selects a plurality of operations that have a relatively high degree of reliability with respect to the current shape of the work target (terrain shape) around the excavator 100, and a plurality of target trajectories of the bucket 6 for the most reliable operation. can be proposed to the operator.
  <第4例>
 図14は、ショベル100の動作提案機能に関する、表示装置50Aの表示内容の第4例(画面1400)を示す図である。
<4th example>
FIG. 14 is a diagram showing a fourth example (screen 1400) of display content on the display device 50A regarding the motion suggestion function of the shovel 100.
 以下、上述の第1例~第3例と異なる部分を中心に説明し、上述の第1例~第3例と同じ或いは対応する内容の説明を簡略化或いは省略する場合がある。 Hereinafter, the explanation will focus on the parts that are different from the above-mentioned first to third examples, and the explanation of the same or corresponding content as the above-mentioned first to third examples may be simplified or omitted.
 画面1400には、画像1401~1406が含まれる。 Screen 1400 includes images 1401 to 1406.
 画像1401は、図10の画像1001と同様、ショベル100の周辺の作業対象を表す画像である。 Image 1401, like image 1001 in FIG. 10, is an image representing a work target around shovel 100.
 画像1402は、図10の画像1002と同様、ショベル100を模式的に表す画像である。 Image 1402 is an image schematically representing shovel 100, similar to image 1002 in FIG.
 画像1403は、図10の画像1003と同様、複数の候補の動作の中の提案部302Dによる提案対象の動作をリスト形式で表す画像である。具体的には、画像1403には、提案対象の動作として、複数の候補の動作の中から掃出し動作、水平引き動作、転圧動作、及びほうき動作のそれぞれの行を表す画像1403A~1403Dが含まれる。 Similar to the image 1003 in FIG. 10, the image 1403 is an image that represents, in a list format, the motions to be proposed by the proposal unit 302D among the plurality of candidate motions. Specifically, the image 1403 includes images 1403A to 1403D representing each row of a sweeping motion, a horizontal pulling motion, a rolling motion, and a broom motion from among a plurality of candidate motions as motions to be proposed. It will be done.
 画像1404は、図10の画像1004と同様、画像1403に表現される、提案対象の動作ごとの目標軌道を表す画像である。具体的には、画像1404は、画像1404A~1404Dを含む。 Similar to the image 1004 in FIG. 10, the image 1404 is an image representing the target trajectory for each proposed motion expressed in the image 1403. Specifically, image 1404 includes images 1404A to 1404D.
 画像1404A~1404Dは、それぞれ、図10の画像1004A~1004Dと同じであるため、説明を省略する。 Images 1404A to 1404D are the same as images 1004A to 1004D in FIG. 10, respectively, so their description will be omitted.
 本例では、画像1401の画像1403Aが重畳して表示される画像領域に作業者Wが映っている。そのため、最も信頼度が高い動作(掃出し動作)が選択されると、アタッチメントATが作業者Wに接近しすぎたり、アタッチメントATが作業者Wに当接したりする可能性がある。 In this example, the worker W is shown in the image area where the image 1403A of the image 1401 is displayed in a superimposed manner. Therefore, if the most reliable operation (sweeping operation) is selected, there is a possibility that the attachment AT will come too close to the worker W or that the attachment AT will come into contact with the worker W.
 これに対して、本例では、水平引き動作に対応する画像1403Bに梨地のカーソルが表現され、且つ、水平引き動作に対応する画像1404Bが他の動作に対応する画像1404A,1404C,1404Dより太い線で表現されている。つまり、本例では、オペレータは、入力装置52を通じて、掃出し動作とは別の動作(水平引き動作)を選択し、ショベル100に実行させようとしている。これにより、アタッチメントATが作業者Wに接近しすぎたり、作業者Wに当接したりする事態の発生を抑制することができる。 In contrast, in this example, a satin-textured cursor is expressed in image 1403B corresponding to the horizontal pulling motion, and image 1404B corresponding to the horizontal pulling motion is thicker than images 1404A, 1404C, and 1404D corresponding to other motions. It is represented by a line. That is, in this example, the operator selects an operation other than the sweeping operation (horizontal pulling operation) through the input device 52, and is about to have the excavator 100 execute it. Thereby, it is possible to prevent the attachment AT from coming too close to the worker W or coming into contact with the worker W.
 画像1405は、図10の画像1005と同じであるため、説明を省略する。 The image 1405 is the same as the image 1005 in FIG. 10, so its description will be omitted.
 このように、本例では、ショベル100の周辺の様子を表す画像1401に重畳して、提案対象の動作の目標軌道を表示させることで、オペレータは、目標軌道と作業現場の作業者W等の障害物との関係を把握することができる。そのため、オペレータの利便性やショベル100の作業効率を向上させつつ、ショベル100の安全性を向上させることができる。 In this way, in this example, by displaying the target trajectory of the proposed motion superimposed on the image 1401 representing the surroundings of the excavator 100, the operator can compare the target trajectory with the worker W at the work site. It is possible to understand the relationship with obstacles. Therefore, the safety of the shovel 100 can be improved while improving the operator's convenience and the working efficiency of the shovel 100.
  <第5例>
 図15は、ショベル100の動作提案機能に関する、表示装置50Aの表示内容の第5例(画面1500)を示す図である。
<Fifth example>
FIG. 15 is a diagram showing a fifth example (screen 1500) of display content on the display device 50A regarding the motion suggestion function of the shovel 100.
 以下、上述の第1例~第4例と異なる部分を中心に説明し、上述の第1例~第4例と同じ或いは対応する内容の説明を簡略化或いは省略する場合がある。 Hereinafter, the explanation will focus on the parts that are different from the above-mentioned first to fourth examples, and the explanation of contents that are the same as or corresponding to the above-mentioned first to fourth examples may be simplified or omitted.
 画面1500には、画像1501~1506が含まれる。 Screen 1500 includes images 1501 to 1506.
 画像1501は、図10の画像1001と同様、ショベル100の周辺の作業対象を表す画像である。 Image 1501, like image 1001 in FIG. 10, is an image representing a work target around shovel 100.
 画像1502は、図10の画像1002と同様、ショベル100を模式的に表す画像である。 Image 1502 is an image schematically representing shovel 100, similar to image 1002 in FIG.
 画像1503は、図10の画像1003と同様、複数の候補の動作の中の提案部302Dによる提案対象の動作をリスト形式で表す画像である。具体的には、画像1503には、提案対象の動作として、複数の候補の動作の中から水平引き動作、掃出し動作、転圧動作、及びほうき動作のそれぞれの行を表す画像1503A~1503Dが含まれる。 Similar to the image 1003 in FIG. 10, the image 1503 is an image that represents, in a list format, the motions to be proposed by the proposal unit 302D among the plurality of candidate motions. Specifically, the image 1503 includes images 1503A to 1503D representing each row of a horizontal pulling action, a sweeping action, a rolling action, and a broom action from among a plurality of candidate actions as suggested actions. It will be done.
 画像1504は、図10の画像1004と同様、画像1503に表現される、提案対象の動作ごとの目標軌道を表す画像である。具体的には、画像1504は、画像1504A~1404Dを含む。 Similar to the image 1004 in FIG. 10, the image 1504 is an image representing the target trajectory for each proposed motion expressed in the image 1503. Specifically, image 1504 includes images 1504A to 1404D.
 画像1404A~1404Dは、それぞれ、図10の画像1004A~1004Dと同じであるため、説明を省略する。 Images 1404A to 1404D are the same as images 1004A to 1004D in FIG. 10, respectively, so their description will be omitted.
 画像1004Aは、掃出し動作の目標軌道を表す画像である。 Image 1004A is an image representing the target trajectory of the sweeping operation.
 画像1004Bは、水平引き動作の目標軌道を表す画像である。 Image 1004B is an image representing the target trajectory of the horizontal pulling operation.
 画像1004Cは、転圧動作の目標軌道を表す画像である。 Image 1004C is an image representing the target trajectory of the rolling operation.
 画像1004Dは、ほうき動作の目標軌道を表す画像である。 Image 1004D is an image representing the target trajectory of the broom motion.
 本例では、画像1501の画像1504A,1504C,1504Dが重畳して表示される画像領域は、既に整地作業が完了した領域1501Aに含まれている。そのため、最も信頼度が高い動作(画像1504Aに対応する水平引き動作)が選択されると、既に整地作業が完了した領域に対して無駄な作業が行われてしまうばかりか、無駄な作業の影響で元に戻す作業が必要となる。その結果、ショベル100の作業効率の低下や作業現場の作業の進捗の遅れを招来する可能性がある。 In this example, the image area in which the images 1504A, 1504C, and 1504D of the image 1501 are displayed in a superimposed manner is included in the area 1501A in which the leveling work has already been completed. Therefore, if the operation with the highest reliability (the leveling operation corresponding to image 1504A) is selected, not only will wasteful work be performed on the area where the leveling work has already been completed, but also the impact of the wasteful work will be You will need to do some work to restore it. As a result, there is a possibility that the working efficiency of the shovel 100 will be reduced and the progress of the work at the work site will be delayed.
 これに対して、本例では、掃出し動作に対応する画像1503Bに梨地のカーソルが表現され、且つ、掃出し動作に対応する画像1504Bが他の動作に対応する画像1504A,1504C,1504Dより太い線で表現されている。つまり、本例では、オペレータは、掃出し動作とは別の動作(水平引き動作)を選択し、ショベル100に実行させようとしている。これにより、既に作業が完了済の領域に対して、ショベル100が作業を実施してしまうような事態を抑制することができる。そのため、ショベル100の作業効率の低下や作業現場の作業の進捗の遅れ等を抑制することができる。 On the other hand, in this example, a matte cursor is expressed in the image 1503B corresponding to the sweeping motion, and the image 1504B corresponding to the sweeping motion is drawn with thicker lines than the images 1504A, 1504C, and 1504D corresponding to other motions. It is expressed. That is, in this example, the operator selects a different operation (horizontal pulling operation) from the sweeping operation and is trying to have the excavator 100 execute it. This can prevent the shovel 100 from performing work on an area where work has already been completed. Therefore, it is possible to suppress a decrease in the work efficiency of the shovel 100 and a delay in the progress of work at the work site.
 また、本例では、領域1501Aには、既に整地作業が完了した領域であることを示す画像(領域1501Aを斜線で覆う画像等)が重畳して表示される。これにより、オペレータは、領域1501Aが整地作業の完了した領域であることをより確実に把握することができる。この場合、作業現場における作業が完了した領域に関する情報は、例えば、情報処理装置200からショベル100に配信される。 Furthermore, in this example, an image (such as an image covering the area 1501A with diagonal lines) indicating that the area 1501A is an area where land leveling work has already been completed is displayed in a superimposed manner. This allows the operator to more reliably understand that the area 1501A is an area where the leveling work has been completed. In this case, information regarding the area where the work has been completed at the work site is distributed from the information processing device 200 to the shovel 100, for example.
 画像1505は、図10の画像1005と同じであるため、説明を省略する。 The image 1505 is the same as the image 1005 in FIG. 10, so its description will be omitted.
 このように、本例では、ショベル100の周辺の様子を表す画像1401に重畳して、提案対象の動作の目標軌道を表示させることで、オペレータは、目標軌道と作業現場の作業の完了状況等との関係を把握することができる。そのため、オペレータは、作業現場の作業の完了状況に合わせて、より適切な動作や目標軌道を選択することができる。 In this way, in this example, by displaying the target trajectory of the proposed motion superimposed on the image 1401 representing the surroundings of the excavator 100, the operator can check the target trajectory and the completion status of the work at the work site. It is possible to understand the relationship between Therefore, the operator can select a more appropriate motion or target trajectory according to the completion status of the work at the work site.
 [動作提案機能の他の例]
 次に、動作提案機能の他の例について説明する。
[Other examples of motion suggestion function]
Next, another example of the motion suggestion function will be explained.
 上述の動作提案機能の第1例や第2例は、適宜、その内容が組み合わせられてもよいし、変形や変更が加えられてもよい。 The contents of the first and second examples of the above-described motion suggestion function may be combined, modified or changed as appropriate.
 例えば、上述の動作提案機能の第1例や第2例では、提案部302Dは、所定の作業で実施されうる、複数の候補の動作のうちの提案対象の動作のみを提案し、提案対象の動作に対応する目標軌道の提案を省略してもよい。 For example, in the first and second examples of the motion proposal function described above, the proposal unit 302D proposes only the motion to be proposed out of a plurality of candidate motions that can be performed in a predetermined task, and Proposal of a target trajectory corresponding to the motion may be omitted.
 また、上述の動作提案機能の第1例や第2例やその変形例では、提案部302Dは、ショベル100の周辺の作業対象の形状に対する信頼度(適合度)が相対的に高い目標軌道だけでなく、相対的に信頼度(適合度)の低い動作や目標軌道を意図的に提案してもよい。例えば、相対的に信頼度(適合度)の低い動作は、学習済みモデルLMに基づき推定される、信頼度(適合度)が所定基準より低い、ショベル100の動作やバケット6の目標軌道である。また、相対的に信頼度(適合度)の低い動作は、学習済みモデルLMとは別の学習済みモデル、即ち、不適切な動作や目標軌道を含む教師データセットにより機械学習がされた学習済みモデルに基づき推定されるショベル100の動作やバケット6の目標軌道であってもよい。これにより、オペレータの動作提案機能への依存を抑制し、オペレータ自身での適切な判断に基づく動作提案機能の使用を促すことができる。この場合、相対的に信頼度適合度の低い動作が選択されると、コントローラ30の補助記憶装置30A等にその旨がログとして記録されてもよい。また、そのログには、オペレータの識別情報が含まれてもよい。これにより、例えば、支援装置150(コントローラ30)は、相対的に信頼度(適合度)が低い、ショベル100の動作やバケット6の目標軌道を選択する確率が高いオペレータに対してラベルを付けることができる。そのため、作業現場の管理者等は、事後的に、ログやラベル等を確認することで、オペレータごとの動作提案機能の使用状況を管理することができる。 Furthermore, in the first example, the second example, and their variations of the motion proposal function described above, the proposal unit 302D only selects target trajectories that have a relatively high degree of reliability (degree of conformity) to the shape of the work target around the shovel 100. Instead, motions or target trajectories with relatively low reliability (fitness) may be intentionally proposed. For example, the motion with relatively low reliability (fitness) is the motion of the excavator 100 or the target trajectory of the bucket 6, which is estimated based on the trained model LM and whose reliability (fitness) is lower than a predetermined standard. . In addition, motions with relatively low reliability (fitness) are handled by a trained model other than the trained model LM, that is, a trained model that has been machine learned using a teacher dataset that includes inappropriate motions and target trajectories. The motion of the shovel 100 or the target trajectory of the bucket 6 estimated based on the model may be used. Thereby, it is possible to suppress the operator's dependence on the motion suggestion function and encourage the operator to use the motion suggestion function based on his or her own appropriate judgment. In this case, when an operation with a relatively low degree of reliability suitability is selected, a log to that effect may be recorded in the auxiliary storage device 30A of the controller 30 or the like. Further, the log may include identification information of the operator. As a result, for example, the support device 150 (controller 30) can label an operator who has a high probability of selecting an operation of the shovel 100 or a target trajectory of the bucket 6 that has a relatively low degree of reliability (degree of suitability). I can do it. Therefore, a manager or the like at a work site can manage the usage status of the motion suggestion function for each operator by checking logs, labels, etc. after the fact.
 また、上述の動作提案機能の第1例や第2例やその変形例では、支援装置150の機能の一部又は全部は、遠隔操作支援装置300に移管されてもよい。例えば、提案部302Dの機能は、遠隔操作支援装置300に移管される。また、提案部302Dに加えて、推定部302Cの機能が遠隔操作支援装置300に移管されてもよい。また、提案部302D、推定部302Cに加えて、作業対象形状取得部302Bの機能が遠隔操作支援装置300に移管されてもよい。この場合、撮像装置40の画像データがショベル100から遠隔操作支援装置300に送信される。 Further, in the first example, the second example, and the modified examples of the above-described motion suggestion function, part or all of the functions of the support device 150 may be transferred to the remote operation support device 300. For example, the functions of the proposal unit 302D are transferred to the remote operation support device 300. Further, in addition to the proposal section 302D, the functions of the estimation section 302C may be transferred to the remote operation support device 300. Further, in addition to the proposal section 302D and the estimation section 302C, the functions of the work object shape acquisition section 302B may be transferred to the remote operation support device 300. In this case, image data of the imaging device 40 is transmitted from the excavator 100 to the remote operation support device 300.
 また、上述の動作提案機能の第1例や第2例やその変形例では、支援装置150の機能の一部又は全部は、情報処理装置200に移管されてもよい。例えば、作業対象形状取得部302Bは、情報処理装置200に移管される。この場合、撮像装置40の画像データがショベル100から情報処理装置200に送信される。また、作業対象形状取得部302Bに加えて、推定部302Cの機能が情報処理装置200に移管されてよい。また、作業対象形状取得部302B及び推定部302Cに加えて、提案部302Dの機能が情報処理装置200に移管されてもよい。これにより、例えば、キャビン10に持ち込まれる、可搬型の情報処理装置200は、オペレータに対して、所定の作業で実施されうるショベル100の複数の候補の動作の中から一又は複数の動作を提案したり、その動作の軌道を提案したりすることができる。 Further, in the first example, the second example, and the modified examples of the above-described motion suggestion function, part or all of the functions of the support device 150 may be transferred to the information processing device 200. For example, the work target shape acquisition unit 302B is transferred to the information processing device 200. In this case, image data of the imaging device 40 is transmitted from the excavator 100 to the information processing device 200. Further, in addition to the work target shape acquisition unit 302B, the function of the estimation unit 302C may be transferred to the information processing device 200. Furthermore, in addition to the work target shape acquisition section 302B and the estimation section 302C, the functions of the proposal section 302D may be transferred to the information processing apparatus 200. Thereby, for example, the portable information processing device 200 brought into the cabin 10 suggests to the operator one or more operations from among a plurality of candidate operations of the shovel 100 that can be performed in a predetermined work. You can also suggest the trajectory of the movement.
 また、上述の動作提案機能の第1例や第2例やその変形例に係る支援装置150は、ショベル100とは異なる他の作業機械の所定の作業における複数の候補の動作の中の一又は複数の動作をオペレータに提案してもよい。例えば、他の作業機械は、ハーベスタ装置を有する林業機械である。この場合、支援装置150は、現場に存在する複数の候補の木に対する動作の中からハーベスタ装置による動作の対象の一又は複数の木に対する動作を提案してよい。 Further, the support device 150 according to the first example, the second example, or a modification thereof of the above-mentioned motion suggestion function may perform one or more of the plurality of candidate motions in a predetermined work of a working machine different from the excavator 100. A plurality of actions may be suggested to the operator. For example, another working machine is a forestry machine with a harvester device. In this case, the support device 150 may propose an operation for one or more trees to be operated by the harvester device from among operations for a plurality of candidate trees existing in the field.
 [支援装置の作用(1)]
 次に、本実施形態に係る支援装置の作用について説明する。
[Function of support device (1)]
Next, the operation of the support device according to this embodiment will be explained.
 本実施形態では、支援装置は、取得部と、提案部と、を備える。支援装置は、例えば、支援装置150である。作業機械は、例えば、ショベル100である。取得部は、例えば、作業対象形状取得部302Bである。提案部は、例えば、提案部302Dである。具体的には、取得部は、作業機械の周辺の作業対象の形状(例えば、地形形状)に関するデータを取得する。そして、提案部は、取得部により取得される、作業機械の周辺の作業対象の形状に関するデータに基づき、所定の作業における作業機械の複数の候補の動作の中の動作をユーザに提案する。 In this embodiment, the support device includes an acquisition unit and a proposal unit. The support device is, for example, the support device 150. The working machine is, for example, a shovel 100. The acquisition unit is, for example, a work target shape acquisition unit 302B. The proposal unit is, for example, the proposal unit 302D. Specifically, the acquisition unit acquires data regarding the shape of the work target (for example, topographic shape) around the working machine. Then, the proposal unit proposes to the user a motion among the plurality of candidate motions of the work machine in a predetermined work based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit.
 また、本実施形態では、作業機械は、上述の支援装置を備えてもよい。 Furthermore, in this embodiment, the work machine may include the above-mentioned support device.
 これにより、支援装置は、例えば、所定の作業で実施されうる複数の候補の動作の中から、作業機械の周辺の作業対象の形状により適合する動作を作業機械のオペレータに提案することができる。そのため、作業機械をより適切に動作させることができる。よって、作業機械の作業効率を向上させることができる。 Thereby, the support device can, for example, suggest to the operator of the work machine an action that is more suitable for the shape of the work target around the work machine, from among a plurality of candidate actions that can be performed in a predetermined work. Therefore, the work machine can be operated more appropriately. Therefore, the working efficiency of the working machine can be improved.
 また、本実施形態では、支援装置は、推定部を備える。推定部は、例えば、推定部302Cである。具体的には、推定部は、作業対象の形状と対応付けられた、相対的に熟練度の高いオペレータの操作による作業機械の動作に関する教師データによって機械学習がされた学習済みモデルを用いて、取得部により取得される、作業機械の周辺の作業対象の形状に関するデータに基づき、複数の候補の動作の中から作業機械の周辺の作業対象の形状に適合する動作を推定する。学習済みモデルは、例えば、学習済みモデルLMである。そして、提案部は、推定部の推定結果に基づき、複数の候補の動作の中の動作を提案してもよい。 Additionally, in this embodiment, the support device includes an estimator. The estimator is, for example, the estimator 302C. Specifically, the estimation unit uses a trained model that has been machine-learned using training data related to the operation of the work machine by operations of a relatively highly skilled operator, which is associated with the shape of the work target. Based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit, a motion matching the shape of the work target around the work machine is estimated from among the plurality of candidate motions. The learned model is, for example, the learned model LM. Then, the proposal unit may propose a motion among the plurality of candidate motions based on the estimation result of the estimation unit.
 これにより、支援装置は、学習済みモデルを用いて、所定の作業で実施されうる複数の候補の動作の中から、作業機械の周辺の作業対象の形状により適合する動作を提案することができる。 Thereby, the support device can use the learned model to suggest a motion that is more suitable for the shape of the work target around the work machine, from among a plurality of candidate motions that can be performed in a predetermined work.
 また、本実施形態では、提案部は、取得部により取得される、作業機械の周辺の作業対象の形状に関するデータに基づき、複数の候補の動作の中の複数の動作をユーザに提案してもよい。 Further, in the present embodiment, the proposal unit may propose a plurality of motions among the plurality of candidate motions to the user based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. good.
 これにより、支援装置は、オペレータに対して選択肢を与え、オペレータによる自らの意思による判断を促すことができる。そのため、オペレータの判断を反映させることによって、作業機械により適切に動作させることができる。 Thereby, the support device can provide options to the operator and encourage the operator to make a decision based on his or her own will. Therefore, by reflecting the operator's judgment, the work machine can be operated more appropriately.
 また、本実施形態では、提案対象の複数の動作の中には、複数の候補の動作の中で、作業機械の周辺の作業対象の形状に対する適合度合いが相対的に低い動作が含まれてもよい。 Furthermore, in this embodiment, the plurality of motions to be proposed may include motions that have a relatively low degree of adaptation to the shape of the work target around the work machine among the plurality of candidate motions. good.
 これにより、支援装置は、オペレータによる自らの意思による判断を促すことができる。そのため、オペレータの判断を反映させることによって、作業機械により適切に動作させることができる。 Thereby, the support device can encourage the operator to make a decision based on his or her own will. Therefore, by reflecting the operator's judgment, the work machine can be operated more appropriately.
 また、本実施形態では、提案部は、取得部により取得される、作業機械の周辺の作業対象の形状に関するデータに基づき、複数の候補の動作の中の動作を、その動作の作業機械の周辺の作業対象の形状に対する適合度合いと共に提案してもよい。 Further, in the present embodiment, the proposal unit selects a motion among the plurality of candidate motions based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. It may be proposed together with the degree of conformity to the shape of the work target.
 これにより、支援装置は、オペレータにその動作を実行するか否かの判断材料を与えることができる。そのため、支援装置は、オペレータのより適切な判断を促し、作業機械により適切に動作させることができる。 Thereby, the support device can provide the operator with information to decide whether or not to execute the operation. Therefore, the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
 また、本実施形態では、提案部は、取得部により取得される、作業機械の周辺の作業対象の形状に関するデータに基づき、複数の候補の動作の中の複数の動作を、複数の動作ごとの作業機械の周辺の作業対象の形状に対する適合度合いと共に提案してもよい。 Further, in the present embodiment, the proposal unit selects a plurality of motions among the plurality of candidate motions based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. It may be proposed together with the degree of conformity to the shape of the work object around the work machine.
 これにより、支援装置は、オペレータに対して、作業機械の動作に関する複数の選択肢を与えることができると共に、その選択の判断材料を与えることができる。そのため、支援装置は、オペレータのより適切な判断を促し、作業機械により適切に動作させることができる。 Thereby, the support device can provide the operator with a plurality of options regarding the operation of the work machine, and can also provide material for making decisions regarding the selection. Therefore, the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
 また、本実施形態では、提案部は、取得部により取得される、作業機械の周辺の作業対象の形状に関するデータに基づき、複数の候補の動作の中の動作を、その動作による作業機械の作業部位の軌道と共に提案してもよい。作業部位は、例えば、バケット6である。 Furthermore, in the present embodiment, the proposal unit selects a motion among the plurality of candidate motions based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. It may be proposed together with the trajectory of the part. The work part is, for example, the bucket 6.
 これにより、支援装置は、オペレータにその動作を実行するか否かの判断材料を与えることができる。そのため、支援装置は、オペレータのより適切な判断を促し、作業機械により適切に動作させることができる。 Thereby, the support device can provide the operator with information to decide whether or not to execute the operation. Therefore, the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
 また、本実施形態では、提案部は、取得部により取得される、作業機械の周辺の作業対象の形状に関するデータに基づき、複数の候補の動作の中の動作を、その動作による作業部位の複数の軌道と共に提案してもよい。 Further, in the present embodiment, the proposing unit selects a motion among the plurality of candidate motions based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. It may be proposed along with the orbit of .
 これにより、支援装置は、提案対象の動作に対応する作業部位の軌道に関する複数の選択肢をオペレータに対して与えることができる。そのため、支援装置は、オペレータのより適切な判断を促し、作業機械により適切に動作させることができる。 Thereby, the support device can provide the operator with multiple options regarding the trajectory of the work part that corresponds to the proposed motion. Therefore, the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
 また、本実施形態では、提案部は、取得部により取得される、作業機械の周辺の作業対象の形状に関するデータに基づき、複数の候補の動作の中の動作を、その動作による作業部位の複数の軌道、及び複数の軌道ごとの作業機械の周辺の作業対象の形状に対する適合度合いと共に提案してもよい。 Further, in the present embodiment, the proposing unit selects a motion among the plurality of candidate motions based on the data regarding the shape of the work target around the work machine acquired by the acquisition unit. It may be proposed together with the trajectory of the object and the degree of conformity to the shape of the work object around the working machine for each of the plurality of trajectories.
 これにより、支援装置は、オペレータに対して、作業部位の複数の選択肢を与えることができると共に、その選択の判断材料を与えることができる。そのため、支援装置は、オペレータのより適切な判断を促し、作業機械により適切に動作させることができる。 Thereby, the support device can provide the operator with a plurality of options for the work part, and can also provide information for making a decision on the selection. Therefore, the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
 また、本実施形態では、支援装置は、表示部を備えてもよい。表示部は、例えば、表示装置50Aである。そして、提案部は、複数の候補の動作の中の提案対象の動作による作業部位の軌道を、作業機械の周辺の様子を表す画像に重畳して表示部に表示させてもよい。 Furthermore, in this embodiment, the support device may include a display section. The display section is, for example, a display device 50A. Then, the proposal unit may display the trajectory of the work part according to the motion to be proposed among the plurality of candidate motions on the display unit, superimposed on the image representing the surroundings of the work machine.
 これにより、オペレータは、作業部位の軌道と作業機械の周辺の作業対象の形状との関係をより容易に理解することができる。そのため、支援装置は、オペレータのより適切な判断を促し、作業機械により適切に動作させることができる。 This allows the operator to more easily understand the relationship between the trajectory of the work site and the shape of the work target around the work machine. Therefore, the support device can prompt the operator to make more appropriate decisions and cause the work machine to operate more appropriately.
 また、本実施形態では、提案部は、複数の候補の動作の中の提案対象の動作による軌道の中の作業対象に接触する軌道部分とそれ以外の軌道部分とを異なる態様で表示部に表示させてもよい。 Further, in the present embodiment, the proposal unit displays on the display unit the trajectory portion that contacts the work target in the trajectory due to the proposed motion among the plurality of candidate motions and the other trajectory portions in different manners. You may let them.
 これにより、支援装置は、作業機械の周辺の様子を表す画像上での遠近感を補助し、より適切に軌道をオペレータ把握させることができる。 Thereby, the support device can assist the sense of perspective on the image representing the surroundings of the work machine, allowing the operator to grasp the trajectory more appropriately.
 また、本実施形態では、支援装置は、制御部を備える。制御部は、例えば、動作制御部302Eである。具体的には、制御部は、ユーザからの指示の入力に応じて、提案部により提案される動作を作業機械に自動で実行させてもよい。 Furthermore, in this embodiment, the support device includes a control section. The control unit is, for example, the operation control unit 302E. Specifically, the control unit may cause the work machine to automatically execute the operation proposed by the suggestion unit in response to an input instruction from the user.
 これにより、ユーザ(オペレータ)の利便性をより向上させることができると共に、作業機械をより適切に動作させることができる。 Thereby, it is possible to further improve the convenience for the user (operator) and to operate the work machine more appropriately.
 また、本実施形態では、取得部は、制御部により自動で実行される動作の実施後の作業機械の周辺の作業対象の形状を予測することにより、作業機械の周辺の作業対象の形状に関するデータを取得してもよい。 Furthermore, in the present embodiment, the acquisition unit obtains data regarding the shape of the work target around the work machine by predicting the shape of the work target around the work machine after the operation automatically executed by the control unit. may be obtained.
 これにより、支援装置は、作業機械の動作を繰り返し提案しながら、作業機械の作業を支援する際に、よりスムーズに作業機械の動作の提案を行うことができる。そのため、作業機械の作業効率をより向上させることができる。 Thereby, the support device can propose the operation of the work machine more smoothly when supporting the work of the work machine while repeatedly proposing the operation of the work machine. Therefore, the working efficiency of the working machine can be further improved.
 [ショベルの作業部位の軌道の生成に関する機能]
 次に、図1~図5に加えて、図16~図19を参照して、ショベル100の作業部位の軌道(以下、「目標軌道」)の生成に関する機能について説明する。
[Functions related to generating the trajectory of the excavator's working area]
Next, with reference to FIGS. 16 to 19 in addition to FIGS. 1 to 5, functions related to generation of a trajectory (hereinafter referred to as a "target trajectory") of the work area of the excavator 100 will be described.
 以下、上述の動作提案機能に関する構成と同じ或いは対応する構成には同一の符号を付すと共に、上述の動作提案機能と異なる部分を中心に説明し、上述の動作提案機能と同じ或いは対応する内容の説明を簡略化或いは省略する場合がある。 Hereinafter, the same reference numerals will be given to the same or corresponding configurations as those related to the above-mentioned action suggestion function, and the description will focus on the parts that are different from the above-mentioned action suggestion function, and the explanation will focus on the parts that are different from the above-mentioned action suggestion function. Description may be simplified or omitted.
  <機能構成>
 図16は、ショベル100の作業部位の目標軌道の生成に関する機能構成の第1例を示すブロック図である。図17は、表示装置50Aに表示される、ショベル100の作業部位の目標軌道の生成に関する画面の一例(画面700)を示す図である。図18は、表示装置50Aに表示される、ショベル100の作業部位の目標軌道の生成に関する画面の他の例(画面800)を示す図である。図19は表示装置50Aに表示される、ショベル100の作業部位の目標軌道の生成に関する画面の更に他の例(画面900)を示す図である。
<Functional configuration>
FIG. 16 is a block diagram illustrating a first example of a functional configuration related to generation of a target trajectory of a working part of excavator 100. FIG. 17 is a diagram illustrating an example of a screen (screen 700) related to generation of a target trajectory of a working part of excavator 100, which is displayed on display device 50A. FIG. 18 is a diagram illustrating another example of a screen (screen 800) related to generation of a target trajectory of a working part of excavator 100, which is displayed on display device 50A. FIG. 19 is a diagram showing still another example (screen 900) of a screen related to generation of a target trajectory of a working part of excavator 100, which is displayed on display device 50A.
 尚、ショベル100が遠隔操作される場合、図17、図18と同様の画面が遠隔操作支援装置300(表示装置)に表示される。 Note that when the excavator 100 is remotely controlled, a screen similar to that shown in FIGS. 17 and 18 is displayed on the remote operation support device 300 (display device).
 ショベル100の作業部位は、例えば、バケット6の爪先や背面である。 The work area of the shovel 100 is, for example, the toe or back of the bucket 6.
 ショベル100は、支援装置150を含む。支援装置150は、ショベル100の作業に関する支援を行う。 The excavator 100 includes a support device 150. The support device 150 provides support regarding the work of the excavator 100.
 図16に示すように、支援装置150は、操作装置26と、コントローラ30と、撮像装置40と、出力装置50とを含む。また、ショベル100の遠隔操作が行われる場合、支援装置150は、通信装置60を含んでもよい。 As shown in FIG. 16, the support device 150 includes an operating device 26, a controller 30, an imaging device 40, and an output device 50. Further, when the excavator 100 is remotely controlled, the support device 150 may include the communication device 60.
 コントローラ30は、機能部として、動作ログ提供部301と、作業支援部302とを含む。 The controller 30 includes an operation log providing unit 301 and a work support unit 302 as functional units.
 尚、稼働支援システムSYSに含まれるショベル100が複数台である場合、コントローラ30が動作ログ提供部301及び作業支援部302のうちの前者のみを含むショベル100と、後者のみを含むショベル100とが存在してもよい。この場合、前者のショベル100は、後者のショベル100におけるオペレータの操作支援機能(作業部位の軌道の生成に関する機能)のために用いられる、ショベル100の動作ログを取得し情報処理装置200に提供する機能のみを有する。 Note that when there are multiple excavators 100 included in the operation support system SYS, the controller 30 includes only the former of the operation log providing unit 301 and the work support unit 302, and the excavator 100 that includes only the latter. May exist. In this case, the former excavator 100 acquires an operation log of the excavator 100 used for the operator operation support function (a function related to generating the trajectory of the work part) of the latter excavator 100, and provides it to the information processing device 200. It has only a function.
 情報処理装置200は、機能部として、動作ログ取得部2001と、動作ログ記憶部2002と、教師データ生成部2003と、機械学習部2004と、学習済みモデル記憶部2005と、配信部2006とを含む。 The information processing device 200 includes an operation log acquisition unit 2001, an operation log storage unit 2002, a teacher data generation unit 2003, a machine learning unit 2004, a learned model storage unit 2005, and a distribution unit 2006 as functional units. include.
 動作ログ提供部301は、ショベル100の作業部位の目標軌道を生成する機能を実現するための元データである、ショベル100の動作ログを取得し、情報処理装置200に提供するための機能部である。具体的には、ショベル100の運転歴が長く、相対的に経験のあるオペレータ(以下、便宜的に「熟練者」)がショベル100を操作したときの動作ログを取得し、情報処理装置200に提供する。 The operation log providing unit 301 is a functional unit that acquires the operation log of the shovel 100, which is the original data for realizing the function of generating the target trajectory of the working part of the excavator 100, and provides it to the information processing device 200. be. Specifically, a relatively experienced operator (hereinafter referred to as an "expert" for convenience) who has a long history of operating the excavator 100 obtains an operation log when operating the excavator 100 and stores it in the information processing device 200. provide.
 ショベル100の動作ログは、ショベル100の周辺の作業対象の形状に関するデータと、その作業対象の形状に対して実行された、ショベル100の動作に関するデータとを含む。ショベル100の周辺の作業対象の形状に関するデータは、例えば、ショベル100の作業対象としての作業現場の地面の地形形状に関するデータである。ショベル100の作業対象の形状に関するデータは、例えば、撮像装置40の画像データやその画像データから得られる、作業対象の三次元データである。ショベル100の動作に関するデータは、例えば、オペレータの操作内容を表すデータである。オペレータの操作内容を表すデータは、例えば、油圧パイロット式の操作装置26の場合における操作圧センサ29の出力データや電気式の操作装置26の場合における操作装置26の出力データ(操作信号のデータ)である。また、ショベル100の動作に関するデータは、オペレータの操作に応じて実際に実行された、ショベル100の動作状態を表すデータであってもよい。ショベル100の動作状態を表すデータは、例えば、センサS1~S5の出力データ、或いは、センサS1~S5の出力データから取得される、ショベル100の姿勢状態に関するデータである。 The operation log of the shovel 100 includes data regarding the shape of the work target around the shovel 100 and data regarding the operation of the shovel 100 performed on the shape of the work target. The data regarding the shape of the work target around the shovel 100 is, for example, data regarding the topographical shape of the ground at the work site as the work target of the shovel 100. The data regarding the shape of the work target of the shovel 100 is, for example, image data of the imaging device 40 or three-dimensional data of the work target obtained from the image data. The data regarding the operation of the shovel 100 is, for example, data representing the details of the operator's operation. The data representing the contents of the operator's operation may be, for example, the output data of the operating pressure sensor 29 in the case of the hydraulic pilot type operating device 26 or the output data of the operating device 26 (operation signal data) in the case of the electric operating device 26. It is. Furthermore, the data regarding the operation of the shovel 100 may be data representing the operation state of the shovel 100 actually executed in response to an operation by an operator. The data representing the operating state of the shovel 100 is, for example, the output data of the sensors S1 to S5, or the data related to the posture state of the shovel 100 obtained from the output data of the sensors S1 to S5.
 動作ログ提供部301は、動作ログ記録部301Aと、動作ログ記憶部301Bと、動作ログ送信部301Cとを含む。 The operation log providing section 301 includes an operation log recording section 301A, an operation log storage section 301B, and an operation log transmission section 301C.
 動作ログ記録部301Aは、ショベル100の動作ログを取得し、動作ログ記憶部301Bに記録する。例えば、動作ログ記録部301Aは、ショベル100の動作が実行されるごとに、その動作の実行開始時或いは実行直前のショベル100の周辺の作業対象の形状に関するデータ、及びショベル100のその動作に関するデータを動作ログ記憶部301Bに記録する。 The operation log recording unit 301A acquires the operation log of the shovel 100 and records it in the operation log storage unit 301B. For example, every time an operation of the shovel 100 is executed, the operation log recording unit 301A records data regarding the shape of the work target around the shovel 100 at the start of execution of the operation or immediately before execution, and data regarding the operation of the shovel 100. is recorded in the operation log storage unit 301B.
 動作ログ記憶部301Bには、ショベル100の動作ログが蓄積される形で記憶される。例えば、動作ログ記憶部301Bには、ショベル100の動作ごとのショベル100の周辺の作業対象の形状に関するデータと、ショベル100の動作に関するデータとが紐づけられる形で記憶される。具体的には、動作ログ記憶部301Bには、ショベル100の動作ごとのショベル100の周辺の作業対象の形状に関するデータ、及びショベル100の動作に関するデータの対応関係を表すレコードデータが蓄積され、動作ログのデータベースが構築されてよい。 The operation log storage unit 301B stores operation logs of the shovel 100 in an accumulated manner. For example, the operation log storage unit 301B stores data regarding the shape of a work target around the shovel 100 for each operation of the shovel 100 and data regarding the operation of the shovel 100 in a linked form. Specifically, the operation log storage unit 301B stores record data representing the correspondence relationship between data regarding the shape of the work target around the shovel 100 and data regarding the operation of the shovel 100 for each operation of the shovel 100. A database of logs may be constructed.
 尚、後述の動作ログ送信部301Cにより情報処理装置200に送信済みの動作ログ記憶部301Bの動作ログは、事後的に消去されてもよい。 Note that the operation log in the operation log storage unit 301B that has been transmitted to the information processing device 200 by the operation log transmission unit 301C, which will be described later, may be deleted after the fact.
 動作ログ送信部301Cは、動作ログ記憶部301Bに記憶される、ショベル100の動作ログを、通信装置60を通じて情報処理装置200に送信する。また、動作ログ送信部301Cは、ショベル100の動作ごとのショベル100の周辺の作業対象の形状に関するデータ、及びショベル100の動作に関するデータの対応関係を表すレコードデータを併せて情報処理装置200に送信してもよい。 The operation log transmission unit 301C transmits the operation log of the shovel 100, which is stored in the operation log storage unit 301B, to the information processing device 200 via the communication device 60. In addition, the operation log transmitting unit 301C also transmits to the information processing device 200 data regarding the shape of the work target around the shovel 100 for each operation of the shovel 100 and record data representing the correspondence between the data regarding the operations of the shovel 100. You may.
 例えば、動作ログ送信部301Cは、情報処理装置200から受信される、ショベル100の動作ログの送信を要求する信号(以下、「送信要求信号」)に応じて、動作ログ記憶部301Bに記憶される、未送信のショベル100の動作ログを情報処理装置200に送信する。また、動作ログ送信部301Cは、所定のタイミングで、動作ログ記憶部301Bに記憶される、未送信のショベル100の動作ログを自動的に情報処理装置200に送信してもよい。所定のタイミングは、例えば、ショベル100の稼働停止(キースイッチのオフ)時や稼働開始(キースイッチのオン)時である。 For example, the operation log transmitting unit 301C may store the operation log in the operation log storage unit 301B in response to a signal requesting transmission of the operation log of the excavator 100 (hereinafter referred to as a “transmission request signal”) received from the information processing device 200. The operation log of the shovel 100 that has not been sent yet is sent to the information processing device 200. Further, the operation log transmitting unit 301C may automatically transmit the unsent operation log of the shovel 100, which is stored in the operation log storage unit 301B, to the information processing device 200 at a predetermined timing. The predetermined timing is, for example, when the excavator 100 stops operating (the key switch is turned off) or when the excavator 100 starts operating (the key switch is turned on).
 動作ログ取得部2001は、ショベル100から受信される、ショベル100の動作ログを取得する。 The operation log acquisition unit 2001 acquires the operation log of the shovel 100, which is received from the shovel 100.
 動作ログ取得部2001は、情報処理装置200のユーザの操作に応じて、或いは、所定のタイミングで自動的に、ショベル100に送信要求信号を送信することにより、ショベル100の動作ログを取得する。また、動作ログ取得部2001は、ショベル100から所定のタイミングで送信される、ショベル100の動作ログを取得してもよい。 The operation log acquisition unit 2001 acquires the operation log of the excavator 100 by transmitting a transmission request signal to the excavator 100 in response to an operation by the user of the information processing device 200 or automatically at a predetermined timing. Further, the operation log acquisition unit 2001 may acquire an operation log of the excavator 100 that is transmitted from the excavator 100 at a predetermined timing.
 動作ログ記憶部2002には、動作ログ取得部2001により取得された、ショベル100の動作ログが蓄積される形で記憶される。例えば、動作ログ記憶部2002には、動作ログ記憶部301Bの場合と同様、ショベル100の動作ごとのショベル100の周辺の作業対象の形状に関するデータと、ショベル100の動作に関するデータとが紐づけられる形で記憶される。 The operation log storage unit 2002 stores operation logs of the shovel 100 acquired by the operation log acquisition unit 2001 in an accumulated manner. For example, in the operation log storage unit 2002, as in the case of the operation log storage unit 301B, data regarding the shape of the work object around the shovel 100 for each operation of the shovel 100 and data regarding the operation of the shovel 100 are linked. remembered in form.
 教師データ生成部2003は、動作ログ記憶部2002のショベル100の動作ログに基づき、機械学習用の教師データを生成する。教師データ生成部2003は、バッチ処理によって、自動的に教師データを生成してもよいし、情報処理装置200のユーザからの入力に応じて、教師データを生成してもよい。教師データは、入力データとしてのショベル100の周辺の作業対象の形状に関するデータと、正解の出力データとしての入力データに対応するショベル100の作業部位の軌道(軌跡)を表すデータ(以下、「正解データ」)との組み合わせのデータである。 The teacher data generation unit 2003 generates teacher data for machine learning based on the operation log of the excavator 100 in the operation log storage unit 2002. The teacher data generation unit 2003 may automatically generate the teacher data by batch processing, or may generate the teacher data in response to input from the user of the information processing apparatus 200. The training data includes data regarding the shape of the work object around the shovel 100 as input data, and data representing the trajectory (trajectory) of the work part of the shovel 100 corresponding to the input data as correct answer output data (hereinafter referred to as "correct answer"). data").
 ショベル100の作業部位の軌跡を表すデータは、例えば、ショベル100の動作に関するデータに含まれる、センサS1~S5の出力データに基づき生成される。 The data representing the trajectory of the working part of the shovel 100 is generated based on the output data of the sensors S1 to S5, which is included in the data regarding the operation of the shovel 100, for example.
 機械学習部2004は、教師データ生成部2003により生成される教師データのセットに基づき、ベースの学習モデルに機械学習を行わせ、学習済みモデルLMを生成する。学習済みモデルLM(ベースの学習モデル)は、例えば、DNN(Deep Neural Network)等のニューラルネットワークを含む。 The machine learning unit 2004 performs machine learning on the base learning model based on the set of teacher data generated by the teacher data generation unit 2003 to generate a learned model LM. The learned model LM (base learning model) includes, for example, a neural network such as a DNN (Deep Neural Network).
 学習済みモデルLMは、例えば、ショベル100の動作の種類、及びショベル100の周辺の作業対象の形状に関するデータを入力条件として、ショベル100の作業部位の目標軌道を表すデータ、及び予測確率を出力する。また、学習済みモデルLMは、ショベル100の作業部位の目標軌道を表すデータ、及びショベル100の動作の種類には、例えば、掘削動作、掃出し動作、水平引き動作、転圧動作、ほうき動作等を含む。掃出し動作は、例えば、アタッチメントATを動作させ、バケット6を地面に沿って前方に押し出すことで、バケット6の背面で土砂を前方に掃出す動作である。掃出し動作では、例えば、アタッチメントATは、ブーム4を下げ動作、及びアーム5の開き動作を行う。水平引き動作は、例えば、アタッチメントATを動作させ、バケット6の爪先を地面に沿って略水平に手前に向かって引きつけるように移動させることで、地面の表面の凹凸を均す動作である。水平引き動作では、例えば、アタッチメントATは、ブーム4の上げ動作、アーム5の閉じ動作を行う。転圧動作は、例えば、アタッチメントATを動作させ、バケット6の背面で地面を押し付ける動作である。また、転圧動作は、バケット6を地面に沿って前方に押し出すことで、バケット6の背面で土砂を前方の所定の位置まで掃出した後に、所定の位置の地面をバケット6の背面で地面を押し付ける動作であってもよい。転圧動作では、例えば、アタッチメントATは、地面を押し付ける際にブーム4の下げ動作を行う。ほうき動作は、例えば、上部旋回体3を動作させ、バケット6を地面に沿わせた状態で左右に旋回させる動作である。また、ほうき動作は、例えば、アタッチメントAT及び上部旋回体3を動作させ、バケット6を地面に沿わせた状態で左右交互に旋回させながら、バケット6を前方の押し出す動作であってもよい。ほうき動作では、例えば、上部旋回体3が左右の旋回動作を交互に繰り返す。また、ほうき動作では、例えば、上部旋回体3の左右交互の旋回動作に加えて、掃出し動作の場合と同様、ブーム4の下げ動作及びアーム5の開き動作を行ってもよい。予測確率は、作業部位の目標軌道の信頼度を表す。学習済みモデルLMには、上述の如く、熟練者によるショベル100の操作時の動作ログが反映され、予測確率が高いほど、その作業部位の目標軌道の信頼度が高いと考えられるからである。また、予測確率は、入力条件としてのショベル100の周辺の作業対象の形状に対する作業部位の目標軌道の適合度を表す。予測確率が高いほど、熟練者が作業対象の形状に対してその候補の動作が適していると判断する可能性が高いと考えられるからである。例えば、学習済みモデルLMは、整地作業、法面施工作業、及び盛土作業等の作業ごとに生成される。 The learned model LM outputs data representing the target trajectory of the work part of the shovel 100 and predicted probabilities using, for example, data regarding the type of operation of the shovel 100 and the shape of the work object around the shovel 100 as input conditions. . The trained model LM also includes data representing the target trajectory of the work area of the shovel 100, and the types of movements of the shovel 100, such as digging movement, sweeping movement, horizontal pulling movement, compaction movement, broom movement, etc. include. The sweeping operation is, for example, an operation in which the attachment AT is operated to push the bucket 6 forward along the ground, thereby sweeping out earth and sand forward on the back surface of the bucket 6. In the sweeping operation, for example, the attachment AT lowers the boom 4 and opens the arm 5. The horizontal pulling operation is, for example, an operation of smoothing out unevenness on the surface of the ground by operating the attachment AT and moving the toe of the bucket 6 along the ground substantially horizontally toward the user. In the horizontal pulling operation, for example, the attachment AT performs a raising operation of the boom 4 and a closing operation of the arm 5. The rolling operation is, for example, an operation of operating the attachment AT and pressing the back surface of the bucket 6 against the ground. In addition, the compaction operation is performed by pushing the bucket 6 forward along the ground, sweeping the earth and sand to a predetermined position in front with the back of the bucket 6, and then rolling the ground at a predetermined position with the back of the bucket 6. It may also be a pressing motion. In the rolling operation, for example, the attachment AT lowers the boom 4 when pressing against the ground. The broom operation is, for example, an operation in which the upper rotating body 3 is operated and the bucket 6 is rotated left and right while keeping it along the ground. Further, the broom operation may be, for example, an operation of pushing the bucket 6 forward while operating the attachment AT and the upper rotating body 3 and rotating the bucket 6 alternately left and right while keeping the bucket 6 along the ground. In the broom movement, for example, the upper revolving body 3 alternately repeats left and right turning movements. Further, in the broom operation, for example, in addition to the alternating left and right turning operations of the upper revolving structure 3, the boom 4 may be lowered and the arm 5 may be opened, as in the case of the sweeping operation. The predicted probability represents the reliability of the target trajectory of the work part. This is because, as described above, the learned model LM reflects the operation log when the shovel 100 is operated by an expert, and it is considered that the higher the prediction probability, the higher the reliability of the target trajectory of the work part. Furthermore, the predicted probability represents the degree of suitability of the target trajectory of the work area to the shape of the work object around the shovel 100 as an input condition. This is because it is considered that the higher the prediction probability, the higher the possibility that the expert will judge that the candidate motion is suitable for the shape of the work target. For example, the learned model LM is generated for each task such as land leveling work, slope construction work, and embankment work.
 学習済みモデル記憶部2005には、機械学習部2004により出力される学習済みモデルLMが記憶される。 The trained model storage unit 2005 stores the trained model LM output by the machine learning unit 2004.
 配信部2006は、学習済みモデルLMをショベル100に配信する。 The distribution unit 2006 distributes the learned model LM to the excavator 100.
 例えば、配信部2006は、機械学習部2004により学習済みモデルLMが生成されると、直近で生成された学習済みモデルLMをショベル100に配信する。また、配信部2006は、ショベル100から受信される、学習済みモデルLMの配信を要求する信号に応じて、学習済みモデル記憶部2005の最新の学習済みモデルLMをショベル100に配信してもよい。 For example, when the learned model LM is generated by the machine learning unit 2004, the distribution unit 2006 distributes the most recently generated learned model LM to the excavator 100. Further, the distribution unit 2006 may distribute the latest learned model LM in the learned model storage unit 2005 to the shovel 100 in response to a signal received from the excavator 100 requesting distribution of the learned model LM. .
 作業支援部302は、オペレータの操作によるショベル100の作業を支援するための機能部である。 The work support unit 302 is a functional unit that supports the work of the shovel 100 operated by the operator.
 作業支援部302は、学習済みモデル記憶部302Aと、作業対象形状取得部302Bと、動作選択部302Fと、条件設定部302Gと、軌道生成部302Hと、表示処理部302Iと、動作制御部302Eとを含む。 The work support unit 302 includes a learned model storage unit 302A, a work target shape acquisition unit 302B, a motion selection unit 302F, a condition setting unit 302G, a trajectory generation unit 302H, a display processing unit 302I, and a motion control unit 302E. including.
 学習済みモデル記憶部302Aには、情報処理装置200から配信され、通信装置60を通じて受信される学習済みモデルLMが記憶される。 The trained model storage unit 302A stores the trained model LM distributed from the information processing device 200 and received through the communication device 60.
 作業対象形状取得部302Bは、撮像装置40や距離センサの出力に基づき、ショベル100の周辺の作業対象の形状(地形形状)に関するデータを取得する。 The work target shape acquisition unit 302B acquires data regarding the shape of the work target (terrain shape) around the shovel 100 based on the output of the imaging device 40 and the distance sensor.
 動作選択部302Fは、入力装置52を通じて受け付けられる、ユーザ(オペレータ)からの入力に応じて、複数の動作の候補の中からショベル100の動作(の種類)を選択する。また、ショベル100が遠隔操作される場合、動作選択部302Fは、通信装置60を通じて受け付けられる、遠隔操作支援装置300を利用するユーザ(オペレータ)からの入力に応じて、複数の動作の候補の中からショベル100の動作を選択してもよい。 The motion selection unit 302F selects (the type of motion) of the shovel 100 from among a plurality of motion candidates in response to input from the user (operator) received through the input device 52. Further, when the excavator 100 is remotely controlled, the motion selection unit 302F selects one of a plurality of motion candidates in response to an input from a user (operator) using the remote operation support device 300, which is received through the communication device 60. The operation of the shovel 100 may be selected from the following.
 条件設定部302Gは、入力装置52を通じて受け付けられる、ユーザ(オペレータ)からの入力に応じて、ショベル100の作業部位の目標軌道の生成に関する前提条件を設定する。ショベル100が遠隔操作される場合、条件設定部302Gは、通信装置60を通じて受け付けられる、遠隔操作支援装置300を利用するユーザ(オペレータ)からの入力に応じて、ショベル100の目標軌道に関する前提条件を設定してもよい。また、条件設定部302Gは、ユーザからの入力に依らず、自動で、前提条件を設定してもよい。例えば、条件設定部302Gは、作業対象の形状に関するデータと、その作業対象の形状に対して設定された前提条件との組み合わせのデータの履歴を教師データセットとして用いて生成される学習済みモデルに基づき、前提条件を自動で設定してもよい。この場合、条件設定部302Gは、ユーザからの入力に応じて、自動で設定済みの前提条件を修正してもよい。 The condition setting unit 302G sets preconditions regarding the generation of the target trajectory of the work area of the excavator 100 in response to input from the user (operator) received through the input device 52. When the excavator 100 is remotely operated, the condition setting unit 302G sets preconditions regarding the target trajectory of the excavator 100 in response to input from the user (operator) using the remote operation support device 300, which is received through the communication device 60. May be set. Further, the condition setting unit 302G may automatically set the preconditions without depending on input from the user. For example, the condition setting unit 302G uses a history of data of combinations of data regarding the shape of the work target and preconditions set for the shape of the work target as a training data set to create a trained model. Based on this, the preconditions may be automatically set. In this case, the condition setting unit 302G may automatically modify the preconditions that have already been set in response to input from the user.
 前提条件は、例えば、ショベル100の周辺の地形形状におけるショベル100の動作時の目標となる点(以下、「目標点」)である。目標点には、例えば、ショベル100の動作時に作業部位が通過する目標点やショベル100の動作時にバケット6の土砂を排土する場所に相当する点等が含まれる。また、前提条件は、目標点におけるバケット6の姿勢状態(バケット6の姿勢角度)を含んでもよい。 The precondition is, for example, a point in the topographical shape around the shovel 100 that is a target during the operation of the shovel 100 (hereinafter referred to as a "target point"). The target points include, for example, a target point through which a work part passes when the shovel 100 is in operation, a point corresponding to a place where earth and sand from the bucket 6 is to be discharged when the shovel 100 is in operation, and the like. Further, the preconditions may include the attitude state of the bucket 6 at the target point (the attitude angle of the bucket 6).
 軌道生成部302Hは、作業対象形状取得部302Bにより取得されるデータ、作業対象の目標形状、動作選択部302Fにより選択される動作、及び条件設定部302Gにより設定される前提条件に基づき、ショベル100の作業部位の目標軌道を生成する。作業対象の目標形状は、例えば、作業対象(作業現場の地面)に対する作業によって形成される、施工対象としての平面或いは曲面を表す目標施工面である。作業対象の目標形状は、例えば、入力装置52や遠隔操作支援装置300(入力装置)を通じて、ユーザからの平面や曲面を表すパラメータの入力により設定される。また、作業対象の目標形状は、例えば、情報処理装置200等の外部装置からショベル100に配信されてもよい。軌道生成部302Hは、作業対象形状取得部302Bにより取得されるデータ、作業対象の目標形状、動作選択部302Fにより選択される動作、及び条件設定部302Gにより設定される前提条件を入力データとして、学習済みモデルLMを適用する。また、軌道生成部302Hは、作業対象の目標形状、動作選択部302Fにより選択される動作、及び作業対象形状取得部302Bにより取得されるデータを入力データとして、学習済みモデルLMから作業部位の目標軌道を出力させてもよい。そして、軌道生成部302Hは、出力された作業部位の目標軌道を、条件設定部302Gにより設定される前提条件によって最適化することにより、作業部位の目標軌道を生成してもよい。 The trajectory generation unit 302H generates a target shape of the excavator 100 based on the data acquired by the work target shape acquisition unit 302B, the target shape of the work target, the motion selected by the motion selection unit 302F, and the preconditions set by the condition setting unit 302G. The target trajectory of the work part is generated. The target shape of the work target is, for example, a target construction surface representing a flat or curved surface as a construction target, which is formed by work on the work target (the ground at the work site). The target shape of the work object is set, for example, by inputting parameters representing a plane or a curved surface from the user through the input device 52 or the remote operation support device 300 (input device). Further, the target shape of the work object may be distributed to the excavator 100 from an external device such as the information processing device 200, for example. The trajectory generation unit 302H uses as input data the data acquired by the work target shape acquisition unit 302B, the target shape of the work target, the motion selected by the motion selection unit 302F, and the preconditions set by the condition setting unit 302G. Apply the learned model LM. In addition, the trajectory generation unit 302H uses the target shape of the work target, the motion selected by the motion selection unit 302F, and the data acquired by the work target shape acquisition unit 302B as input data, and generates a target shape of the work part from the learned model LM. The trajectory may also be output. Then, the trajectory generation unit 302H may generate the target trajectory of the work area by optimizing the output target trajectory of the work area using the preconditions set by the condition setting unit 302G.
 表示処理部302Iは、ショベル100の作業部位の目標軌道の生成に関する画面を表示装置50Aに表示させる(図17、図18参照)。ショベル100の作業部位の目標軌道の生成に関する画面には、例えば、動作選択部302Fにより選択される、ショベル100の動作や条件設定部302Gにより設定される前提条件に関する操作入力をユーザ(オペレータ)が行うための操作画面が含まれる。また、ショベル100の作業部位の目標軌道の生成に関する画面には、軌道生成部302Hにより生成される、ショベル100の作業部位の目標軌道を表示する画面が含まれる。また、ショベル100が遠隔操作される場合、表示処理部302Iは、ショベル100の作業部位の目標軌道の生成に関する画面に関するデータを、通信装置60を通じて遠隔操作支援装置300に送信してもよい。これにより、表示処理部302Iは、ショベル100の作業部位の目標軌道の生成に関する画面を遠隔操作支援装置300(表示装置)に表示させることができる。 The display processing unit 302I causes the display device 50A to display a screen related to the generation of the target trajectory of the work area of the excavator 100 (see FIGS. 17 and 18). On the screen related to the generation of the target trajectory of the work area of the excavator 100, the user (operator) can input operations related to the operation of the shovel 100 selected by the operation selection section 302F and the preconditions set by the condition setting section 302G, for example. Contains an operation screen for performing the operations. Further, the screen related to the generation of the target trajectory of the working part of the shovel 100 includes a screen that displays the target trajectory of the working part of the shovel 100, which is generated by the trajectory generating section 302H. Further, when the excavator 100 is remotely operated, the display processing unit 302I may transmit data related to a screen related to generation of a target trajectory of the work area of the excavator 100 to the remote operation support device 300 via the communication device 60. Thereby, the display processing unit 302I can cause the remote operation support device 300 (display device) to display a screen related to the generation of the target trajectory of the work part of the excavator 100.
 例えば、図17、図18に示すように、表示処理部302Iは、画面700,800を表示装置50Aに表示させる。 For example, as shown in FIGS. 17 and 18, the display processing unit 302I displays screens 700 and 800 on the display device 50A.
 図17に示すように、画面700は、画像TG,CG,SB,PB1を含む。 As shown in FIG. 17, the screen 700 includes images TG, CG, SB, and PB1.
 画像TGは、ショベル100の周辺の地形形状を表す画像である。画像TGは、作業対象形状取得部302Bにより取得されるデータに基づき生成される。本例では、画像TGは、ショベル100の外部の所定の視点から見た、ショベル100の周辺の地形形状を表す画像である。所定の視点は、例えば、入力装置52や遠隔操作支援装置300(入力装置)を通じたユーザ(オペレータ)からの入力に応じて変化させることが可能である。 The image TG is an image representing the topographical shape around the excavator 100. The image TG is generated based on data acquired by the work target shape acquisition unit 302B. In this example, the image TG is an image representing the topographic shape around the shovel 100 as seen from a predetermined viewpoint outside the shovel 100. The predetermined viewpoint can be changed, for example, according to input from the user (operator) through the input device 52 or the remote operation support device 300 (input device).
 画像CGは、ショベル100を表す画像である。 The image CG is an image representing the shovel 100.
 画像TG,CGの位置関係は、ショベル100の周辺の地形形状とショベル100との実際の位置関係と同じになるように設定される。 The positional relationship between images TG and CG is set to be the same as the actual positional relationship between the topographical shape around the shovel 100 and the shovel 100.
 画像SBは、動作選択部302Fにより選択可能な候補の動作を表す画像である。本例では、画像SBには、整地作業で実施されうる、ショベル100候補の動作を表す画像SB1~SB5が含まれる。 Image SB is an image representing candidate motions that can be selected by motion selection section 302F. In this example, the image SB includes images SB1 to SB5 representing operations of the excavator 100 candidate that may be performed during land leveling work.
 画像SB1は、ショベル100の掘削動作及び排土動作の組み合わせの動作をユーザが選択するための操作用のアイコンである。 The image SB1 is an operation icon for the user to select a combination of the excavation operation and the earth removal operation of the shovel 100.
 画像SB2は、ショベル100の掃出し動作をユーザが選択するための操作用のアイコンである。 The image SB2 is an operation icon for the user to select the sweeping operation of the shovel 100.
 画像SB3は、ショベル100の水平引き動作をユーザが選択するための操作用のアイコンである。 The image SB3 is an operation icon for the user to select the horizontal pulling operation of the shovel 100.
 画像SB4は、ショベル100のほうき動作をユーザが選択するための操作用のアイコンである。 The image SB4 is an operation icon for the user to select the broom operation of the shovel 100.
 画像SB5は、ショベル100の転圧動作をユーザが選択するための操作用のアイコンである。 The image SB5 is an operation icon for the user to select the rolling operation of the shovel 100.
 ユーザは、入力装置52や遠隔操作支援装置300(入力装置)を通じて、画像SB1~SB5の何れか一つを指定し、動作選択部302Fを通じて、ショベル100の動作を選択することができる。本例では、画像SB1にカーソル(図中の梨地)があり、ショベル100の掘削動作及び排土動作の組み合わせの動作が選択されている状態が表現されている。 The user can specify any one of the images SB1 to SB5 through the input device 52 or the remote operation support device 300 (input device), and select the operation of the shovel 100 through the operation selection section 302F. In this example, there is a cursor (matte texture in the figure) on image SB1, and a state is represented in which a combination of excavation and earth removal operations of the shovel 100 is selected.
 尚、画像SBには、画像SB1~SB5に加えて、画像SB1~SB5に対応する動作とは異なる他の動作をユーザが選択するための操作用アイコンが表示されてもよい。また、画像SBには、画像SB1~SB5の少なくとも一つと代えて、画像SB1~SB5と異なる他の動作をユーザが選択するための操作用アイコンが表示されてもよい。 Note that in addition to images SB1 to SB5, image SB may display operation icons for the user to select other actions different from the actions corresponding to images SB1 to SB5. Further, in place of at least one of the images SB1 to SB5, an operation icon for the user to select another operation different from the images SB1 to SB5 may be displayed on the image SB.
 本例では、画像TGは、画像領域TG1,TG2を含む。 In this example, the image TG includes image regions TG1 and TG2.
 画像領域TG1は、ショベル100の周辺(前方)の地面にある凸部を表す。 The image region TG1 represents a convex portion on the ground around (in front of) the shovel 100.
 画像領域TG2は、ショベル100の周辺(前方)の地面にある凹部を表す。 The image region TG2 represents a recess on the ground around (in front of) the shovel 100.
 また、本例では、画面700は、目標点に相当する画像P1,P2を含む。 Furthermore, in this example, the screen 700 includes images P1 and P2 corresponding to the target point.
 画像P1は、画像領域TG1に重畳して表示される。 Image P1 is displayed superimposed on image region TG1.
 画像P2は、画像領域TG2に重畳して表示される。 Image P2 is displayed superimposed on image region TG2.
 例えば、ユーザは、入力装置52や遠隔操作支援装置300(入力装置)を通じて、画像領域TG1,TG2を指定することにより、条件設定部302Gを通じて、画像P1,P2に相当する目標点を設定することができる。ユーザは、入力装置52や遠隔操作支援装置300(入力装置)を通じて、画像TGの全範囲で目標点を設定可能であってもよいし、画像TGの全範囲の中でバケット6の作業部位を届かせることが可能な範囲に限定して目標点を設定可能であってもよい。前者の場合、画像TGの全範囲の中のバケット6の作業部位を届かせることが可能な範囲に目標点が設定されると、画面700には、エラー(警告)を表す表示内容が表示されてもよい。後者の場合、画像TGの全範囲の中のバケット6の作業部位を届かせることが可能な範囲を表す画像が画像TGに重畳して表示されてもよい。また、ユーザは、入力装置52や遠隔操作支援装置300(入力装置)を通じて、設定済みの目標点を削除することが可能であってもよい。 For example, the user can set the target points corresponding to the images P1 and P2 through the condition setting section 302G by specifying the image regions TG1 and TG2 through the input device 52 or the remote operation support device 300 (input device). I can do it. The user may be able to set the target point in the entire range of the image TG through the input device 52 or the remote operation support device 300 (input device), or may be able to set the target point in the entire range of the image TG. It may be possible to set the target point within a range that can be reached. In the former case, when the target point is set in a range within the entire range of the image TG that can reach the work area of the bucket 6, display content indicating an error (warning) is displayed on the screen 700. It's okay. In the latter case, an image representing a range within the entire range of the image TG that can be reached by the work site of the bucket 6 may be displayed superimposed on the image TG. Further, the user may be able to delete a set target point through the input device 52 or the remote operation support device 300 (input device).
 また、本例では、画面700には、画像P1,P2のそれぞれに付随するように画像RC1,RC2が表示される。 Furthermore, in this example, images RC1 and RC2 are displayed on the screen 700 so as to accompany images P1 and P2, respectively.
 画像RC1は、画像P1に相当する目標点に対応するバケット6の姿勢角度の前提条件を表す画像である。 The image RC1 is an image representing the preconditions for the attitude angle of the bucket 6 corresponding to the target point corresponding to the image P1.
 画像RC2は、画像P2に相当する目標点に対応するバケット6の姿勢角度の前提条件を表す画像である。 The image RC2 is an image representing the preconditions for the attitude angle of the bucket 6 corresponding to the target point corresponding to the image P2.
 例えば、ユーザは、入力装置52や遠隔操作支援装置300(入力装置)を通じて、画像P1,P2を指定することにより、条件設定部302Gを通じて、画像RC1,RC2に相当するバケット6の姿勢角度の前提条件を設定することができる。 For example, by specifying the images P1 and P2 through the input device 52 or the remote operation support device 300 (input device), the user can set the premise of the posture angle of the bucket 6 corresponding to the images RC1 and RC2 through the condition setting unit 302G. Conditions can be set.
 画像PB1は、画面800で選択される動作、及び画面800で設定される前提条件に沿って、軌道生成部302Hにバケット6の作業部位の軌道を生成させるための操作用のアイコンである。 The image PB1 is an icon for operation to cause the trajectory generation unit 302H to generate the trajectory of the work part of the bucket 6 in accordance with the operation selected on the screen 800 and the preconditions set on the screen 800.
 例えば、ユーザは、入力装置52や遠隔操作支援装置300(入力装置)を通じて、画像PB1を操作することにより、軌道生成部302Hを通じてバケット6の目標軌道を生成することができる。 For example, the user can generate the target trajectory of the bucket 6 through the trajectory generation unit 302H by operating the image PB1 through the input device 52 or the remote operation support device 300 (input device).
 画像PB1が操作されると、表示装置50Aの表示内容が画面700から画面800に遷移する。 When image PB1 is operated, the display content of display device 50A transitions from screen 700 to screen 800.
 画面800は、画面700と同様、画像TG,CG,SBを含む。また、画面800は、画面700と同様、画像P1,P2を含む。また、画面800は、画像OG,CG1,PB2を含む。 The screen 800, like the screen 700, includes images TG, CG, and SB. Further, like the screen 700, the screen 800 includes images P1 and P2. Further, the screen 800 includes images OG, CG1, and PB2.
 画像OGは、目標軌道を表す画像である。 Image OG is an image representing the target trajectory.
 画像CG1は、目標軌道に相当する画像OGに付随する形で表示される、バケット6を表す画像である。 The image CG1 is an image representing the bucket 6 that is displayed along with the image OG corresponding to the target trajectory.
 本例では、画像OGは、画像P1に相当する目標点の土砂を掘削動作で掬って、画像P2に相当する目標点に排土する動作を実現する目標軌道を表している。画像OGは、バケット6の作業部位が土砂に接触する軌道部分とそれ以外の軌道部分とが区別可能なように表現されてもよい。例えば、画像OGは、バケット6の作業部位が土砂に接触する軌道部分とそれ以外の軌道部分とが異なる色で表示される。 In this example, image OG represents a target trajectory for realizing an operation of scooping up earth and sand at a target point corresponding to image P1 by an excavation operation and discharging it to a target point corresponding to image P2. The image OG may be expressed in such a way that the trajectory portion where the working part of the bucket 6 comes into contact with the earth and sand can be distinguished from the other trajectory portions. For example, in the image OG, the track portion where the working part of the bucket 6 comes into contact with earth and sand and the other track portions are displayed in different colors.
 画像PB2は、画像OGに相当する目標軌道でバケット6の作業部位を移動させる動作を動画像(アニメーション)により画面800上で再現させるための操作用のアイコンである。 The image PB2 is an icon for operation to reproduce on the screen 800 with a moving image (animation) the operation of moving the work part of the bucket 6 along the target trajectory corresponding to the image OG.
 例えば、ユーザは、入力装置52や遠隔操作支援装置300(入力装置)を通じて、画像PB2を操作することにより、目標軌道に相当する画像OGに沿って、バケット6に相当する画像CG1が移動する動画像を画面800に表示させることができる。そのため、ユーザは、動画像を確認することによって、目標軌道が適切であるか否かを判断することができる。 For example, by operating the image PB2 through the input device 52 or the remote operation support device 300 (input device), the user can create a video in which the image CG1 corresponding to the bucket 6 moves along the image OG corresponding to the target trajectory. The image can be displayed on screen 800. Therefore, the user can determine whether or not the target trajectory is appropriate by checking the moving image.
 また、動画像では、目標軌道に沿ってバケット6を移動させるショベル100の動作の後の作業対象の形状(地形形状)が表示されてもよい。つまり、画面800には、画像OGに対応する目標軌道に沿ってバケット6を移動させるように、ショベル100を動作させた後の予測される、ショベル100の周辺の作業対象の形状(地形形状)が表示されてもよい。これにより、ユーザは、動画像と予測される地形形状の変化とを確認することによって、目標軌道が適切であるか否かをより適切に判断することができる。 Further, in the moving image, the shape of the work target (topographic shape) after the operation of the shovel 100 to move the bucket 6 along the target trajectory may be displayed. In other words, the screen 800 shows the predicted shape of the work target around the shovel 100 (terrain shape) after the shovel 100 is operated so as to move the bucket 6 along the target trajectory corresponding to the image OG. may be displayed. Thereby, the user can more appropriately determine whether the target trajectory is appropriate by checking the moving image and the predicted change in topographical shape.
 画像PB1が操作されると、表示装置50Aの表示内容が画面800から画面900に遷移する。 When image PB1 is operated, the display content of display device 50A transitions from screen 800 to screen 900.
 画面900は、画面800と同様、画像TG,CG,SBを含む。また、画面900は、画面800と同様、画像P1,P2を含む。また、画面900は、画像OG,CG1を含む。また、画面900は、画像PB3を含む。 The screen 900, like the screen 800, includes images TG, CG, and SB. Further, like the screen 800, the screen 900 includes images P1 and P2. Further, the screen 900 includes images OG and CG1. Further, the screen 900 includes an image PB3.
 画像PB3は、画像OGに相当する目標軌道でバケット6の作業部位を移動させるように、ショベル100を自動で動作させるための操作用アイコンである。 The image PB3 is an operation icon for automatically operating the shovel 100 so as to move the working part of the bucket 6 along the target trajectory corresponding to the image OG.
 例えば、ユーザは、入力装置52や遠隔操作支援装置300(入力装置)を通じて、画像PB3を操作することにより、動作制御部302Eを通じて、画像OGに相当する目標軌道でバケット6が移動するようにショベル100を自動で動作させることができる。 For example, by operating the image PB3 through the input device 52 or the remote operation support device 300 (input device), the user can control the shovel so that the bucket 6 moves on a target trajectory corresponding to the image OG through the operation control unit 302E. 100 can be operated automatically.
 尚、ユーザが上述の動画像を確認することなく、ショベル100に画像OGに相当する目標軌道に沿ってバケット6が移動するようにショベル100を自動で動作させることが可能であってもよい。この場合、画面800には、画像PB2に加えて、画像PB3に相当する操作用アイコンが表示される。 Note that it may be possible to automatically operate the shovel 100 so that the bucket 6 moves along the target trajectory corresponding to the image OG without the user checking the above-mentioned moving image. In this case, in addition to image PB2, an operation icon corresponding to image PB3 is displayed on screen 800.
 図17に戻り、動作制御部302Eは、入力装置52を通じて受け付けられる、ユーザ(オペレータ)からの入力に応じて、軌道生成部302Hにより生成される目標軌道に沿ってバケット6の作業部位が移動するように、ショベル100を動作させる。具体的には、動作制御部302Eは、センサS1~S5の出力等からバケット6の作業部位の位置を把握しながら、油圧制御弁31を制御することで、目標軌道に沿ってバケット6の作業部位が移動するようにショベル100を動作させることができる。 Returning to FIG. 17, the operation control unit 302E causes the work area of the bucket 6 to move along the target trajectory generated by the trajectory generation unit 302H in response to input from the user (operator) received through the input device 52. The excavator 100 is operated as follows. Specifically, the operation control unit 302E controls the hydraulic control valve 31 while grasping the position of the work area of the bucket 6 from the outputs of the sensors S1 to S5, etc., so as to control the work of the bucket 6 along the target trajectory. The shovel 100 can be operated so that the part moves.
 例えば、動作制御部302Eは、ユーザからの動作実行の指示の入力に応じて、軌道生成部302Hにより生成される目標軌道に沿ってバケット6の作業部位が移動するように、ショベル100を動作させる。 For example, the operation control unit 302E operates the shovel 100 so that the working part of the bucket 6 moves along the target trajectory generated by the trajectory generation unit 302H in response to an instruction to execute an operation from the user. .
 また、動作制御部302Eは、操作装置26の操作や遠隔操作信号に応じて、オペレータの操作を補助する形で、軌道生成部302Hにより生成される目標軌道に沿ってバケット6の作業部位が移動するように、ショベル100を動作させてもよい。 In addition, the operation control unit 302E moves the work area of the bucket 6 along the target trajectory generated by the trajectory generation unit 302H in accordance with the operation of the operating device 26 or a remote control signal in a manner that assists the operator's operation. The excavator 100 may be operated as follows.
  <処理>
 次に、図20を参照して、ショベル100の作業部位の目標軌道の生成に関する処理について説明する。
<Processing>
Next, with reference to FIG. 20, a process related to generation of a target trajectory of a working part of excavator 100 will be described.
 図20は、ショベル100の作業部位の目標軌道の生成に関する処理の一例を概略的に示すフローチャートである。 FIG. 20 is a flowchart schematically illustrating an example of processing related to generation of a target trajectory of a working part of the excavator 100.
 図20のフローチャートは、例えば、ショベル100の作業部位の目標軌道の生成に関する機能の作動中に繰り返し実行される。ショベル100の作業部位の目標軌道の生成に関する機能は、入力装置52や遠隔操作支援装置300(入力装置)を通じて受け付けられる、ユーザからの指示の入力で作動(起動)する。 The flowchart in FIG. 20 is repeatedly executed, for example, during operation of a function related to generation of a target trajectory for the work area of the excavator 100. The function related to the generation of the target trajectory of the working part of the excavator 100 is activated (activated) by inputting an instruction from the user, which is received through the input device 52 or the remote operation support device 300 (input device).
 図20に示すように、ステップS302(取得ステップの一例)にて、作業対象形状取得部302Bは、撮像装置40からショベル100の周辺の作業対象の形状に関するデータを取得する。 As shown in FIG. 20, in step S302 (an example of an acquisition step), the work object shape acquisition unit 302B acquires data regarding the shape of the work object around the shovel 100 from the imaging device 40.
 コントローラ30は、ステップS302の処理が完了すると、ステップS304に進む。 Upon completion of the process in step S302, the controller 30 proceeds to step S304.
 ステップS304(表示ステップの一例)にて、表示処理部302Iは、ステップS302で取得されるデータに基づき、地形形状を表す画像を含む設定画面(例えば、画面700)を表示装置50Aや遠隔操作支援装置300(表示装置)に表示させる。 In step S304 (an example of a display step), the display processing unit 302I displays a setting screen (for example, screen 700) including an image representing the topographical shape on the display device 50A or in a remote control support system based on the data acquired in step S302. The information is displayed on the device 300 (display device).
 コントローラ30は、ステップS304の処理が完了すると、ステップS306に進む。 Upon completion of the process in step S304, the controller 30 proceeds to step S306.
 ステップS306にて、動作選択部302Fは、ユーザからの入力に応じて、ショベル100の複数の候補の動作の中から一の動作を選択する。 In step S306, the motion selection unit 302F selects one motion from among the plurality of candidate motions of the shovel 100 in response to the input from the user.
 コントローラ30は、ステップS306の処理が完了すると、ステップS308に進む。 Upon completion of the process in step S306, the controller 30 proceeds to step S308.
 ステップS308にて、条件設定部302G(設定ステップの一例)は、ユーザからの入力に応じて、ショベル100の作業部位の目標軌道の生成に関する前提条件を設定する。 In step S308, the condition setting unit 302G (an example of a setting step) sets preconditions regarding the generation of the target trajectory of the work area of the shovel 100 in response to input from the user.
 コントローラ30は、ステップS308の処理が完了すると、ステップS310に進む。 Upon completion of the process in step S308, the controller 30 proceeds to step S310.
 尚、ステップS306,S308の順序は、ユーザからの入力に応じて前後する場合がある。 Note that the order of steps S306 and S308 may be changed depending on the input from the user.
 ステップS310(生成ステップの一例)にて、軌道生成部302Hは、ステップS306で選択された動作について、ステップS308で設定される前提条件の下で、ショベル100の作業部位の目標軌道を生成する。 In step S310 (an example of a generation step), the trajectory generation unit 302H generates a target trajectory for the work area of the shovel 100 for the operation selected in step S306 under the preconditions set in step S308.
 コントローラ30は、ステップS310の処理が完了すると、ステップS312に進む。 Upon completion of the process in step S310, the controller 30 proceeds to step S312.
 ステップS312にて、表示処理部302Iは、ステップS310で生成された目標軌道を表す画像を表示装置50Aや遠隔操作支援装置300(表示装置)に表示させる。 In step S312, the display processing unit 302I displays the image representing the target trajectory generated in step S310 on the display device 50A or the remote operation support device 300 (display device).
 コントローラ30は、ステップS312の処理が完了すると、ステップS314に進む。 Upon completion of the process in step S312, the controller 30 proceeds to step S314.
 ステップS314にて、コントローラ30は、ステップS312で生成された目標軌道に沿ってバケット6の作業部位を移動させるためのショベル100の動作の実行を指示する操作入力が受け付けられたか否かを判定する。コントローラ30は、ショベル100の動作の実行を指示する操作入力が受け付けられた場合、ステップS316に進み、それ以外の操作、具体的には、再度、目標軌道を生成するための操作が受け付けられた場合、ステップS306に戻る。 In step S314, the controller 30 determines whether an operation input instructing the shovel 100 to perform an operation to move the working part of the bucket 6 along the target trajectory generated in step S312 has been received. . When the controller 30 receives an operation input instructing the execution of the operation of the excavator 100, the process proceeds to step S316, and other operations, specifically, an operation for generating a target trajectory again, are accepted. If so, the process returns to step S306.
 ステップS316にて、動作制御部302Eは、油圧制御弁31を制御し、直近のステップS310の処理で生成された目標軌道でバケット6の作業部位が移動するように、ショベル100を自動で動作させる。 In step S316, the operation control unit 302E controls the hydraulic control valve 31 to automatically operate the shovel 100 so that the working part of the bucket 6 moves on the target trajectory generated in the process of the most recent step S310. .
 コントローラ30は、ステップS316の処理が完了すると、今回のフローチャートの処理を終了する。 When the process of step S316 is completed, the controller 30 ends the process of the current flowchart.
 尚、ステップS316の処理の完了時において、ショベル100(アタッチメントAT)は、目標軌道の終点にバケット6の作業部位がある状態にあってもよいし。ステップS314の処理の開始前の姿勢状態に戻されていてもよい。 Incidentally, upon completion of the process in step S316, the shovel 100 (attachment AT) may be in a state where the working part of the bucket 6 is at the end point of the target trajectory. The posture may be returned to the state before the start of the process in step S314.
 このように、本例では、支援装置150(コントローラ30)は、作業対象の形状に適合する目標軌道を生成することができる。そのため、ショベル100の作業効率を向上させることができる。 In this way, in this example, the support device 150 (controller 30) can generate a target trajectory that matches the shape of the work target. Therefore, the working efficiency of the shovel 100 can be improved.
 また、本例では、支援装置150は、目標点やバケット6の姿勢角度等の前提条件に適合する目標軌道を生成することができる。そのため、作業対象の形状等を前提とするユーザの判断や意図を反映させて、より適切な目標軌道を生成することができる。 Furthermore, in this example, the support device 150 can generate a target trajectory that meets preconditions such as the target point and the attitude angle of the bucket 6. Therefore, a more appropriate target trajectory can be generated by reflecting the user's judgment and intention based on the shape of the work target.
 また、本例では、支援装置150は、生成した目標軌道に沿ってバケット6の作業部位が移動するように、ショベル100を自動で動作させることができる。そのため、経験の浅いオペレータであっても、ショベル100に適切な動作を行わせることが可能となり、その結果、ショベル100の作業効率をより向上させることができる。 Furthermore, in this example, the support device 150 can automatically operate the shovel 100 so that the working part of the bucket 6 moves along the generated target trajectory. Therefore, even an inexperienced operator can make the shovel 100 perform appropriate operations, and as a result, the working efficiency of the shovel 100 can be further improved.
 [作業部位の軌道の生成に関する機能の他の例]
 次に、作業部位の軌道の生成に関する機能の他の例について説明する。
[Other examples of functions related to generation of work part trajectory]
Next, another example of a function related to generation of a trajectory of a work part will be described.
 上述の作業部位の軌道の生成に関する機能の実施例は、適宜、その内容が組み合わせられてもよいし、変形や変更が加えられてもよい。 The contents of the embodiments of the functions related to the generation of the trajectory of the work part described above may be combined as appropriate, or may be modified or changed.
 例えば、上述の実施例は、軌道生成部302Hは、学習済みモデルLMを用いずに、目標軌道を生成してもよい。例えば、複数の候補の動作ごとに作業部位の基準となる軌道が予め規定され、軌道生成部302Hは、動作選択部302Fにより選択された動作の基準となる軌道を、ショベル100の周辺の作業対象の形状(地形形状)に関するデータ、及び前提条件に沿って最適化することにより、作業部位の目標軌道を生成してもよい。 For example, in the above embodiment, the trajectory generation unit 302H may generate the target trajectory without using the learned model LM. For example, a trajectory that serves as a reference for a work part is defined in advance for each of a plurality of candidate motions, and the trajectory generation section 302H generates a trajectory that serves as a reference for the motion selected by the motion selection section 302F for a work target around the excavator 100. The target trajectory of the work area may be generated by optimizing data on the shape (topographical shape) of the target area and preconditions.
 また、上述の実施例やその変形例では、ショベル100の外部に設置される撮像装置や距離センサ等のデータに基づき、ショベル100の周辺の作業対象の形状に関するデータが取得されてもよい。例えば、作業現場に設置される撮像装置や距離センサのデータが、通信装置60を通じてショベル100に受信されることにより、作業対象形状取得部302Bは、ショベル100の周辺の作業対象の形状に関するデータを取得することができる。また、例えば、作業現場の上空を飛行するドローンに搭載される撮像装置や距離センサのデータが、通信装置60を通じてショベル100に受信されることにより、作業対象形状取得部302Bは、ショベル100の周辺の作業対象の形状に関するデータを取得することができる。 Furthermore, in the above-described embodiments and modifications thereof, data regarding the shape of the work target around the shovel 100 may be acquired based on data from an imaging device, a distance sensor, etc. installed outside the shovel 100. For example, data from an imaging device or a distance sensor installed at a work site is received by the excavator 100 through the communication device 60, so that the work object shape acquisition unit 302B acquires data regarding the shape of the work object around the shovel 100. can be obtained. Further, for example, data from an imaging device or a distance sensor mounted on a drone flying above the work site is received by the excavator 100 through the communication device 60, so that the work object shape acquisition unit 302B acquires information about the surroundings of the excavator 100. It is possible to obtain data regarding the shape of the work target.
 また、上述の実施例やその変形例に係る支援装置150は、ショベル100とは異なる他の作業機械の作業部位の軌道を生成してもよい。 Further, the support device 150 according to the above-described embodiment or its modification may generate a trajectory of a working part of a working machine other than the excavator 100.
 また、上述の実施例やその変形例では、支援装置150は、作業機械の作業部位の軌道の生成に関する機能に加えて、上述の作業機械の動作提案機能を有していてもよい。 In addition, in the above-described embodiments and modifications thereof, the support device 150 may have the above-described function of proposing the operation of the working machine in addition to the function of generating the trajectory of the working part of the working machine.
 また、上述の実施例やその変形例では、支援装置150の機能の一部又は全部は、遠隔操作支援装置300に移管されてもよい。 Furthermore, in the above-described embodiments and modifications thereof, part or all of the functions of the support device 150 may be transferred to the remote operation support device 300.
 また、上述の実施例やその変形例では、支援装置150の機能の一部又は全部は、情報処理装置200に移管されてもよい。 Furthermore, in the above-described embodiments and modifications thereof, part or all of the functions of the support device 150 may be transferred to the information processing device 200.
 [支援装置の作用(2)]
 次に、本実施形態に係る支援装置の作用について説明する。
[Function of support device (2)]
Next, the operation of the support device according to this embodiment will be explained.
 例えば、ティーチングポイントを設定し、そのティーチングポイントに基づき作業機械の作業部位の軌道を生成する技術が知られている(例えば、特開2021-50576号公報参照)。 For example, a technique is known in which a teaching point is set and a trajectory of a working part of a working machine is generated based on the teaching point (see, for example, Japanese Patent Application Publication No. 2021-50576).
 しかしながら、例えば、特許文献1では、実施にショベルを操作し作業機械を動作させることによってティーチングポイントを設定する必要があり、その結果、作業部位の目標軌道の生成に多くの時間や手間が必要になる可能性がある。 However, for example, in Patent Document 1, it is necessary to set teaching points by operating a shovel and operating a working machine, and as a result, it takes a lot of time and effort to generate the target trajectory of the work part. There is a possibility that it will happen.
 これに対して、本実施形態では、支援装置は、取得部と、表示部と、設定部と、生成部と、を備える。支援装置は、例えば、支援装置150である。取得部は、例えば、作業対象形状取得部302Bである。表示部は、例えば、表示装置50Aである。設定部は、例えば、条件設定部302Gである。生成部は、例えば、軌道生成部302Hである。具体的には、取得部は、作業機械の周辺の施工対象の地形形状に関するデータを取得する。作業機械は、例えば、ショベル100である。また、表示部は、取得部により取得されるデータに基づき、施工対象の地形形状を表す画像を表示する。また、設定部は、施工対象の地形形状における作業機械の動作時の目標となる点(目標点)を設定する。そして、生成部は、取得部により取得されるデータ、施工対象の目標形状、及び設定部により設定される点に基づき、作業機械の作業部位の軌道を生成する。 In contrast, in this embodiment, the support device includes an acquisition section, a display section, a setting section, and a generation section. The support device is, for example, the support device 150. The acquisition unit is, for example, a work target shape acquisition unit 302B. The display section is, for example, a display device 50A. The setting section is, for example, a condition setting section 302G. The generation unit is, for example, a trajectory generation unit 302H. Specifically, the acquisition unit acquires data regarding the topographic shape of the construction target around the working machine. The working machine is, for example, a shovel 100. Further, the display unit displays an image representing the topographical shape of the construction target based on the data acquired by the acquisition unit. Further, the setting unit sets a point (target point) that is a target during operation of the working machine in the topographical shape of the construction target. Then, the generation unit generates a trajectory of the working part of the working machine based on the data acquired by the acquisition unit, the target shape of the construction target, and the points set by the setting unit.
 これにより、作業機械の作業部位の軌道をより容易に生成することができる。また、目標点が設定されることから、例えば、作業機械の周辺の作業対象の形状を視認したユーザの判断や意図を反映させた、より適切な作業部位の軌道を生成することができる。そのため、作業機械の作業効率を向上させることができる。 Thereby, the trajectory of the working part of the working machine can be generated more easily. Further, since the target point is set, it is possible to generate a more appropriate trajectory of the work part that reflects the judgment and intention of the user who visually recognized the shape of the work target around the work machine, for example. Therefore, the working efficiency of the working machine can be improved.
 また、本実施形態では、支援装置は、選択部を備えてもよい。具体的には、選択部は、ユーザからの入力に応じて、作業機械の複数の候補の動作の中から一の動作を選択してもよい。そして、生成部は、取得部により取得されるデータ、及び設定部により設定される点に基づき、作業機械の一の動作による作業部位の軌道を生成してもよい。 Furthermore, in this embodiment, the support device may include a selection section. Specifically, the selection unit may select one motion from among a plurality of candidate motions of the working machine in response to an input from the user. The generation unit may generate a trajectory of the work part due to one operation of the work machine based on the data acquired by the acquisition unit and the points set by the setting unit.
 これにより、支援装置は、作業機械の動作を規定して作業部位の軌道を生成することができる。そのため、作業機械の作業効率をより向上させることができる。 Thereby, the support device can define the operation of the work machine and generate the trajectory of the work part. Therefore, the working efficiency of the working machine can be further improved.
 また、本実施形態では、設定部は、ユーザからの入力に応じて、作業機械の周辺の地形形状における作業機械の動作時の目標となる点(目標点)、及びその点に対応する作業部位の姿勢を設定してもよい。 Further, in the present embodiment, the setting unit determines, in response to input from the user, a point (target point) that is a target during operation of the working machine in the topographical shape around the working machine, and a work part corresponding to the point. You may also set the posture of
 これにより、支援装置は、作業部位の姿勢に関するユーザの判断や意図を反映させた、より適切な作業部位の軌道を生成することができる。作業機械の作業効率をより向上させることができる。 Thereby, the support device can generate a more appropriate trajectory of the work part that reflects the user's judgment and intention regarding the posture of the work part. The work efficiency of the working machine can be further improved.
 また、本実施形態では、表示部は、作業機械の周辺の地形形状を表す画像に重畳して、生成部により生成される軌道を表す画像を表示してもよい。 Furthermore, in the present embodiment, the display unit may display an image representing the trajectory generated by the generation unit, superimposed on an image representing the topographical shape around the working machine.
 これにより、ユーザは、生成された画像を視覚的に確認することができる。また、ユーザは、作業機械の周辺の地形形状と、生成された軌道とを同時に視認することによって、生成された軌道の妥当性をより適切に判断することができる。 This allows the user to visually check the generated image. Moreover, by simultaneously visually recognizing the terrain shape around the work machine and the generated trajectory, the user can more appropriately judge the validity of the generated trajectory.
 また、本実施形態では、表示部は、作業機械の周辺の地形形状を表す画像に重畳して、生成部により生成される軌道に沿って作業部位が動作する動画像を表示してもよい。 Furthermore, in the present embodiment, the display unit may display a moving image of the work part moving along the trajectory generated by the generation unit, superimposed on an image representing the topographical shape around the work machine.
 これにより、ユーザは、動画像を確認することによって、生成された軌道の妥当性をより適切に判断することができる。 With this, the user can more appropriately judge the validity of the generated trajectory by checking the moving image.
 また、本実施形態では、表示部は、生成部により生成される軌道で作業部位が動作した後に予測される、作業機械の周辺の作業対象の形状を表す画像を表示してもよい。 Furthermore, in the present embodiment, the display unit may display an image representing the predicted shape of the work target around the work machine after the work part moves on the trajectory generated by the generation unit.
 これにより、生成された軌道に沿って作業部位が動作した後の作業対象の形状を確認することによって、生成された軌道の妥当性をより適切に判断することができる。 As a result, the validity of the generated trajectory can be more appropriately determined by checking the shape of the work target after the work part moves along the generated trajectory.
 また、本実施形態では、支援装置は、ユーザの入力に応じて、生成部により生成される軌道に基づき、作業機械を自動で動作させる制御部を備えてもよい。制御部は、例えば、動作制御部302Eである。 Furthermore, in this embodiment, the support device may include a control unit that automatically operates the work machine based on the trajectory generated by the generation unit in response to user input. The control unit is, for example, the operation control unit 302E.
 これにより、相対的に経験の浅いオペレータであっても、目標軌道に沿って作業部位を動作させることができる。そのため、作業効率を向上させることができる。また、ユーザの利便性を向上させることができる。 Thereby, even a relatively inexperienced operator can operate the work part along the target trajectory. Therefore, work efficiency can be improved. Furthermore, user convenience can be improved.
 また、本実施形態では、作業機械は、上述の操作支援装置を備えてもよい。 Furthermore, in this embodiment, the working machine may include the above-mentioned operation support device.
 これにより、作業機械は、より容易に目標軌道を生成することができると共に、作業効率を向上させることができる。 Thereby, the work machine can more easily generate the target trajectory and improve work efficiency.
 以上、実施形態について詳述したが、本開示はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments have been described in detail above, the present disclosure is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist described in the claims.
 最後に、本願は、2022年3月31日に出願した日本国特許出願2022-058984号、及び2022年3月31日に出願した日本国特許出願2022-060273号に基づく優先権を主張するものであり、日本国特許出願の全内容を本願に参照により援用する。 Finally, this application claims priority based on Japanese Patent Application No. 2022-058984 filed on March 31, 2022 and Japanese Patent Application No. 2022-060273 filed on March 31, 2022. , and the entire content of the Japanese patent application is incorporated by reference into this application.
1 下部走行体
1C,1CL,1CR クローラ
1ML,1MR 走行油圧モータ
2 旋回機構
2M 旋回油圧モータ
3 上部旋回体
4 ブーム
5 アーム
6 バケット
7 ブームシリンダ
8 アームシリンダ
9 バケットシリンダ
10 キャビン
11 エンジン
13 レギュレータ
14 メインポンプ
15 パイロットポンプ
17 コントロールバルブ
26 操作装置
29 操作圧センサ
30 コントローラ
31 油圧制御弁
32 シャトル弁
33 油圧制御弁
40 撮像装置
50 出力装置
50A 表示装置
50B 音出力装置
52 入力装置
60 通信装置
100 ショベル
150 支援装置
200 情報処理装置
300 遠隔操作支援装置
301 動作ログ提供部
301A 動作ログ記録部
301B 動作ログ記憶部
301C 動作ログ送信部
302 作業支援部
302A 学習済みモデル記憶部
302B 作業対象形状取得部
302C 推定部
302D 提案部
302E 動作制御部
302F 動作選択部
302G 条件設定部
302H 軌道生成部
302I 表示処理部
2001 動作ログ取得部
2002 動作ログ記憶部
2003 教師データ生成部
2004 機械学習部
2005 学習済みモデル記憶部
2006 配信部
AT アタッチメント
HA 油圧アクチュエータ
LM 学習済みモデル
S1~S5 センサ
SYS 稼働支援システム
1 Lower traveling body 1C, 1CL, 1CR Crawler 1ML, 1MR Travel hydraulic motor 2 Swing mechanism 2M Swing hydraulic motor 3 Upper rotating body 4 Boom 5 Arm 6 Bucket 7 Boom cylinder 8 Arm cylinder 9 Bucket cylinder 10 Cabin 11 Engine 13 Regulator 14 Main Pump 15 Pilot pump 17 Control valve 26 Operating device 29 Operating pressure sensor 30 Controller 31 Hydraulic control valve 32 Shuttle valve 33 Hydraulic control valve 40 Imaging device 50 Output device 50A Display device 50B Sound output device 52 Input device 60 Communication device 100 Excavator 150 Support Device 200 Information processing device 300 Remote operation support device 301 Operation log providing unit 301A Operation log recording unit 301B Operation log storage unit 301C Operation log transmission unit 302 Work support unit 302A Learned model storage unit 302B Work object shape acquisition unit 302C Estimation unit 302D Proposal section 302E Motion control section 302F Motion selection section 302G Condition setting section 302H Trajectory generation section 302I Display processing section 2001 Motion log acquisition section 2002 Motion log storage section 2003 Teacher data generation section 2004 Machine learning section 2005 Learned model storage section 2006 Distribution section AT Attachment HA Hydraulic actuator LM Learned models S1 to S5 Sensor SYS Operation support system

Claims (16)

  1.  作業機械の周辺の作業対象の形状に関するデータを取得する取得部と、
     前記取得部により取得されるデータに基づき、所定の作業における作業機械の複数の候補の動作の中の動作をユーザに提案する提案部と、を備える、
     支援装置。
    an acquisition unit that acquires data regarding the shape of a work target around the work machine;
    a proposal unit that proposes to the user an operation among a plurality of candidate operations of the working machine in a predetermined work based on the data acquired by the acquisition unit;
    Support equipment.
  2.  作業対象の形状と対応付けられた、相対的に熟練度の高いオペレータの操作による作業機械の動作に関する教師データによって機械学習がされた学習済みモデルを用いて、前記取得部により取得されるデータに基づき、前記複数の候補の動作の中から作業機械の周辺の作業対象の形状に適合する動作を推定する推定部を備え、
     前記提案部は、前記推定部の推定結果に基づき、前記複数の候補の動作の中の動作を提案する、
     請求項1に記載の支援装置。
    The data acquired by the acquisition unit is applied to the data acquired by the acquisition unit using a trained model that has undergone machine learning based on training data related to the operation of the work machine by the operation of a relatively highly skilled operator, which is associated with the shape of the work target. an estimator for estimating a motion that matches the shape of a work object around the working machine from among the plurality of candidate motions based on the above,
    The proposal unit proposes a motion among the plurality of candidate motions based on the estimation result of the estimation unit.
    The support device according to claim 1.
  3.  前記提案部は、前記取得部により取得されるデータに基づき、前記複数の候補の動作の中の複数の動作をユーザに提案する、
     請求項1又は2に記載の支援装置。
    The suggestion unit proposes a plurality of actions among the plurality of candidate actions to the user based on the data acquired by the acquisition unit.
    The support device according to claim 1 or 2.
  4.  提案対象の前記複数の動作の中には、前記複数の候補の動作の中で、作業機械の周辺の作業対象の形状に対する適合度合いが相対的に低い動作が含まれる、
     請求項3に記載の支援装置。
    The plurality of motions to be proposed include, among the plurality of candidate motions, motions that have a relatively low degree of adaptation to the shape of the work target around the work machine;
    The support device according to claim 3.
  5.  前記提案部は、前記取得部により取得されるデータに基づき、前記複数の候補の動作の中の動作を、その動作の作業機械の周辺の作業対象の形状に対する適合度合いと共に提案する、
     請求項1乃至4の何れか一項に記載の支援装置。
    The proposal unit proposes a motion among the plurality of candidate motions, along with a degree of compatibility of the motion with a shape of a work object around the working machine, based on the data acquired by the acquisition unit.
    The support device according to any one of claims 1 to 4.
  6.  前記提案部は、前記取得部により取得されるデータに基づき、前記複数の候補の動作の中の複数の動作を、前記複数の動作ごとの作業機械の周辺の作業対象の形状に対する適合度合いと共に提案する、
     請求項5に記載の支援装置。
    The proposal unit proposes a plurality of motions among the plurality of candidate motions, along with a degree of suitability of each of the plurality of motions to the shape of a work object around the working machine, based on the data acquired by the acquisition unit. do,
    The support device according to claim 5.
  7.  前記提案部は、前記取得部により取得されるデータに基づき、前記複数の候補の動作の中の動作を、その動作による作業機械の作業部位の軌道と共に提案する、
     請求項1乃至6の何れか一項に記載の支援装置。
    The proposal unit proposes a motion among the plurality of candidate motions, along with a trajectory of a working part of the working machine due to the motion, based on the data acquired by the acquisition unit.
    The support device according to any one of claims 1 to 6.
  8.  前記提案部は、前記取得部により取得されるデータに基づき、前記複数の候補の動作の中の動作を、その動作による前記作業部位の複数の軌道と共に提案する、
     請求項7に記載の支援装置。
    The proposal unit proposes a motion among the plurality of candidate motions, along with a plurality of trajectories of the work part due to the motion, based on the data acquired by the acquisition unit.
    The support device according to claim 7.
  9.  前記提案部は、前記取得部により取得されるデータに基づき、前記複数の候補の動作の中の動作を、その動作による前記作業部位の複数の軌道、及び前記複数の軌道ごとの作業機械の周辺の作業対象の形状に対する適合度合いと共に提案する、
     請求項8に記載の支援装置。
    The proposal unit is configured to determine, based on the data acquired by the acquisition unit, a motion among the plurality of candidate motions, a plurality of trajectories of the work area due to the motion, and a surrounding area of the work machine for each of the plurality of trajectories. We propose the following along with the degree of compatibility with the shape of the work target.
    The support device according to claim 8.
  10.  表示部を備え、
     前記提案部は、前記複数の候補の動作の中の提案対象の動作による前記作業部位の軌道を、作業機械の周辺の様子を表す画像に重畳して前記表示部に表示させる、
     請求項7乃至9の何れか一項に記載の支援装置。
    Equipped with a display section,
    The proposal unit causes the display unit to display a trajectory of the work part according to a motion to be proposed among the plurality of candidate motions, superimposed on an image representing the surroundings of the work machine.
    The support device according to any one of claims 7 to 9.
  11.  前記提案部は、前記複数の候補の動作の中の提案対象の動作による軌道の中の作業対象に接触する軌道部分とそれ以外の軌道部分とを異なる態様で前記表示部に表示させる、
     請求項10に記載の支援装置。
    The proposal unit causes the display unit to display in different manners a trajectory portion that contacts the work object and other trajectory portions in the trajectory due to the motion of the proposal target among the plurality of candidate motions.
    The support device according to claim 10.
  12.  ユーザからの指示の入力に応じて、前記提案部により提案される動作を作業機械に自動で実行させる制御部、を備える、
     請求項1乃至11の何れか一項に記載の支援装置。
    a control unit that causes the work machine to automatically execute the operation proposed by the suggestion unit in response to an instruction input from a user;
    The support device according to any one of claims 1 to 11.
  13.  前記取得部は、前記制御部により自動で実行される動作の実施後の作業機械の周辺の作業対象の形状を予測することにより、作業機械の周辺の作業対象の形状に関するデータを取得する、
     請求項12に記載の支援装置。
    The acquisition unit acquires data regarding the shape of the work target around the work machine by predicting the shape of the work target around the work machine after the operation automatically executed by the control unit.
    The support device according to claim 12.
  14.  前記取得部により取得されるデータに基づき、前記作業対象の形状を表す画像を表示する表示部と、
     前記作業対象の形状における作業機械の動作時の目標となる点を設定する設定部と、
     前記取得部により取得されるデータ、前記作業対象の目標形状、及び前記設定部により設定される点に基づき、作業機械の作業部位の軌道を生成する生成部と、を備える、
     請求項1乃至13の何れか一項に記載の支援装置。
    a display unit that displays an image representing the shape of the work target based on the data acquired by the acquisition unit;
    a setting unit that sets a target point during operation of the working machine in the shape of the work object;
    a generation unit that generates a trajectory of a working part of the working machine based on the data acquired by the acquisition unit, the target shape of the work object, and the points set by the setting unit;
    The support device according to any one of claims 1 to 13.
  15.  作業機械の周辺の作業対象の形状に関するデータを取得する取得部と、
     前記取得部により取得されるデータに基づき、所定の作業における作業機械の複数の候補の動作の中の動作をユーザに提案する提案部と、を備える、
     作業機械。
    an acquisition unit that acquires data regarding the shape of a work target around the work machine;
    a proposal unit that proposes to the user an operation among a plurality of candidate operations of the working machine in a predetermined work based on the data acquired by the acquisition unit;
    working machine.
  16.  支援装置に、
     作業機械の周辺の作業対象の形状に関するデータを取得する取得ステップと、
     前記取得ステップで取得されるデータに基づき、所定の作業における作業機械の複数の候補の動作の中の動作をユーザに提案する提案ステップと、を実行させる、
     プログラム。
    support equipment,
    an acquisition step of acquiring data regarding the shape of the work object around the work machine;
    a proposing step of proposing to the user an action among a plurality of candidate actions of the work machine in a predetermined work based on the data obtained in the obtaining step;
    program.
PCT/JP2023/013195 2022-03-31 2023-03-30 Assistance device, work machine, program WO2023190877A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022060273A JP2023150920A (en) 2022-03-31 2022-03-31 Support device, work machine and program
JP2022058984A JP2023150082A (en) 2022-03-31 2022-03-31 Support device, work machine and program
JP2022-058984 2022-03-31
JP2022-060273 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190877A1 true WO2023190877A1 (en) 2023-10-05

Family

ID=88202867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013195 WO2023190877A1 (en) 2022-03-31 2023-03-30 Assistance device, work machine, program

Country Status (1)

Country Link
WO (1) WO2023190877A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160718A (en) * 2015-03-05 2016-09-05 株式会社日立製作所 Locus formation device and work machine
WO2017115810A1 (en) * 2015-12-28 2017-07-06 住友建機株式会社 Shovel
JP2020041354A (en) * 2018-09-12 2020-03-19 株式会社小松製作所 Work machine, control device, and control method
JP2020122389A (en) * 2015-12-28 2020-08-13 住友建機株式会社 Shovel and system for shovel
JP2021188362A (en) * 2020-05-29 2021-12-13 株式会社小松製作所 Excavation plan preparation device, work machine, and method for preparing excavation plan

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160718A (en) * 2015-03-05 2016-09-05 株式会社日立製作所 Locus formation device and work machine
WO2017115810A1 (en) * 2015-12-28 2017-07-06 住友建機株式会社 Shovel
JP2020122389A (en) * 2015-12-28 2020-08-13 住友建機株式会社 Shovel and system for shovel
JP2020041354A (en) * 2018-09-12 2020-03-19 株式会社小松製作所 Work machine, control device, and control method
JP2021188362A (en) * 2020-05-29 2021-12-13 株式会社小松製作所 Excavation plan preparation device, work machine, and method for preparing excavation plan

Similar Documents

Publication Publication Date Title
JP7358349B2 (en) Excavators, information processing equipment
US10508417B2 (en) Construction information display device and method for displaying construction information
CN112867831B (en) Excavator
JP7301875B2 (en) excavator, excavator controller
JP7227222B2 (en) Excavator
EP3489422B1 (en) Controlling earthmoving machine
KR102659076B1 (en) shovel
WO2021054436A1 (en) Excavator
CN112955610A (en) Shovel, information processing device, information processing method, information processing program, terminal device, display method, and display program
JP7439053B2 (en) Excavators and shovel management devices
US10968601B2 (en) Controlling earthmoving machine
WO2021020464A1 (en) Excavator
US11346086B1 (en) Machine learning for optimizing tool path planning in autonomous earth moving vehicles
WO2019189920A1 (en) Work machine and information processing device
JP2023174887A (en) Work machine, information processing device
WO2023190877A1 (en) Assistance device, work machine, program
US20210312721A1 (en) Reproduction device, analysis assistance system, and reproduction method
JP2023150082A (en) Support device, work machine and program
JP2023150920A (en) Support device, work machine and program
WO2024034624A1 (en) Assistance device, work machine, assistance system, and program
WO2023190843A1 (en) Assistance device, work machine, and program
WO2020166673A1 (en) Excavator
FI20180081A1 (en) Controlling earthmoving machine
JP2021155995A (en) Shovel support device, shovel management device
WO2022196530A1 (en) Assistance system, information processing device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780885

Country of ref document: EP

Kind code of ref document: A1