WO2023190752A1 - Position detection system, magnetic sensor, and sensor block - Google Patents

Position detection system, magnetic sensor, and sensor block Download PDF

Info

Publication number
WO2023190752A1
WO2023190752A1 PCT/JP2023/012967 JP2023012967W WO2023190752A1 WO 2023190752 A1 WO2023190752 A1 WO 2023190752A1 JP 2023012967 W JP2023012967 W JP 2023012967W WO 2023190752 A1 WO2023190752 A1 WO 2023190752A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetoresistive element
relative movement
main surface
magnet
coil
Prior art date
Application number
PCT/JP2023/012967
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 尾中
琢也 米山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023190752A1 publication Critical patent/WO2023190752A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance

Definitions

  • the present disclosure generally relates to a position sensing system, a magnetic sensor, and a sensor block, and more particularly to a position sensing system, a magnetic sensor, and a sensor block that detect the relative movement position of a coil and a magnet.
  • Patent Document 1 describes a pointing device used in a mobile device.
  • the pointing device described in Patent Document 1 detects the position of a ferrite magnet based on the difference in output between two Hall elements.
  • the present disclosure has been made in view of the above reasons, and aims to provide a position detection system, a magnetic sensor, and a sensor block that can improve the accuracy of position detection.
  • a position detection system includes a coil, a magnet, and a magnetic sensor.
  • the coil and the magnet move relative to each other due to magnetic interaction.
  • the magnetic sensor detects relative movement positions of the coil and the magnet.
  • the magnetic sensor includes a first magnetoresistive element having a first main surface and a second magnetoresistive element having a second main surface.
  • the first main surface and the second main surface are aligned in a relative movement direction, which is a direction in which the coil and the magnet move relative to each other.
  • a normal to the first main surface and a normal to the second main surface are parallel to the relative movement direction.
  • a magnetic sensor detects the relative movement position of a coil and a magnet that move relative to each other due to magnetic interaction.
  • the magnetic sensor includes a first magnetoresistive element having a first main surface and a second magnetoresistive element having a second main surface.
  • the first main surface and the second main surface are aligned in a relative movement direction in which the coil and the magnet move relative to each other.
  • a normal to the first main surface and a normal to the second main surface are parallel to the relative movement direction.
  • a sensor block is a sensor block used for a magnetic sensor.
  • the magnetic sensor detects a relative movement position of the coil and the magnet in a position detection system including a coil and a magnet that move relative to each other due to magnetic interaction.
  • the sensor block includes a base material and a magnetoresistive element.
  • the base material has electrical insulation properties.
  • the magnetoresistive element is provided on the base material and has a main surface. A normal to the main surface of the magnetoresistive element is parallel to a direction of relative movement in which the coil and the magnet move relative to each other.
  • FIG. 1A is a front view of a position detection system according to an embodiment.
  • FIG. 1B is a side view of the position detection system according to the above.
  • FIG. 2 is a perspective view of the magnetic sensor according to the embodiment.
  • FIG. 3A is a front view of the magnetic sensor same as above.
  • FIG. 3B is a rear view of the magnetic sensor same as above.
  • FIG. 4 is a block diagram showing a processing unit included in the above position detection system.
  • FIG. 5 is an explanatory diagram showing an example of the relationship between relative movement position and magnetic field strength in the position detection system as described above.
  • FIG. 6 is an explanatory diagram showing another example of the relationship between the relative movement position and the magnetic field strength in the position detection system as described above.
  • FIG. 5 is an explanatory diagram showing an example of the relationship between relative movement position and magnetic field strength in the position detection system as described above.
  • FIG. 7 is an explanatory diagram showing still another example of the relationship between the relative movement position and the magnetic field strength in the position detection system as described above.
  • FIG. 8 is a graph showing the relationship between relative movement position and output in the position detection system as described above.
  • FIG. 9 is a graph showing the output characteristics of the above magnetic sensor and the output characteristics of a magnetic sensor using a GaAs-based Hall element.
  • the X-axis, Y-axis, and Z-axis in the drawings are merely examples, and are not intended to define the directions in which the position detection system 1 is used. Further, the X-axis, Y-axis, and Z-axis in the drawings are only shown for explanation and have no substance.
  • orthogonal (perpendicular) in the present disclosure includes not only a state in which the angle between the two is strictly 90 degrees, but also a state in which the two intersect within a certain error range. That is, the angle between the two orthogonal angles falls within a certain amount of difference (for example, 10 degrees or less) from 90 degrees. That is, “orthogonal” as used in the present disclosure includes cases where the angle between the two is 80 degrees or more and 100 degrees or less. Similarly, “parallel” in the present disclosure includes not only a state in which the two do not strictly intersect, but also a state in which the two intersect within a certain degree of difference.
  • parallel as used in the present disclosure includes an inclination of one to the other of 10 degrees or less. That is, “parallel” as used in the present disclosure includes cases where the angle between one side and the other is -10 degrees or more and 10 degrees or less.
  • the position detection system 1 of this embodiment is used for, for example, a motor.
  • the motor is used, for example, to adjust the focus of a built-in camera (camera module) of a mobile terminal such as a smartphone.
  • the motor is, for example, a VCM (Voice Coil Motor).
  • the position detection system 1 of this embodiment includes a magnet 2, a coil 3, and a magnetic sensor 4.
  • Magnetic interaction in the present disclosure means interaction between the magnetic field generated from the magnet 2 and the magnetic field generated from the coil 3.
  • relative movement refers to the movement of one of two objects relative to the other, the movement of the other of two objects relative to one, and the movement of two objects relative to each other. may be included.
  • the relative movement direction in this embodiment is along the X axis (straight line). In this embodiment, a case is illustrated in which the position of the coil 3 is fixed and the magnet 2 moves relative to the coil 3.
  • the magnet 2 of this embodiment has a relative movement that is the center of the first end A1 and the second end A2 in the relative movement direction in the relative movement area from the first end A1 to the second end A2 in the relative movement direction. Move based on the center A0 of the area. In the example of FIG. 1B, the moving direction of the magnet 2 is shown by a white arrow.
  • the magnetic sensor 4 detects the relative movement position of the coil 3 and magnet 2.
  • the magnetic sensor 4 includes a first magnetoresistive element 401 (see FIG. 2) and a second magnetoresistive element 402 (see FIG. 2).
  • “Detecting the relative movement position” in the present disclosure refers to detecting the magnitude (distance) of the relative movement between the coil 3 and the magnet 2, and detecting the relative movement position of the coil 3 and the magnet 2. may be included.
  • the first magnetoresistive element 401 has a first main surface 411. Further, the second magnetoresistive element 402 has a second main surface 421.
  • the "first principal surface and second principal surface” in the present disclosure are surfaces formed so as to change the electrical resistance value according to the strength of the magnetic field (change in magnetic field strength) at least along the Z-axis direction.
  • the first main surface 411 and the second main surface 421 of this embodiment are surfaces parallel to the Z axis (orthogonal to the relative movement direction and the direction in which the magnet 2 and the magnetic sensor 4 are lined up) and the Y axis.
  • the first main surface 411 and the second main surface 421 are surfaces parallel to the YZ plane.
  • the first main surface 411 of the first magnetoresistive element 401 and the second main surface 421 of the second magnetoresistive element 402 are arranged in the relative movement direction (along the X axis), which is the direction in which the coil 3 and the magnet 2 move relative to each other. ) lined up.
  • the normal Ax1 to the first main surface 411 of the first magnetoresistive element 401 and the normal Ax1 to the second main surface 421 of the second magnetoresistive element 402 are parallel to the relative movement direction (X-axis).
  • the first main surface 411 and the second main surface 421 are lined up in the direction of relative movement, and the normal Ax1 is parallel to the direction of relative movement. Even if there is a sensor block, the positions of the coil 3 and magnet 2 can be detected using the sensor block. Further, since the output change of the sensor block with respect to the change in magnetic field strength exhibits excellent linearity, the accuracy of position detection can be improved.
  • the position detection system 1 includes a magnet 2, a coil 3, a magnetic sensor 4, and a processing section 5 (see FIG. 4). Be prepared.
  • the position detection system 1 is used for VCM, and the VCM is used for focus adjustment of a camera module. More specifically, in this embodiment, a case is illustrated in which the magnet 2 is fixed to the lens of a camera module, and the coil 3 is fixed to the main body of the camera module.
  • the coil 3 includes a conductive wire made of, for example, copper, wound around a winding axis along the Z-axis.
  • the coil 3 is arranged in line with the magnet 2 in the Z-axis direction. In other words, the coil 3 and the magnet 2 overlap in plan view from the Z-axis direction. Note that in the Z-axis direction, the direction from the magnet 2 toward the coil 3 is the positive direction of the Z-axis.
  • the position of the winding axis of the coil 3 in the XY plane and the position in the XY plane coincides with the center position of the magnet 2.
  • the coil 3 generates a magnetic field when, for example, power is supplied from a power supply circuit. Due to the interaction between the magnetic field generated from the coil 3 and the magnetic field generated from the magnet 2, the magnet 2 moves relative to the coil 3 along the X-axis direction. In other words, in this embodiment, the coil 3 functions as a drive unit that drives (moves) the magnet 2.
  • the coil 3 of this embodiment moves the magnet 2 in the positive direction of the X-axis and in the negative direction of the X-axis by switching the direction of the current flowing through the coil 3.
  • the coil 3 of this embodiment moves the magnet 2 from the center A0 of the relative movement area to a predetermined distance (second end A2) in the positive direction of the X axis, and
  • the magnet 2 can be moved from A0 to a predetermined distance (first end A1) in the negative direction of the X axis.
  • the predetermined distance is 0.5 mm. That is, the relative movement area is 1.0 mm from -0.5 mm (first end A1) to +0.5 mm (second end A2).
  • the center A0 of the relative movement area, the position of the winding axis of the coil 3 (the center of the coil 3), the center of the magnet 2, and the center of the magnetic sensor 4 are in agreement.
  • the focus adjustment function is realized by moving the lens as the magnet 2 moves in the positive direction of the X-axis and in the negative direction of the X-axis.
  • the magnet 2 is a monopolar magnet with one end in the X-axis direction having a north pole and the other end having a south pole.
  • the magnet 2 is, for example, a neodymium magnet.
  • the magnet 2 is formed into a rectangular flat plate.
  • the thickness direction of the magnet 2 is along the Z-axis direction.
  • the longitudinal direction of the magnet 2 is along the magnetization direction of the magnet 2.
  • the "magnetization direction" in the present disclosure is a direction along the straight line connecting the north pole and the south pole.
  • the longitudinal direction (magnetization direction) of the magnet 2 is along the relative movement direction (X-axis).
  • the magnet 2 has a magnetized surface (opposing surface) 20.
  • the opposing surface 20 is a surface that faces the coil 3 and the magnetic sensor 4 in the Z-axis direction.
  • the normal to the opposing surface 20 is parallel to the Z axis.
  • the magnet 2 has a first surface 21 and a second surface 22.
  • the first surface 21 and the second surface 22 are lined up in the direction of relative movement.
  • the first surface 21 and the second surface 22 are orthogonal to the opposing surface 20.
  • the normals of the first surface 21 and the second surface 22 are parallel to the direction of relative movement.
  • the direction from the first surface 21 to the second surface 22 is the positive direction of the X-axis.
  • the state in which the first surface 21 is located at the first end A1 of the relative movement area is defined as the state in which the magnet 2 is located at the first end A1 of the relative movement area.
  • the state in which the second surface 22 is located at the second end A2 of the relative movement area is defined as the state in which the magnet 2 is located at the second end A2 of the relative movement area.
  • a state in which the center of the first surface 21 and the second surface 22 in the relative movement direction is located at the center A0 of the relative movement area is defined as a state in which the magnet 2 is located at the center A0 of the relative movement area.
  • the magnetic sensor 4 detects the relative movement position of the coil 3 and the magnet 2.
  • the magnetic sensor 4 of this embodiment detects the relative movement position of the coil 3 and the magnet 2 by detecting the amount of displacement of the magnet 2 along the X-axis from the center A0 of the relative movement area. More specifically, the magnetic sensor 4 of this embodiment detects the magnetic field strength (change in magnetic field strength) along the Z-axis direction (the direction in which the magnet 2 and the magnetic sensor 4 are lined up orthogonal to the relative movement direction). In this way, the amount of displacement of the magnet 2 along the X-axis from the center A0 of the relative movement area is detected.
  • the magnetic sensor 4 is fixed to the coil 3. As shown in FIGS. 1A and 1B, the magnetic sensor 4 is arranged in line with the magnet 2 in a direction (Z-axis direction) orthogonal to the relative direction. In other words, the magnetic sensor 4 and the magnet 2 overlap in plan view from the Z-axis direction. The magnetic sensor 4 and the coil 3 overlap in plan view from the Y-axis direction. As shown in FIG. 2, the overall shape of the magnetic sensor 4 of this embodiment is a rectangular parallelepiped.
  • the magnetic sensor 4 includes a first sensor block 41, a second sensor block 42, and a connecting portion 43.
  • the first sensor block 41 is used for the magnetic sensor 4 that detects the relative movement position of the coil 3 and the magnet 2.
  • the first sensor block 41 of this embodiment has a rectangular parallelepiped shape. As shown in FIGS. 3A and 3B, the first sensor block 41 includes a first magnetoresistive element 401, a base material 410, and two electrodes 412 and 413.
  • the shape of the base material 410 of this embodiment is a rectangular parallelepiped.
  • the base material 410 has electrical insulation properties.
  • the base material 410 is formed of, for example, an alumina substrate.
  • Base material 410 has a main surface 4101 and an opposing surface.
  • the main surface 4101 of the base material 410 is formed at one end of the base material 410 in the relative movement direction.
  • the main surface 4101 of the base material 410 has a rectangular shape.
  • the normal line Ax1 to the main surface 4101 of the base material 410 of this embodiment is parallel to the relative movement direction.
  • the facing surface of the base material 410 faces the facing surface 20 of the magnet 2 in the Z-axis direction.
  • the shape of the opposing surface of the base material 410 is rectangular.
  • the opposing surface of the base material 410 is parallel to the opposing surface 20 of the magnet 2.
  • the opposing surface of the base material 410 is a surface adjacent to the main surface 4101 of the base material 410.
  • the first magnetoresistive element 401 is provided at one end of the first sensor block 41 in the relative movement direction. In other words, the first magnetoresistive element 401 is provided on the main surface 4101 of the base material 410.
  • the first magnetoresistive element 401 is a rectangular flat plate.
  • the first magnetoresistive element 401 is arranged perpendicular to the facing surface 20 of the magnet 2 .
  • the first magnetoresistive element 401 is a magnetoresistive sensor (MRS).
  • the first magnetoresistive element 401 of this embodiment is a giant magnetoresistive (GMR) element. More specifically, the first magnetoresistive element 401 of this embodiment is a CIP (current in plane) type GMR element.
  • the first magnetoresistive element 401 has a first main surface 411.
  • the shape of the first main surface 411 is rectangular.
  • a normal line Ax1 to the first main surface 411 (see FIG. 1A) is parallel to the relative movement direction. Further, the first main surface 411 is perpendicular to the facing surface 20 of the magnet 2 .
  • the electrical resistance value of the first magnetoresistive element 401 changes depending on the strength of the magnetic field (magnetic field strength) applied to the first main surface 411.
  • the electrical resistance value of the first magnetoresistive element 401 of this embodiment changes depending on the magnetic field strength of at least the component along the Z-axis direction of the magnetic field applied to the first main surface 411. That is, the first magnetoresistive element 401 of this embodiment detects the magnetic field strength of at least the component along the Z-axis direction of the magnetic field applied to the first main surface 411. In other words, the first magnetoresistive element 401 detects the strength of the magnetic field along the direction (Z-axis direction) in which the magnet 2 and the magnetic sensor 4 are lined up, which is a direction perpendicular to the direction of relative movement.
  • the two electrodes 412 and 413 of this embodiment are provided on opposing surfaces of the base material 410.
  • the two electrodes 412 and 413 may be provided on other surfaces of the base material 410.
  • the two electrodes 412 and 413 are made of copper or the like, for example.
  • the electrode 412 of this embodiment is an electrode (terminal) for electrically connecting the high potential side circuit of the power source (power supply section) and the first sensor block 41 (first magnetoresistive element 401) (Fig. 4 reference).
  • the electrode 413 of this embodiment is an electrode for electrically connecting the first sensor block 41 (first magnetoresistive element 401) and the processing section 5 (see FIG. 4).
  • “electrically connected” in the present disclosure means a connection in an electrically conductive state, and includes not only a direct connection but also an indirect connection via a conductor such as an electric wire.
  • the second sensor block 42 is used for the magnetic sensor 4 that detects the relative movement position of the coil 3 and magnet 2.
  • the shape of the second sensor block 42 of this embodiment is a rectangular parallelepiped.
  • the second sensor block 42 includes a second magnetoresistive element 402, a base material 410, and two electrodes 422 and 423.
  • the shape of the base material 420 of this embodiment is a rectangular parallelepiped.
  • the base material 420 has electrical insulation properties.
  • the base material 420 is formed of, for example, an alumina substrate.
  • Base material 420 has a main surface 4201 and an opposing surface.
  • the main surface 4201 of the base material 420 is formed at one end of the base material 420 in the relative movement direction.
  • the main surface 4201 of the base material 420 has a rectangular shape.
  • the normal line Ax1 to the main surface 4201 of the base material 420 of this embodiment is parallel to the relative movement direction.
  • the opposing surface of the base material 420 faces the opposing surface 20 of the magnet 2 in the Z-axis direction.
  • the opposing surface of the base material 420 has a rectangular shape.
  • the opposing surface of the base material 420 is parallel to the opposing surface 20 of the magnet 2.
  • the opposing surface of the base material 420 is a surface adjacent to the main surface 4201 of the base material 420.
  • the normal to the opposing surface of the base material 420 is orthogonal to the normal to the main surface 4201 of the base material 420. Note that the facing surface of the base material 420 of the second sensor block 42 and the facing surface of the base material 410 of the first sensor block 41 are included in the same virtual plane.
  • the second magnetoresistive element 402 is provided at one end of the second sensor block 42 in the relative movement direction. In other words, the second magnetoresistive element 402 is provided on the main surface 4201 of the base material 420.
  • the second magnetoresistive element 402 is a rectangular flat plate.
  • the second magnetoresistive element 402 is arranged perpendicular to the facing surface 20 of the magnet 2 .
  • the second magnetoresistive element 402 is a magnetoresistive element (MRS).
  • the second magnetoresistive element 402 of this embodiment is a giant magnetoresistive element (GMR element). More specifically, the second magnetoresistive element 402 of this embodiment is a CIP type GMR element.
  • the second magnetoresistive element 402 has a second main surface 421.
  • the shape of the second main surface 421 is rectangular.
  • a normal line Ax1 to the second main surface 421 (see FIG. 1A) is parallel to the relative movement direction. That is, the second main surface 421 is a surface parallel to the first main surface 411 of the first magnetoresistive element 401. Further, the second main surface 421 is perpendicular to the facing surface 20 of the magnet 2 .
  • the second main surface 421 of this embodiment has the same shape and the same size as the first main surface 411 of the first magnetoresistive element 401.
  • the first principal surface 411 and the second principal surface 421 are congruent in plan view.
  • the normal Ax1 at the center of the second main surface 421 of the second magnetoresistive element 402 of this embodiment matches the normal Ax1 at the center of the first main surface 411 of the first magnetoresistive element 401.
  • the second main surface 421 is connected to the first main surface 411 of the first magnetoresistive element 401 with respect to the center A0 of the relative movement area of the coil 3 and the magnet 2 in the relative movement direction. They are arranged symmetrically. In other words, the first distance X11 between the center A0 of the relative movement area of the coil 3 and the magnet 2 in the relative movement direction and the first main surface 411 of the first magnetoresistive element 401, and the relative movement area in the relative movement direction. The second distance X12 between the center A0 and the second main surface 421 of the second magnetoresistive element 402 is equal.
  • the positions of the first main surface 411 and the second main surface 421 with respect to the relative movement area can be adjusted. can be arranged.
  • the accuracy of position detection of the magnetic sensor 4 can be improved.
  • the electrical resistance value of the second magnetoresistive element 402 changes depending on the strength of the magnetic field (magnetic field strength) applied to the second main surface 421.
  • the electrical resistance value of the second magnetoresistive element 402 of this embodiment changes depending on the magnetic field strength of at least the component along the Z-axis direction of the magnetic field applied to the second main surface 421. That is, the second magnetoresistive element 402 of this embodiment detects the magnetic field strength of at least the component along the Z-axis direction of the magnetic field applied to the second main surface 421. In other words, the second magnetoresistive element 402 detects the strength of the magnetic field along the direction (Z-axis direction) in which the magnet 2 and the magnetic sensor 4 are lined up, which is a direction perpendicular to the direction of relative movement.
  • the two electrodes 422 and 423 of this embodiment are provided on opposing surfaces of the base material 420.
  • the two electrodes 422 and 423 may be provided on other surfaces of the base material 420.
  • the two electrodes 422 and 423 are made of copper, for example.
  • the electrode 422 of this embodiment is an electrode (terminal) for electrically connecting the second sensor block 42 (second magnetoresistive element 402) and the processing section 5.
  • the electrode 423 of this embodiment is an electrode for electrically connecting the second sensor block 42 (second magnetoresistive element 402) and the low potential side circuit (reference potential circuit) of the power source (power supply unit).
  • the reference potential is a ground (GND) potential.
  • the first magnetoresistive element 401 of the first sensor block 41 and the second magnetoresistive element 402 of the second sensor block 42 of this embodiment are half-bridge connected.
  • the electrode 413 of the first sensor block 41 and the electrode 422 of the second sensor block 42 of this embodiment are wired and electrically connected. That is, the high-potential side circuit of the power supply, the first magnetoresistive element 401, the second magnetoresistive element 402, and the low-potential side circuit of the power supply are connected in series.
  • the potential (midpoint potential) of the electrode 413 of the first sensor block 41 (the electrode 422 of the second sensor block 42) becomes the output signal Vo1 output by the magnetic sensor 4.
  • the connecting portion 43 is made of, for example, epoxy resin or polyimide.
  • the connecting portion 43 has electrical insulation properties.
  • the shape of the connecting portion 43 is a rectangular parallelepiped.
  • the connecting portion 43 connects the first sensor block 41 and the second sensor block 42.
  • the connecting portion 43 has a first end 431 in the relative movement direction and a second end 432 located on the opposite side of the first end 431 in the relative movement direction. Note that the first end 431 and the second end 432 in this embodiment are rectangular planes.
  • the other end of the base material 410 of the first sensor block 41 in the relative movement direction is connected to the first end 431 .
  • the other end of the base material 420 of the second sensor block 42 in the relative movement direction is connected to the second end 432 .
  • the first sensor block 41 is provided at the first end 431 of the connecting portion 43.
  • the second sensor block 42 is provided at the second end 432 of the connecting portion 43.
  • the first main surface 411 of the first magnetoresistive element 401 is provided at one end of the magnetic sensor 4 in the relative movement direction (X-axis direction), and the second magnetoresistive element 402 is provided at the other end of the magnetic sensor 4 in the relative movement direction.
  • a second main surface 421 is provided.
  • the distance X1 between the first main surface 411 of the first sensor block 41 and the second main surface 421 of the second sensor block 42 in the relative movement direction is equal to the relative movement area of the coil 3 and the magnet 2. That is, the distance X1 in this embodiment is 1.0 mm. Note that the distance X1 in this embodiment is the sum of the first distance X11 and the second distance X12.
  • the processing unit 5 shown in FIG. 4 detects the relative movement position of the coil 3 and the magnet 2 by processing the output signal Vo1 of the magnetic sensor 4.
  • the position detection system 1 of this embodiment can detect the relative movement position of the coil 3 and the magnet 2 by processing the output signal Vo1 of the magnetic sensor 4.
  • the processing unit 5 of the present embodiment generates a potential at a connection point between the first magnetoresistive element 401 of the first sensor block 41 and the second magnetoresistive element 402 of the second sensor block 42 (midpoint potential ) is processed as the output signal Vo1 from the magnetic sensor 4.
  • the processing unit 5 of this embodiment includes an amplifier 51 and a microcomputer 52.
  • the amplifier 51 is electrically connected to the magnetic sensor 4.
  • the amplifier 51 amplifies the output signal Vo1 output from the magnetic sensor 4 and outputs the output signal Vo2 to the microcomputer 52.
  • the microcomputer 52 detects the relative movement position of the coil 3 and the magnet 2 by processing the output signal Vo2 output by the amplifier 51.
  • each of the first magnetoresistive element 401 and the second magnetoresistive element 402 will be simply referred to as a "magnetoresistive element”.
  • first principal surface 411 and the second principal surface 421 are not distinguished from each other, each of the first principal surface 411 and the second principal surface 421 may be simply referred to as a "principal surface.”
  • the graph G1 shown in FIGS. 5 to 7 shows the relative movement position of the coil 3 and the magnet 2 based on the center A0 of the relative movement area in the relative movement direction, and the relative movement position of the coil 3 and the magnet 2, and the applied voltage to the first main surface 411 or the second main surface 421.
  • the coil 3 and the magnetic sensor 4 are fixed, and the magnet 2 moves relative to the coil 3 and the magnetic sensor 4.
  • the position detection system 1 cannot detect the relative movement position of the magnet 2 and the coil 3. can.
  • the effects of the position detection system 1 will be explained assuming that the magnet 2 is fixed and the coil 3 and the magnetic sensor 4 move relative to the magnet 2.
  • the first main surface 411 is at a position of -0.5 mm with respect to the center A0 (0 mm) of the relative movement area
  • the second main surface 421 is located at a position of +0.5 mm with respect to the center of the relative movement area.
  • the example shows the case where the magnet 2 is located at the center A0 of the relative movement area.
  • the position -0.5 mm in FIGS. 5 to 7 is a position 0.5 mm away from the center A0 of the relative movement area on the positive side of the X axis.
  • the +0.5 mm position in FIGS. 5 to 7 is a position 0.5 mm away from the center A0 of the relative movement area on the negative side of the X axis.
  • the magnetic field strength detected by the magnetoresistive element becomes stronger as the magnetoresistive element (principal surface) moves away from the center A0 of the relative movement area (as the absolute value of the position in graph G1 increases).
  • the magnetic field strength detected by the second main surface 421 is zero.
  • the sensor block (magnetoresistive element) cannot detect differences in the direction of the magnetic field in the Z-axis direction. Therefore, as shown in FIGS. 5 to 7, the graph G1 is symmetrical with respect to the center A0 of the relative movement area. Therefore, when the magnetic sensor 4 has only one sensor block having a magnetoresistive element, the magnetic sensor 4 is located on the positive side of the X axis or on the negative side with respect to the center A0 of the relative movement area. It is not possible to distinguish between the two locations.
  • the magnetic sensor 4 of this embodiment includes a first sensor block 41 having a first magnetoresistive element 401 and a second sensor block 42 having a second magnetoresistive element 402. Further, the first main surface 411 of the first magnetoresistive element 401 and the second main surface 421 of the second magnetoresistive element 402 are aligned in the relative movement direction. In the position detection system 1 of this embodiment, the relative movement position of the coil 3 and the magnet 2 is detected regardless of whether the coil 3 and the magnet 2 move relative to each other in either the positive direction or the negative direction in the relative movement direction. be able to.
  • the first magnetoresistive element 401 of the first sensor block 41 and the second magnetoresistive element 402 of the second sensor block 42 are half-bridge connected, and the processing section 5 connects the first magnetoresistive element 401 and the second magnetoresistive element 402 to each other.
  • the potential at the connection point with the resistance element 402 is processed as an output signal. Therefore, in the position detection system 1 of this embodiment, the relative movement position of the coil 3 and the magnet 2 can be detected with a simple circuit configuration.
  • the processing unit 5 processes the potential at the connection point between the first magnetoresistive element 401 and the second magnetoresistive element 402 as an output signal, noise components can be canceled and the S/N ratio can be improved.
  • the graph G1 when the position of the graph G1 changes, the slope of the tangent to the graph G1 changes.
  • the graph G1 In the position range of 0 mm to +1 mm, the graph G1 is a gentle S-shaped curve.
  • the graph G1 in the range of the position from ⁇ 1.0 mm to 0 mm, the graph G1 is a curve that is a left-right inversion of a gentle S-shape (inverted S-shape). That is, since the magnetic field strength detected by the magnetoresistive element does not change linearly with respect to positional changes, it affects the linearity of the output of the magnetic sensor 4 with respect to changes in the magnetic field strength.
  • the first distance X11 between the center A0 of the relative movement area in the relative movement direction and the first main surface 411 of the first magnetoresistive element 401, and The second distance X12 between the center A0 of the relative movement area and the second main surface 421 of the second magnetoresistive element 402 is equal. That is, the first main surface 411 and the second main surface 421 of this embodiment are arranged symmetrically with respect to the center A0 of the relative movement area.
  • the S-shaped (inverted S-shaped) change in magnetic field strength is canceled, and the magnetic field
  • the linearity of the output of the magnetic sensor 4 with respect to changes in intensity is improved.
  • FIG. 8 shows the relationship between the voltage value of the output signal Vo1 of the magnetic sensor 4 and the relative movement position of the coil 3 and magnet 2 in the position detection system 1 of this embodiment.
  • Vcc high potential side circuit of the power supply
  • Point P1 in FIG. 8 indicates the voltage value of the output signal Vo1 of the magnetic sensor 4 when the magnetic sensor 4 is in the position shown in FIG. 5 (the magnet 2 is located at the center A0 of the relative movement area). It is a point.
  • point P2 indicates the voltage value of the output signal Vo1 of the magnetic sensor 4 when the magnetic sensor 4 is in the position shown in FIG. 6 (the state where the magnet 2 is located at the first end A1 of the relative movement area). It is a point.
  • point P3 indicates the voltage value of the output signal Vo1 of the magnetic sensor 4 when the magnetic sensor 4 is in the position shown in FIG. 7 (the state where the magnet 2 is located at the second end A2 of the relative movement area). It is a point.
  • the linearity of the change in the voltage value of the output signal Vo1 of the magnetic sensor 4 with respect to the change in the relative movement position of the coil 3 and the magnet 2 is 99.94%, which is good.
  • FIG. 9 is a graph showing the output characteristics of the magnetic sensor 4 of this embodiment and the output characteristics of the magnetic sensor using a GaAs-based Hall element.
  • the center A0 of the relative movement area between the coil 3 and the magnet 2 is 0.5 mm.
  • Graph G2 shows the output characteristics of the magnetic sensor 4 of this embodiment
  • graph G3 shows the output characteristics of the magnetic sensor using a GaAs-based Hall element.
  • the first magnetoresistive element 401 and the second magnetoresistive element 402 of this embodiment are CIP type GMR elements. By using the first peak output of the CIP type GMR film, the output signal Vo1 of the magnetic sensor 4 of this embodiment has an output voltage 4 times or more larger and an accuracy 10 times or more higher than that of a GaAs-based Hall element. improves.
  • the magnet 2 is not limited to a single-pole magnet, but may be a multi-pole magnet in which north poles and south poles are alternately arranged.
  • the first magnetoresistive element 401 and the second magnetoresistive element 402 are not limited to GMR elements, but may be tunnel magnetoresistive (TMR) elements or anisotropic magnetoresistive (AMR) elements. It's okay.
  • the position detection system 1 is used for a VCM, but the position detection system 1 may be used for a linear motor other than a VCM.
  • linear motor as used in the present disclosure means a motor whose relative movement direction is along a straight line.
  • the magnet 2 may be fixed to the main body of the camera module, and the coil 3 may be fixed to the lens of the camera module. If the magnet 2 is fixed to the main body of the camera module and the coil 3 is fixed to the lens of the camera module, for example, the magnet 2 does not move and the coil 3 moves relative to the magnet 2.
  • the relative movement area between the coil 3 and the magnet 2 is 1.0 mm, but the relative movement area between the coil 3 and the magnet 2 may be less than 1.0 mm, or 1.0 mm. It may be more than that.
  • the relative movement area between the coil 3 and the magnet 2 may be 2.0 mm.
  • the distance X1 between the first main surface 411 and the second main surface 421 in the relative movement direction is 2.0 mm.
  • the position detection system (1) includes a coil (3), a magnet (2), and a magnetic sensor (4).
  • the coil (3) and the magnet (2) move relative to each other due to magnetic interaction.
  • the magnetic sensor (4) detects the relative movement position of the coil (3) and the magnet (2).
  • the magnetic sensor (4) includes a first magnetoresistive element (401) having a first main surface (411) and a second magnetoresistive element (402) having a second main surface (421).
  • the first main surface (411) and the second main surface (421) are lined up in the relative movement direction, which is the direction in which the coil (3) and the magnet (2) move relative to each other.
  • the normal (Ax1) to the first main surface (411) and the normal (Ax1) to the second main surface (421) are parallel to the relative movement direction.
  • the first main surface (411) and the second main surface (421) are lined up in the direction of relative movement, and the normal (Ax1) is parallel to the direction of relative movement. ) and the magnet (2) move relative to each other so as to vibrate, the sensor block can be used to detect the position of the coil (3) and the magnet (2). Further, since the output change of the sensor block with respect to the change in magnetic field strength exhibits excellent linearity, the accuracy of position detection can be improved.
  • the relative movement direction of the coil (3) and the magnet (2) is along a straight line.
  • the first distance (X11) and the second distance (X12) are equal.
  • the first distance (X11) is between the center (A0) of the relative movement area of the coil (3) and the magnet (2) in the relative movement direction and the first principal surface (411) of the first magnetoresistive element (401). is the distance.
  • the second distance (X12) is the distance between the center (A0) of the relative movement area in the relative movement direction and the second main surface (421) of the second magnetoresistive element (402).
  • the first main surface (411) and the second main surface (421) symmetrically with respect to the center of the relative movement direction in the relative movement direction, the first main surface with respect to the relative movement area (411) and the second principal surface (421) can be aligned.
  • the accuracy of position detection of the magnetic sensor (4) can be improved.
  • the first principal surface (411) of the first magnetoresistive element (401) and the second magnetoresistive element ( 402) and the second main surface (421) is equal to the relative movement area of the coil (3) and the magnet (2).
  • the distance (X1) between the first main surface (411) and the second main surface (421) in the relative movement direction and the relative movement area of the coil (3) and the magnet (2) are Since they are equal, the accuracy of position detection can be further improved.
  • the normal (Ax1) at the center of the first main surface (411) of the first magnetoresistive element (401) and the normal line (Ax1) at the center of the second principal surface (421) of the second magnetoresistive element (402) coincide with each other.
  • the normal (Ax1) at the center of the first main surface (411) and the normal (Ax1) at the center of the second main surface (421) coincident.
  • the positions of the first main surface (411) and the second main surface (421) can be aligned.
  • the first magnetoresistive element (401) and the second magnetoresistive element (402) are giant magnetoresistive elements. It is.
  • the output voltage of the output signal (Vo1) of the magnetic sensor (4) is made four times or more larger than that of the GaAs-based Hall element, and the output signal (Vo1) can be improved by more than 10 times.
  • the position detection system (1) further includes a processing section (5) in any one of the first to fifth aspects.
  • the processing unit (5) detects the relative movement position by processing the output signal (Vo1) output by the magnetic sensor (4).
  • the processing unit (5) processes the output signal (Vo1) output by the magnetic sensor (4), so that the position detection system (1) can detect the relative movement position of.
  • the first magnetoresistive element (401) and the second magnetoresistive element (402) are half-bridge connected.
  • the processing unit (5) uses the potential at the connection point between the first magnetoresistive element (401) and the second magnetoresistive element (402) as an output signal (Vo1).
  • the relative movement position of the coil (3) and the magnet (2) can be detected with a simple circuit configuration.
  • the magnetic sensor (4) includes a first sensor block (41) and a second sensor block (42). , and a connecting portion (43).
  • the first sensor block (41) includes a first magnetoresistive element (401).
  • the second sensor block (42) includes a second magnetoresistive element (402).
  • the connecting portion (43) connects the first sensor block (41) and the second sensor block (42).
  • the connecting portion (43) has a first end (431) in the relative movement direction and a second end (432) located on the opposite side of the first end (431) in the relative movement direction.
  • the first sensor block (41) is provided at the first end (431).
  • a second sensor block (42) is provided at the second end (432).
  • the connecting portion (43) connects the first sensor block (41) and the second sensor block (42), thereby connecting the first sensor block (41) and the second sensor block (42). It can be integrated.
  • the magnet (2) and the magnetic sensor (4) are aligned in a direction perpendicular to the relative movement direction.
  • the first magnetoresistive element (401) and the second magnetoresistive element (402) detect the strength of the magnetic field along orthogonal directions.
  • the magnetic sensor (4) can detect the strength of the magnetic field in the direction perpendicular to the relative movement direction and in the direction in which the magnet (2) and the magnetic sensor (4) are lined up.
  • the configurations other than the first aspect are not essential to the position detection system (1) and can be omitted as appropriate.
  • the magnetic sensor (4) detects the relative movement position of the coil (3) and the magnet (2) that move relative to each other due to magnetic interaction.
  • the magnetic sensor (4) includes a first magnetoresistive element (401) having a first main surface (411) and a second magnetoresistive element (402) having a second main surface (421).
  • the first main surface (411) and the second main surface (421) are lined up in the relative movement direction in which the coil (3) and the magnet (2) move relative to each other.
  • the normal (Ax1) to the first main surface (411) and the normal (Ax1) to the second main surface (421) are parallel to the relative movement direction.
  • the first main surface (411) and the second main surface (421) are lined up in the direction of relative movement, and the normal (Ax1) is parallel to the direction of relative movement. ) and the magnet (2) move relative to each other so as to vibrate, the sensor block can be used to detect the position of the coil (3) and the magnet (2). Further, since the output change of the sensor block with respect to the change in magnetic field strength exhibits excellent linearity, the accuracy of position detection can be improved.
  • the sensor block according to the eleventh aspect is a sensor block (first sensor block 41; second sensor block 42) used in the magnetic sensor (4).
  • a magnetic sensor (4) detects the relative movement position of a coil (3) and a magnet (2) in a position detection system (1) that includes a coil (3) and a magnet (2) that move relative to each other due to magnetic interaction.
  • the sensor block includes a base material (410; 420) and magnetoresistive elements (first magnetoresistive element 401; second magnetoresistive element 402).
  • the base material has electrical insulation properties.
  • the magnetoresistive element is provided on a base material and has main surfaces (first main surface 411; second main surface 421).
  • the normal (Ax1) to the main surface of the magnetoresistive element is parallel to the direction of relative movement, which is the direction in which the coil (3) and the magnet (2) move relative to each other.
  • the sensor block can be used, for example, as the first sensor block (41) or the second sensor block (42) of the position detection system (1).
  • the first principal surface (411) and the second principal surface (421) are lined up in the direction of relative movement, and the normal (Ax1) is parallel to the direction of relative movement.
  • the positions of the coil (3) and the magnet (2) can be detected using the sensor block. Further, since the output change of the sensor block with respect to the change in magnetic field strength exhibits excellent linearity, the accuracy of position detection can be improved.
  • Position detection system 2 Magnet 3 Coil 4 Magnetic sensor 401 First magnetoresistive element (magnetoresistive element) 402 Second magnetoresistive element (magnetoresistive element) 41 First sensor block (sensor block) 410 Base material 411 First main surface (main surface) 42 Second sensor block (sensor block) 420 Base material 421 Second main surface (main surface) 43 Connection section 431 First end 432 Second end 5 Processing section Ax1 Normal line Vo1 Output signal X1 Distance X11 First distance X12 Second distance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

The present disclosure addresses the problem of improving the position detection. A position detection system (1) is provided with a coil (3) and a magnet (2), and also a magnetic sensor (4). The coil (3) and the magnet (2) move relatively due to magnetic interaction. The magnetic sensor (4) detects the relative movement positions of the coil (3) and the magnet (2). The magnetic sensor (4) includes a first magnetoresistive element having a first principal surface (411) and a second magnetoresistive element having a second principal surface (421). The first principal surface (411) and the second principal surface (421) are arranged side by side in a relative movement direction in which the coil (3) and the magnet (2) move relatively. A normal line (Ax1) of the first principal surface (411) and a normal line (Ax1) of the second principal surface (421) are parallel to the relative movement direction.

Description

位置検知システム、磁気センサ及びセンサブロックPosition sensing system, magnetic sensor and sensor block
 本開示は、一般に位置検知システム、磁気センサ及びセンサブロックに関し、より詳細には、コイル及び磁石の相対移動位置を検知する位置検知システム、磁気センサ及びセンサブロックに関する。 The present disclosure generally relates to a position sensing system, a magnetic sensor, and a sensor block, and more particularly to a position sensing system, a magnetic sensor, and a sensor block that detect the relative movement position of a coil and a magnet.
 特許文献1には、携帯機器に用いられるポインティングデバイスが記載されている。特許文献1に記載されているポインティングデバイスは、2つのホール素子の出力差でフェライト磁石の位置を検知する。 Patent Document 1 describes a pointing device used in a mobile device. The pointing device described in Patent Document 1 detects the position of a ferrite magnet based on the difference in output between two Hall elements.
特開2003-318459号公報Japanese Patent Application Publication No. 2003-318459
 ところで、特許文献1に記載されているようなポインティングデバイス(位置検知システム)において、位置検知の精度を向上させることが望まれている。 By the way, it is desired to improve the accuracy of position detection in a pointing device (position detection system) as described in Patent Document 1.
 本開示は上記事由に鑑みてなされており、位置検知の精度を向上させることができる位置検知システム、磁気センサ及びセンサブロックを提供することを目的とする。 The present disclosure has been made in view of the above reasons, and aims to provide a position detection system, a magnetic sensor, and a sensor block that can improve the accuracy of position detection.
 本開示の一態様に係る位置検知システムは、コイル及び磁石と、磁気センサと、を備える。前記コイル及び前記磁石は、磁気的相互作用により相対移動する。前記磁気センサは、前記コイル及び前記磁石の相対移動位置を検知する。前記磁気センサは、第1主面を有する第1磁気抵抗素子と、第2主面を有する第2磁気抵抗素子と、を有する。前記第1主面と前記第2主面とは、前記コイル及び前記磁石が相対移動する方向である相対移動方向において並んでいる。前記第1主面の法線と前記第2主面の法線とは、前記相対移動方向と平行である。 A position detection system according to one aspect of the present disclosure includes a coil, a magnet, and a magnetic sensor. The coil and the magnet move relative to each other due to magnetic interaction. The magnetic sensor detects relative movement positions of the coil and the magnet. The magnetic sensor includes a first magnetoresistive element having a first main surface and a second magnetoresistive element having a second main surface. The first main surface and the second main surface are aligned in a relative movement direction, which is a direction in which the coil and the magnet move relative to each other. A normal to the first main surface and a normal to the second main surface are parallel to the relative movement direction.
 本開示の一態様に係る磁気センサは、磁気的相互作用により相対移動するコイル及び磁石の相対移動位置を検知する。前記磁気センサは、第1主面を有する第1磁気抵抗素子と、第2主面を有する第2磁気抵抗素子と、を備える。前記第1主面と前記第2主面とは、前記コイル及び前記磁石が相対移動する相対移動方向において並んでいる。前記第1主面の法線と前記第2主面の法線とは、前記相対移動方向と平行である。 A magnetic sensor according to one aspect of the present disclosure detects the relative movement position of a coil and a magnet that move relative to each other due to magnetic interaction. The magnetic sensor includes a first magnetoresistive element having a first main surface and a second magnetoresistive element having a second main surface. The first main surface and the second main surface are aligned in a relative movement direction in which the coil and the magnet move relative to each other. A normal to the first main surface and a normal to the second main surface are parallel to the relative movement direction.
 本開示の一態様に係るセンサブロックは、磁気センサに用いられるセンサブロックである。前記磁気センサは、磁気的相互作用により相対移動するコイル及び磁石を備える位置検知システムにおいて、前記コイル及び前記磁石の相対移動位置を検知する。前記センサブロックは、基材と、磁気抵抗素子と、を備える。前記基材は、電気絶縁性を有する。前記磁気抵抗素子は、前記基材に設けられ、主面を有する。前記磁気抵抗素子の前記主面の法線は、前記コイル及び前記磁石が相対移動する方向である相対移動方向と平行である。 A sensor block according to one aspect of the present disclosure is a sensor block used for a magnetic sensor. The magnetic sensor detects a relative movement position of the coil and the magnet in a position detection system including a coil and a magnet that move relative to each other due to magnetic interaction. The sensor block includes a base material and a magnetoresistive element. The base material has electrical insulation properties. The magnetoresistive element is provided on the base material and has a main surface. A normal to the main surface of the magnetoresistive element is parallel to a direction of relative movement in which the coil and the magnet move relative to each other.
図1Aは、実施形態に係る位置検知システムの正面図である。図1Bは、同上に係る位置検知システムの側面図である。FIG. 1A is a front view of a position detection system according to an embodiment. FIG. 1B is a side view of the position detection system according to the above. 図2は、実施形態に係る磁気センサの斜視図である。FIG. 2 is a perspective view of the magnetic sensor according to the embodiment. 図3Aは、同上の磁気センサの正面図である。図3Bは、同上の磁気センサの背面図である。FIG. 3A is a front view of the magnetic sensor same as above. FIG. 3B is a rear view of the magnetic sensor same as above. 図4は、同上の位置検知システムが備える処理部を示すブロック図である。FIG. 4 is a block diagram showing a processing unit included in the above position detection system. 図5は、同上の位置検知システムに係る相対移動位置と磁界強度との関係の一例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of the relationship between relative movement position and magnetic field strength in the position detection system as described above. 図6は、同上の位置検知システムに係る相対移動位置と磁界強度との関係の別の例を示す説明図である。FIG. 6 is an explanatory diagram showing another example of the relationship between the relative movement position and the magnetic field strength in the position detection system as described above. 図7は、同上の位置検知システムに係る相対移動位置と磁界強度との関係の更に別の例を示す説明図である。FIG. 7 is an explanatory diagram showing still another example of the relationship between the relative movement position and the magnetic field strength in the position detection system as described above. 図8は、同上の位置検知システムに係る相対移動位置と出力との関係を示すグラフである。FIG. 8 is a graph showing the relationship between relative movement position and output in the position detection system as described above. 図9は、同上の磁気センサの出力特性とGaAs系ホール素子を用いた磁気センサの出力特性とを示すグラフである。FIG. 9 is a graph showing the output characteristics of the above magnetic sensor and the output characteristics of a magnetic sensor using a GaAs-based Hall element.
 以下、本開示に関する好ましい実施形態について図面を参照しつつ詳細に説明する。なお、以下に説明する実施形態において互いに共通する要素には同一符号を付しており、共通する要素についての重複する説明は省略する場合がある。以下の実施形態は、本開示の様々な実施形態の一つに過ぎない。実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。本開示において説明する各図は、模式的な図であり、各図中の各構成要素の大きさ及び厚さのそれぞれの比が、必ずしも実際の寸法比を反映しているとは限らない。なお、図面中のX軸、Y軸、及びZ軸は互いに直交している。図面中のX軸、Y軸、及びZ軸は一例であり、位置検知システム1の使用時の方向を規定する趣旨ではない。また、図面中のX軸、Y軸、及びZ軸は説明のために表記しているに過ぎず、実体を伴わない。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the drawings. Note that in the embodiments described below, elements that are common to each other are given the same reference numerals, and overlapping explanations of the elements that are common may be omitted. The following embodiment is only one of various embodiments of the present disclosure. The embodiments can be modified in various ways depending on the design, etc., as long as the objective of the present disclosure can be achieved. Each figure described in this disclosure is a schematic diagram, and the respective ratios of the sizes and thicknesses of each component in each figure do not necessarily reflect the actual dimensional ratios. Note that the X axis, Y axis, and Z axis in the drawings are orthogonal to each other. The X-axis, Y-axis, and Z-axis in the drawings are merely examples, and are not intended to define the directions in which the position detection system 1 is used. Further, the X-axis, Y-axis, and Z-axis in the drawings are only shown for explanation and have no substance.
 なお、本開示でいう「直交(垂直)」は、二者間の角度が厳密に90度である状態だけでなく、二者がある程度の誤差の範囲内で交差する状態も含む意味である。つまり、直交する二者間の角度は、90度に対してある程度の差(一例として10度以下)の範囲内に収まる。すなわち、本開示でいう「直交」は、二者でなす角度が80度以上100度以下である場合を含む。本開示でいう「平行」についても同様に、厳密に二者が交わらない状態だけでなく、二者がある程度の差の範囲内で交わる状態も含む意味である。例えば、本開示でいう「平行」は、一方に対する他方の傾きが10度以下であることを含む。すなわち、本開示でいう「平行」は、一方と他方とでなす角度が-10度以上10度以下である場合を含む。 Note that "orthogonal (perpendicular)" in the present disclosure includes not only a state in which the angle between the two is strictly 90 degrees, but also a state in which the two intersect within a certain error range. That is, the angle between the two orthogonal angles falls within a certain amount of difference (for example, 10 degrees or less) from 90 degrees. That is, "orthogonal" as used in the present disclosure includes cases where the angle between the two is 80 degrees or more and 100 degrees or less. Similarly, "parallel" in the present disclosure includes not only a state in which the two do not strictly intersect, but also a state in which the two intersect within a certain degree of difference. For example, "parallel" as used in the present disclosure includes an inclination of one to the other of 10 degrees or less. That is, "parallel" as used in the present disclosure includes cases where the angle between one side and the other is -10 degrees or more and 10 degrees or less.
 (1)概要
 まず、本実施形態に係る位置検知システム1の概要について、図1A、図1B及び図2を参照して説明する。
(1) Overview First, an overview of the position detection system 1 according to the present embodiment will be described with reference to FIGS. 1A, 1B, and 2.
 本実施形態の位置検知システム1は、例えばモータに用いられる。モータは、例えば、スマートフォン等の携帯端末の内蔵カメラ(カメラモジュール)のフォーカス調整に用いられる。モータは、例えば、VCM(Voice Coil Motor)である。 The position detection system 1 of this embodiment is used for, for example, a motor. The motor is used, for example, to adjust the focus of a built-in camera (camera module) of a mobile terminal such as a smartphone. The motor is, for example, a VCM (Voice Coil Motor).
 図1A、図1Bに示すように、本実施形態の位置検知システム1は、磁石2と、コイル3と、磁気センサ4と、を備える。 As shown in FIGS. 1A and 1B, the position detection system 1 of this embodiment includes a magnet 2, a coil 3, and a magnetic sensor 4.
 コイル3及び磁石2は、コイル3及び磁石2の磁気的相互作用により相対移動する。本開示でいう「磁気的相互作用」とは、磁石2から発生する磁界とコイル3から発生する磁界との相互作用を意味する。また、「相対移動」は、2つの物体のうちの一方が他方に対して移動すること、2つの物体のうちの他方が一方に対して移動すること、2つの物体が互いに移動すること、を含み得る。本実施形態の相対移動方向は、X軸(直線)に沿っている。本実施形態では、コイル3の位置は固定されており、磁石2がコイル3に対して移動する場合を例示する。なお、本実施形態の磁石2は、相対移動方向における第1端A1から第2端A2までの相対移動エリアにおいて、相対移動方向における第1端A1と第2端A2との中心である相対移動エリアの中心A0を基準として移動する。図1Bの例では、磁石2の移動方向を白抜き矢印で示している。 The coil 3 and the magnet 2 move relative to each other due to the magnetic interaction between the coil 3 and the magnet 2. “Magnetic interaction” in the present disclosure means interaction between the magnetic field generated from the magnet 2 and the magnetic field generated from the coil 3. In addition, "relative movement" refers to the movement of one of two objects relative to the other, the movement of the other of two objects relative to one, and the movement of two objects relative to each other. may be included. The relative movement direction in this embodiment is along the X axis (straight line). In this embodiment, a case is illustrated in which the position of the coil 3 is fixed and the magnet 2 moves relative to the coil 3. In addition, the magnet 2 of this embodiment has a relative movement that is the center of the first end A1 and the second end A2 in the relative movement direction in the relative movement area from the first end A1 to the second end A2 in the relative movement direction. Move based on the center A0 of the area. In the example of FIG. 1B, the moving direction of the magnet 2 is shown by a white arrow.
 磁気センサ4は、コイル3及び磁石2の相対移動位置を検知する。磁気センサ4は、第第1磁気抵抗素子401(図2参照)と、第2磁気抵抗素子402(図2参照)と、を有する。本開示でいう「相対移動位置を検知する」とは、コイル3及び磁石2の相対移動の大きさ(距離)を検知すること、及び、コイル3及び磁石2の相対移動位置を検知することを含み得る。 The magnetic sensor 4 detects the relative movement position of the coil 3 and magnet 2. The magnetic sensor 4 includes a first magnetoresistive element 401 (see FIG. 2) and a second magnetoresistive element 402 (see FIG. 2). “Detecting the relative movement position” in the present disclosure refers to detecting the magnitude (distance) of the relative movement between the coil 3 and the magnet 2, and detecting the relative movement position of the coil 3 and the magnet 2. may be included.
 第1磁気抵抗素子401は、第1主面411を有する。また、第2磁気抵抗素子402は、第2主面421を有する。 The first magnetoresistive element 401 has a first main surface 411. Further, the second magnetoresistive element 402 has a second main surface 421.
 本開示でいう「第1主面及び第2主面」は、少なくともZ軸方向に沿った磁界の強度(磁界強度の変化)に応じて電気抵抗値を変化させるように形成された面である。本実施形態の第1主面411及び第2主面421は、Z軸(相対移動方向に直交かつ磁石2と磁気センサ4とが並ぶ方向)及びY軸と平行な面である。言い換えると第1主面411及び第2主面421はYZ平面と平行な面である。第1主面411及び第2主面421をYZ平面と平行な面とすることで、第1磁気抵抗素子401及び第2磁気抵抗素子402は、Z軸方向に沿った磁界の強度を効率よく検知することができる。 The "first principal surface and second principal surface" in the present disclosure are surfaces formed so as to change the electrical resistance value according to the strength of the magnetic field (change in magnetic field strength) at least along the Z-axis direction. . The first main surface 411 and the second main surface 421 of this embodiment are surfaces parallel to the Z axis (orthogonal to the relative movement direction and the direction in which the magnet 2 and the magnetic sensor 4 are lined up) and the Y axis. In other words, the first main surface 411 and the second main surface 421 are surfaces parallel to the YZ plane. By making the first main surface 411 and the second main surface 421 parallel to the YZ plane, the first magnetoresistive element 401 and the second magnetoresistive element 402 can efficiently control the strength of the magnetic field along the Z-axis direction. Can be detected.
 第1磁気抵抗素子401の第1主面411と第2磁気抵抗素子402の第2主面421とは、コイル3及び磁石2が相対移動する方向である相対移動方向において(X軸に沿って)並んでいる。そして、第1磁気抵抗素子401の第1主面411の法線Ax1と第2磁気抵抗素子402の第2主面421の法線Ax1とは、相対移動方向(X軸)と平行である。 The first main surface 411 of the first magnetoresistive element 401 and the second main surface 421 of the second magnetoresistive element 402 are arranged in the relative movement direction (along the X axis), which is the direction in which the coil 3 and the magnet 2 move relative to each other. ) lined up. The normal Ax1 to the first main surface 411 of the first magnetoresistive element 401 and the normal Ax1 to the second main surface 421 of the second magnetoresistive element 402 are parallel to the relative movement direction (X-axis).
 第1主面411と第2主面421とが相対移動方向において並んでおり、法線Ax1が相対移動方向と平行であるため、例えばコイル3及び磁石2が振動するように相対移動する場合であっても、センサブロックを用いてコイル3及び磁石2の位置検知を行うことができる。また、磁界強度の変化に対するセンサブロックの出力変化は優れた直線性(リニアリティ)を示すため、位置検知の精度を向上させることができる。 The first main surface 411 and the second main surface 421 are lined up in the direction of relative movement, and the normal Ax1 is parallel to the direction of relative movement. Even if there is a sensor block, the positions of the coil 3 and magnet 2 can be detected using the sensor block. Further, since the output change of the sensor block with respect to the change in magnetic field strength exhibits excellent linearity, the accuracy of position detection can be improved.
 (2)詳細
 以下、本実施形態に係る位置検知システム1の詳細な構成について、図1A~図4を参照して説明する。
(2) Details Hereinafter, the detailed configuration of the position detection system 1 according to the present embodiment will be described with reference to FIGS. 1A to 4.
 (2.1)位置検知システムの構成
 図1A、図1Bに示すように、位置検知システム1は、磁石2と、コイル3と、磁気センサ4と、処理部5(図4参照)と、を備える。本実施形態では、位置検知システム1がVCMに用いられ、VCMがカメラモジュールのフォーカス調整に用いられる場合を例示する。より具体的には、本実施形態では、磁石2がカメラモジュールのレンズに固定され、コイル3がカメラモジュールの本体部に固定されている場合を例示する。
(2.1) Configuration of position detection system As shown in FIGS. 1A and 1B, the position detection system 1 includes a magnet 2, a coil 3, a magnetic sensor 4, and a processing section 5 (see FIG. 4). Be prepared. In this embodiment, a case will be exemplified in which the position detection system 1 is used for VCM, and the VCM is used for focus adjustment of a camera module. More specifically, in this embodiment, a case is illustrated in which the magnet 2 is fixed to the lens of a camera module, and the coil 3 is fixed to the main body of the camera module.
 (2.2)コイルの構成
 コイル3は、Z軸に沿った巻回軸を中心として例えば銅等の導線が巻回されている。コイル3は、Z軸方向において、磁石2と並ぶように配置されている。言い換えると、Z軸方向からの平面視においてコイル3と磁石2とは重なっている。なお、Z軸方向において、磁石2からコイル3に向かう向きがZ軸の正の向きである。
(2.2) Coil Configuration The coil 3 includes a conductive wire made of, for example, copper, wound around a winding axis along the Z-axis. The coil 3 is arranged in line with the magnet 2 in the Z-axis direction. In other words, the coil 3 and the magnet 2 overlap in plan view from the Z-axis direction. Note that in the Z-axis direction, the direction from the magnet 2 toward the coil 3 is the positive direction of the Z-axis.
 本実施形態では、磁石2がコイル3に対して移動していないデフォルトの状態(コイル3に電力が供給されていない状態)において、XY平面におけるコイル3の巻回軸の位置と、XY平面における磁石2の中心の位置とが一致している。 In this embodiment, in the default state in which the magnet 2 is not moving relative to the coil 3 (power is not supplied to the coil 3), the position of the winding axis of the coil 3 in the XY plane and the position in the XY plane The position of the center of the magnet 2 coincides with the center position of the magnet 2.
 コイル3は、例えば電源回路から電力が供給されることで、磁界を発生する。コイル3から発生する磁界と、磁石2から発生する磁界との相互作用により、X軸方向に沿って磁石2がコイル3に対して相対移動する。言い換えると、本実施形態では、コイル3は、磁石2を駆動(移動)させる駆動部として機能する。 The coil 3 generates a magnetic field when, for example, power is supplied from a power supply circuit. Due to the interaction between the magnetic field generated from the coil 3 and the magnetic field generated from the magnet 2, the magnet 2 moves relative to the coil 3 along the X-axis direction. In other words, in this embodiment, the coil 3 functions as a drive unit that drives (moves) the magnet 2.
 また、本実施形態のコイル3は、コイル3に流れる電流の向きが切り替えられることにより、X軸の正の向き及びX軸の負の向きに磁石2を移動させる。具体的には、本実施形態のコイル3は、相対移動エリアの中心A0からX軸の正の向きに所定距離(第2端A2)まで磁石2を移動させること、及び、相対移動エリアの中心A0からX軸の負の向きに所定距離(第1端A1)まで磁石2を移動させることができる。本実施形態では、所定距離は0.5mmである。すなわち、相対移動エリアは、-0.5mm(第1端A1)から+0.5mm(第2端A2)までの1.0mmである。なお、本実施形態では、Z軸方向からの平面視において、相対移動エリアの中心A0と、コイル3の巻回軸の位置(コイル3の中心)と、磁石2と、磁気センサ4の中心とが一致している。 Furthermore, the coil 3 of this embodiment moves the magnet 2 in the positive direction of the X-axis and in the negative direction of the X-axis by switching the direction of the current flowing through the coil 3. Specifically, the coil 3 of this embodiment moves the magnet 2 from the center A0 of the relative movement area to a predetermined distance (second end A2) in the positive direction of the X axis, and The magnet 2 can be moved from A0 to a predetermined distance (first end A1) in the negative direction of the X axis. In this embodiment, the predetermined distance is 0.5 mm. That is, the relative movement area is 1.0 mm from -0.5 mm (first end A1) to +0.5 mm (second end A2). In this embodiment, in a plan view from the Z-axis direction, the center A0 of the relative movement area, the position of the winding axis of the coil 3 (the center of the coil 3), the center of the magnet 2, and the center of the magnetic sensor 4 are in agreement.
 本実施形態では、磁石2がX軸の正の向き及びX軸の負の向きに移動することに伴いレンズが移動することで、フォーカス調整の機能が実現される。 In this embodiment, the focus adjustment function is realized by moving the lens as the magnet 2 moves in the positive direction of the X-axis and in the negative direction of the X-axis.
 (2.3)磁石の構成
 図1A、図1Bに示すように、磁石2は、X軸方向における一端がN極であり他端がS極である単極着磁の磁石である。磁石2は、例えばネオジム磁石である。
(2.3) Structure of Magnet As shown in FIGS. 1A and 1B, the magnet 2 is a monopolar magnet with one end in the X-axis direction having a north pole and the other end having a south pole. The magnet 2 is, for example, a neodymium magnet.
 磁石2は、矩形平板状に形成されている。磁石2の厚さ方向はZ軸方向に沿っている。また、磁石2の長手方向は、磁石2の磁化方向に沿っている。本開示でいう「磁化方向」は、N極とS極とを結ぶ直線に沿う方向である。磁石2の長手方向(磁化方向)は、相対移動方向(X軸)に沿っている。 The magnet 2 is formed into a rectangular flat plate. The thickness direction of the magnet 2 is along the Z-axis direction. Further, the longitudinal direction of the magnet 2 is along the magnetization direction of the magnet 2. The "magnetization direction" in the present disclosure is a direction along the straight line connecting the north pole and the south pole. The longitudinal direction (magnetization direction) of the magnet 2 is along the relative movement direction (X-axis).
 また、磁石2は着磁面(対向面)20を有している。対向面20は、Z軸方向においてコイル3及び磁気センサ4と対向する面である。対向面20の法線は、Z軸と平行である。また、磁石2は、第1面21と第2面22とを有する。第1面21と第2面22とは、相対移動方向において並んでいる。第1面21及び第2面22は対向面20と直交する。第1面21及び第2面22の法線は、相対移動方向と平行である。第1面21から第2面22に向かう向きがX軸の正の向きである。 Further, the magnet 2 has a magnetized surface (opposing surface) 20. The opposing surface 20 is a surface that faces the coil 3 and the magnetic sensor 4 in the Z-axis direction. The normal to the opposing surface 20 is parallel to the Z axis. Further, the magnet 2 has a first surface 21 and a second surface 22. The first surface 21 and the second surface 22 are lined up in the direction of relative movement. The first surface 21 and the second surface 22 are orthogonal to the opposing surface 20. The normals of the first surface 21 and the second surface 22 are parallel to the direction of relative movement. The direction from the first surface 21 to the second surface 22 is the positive direction of the X-axis.
 なお、以下の説明において、第1面21が相対移動エリアの第1端A1に位置する状態を、磁石2が相対移動エリアの第1端A1に位置する状態とする。また、第2面22が相対移動エリアの第2端A2に位置する状態を、磁石2が相対移動エリアの第2端A2に位置する状態とする。また、相対移動方向における第1面21と第2面22との中心が、相対移動エリアの中心A0に位置する状態を、磁石2が相対移動エリアの中心A0に位置する状態とする。 In the following description, the state in which the first surface 21 is located at the first end A1 of the relative movement area is defined as the state in which the magnet 2 is located at the first end A1 of the relative movement area. Further, the state in which the second surface 22 is located at the second end A2 of the relative movement area is defined as the state in which the magnet 2 is located at the second end A2 of the relative movement area. Further, a state in which the center of the first surface 21 and the second surface 22 in the relative movement direction is located at the center A0 of the relative movement area is defined as a state in which the magnet 2 is located at the center A0 of the relative movement area.
 (2.4)磁気センサの構成
 上述のように、磁気センサ4は、コイル3及び磁石2の相対移動位置を検知する。本実施形態の磁気センサ4は、相対移動エリアの中心A0からのX軸に沿った磁石2の変位量を検知することで、コイル3及び磁石2の相対移動位置を検知する。より具体的には、本実施形態の磁気センサ4は、Z軸方向(相対移動方向に直交し磁石2と磁気センサ4とが並ぶ方向)に沿った磁界強度(磁界強度の変化)を検知することで、相対移動エリアの中心A0からのX軸に沿った磁石2の変位量を検知する。
(2.4) Configuration of Magnetic Sensor As described above, the magnetic sensor 4 detects the relative movement position of the coil 3 and the magnet 2. The magnetic sensor 4 of this embodiment detects the relative movement position of the coil 3 and the magnet 2 by detecting the amount of displacement of the magnet 2 along the X-axis from the center A0 of the relative movement area. More specifically, the magnetic sensor 4 of this embodiment detects the magnetic field strength (change in magnetic field strength) along the Z-axis direction (the direction in which the magnet 2 and the magnetic sensor 4 are lined up orthogonal to the relative movement direction). In this way, the amount of displacement of the magnet 2 along the X-axis from the center A0 of the relative movement area is detected.
 磁気センサ4は、コイル3に対して固定されている。図1A、図1Bに示すように、磁気センサ4は、相対方向と直交する方向(Z軸方向)において、磁石2と並ぶように配置されている。言い換えると、Z軸方向からの平面視において磁気センサ4と磁石2とは重なっている。Y軸方向からの平面視において磁気センサ4とコイル3とは重なっている。図2に示すように、本実施形態の磁気センサ4の全体形状は、直方体状である。 The magnetic sensor 4 is fixed to the coil 3. As shown in FIGS. 1A and 1B, the magnetic sensor 4 is arranged in line with the magnet 2 in a direction (Z-axis direction) orthogonal to the relative direction. In other words, the magnetic sensor 4 and the magnet 2 overlap in plan view from the Z-axis direction. The magnetic sensor 4 and the coil 3 overlap in plan view from the Y-axis direction. As shown in FIG. 2, the overall shape of the magnetic sensor 4 of this embodiment is a rectangular parallelepiped.
 磁気センサ4は、第1センサブロック41と、第2センサブロック42と、接続部43と、を有する。 The magnetic sensor 4 includes a first sensor block 41, a second sensor block 42, and a connecting portion 43.
 第1センサブロック41は、コイル3及び磁石2の相対移動位置を検知する磁気センサ4に用いられる。本実施形態の第1センサブロック41の形状は、直方体状である。図3A、図3Bに示すように、第1センサブロック41は、第1磁気抵抗素子401と、基材410と、2つの電極412,413と、を備える。 The first sensor block 41 is used for the magnetic sensor 4 that detects the relative movement position of the coil 3 and the magnet 2. The first sensor block 41 of this embodiment has a rectangular parallelepiped shape. As shown in FIGS. 3A and 3B, the first sensor block 41 includes a first magnetoresistive element 401, a base material 410, and two electrodes 412 and 413.
 本実施形態の基材410の形状は、直方体状である。基材410は電気絶縁性を有する。基材410は、例えばアルミナ基板等で形成されている。基材410は主面4101と対向面とを有する。 The shape of the base material 410 of this embodiment is a rectangular parallelepiped. The base material 410 has electrical insulation properties. The base material 410 is formed of, for example, an alumina substrate. Base material 410 has a main surface 4101 and an opposing surface.
 基材410の主面4101は、相対移動方向における基材410の一端に形成されている。基材410の主面4101の形状は矩形状である。本実施形態の基材410の主面4101の法線Ax1は、相対移動方向と平行である。 The main surface 4101 of the base material 410 is formed at one end of the base material 410 in the relative movement direction. The main surface 4101 of the base material 410 has a rectangular shape. The normal line Ax1 to the main surface 4101 of the base material 410 of this embodiment is parallel to the relative movement direction.
 基材410の対向面は、Z軸方向において磁石2の対向面20と対向する。基材410の対向面の形状は矩形状である。基材410の対向面は、磁石2の対向面20と平行である。基材410の対向面は、基材410の主面4101と隣り合う面である。 The facing surface of the base material 410 faces the facing surface 20 of the magnet 2 in the Z-axis direction. The shape of the opposing surface of the base material 410 is rectangular. The opposing surface of the base material 410 is parallel to the opposing surface 20 of the magnet 2. The opposing surface of the base material 410 is a surface adjacent to the main surface 4101 of the base material 410.
 第1磁気抵抗素子401は、相対移動方向における第1センサブロック41の一端に設けられている。言い換えると、第1磁気抵抗素子401は、基材410の主面4101に設けられている。第1磁気抵抗素子401は、矩形状の平板である。第1磁気抵抗素子401は、磁石2の対向面20に対して垂直な姿勢で配置されている。 The first magnetoresistive element 401 is provided at one end of the first sensor block 41 in the relative movement direction. In other words, the first magnetoresistive element 401 is provided on the main surface 4101 of the base material 410. The first magnetoresistive element 401 is a rectangular flat plate. The first magnetoresistive element 401 is arranged perpendicular to the facing surface 20 of the magnet 2 .
 第1磁気抵抗素子401は、磁気抵抗効果素子(MRS:Magneto Resistive Sensor)である。本実施形態の第1磁気抵抗素子401は、巨大磁気抵抗効果(GMR:Giant Magneto Resistance)素子である。より具体的には、本実施形態の第1磁気抵抗素子401は、CIP(current in plane)型GMR素子である。 The first magnetoresistive element 401 is a magnetoresistive sensor (MRS). The first magnetoresistive element 401 of this embodiment is a giant magnetoresistive (GMR) element. More specifically, the first magnetoresistive element 401 of this embodiment is a CIP (current in plane) type GMR element.
 第1磁気抵抗素子401は、第1主面411を有する。 The first magnetoresistive element 401 has a first main surface 411.
 第1主面411の形状は、矩形状である。第1主面411の法線Ax1(図1A参照)は、相対移動方向と平行である。また、第1主面411は、磁石2の対向面20に垂直である。 The shape of the first main surface 411 is rectangular. A normal line Ax1 to the first main surface 411 (see FIG. 1A) is parallel to the relative movement direction. Further, the first main surface 411 is perpendicular to the facing surface 20 of the magnet 2 .
 第1磁気抵抗素子401の電気抵抗値は、第1主面411に印加される磁界の強度(磁界強度)に応じて変化する。本実施形態の第1磁気抵抗素子401の電気抵抗値は、第1主面411に印加される磁界のうち少なくともZ軸方向に沿った成分の磁界強度に応じて変化する。すなわち、本実施形態の第1磁気抵抗素子401は、第1主面411に印加される磁界のうち少なくともZ軸方向に沿った成分の磁界強度を検知する。言い換えると、第1磁気抵抗素子401は、相対移動方向と直交する方向であって磁石2と磁気センサ4とが並ぶ方向(Z軸方向)に沿った磁界の強度を検知する。 The electrical resistance value of the first magnetoresistive element 401 changes depending on the strength of the magnetic field (magnetic field strength) applied to the first main surface 411. The electrical resistance value of the first magnetoresistive element 401 of this embodiment changes depending on the magnetic field strength of at least the component along the Z-axis direction of the magnetic field applied to the first main surface 411. That is, the first magnetoresistive element 401 of this embodiment detects the magnetic field strength of at least the component along the Z-axis direction of the magnetic field applied to the first main surface 411. In other words, the first magnetoresistive element 401 detects the strength of the magnetic field along the direction (Z-axis direction) in which the magnet 2 and the magnetic sensor 4 are lined up, which is a direction perpendicular to the direction of relative movement.
 本実施形態の2つの電極412,413は、基材410の対向面に設けられている。ただし、2つの電極412,413は、基材410の他の面に設けられていてもよい。 The two electrodes 412 and 413 of this embodiment are provided on opposing surfaces of the base material 410. However, the two electrodes 412 and 413 may be provided on other surfaces of the base material 410.
 2つの電極412,413は、例えば銅等で形成されている。本実施形態の電極412は、電源(電源部)の高電位側電路と第1センサブロック41(第1磁気抵抗素子401)とを電気的に接続するための電極(端子)である(図4参照)。本実施形態の電極413は、第1センサブロック41(第1磁気抵抗素子401)と処理部5とを電気的に接続するための電極である(図4参照)。なお、本開示でいう「電気的に接続」とは、電気的に導通した状態の接続を意味し、直接的な接続だけでなく、例えば電線等の導体を介した間接的な接続も含む。 The two electrodes 412 and 413 are made of copper or the like, for example. The electrode 412 of this embodiment is an electrode (terminal) for electrically connecting the high potential side circuit of the power source (power supply section) and the first sensor block 41 (first magnetoresistive element 401) (Fig. 4 reference). The electrode 413 of this embodiment is an electrode for electrically connecting the first sensor block 41 (first magnetoresistive element 401) and the processing section 5 (see FIG. 4). Note that "electrically connected" in the present disclosure means a connection in an electrically conductive state, and includes not only a direct connection but also an indirect connection via a conductor such as an electric wire.
 第2センサブロック42は、コイル3及び磁石2の相対移動位置を検知する磁気センサ4に用いられる。本実施形態の第2センサブロック42の形状は、直方体状である。図3A、図3Bに示すように、第2センサブロック42は、第2磁気抵抗素子402と、基材410と、2つの電極422,423と、を備える。 The second sensor block 42 is used for the magnetic sensor 4 that detects the relative movement position of the coil 3 and magnet 2. The shape of the second sensor block 42 of this embodiment is a rectangular parallelepiped. As shown in FIGS. 3A and 3B, the second sensor block 42 includes a second magnetoresistive element 402, a base material 410, and two electrodes 422 and 423.
 本実施形態の基材420の形状は、直方体状である。基材420は電気絶縁性を有する。基材420は、例えばアルミナ基板等で形成されている。基材420は主面4201と対向面とを有する。 The shape of the base material 420 of this embodiment is a rectangular parallelepiped. The base material 420 has electrical insulation properties. The base material 420 is formed of, for example, an alumina substrate. Base material 420 has a main surface 4201 and an opposing surface.
 基材420の主面4201は、相対移動方向における基材420の一端に形成されている。基材420の主面4201の形状は矩形状である。本実施形態の基材420の主面4201の法線Ax1は、相対移動方向と平行である。 The main surface 4201 of the base material 420 is formed at one end of the base material 420 in the relative movement direction. The main surface 4201 of the base material 420 has a rectangular shape. The normal line Ax1 to the main surface 4201 of the base material 420 of this embodiment is parallel to the relative movement direction.
 基材420の対向面は、Z軸方向において磁石2の対向面20と対向する。基材420の対向面の形状は矩形状である。基材420の対向面は、磁石2の対向面20と平行である。基材420の対向面は、基材420の主面4201と隣り合う面である。基材420の対向面の法線は、基材420の主面4201の法線と直交する。なお、第2センサブロック42の基材420の対向面と、第1センサブロック41の基材410の対向面とは、同一の仮想平面に含まれる。 The opposing surface of the base material 420 faces the opposing surface 20 of the magnet 2 in the Z-axis direction. The opposing surface of the base material 420 has a rectangular shape. The opposing surface of the base material 420 is parallel to the opposing surface 20 of the magnet 2. The opposing surface of the base material 420 is a surface adjacent to the main surface 4201 of the base material 420. The normal to the opposing surface of the base material 420 is orthogonal to the normal to the main surface 4201 of the base material 420. Note that the facing surface of the base material 420 of the second sensor block 42 and the facing surface of the base material 410 of the first sensor block 41 are included in the same virtual plane.
 第2磁気抵抗素子402は、相対移動方向における第2センサブロック42の一端に設けられている。言い換えると、第2磁気抵抗素子402は、基材420の主面4201に設けられている。第2磁気抵抗素子402は、矩形状の平板である。第2磁気抵抗素子402は、磁石2の対向面20に対して垂直な姿勢で配置されている。 The second magnetoresistive element 402 is provided at one end of the second sensor block 42 in the relative movement direction. In other words, the second magnetoresistive element 402 is provided on the main surface 4201 of the base material 420. The second magnetoresistive element 402 is a rectangular flat plate. The second magnetoresistive element 402 is arranged perpendicular to the facing surface 20 of the magnet 2 .
 第2磁気抵抗素子402は、磁気抵抗効果素子(MRS)である。本実施形態の第2磁気抵抗素子402は、巨大磁気抵抗効果素子(GMR素子)である。より具体的には、本実施形態の第2磁気抵抗素子402は、CIP型GMR素子である。 The second magnetoresistive element 402 is a magnetoresistive element (MRS). The second magnetoresistive element 402 of this embodiment is a giant magnetoresistive element (GMR element). More specifically, the second magnetoresistive element 402 of this embodiment is a CIP type GMR element.
 第2磁気抵抗素子402は、第2主面421を有する。 The second magnetoresistive element 402 has a second main surface 421.
 第2主面421の形状は、矩形状である。第2主面421の法線Ax1(図1A参照)は、相対移動方向と平行である。すなわち、第2主面421は、第1磁気抵抗素子401の第1主面411と平行な面である。また、第2主面421は、磁石2の対向面20に垂直である。 The shape of the second main surface 421 is rectangular. A normal line Ax1 to the second main surface 421 (see FIG. 1A) is parallel to the relative movement direction. That is, the second main surface 421 is a surface parallel to the first main surface 411 of the first magnetoresistive element 401. Further, the second main surface 421 is perpendicular to the facing surface 20 of the magnet 2 .
 本実施形態の第2主面421は、第1磁気抵抗素子401の第1主面411と同じ形状であり、同じ大きさである。言い換えると第1主面411と第2主面421とは、平面視において合同である。また、本実施形態の第2磁気抵抗素子402の第2主面421の中心における法線Ax1と、第1磁気抵抗素子401の第1主面411の中心における法線Ax1とは一致する。第1主面411の中心における法線Ax1と、第2主面421の中心における法線Ax1とを一致させることで、磁石2に対する第1主面411及び第2主面421の位置を揃えることができる。磁石2に対する第1主面411及び第2主面421の位置を揃えることで、磁気センサ4の位置検知の精度を向上させることができる。 The second main surface 421 of this embodiment has the same shape and the same size as the first main surface 411 of the first magnetoresistive element 401. In other words, the first principal surface 411 and the second principal surface 421 are congruent in plan view. Further, the normal Ax1 at the center of the second main surface 421 of the second magnetoresistive element 402 of this embodiment matches the normal Ax1 at the center of the first main surface 411 of the first magnetoresistive element 401. By aligning the normal Ax1 at the center of the first main surface 411 with the normal Ax1 at the center of the second main surface 421, the positions of the first main surface 411 and the second main surface 421 with respect to the magnet 2 can be aligned. I can do it. By aligning the positions of the first main surface 411 and the second main surface 421 with respect to the magnet 2, the accuracy of position detection of the magnetic sensor 4 can be improved.
 また、図1Bに示すように、第2主面421は、相対移動方向において、コイル3及び磁石2の相対移動エリアの中心A0を基準として、第1磁気抵抗素子401の第1主面411と対称となるように配置されている。言い換えると、相対移動方向におけるコイル3及び磁石2の相対移動エリアの中心A0と第1磁気抵抗素子401の第1主面411との間の第1距離X11と、相対移動方向における相対移動エリアの中心A0と第2磁気抵抗素子402の第2主面421との間の第2距離X12とが等しい。相対移動方向において相対移動エリアの中心A0を基準として第1主面411と第2主面421とを対称に配置することで、相対移動エリアに対する第1主面411及び第2主面421の位置を揃えることができる。相対移動エリアに対する第1主面411及び第2主面421の位置を揃えることで、磁気センサ4の位置検知の精度を向上させることができる。 Further, as shown in FIG. 1B, the second main surface 421 is connected to the first main surface 411 of the first magnetoresistive element 401 with respect to the center A0 of the relative movement area of the coil 3 and the magnet 2 in the relative movement direction. They are arranged symmetrically. In other words, the first distance X11 between the center A0 of the relative movement area of the coil 3 and the magnet 2 in the relative movement direction and the first main surface 411 of the first magnetoresistive element 401, and the relative movement area in the relative movement direction. The second distance X12 between the center A0 and the second main surface 421 of the second magnetoresistive element 402 is equal. By arranging the first main surface 411 and the second main surface 421 symmetrically with respect to the center A0 of the relative movement area in the relative movement direction, the positions of the first main surface 411 and the second main surface 421 with respect to the relative movement area can be adjusted. can be arranged. By aligning the positions of the first main surface 411 and the second main surface 421 with respect to the relative movement area, the accuracy of position detection of the magnetic sensor 4 can be improved.
 第2磁気抵抗素子402の電気抵抗値は、第2主面421に印加される磁界の強度(磁界強度)に応じて変化する。本実施形態の第2磁気抵抗素子402の電気抵抗値は、第2主面421に印加される磁界のうち少なくともZ軸方向に沿った成分の磁界強度に応じて変化する。すなわち、本実施形態の第2磁気抵抗素子402は、第2主面421に印加される磁界のうち少なくともZ軸方向に沿った成分の磁界強度を検知する。言い換えると、第2磁気抵抗素子402は、相対移動方向と直交する方向であって磁石2と磁気センサ4とが並ぶ方向(Z軸方向)に沿った磁界の強度を検知する。 The electrical resistance value of the second magnetoresistive element 402 changes depending on the strength of the magnetic field (magnetic field strength) applied to the second main surface 421. The electrical resistance value of the second magnetoresistive element 402 of this embodiment changes depending on the magnetic field strength of at least the component along the Z-axis direction of the magnetic field applied to the second main surface 421. That is, the second magnetoresistive element 402 of this embodiment detects the magnetic field strength of at least the component along the Z-axis direction of the magnetic field applied to the second main surface 421. In other words, the second magnetoresistive element 402 detects the strength of the magnetic field along the direction (Z-axis direction) in which the magnet 2 and the magnetic sensor 4 are lined up, which is a direction perpendicular to the direction of relative movement.
 本実施形態の2つの電極422,423は、基材420の対向面に設けられている。ただし、2つの電極422,423は、基材420の他の面に設けられていてもよい。 The two electrodes 422 and 423 of this embodiment are provided on opposing surfaces of the base material 420. However, the two electrodes 422 and 423 may be provided on other surfaces of the base material 420.
 2つの電極422,423は、例えば銅等で形成されている。図4に示すように、本実施形態の電極422は、第2センサブロック42(第2磁気抵抗素子402)と処理部5とを電気的に接続するための電極(端子)である。本実施形態の電極423は、第2センサブロック42(第2磁気抵抗素子402)と電源(電源部)の低電位側電路(基準電位の電路)とを電気的に接続するための電極である。本実施形態では基準電位はグランド(GND)電位である。 The two electrodes 422 and 423 are made of copper, for example. As shown in FIG. 4, the electrode 422 of this embodiment is an electrode (terminal) for electrically connecting the second sensor block 42 (second magnetoresistive element 402) and the processing section 5. The electrode 423 of this embodiment is an electrode for electrically connecting the second sensor block 42 (second magnetoresistive element 402) and the low potential side circuit (reference potential circuit) of the power source (power supply unit). . In this embodiment, the reference potential is a ground (GND) potential.
 図4に示すように、本実施形態の第1センサブロック41の第1磁気抵抗素子401と第2センサブロック42の第2磁気抵抗素子402とはハーフブリッジ接続されている。本実施形態の第1センサブロック41の電極413と第2センサブロック42の電極422とは結線されて電気的に接続されている。つまり、電源の高電位側電路と、第1磁気抵抗素子401と、第2磁気抵抗素子402と、電源の低電位側電路と、が直列接続されている。第1センサブロック41の電極413(第2センサブロック42の電極422)の電位(中点電位)が、磁気センサ4が出力する出力信号Vo1となる。 As shown in FIG. 4, the first magnetoresistive element 401 of the first sensor block 41 and the second magnetoresistive element 402 of the second sensor block 42 of this embodiment are half-bridge connected. The electrode 413 of the first sensor block 41 and the electrode 422 of the second sensor block 42 of this embodiment are wired and electrically connected. That is, the high-potential side circuit of the power supply, the first magnetoresistive element 401, the second magnetoresistive element 402, and the low-potential side circuit of the power supply are connected in series. The potential (midpoint potential) of the electrode 413 of the first sensor block 41 (the electrode 422 of the second sensor block 42) becomes the output signal Vo1 output by the magnetic sensor 4.
 接続部43は、例えばエポキシ樹脂又はポリイミド等で形成されている。接続部43は電気絶縁性を有する。接続部43の形状は直方体状である。接続部43は、第1センサブロック41と第2センサブロック42とを連結させる。接続部43は、相対移動方向における第1端431と、相対移動方向において第1端431の反対側に位置する第2端432とを有する。なお、本実施形態の第1端431及び第2端432は、矩形状の平面である。第1端431には、相対移動方向における第1センサブロック41の基材410の他端が連結される。第2端432には、相対移動方向における第2センサブロック42の基材420の他端が連結される。言い換えると、第1センサブロック41は、接続部43の第1端431に設けられている。第2センサブロック42は、接続部43の第2端432に設けられている。接続部43が第1センサブロック41と第2センサブロック42とを連結させることで、第1センサブロック41及び第2センサブロック42を一体的にすることができる。 The connecting portion 43 is made of, for example, epoxy resin or polyimide. The connecting portion 43 has electrical insulation properties. The shape of the connecting portion 43 is a rectangular parallelepiped. The connecting portion 43 connects the first sensor block 41 and the second sensor block 42. The connecting portion 43 has a first end 431 in the relative movement direction and a second end 432 located on the opposite side of the first end 431 in the relative movement direction. Note that the first end 431 and the second end 432 in this embodiment are rectangular planes. The other end of the base material 410 of the first sensor block 41 in the relative movement direction is connected to the first end 431 . The other end of the base material 420 of the second sensor block 42 in the relative movement direction is connected to the second end 432 . In other words, the first sensor block 41 is provided at the first end 431 of the connecting portion 43. The second sensor block 42 is provided at the second end 432 of the connecting portion 43. By connecting the first sensor block 41 and the second sensor block 42 with the connecting portion 43, the first sensor block 41 and the second sensor block 42 can be integrated.
 すなわち、相対移動方向(X軸方向)における磁気センサ4の一端に第1磁気抵抗素子401の第1主面411が設けられ、相対移動方向における磁気センサ4の他端に第2磁気抵抗素子402の第2主面421が設けられている。相対移動方向における第1センサブロック41の第1主面411と第2センサブロック42の第2主面421との距離X1は、コイル3及び磁石2の相対移動エリアと等しい。すなわち、本実施形態の距離X1は、1.0mmである。なお、本実施形態の距離X1は第1距離X11と第2距離X12とを合計した距離である。第1主面411及び第2主面421間の相対移動方向に沿った距離X1と、コイル3及び磁石2の相対移動エリアとを等しくすることで、位置検知の精度をより向上させることができる。 That is, the first main surface 411 of the first magnetoresistive element 401 is provided at one end of the magnetic sensor 4 in the relative movement direction (X-axis direction), and the second magnetoresistive element 402 is provided at the other end of the magnetic sensor 4 in the relative movement direction. A second main surface 421 is provided. The distance X1 between the first main surface 411 of the first sensor block 41 and the second main surface 421 of the second sensor block 42 in the relative movement direction is equal to the relative movement area of the coil 3 and the magnet 2. That is, the distance X1 in this embodiment is 1.0 mm. Note that the distance X1 in this embodiment is the sum of the first distance X11 and the second distance X12. By making the distance X1 along the relative movement direction between the first main surface 411 and the second main surface 421 equal to the relative movement area of the coil 3 and the magnet 2, the accuracy of position detection can be further improved. .
 (2.5)処理部の構成
 図4に示す処理部5は、磁気センサ4の出力信号Vo1を処理することでコイル3及び磁石2の相対移動位置を検知する。本実施形態の位置検知システム1は、磁気センサ4の出力信号Vo1を処理することで、コイル3及び磁石2の相対移動位置を検知することができる。
(2.5) Configuration of Processing Unit The processing unit 5 shown in FIG. 4 detects the relative movement position of the coil 3 and the magnet 2 by processing the output signal Vo1 of the magnetic sensor 4. The position detection system 1 of this embodiment can detect the relative movement position of the coil 3 and the magnet 2 by processing the output signal Vo1 of the magnetic sensor 4.
 より具体的には、本実施形態の処理部5は、第1センサブロック41の第1磁気抵抗素子401と第2センサブロック42の第2磁気抵抗素子402との接続点の電位(中点電位)を、磁気センサ4からの出力信号Vo1として処理する。 More specifically, the processing unit 5 of the present embodiment generates a potential at a connection point between the first magnetoresistive element 401 of the first sensor block 41 and the second magnetoresistive element 402 of the second sensor block 42 (midpoint potential ) is processed as the output signal Vo1 from the magnetic sensor 4.
 図4に示すように、本実施形態の処理部5は、アンプ51と、マイコン52とを有する。 As shown in FIG. 4, the processing unit 5 of this embodiment includes an amplifier 51 and a microcomputer 52.
 アンプ51は、磁気センサ4と電気的に接続されている。アンプ51は、磁気センサ4が出力する出力信号Vo1を増幅して、出力信号Vo2をマイコン52に出力する。 The amplifier 51 is electrically connected to the magnetic sensor 4. The amplifier 51 amplifies the output signal Vo1 output from the magnetic sensor 4 and outputs the output signal Vo2 to the microcomputer 52.
 マイコン52は、アンプ51が出力する出力信号Vo2を処理することで、コイル3及び磁石2の相対移動位置を検知する。 The microcomputer 52 detects the relative movement position of the coil 3 and the magnet 2 by processing the output signal Vo2 output by the amplifier 51.
 (3)作用効果
 次に、図5~図9を参照して、本実施形態の位置検知システム1の作用効果について説明する。なお、以下の説明において、第1磁気抵抗素子401と第2磁気抵抗素子402とを区別しない場合、第1磁気抵抗素子401及び第2磁気抵抗素子402の各々を単に「磁気抵抗素子」と呼ぶことがある。また、第1主面411及び第2主面421の各々を区別しない場合、第1主面411及び第2主面421の各々を単に「主面」と呼ぶことがある。
(3) Effects Next, the effects of the position detection system 1 of this embodiment will be described with reference to FIGS. 5 to 9. In the following description, if the first magnetoresistive element 401 and the second magnetoresistive element 402 are not distinguished, each of the first magnetoresistive element 401 and the second magnetoresistive element 402 will be simply referred to as a "magnetoresistive element". Sometimes. Furthermore, when the first principal surface 411 and the second principal surface 421 are not distinguished from each other, each of the first principal surface 411 and the second principal surface 421 may be simply referred to as a "principal surface."
 図5~図7に示すグラフG1は、相対移動方向における相対移動エリアの中心A0を基準としたコイル3及び磁石2の相対移動位置と、第1主面411又は第2主面421に印加されるZ軸方向に沿った磁界の強度との関係を示すグラフである。 The graph G1 shown in FIGS. 5 to 7 shows the relative movement position of the coil 3 and the magnet 2 based on the center A0 of the relative movement area in the relative movement direction, and the relative movement position of the coil 3 and the magnet 2, and the applied voltage to the first main surface 411 or the second main surface 421. FIG.
 本実施形態では、コイル3及び磁気センサ4が固定されており、磁石2がコイル3及び磁気センサ4に対して移動する。ただし、磁石2が固定されており、コイル3及び磁気センサ4が磁石2に対して移動する場合であっても、位置検知システム1は、磁石2及びコイル3の相対移動位置を検知することができる。ここで、以下の説明では、磁石2が固定されており、コイル3及び磁気センサ4が磁石2に対して移動するとして、位置検知システム1の作用効果を説明する。 In this embodiment, the coil 3 and the magnetic sensor 4 are fixed, and the magnet 2 moves relative to the coil 3 and the magnetic sensor 4. However, even if the magnet 2 is fixed and the coil 3 and magnetic sensor 4 move relative to the magnet 2, the position detection system 1 cannot detect the relative movement position of the magnet 2 and the coil 3. can. Here, in the following explanation, the effects of the position detection system 1 will be explained assuming that the magnet 2 is fixed and the coil 3 and the magnetic sensor 4 move relative to the magnet 2.
 図5の例では、第1主面411が相対移動エリアの中心A0(0mm)を基準として-0.5mmの位置にあり、第2主面421が相対移動エリアの中心を基準として+0.5mmの位置にある場合(磁石2が相対移動エリアの中心A0に位置している状態)を例示している。なお、図5~図7中の-0.5mmの位置は、相対移動エリアの中心A0からX軸の正の側に0.5mm離れた位置である。図5~図7中の+0.5mmの位置は、相対移動エリアの中心A0からX軸の負の側に0.5mm離れた位置である。 In the example of FIG. 5, the first main surface 411 is at a position of -0.5 mm with respect to the center A0 (0 mm) of the relative movement area, and the second main surface 421 is located at a position of +0.5 mm with respect to the center of the relative movement area. The example shows the case where the magnet 2 is located at the center A0 of the relative movement area. Note that the position -0.5 mm in FIGS. 5 to 7 is a position 0.5 mm away from the center A0 of the relative movement area on the positive side of the X axis. The +0.5 mm position in FIGS. 5 to 7 is a position 0.5 mm away from the center A0 of the relative movement area on the negative side of the X axis.
 同様に、図6の例では、第1主面411が相対移動エリアの中心A0を基準として-1.0mmの位置にあり、第2主面421が相対移動エリアの中心A0にある場合(磁石2が相対移動エリアの第1端A1に位置している状態)を例示している。また、図7の例では、第1主面411が相対移動エリアの中心A0にあり、第2主面421が相対移動エリアの中心A0を基準として+1.0mmの位置にある場合(磁石2が相対移動エリアの第2端A2に位置している状態)を例示している。 Similarly, in the example of FIG. 6, when the first main surface 411 is at a position of -1.0 mm with respect to the center A0 of the relative movement area, and the second main surface 421 is at the center A0 of the relative movement area (magnet 2 is located at the first end A1 of the relative movement area). In addition, in the example of FIG. 7, when the first main surface 411 is located at the center A0 of the relative movement area and the second main surface 421 is located at a position of +1.0 mm with respect to the center A0 of the relative movement area (the magnet 2 A state in which the robot is located at the second end A2 of the relative movement area) is illustrated.
 図5~図7に示すように、磁気抵抗素子が検知する磁界強度は、磁気抵抗素子(主面)が相対移動エリアの中心A0から離れるほど(グラフG1の位置の絶対値が大きくなるほど)強くなる。例えば、図6のように、第2主面421が相対移動エリアの中心A0に位置している場合、第2主面421が検知する磁界強度は0である。 As shown in FIGS. 5 to 7, the magnetic field strength detected by the magnetoresistive element becomes stronger as the magnetoresistive element (principal surface) moves away from the center A0 of the relative movement area (as the absolute value of the position in graph G1 increases). Become. For example, as shown in FIG. 6, when the second main surface 421 is located at the center A0 of the relative movement area, the magnetic field strength detected by the second main surface 421 is zero.
 センサブロック(磁気抵抗素子)は、Z軸方向における磁界の向きの違いを検知できない。そのため、図5~図7に示すように、グラフG1は、相対移動エリアの中心A0を基準として左右対称である。したがって、磁気センサ4が磁気抵抗素子を有するセンサブロックを1つのみ有する場合、相対移動エリアの中心A0を基準として、磁気センサ4がX軸の正の側に位置しているのか又は負の側に位置しているのかの区別ができない。 The sensor block (magnetoresistive element) cannot detect differences in the direction of the magnetic field in the Z-axis direction. Therefore, as shown in FIGS. 5 to 7, the graph G1 is symmetrical with respect to the center A0 of the relative movement area. Therefore, when the magnetic sensor 4 has only one sensor block having a magnetoresistive element, the magnetic sensor 4 is located on the positive side of the X axis or on the negative side with respect to the center A0 of the relative movement area. It is not possible to distinguish between the two locations.
 ここで、本実施形態の磁気センサ4は、第1磁気抵抗素子401を有する第1センサブロック41と、第2磁気抵抗素子402を有する第2センサブロック42とを有する。また、第1磁気抵抗素子401の第1主面411と第2磁気抵抗素子402の第2主面421とは相対移動方向において並んでいる。本実施形態の位置検知システム1では、コイル3及び磁石2が相対移動方向における正の向き及び負の向きのどちらに向かって相対移動しても、コイル3及び磁石2の相対移動位置を検知することができる。 Here, the magnetic sensor 4 of this embodiment includes a first sensor block 41 having a first magnetoresistive element 401 and a second sensor block 42 having a second magnetoresistive element 402. Further, the first main surface 411 of the first magnetoresistive element 401 and the second main surface 421 of the second magnetoresistive element 402 are aligned in the relative movement direction. In the position detection system 1 of this embodiment, the relative movement position of the coil 3 and the magnet 2 is detected regardless of whether the coil 3 and the magnet 2 move relative to each other in either the positive direction or the negative direction in the relative movement direction. be able to.
 そして、第1センサブロック41の第1磁気抵抗素子401と第2センサブロック42の第2磁気抵抗素子402とはハーフブリッジ接続されており、処理部5は第1磁気抵抗素子401と第2磁気抵抗素子402との接続点の電位を出力信号として処理する。そのため、本実施形態の位置検知システム1では、単純な回路構成でコイル3及び磁石2の相対移動位置を検知することができる。また、処理部5が第1磁気抵抗素子401と第2磁気抵抗素子402との接続点の電位を出力信号として処理するため、ノイズ成分をキャンセルでき、S/N比が良好となる。 The first magnetoresistive element 401 of the first sensor block 41 and the second magnetoresistive element 402 of the second sensor block 42 are half-bridge connected, and the processing section 5 connects the first magnetoresistive element 401 and the second magnetoresistive element 402 to each other. The potential at the connection point with the resistance element 402 is processed as an output signal. Therefore, in the position detection system 1 of this embodiment, the relative movement position of the coil 3 and the magnet 2 can be detected with a simple circuit configuration. In addition, since the processing unit 5 processes the potential at the connection point between the first magnetoresistive element 401 and the second magnetoresistive element 402 as an output signal, noise components can be canceled and the S/N ratio can be improved.
 また、図5~図7に示すように、グラフG1は、位置が変化するとグラフG1の接線の傾きが変化する。位置が0mm~+1mmの範囲では、グラフG1は緩やかなS字状の曲線である。また、位置が-1.0mm~0mmの範囲では、グラフG1は緩やかなS字状を左右反転した(逆S字状の)曲線である。すなわち、磁気抵抗素子が検知する磁界強度は位置の変動に対して1次関数的に変化しないため、磁界強度の変化に対する磁気センサ4の出力の直線性に影響する。 Furthermore, as shown in FIGS. 5 to 7, when the position of the graph G1 changes, the slope of the tangent to the graph G1 changes. In the position range of 0 mm to +1 mm, the graph G1 is a gentle S-shaped curve. Moreover, in the range of the position from −1.0 mm to 0 mm, the graph G1 is a curve that is a left-right inversion of a gentle S-shape (inverted S-shape). That is, since the magnetic field strength detected by the magnetoresistive element does not change linearly with respect to positional changes, it affects the linearity of the output of the magnetic sensor 4 with respect to changes in the magnetic field strength.
 ここで、本実施形態の位置検知システム1では、相対移動方向における相対移動エリアの中心A0と第1磁気抵抗素子401の第1主面411との間の第1距離X11と、相対移動方向における相対移動エリアの中心A0と第2磁気抵抗素子402の第2主面421との間の第2距離X12とが等しい。すなわち、本実施形態の第1主面411と第2主面421とは相対移動エリアの中心A0を基準として対称に配置されている。第1主面411と第2主面421とが相対移動エリアの中心A0を基準として対称に配置されているため、S字状(逆S字状)の磁界強度の変化がキャンセルされて、磁界強度の変化に対する磁気センサ4の出力の直線性が向上する。 Here, in the position detection system 1 of this embodiment, the first distance X11 between the center A0 of the relative movement area in the relative movement direction and the first main surface 411 of the first magnetoresistive element 401, and The second distance X12 between the center A0 of the relative movement area and the second main surface 421 of the second magnetoresistive element 402 is equal. That is, the first main surface 411 and the second main surface 421 of this embodiment are arranged symmetrically with respect to the center A0 of the relative movement area. Since the first principal surface 411 and the second principal surface 421 are arranged symmetrically with respect to the center A0 of the relative movement area, the S-shaped (inverted S-shaped) change in magnetic field strength is canceled, and the magnetic field The linearity of the output of the magnetic sensor 4 with respect to changes in intensity is improved.
 図8は、本実施形態の位置検知システム1における磁気センサ4の出力信号Vo1の電圧値と、コイル3及び磁石2の相対移動位置との関係を示している。なお、図8の例では、Vcc(電源の高電位側電路)は3.0Vである。図8中の点P1は、磁気センサ4が図5に示す位置にある場合(磁石2が相対移動エリアの中心A0に位置している状態)の磁気センサ4の出力信号Vo1の電圧値を示す点である。また、点P2は、磁気センサ4が図6に示す位置にある場合(磁石2が相対移動エリアの第1端A1に位置している状態)の磁気センサ4の出力信号Vo1の電圧値を示す点である。また、点P3は、磁気センサ4が図7に示す位置にある場合(磁石2が相対移動エリアの第2端A2に位置している状態)の磁気センサ4の出力信号Vo1の電圧値を示す点である。図8の例では、コイル3及び磁石2の相対移動位置の変化に対する磁気センサ4の出力信号Vo1の電圧値の変化の直線性は、99.94%であり良好である。 FIG. 8 shows the relationship between the voltage value of the output signal Vo1 of the magnetic sensor 4 and the relative movement position of the coil 3 and magnet 2 in the position detection system 1 of this embodiment. In the example of FIG. 8, Vcc (high potential side circuit of the power supply) is 3.0V. Point P1 in FIG. 8 indicates the voltage value of the output signal Vo1 of the magnetic sensor 4 when the magnetic sensor 4 is in the position shown in FIG. 5 (the magnet 2 is located at the center A0 of the relative movement area). It is a point. Further, point P2 indicates the voltage value of the output signal Vo1 of the magnetic sensor 4 when the magnetic sensor 4 is in the position shown in FIG. 6 (the state where the magnet 2 is located at the first end A1 of the relative movement area). It is a point. Further, point P3 indicates the voltage value of the output signal Vo1 of the magnetic sensor 4 when the magnetic sensor 4 is in the position shown in FIG. 7 (the state where the magnet 2 is located at the second end A2 of the relative movement area). It is a point. In the example of FIG. 8, the linearity of the change in the voltage value of the output signal Vo1 of the magnetic sensor 4 with respect to the change in the relative movement position of the coil 3 and the magnet 2 is 99.94%, which is good.
 図9は、本実施形態の磁気センサ4の出力特性と、GaAs系ホール素子を用いた磁気センサの出力特性とを示すグラフである。図9では、コイル3及び磁石2の相対移動エリアの中心A0を0.5mmとしている。グラフG2は、本実施形態の磁気センサ4の出力特性を示し、グラフG3は、GaAs系ホール素子を用いた磁気センサの出力特性を示す。本実施形態の第1磁気抵抗素子401及び第2磁気抵抗素子402は、CIP型GMR素子である。CIP型GMR膜の第1ピーク出力を用いることで、本実施形態の磁気センサ4の出力信号Vo1は、GaAs系ホール素子と比較して、出力電圧が4倍以上大きくなり、精度が10倍以上向上する。 FIG. 9 is a graph showing the output characteristics of the magnetic sensor 4 of this embodiment and the output characteristics of the magnetic sensor using a GaAs-based Hall element. In FIG. 9, the center A0 of the relative movement area between the coil 3 and the magnet 2 is 0.5 mm. Graph G2 shows the output characteristics of the magnetic sensor 4 of this embodiment, and graph G3 shows the output characteristics of the magnetic sensor using a GaAs-based Hall element. The first magnetoresistive element 401 and the second magnetoresistive element 402 of this embodiment are CIP type GMR elements. By using the first peak output of the CIP type GMR film, the output signal Vo1 of the magnetic sensor 4 of this embodiment has an output voltage 4 times or more larger and an accuracy 10 times or more higher than that of a GaAs-based Hall element. improves.
 (4)変形例
 以下、上記実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
(4) Modification Examples Modification examples of the above embodiment will be listed below. The modified examples described below can be applied in combination as appropriate.
 磁石2は、単極着磁のものに限られず、N極及びS極が交互に配列された多極着磁の磁石でもよい。 The magnet 2 is not limited to a single-pole magnet, but may be a multi-pole magnet in which north poles and south poles are alternately arranged.
 第1磁気抵抗素子401及び第2磁気抵抗素子402は、GMR素子に限られず、トンネル磁気抵抗効果(TMR:Tunnel Magneto Resistance)素子又は異方性磁気抵抗効果(AMR:Anisotropic Magneto Resistive)素子であってもよい。 The first magnetoresistive element 401 and the second magnetoresistive element 402 are not limited to GMR elements, but may be tunnel magnetoresistive (TMR) elements or anisotropic magnetoresistive (AMR) elements. It's okay.
 上記実施形態では、位置検知システム1がVCMに用いられる場合を例示したが、位置検知システム1は、VCM以外のリニアモータに用いられてもよい。なお、本開示でいう「リニアモータ」とは、相対移動方向が直線に沿うモータを意味する。 In the above embodiment, the position detection system 1 is used for a VCM, but the position detection system 1 may be used for a linear motor other than a VCM. Note that the term "linear motor" as used in the present disclosure means a motor whose relative movement direction is along a straight line.
 磁石2がカメラモジュールの本体部に固定され、コイル3がカメラモジュールのレンズに固定されていてもよい。磁石2がカメラモジュールの本体部に固定され、コイル3がカメラモジュールのレンズに固定される場合、例えば、磁石2は移動せずに、コイル3が磁石2に対して移動する。 The magnet 2 may be fixed to the main body of the camera module, and the coil 3 may be fixed to the lens of the camera module. If the magnet 2 is fixed to the main body of the camera module and the coil 3 is fixed to the lens of the camera module, for example, the magnet 2 does not move and the coil 3 moves relative to the magnet 2.
 上記実施形態では、コイル3及び磁石2の相対移動エリアが1.0mmである場合を例示したが、コイル3及び磁石2の相対移動エリアは1.0mm未満であってもよいし、1.0mm以上であってもよい。例えば、コイル3及び磁石2の相対移動エリアは2.0mmであってもよい。コイル3及び磁石2の相対移動エリアが2.0mmである場合、相対移動方向における第1主面411と第2主面421との間の距離X1は、2.0mmであることが好ましい。 In the above embodiment, the relative movement area between the coil 3 and the magnet 2 is 1.0 mm, but the relative movement area between the coil 3 and the magnet 2 may be less than 1.0 mm, or 1.0 mm. It may be more than that. For example, the relative movement area between the coil 3 and the magnet 2 may be 2.0 mm. When the relative movement area of the coil 3 and the magnet 2 is 2.0 mm, it is preferable that the distance X1 between the first main surface 411 and the second main surface 421 in the relative movement direction is 2.0 mm.
 (まとめ)
 以上説明したように、第1の態様に係る位置検知システム(1)は、コイル(3)及び磁石(2)と、磁気センサ(4)と、を備える。コイル(3)及び磁石(2)は、磁気的相互作用により相対移動する。磁気センサ(4)は、コイル(3)及び磁石(2)の相対移動位置を検知する。磁気センサ(4)は、第1主面(411)を有する第1磁気抵抗素子(401)と、第2主面(421)を有する第2磁気抵抗素子(402)と、を有する。第1主面(411)と第2主面(421)とは、コイル(3)及び磁石(2)が相対移動する方向である相対移動方向において並んでいる。第1主面(411)の法線(Ax1)と第2主面(421)の法線(Ax1)とは、相対移動方向と平行である。
(summary)
As explained above, the position detection system (1) according to the first aspect includes a coil (3), a magnet (2), and a magnetic sensor (4). The coil (3) and the magnet (2) move relative to each other due to magnetic interaction. The magnetic sensor (4) detects the relative movement position of the coil (3) and the magnet (2). The magnetic sensor (4) includes a first magnetoresistive element (401) having a first main surface (411) and a second magnetoresistive element (402) having a second main surface (421). The first main surface (411) and the second main surface (421) are lined up in the relative movement direction, which is the direction in which the coil (3) and the magnet (2) move relative to each other. The normal (Ax1) to the first main surface (411) and the normal (Ax1) to the second main surface (421) are parallel to the relative movement direction.
 この態様によれば、第1主面(411)と第2主面(421)とが相対移動方向において並んでおり、法線(Ax1)が相対移動方向と平行であるため、例えばコイル(3)及び磁石(2)が振動するように相対移動する場合であっても、センサブロックを用いてコイル(3)及び磁石(2)の位置検知を行うことができる。また、磁界強度の変化に対するセンサブロックの出力変化は優れた直線性を示すため、位置検知の精度を向上させることができる。 According to this aspect, the first main surface (411) and the second main surface (421) are lined up in the direction of relative movement, and the normal (Ax1) is parallel to the direction of relative movement. ) and the magnet (2) move relative to each other so as to vibrate, the sensor block can be used to detect the position of the coil (3) and the magnet (2). Further, since the output change of the sensor block with respect to the change in magnetic field strength exhibits excellent linearity, the accuracy of position detection can be improved.
 第2の態様に係る位置検知システム(1)では、第1の態様において、コイル(3)及び磁石(2)の相対移動方向は直線に沿っている。第1距離(X11)と第2距離(X12)とが等しい。第1距離(X11)は、相対移動方向におけるコイル(3)及び磁石(2)の相対移動エリアの中心(A0)と第1磁気抵抗素子(401)の第1主面(411)との間の距離である。第2距離(X12)は、相対移動方向における相対移動エリアの中心(A0)と第2磁気抵抗素子(402)の第2主面(421)との間の距離である。 In the position detection system (1) according to the second aspect, in the first aspect, the relative movement direction of the coil (3) and the magnet (2) is along a straight line. The first distance (X11) and the second distance (X12) are equal. The first distance (X11) is between the center (A0) of the relative movement area of the coil (3) and the magnet (2) in the relative movement direction and the first principal surface (411) of the first magnetoresistive element (401). is the distance. The second distance (X12) is the distance between the center (A0) of the relative movement area in the relative movement direction and the second main surface (421) of the second magnetoresistive element (402).
 この態様によれば、相対移動方向において相対移動方向の中心を基準として第1主面(411)と第2主面(421)とを対称に配置することで、相対移動エリアに対する第1主面(411)及び第2主面(421)の位置を揃えることができる。相対移動エリアに対する第1主面(411)及び第2主面(421)の位置を揃えることで、磁気センサ(4)の位置検知の精度を向上させることができる。 According to this aspect, by arranging the first main surface (411) and the second main surface (421) symmetrically with respect to the center of the relative movement direction in the relative movement direction, the first main surface with respect to the relative movement area (411) and the second principal surface (421) can be aligned. By aligning the positions of the first main surface (411) and the second main surface (421) with respect to the relative movement area, the accuracy of position detection of the magnetic sensor (4) can be improved.
 第3の態様に係る位置検知システム(1)では、第1又は第2の態様において、相対移動方向における第1磁気抵抗素子(401)の第1主面(411)と第2磁気抵抗素子(402)の第2主面(421)との間の距離(X1)は、コイル(3)及び磁石(2)の相対移動エリアと等しい。 In the position detection system (1) according to the third aspect, in the first or second aspect, the first principal surface (411) of the first magnetoresistive element (401) and the second magnetoresistive element ( 402) and the second main surface (421) is equal to the relative movement area of the coil (3) and the magnet (2).
 この態様によれば、相対移動方向における第1主面(411)と第2主面(421)との間の距離(X1)と、コイル(3)及び磁石(2)の相対移動エリアとが等しいため、位置検知の精度をより向上させることができる。 According to this aspect, the distance (X1) between the first main surface (411) and the second main surface (421) in the relative movement direction and the relative movement area of the coil (3) and the magnet (2) are Since they are equal, the accuracy of position detection can be further improved.
 第4の態様に係る位置検知システム(1)では、第1~第3のいずれかの態様において、第1磁気抵抗素子(401)の第1主面(411)の中心における法線(Ax1)と、第2磁気抵抗素子(402)の第2主面(421)の中心における法線(Ax1)とが一致する。 In the position detection system (1) according to the fourth aspect, in any of the first to third aspects, the normal (Ax1) at the center of the first main surface (411) of the first magnetoresistive element (401) and the normal line (Ax1) at the center of the second principal surface (421) of the second magnetoresistive element (402) coincide with each other.
 この態様によれば、第1主面(411)の中心における法線(Ax1)と、第2主面(421)の中心における法線(Ax1)とを一致させることで、磁石(2)に対する第1主面(411)及び第2主面(421)の位置を揃えることができる。磁石(2)に対する第1主面(411)及び第2主面(421)の位置を揃えることで、磁気センサ(4)の位置検知の精度を向上させることができる。 According to this aspect, by making the normal (Ax1) at the center of the first main surface (411) and the normal (Ax1) at the center of the second main surface (421) coincident, The positions of the first main surface (411) and the second main surface (421) can be aligned. By aligning the first main surface (411) and the second main surface (421) with respect to the magnet (2), the accuracy of position detection of the magnetic sensor (4) can be improved.
 第5の態様に係る位置検知システム(1)は、第1~第4のいずれかの態様において、第1磁気抵抗素子(401)及び第2磁気抵抗素子(402)は、巨大磁気抵抗効果素子である。 In the position detection system (1) according to the fifth aspect, in any one of the first to fourth aspects, the first magnetoresistive element (401) and the second magnetoresistive element (402) are giant magnetoresistive elements. It is.
 この態様によれば、GMR膜の第1ピーク出力を用いることで、GaAs系ホール素子と比較して、磁気センサ(4)の出力信号(Vo1)の出力電圧を4倍以上大きくし、出力信号(Vo1)の精度を10倍以上向上させることができる。 According to this aspect, by using the first peak output of the GMR film, the output voltage of the output signal (Vo1) of the magnetic sensor (4) is made four times or more larger than that of the GaAs-based Hall element, and the output signal (Vo1) can be improved by more than 10 times.
 第6の態様に係る位置検知システム(1)は、第1~第5のいずれかの態様において、処理部(5)を更に備える。処理部(5)は、磁気センサ(4)が出力する出力信号(Vo1)を処理することでの相対移動位置を検知する。 The position detection system (1) according to the sixth aspect further includes a processing section (5) in any one of the first to fifth aspects. The processing unit (5) detects the relative movement position by processing the output signal (Vo1) output by the magnetic sensor (4).
 この態様によれば、磁気センサ(4)が出力する出力信号(Vo1)を処理部(5)が処理することで、位置検知システム(1)は、の相対移動位置を検知することができる。 According to this aspect, the processing unit (5) processes the output signal (Vo1) output by the magnetic sensor (4), so that the position detection system (1) can detect the relative movement position of.
 第7の態様に係る位置検知システム(1)では、第6の態様において、第1磁気抵抗素子(401)と第2磁気抵抗素子(402)とはハーフブリッジ接続されている。処理部(5)は、第1磁気抵抗素子(401)と第2磁気抵抗素子(402)との接続点の電位を出力信号(Vo1)とする。 In the position detection system (1) according to the seventh aspect, in the sixth aspect, the first magnetoresistive element (401) and the second magnetoresistive element (402) are half-bridge connected. The processing unit (5) uses the potential at the connection point between the first magnetoresistive element (401) and the second magnetoresistive element (402) as an output signal (Vo1).
 この態様によれば、単純な回路構成でコイル(3)及び磁石(2)の相対移動位置を検知することができる。 According to this aspect, the relative movement position of the coil (3) and the magnet (2) can be detected with a simple circuit configuration.
 第8の態様に係る位置検知システム(1)では、第1~第7のいずれかの態様において、磁気センサ(4)は、第1センサブロック(41)と、第2センサブロック(42)と、接続部(43)を有する。第1センサブロック(41)は、第1磁気抵抗素子(401)を含む。第2センサブロック(42)は、第2磁気抵抗素子(402)を含む。接続部(43)は、第1センサブロック(41)と第2センサブロック(42)とを連結させる。接続部(43)は、相対移動方向における第1端(431)と、相対移動方向において第1端(431)の反対側に位置する第2端(432)と、を有する。第1センサブロック(41)は、第1端(431)に設けられている。第2センサブロック(42)は、第2端(432)に設けられている。 In the position detection system (1) according to the eighth aspect, in any one of the first to seventh aspects, the magnetic sensor (4) includes a first sensor block (41) and a second sensor block (42). , and a connecting portion (43). The first sensor block (41) includes a first magnetoresistive element (401). The second sensor block (42) includes a second magnetoresistive element (402). The connecting portion (43) connects the first sensor block (41) and the second sensor block (42). The connecting portion (43) has a first end (431) in the relative movement direction and a second end (432) located on the opposite side of the first end (431) in the relative movement direction. The first sensor block (41) is provided at the first end (431). A second sensor block (42) is provided at the second end (432).
 この態様によれば、接続部(43)が第1センサブロック(41)と第2センサブロック(42)とを連結させることで、第1センサブロック(41)及び第2センサブロック(42)を一体的にすることができる。 According to this aspect, the connecting portion (43) connects the first sensor block (41) and the second sensor block (42), thereby connecting the first sensor block (41) and the second sensor block (42). It can be integrated.
 第9の態様に係る位置検知システム(1)では、第1~第8のいずれかの態様において、磁石(2)と磁気センサ(4)とは、相対移動方向と直交する方向において並んでいる。第1磁気抵抗素子(401)及び第2磁気抵抗素子(402)は、直交する方向に沿った磁界の強度を検知する。 In the position detection system (1) according to the ninth aspect, in any one of the first to eighth aspects, the magnet (2) and the magnetic sensor (4) are aligned in a direction perpendicular to the relative movement direction. . The first magnetoresistive element (401) and the second magnetoresistive element (402) detect the strength of the magnetic field along orthogonal directions.
 この態様によれば、磁気センサ(4)は、相対移動方向と直交する方向であって、磁石(2)と磁気センサ(4)とが並ぶ方向の磁界の強度を検知することができる。 According to this aspect, the magnetic sensor (4) can detect the strength of the magnetic field in the direction perpendicular to the relative movement direction and in the direction in which the magnet (2) and the magnetic sensor (4) are lined up.
 第1の態様以外の構成については、位置検知システム(1)に必須の構成ではなく、適宜省略可能である。 The configurations other than the first aspect are not essential to the position detection system (1) and can be omitted as appropriate.
 第10の態様に係る磁気センサ(4)は、磁気的相互作用により相対移動するコイル(3)及び磁石(2)の相対移動位置を検知する。磁気センサ(4)は、第1主面(411)を有する第1磁気抵抗素子(401)と、第2主面(421)を有する第2磁気抵抗素子(402)と、を備える。第1主面(411)と第2主面(421)とは、コイル(3)及び磁石(2)が相対移動する相対移動方向において並んでいる。第1主面(411)の法線(Ax1)と第2主面(421)の法線(Ax1)とは、相対移動方向と平行である。 The magnetic sensor (4) according to the tenth aspect detects the relative movement position of the coil (3) and the magnet (2) that move relative to each other due to magnetic interaction. The magnetic sensor (4) includes a first magnetoresistive element (401) having a first main surface (411) and a second magnetoresistive element (402) having a second main surface (421). The first main surface (411) and the second main surface (421) are lined up in the relative movement direction in which the coil (3) and the magnet (2) move relative to each other. The normal (Ax1) to the first main surface (411) and the normal (Ax1) to the second main surface (421) are parallel to the relative movement direction.
 この態様によれば、第1主面(411)と第2主面(421)とが相対移動方向において並んでおり、法線(Ax1)が相対移動方向と平行であるため、例えばコイル(3)及び磁石(2)が振動するように相対移動する場合であっても、センサブロックを用いてコイル(3)及び磁石(2)の位置検知を行うことができる。また、磁界強度の変化に対するセンサブロックの出力変化は優れた直線性を示すため、位置検知の精度を向上させることができる。 According to this aspect, the first main surface (411) and the second main surface (421) are lined up in the direction of relative movement, and the normal (Ax1) is parallel to the direction of relative movement. ) and the magnet (2) move relative to each other so as to vibrate, the sensor block can be used to detect the position of the coil (3) and the magnet (2). Further, since the output change of the sensor block with respect to the change in magnetic field strength exhibits excellent linearity, the accuracy of position detection can be improved.
 第11の態様に係るセンサブロックは、磁気センサ(4)に用いられるセンサブロック(第1センサブロック41;第2センサブロック42)である。磁気センサ(4)は、磁気的相互作用により相対移動するコイル(3)及び磁石(2)を備える位置検知システム(1)において、コイル(3)及び磁石(2)の相対移動位置を検知する。センサブロックは、基材(410;420)と、磁気抵抗素子(第1磁気抵抗素子401;第2磁気抵抗素子402)と、を備える。基材は、電気絶縁性を有する。磁気抵抗素子は、基材に設けられ、主面(第1主面411;第2主面421)を有する。磁気抵抗素子の主面の法線(Ax1)は、コイル(3)及び磁石(2)が相対移動する方向である相対移動方向と平行である。 The sensor block according to the eleventh aspect is a sensor block (first sensor block 41; second sensor block 42) used in the magnetic sensor (4). A magnetic sensor (4) detects the relative movement position of a coil (3) and a magnet (2) in a position detection system (1) that includes a coil (3) and a magnet (2) that move relative to each other due to magnetic interaction. . The sensor block includes a base material (410; 420) and magnetoresistive elements (first magnetoresistive element 401; second magnetoresistive element 402). The base material has electrical insulation properties. The magnetoresistive element is provided on a base material and has main surfaces (first main surface 411; second main surface 421). The normal (Ax1) to the main surface of the magnetoresistive element is parallel to the direction of relative movement, which is the direction in which the coil (3) and the magnet (2) move relative to each other.
 この態様によれば、例えばセンサブロックを位置検知システム(1)の第1センサブロック(41)又は第2センサブロック(42)として用いることができる。位置検知システム(1)において、第1主面(411)と第2主面(421)とが相対移動方向において並んでおり、法線(Ax1)が相対移動方向と平行であるため、例えばコイル(3)及び磁石(2)が振動するように相対移動する場合であっても、センサブロックを用いてコイル(3)及び磁石(2)の位置検知を行うことができる。また、磁界強度の変化に対するセンサブロックの出力変化は優れた直線性を示すため、位置検知の精度を向上させることができる。 According to this aspect, the sensor block can be used, for example, as the first sensor block (41) or the second sensor block (42) of the position detection system (1). In the position detection system (1), the first principal surface (411) and the second principal surface (421) are lined up in the direction of relative movement, and the normal (Ax1) is parallel to the direction of relative movement. Even when the coil (3) and the magnet (2) move relative to each other so as to vibrate, the positions of the coil (3) and the magnet (2) can be detected using the sensor block. Further, since the output change of the sensor block with respect to the change in magnetic field strength exhibits excellent linearity, the accuracy of position detection can be improved.
1 位置検知システム
2 磁石
3 コイル
4 磁気センサ
401 第1磁気抵抗素子(磁気抵抗素子)
402 第2磁気抵抗素子(磁気抵抗素子)
41 第1センサブロック(センサブロック)
410 基材
411 第1主面(主面)
42 第2センサブロック(センサブロック)
420 基材
421 第2主面(主面)
43 接続部
431 第1端
432 第2端
5 処理部
Ax1 法線
Vo1 出力信号
X1 距離
X11 第1距離
X12 第2距離
1 Position detection system 2 Magnet 3 Coil 4 Magnetic sensor 401 First magnetoresistive element (magnetoresistive element)
402 Second magnetoresistive element (magnetoresistive element)
41 First sensor block (sensor block)
410 Base material 411 First main surface (main surface)
42 Second sensor block (sensor block)
420 Base material 421 Second main surface (main surface)
43 Connection section 431 First end 432 Second end 5 Processing section Ax1 Normal line Vo1 Output signal X1 Distance X11 First distance X12 Second distance

Claims (11)

  1.  磁気的相互作用により相対移動するコイル及び磁石と、
     前記コイル及び前記磁石の相対移動位置を検知する磁気センサと、
    を備え、
     前記磁気センサは、
      第1主面を有する第1磁気抵抗素子と、
      第2主面を有する第2磁気抵抗素子と、
    を有し、
     前記第1磁気抵抗素子の前記第1主面と前記第2磁気抵抗素子の前記第2主面とは、前記コイル及び前記磁石が相対移動する方向である相対移動方向において並んでおり、
     前記第1磁気抵抗素子の前記第1主面の法線と前記第2磁気抵抗素子の前記第2主面の法線とは、前記相対移動方向と平行である、
     位置検知システム。
    A coil and a magnet that move relative to each other due to magnetic interaction;
    a magnetic sensor that detects the relative movement position of the coil and the magnet;
    Equipped with
    The magnetic sensor is
    a first magnetoresistive element having a first main surface;
    a second magnetoresistive element having a second principal surface;
    has
    The first main surface of the first magnetoresistive element and the second main surface of the second magnetoresistive element are aligned in a relative movement direction that is a direction in which the coil and the magnet move relative to each other,
    A normal to the first main surface of the first magnetoresistive element and a normal to the second main surface of the second magnetoresistive element are parallel to the relative movement direction.
    Location sensing system.
  2.  前記コイル及び前記磁石の前記相対移動方向は直線に沿っており、
     前記相対移動方向における前記コイル及び前記磁石の相対移動エリアの中心と前記第1磁気抵抗素子の前記第1主面との間の第1距離と、前記相対移動方向における前記相対移動エリアの中心と前記第2磁気抵抗素子の前記第2主面との間の第2距離とが等しい、
     請求項1に記載の位置検知システム。
    The relative movement direction of the coil and the magnet is along a straight line,
    a first distance between the center of the relative movement area of the coil and the magnet in the relative movement direction and the first main surface of the first magnetoresistive element; and a center of the relative movement area in the relative movement direction. a second distance between the second magnetoresistive element and the second principal surface is equal;
    The position sensing system according to claim 1.
  3.  前記相対移動方向における前記第1磁気抵抗素子の前記第1主面と前記第2磁気抵抗素子の前記第2主面との間の距離は、前記コイル及び前記磁石の相対移動エリアと等しい、請求項1又は2に記載の位置検知システム。 A distance between the first main surface of the first magnetoresistive element and the second main surface of the second magnetoresistive element in the relative movement direction is equal to a relative movement area of the coil and the magnet. The position detection system according to item 1 or 2.
  4.  前記第1磁気抵抗素子の前記第1主面の中心における前記法線と、前記第2磁気抵抗素子の前記第2主面の中心における前記法線とが一致する、
     請求項1~3のいずれか1項に記載の位置検知システム。
    The normal line at the center of the first main surface of the first magnetoresistive element and the normal line at the center of the second main surface of the second magnetoresistive element match;
    The position detection system according to any one of claims 1 to 3.
  5.  前記第1磁気抵抗素子及び前記第2磁気抵抗素子は、巨大磁気抵抗効果素子である、
     請求項1~4のいずれか1項に記載の位置検知システム。
    The first magnetoresistive element and the second magnetoresistive element are giant magnetoresistive elements,
    The position detection system according to any one of claims 1 to 4.
  6.  前記磁気センサの出力信号を処理することで前記相対移動位置を検知する処理部を、更に備える、
     請求項1~5のいずれか1項に記載の位置検知システム。
    further comprising a processing unit that detects the relative movement position by processing an output signal of the magnetic sensor;
    The position detection system according to any one of claims 1 to 5.
  7.  前記第1磁気抵抗素子と前記第2磁気抵抗素子とはハーフブリッジ接続されており、
     前記処理部は、前記第1磁気抵抗素子と前記第2磁気抵抗素子との接続点の電位を前記出力信号とする、
     請求項6に記載の位置検知システム。
    The first magnetoresistive element and the second magnetoresistive element are half-bridge connected,
    The processing unit uses a potential at a connection point between the first magnetoresistive element and the second magnetoresistive element as the output signal.
    The position sensing system according to claim 6.
  8.  前記磁気センサは、
     前記第1磁気抵抗素子を含む第1センサブロックと、
     前記第2磁気抵抗素子を含む第2センサブロックと、
     前記第1センサブロックと前記第2センサブロックとを連結させる接続部と、
    を有し、
     前記接続部は、
      前記相対移動方向における第1端と、
      前記相対移動方向において前記第1端の反対側に位置する第2端と、
    を有し、
     前記第1センサブロックは、前記第1端に設けられ、
     前記第2センサブロックは、前記第2端に設けられている、
     請求項1~7のいずれか1項に記載の位置検知システム。
    The magnetic sensor is
    a first sensor block including the first magnetoresistive element;
    a second sensor block including the second magnetoresistive element;
    a connection part that connects the first sensor block and the second sensor block;
    has
    The connection part is
    a first end in the relative movement direction;
    a second end located on the opposite side of the first end in the relative movement direction;
    has
    the first sensor block is provided at the first end,
    the second sensor block is provided at the second end;
    The position detection system according to any one of claims 1 to 7.
  9.  前記磁石と前記磁気センサとは、前記相対移動方向と直交する方向において並んでおり、
     前記第1磁気抵抗素子及び前記第2磁気抵抗素子は、前記直交する方向に沿った磁界の強度を検知する、
     請求項1~8のいずれか1項に記載の位置検知システム。
    The magnet and the magnetic sensor are arranged in a direction perpendicular to the relative movement direction,
    The first magnetoresistive element and the second magnetoresistive element detect the intensity of the magnetic field along the orthogonal direction.
    The position detection system according to any one of claims 1 to 8.
  10.  磁気的相互作用により相対移動するコイル及び磁石の相対移動位置を検知する磁気センサであって、
     第1主面を有する第1磁気抵抗素子と、
     第2主面を有する第2磁気抵抗素子と、
    を備え、
     前記第1磁気抵抗素子の前記第1主面と前記第2磁気抵抗素子の前記第2主面とは、前記コイル及び前記磁石が相対移動する相対移動方向において並んでおり、
     前記第1磁気抵抗素子の前記第1主面の法線と前記第2磁気抵抗素子の前記第2主面の法線とは、前記相対移動方向と平行である、
     磁気センサ。
    A magnetic sensor that detects the relative movement position of a coil and a magnet that move relatively due to magnetic interaction,
    a first magnetoresistive element having a first main surface;
    a second magnetoresistive element having a second principal surface;
    Equipped with
    The first main surface of the first magnetoresistive element and the second main surface of the second magnetoresistive element are aligned in a relative movement direction in which the coil and the magnet move relative to each other,
    A normal to the first main surface of the first magnetoresistive element and a normal to the second main surface of the second magnetoresistive element are parallel to the relative movement direction.
    magnetic sensor.
  11.  磁気的相互作用により相対移動するコイル及び磁石を備える位置検知システムにおいて、前記コイル及び前記磁石の相対移動位置を検知するための磁気センサに用いられるセンサブロックであって、
     電気絶縁性を有する基材と、
     前記基材に設けられ、主面を有する磁気抵抗素子と、
    を備え、
     前記磁気抵抗素子の前記主面の法線は、前記コイル及び前記磁石が相対移動する方向である相対移動方向と平行である、
     センサブロック。
    In a position detection system including a coil and a magnet that move relative to each other due to magnetic interaction, a sensor block used for a magnetic sensor for detecting the relative movement position of the coil and the magnet,
    a base material having electrical insulation;
    a magnetoresistive element provided on the base material and having a main surface;
    Equipped with
    A normal to the main surface of the magnetoresistive element is parallel to a relative movement direction in which the coil and the magnet move relative to each other.
    sensor block.
PCT/JP2023/012967 2022-03-31 2023-03-29 Position detection system, magnetic sensor, and sensor block WO2023190752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061208 2022-03-31
JP2022061208A JP2023151542A (en) 2022-03-31 2022-03-31 Position detection system, magnetic sensor, and sensor block

Publications (1)

Publication Number Publication Date
WO2023190752A1 true WO2023190752A1 (en) 2023-10-05

Family

ID=88202676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012967 WO2023190752A1 (en) 2022-03-31 2023-03-29 Position detection system, magnetic sensor, and sensor block

Country Status (2)

Country Link
JP (1) JP2023151542A (en)
WO (1) WO2023190752A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077136A (en) * 2003-08-28 2005-03-24 Toshiba Corp Rotational position detector and x-ray computed tomography apparatus
JP2007127456A (en) * 2005-11-01 2007-05-24 Denso Corp Rotation detection apparatus
JP2013083597A (en) * 2011-10-12 2013-05-09 Asahi Kasei Electronics Co Ltd Position detector, position detection method and electronic apparatus using the same
JP2016070672A (en) * 2014-09-26 2016-05-09 オリンパス株式会社 Position detection device and drive device provided therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077136A (en) * 2003-08-28 2005-03-24 Toshiba Corp Rotational position detector and x-ray computed tomography apparatus
JP2007127456A (en) * 2005-11-01 2007-05-24 Denso Corp Rotation detection apparatus
JP2013083597A (en) * 2011-10-12 2013-05-09 Asahi Kasei Electronics Co Ltd Position detector, position detection method and electronic apparatus using the same
JP2016070672A (en) * 2014-09-26 2016-05-09 オリンパス株式会社 Position detection device and drive device provided therewith

Also Published As

Publication number Publication date
JP2023151542A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
US11204263B2 (en) Position detection device for detecting position of an object moving in a predetermined direction, and a magnetic sensor for use with the position detection device
KR100860648B1 (en) Magnetic sensor, production method thereof, rotation detection device, and position detection device
WO2012157558A1 (en) Magnetic sensor device
JP7056503B2 (en) Rotation detector
US20230160723A1 (en) Linear position sensor
US20240094312A1 (en) Magnetic sensor
WO2023190752A1 (en) Position detection system, magnetic sensor, and sensor block
WO2024009984A1 (en) Position detection system, magnetic sensor, and sensor block
WO2024009983A1 (en) Position detection system and magnetic sensor
WO2022131049A1 (en) Magnetic detection system, position detection system, and magnetic detection module
JP7392745B2 (en) Magnetic sensors and magnetic sensor systems
JP5103158B2 (en) Magnetic coordinate position detector
WO2023190753A1 (en) Position detection system, sensor unit, magnetic sensor, and sensor block
WO2023058697A1 (en) Motor position detection system
CN112068048B (en) Position detecting device
CN112050722B (en) Position detecting device
WO2013054384A1 (en) Location detector device
JP7088222B2 (en) Position detector, camera module and rotary actuator
WO2022004427A1 (en) Position detection device
US20240125873A1 (en) Magnetic sensor
US20230228595A1 (en) Position detection device
US20230068352A1 (en) Magnetic sensor and magnetic sensor system
JPH10255236A (en) Magnetism detecting apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780760

Country of ref document: EP

Kind code of ref document: A1