WO2023190707A1 - Composition for preventing or treating sensorineural hearing loss - Google Patents

Composition for preventing or treating sensorineural hearing loss Download PDF

Info

Publication number
WO2023190707A1
WO2023190707A1 PCT/JP2023/012857 JP2023012857W WO2023190707A1 WO 2023190707 A1 WO2023190707 A1 WO 2023190707A1 JP 2023012857 W JP2023012857 W JP 2023012857W WO 2023190707 A1 WO2023190707 A1 WO 2023190707A1
Authority
WO
WIPO (PCT)
Prior art keywords
moc
hearing loss
neurons
compound
serotonin
Prior art date
Application number
PCT/JP2023/012857
Other languages
French (fr)
Japanese (ja)
Inventor
昌一 島田
誠 近藤
秀典 猪原
和也 大畠
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Publication of WO2023190707A1 publication Critical patent/WO2023190707A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to the prevention or treatment of hearing impairment.
  • the organ of Corti which is the sensory epithelium in the cochlea, has inner and outer hair cells, and each has afferent nerves going to the center and efferent nerves going from the center to the hair cells.
  • the afferent nerves are divided into spiral nerves type 1 and type 2, both of which project to the cochlear nucleus.
  • one of the efferent nerves is called a MOC (medial olivocochlear) neuron, and the other is called a LOC (lateral olivocochlear) neuron.
  • MOC medial olivocochlear
  • LOC lateral olivocochlear
  • Non-Patent Document 1 The cochlear efferent feedback system conveyed by the olive cochlear pathway plays an important role in auditory processing (Non-Patent Document 1). MOC neurons are central in this neural pathway (Non-Patent Documents 2, 3), and the efferent feedback system via MOC neurons is called the MOC feedback system.
  • the MOC feedback system adjusts the dynamic range of hearing (Non-patent Document 4), has the function of protecting against acoustic trauma (Non-patent Documents 5, 6), and mediates signal detection in noisy environments (Non-patent Documents 7). However, the cellular and molecular mechanisms of the MOC feedback system are not completely understood.
  • the serotonin 3 (5-HT3) receptor is the only ionotropic receptor in the serotonin receptor family (Non-Patent Document 8).
  • the 5-HT3 receptor consists of two subunits (5-HT3A and 5-HT3B), and the 5-HT3A subunit is essential for the formation of a functional receptor (Non-Patent Document 8). It has been suggested that 5-HT3A receptors are widely expressed in the central and peripheral nervous systems and are related to various important neurological functions (Non-Patent Document 9). In a previous study, the present inventors reported that 5-HT3A receptors are expressed in the superior olivary complex (SOC) of the brainstem, where MOC neurons and LOC neurons are located (Non-patent Document 10 ). However, the relationship between the MOC feedback system and 5-HT3 receptors is unknown.
  • SOC superior olivary complex
  • Acoustic trauma is damage to the auditory system in which the cochlea of the inner ear is damaged by powerful sound waves. Symptoms include hearing loss and tinnitus.
  • Chronic acoustic trauma also called noise-induced hearing loss, occurs when people are exposed to high-intensity noise in the environment for long periods of time.
  • Chronic acoustic trauma (noise-induced hearing loss) progresses gradually and has few symptoms.
  • Acute acoustic trauma includes hearing loss caused by instantaneous or extremely short-lived loud noises caused by explosions, firearms, airbags, etc., and hearing loss caused by exposure to loud noises from headphones, concerts, etc. over a period of several minutes to several hours. Includes disability.
  • SR57227A (1-(6-chloropyridin-2-yl)piperidin-4-amine or its hydrochloride) is known (Patent Document 1).
  • Brown MC de Venecia RK, Guinan JJ Jr. Exp Brain Res. 2003;153:491-498. Brown MC, Levine JL. Neuroscience. 2008;154:147-159. Guinan JJ Jr, Stankovic KM. J Acoust Soc Am. 1996;100:1680-1690. Rajan R. J Neurosci. 2000;20:6684-6693. Taranda J, Maison SF, Ballestero JA, et al. PLoS Biol. 2009;7:e18. Winslow RL, Sachs MB. Hear Res. 1988;35:165-189. Barnes NM, Sharp T. Neuropharmacology. 1999;38:1083-1152. Morales M, Wang SD. J Neurosci. 2002;22:6732-6741. Koyama Y, Kondo M, Shimada S. Sci Rep. 2017;7:42884.
  • the present invention aims to elucidate the mechanism of the MOC feedback system, provide compositions for preventing or treating hearing disorders involving MOC neurons, and compounds for preventing or treating hearing disorders involving MOC neurons.
  • the objective is to provide a screening method for
  • the present inventors discovered that serotonin 3 receptors (hereinafter also referred to as 5-HT3 receptors) have a fundamental role in the MOC feedback system, and that 5-HT3 receptors have a fundamental role in the MOC feedback system.
  • the inventors have discovered that a body agonist can solve the above problems, and have completed the present invention. That is, the present invention includes the following aspects. 1. A composition for preventing or treating sensorineural hearing loss containing a serotonin 3 receptor agonist. 2. 2. The composition according to item 1, wherein the sensorineural hearing loss is acoustic trauma or age-related hearing loss. 3.
  • the symptoms of acoustic trauma or age-related hearing loss include hearing loss, insufficient speech discrimination in a noisy environment even with normal hearing, and insufficient speech discrimination in a noisy environment accompanied by hearing loss.
  • the composition according to item 2 above, wherein the composition has at least one selected from the group consisting of: 4. 2.
  • the serotonin 3 receptor agonist has the following formula (I): [In the formula, m is an integer from 1 to 4; R 1 is a hydrogen atom, a halogen atom, a methyl group optionally substituted with 1 to 3 halogen atoms, a methoxy group optionally substituted with 1 to 3 halogen atoms, 1 to 3 halogen atoms an ethoxy group which may be substituted with , a methylthio group which may be substituted with 1 to 3 halogen atoms, and a halogen atom, trifluoromethyl, C 1-3 alkyl, C 1-3 alkoxy, C 1 -3 phenoxy groups optionally substituted with alkylthio or cyano groups, each independently selected from the group consisting of The composition according to any one of items 1 to 4 above, which is a compound represented by or a pharmaceutically acceptable salt thereof.
  • each R 1 is independently a halogen atom. 7.
  • the composition according to item 6, wherein the halogen atom is a chlorine atom. 8.
  • a method for screening a compound for prevention or treatment of sensorineural hearing loss comprising the step of measuring serotonin 3 receptor agonist activity.
  • a method for screening MOC neuron activating compounds comprising the step of measuring serotonin 3 receptor agonist activity. 13.
  • a method of preventing or treating sensorineural hearing loss comprising administering a composition containing a serotonin 3 receptor agonist to a subject in need thereof.
  • a method of activating MOC neurons comprising administering a composition containing a serotonin 3 receptor agonist to a subject in need thereof.
  • a method for preventing or treating hearing impairment involving MOC neurons the method comprising administering a composition containing a serotonin 3 receptor agonist to a subject in need thereof.
  • Use of a serotonin-3 receptor agonist for the preparation of a composition for the prevention or treatment of sensorineural hearing loss.
  • 5-HT3 receptor agonists can activate MOC neurons and enhance or improve the function of the MOC feedback system via MOC neurons.
  • 5-HT3 receptors have a fundamental role in the MOC feedback system.
  • Sensorineural hearing loss which is a hearing impairment or auditory condition involving impaired or inadequate functioning of MOC neurons, can be prevented or treated with 5-HT3 receptor agonists.
  • the MOC feedback system is a system that responds in real time to sounds that are too loud or difficult to hear by regulating the movement of outer hair cells and controlling the amplitude of the basilar membrane through its efferent neurons.
  • One of the functions of the MOC feedback system is to protect the cochlea by suppressing the vibration of the basilar membrane in response to strong loud sounds and suppressing damage to hair cells and the like. Enhancement of MOC neuron activity via 5-HT3 receptors by 5-HT3 receptor agonists enhances cochlear protection and enables the prevention and treatment of hearing loss caused by exposure to high-intensity sounds.
  • One of the other functions of the MOC feedback system is the ability to amplify and suppress basilar membrane vibrations that correspond to specific frequencies.
  • the vibration of the basilar membrane is amplified, and when talking in noise, the vibration of the basilar membrane corresponding to the frequency range of the human voice is amplified, and the vibration of the basilar membrane is amplified to correspond to the frequency range of the surrounding noise. Suppresses the vibration of the basement membrane. Enhancement of MOC neuron activity via 5-HT3 receptors by 5-HT3 receptor agonists enables the prevention and treatment of hearing disorders such as age-related hearing loss and insufficient speech discrimination ability in noisy environments. .
  • FIG. 1 shows that serotonin 3 receptors are expressed on MOC neurons that project to the cochlea.
  • A Coronal section of mouse brainstem stained with hematoxylin-eosin is shown.
  • B shows a coronal section of the brainstem of a 5-HT3AR-EGFP transgenic reporter mouse stained with enhanced green fluorescent protein (EGFP).
  • C Coronal section of the brainstem of a wild-type mouse after intratympanic injection of Fluoro-GoldTM (hereinafter also referred to as FG). Left: Ipsilateral; Right: Contralateral.
  • D Coronal section of the brainstem of a 5-HT3AR-EGFP transgenic reporter mouse after intratympanic FG injection is shown.
  • FIG. 1 shows the results of immunohistochemical analysis of the cochlea of a 5-HT3AR-EGFP transgenic reporter mouse, showing the distribution of efferent fibers of 5-HT3 receptor-expressing MOC neurons in the cochlea.
  • A Immunostaining for GFP and ChAT (choline acetyltransferase) and DAPI counterstaining in the basal, middle, and apical regions of a cochlear whole-mount specimen.
  • B Immunostaining for GFP and ChAT and DAPI counterstaining of cochlear sections is shown. Arrowheads indicate EGFP signals on nerve fibers traversing the tunnel of Corti, and arrows indicate EGFP signals below OHCs (outer hair cells).
  • GFP Green
  • ChAT Red
  • DAPI Blue, but all are shown in gray in gray scale. Scale bars indicate 10 ⁇ m (A) and 20 ⁇ m (B). At least three independent experiments showed similar results.
  • FIG. 3 shows that 5-HT3 receptors are involved in the activation of MOC neurons by exposure to high-intensity sound.
  • A Shows c-Fos immunostaining of a coronal section of the brainstem of a wild type mouse before exposure to high-intensity sound.
  • B Immunostaining of c-Fos in the coronal section of the brainstem of a wild-type mouse injected with FG intratympanically 1 h after exposure to high-intensity sound. Arrows indicate c-Fos positive neurons labeled by FG. Top: low magnification; bottom: high magnification.
  • FIG. 4 shows that Htr3a ⁇ / ⁇ mice had impaired MOC function and hearing loss was exacerbated by exposure to loud sounds.
  • Figure 5 shows the results of immunohistochemical analysis of the organ of Corti in wild-type (WT) mice and Htr3a ⁇ / ⁇ (KO) mice before, 7 days after, and 14 days after exposure to high-intensity noise.
  • C-terminal-binding protein 2 (CtBP2) was used as a presynaptic marker of ribbon synapses, and GluA2 was used as a postsynaptic marker.
  • IHC inner hair cells
  • CtBP2-positive points are shown in green and GluA2-positive points are shown in red.
  • CtBP2-positive points are shown in white and GluA2-positive points are shown in gray. It is indicated by.
  • A Immunostaining of CtBP2 and GluA2 in the cochlea. Arrows indicate parallel CtBP2/GluA2 positive points in IHC. The scale bar indicates 10 ⁇ m.
  • FIG. 1 Shows the results of immunohistochemical analysis of CtBP2 and GluA2 in IHC of wild type (WT) and Htr3a ⁇ / ⁇ (KO) mice before, 1 hour, 24 hours, and 7 days after exposure to high-intensity sound. .
  • the scale bar indicates 5 ⁇ m.
  • the dotted line indicates the approximate outline of the IHC.
  • Figure 7 shows that in Htr3a ⁇ / ⁇ mice, high-intensity sound causes loss of many inner hair cell (IHC) ribbon synapses in the cochlear base region.
  • IHC inner hair cell
  • FIG. 8 shows that in Htr3a ⁇ / ⁇ mice, high-intensity sound causes loss of many inner hair cell (IHC) ribbon synapses in the midcochlear region.
  • IHC inner hair cell
  • FIG. 10 shows that 5-HT3 receptor agonists attenuate loud sound-induced hearing loss.
  • a and (B) show cochlear function 7 days after exposure to high-intensity sound.
  • Physiological saline (Sal) or SR57227A (Ag) was administered to mice 30 minutes before exposure to high-intensity sound.
  • FIG. 11 shows that 5-HT3 receptor agonists attenuate loud sound-induced loss of ribbon synapses.
  • mice were administered physiological saline (Sal), SR57227A (Ag), or ondansetron (Ant) 30 minutes before loud sound exposure.
  • IHC inner hair cells; NE: loud sound exposure (+: with exposure, -: without exposure) All graphs are shown as mean ⁇ standard error. * P ⁇ 0.05, ** P ⁇ 0.01, *** P ⁇ 0.001; ns (not significant), one-way ANOVA, followed by Tukey's multiple comparison test
  • the serotonin 3 receptor agonist which is the active ingredient of the composition of the present invention, is a substance that exerts a similar effect to serotonin on the serotonin 3 receptor, and is not limited thereto.
  • Suitable compounds for the serotonin 3 receptor agonist which is an active ingredient of the composition of the present invention, include any one of the following formulas (I), (II), (III), (IV), (V) or (VI). Mention may be made of the indicated compounds or their pharmaceutically acceptable salts, or their hydrates or solvates.
  • the number of carbon atoms in the definition of “substituent” may be expressed as “C 1-3 ", “C 1-6 ", etc., for example.
  • the notation “C 1-3 alkyl” is synonymous with a linear or branched alkyl group having 1 to 3 carbon atoms
  • the notation “C 1-6 alkyl” has the same meaning as a straight-chain or branched alkyl group having 1 to 3 carbon atoms. It has the same meaning as 1 to 6 linear or branched alkyl groups.
  • group means a monovalent group.
  • alkyl group means a monovalent saturated hydrocarbon group.
  • group may be omitted.
  • description of each group also applies when the group is a part or substituent of another group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the serotonin 3 receptor agonist that is the active ingredient of the present invention has the following formula (I): [In the formula, m is an integer from 1 to 4; R 1 is a hydrogen atom, a halogen atom, a methyl group optionally substituted with 1 to 3 halogen atoms, a methoxy group optionally substituted with 1 to 3 halogen atoms, 1 to 3 halogen atoms an ethoxy group which may be substituted with , a methylthio group which may be substituted with 1 to 3 halogen atoms, and a halogen atom, trifluoromethyl, C 1-3 alkyl, C 1-3 alkoxy, C 1 -3 phenoxy groups optionally substituted with alkylthio or cyano groups, each independently selected from the group consisting of or a pharmaceutically acceptable salt thereof.
  • R 1 is a hydrogen atom, a halogen atom, a methyl group optionally substituted with 1 to 3 halogen atoms
  • n is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, particularly preferably 1.
  • the halogen atom in R 1 is preferably a fluorine atom or a chlorine atom, with a chlorine atom being particularly preferred.
  • the methyl group optionally substituted with 1 to 3 halogen atoms in R 1 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, and methyl groups and trifluoromethyl groups are particularly preferred. preferable.
  • the methoxy group optionally substituted with 1 to 3 halogen atoms in R 1 is preferably a methoxy group optionally substituted with 1 to 3 fluorine atoms, and methoxy groups and trifluoromethoxy groups are particularly preferred. preferable.
  • the ethoxy group optionally substituted with 1 to 3 halogen atoms in R 1 is preferably an ethoxy group optionally substituted with 1 to 3 fluorine atoms, and ethoxy groups and 2,2,2- Particularly preferred is trifluoroethoxy group.
  • the methylthio group optionally substituted with 1 to 3 halogen atoms in R 1 is preferably a methylthio group optionally substituted with 1 to 3 fluorine atoms, with methylthio groups and trifluoromethylthio groups being particularly preferred. preferable.
  • R 1 can be a phenoxy group optionally substituted with a halogen atom, trifluoromethyl, C 1-3 alkyl, C 1-3 alkoxy, C 1-3 alkylthio or cyano group.
  • C 1-3 alkyl residues of saturated aliphatic hydrocarbons having 1, 2 or 3 carbon atoms (methyl, ethyl, propyl, isopropyl, etc. )including.
  • each R 1 is independently a halogen atom, more preferably each R 1 is a chlorine atom.
  • n is 1. In a more preferred embodiment, R 1 is a halogen atom and m is 1.
  • the compound of formula (I) or a pharmaceutically acceptable salt thereof has the following formula (I'): [In the formula, R 1 has the same meaning as above] or a pharmaceutically acceptable salt thereof.
  • the compound of formula (I) or a pharmaceutically acceptable salt thereof is of the following formula: (Compound name: 1-(6-chloropyridin-2-yl)piperidin-4-amine; hereinafter also referred to as "Compound A”) or a pharmaceutically acceptable salt thereof.
  • Compound A particularly preferred is SR57227A (compound A or its hydrochloride).
  • the serotonin 3 receptor agonist that is the active ingredient of the present invention has the following formula (II): [In the formula, n is an integer from 1 to 4; R 2 is a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a methyl group optionally substituted with 1 to 3 halogen atoms, a methoxy group optionally substituted with 1 to 3 halogen atoms, and each independently selected from the group consisting of methylthio groups optionally substituted with 1 to 3 halogen atoms] or a pharmaceutically acceptable salt thereof.
  • formula (II) [In the formula, n is an integer from 1 to 4; R 2 is a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a methyl group optionally substituted with 1 to 3 halogen atoms, a methoxy group optionally substituted with 1 to 3 halogen atoms, and each independently selected from the group consisting
  • n is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, particularly preferably 1.
  • the halogen atom in R 2 is preferably a fluorine atom or a chlorine atom, with a chlorine atom being particularly preferred.
  • the methyl group optionally substituted with 1 to 3 halogen atoms in R 2 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, and methyl groups and trifluoromethyl groups are particularly preferred. preferable.
  • the methoxy group optionally substituted with 1 to 3 halogen atoms in R 2 is preferably a methoxy group optionally substituted with 1 to 3 fluorine atoms, and methoxy groups and trifluoromethoxy groups are particularly preferred. preferable.
  • the methylthio group optionally substituted with 1 to 3 halogen atoms in R 2 is preferably a methylthio group optionally substituted with 1 to 3 fluorine atoms, with methylthio groups and trifluoromethylthio groups being particularly preferred. preferable.
  • each R 2 is independently a hydrogen atom or a halogen atom, preferably each R 2 is independently a hydrogen atom or a chlorine atom.
  • n is 1.
  • R 2 is a hydrogen atom or a halogen atom and n is 1.
  • the compound of formula (II) or a pharmaceutically acceptable salt thereof is of formula (II'): [In the formula, R 2 has the same meaning as above] or a pharmaceutically acceptable salt thereof.
  • the compound of formula (II) or a pharmaceutically acceptable salt thereof has the following formula: (Compound name: m-chlorophenyl biguanide; hereinafter also referred to as "Compound B”) or a pharmaceutically acceptable salt thereof, and particularly preferably the hydrochloride of Compound B.
  • the compound of formula (II) or a pharmaceutically acceptable salt thereof has the following formula:
  • the serotonin 3 receptor agonist that is the active ingredient of the present invention has the following formula (III): [In the formula, o is an integer from 1 to 4; R 3 is a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a methyl group optionally substituted with 1 to 3 halogen atoms, a methoxy group optionally substituted with 1 to 3 halogen atoms, and each independently selected from the group consisting of methylthio groups optionally substituted with 1 to 3 halogen atoms; R 4 is selected from the group consisting of a hydrogen atom and a methyl group optionally substituted with 1 to 3 halogen atoms] or a pharmaceutically acceptable salt thereof.
  • o is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, particularly preferably 1.
  • the halogen atom in R 3 is preferably a fluorine atom or a chlorine atom, with a chlorine atom being particularly preferred.
  • the methyl group optionally substituted with 1 to 3 halogen atoms in R 3 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, with methyl groups and trifluoromethyl groups being particularly preferred. preferable.
  • the methoxy group optionally substituted with 1 to 3 halogen atoms in R 3 is preferably a methoxy group optionally substituted with 1 to 3 fluorine atoms, and methoxy groups and trifluoromethoxy groups are particularly preferred. preferable.
  • the methylthio group optionally substituted with 1 to 3 halogen atoms in R 3 is preferably a methylthio group optionally substituted with 1 to 3 fluorine atoms, and methylthio and trifluoromethylthio groups are particularly preferred. preferable.
  • the methyl group optionally substituted with 1 to 3 halogen atoms in R 4 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, particularly preferably a methyl group.
  • each R 3 is independently a hydrogen atom or a halogen atom, preferably each R 3 is independently a hydrogen atom or a chlorine atom.
  • R 4 is a hydrogen atom or a methyl group.
  • o is 1.
  • R 3 is a hydrogen atom or a halogen atom
  • R 4 is a hydrogen atom or a methyl group
  • o is 1.
  • the compound represented by formula (III) or a pharmaceutically acceptable salt thereof is represented by the following formula (III'): [In the formula, R 4 has the same meaning as above] or a pharmaceutically acceptable salt thereof.
  • the compound represented by formula (III) or a pharmaceutically acceptable salt thereof has the following formula: (Compound name: N-methylquipazine; hereinafter also referred to as "Compound D”) or a pharmaceutically acceptable salt thereof, and particularly preferred is the dimaleate of Compound D.
  • the compound represented by formula (III) or a pharmaceutically acceptable salt thereof has the following formula:
  • the serotonin 3 receptor agonist that is the active ingredient of the present invention has the following formula (IV): [In the formula, p is an integer from 1 to 4; R 5 and R 6 are hydrogen atom, halogen atom, hydroxy group, cyano group, methyl group optionally substituted with 1 to 3 halogen atoms, methoxy optionally substituted with 1 to 3 halogen atoms and methylthio optionally substituted with 1 to 3 halogen atoms; R 7 is selected from the group consisting of a hydrogen atom and a methyl group optionally substituted with 1 to 3 halogen atoms] or a pharmaceutically acceptable salt thereof.
  • p is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, particularly preferably 1.
  • halogen atom in R 5 and R 6 a fluorine atom and a chlorine atom are preferred, and a chlorine atom is particularly preferred.
  • the methyl group optionally substituted with 1 to 3 halogen atoms in R 5 and R 6 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, and methyl groups and trifluoromethyl Particularly preferred are groups.
  • the methoxy group optionally substituted with 1 to 3 halogen atoms in R 5 and R 6 is preferably a methoxy group optionally substituted with 1 to 3 fluorine atoms, and methoxy groups and trifluoromethoxy Particularly preferred are groups.
  • the methylthio group optionally substituted with 1 to 3 halogen atoms in R 5 and R 6 is preferably a methylthio group optionally substituted with 1 to 3 fluorine atoms, and methylthio group and trifluoromethylthio group are preferred. Particularly preferred are groups.
  • the methyl group optionally substituted with 1 to 3 halogen atoms in R 7 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, particularly preferably a methyl group.
  • each R 5 is independently selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, and a cyano group, and preferably each R 5 is a hydroxy group.
  • R 6 is selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, and a methyl group optionally substituted with 1 to 3 halogen atoms, preferably a methyl group. be.
  • R 7 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • R 5 is selected from the group consisting of halogen atoms, hydroxy groups, and cyano groups
  • R 6 is hydrogen atoms, halogen atoms, and methyl optionally substituted with 1 to 3 halogen atoms
  • R 7 is a hydrogen atom or a methyl group, and p is 1.
  • the compound of formula (IV) or a pharmaceutically acceptable salt thereof is of formula (IV'): [In the formula, R 5 , R 6 and R 7 have the same meanings as above] or a pharmaceutically acceptable salt thereof.
  • the compound of formula (IV) or a pharmaceutically acceptable salt thereof has the following formula:
  • the compound represented by compound name: 2-methyl-5-hydroxytryptamine; hereinafter also referred to as "compound F” or a pharmaceutically acceptable salt thereof, particularly preferably the hydrochloride of compound F.
  • the serotonin 3 receptor agonist that is the active ingredient of the present invention has the following formula (V): [In the formula, q is an integer from 1 to 4; R 8 and R 9 are hydrogen atom, halogen atom, hydroxy group, cyano group, methyl group optionally substituted with 1 to 3 halogen atoms, methoxy optionally substituted with 1 to 3 halogen atoms and methylthio optionally substituted with 1 to 3 halogen atoms; R 10 is selected from the group consisting of a hydrogen atom and a methyl group optionally substituted with 1 to 3 halogen atoms] or a pharmaceutically acceptable salt thereof.
  • q is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, particularly preferably 1.
  • halogen atom in R 8 and R 9 a fluorine atom and a chlorine atom are preferred, and a chlorine atom is particularly preferred.
  • the methyl group optionally substituted with 1 to 3 halogen atoms in R 8 and R 9 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, and methyl groups and trifluoromethyl Particularly preferred are groups.
  • the methoxy group optionally substituted with 1 to 3 halogen atoms in R 8 and R 9 is preferably a methoxy group optionally substituted with 1 to 3 fluorine atoms, and methoxy groups and trifluoromethoxy Particularly preferred are groups.
  • the methylthio group optionally substituted with 1 to 3 halogen atoms in R 8 and R 9 is preferably a methylthio group optionally substituted with 1 to 3 fluorine atoms, and methylthio group and trifluoromethylthio group are preferred. Particularly preferred are groups.
  • the methyl group optionally substituted with 1 to 3 halogen atoms in R 10 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, particularly preferably a methyl group.
  • each R 8 is independently selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, and a cyano group, and preferably each R 8 is a hydrogen atom.
  • R 9 is selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, and a methyl group optionally substituted with 1 to 3 halogen atoms, preferably a hydrogen atom. be.
  • R 10 is a hydrogen atom or a methyl group, preferably a methyl group.
  • q is 1.
  • R 8 is a hydrogen atom or a hydroxy group
  • R 9 is a hydrogen atom or a methyl group
  • R 10 is a hydrogen atom or a methyl group
  • q is 1.
  • the compound represented by formula (V) or a pharmaceutically acceptable salt thereof has the following formula (V'): [In the formula, R 8 , R 9 , and R 10 have the same meanings as above] or a pharmaceutically acceptable salt thereof.
  • the compound of formula (V) or a pharmaceutically acceptable salt thereof has the following formula:
  • the active ingredient of the present invention has the following formula (VI):
  • Q is the following formula (a) to (c):
  • R 11 represents a hydrogen atom or a C 1-6 alkyl group
  • R 12 and R 13 are the same or different and represent a hydrogen atom or a C 1-6 alkyl group; Alternatively, they may be combined with the carbon atoms to which they are bonded to form a 3- to 8-membered cycloalkane ring
  • R 14 and R 15 are the same or different and represent a hydrogen atom or a C 1-6 alkyl group; Alternatively, they may be combined with the nitrogen atom to which they are bonded to form a 3- to 8-membered cyclic amine
  • n represents 0, 1, 2, 3, 4, or 5
  • R 14 and R 15 are both hydrogen atoms
  • R 12 represents a group represented by any one of C 2-6 alkyl group] or a pharmaceutically acceptable salt thereof.
  • Q is a group of formula (a) or (b). More preferably, Q is a group represented by formula (a).
  • n 1, 2 or 3.
  • R 12 is a hydrogen atom.
  • R 13 is a hydrogen atom or a C 1-6 alkyl group. More preferably, R 12 is a hydrogen atom, and R 13 is a hydrogen atom or a C 1-6 alkyl group.
  • R 14 is a hydrogen atom or a C 1-6 alkyl group.
  • R 15 is a C 1-6 alkyl group. More preferably, R 14 is a hydrogen atom or a C 1-6 alkyl group, and R 15 is a C 1-6 alkyl group.
  • R 11 is a hydrogen atom.
  • R 11 and R 12 are hydrogen atoms.
  • R 11 is a hydrogen atom, and R 13 is a hydrogen atom or a C 1-6 alkyl group. More preferably, R 11 and R 12 are hydrogen atoms, and R 13 is a hydrogen atom or a C 1-6 alkyl group.
  • R 11 is a hydrogen atom
  • R 14 is a hydrogen atom or a C 1-6 alkyl group.
  • R 11 is a hydrogen atom and R 15 is a C 1-6 alkyl group. More preferably, R 11 is a hydrogen atom, R 14 is a hydrogen atom or a C 1-6 alkyl group, and R 15 is a C 1-6 alkyl group.
  • C 1-6 alkyl group means a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms. Preferably it is a "C 1-4 alkyl group”. Specific examples of “C 1-6 alkyl group” include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, 1-ethylpropyl, hexyl, isohexyl , 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 2-ethylbutyl and the like.
  • Examples of the "cycloalkane ring" in which R 12 and R 13 "may form a 3- to 8-membered cycloalkane ring together with the carbon atom to which they are bonded” include, for example, cyclopropane. ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, etc.
  • 3- to 8-membered cyclic amine means a 3- to 8-membered saturated or unsaturated cyclic amine.
  • Examples of the "cyclic amine” in which R 14 and R 15 "may form a 3- to 8-membered cyclic amine together with the nitrogen atom to which they are bonded” include, for example, an aziridine ring, an azetidine ring, pyrrolidine ring, piperidine ring, azepane ring, azocane ring and the like.
  • the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula: (Compound name: (2-aminophenyl)(azetidin-3-yl)methanone; hereinafter also referred to as "compound H”) or a pharmaceutically acceptable salt thereof.
  • the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula: (Compound name: 1-(2-aminophenyl)-3-(methylamino)propan-1-one; hereinafter also referred to as "Compound I”) or a pharmaceutically acceptable salt thereof. Particularly preferred is the hydrochloride of compound I.
  • the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula: (Compound name: (2-aminophenyl)(pyrrolidin-3-yl)methanone; hereinafter also referred to as "Compound J”) or a pharmaceutically acceptable salt thereof. Particularly preferred is the hydrochloride of Compound J.
  • the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula: (Compound name: (2-aminophenyl)(piperidin-3-yl)methanone; hereinafter also referred to as "compound K”) or a pharmaceutically acceptable salt thereof.
  • the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula: (Compound name: 1-(2-aminophenyl)-2-(pyrrolidin-2-yl)ethanone; hereinafter also referred to as "Compound L”) or a pharmaceutically acceptable salt thereof. Particularly preferred is the hydrochloride of compound L.
  • the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula: (Compound name: 1-(2-aminophenyl)-3-(methylamino)butan-1-one; hereinafter also referred to as "compound M”) or a pharmaceutically acceptable salt thereof.
  • the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula: (Compound name: 3-amino-1-(2-aminophenyl)butan-1-one; hereinafter also referred to as "compound N”) or a pharmaceutically acceptable salt thereof.
  • the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula: (Compound name: (-)-(2-aminophenyl)(pyrrolidin-3-yl)methanone; hereinafter also referred to as "compound O”) or a pharmaceutically acceptable salt thereof. Particularly preferred is the hydrochloride of compound O.
  • the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula: (Compound name: (+)-(2-aminophenyl)(pyrrolidin-3-yl)methanone; hereinafter also referred to as "compound P”) or a pharmaceutically acceptable salt thereof. Particularly preferred is the hydrochloride of compound P.
  • the serotonin 3 receptor agonist that is the active ingredient of the present invention is represented by any of formulas (I), (II), (III), (IV), (V) or (VI). compound or a pharmaceutically acceptable salt thereof.
  • the serotonin 3 receptor agonist that is the active ingredient of the present invention is a compound represented by any one of formula (I), (II), (IV), (V) or (VI) or a pharmaceutical thereof. It is an acceptable salt.
  • the active ingredient of the present invention, a serotonin 3 receptor agonist has the formula (I'), (II'), (III'), (IV'), or (V'). The indicated compound or a pharmaceutically acceptable salt thereof.
  • the serotonin 3 receptor agonist that is the active ingredient of the present invention is a compound represented by any of formulas (I'), (II'), (IV'), or (V') or its It is a pharmaceutically acceptable salt.
  • the active ingredient of the present invention, a serotonin 3 receptor agonist is a compound A, B, C, D, E, F, G, H, I, J, K, L, M, N, O or P or a pharmaceutically acceptable salt thereof.
  • the active ingredient of the present invention is a compound A, B, C, F, G, H, I, J, K, L, M, N, O or P or its It is a pharmaceutically acceptable salt.
  • the serotonin 3 receptor agonist that is the active ingredient of the present invention is a compound represented by formula (I) or a pharmaceutically acceptable salt thereof.
  • the serotonin 3 receptor agonist that is the active ingredient of the present invention is a compound represented by formula (I') or a pharmaceutically acceptable salt thereof.
  • the serotonin 3 receptor agonist that is the active ingredient of the present invention is Compound A or a pharmaceutically acceptable salt thereof.
  • the serotonin 3 receptor agonist which is an active ingredient of the present invention, such as a compound represented by any of formulas (I), (II), (III), (IV), (V) or (VI), can be used in free form. However, it may also be in the form of a pharmaceutically acceptable salt.
  • salts include, for example, hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, formate, acetate, propionate, fumarate, Oxalate, malonate, succinate, methanesulfonate, ethanesulfonate, benzenesulfonate, toluenesulfonate, maleate, dimaleate, lactate, malate, tartrate , acid addition salts such as citrate, pamoate and trifluoroacetate; metal salts such as lithium, potassium, calcium, magnesium, sodium, zinc and aluminum salts; and ammonium salts, diethanolamine. salts, base addition salts such as ethylenediamine salts, triethanolamine salts, and triethylamine salts.
  • the serotonin 3 receptor agonist which is the active ingredient of the present invention, such as a compound represented by any one of formulas (I), (II), (III), (IV), (V) or (VI) or its pharmaceutical Acceptable salts include any of their internal salts, adducts, solvates or hydrates, co-crystals, and the like.
  • the serotonin 3 receptor agonist which is the active ingredient of the present invention, for example, a compound represented by formula (I), (II), (III), (IV), (V) or (VI), has a When it has an asymmetric carbon atom, it may exist as a plurality of stereoisomers (i.e., diastereoisomers, optical isomers) based on the asymmetric carbon atom, and the active ingredient of the present invention does not contain any of these stereoisomers. It includes both stereoisomers and mixtures thereof.
  • the serotonin 3 receptor agonist which is the active ingredient of the present invention, such as a compound represented by any one of formulas (I), (II), (III), (IV), (V) or (VI), may be
  • the isomers may include cis and trans isomers, and if the molecule has axial asymmetry, it may include isomers based on axial asymmetry, and any one of these isomers or its Both include mixtures.
  • the serotonin 3 receptor agonist which is the active ingredient of the present invention, for example, a compound represented by any one of formulas (I), (II), (III), (IV), (V) or (VI), is an isotope (for example, compounds labeled with 2 H, 3 H, 13 C, 14 C, 15 N, 18 F, 32 P, 35 S, 125 I, etc.) and deuterium converters are included.
  • the invention also includes prodrugs of the compounds of the invention or pharmaceutically acceptable salts thereof.
  • the prodrugs are functional derivatives of the compounds of the invention that can be easily converted in vivo to the required compound.
  • MOC (medial olivocochlear) neurons are nerve cells that project from the superior olivary nucleus of the brain stem to the cochlea.
  • activating MOC neurons means increasing the neural activity of MOC neurons by stimulating the 5-HT3 receptors expressed in MOC neurons with its agonist.
  • the cochlear efferent feedback system conveyed by the olivocochlear pathway plays an important role in auditory processing.
  • MOC neurons, which project to the cochlea from the superior olivary nucleus of the brainstem have a central role in the cochlear efferent feedback system.
  • the efferent feedback system via MOC neurons is called the MOC feedback system.
  • Neural activity of MOC neurons includes adjustment of the dynamic range of hearing, protection from acoustic trauma, and signal detection in a noisy environment, and MOC neuron activation includes activation of these neural activities. It will be done.
  • MOC feedback system In the process of sound conveying information to the brain, there are two main functions of the MOC feedback system via MOC neurons.
  • One of its functions is to suppress the vibration of the basement membrane so that hair cells and the like are not damaged due to the excessive vibration of the basement membrane in response to strong and loud noises.
  • Another function is to amplify and suppress vibrations of the basement membrane that correspond to specific frequencies. For example, for conversation, the vibrations of the basilar membrane that correspond to the frequency range of the human voice are amplified, and the vibrations of the basilar membrane that correspond to the frequency range of noise such as the sounds of surrounding cars are suppressed.
  • a hearing disorder involving MOC neurons is a disorder due to decreased or insufficient function of the MOC feedback system via MOC neurons.
  • Hearing disorders involving MOC neurons include sensorineural hearing loss due to acoustic trauma, aging, etc.
  • Sensorineural hearing loss includes hearing loss, insufficient speech discrimination ability in a noisy environment even if hearing is normal, insufficient speech discrimination ability in a noisy environment accompanied by hearing loss, tinnitus, hyperacusis, etc. included.
  • the compositions of the present invention enable the prevention or treatment of sensorineural hearing loss, acoustic trauma, age-related hearing loss, and poor speech discrimination ability in a noisy environment even when hearing is normal. It can be suitably used.
  • hearing loss is a state in which hearing ability is inferior to normal, and a state in which the hearing threshold is increased. Hearing is considered normal if the average hearing level is less than 25 dB.
  • Conductive hearing loss caused by damage to the middle ear is caused by chronic otitis media, ossicular malformation, and the like, and these hearing losses can be treated by surgery or the like.
  • sensorineural hearing loss caused by damage to the inner ear is caused by noise, aging, etc., and treatment is symptomatic and a complete cure is difficult.
  • Hearing disorders due to decreased or insufficient function of the MOC feedback system via MOC neurons include sensorineural hearing loss caused by damage to the inner ear.
  • compositions of the invention allow prevention or treatment of sensorineural hearing loss.
  • Sensorineural hearing loss is hearing loss caused by damage to the inner ear.
  • Sensorineural hearing loss includes acoustic trauma, age-related hearing loss, etc.
  • Symptoms include hearing loss, insufficient speech discrimination ability in a noisy environment even with normal hearing ability, insufficient speech discrimination ability in a noisy environment accompanied by hearing loss, tinnitus, and hyperacusis. These symptoms are largely related to decreased or insufficient function of the MOC feedback system mediated by MOC neurons.
  • compositions of the invention enable the prevention or treatment of acoustic trauma.
  • Acoustic trauma is a disease that causes sensorineural hearing loss due to exposure to powerful sounds.
  • Acoustic trauma in the present invention includes chronic acoustic trauma and acute acoustic trauma.
  • Chronic acoustic trauma is also called noise-induced hearing loss.
  • Symptoms of acoustic trauma include hearing loss, poor speech discrimination in noisy environments, tinnitus, and hyperacusis.
  • Acoustic trauma (hearing loss due to exposure to loud noises) includes noise-induced hearing loss, hearing loss due to audio equipment such as headphones and earphones, hearing loss due to concerts and live performances, and hearing loss due to explosion sounds, etc.
  • the composition of the present invention can be suitably used for the prevention and treatment of hearing loss due to exposure to loud sounds, that is, hearing loss due to acoustic trauma.
  • compositions of the invention enable the prevention or treatment of age-related hearing loss.
  • Symptoms of age-related hearing loss include hearing loss, insufficient speech discrimination ability in noisy environments, inability to hear small sounds and loud and unpleasant sounds (narrow dynamic range), tinnitus, and hyperacusis. Symptoms included. Furthermore, even in cases where hearing ability has not deteriorated significantly, the ability to discriminate speech in a noisy environment is often impaired.
  • the composition of the present invention can be suitably used for the prevention or treatment of hearing loss due to age-related hearing loss.
  • the composition of the present invention can be suitably used for the prevention or treatment of insufficient speech discrimination ability in a noisy environment even when hearing is normal due to age-related hearing loss.
  • the composition of the present invention can be suitably used for the prevention or treatment of insufficient speech discrimination ability in a noisy environment accompanied by hearing loss due to age-related hearing loss.
  • insufficient speech discrimination ability in a noisy environment refers to symptoms such as not being able to understand conversations well in noise, or being unable to understand the content although hearing voices, and in cases where there is no hearing loss ( cases with normal hearing) and cases with hearing loss.
  • the MOC feedback system via MOC neurons has the function of amplifying the vibrations of the basilar membrane corresponding to the frequency range of human voices for conversation, and suppressing the vibrations of the basilar membrane corresponding to the frequency range of noise such as the sound of surrounding cars. Therefore, activation of MOC neurons by a 5-HT3 receptor agonist can improve the insufficient speech discrimination ability in a noisy environment.
  • composition of the present invention can be suitably used for the prevention or treatment of insufficient speech discrimination ability in a noisy environment, and can be suitably used for preventing or treating insufficient speech discrimination ability in a noisy environment even if hearing is normal. It can be further suitably used for treatment.
  • 5-HT3 receptors play a fundamental role in the MOC feedback system and are involved in hearing loss due to exposure to high-intensity sounds. Stimulation of 5-HT3 receptors attenuates hearing loss and loss of ribbon synapses due to high-intensity sound exposure and enhances cochlear protection by the MOC feedback system. Therefore, pharmacological enhancement of MOC neuron activity via 5-HT3 receptors allows for the prevention and treatment of hearing loss caused by exposure to high-intensity sounds. Patients with functional hearing loss (e.g., loud sound exposure hearing loss and age-related hearing loss) with normal hearing often have poor speech discrimination in noisy environments, including tinnitus and hyperacusis. The patient exhibits auditory symptoms such as paresthesia.
  • functional hearing loss e.g., loud sound exposure hearing loss and age-related hearing loss
  • the patient exhibits auditory symptoms such as paresthesia.
  • 5-HT3 receptors may be an important therapeutic target for the treatment of auditory symptoms associated with dysfunction of the MOC feedback system, allowing for prevention and treatment with 5-HT3 receptor agonists.
  • the prophylactic or therapeutic composition in the present invention includes a prophylactic composition, a therapeutic composition, and a prophylactic and therapeutic composition.
  • Prevention or treatment in the present invention includes prevention of onset, improvement of symptoms, suppression of exacerbation of symptoms, prevention of recurrence of symptoms, early recovery of symptoms, etc. with respect to one or more symptoms related to hearing impairment.
  • the composition of the invention may preferably be a therapeutic composition.
  • a therapeutic composition is a composition that is administered for the purpose of preventing the onset of symptoms, improving symptoms, suppressing exacerbation of symptoms, preventing recurrence of symptoms, early recovery of symptoms, and the like.
  • composition of the present invention may contain two or more types of serotonin 3 receptor agonists as active ingredients.
  • the composition of the present invention may contain a hearing impairment therapeutic other than a serotonin 3 receptor agonist.
  • the composition of the present invention may contain drugs other than the hearing impairment therapeutic.
  • composition of the present invention can include a serotonin 3 receptor agonist as an active ingredient and a pharmaceutically acceptable carrier.
  • Such carriers include excipients (for example, sugar derivatives such as mannitol and sorbitol; starch derivatives such as corn starch and potato starch; or cellulose derivatives such as crystalline cellulose), lubricants (for example, stearic acid metal stearates such as magnesium; or talc, etc.), binders (e.g., hydroxypropylcellulose, hydroxypropylmethylcellulose, or polyvinylpyrrolidone, etc.), disintegrants (e.g., cellulose derivatives such as carboxymethylcellulose, carboxymethylcellulose calcium, etc.), Water, preservatives (e.g.
  • paraoxybenzoic acid esters such as methylparaben, propylparaben; or alcohols such as chlorobutanol, benzyl alcohol, etc.
  • pH adjusters e.g. inorganic acids such as hydrochloric acid, sulfuric acid or phosphoric acid, acetic acid
  • organic acids such as succinic acid, fumaric acid, or malic acid, or their salts
  • commonly used carriers for pharmaceutical preparations such as diluents (e.g., water for injection, etc.), singly or in combination of two or more. It can be blended.
  • the composition of the present invention includes a solution in which the active ingredient is dissolved in water.
  • the serotonin 3 receptor agonist which is the active ingredient of the present invention, is mixed with the above-mentioned carrier as necessary, and then prepared into tablets, granules, capsules, powders, solutions, suspensions, emulsions, etc. It can be administered orally in the form of a suppository, injection, intravenous infusion, transdermal, transmucosal, or inhaled parenterally.
  • the serotonin 3 receptor agonist which is the active ingredient of the present invention, is formulated into the above-mentioned dosage form and then administered to a subject in need thereof, such as a human or an animal, preferably a human.
  • composition of the present invention can be administered to a subject in need thereof as a medicine, food, or drink.
  • a medicine e.g., a medicine, food, or drink.
  • it can be administered as a medicine.
  • the dosage and frequency of administration of the serotonin 3 receptor agonist of the present invention can be changed as appropriate depending on conditions such as the severity of symptoms, age, weight, sex of the patient, type of drug, dosage form, and route of administration.
  • the active ingredient is administered parenterally, such as subcutaneously, intravenously, intraperitoneally, intramuscularly, or intrarectally, at a dose of about 0.01 to 10 mg/kg body weight, preferably about 0.01 to 10 mg/kg body weight per administration. about 0.1 to 5 mg/kg body weight, particularly preferably about 0.3 to 3 mg/kg body weight, and orally about 0.01 to 100 mg/kg body weight, preferably about 0.1 to 50 mg/kg body weight. , particularly preferably about 1 to 30 mg/kg body weight.
  • the frequency of administration may also be one or more times per day, such as 1 to 3 times, 1 to 2 times, or once per day.
  • the serotonin 3 receptor agonist of the present invention can be produced according to known methods.
  • the compound represented by formula (I) or a pharmaceutically acceptable salt thereof can be produced by the method described in Patent Document 1.
  • compound H, I, J, K, L, M, N, O or P can be manufactured by the method described in International Publication No. WO2016/027757.
  • Commercially available compounds can also be used as compounds A, B, C, D, E, F, or G.
  • the present invention also relates to a method for screening a compound for prevention or treatment of sensorineural hearing loss, which comprises a step of measuring serotonin 3 receptor agonist activity.
  • the compound for preventing or treating sensorineural hearing loss is preferably a compound for preventing or treating acoustic trauma or age-related hearing loss. More preferably, it is a compound for preventing or treating hearing loss due to exposure to loud noises.
  • the present invention relates to a method of screening for a MOC neuron activating compound or a compound for preventing or treating a hearing disorder involving MOC neurons, which comprises the step of measuring serotonin 3 receptor agonist activity.
  • the screening method of the present invention includes, for example, the step of measuring serotonin 3 receptor agonist activity for a compound library.
  • the compound library may be known or unknown.
  • Known compound libraries include compound libraries that have already been approved by food (e.g., U.S. Food and Drug Administration (FDA)) or drugs (e.g., European Medicines Agency (EMEA)) (e.g., PRESTWICK).
  • Chemical libraries this is a collection of compounds whose patent terms have expired), and compound libraries that are a collection of compounds that have not yet been approved for food or medicine.
  • cells Xenopus oocytes, HEK293 cells, etc. are made to express cDNA of serotonin 3 receptor subunit A, or A and B.
  • a method of electrophysiologically measuring the current flowing into cells (Nakamura Y et al. Biochem Biophys Res Commun. 415(2) (2011) 416-20) and fluorescent membrane-poten Fluorescence intensity using tial sensitive dye Examples include a method of measuring the current flowing into the cell by measuring the current flowing into the cell (Lummis et al. Neuropharmacology 73 (2013) 241-246). In either method, serotonin 3 receptor agonist activity can be measured by administering the compound to cells and examining the response obtained.
  • the screening method of the present invention may further include the step of selecting compounds based on the measured serotonin 3 receptor agonist activity.
  • the compounds obtained by the screening method of the present invention have serotonin 3 receptor agonist activity and can activate MOC neurons, and also prevent or treat hearing disorders involving MOC neurons and sensorineural hearing loss. It can be used for prevention or treatment.
  • SR57227A (TOCRIS, hydrochloride of compound A) was dissolved in physiological saline to prepare an injection preparation (0.5 mg/ml).
  • Htr3a ⁇ / ⁇ mice were backcrossed with C57BL/6J mice for at least 10 generations as previously reported (Kondo et al. Mol Psychiatry. 2018;23:833-842). Since 5-HT3A is essential for the formation of a functional receptor, Htr3a ⁇ / ⁇ mice are mice deficient in 5-HT3 receptor function.
  • Htr3a ⁇ / ⁇ mice are mice deficient in 5-HT3 receptor function.
  • Our previous study showed that EGFP expression reflects normal 5-HT3 receptor expression in 5-HT3AR-EGFP transgenic reporter mice (Koyama et al. Sci Rep. 2017;7:42884). All mice were kept at 23-25°C under a controlled light-dark cycle and had standard laboratory chow and water ad libitum. All mice were randomly
  • ABR Auditory brainstem response
  • Thresholds were determined by decreasing the stimulus intensity in 5 dB steps (from 80 dB SPL to less than 5 dB) until the waveform lost its reproducible morphology. At each sound level, 1024 responses were averaged.
  • DPOAEs Distortion Product Otoacoustic Emissions
  • CS contralateral suppression
  • a wideband high-intensity sound (3-30 kHz bandwidth) was delivered to the contralateral ear at 55 dB.
  • the magnitude of the CS was calculated and defined by subtracting the distortion component (DP) (dBSPL) under quiet conditions from the distortion component (DP) (dBSPL) associated with the contralateral sound at each test frequency.
  • mice were treated with saline or 5 mg/kg of SR57227A [4-amino-1-(6-chloro-2-pyridyl)-piperidine hydrochloride, Sigma, USA; Cat # S1688] (selective 5-HT3 receptor agonist) was administered intraperitoneally 30 minutes before exposure to loud noise. Then, 7 days after the exposure to intense sound, DPOAE and ABR tests were conducted as described above.
  • the isolated cochlea was fixed with 4% paraformaldehyde in 0.1 M phosphate buffer (PBS) for 2 h and decalcified with 10% EDTA for 4 days (Hanada et al. Sci Rep. 2018;8: 11491).
  • PBS phosphate buffer
  • the basement membrane containing the organ of Corti was microdissected and divided into three regions: basal, middle, and apical (Boero et al. J Neurosci.2018;38:7440-7451 ).
  • Microdissected sections were treated with antibodies against GFP (chicken; Abcam, UK; 1:1000; Cat# ab13970, RRID: AB_300798) and choline acetyltransferase (ChAT) (goat; Merck Millipore, USA; 1:200; Immunostained with Cat# AB144P, RRID: AB_2079751). Sections were also stained with the nuclear dye 4',6-diamidino-2-phenylindole (DAPI; Thermo Fisher Scientific, USA; Cat# D1306, RRID: AB_2629482). Images of the specimens were acquired with an LSM880 confocal laser scanning microscope (Carl Zeiss, Jena, Germany).
  • DAPI nuclear dye 4',6-diamidino-2-phenylindole
  • Images were collected in a 1024 ⁇ 1024 raster using a high resolution oil immersion objective (63 ⁇ , numerical aperture 1.3). Images were loaded into image processing software (ZEN, Carl Zeiss). The green, red, and blue channels were analyzed separately to generate the maximum projection. The maximum projections from each channel were merged and converted into triplicate images.
  • mice were anesthetized and perfused transcardially with 4% paraformaldehyde in 0.1 M PBS. The temporal bone was then removed, postfixed, and decalcified (Whitlon et ai. Brain Res Brain Res Protoc. 2001;6:159-166). Cochlear samples were cut into 10 ⁇ m thick sections using a cryostat and immunostained with antibodies against GFP and ChAT. The sections were counterstained with DAPI.
  • mice were anesthetized by intraperitoneal injection of a mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg). Under the microscope, the tympanic membrane was visualized by making a small incision in the ear canal cartilage. Using a 5 ⁇ L Hamilton syringe with a 32G blunt needle, add 3 ⁇ L of 5% Fluorogold (FG) (Sigma-Aldrich, USA; Ca# 223769-64-0) dissolved in 0.9% saline. ) was slowly injected through the inferior posterior quadrant of the tympanic membrane (Dean et al. Otol Neurotol. 2012;33:1085-1091).
  • FG Fluorogold
  • mice were sacrificed 5 days after FG injection, and whole brains were removed for immunofluorescence staining.
  • intratympanic injection of FG was performed because intratympanic injection of a neuron tracer was reported to be more specific and less invasive than intracochlear injection for tracking cochlear efferent neurons.
  • Ta For quantitative analysis of EGFP (Fig. 1D) and c-Fos (Fig. 3B) expression in FG-labeled MOC neurons, 50 FG-labeled MOC neurons from three mice were evaluated.
  • mice were anesthetized and perfused transcardially with 4% paraformaldehyde in 0.1 M PBS (pH 7.4). The whole brain of each mouse was removed and fixed in 4% paraformaldehyde overnight at 4°C, then placed in 30% sucrose in 0.1 M PBS at 4°C (Kondo et al. Neuron. 2012;73: 743-757). The brains were then embedded in OCT compound and frozen. Brain samples were cut into 20 ⁇ m coronal sections by cryostat.
  • the location of MOC neurons was determined according to the mouse brain map (Franklin & Paxinos 2007).
  • To quantify c-Fos-positive cells in the MOC feedback system every fourth coronal section from the brain of each mouse was evaluated (total of 10 sections per mouse) ( Figure 3E) (Ueda et al. Biochem Biophys Res Comm . 2018;506:498-503).
  • Figure 3E To quantitatively analyze c-Fos expression in EGFP-positive MOC neurons after high-intensity sound exposure, 50 EGFP-positive cells from three 5-HT3AR-EGFP transgenic reporter mice were evaluated (Fig. 3C). .
  • anti-GFP dry; Abcam; 1:1000; Cat# ab13970, RRID: AB_300798
  • anti-c-Fos rabbit; Santa Cruz Biotechnology, USA; 1:1000; Cat# sc-52 , RRID: AB_2106783
  • Z-stack images are obtained from each part of the cochlear surface preparation (basal, middle, and apical) from the inner spiral nerve bundle downward to the synaptic poles of approximately 16 inner hair cells. , with a z step of 0.25 ⁇ m. Images were collected in a 1024 ⁇ 1024 raster using a high-resolution oil immersion objective (63 ⁇ , numerical aperture 1.3), and digital zoom ( ⁇ 2). Images were loaded into ZEN image processing software and inner hair cells (IHCs) were identified by CtBP2-stained nuclei. The green and red channels were analyzed separately and the maximum projection was generated to quantify CtBP2 and GluA2 positive puncta. Maximum projections from each channel were merged and converted to a binary image.
  • IHCs inner hair cells
  • mice were treated with saline, 5 mg/kg SR57227A (selective 5-HT3 receptor agonist), or 3 mg/kg ondansetron (Tokyo Kasei Kogyo, Tokyo). Japan; Cat# O0470) (selective 5-HT3 receptor antagonist) was injected intraperitoneally 30 minutes before loud sound exposure. These doses were selected according to previous reports (Kondo M. et al. Mol Psychiatry. 2018;23:833-842). Next, 24 hours after exposure to intense sound, microdissection of the central cochlea was performed as described above.
  • Both OHC and IHC are innervated by afferent and efferent nerve fibers.
  • Afferent fibers are the dendrites of the cochlear nerve, and their neuronal cell bodies are located in the spiral ganglion.
  • efferent fibers originate in the superior olivary nucleus (SOC) of the brainstem, where MOC and LOC neurons are located.
  • SOC superior olivary nucleus
  • MOC neurons innervate the OHC
  • LOC neurons innervate afferent fibers that contact the IHC.
  • 5-HT3 receptors are expressed in SOC neurons (Koyama et al. Sci Rep. 2017;7:42884).
  • 5-HT3AR-EGFP transgenic reporter mice we investigated the expression pattern of 5-HT3 receptors in SOC neurons in more detail. Immunohistochemical analysis of reporter mice showed EGFP signals only in MOC neurons (Fig. 1A,B). To confirm efferent innervation by MOC neurons, we performed retrograde neuronal tracing of the cochlear auditory pathway by intratympanic administration of FG to 5-HT3AR-EGFP reporter mice. FG labeling was detected in both MOC and LOC neurons ipsilateral to the injection, whereas contralaterally, FG labeling was observed only in MOC neurons (Fig. 1C). This is consistent with previous reports on the branching pattern of olivocochlear neurons.
  • the efferent fibers of MOC neurons pass through the spiral ganglion, pass through the tunnel of Corti, and form synaptic connections with OHCs.
  • 5-HT3AR-EGFP reporter mice show EGFP signals throughout neurons, including axons and dendrites expressing 5-HT3 receptors, we further hypothesized that OHC in the cochlea by 5-HT3 receptor-expressing MOC neurons.
  • EGFP-positive fibers were confirmed by immunostaining of cochlear sections (Fig. 2B). Since cochlear efferent fibers are cholinergic, ChAT is used as a marker for efferent fibers. Our analysis showed that ChAT signals were located in fibers extending downwards in the OHC across the tunnel of Corti (Fig. 2A,B). Furthermore, double immunostaining revealed that in the cochlea, EGFP-positive fibers and large terminals of OHCs colocalized with ChAT signals (Fig. 2A,B), indicating that EGFP-positive fibers project to OHCs It was suggested that these were sexual fibers. The EGFP signal observed in IHC (Fig.
  • 2A,B may be a bundle of MOC fibers in the inner spiral bundle rather than LOC fibers innervating afferent fibers contacting IHC.
  • FIGS 1 to 3 show that 5-HT3 receptors are expressed in MOC neurons activated by high-intensity sounds.
  • MOC neurons are neurons that innervate the OHC.
  • DPOAE is a sound generated by the distortion of output sound for two types of input sound through the sensory epithelium, which is converted into mechanical movement, amplified by OHC through MOC, and then back-propagated to the eardrum. Can be measured with a microphone. Therefore, DPOAE is used to assess OHC function and the regulatory effects of MOC neurons on these cells. It has been reported that MOC function can be analyzed by DPOAE measurement with contralateral high-intensity stimulation that induces MOC activity (Zhu X. et al.
  • the present invention contributes to the prevention and treatment of hearing impairment.

Abstract

[Problem] To clarify the mechanism of the medial olivocochlear (MOC) feedback system and provide a composition for preventing or treating auditory disorders in which MOC neurons participate. To provide a method for screening a compound for preventing or treating auditory disorders in which MOC neurons participate. [Solution] A composition for preventing or treating sensorineural hearing loss that contains a serotonin 3 receptor agonist. Sensorineural hearing loss includes acoustic trauma hearing loss, age-related hearing loss, etc. Also provided is a composition for activating MOC neurons that contains a serotonin 3 receptor agonist. The serotonin 3 receptor agonist activates MOC neurons and thus enables the prevention and treatment of sensorineural hearing loss. Also provided are: a method for screening a compound for preventing or treating sensorineural hearing loss, said method including a step for measuring serotonin 3 receptor agonist activity; and a method for screening a compound activating MOC neurons.

Description

感音難聴の予防または治療用組成物Composition for prevention or treatment of sensorineural hearing loss
本発明は、聴覚障害の予防または治療に関する。 The present invention relates to the prevention or treatment of hearing impairment.
蝸牛における感覚上皮であるコルチ器には内有毛細胞と外有毛細胞があり、それぞれ中枢に向かう求心性神経と中枢から有毛細胞に向かう遠心性神経がある。求心性神経はそれぞれらせん神経のtype1とtype2に分かれており共に蝸牛神経核に投射する。一方遠心性神経の1つはMOC(medial olivocochlear)ニューロンと呼ばれ、もう1つはLOC(lateral olivocochlear)ニューロンと呼ばれる。遠心性神経により入力音が調整される(遠心性フィードバック制御)。 The organ of Corti, which is the sensory epithelium in the cochlea, has inner and outer hair cells, and each has afferent nerves going to the center and efferent nerves going from the center to the hair cells. The afferent nerves are divided into spiral nerves type 1 and type 2, both of which project to the cochlear nucleus. On the other hand, one of the efferent nerves is called a MOC (medial olivocochlear) neuron, and the other is called a LOC (lateral olivocochlear) neuron. The input sound is adjusted by efferent nerves (efference feedback control).
オリー ブ蝸牛経路によって伝えられる蝸牛の遠心性のフィードバックシステムは聴覚処理において重要な役割を果たす(非特許文献1)。MOCニューロンがこの神経経路で中心的であり(非特許文献2,3)、MOCニューロンを介した遠心性のフィードバックシステムはMOCフィードバックシステムと称される。MOCフィードバックシステムは、聴覚のダイナミックレンジを調整し(非特許文献4)、音響外傷からの防御機能を有し(非特許文献5,6)、雑音環境下では信号検出を仲介する(非特許文献7)。しかしMOCフィードバックシステムの細胞および分子メカニズムは完全には解明されていない。 The cochlear efferent feedback system conveyed by the olive cochlear pathway plays an important role in auditory processing (Non-Patent Document 1). MOC neurons are central in this neural pathway (Non-Patent Documents 2, 3), and the efferent feedback system via MOC neurons is called the MOC feedback system. The MOC feedback system adjusts the dynamic range of hearing (Non-patent Document 4), has the function of protecting against acoustic trauma (Non-patent Documents 5, 6), and mediates signal detection in noisy environments (Non-patent Documents 7). However, the cellular and molecular mechanisms of the MOC feedback system are not completely understood.
セロトニン3(5-HT3)受容体はセロトニン受容体ファミリー中で唯一のイオンチャネル型受容体である(非特許文献8)。5-HT3受容体は2つのサブユニット(5-HT3Aと5-HT3B)から成り、5-HT3Aサブユニットは機能的な受容体の形成に必須である(非特許文献8)。5-HT3A受容体は、中枢および末梢神経系に広く発現し、様々な重要な神経機能に関連していることが示唆されている(非特許文献9)。本発明者等は先の研究でMOCニューロンとLOCニューロンが位置する脳幹の上オリーブ複合体(SOC:Superior Olivary Complex)に5-HT3A受容体が発現していることを報告した(非特許文献10)。しかし、MOCフィードバックシステムと5-HT3受容体の関連はわかっていない。 The serotonin 3 (5-HT3) receptor is the only ionotropic receptor in the serotonin receptor family (Non-Patent Document 8). The 5-HT3 receptor consists of two subunits (5-HT3A and 5-HT3B), and the 5-HT3A subunit is essential for the formation of a functional receptor (Non-Patent Document 8). It has been suggested that 5-HT3A receptors are widely expressed in the central and peripheral nervous systems and are related to various important neurological functions (Non-Patent Document 9). In a previous study, the present inventors reported that 5-HT3A receptors are expressed in the superior olivary complex (SOC) of the brainstem, where MOC neurons and LOC neurons are located (Non-patent Document 10 ). However, the relationship between the MOC feedback system and 5-HT3 receptors is unknown.
音響外傷とは、強力な音波によって内耳の蝸牛が障害を受ける聴覚機構の損傷である。症状は、難聴、耳鳴り等である。慢性音響外傷は、騒音性難聴とも呼ばれ環境中の強大音に長期間さらされると発症する。慢性音響外傷(騒音性難聴)は徐々に進行し自覚症状は少ない。急性音響外傷には、爆発音、銃火器、エアバッグなどが原因で、瞬間的あるいは極めて短い時間の強大音による聴覚障害、および、ヘッドホン、コンサート等の数分から数時間程度の強大音暴露による聴覚障害が含まれる。大きな音に長期間さらされるという環境は職業性のものがほとんどあったが、近年の音響機器性能ならびに携帯性の向上に伴い、一般の生活の中でも長時間の強大音暴露が拡大する危険が指摘されている。 Acoustic trauma is damage to the auditory system in which the cochlea of the inner ear is damaged by powerful sound waves. Symptoms include hearing loss and tinnitus. Chronic acoustic trauma, also called noise-induced hearing loss, occurs when people are exposed to high-intensity noise in the environment for long periods of time. Chronic acoustic trauma (noise-induced hearing loss) progresses gradually and has few symptoms. Acute acoustic trauma includes hearing loss caused by instantaneous or extremely short-lived loud noises caused by explosions, firearms, airbags, etc., and hearing loss caused by exposure to loud noises from headphones, concerts, etc. over a period of several minutes to several hours. Includes disability. Most environments in which people are exposed to loud noises for long periods of time were mostly occupational, but with the improvement in the performance and portability of audio equipment in recent years, it has been pointed out that there is a danger that prolonged exposure to loud noises is becoming more common in everyday life. has been done.
セロトニン3受容体アゴニストとして、例えば、SR57227A(1-(6-クロロピリジン-2-イル)ピペリジン-4-アミンまたはその塩酸塩)が知られている(特許文献1)。 As a serotonin 3 receptor agonist, for example, SR57227A (1-(6-chloropyridin-2-yl)piperidin-4-amine or its hydrochloride) is known (Patent Document 1).
特開平7-145166号公報Japanese Patent Application Publication No. 7-145166
本発明は、MOCフィードバックシステムのメカニズムを解明し、MOCニューロンが関与する聴覚障害の予防用または治療用組成物を提供すること、および、MOCニューロンが関与する聴覚障害を予防または治療するための化合物のスクリーニング方法を提供することを課題とする。 The present invention aims to elucidate the mechanism of the MOC feedback system, provide compositions for preventing or treating hearing disorders involving MOC neurons, and compounds for preventing or treating hearing disorders involving MOC neurons. The objective is to provide a screening method for
本発明者等は、上記課題を解決すべく研究を行った結果、セロトニン3受容体(以下、5-HT3受容体ともいう)がMOCフィードバックシステムにおいて基本的な役割を有し、5-HT3受容体アゴニストが上記課題を解決できることを見出し本発明を完成した。即ち、本発明は以下の態様を含有する。
1.セロトニン3受容体アゴニストを含有する感音難聴の予防または治療用組成物。
2.前記感音難聴が音響外傷または加齢性難聴である、前項1に記載の組成物。
3.前記音響外傷または加齢性難聴の症状が、聴力低下、聴力が正常であっても雑音環境下での不十分な語音弁別能、および、聴力低下を伴う雑音環境下での不十分な語音弁別能からなる群から選択される少なくとも1である、前項2に記載の組成物。
4.前記感音難聴が強大音暴露による聴力低下である、前項1に記載の組成物。
5.前記セロトニン3受容体アゴニストが、下記式(I):
Figure JPOXMLDOC01-appb-C000002
[式中、
  mは1~4の整数であり;
  Rは水素原子、ハロゲン原子、1~3個のハロゲン原子で置換されていてもよいメチル基、1~3個のハロゲン原子で置換されていてもよいメトキシ基、1~3個のハロゲン原子で置換されていてもよいエトキシ基、1~3個のハロゲン原子で置換されていてもよいメチルチオ基、および、ハロゲン原子、トリフルオロメチル、C1-3アルキル、C1-3アルコキシ、C1-3アルキルチオもしくはシアノ基で置換されていてもよいフェノキシ基、からなる群からそれぞれ独立して選択される]
で示される化合物またはその医薬的に許容される塩である前項1~4のいずれか1に記載の組成物。
6.Rがそれぞれ独立してハロゲン原子である、前項5に記載の組成物。
7.前記ハロゲン原子が塩素原子である、前項6に記載の組成物。
8.治療用組成物である、前項1~7のいずれか1に記載の組成物。
9.セロトニン3受容体アゴニストを含有するMOCニューロン活性化用組成物。
10.MOCニューロンが関与する聴覚障害の予防または治療用である、前項9に記載の組成物。
11.セロトニン3受容体アゴニスト活性を測定する工程を含む感音難聴の予防または治療用化合物のスクリーニング方法。
12.セロトニン3受容体アゴニスト活性を測定する工程を含む、MOCニューロン活性化化合物のスクリーニング方法。
13.前記MOCニューロン活性化化合物が、MOCニューロンが関与する聴覚障害の予防または治療用化合物である、前項12に記載のスクリーニング方法。
14.セロトニン3受容体アゴニストを含有する組成物をそれを必要とする対象に投与することを含む感音難聴を予防または治療する方法。
15.セロトニン3受容体アゴニストを含有する組成物をそれを必要とする対象に投与することを含むMOCニューロンを活性化する方法。
16.セロトニン3受容体アゴニストを含有する組成物をそれを必要とする対象に投与することを含むMOCニューロンが関与する聴覚障害を予防または治療する方法。
17.感音難聴の予防または治療用組成物の調製のためのセロトニン3受容体アゴニストの使用。
18.MOCニューロンを活性化するための組成物の調製のためのセロトニン3受容体アゴニストの使用。
19.MOCニューロンが関与する聴覚障害を予防または治療するための組成物の調製のためのセロトニン3受容体アゴニストの使用。
As a result of conducting research to solve the above problems, the present inventors discovered that serotonin 3 receptors (hereinafter also referred to as 5-HT3 receptors) have a fundamental role in the MOC feedback system, and that 5-HT3 receptors have a fundamental role in the MOC feedback system. The inventors have discovered that a body agonist can solve the above problems, and have completed the present invention. That is, the present invention includes the following aspects.
1. A composition for preventing or treating sensorineural hearing loss containing a serotonin 3 receptor agonist.
2. 2. The composition according to item 1, wherein the sensorineural hearing loss is acoustic trauma or age-related hearing loss.
3. The symptoms of acoustic trauma or age-related hearing loss include hearing loss, insufficient speech discrimination in a noisy environment even with normal hearing, and insufficient speech discrimination in a noisy environment accompanied by hearing loss. The composition according to item 2 above, wherein the composition has at least one selected from the group consisting of:
4. 2. The composition according to item 1, wherein the sensorineural hearing loss is hearing loss due to exposure to loud sounds.
5. The serotonin 3 receptor agonist has the following formula (I):
Figure JPOXMLDOC01-appb-C000002
[In the formula,
m is an integer from 1 to 4;
R 1 is a hydrogen atom, a halogen atom, a methyl group optionally substituted with 1 to 3 halogen atoms, a methoxy group optionally substituted with 1 to 3 halogen atoms, 1 to 3 halogen atoms an ethoxy group which may be substituted with , a methylthio group which may be substituted with 1 to 3 halogen atoms, and a halogen atom, trifluoromethyl, C 1-3 alkyl, C 1-3 alkoxy, C 1 -3 phenoxy groups optionally substituted with alkylthio or cyano groups, each independently selected from the group consisting of
The composition according to any one of items 1 to 4 above, which is a compound represented by or a pharmaceutically acceptable salt thereof.
6. 5. The composition according to item 5, wherein each R 1 is independently a halogen atom.
7. 7. The composition according to item 6, wherein the halogen atom is a chlorine atom.
8. 8. The composition according to any one of items 1 to 7 above, which is a therapeutic composition.
9. A composition for activating MOC neurons containing a serotonin 3 receptor agonist.
10. 10. The composition according to item 9, which is used for the prevention or treatment of hearing disorders involving MOC neurons.
11. A method for screening a compound for prevention or treatment of sensorineural hearing loss, comprising the step of measuring serotonin 3 receptor agonist activity.
12. A method for screening MOC neuron activating compounds, the method comprising the step of measuring serotonin 3 receptor agonist activity.
13. 13. The screening method according to item 12, wherein the MOC neuron activating compound is a compound for preventing or treating hearing loss associated with MOC neurons.
14. A method of preventing or treating sensorineural hearing loss comprising administering a composition containing a serotonin 3 receptor agonist to a subject in need thereof.
15. A method of activating MOC neurons comprising administering a composition containing a serotonin 3 receptor agonist to a subject in need thereof.
16. A method for preventing or treating hearing impairment involving MOC neurons, the method comprising administering a composition containing a serotonin 3 receptor agonist to a subject in need thereof.
17. Use of a serotonin-3 receptor agonist for the preparation of a composition for the prevention or treatment of sensorineural hearing loss.
18. Use of a serotonin 3 receptor agonist for the preparation of a composition for activating MOC neurons.
19. Use of a serotonin 3 receptor agonist for the preparation of a composition for preventing or treating hearing disorders involving MOC neurons.
5-HT3受容体アゴニストによる5-HT3受容体の刺激がMOCニューロンを活性化し、MOCニューロンを介するMOCフィードバックシステムの機能を強化または改善することができる。5-HT3受容体がMOCフィードバックシステムで基本的な役割を有している。MOCニューロンの機能低下または不十分な機能が関与する聴覚障害または聴覚症状である感音難聴は、5-HT3受容体アゴニストにより予防または治療することができる。 Stimulation of 5-HT3 receptors by 5-HT3 receptor agonists can activate MOC neurons and enhance or improve the function of the MOC feedback system via MOC neurons. 5-HT3 receptors have a fundamental role in the MOC feedback system. Sensorineural hearing loss, which is a hearing impairment or auditory condition involving impaired or inadequate functioning of MOC neurons, can be prevented or treated with 5-HT3 receptor agonists.
MOCフィードバックシステムはその遠心性ニューロンを介して外有毛細胞の動きを調節し基底膜の振幅を制御することによって、大きすぎる音や聞こえにくい音に対してリアルタイムに対応するシステムである。MOCフィードバックシステムの機能の一つは、強大音に対する基底膜の振動を抑制し有毛細胞等の損傷を抑制する蝸牛保護である。5-HT3受容体アゴニストによる5-HT3受容体を介したMOCニューロンの活性増強が、蝸牛保護を強化し強大音暴露による聴力低下の予防および治療を可能にする。MOCフィードバックシステムの他の機能の一つは、特定の周波数に対応する基底膜の振動を増幅および抑制する機能である。例えば、小さい音の場合は、基底膜の振動を増幅し、雑音下で会話をする場合は、人の声の周波数領域に対応する基底膜の振動を増幅し周りの雑音の周波数領域に対応する基底膜の振動を抑える。5-HT3受容体アゴニストによる5-HT3受容体を介したMOCニューロンの活性増強が、加齢性難聴、雑音環境下での不十分な語音弁別能等の聴覚障害の予防および治療を可能にする。 The MOC feedback system is a system that responds in real time to sounds that are too loud or difficult to hear by regulating the movement of outer hair cells and controlling the amplitude of the basilar membrane through its efferent neurons. One of the functions of the MOC feedback system is to protect the cochlea by suppressing the vibration of the basilar membrane in response to strong loud sounds and suppressing damage to hair cells and the like. Enhancement of MOC neuron activity via 5-HT3 receptors by 5-HT3 receptor agonists enhances cochlear protection and enables the prevention and treatment of hearing loss caused by exposure to high-intensity sounds. One of the other functions of the MOC feedback system is the ability to amplify and suppress basilar membrane vibrations that correspond to specific frequencies. For example, in the case of a small sound, the vibration of the basilar membrane is amplified, and when talking in noise, the vibration of the basilar membrane corresponding to the frequency range of the human voice is amplified, and the vibration of the basilar membrane is amplified to correspond to the frequency range of the surrounding noise. Suppresses the vibration of the basement membrane. Enhancement of MOC neuron activity via 5-HT3 receptors by 5-HT3 receptor agonists enables the prevention and treatment of hearing disorders such as age-related hearing loss and insufficient speech discrimination ability in noisy environments. .
図1は、セロトニン3受容体が、蝸牛に投射するMOCニューロンで発現していることを示す。(A)ヘマトキシリン-エオジンによって染色されたマウス脳幹の冠状断面を示す。(B)Enhanced green fluorescent protein(EGFP)染色された5-HT3AR-EGFPトランスジェニックレポーターマウスの脳幹の冠状断面を示す。(C)鼓室内にフルオロゴールド(Fluoro-Gold(商標))(以下、FGともいう)を注射した後の野生型マウスの脳幹の冠状断面を示す。左:Ipsilateral(同側);右:Contralateral(対側)(D)鼓室内FG注射後の5-HT3AR-EGFPトランスジェニックレポーターマウスの脳幹の冠状断面を示す。矢印は、FGラベルニューロンがEGFPシグナルと同一の位置にあることを示す。上:低倍率;下:高倍率 (A-D)点線はマウス脳地図に従ったMOC領域とLOC領域のおおよそのアウトラインを示す。スケールバーは200μmを示す。少なくとも3つの独立した実験が同様な結果を示した。Figure 1 shows that serotonin 3 receptors are expressed on MOC neurons that project to the cochlea. (A) Coronal section of mouse brainstem stained with hematoxylin-eosin is shown. (B) shows a coronal section of the brainstem of a 5-HT3AR-EGFP transgenic reporter mouse stained with enhanced green fluorescent protein (EGFP). (C) Coronal section of the brainstem of a wild-type mouse after intratympanic injection of Fluoro-Gold™ (hereinafter also referred to as FG). Left: Ipsilateral; Right: Contralateral. (D) Coronal section of the brainstem of a 5-HT3AR-EGFP transgenic reporter mouse after intratympanic FG injection is shown. Arrows indicate that FG-labeled neurons are in the same position as the EGFP signal. Top: low magnification; bottom: high magnification (A-D) The dotted lines indicate the approximate outlines of the MOC and LOC regions according to the mouse brain map. The scale bar indicates 200 μm. At least three independent experiments showed similar results. 図2は、5-HT3AR-EGFPトランスジェニックレポーターマウスの蝸牛の免疫組織化学解析結果であり、蝸牛中の5-HT3受容体発現MOCニューロンの遠心性線維の分布を示す。(A)蝸牛ホールマウント標本の基部(Basal)、中間部(Middle)、頂部(Apical)におけるGFPとChAT(choline acetyltransferase)の免疫染色とDAPI対比染色を示す。(B)蝸牛の切片のGFPとChATの免疫染色とDAPI対比染色を示す。アローヘッドは、コルチトンネルを横切る神経線維上のEGFPシグナルを示し、矢印はOHC(外有毛細胞)下のEGFPシグナルを示す。GFP:緑、ChAT:赤、DAPI:青で示されるがグレースケールではすべて灰色で示される。スケールバーは10μm(A)と20μm(B)を示す。少なくとも3つの独立した実験が同様な結果を示した。Figure 2 shows the results of immunohistochemical analysis of the cochlea of a 5-HT3AR-EGFP transgenic reporter mouse, showing the distribution of efferent fibers of 5-HT3 receptor-expressing MOC neurons in the cochlea. (A) Immunostaining for GFP and ChAT (choline acetyltransferase) and DAPI counterstaining in the basal, middle, and apical regions of a cochlear whole-mount specimen. (B) Immunostaining for GFP and ChAT and DAPI counterstaining of cochlear sections is shown. Arrowheads indicate EGFP signals on nerve fibers traversing the tunnel of Corti, and arrows indicate EGFP signals below OHCs (outer hair cells). GFP: Green, ChAT: Red, DAPI: Blue, but all are shown in gray in gray scale. Scale bars indicate 10 μm (A) and 20 μm (B). At least three independent experiments showed similar results. 図3は、強大音暴露によるMOCニューロンの活性化に5-HT3受容体が関与していることを示す。(A)強大音暴露前の野生型マウス脳幹の冠状断面のc-Fosの免疫染色を示す。(B)強大音暴露後1hに鼓室内にFG注射された野生型マウスの脳幹冠状断面のc-Fosの免疫染色を示す。矢印はFGによってラベルされたc-Fos陽性ニューロンを示す。上:低倍率;下:高倍率 (C)強大音暴露後1hの5-HT3AR-EGFPトランスジェニックマウス脳幹の冠状断面のc-Fosの免疫染色を示す。矢印は、EGFPポジティブニューロンがc-Fosと一致していることを示す。(D、E)強大音暴露後1hの野生型(WT)マウスとHtr3a-/-(KO)マウスの脳幹のc-Fosの免疫組織化学解析結果を示す。(D)強大音暴露後1hのMOCにおけるc-Fos免疫染色を示す。(E)強大音暴露後1hのMOCにおけるc-Fos陽性細胞数(各群n=5)を示すグラフであり、平均±標準誤差を示す。P<0.05(two-tailed Student's t-test);点線はMOCのおおよそのアウトラインを示す。スケールバーは200μmを示す(A-D)。;少なくとも3つの独立した実験が同様な結果を示した(A-C)。Figure 3 shows that 5-HT3 receptors are involved in the activation of MOC neurons by exposure to high-intensity sound. (A) Shows c-Fos immunostaining of a coronal section of the brainstem of a wild type mouse before exposure to high-intensity sound. (B) Immunostaining of c-Fos in the coronal section of the brainstem of a wild-type mouse injected with FG intratympanically 1 h after exposure to high-intensity sound. Arrows indicate c-Fos positive neurons labeled by FG. Top: low magnification; bottom: high magnification. (C) Immunostaining of c-Fos in a coronal section of the brain stem of a 5-HT3AR-EGFP transgenic mouse 1 h after exposure to high-intensity sound. Arrows indicate EGFP positive neurons coincident with c-Fos. (D, E) Shows the results of immunohistochemical analysis of c-Fos in the brainstem of wild type (WT) mice and Htr3a −/− (KO) mice 1 h after exposure to high-intensity sound. (D) Shows c-Fos immunostaining in MOC 1 h after exposure to high-intensity sound. (E) It is a graph showing the number of c-Fos positive cells in MOC (n=5 for each group) 1 h after exposure to strong sound, and shows the mean ± standard error. * P<0.05 (two-tailed Student's t-test); dotted line indicates the approximate outline of the MOC. Scale bar indicates 200 μm (A-D). ; at least three independent experiments showed similar results (AC). 図4は、Htr3a-/-マウスは、MOC機能が障害され、強大音暴露により聴力障害が増悪したことを示す。(A)野生型(WT)マウスとHtr3a-/-(KO)マウス(各群n=10)の対側音によるDPOAEの抑圧度を示す。(B)強大音暴露前と暴露7日後における、静かな条件下でのWTマウスとKOマウス(各群n=10)のDPOAEの大きさを示す。(C)強大音暴露前と暴露7日後におけるWTマウスとKOマウス(各群n=6)のABR閾値を示す。すべてのグラフは、平均±標準誤差が示される。P<0.05、**P<0.01、***P<0.001(one-way ANOVA, followed by the Holm-Sidak multiple comparison test)FIG. 4 shows that Htr3a −/− mice had impaired MOC function and hearing loss was exacerbated by exposure to loud sounds. (A) shows the degree of suppression of DPOAE by contralateral sounds in wild type (WT) mice and Htr3a −/− (KO) mice (n = 10 in each group). (B) shows the magnitude of DPOAE in WT mice and KO mice (n=10 in each group) under quiet conditions before and 7 days after exposure to loud noises. (C) ABR thresholds of WT mice and KO mice (n=6 in each group) before and 7 days after exposure to loud noises are shown. All graphs are presented as mean ± standard error. * P<0.05, ** P<0.01, *** P<0.001 (one-way ANOVA, followed by the Holm-Sidak multiple comparison test) 図5は、強大音暴露前、暴露7日後および暴露14日後における野生型(WT)マウスとHtr3a-/-(KO)マウスのコルチ器の免疫組織化学解析結果であり、強大音暴露による外有毛細胞の障害を示す。(A)ローダミンファロイジンによって染色された蝸牛の基部、中間部、および頂部の写真であり、矢印は外有毛細胞(OHC)の損失を示す。スケールバーは10μm (B)強大音暴露前、暴露7日後および暴露14日後の野生型(WT)マウスとHtr3a-/-(KO)マウス(各群n=5)の蝸牛の各領域(基部、中間部および頂部)におけるOHCの量を示す。強大音暴露後のOHCの量は強大音暴露の前の量に対する割合(%)で表される。すべてのグラフは、平均±標準誤差が示される。Figure 5 shows the results of immunohistochemical analysis of the organ of Corti in wild-type (WT) mice and Htr3a −/− (KO) mice before, 7 days after, and 14 days after exposure to high-intensity noise. Indicates hair cell damage. (A) Photograph of the base, middle, and apex of the cochlea stained with rhodamine phalloidin, with arrows indicating outer hair cell (OHC) loss. Scale bar is 10 μm. ( B ) Each region of the cochlea (base, The amount of OHC in the middle part and top part) is shown. The amount of OHC after exposure to high-intensity sound is expressed as a percentage (%) of the amount before exposure to high-intensity sound. All graphs are presented as mean ± standard error. 図6は、Htr3a-/-マウスでは、強大音によりリボンシナプスが多く喪失することを示す。C-terminal-binding protein 2(CtBP2)はリボンシナプスの前シナプスのマーカーとして、GluA2は後シナプスのマーカーとして用いた。内有毛細胞(IHC)のリボンシナプスの免疫組織化学解析結果を示し、CtBP2陽性点は緑、GluA2陽性点は赤で示されるが、グレースケールでは、CtBP2陽性点は白、GluA2陽性点は灰色で示される。(A)蝸牛のCtBP2とGluA2の免疫染色を示す。矢印はIHCにおける並列CtBP2/GluA2陽性点を示す。スケールバーは10μmを示す。(B)強大音暴露の前、1時間後、24時間後および7日後の、野生型(WT)およびHtr3a-/-(KO)マウスのIHCにおける、CtBP2とGluA2の免疫組織化学解析結果を示す。スケールバーは5μmを示す。点線はIHCのおおよそのアウトラインを示す。Figure 6 shows that Htr3a −/− mice lose many ribbon synapses due to high-intensity sound. C-terminal-binding protein 2 (CtBP2) was used as a presynaptic marker of ribbon synapses, and GluA2 was used as a postsynaptic marker. The results of immunohistochemical analysis of ribbon synapses of inner hair cells (IHC) are shown. CtBP2-positive points are shown in green and GluA2-positive points are shown in red. On a gray scale, CtBP2-positive points are shown in white and GluA2-positive points are shown in gray. It is indicated by. (A) Immunostaining of CtBP2 and GluA2 in the cochlea. Arrows indicate parallel CtBP2/GluA2 positive points in IHC. The scale bar indicates 10 μm. (B) Shows the results of immunohistochemical analysis of CtBP2 and GluA2 in IHC of wild type (WT) and Htr3a −/− (KO) mice before, 1 hour, 24 hours, and 7 days after exposure to high-intensity sound. . The scale bar indicates 5 μm. The dotted line indicates the approximate outline of the IHC. 図7は、Htr3a-/-マウスでは、強大音により蝸牛基部領域の内有毛細胞(IHC)のリボンシナプスが多く喪失することを示す。野生型(WT)およびHtr3a-/-(KO)マウスの蝸牛基部領域のIHCのリボンシナプスの免疫組織化学解析結果であり、IHCのCtBP2陽性点の数(A)、GluA2陽性点の数(B)および並列CtBP2/GluA2陽性点の数(C)を示す。すべてのグラフは、平均±標準誤差が示される。各群n=5、P<0.05、**P<0.01(Student's t-test with Holm-Sidak correction)Figure 7 shows that in Htr3a −/− mice, high-intensity sound causes loss of many inner hair cell (IHC) ribbon synapses in the cochlear base region. Immunohistochemical analysis results of IHC ribbon synapses in the cochlear base region of wild type (WT) and Htr3a −/− (KO) mice, showing the number of CtBP2-positive points (A) and the number of GluA2-positive points (B) of IHC. ) and the number of parallel CtBP2/GluA2 positive points (C) are shown. All graphs are presented as mean ± standard error. Each group n=5, * P<0.05, ** P<0.01 (Student's t-test with Holm-Sidak correction) 図8は、Htr3a-/-マウスでは、強大音により蝸牛中間部領域の内有毛細胞(IHC)のリボンシナプスが多く喪失することを示す。野生型(WT)およびHtr3a-/-(KO)マウスの蝸牛中間部領域のIHCのリボンシナプスの免疫組織化学解析結果であり、IHCのCtBP2陽性点の数(A)、GluA2陽性点の数(B)および並列CtBP2/GluA2陽性点の数(C)を示す。すべてのグラフは、平均±標準誤差が示される。各群n=5、P<0.05、**P<0.01(Student's t-test with Holm-Sidak correction)Figure 8 shows that in Htr3a −/− mice, high-intensity sound causes loss of many inner hair cell (IHC) ribbon synapses in the midcochlear region. Results of immunohistochemical analysis of IHC ribbon synapses in the midcochlear region of wild type (WT) and Htr3a −/− (KO) mice, showing the number of CtBP2-positive points (A), the number of GluA2-positive points ( B) and the number of parallel CtBP2/GluA2 positive points (C) are shown. All graphs are presented as mean ± standard error. Each group n=5, * P<0.05, ** P<0.01 (Student's t-test with Holm-Sidak correction) 図9は、野生型(WT)およびHtr3a-/-(KO)マウスの蝸牛頂部領域のIHCのリボンシナプスの免疫組織化学解析結果であり、IHCのCtBP2陽性点の数(A)、GluA2陽性点の数(B)および並列CtBP2/GluA2陽性点の数(C)を示す。すべてのグラフは、平均±標準誤差が示される。各群n=5(Student's t-test with Holm-Sidak correction)Figure 9 shows the results of immunohistochemical analysis of IHC ribbon synapses in the apical cochlear region of wild type (WT) and Htr3a −/− (KO) mice, including the number of CtBP2-positive points (A) and GluA2-positive points of IHC. (B) and the number of parallel CtBP2/GluA2 positive points (C). All graphs are presented as mean ± standard error. Each group n=5 (Student's t-test with Holm-Sidak correction) 図10は、5-HT3受容体アゴニストが強大音による聴力障害を減弱させることを示す。(A)および(B)は強大音暴露後7日の蝸牛の機能を示す。強大音暴露30分前に生理食塩水(Sal)またはSR57227A(Ag)をマウスに投与した。(A)野生型(WT)およびHtr3a-/-(KO)マウス(各群n=10)におけるDPOAE(歪成分耳音響放射)の結果を示す。(B)WTとKOマウス(各群n=6)のABR(聴性脳幹反応)の結果を示す。P<0.05、**P<0.01、one-way ANOVA, followed by the Holm-Sidak multiple comparison testFIG. 10 shows that 5-HT3 receptor agonists attenuate loud sound-induced hearing loss. (A) and (B) show cochlear function 7 days after exposure to high-intensity sound. Physiological saline (Sal) or SR57227A (Ag) was administered to mice 30 minutes before exposure to high-intensity sound. (A) Shows the results of DPOAE (distortion component otoacoustic emissions) in wild type (WT) and Htr3a −/− (KO) mice (n=10 in each group). (B) Shows the results of ABR (auditory brainstem response) of WT and KO mice (n=6 for each group). * P<0.05, ** P<0.01, one-way ANOVA, followed by the Holm-Sidak multiple comparison test 図11は、5-HT3受容体アゴニストが強大音によるリボンシナプスの喪失を減弱させることを示す。(A)(B)および(C)は、強大音暴露後24時間における、野生型(WT)およびHtr3a-/-(KO)マウス(各群n=5)の蝸牛の中間部領域のIHC中のCtBP2陽性点の数(A)、GluA2陽性点の数(B)、および並列CtBP2/GluA2陽性点の数(C)を示す。マウスに強大音暴露の30分前に生理食塩水(Sal)、SR57227A(Ag)、またはオンダンセトロン(Ant)を投与した。IHC:内有毛細胞;NE:強大音暴露(+:暴露あり、-:暴露なし) すべてのグラフは、平均±標準誤差が示される。P<0.05、**P<0.01、***P<0.001;ns(not significant)、one-way ANOVA, followed by Tukey's multiple comparison testFIG. 11 shows that 5-HT3 receptor agonists attenuate loud sound-induced loss of ribbon synapses. (A) (B) and (C) IHC of the medial region of the cochlea of wild type (WT) and Htr3a −/− (KO) mice (n = 5 in each group) 24 hours after high-intensity sound exposure. The number of CtBP2-positive puncta (A), the number of GluA2-positive puncta (B), and the number of parallel CtBP2/GluA2-positive puncta (C) are shown. Mice were administered physiological saline (Sal), SR57227A (Ag), or ondansetron (Ant) 30 minutes before loud sound exposure. IHC: inner hair cells; NE: loud sound exposure (+: with exposure, -: without exposure) All graphs are shown as mean ± standard error. * P<0.05, ** P<0.01, *** P<0.001; ns (not significant), one-way ANOVA, followed by Tukey's multiple comparison test
本発明の組成物の有効成分であるセロトニン3受容体アゴニストは、セロトニン3受容体にセロトニンと同様の作用をもたらす物質であり、限定されるものではない。 The serotonin 3 receptor agonist, which is the active ingredient of the composition of the present invention, is a substance that exerts a similar effect to serotonin on the serotonin 3 receptor, and is not limited thereto.
本発明の組成物の有効成分であるセロトニン3受容体アゴニストの好適な化合物として、下記式(I)、(II)、(III)、(IV)、(V)または(VI)のいずれかで示される化合物またはその医薬的に許容される塩、またはそれらの水和物もしくは溶媒和物を挙げることができる。 Suitable compounds for the serotonin 3 receptor agonist, which is an active ingredient of the composition of the present invention, include any one of the following formulas (I), (II), (III), (IV), (V) or (VI). Mention may be made of the indicated compounds or their pharmaceutically acceptable salts, or their hydrates or solvates.
式(I)、(II)、(III)、(IV)、(V)および(VI)の化合物の構造式の置換基において定義されている各基は、特に明記しない限り、自由に組み合わせることができる。 The groups defined in the substituents of the structural formulas of the compounds of formulas (I), (II), (III), (IV), (V) and (VI) may be freely combined unless otherwise specified. I can do it.
本明細書において「置換基」の定義における炭素の数を、例えば、「C1-3」、「C1-6」などと表記する場合もある。具体的には、「C1-3アルキル」なる表記は、炭素数1から3の直鎖状もしくは分枝状のアルキル基と同義であり、「C1-6アルキル」なる表記は、炭素数1から6の直鎖状もしくは分枝状のアルキル基と同義である。 In this specification, the number of carbon atoms in the definition of "substituent" may be expressed as "C 1-3 ", "C 1-6 ", etc., for example. Specifically, the notation "C 1-3 alkyl" is synonymous with a linear or branched alkyl group having 1 to 3 carbon atoms, and the notation "C 1-6 alkyl" has the same meaning as a straight-chain or branched alkyl group having 1 to 3 carbon atoms. It has the same meaning as 1 to 6 linear or branched alkyl groups.
本明細書において「基」なる用語は、1価基を意味する。例えば、「アルキル基」は、1価の飽和炭化水素基を意味する。また、本明細書における置換基の説明において、「基」なる用語を省略する場合もある。また、特に指示した場合を除き、各々の基の説明はその基が他の基の一部分または置換基である場合にも該当する。 The term "group" as used herein means a monovalent group. For example, "alkyl group" means a monovalent saturated hydrocarbon group. Furthermore, in the description of substituents in this specification, the term "group" may be omitted. Furthermore, unless otherwise specified, the description of each group also applies when the group is a part or substituent of another group.
「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子、およびヨウ素原子が挙げられる。 Examples of the "halogen atom" include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
1つの実施態様では、本発明の有効成分であるセロトニン3 受容体アゴニストは、下記式( I ): 
Figure JPOXMLDOC01-appb-C000003
[式中、
 mは1~4の整数であり;
 Rは水素原子、ハロゲン原子、1~3個のハロゲン原子で置換されていてもよいメチル基、1~3個のハロゲン原子で置換されていてもよいメトキシ基、1~3個のハロゲン原子で置換されていてもよいエトキシ基、1~3個のハロゲン原子で置換されていてもよいメチルチオ基、および、ハロゲン原子、トリフルオロメチル、C1-3アルキル、C1-3アルコキシ、C1-3アルキルチオもしくはシアノ基で置換されていてもよいフェノキシ基、からなる群からそれぞれ独立して選択される]
で示される化合物またはその医薬的に許容される塩である。
In one embodiment, the serotonin 3 receptor agonist that is the active ingredient of the present invention has the following formula (I):
Figure JPOXMLDOC01-appb-C000003
[In the formula,
m is an integer from 1 to 4;
R 1 is a hydrogen atom, a halogen atom, a methyl group optionally substituted with 1 to 3 halogen atoms, a methoxy group optionally substituted with 1 to 3 halogen atoms, 1 to 3 halogen atoms an ethoxy group which may be substituted with , a methylthio group which may be substituted with 1 to 3 halogen atoms, and a halogen atom, trifluoromethyl, C 1-3 alkyl, C 1-3 alkoxy, C 1 -3 phenoxy groups optionally substituted with alkylthio or cyano groups, each independently selected from the group consisting of
or a pharmaceutically acceptable salt thereof.
mは1~4の整数であり、好ましくは1~3の整数、より好ましくは1~2の整数、とりわけ好ましくは1である。 m is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, particularly preferably 1.
におけるハロゲン原子としては、フッ素原子および塩素原子が好ましく、塩素原子が特に好ましい。 The halogen atom in R 1 is preferably a fluorine atom or a chlorine atom, with a chlorine atom being particularly preferred.
における1~3個のハロゲン原子で置換されていてもよいメチル基としては、1~3個のフッ素原子で置換されていてもよいメチル基が好ましく、メチル基およびトリフルオロメチル基が特に好ましい。 The methyl group optionally substituted with 1 to 3 halogen atoms in R 1 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, and methyl groups and trifluoromethyl groups are particularly preferred. preferable.
における1~3個のハロゲン原子で置換されていてもよいメトキシ基としては、1~3個のフッ素原子で置換されていてもよいメトキシ基が好ましく、メトキシ基およびトリフルオロメトキシ基が特に好ましい。 The methoxy group optionally substituted with 1 to 3 halogen atoms in R 1 is preferably a methoxy group optionally substituted with 1 to 3 fluorine atoms, and methoxy groups and trifluoromethoxy groups are particularly preferred. preferable.
における1~3個のハロゲン原子で置換されていてもよいエトキシ基としては、1~3個のフッ素原子で置換されていてもよいエトキシ基が好ましく、エトキシ基および2,2,2―トリフルオロエトキシ基が特に好ましい。 The ethoxy group optionally substituted with 1 to 3 halogen atoms in R 1 is preferably an ethoxy group optionally substituted with 1 to 3 fluorine atoms, and ethoxy groups and 2,2,2- Particularly preferred is trifluoroethoxy group.
における1~3個のハロゲン原子で置換されていてもよいメチルチオ基としては、1~3個のフッ素原子で置換されていてもよいメチルチオ基が好ましく、メチルチオ基およびトリフルオロメチルチオ基が特に好ましい。 The methylthio group optionally substituted with 1 to 3 halogen atoms in R 1 is preferably a methylthio group optionally substituted with 1 to 3 fluorine atoms, with methylthio groups and trifluoromethylthio groups being particularly preferred. preferable.
は、ハロゲン原子、トリフルオロメチル、C1-3アルキル、C1-3アルコキシ、C1-3アルキルチオもしくはシアノ基で置換されていてもよいフェノキシ基であり得る。「C1-3アルキル」、「C1-3アルコキシ」および「C1-3アルキルチオ」は炭素数1、2または3個の飽和脂肪族炭化水素の残基(メチル、エチル、プロピル、イソプロピル等)を含む。 R 1 can be a phenoxy group optionally substituted with a halogen atom, trifluoromethyl, C 1-3 alkyl, C 1-3 alkoxy, C 1-3 alkylthio or cyano group. "C 1-3 alkyl", "C 1-3 alkoxy" and "C 1-3 alkylthio" are residues of saturated aliphatic hydrocarbons having 1, 2 or 3 carbon atoms (methyl, ethyl, propyl, isopropyl, etc. )including.
好ましい1つの実施態様では、Rはそれぞれ独立してハロゲン原子であり、より好ましくは、各Rは塩素原子である。 In one preferred embodiment, each R 1 is independently a halogen atom, more preferably each R 1 is a chlorine atom.
好ましい1つの実施態様では、mは1である。より好ましい実施態様では、Rはハロゲン原子であり、mは1である。 In one preferred embodiment, m is 1. In a more preferred embodiment, R 1 is a halogen atom and m is 1.
好ましい実施態様では、式(I)で示される化合物またはその医薬的に許容される塩は、下記式(I’):
Figure JPOXMLDOC01-appb-C000004
[式中、Rは前記と同一意味を有する]
で示される化合物またはその医薬的に許容される塩である。
In a preferred embodiment, the compound of formula (I) or a pharmaceutically acceptable salt thereof has the following formula (I'):
Figure JPOXMLDOC01-appb-C000004
[In the formula, R 1 has the same meaning as above]
or a pharmaceutically acceptable salt thereof.
さらに好ましい実施態様では、式(I)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000005
で示される化合物(化合物名:1-(6-クロロピリジン-2-イル)ピペリジン-4-アミン;以下「化合物A」とも称する)またはその医薬的に許容される塩である。特に好ましくは、SR57227A(化合物Aまたはその塩酸塩)である。
In a further preferred embodiment, the compound of formula (I) or a pharmaceutically acceptable salt thereof is of the following formula:
Figure JPOXMLDOC01-appb-C000005
(Compound name: 1-(6-chloropyridin-2-yl)piperidin-4-amine; hereinafter also referred to as "Compound A") or a pharmaceutically acceptable salt thereof. Particularly preferred is SR57227A (compound A or its hydrochloride).
別の実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、下記式(II):
Figure JPOXMLDOC01-appb-C000006
[式中、
 nは1~4の整数であり;
 Rは水素原子、ハロゲン原子、ヒドロキシ基、シアノ基、1~3個のハロゲン原子で置換されていてもよいメチル基、1~3個のハロゲン原子で置換されていてもよいメトキシ基、および1~3個のハロゲン原子で置換されていてもよいメチルチオ基からなる群からそれぞれ独立して選択される]
で示される化合物またはその医薬的に許容される塩である。
In another embodiment, the serotonin 3 receptor agonist that is the active ingredient of the present invention has the following formula (II):
Figure JPOXMLDOC01-appb-C000006
[In the formula,
n is an integer from 1 to 4;
R 2 is a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a methyl group optionally substituted with 1 to 3 halogen atoms, a methoxy group optionally substituted with 1 to 3 halogen atoms, and each independently selected from the group consisting of methylthio groups optionally substituted with 1 to 3 halogen atoms]
or a pharmaceutically acceptable salt thereof.
nは1~4の整数であり、好ましくは1~3の整数、より好ましくは1~2の整数、とりわけ好ましくは1である。 n is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, particularly preferably 1.
におけるハロゲン原子としては、フッ素原子および塩素原子が好ましく、塩素原子が特に好ましい。 The halogen atom in R 2 is preferably a fluorine atom or a chlorine atom, with a chlorine atom being particularly preferred.
における1~3個のハロゲン原子で置換されていてもよいメチル基としては、1~3個のフッ素原子で置換されていてもよいメチル基が好ましく、メチル基およびトリフルオロメチル基が特に好ましい。 The methyl group optionally substituted with 1 to 3 halogen atoms in R 2 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, and methyl groups and trifluoromethyl groups are particularly preferred. preferable.
における1~3個のハロゲン原子で置換されていてもよいメトキシ基としては、1~3個のフッ素原子で置換されていてもよいメトキシ基が好ましく、メトキシ基およびトリフルオロメトキシ基が特に好ましい。 The methoxy group optionally substituted with 1 to 3 halogen atoms in R 2 is preferably a methoxy group optionally substituted with 1 to 3 fluorine atoms, and methoxy groups and trifluoromethoxy groups are particularly preferred. preferable.
における1~3個のハロゲン原子で置換されていてもよいメチルチオ基としては、1~3個のフッ素原子で置換されていてもよいメチルチオ基が好ましく、メチルチオ基およびトリフルオロメチルチオ基が特に好ましい。 The methylthio group optionally substituted with 1 to 3 halogen atoms in R 2 is preferably a methylthio group optionally substituted with 1 to 3 fluorine atoms, with methylthio groups and trifluoromethylthio groups being particularly preferred. preferable.
1つの実施態様では、Rはそれぞれ独立して水素原子またはハロゲン原子であり、好ましくは、Rはそれぞれ独立して水素原子または塩素原子である。 In one embodiment, each R 2 is independently a hydrogen atom or a halogen atom, preferably each R 2 is independently a hydrogen atom or a chlorine atom.
別の実施態様では、nは1である。別の実施態様では、Rは水素原子またはハロゲン原子であり、nは1である。 In another embodiment, n is 1. In another embodiment, R 2 is a hydrogen atom or a halogen atom and n is 1.
別の実施態様では、式(II)で示される化合物またはその医薬的に許容される塩は、下記式(II’):
Figure JPOXMLDOC01-appb-C000007
[式中、Rは前記と同一意味を有する]
で示される化合物またはその医薬的に許容される塩である。
In another embodiment, the compound of formula (II) or a pharmaceutically acceptable salt thereof is of formula (II'):
Figure JPOXMLDOC01-appb-C000007
[In the formula, R 2 has the same meaning as above]
or a pharmaceutically acceptable salt thereof.
好ましい実施態様では、式(II)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000008
で示される化合物(化合物名:m-クロロフェニルビグアニド;以下「化合物B」とも称する)またはその医薬的に許容される塩であり、特に好ましくは化合物Bの塩酸塩である。
In a preferred embodiment, the compound of formula (II) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000008
(Compound name: m-chlorophenyl biguanide; hereinafter also referred to as "Compound B") or a pharmaceutically acceptable salt thereof, and particularly preferably the hydrochloride of Compound B.
好ましい実施態様では、式(II)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000009
で示される化合物(化合物名:1-フェニルビグアニド;以下「化合物C」とも称する)またはその医薬的に許容される塩であり、特に好ましくは化合物Cの塩酸塩である。
In a preferred embodiment, the compound of formula (II) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000009
The compound represented by (compound name: 1-phenylbiguanide; hereinafter also referred to as "compound C") or a pharmaceutically acceptable salt thereof, and particularly preferably the hydrochloride of compound C.
別の実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、下記式(III):
Figure JPOXMLDOC01-appb-C000010
[式中、
 oは1~4の整数であり;
 Rは水素原子、ハロゲン原子、ヒドロキシ基、シアノ基、1~3個のハロゲン原子で置換されていてもよいメチル基、1~3個のハロゲン原子で置換されていてもよいメトキシ基、および1~3個のハロゲン原子で置換されていてもよいメチルチオ基からなる群からそれぞれ独立して選択され;
 Rは水素原子および1~3個のハロゲン原子で置換されていてもよいメチル基からなる群から選択される]
で示される化合物またはその医薬的に許容される塩である。
In another embodiment, the serotonin 3 receptor agonist that is the active ingredient of the present invention has the following formula (III):
Figure JPOXMLDOC01-appb-C000010
[In the formula,
o is an integer from 1 to 4;
R 3 is a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a methyl group optionally substituted with 1 to 3 halogen atoms, a methoxy group optionally substituted with 1 to 3 halogen atoms, and each independently selected from the group consisting of methylthio groups optionally substituted with 1 to 3 halogen atoms;
R 4 is selected from the group consisting of a hydrogen atom and a methyl group optionally substituted with 1 to 3 halogen atoms]
or a pharmaceutically acceptable salt thereof.
oは1~4の整数であり、好ましくは1~3の整数、より好ましくは1~2の整数、とりわけ好ましくは1である。 o is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, particularly preferably 1.
におけるハロゲン原子としては、フッ素原子および塩素原子が好ましく、塩素原子が特に好ましい。 The halogen atom in R 3 is preferably a fluorine atom or a chlorine atom, with a chlorine atom being particularly preferred.
における1~3個のハロゲン原子で置換されていてもよいメチル基としては、1~3個のフッ素原子で置換されていてもよいメチル基が好ましく、メチル基およびトリフルオロメチル基が特に好ましい。 The methyl group optionally substituted with 1 to 3 halogen atoms in R 3 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, with methyl groups and trifluoromethyl groups being particularly preferred. preferable.
における1~3個のハロゲン原子で置換されていてもよいメトキシ基としては、1~3個のフッ素原子で置換されていてもよいメトキシ基が好ましく、メトキシ基およびトリフルオロメトキシ基が特に好ましい。 The methoxy group optionally substituted with 1 to 3 halogen atoms in R 3 is preferably a methoxy group optionally substituted with 1 to 3 fluorine atoms, and methoxy groups and trifluoromethoxy groups are particularly preferred. preferable.
における1~3個のハロゲン原子で置換されていてもよいメチルチオ基としては、1~3個のフッ素原子で置換されていてもよいメチルチオ基が好ましく、メチルチオ基およびトリフルオロメチルチオ基が特に好ましい。 The methylthio group optionally substituted with 1 to 3 halogen atoms in R 3 is preferably a methylthio group optionally substituted with 1 to 3 fluorine atoms, and methylthio and trifluoromethylthio groups are particularly preferred. preferable.
における1~3個のハロゲン原子で置換されていてもよいメチル基としては、1~3個のフッ素原子で置換されていてもよいメチル基が好ましく、メチル基が特に好ましい。 The methyl group optionally substituted with 1 to 3 halogen atoms in R 4 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, particularly preferably a methyl group.
1つの実施態様では、Rはそれぞれ独立して水素原子またはハロゲン原子であり、好ましくは、Rはそれぞれ独立して水素原子または塩素原子である。 In one embodiment, each R 3 is independently a hydrogen atom or a halogen atom, preferably each R 3 is independently a hydrogen atom or a chlorine atom.
別の実施態様では、Rは水素原子またはメチル基である。 In another embodiment, R 4 is a hydrogen atom or a methyl group.
別の実施態様では、oは1である。別の実施態様では、Rは水素原子またはハロゲン原子であり、Rは水素原子またはメチル基であり、oは1である。 In another embodiment, o is 1. In another embodiment, R 3 is a hydrogen atom or a halogen atom, R 4 is a hydrogen atom or a methyl group, and o is 1.
別の実施態様では、式(III)で示される化合物またはその医薬的に許容される塩は、下記式(III’):
Figure JPOXMLDOC01-appb-C000011
[式中、Rは前記と同一意味を有する]
で示される化合物またはその医薬的に許容される塩である。
In another embodiment, the compound represented by formula (III) or a pharmaceutically acceptable salt thereof is represented by the following formula (III'):
Figure JPOXMLDOC01-appb-C000011
[In the formula, R 4 has the same meaning as above]
or a pharmaceutically acceptable salt thereof.
好ましい実施態様では、式(III)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000012
で示される化合物(化合物名:N-メチルキパジン;以下「化合物D」とも称する)またはその医薬的に許容される塩であり、特に好ましくは化合物Dの二マレイン酸塩である。
In a preferred embodiment, the compound represented by formula (III) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000012
(Compound name: N-methylquipazine; hereinafter also referred to as "Compound D") or a pharmaceutically acceptable salt thereof, and particularly preferred is the dimaleate of Compound D.
好ましい実施態様では、式(III)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000013
で示される化合物(化合物名:キパジン;以下「化合物E」とも称する)またはその医薬的に許容される塩であり、特に好ましくは化合物Eの二マレイン酸塩である。
In a preferred embodiment, the compound represented by formula (III) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000013
The compound represented by (compound name: quipazine; hereinafter also referred to as "compound E") or a pharmaceutically acceptable salt thereof, and particularly preferably the dimaleate of compound E.
別の実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、下記式(IV):
Figure JPOXMLDOC01-appb-C000014
[式中、
  pは1~4の整数であり;
  RおよびRは水素原子、ハロゲン原子、ヒドロキシ基、シアノ基、1~3個のハロゲン原子で置換されていてもよいメチル基、1~3個のハロゲン原子で置換されていてもよいメトキシ基、および1~3個のハロゲン原子で置換されていてもよいメチルチオ基からなる群からそれぞれ独立して選択され;
  Rは水素原子および1~3個のハロゲン原子で置換されていてもよいメチル基からなる群から選択される]
で示される化合物またはその医薬的に許容される塩である。
In another embodiment, the serotonin 3 receptor agonist that is the active ingredient of the present invention has the following formula (IV):
Figure JPOXMLDOC01-appb-C000014
[In the formula,
p is an integer from 1 to 4;
R 5 and R 6 are hydrogen atom, halogen atom, hydroxy group, cyano group, methyl group optionally substituted with 1 to 3 halogen atoms, methoxy optionally substituted with 1 to 3 halogen atoms and methylthio optionally substituted with 1 to 3 halogen atoms;
R 7 is selected from the group consisting of a hydrogen atom and a methyl group optionally substituted with 1 to 3 halogen atoms]
or a pharmaceutically acceptable salt thereof.
pは1~4の整数であり、好ましくは1~3の整数、より好ましくは1~2の整数、とりわけ好ましくは1である。 p is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, particularly preferably 1.
およびRにおけるハロゲン原子としては、フッ素原子および塩素原子が好ましく、塩素原子が特に好ましい。 As the halogen atom in R 5 and R 6 , a fluorine atom and a chlorine atom are preferred, and a chlorine atom is particularly preferred.
およびRにおける1~3個のハロゲン原子で置換されていてもよいメチル基としては、1~3個のフッ素原子で置換されていてもよいメチル基が好ましく、メチル基およびトリフルオロメチル基が特に好ましい。 The methyl group optionally substituted with 1 to 3 halogen atoms in R 5 and R 6 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, and methyl groups and trifluoromethyl Particularly preferred are groups.
およびRにおける1~3個のハロゲン原子で置換されていてもよいメトキシ基としては、1~3個のフッ素原子で置換されていてもよいメトキシ基が好ましく、メトキシ基およびトリフルオロメトキシ基が特に好ましい。 The methoxy group optionally substituted with 1 to 3 halogen atoms in R 5 and R 6 is preferably a methoxy group optionally substituted with 1 to 3 fluorine atoms, and methoxy groups and trifluoromethoxy Particularly preferred are groups.
およびRにおける1~3個のハロゲン原子で置換されていてもよいメチルチオ基としては、1~3個のフッ素原子で置換されていてもよいメチルチオ基が好ましく、メチルチオ基およびトリフルオロメチルチオ基が特に好ましい。 The methylthio group optionally substituted with 1 to 3 halogen atoms in R 5 and R 6 is preferably a methylthio group optionally substituted with 1 to 3 fluorine atoms, and methylthio group and trifluoromethylthio group are preferred. Particularly preferred are groups.
における1~3個のハロゲン原子で置換されていてもよいメチル基としては、1~3個のフッ素原子で置換されていてもよいメチル基が好ましく、メチル基が特に好ましい。 The methyl group optionally substituted with 1 to 3 halogen atoms in R 7 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, particularly preferably a methyl group.
1つの実施態様では、Rは水素原子、ハロゲン原子、ヒドロキシ基、およびシアノ基からなる群からそれぞれ独立して選択され、好ましくは、各Rはヒドロキシ基である。 In one embodiment, each R 5 is independently selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, and a cyano group, and preferably each R 5 is a hydroxy group.
別の実施態様では、Rは水素原子、ハロゲン原子、ヒドロキシ基、シアノ基、および1~3個のハロゲン原子で置換されていてもよいメチル基からなる群から選択され、好ましくはメチル基である。 In another embodiment, R 6 is selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, and a methyl group optionally substituted with 1 to 3 halogen atoms, preferably a methyl group. be.
別の実施態様では、Rは水素原子またはメチル基であり、好ましくは水素原子である。 In another embodiment, R 7 is a hydrogen atom or a methyl group, preferably a hydrogen atom.
別の実施態様では、pは1である。別の実施態様では、Rはハロゲン原子、ヒドロキシ基、およびシアノ基からなる群から選択され、Rは水素原子、ハロゲン原子、および1~3個のハロゲン原子で置換されていてもよいメチル基からなる群から選択され、Rは水素原子またはメチル基であり、pは1である。 In another embodiment, p is 1. In another embodiment, R 5 is selected from the group consisting of halogen atoms, hydroxy groups, and cyano groups, and R 6 is hydrogen atoms, halogen atoms, and methyl optionally substituted with 1 to 3 halogen atoms. R 7 is a hydrogen atom or a methyl group, and p is 1.
別の実施態様では、式(IV)で示される化合物またはその医薬的に許容される塩は、下記式(IV’):
Figure JPOXMLDOC01-appb-C000015
[式中、R、R、およびRは前記と同一意味を有する]
で示される化合物またはその医薬的に許容される塩である。
In another embodiment, the compound of formula (IV) or a pharmaceutically acceptable salt thereof is of formula (IV'):
Figure JPOXMLDOC01-appb-C000015
[In the formula, R 5 , R 6 and R 7 have the same meanings as above]
or a pharmaceutically acceptable salt thereof.
好ましい実施態様では、式(IV)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000016
で示される化合物(化合物名:2-メチル-5-ヒドロキシトリプタミン;以下「化合物F」とも称する)またはその医薬的に許容される塩であり、特に好ましくは化合物Fの塩酸塩である。
In a preferred embodiment, the compound of formula (IV) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000016
The compound represented by (compound name: 2-methyl-5-hydroxytryptamine; hereinafter also referred to as "compound F") or a pharmaceutically acceptable salt thereof, particularly preferably the hydrochloride of compound F.
別の実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、下記式(V):
Figure JPOXMLDOC01-appb-C000017
[式中、
  qは1~4の整数であり;
  RおよびRは水素原子、ハロゲン原子、ヒドロキシ基、シアノ基、1~3個のハロゲン原子で置換されていてもよいメチル基、1~3個のハロゲン原子で置換されていてもよいメトキシ基、および1~3個のハロゲン原子で置換されていてもよいメチルチオ基からなる群からそれぞれ独立して選択され;
  R10は水素原子および1~3個のハロゲン原子で置換されていてもよいメチル基からなる群から選択される]
で示される化合物またはその医薬的に許容される塩である。
In another embodiment, the serotonin 3 receptor agonist that is the active ingredient of the present invention has the following formula (V):
Figure JPOXMLDOC01-appb-C000017
[In the formula,
q is an integer from 1 to 4;
R 8 and R 9 are hydrogen atom, halogen atom, hydroxy group, cyano group, methyl group optionally substituted with 1 to 3 halogen atoms, methoxy optionally substituted with 1 to 3 halogen atoms and methylthio optionally substituted with 1 to 3 halogen atoms;
R 10 is selected from the group consisting of a hydrogen atom and a methyl group optionally substituted with 1 to 3 halogen atoms]
or a pharmaceutically acceptable salt thereof.
qは1~4の整数であり、好ましくは1~3の整数、より好ましくは1~2の整数、とりわけ好ましくは1である。 q is an integer of 1 to 4, preferably an integer of 1 to 3, more preferably an integer of 1 to 2, particularly preferably 1.
およびRにおけるハロゲン原子としては、フッ素原子および塩素原子が好ましく、塩素原子が特に好ましい。 As the halogen atom in R 8 and R 9 , a fluorine atom and a chlorine atom are preferred, and a chlorine atom is particularly preferred.
およびRにおける1~3個のハロゲン原子で置換されていてもよいメチル基としては、1~3個のフッ素原子で置換されていてもよいメチル基が好ましく、メチル基およびトリフルオロメチル基が特に好ましい。 The methyl group optionally substituted with 1 to 3 halogen atoms in R 8 and R 9 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, and methyl groups and trifluoromethyl Particularly preferred are groups.
およびRにおける1~3個のハロゲン原子で置換されていてもよいメトキシ基としては、1~3個のフッ素原子で置換されていてもよいメトキシ基が好ましく、メトキシ基およびトリフルオロメトキシ基が特に好ましい。 The methoxy group optionally substituted with 1 to 3 halogen atoms in R 8 and R 9 is preferably a methoxy group optionally substituted with 1 to 3 fluorine atoms, and methoxy groups and trifluoromethoxy Particularly preferred are groups.
およびRにおける1~3個のハロゲン原子で置換されていてもよいメチルチオ基としては、1~3個のフッ素原子で置換されていてもよいメチルチオ基が好ましく、メチルチオ基およびトリフルオロメチルチオ基が特に好ましい。 The methylthio group optionally substituted with 1 to 3 halogen atoms in R 8 and R 9 is preferably a methylthio group optionally substituted with 1 to 3 fluorine atoms, and methylthio group and trifluoromethylthio group are preferred. Particularly preferred are groups.
10における1~3個のハロゲン原子で置換されていてもよいメチル基としては、1~3個のフッ素原子で置換されていてもよいメチル基が好ましく、メチル基が特に好ましい。 The methyl group optionally substituted with 1 to 3 halogen atoms in R 10 is preferably a methyl group optionally substituted with 1 to 3 fluorine atoms, particularly preferably a methyl group.
1つの実施態様では、Rは水素原子、ハロゲン原子、ヒドロキシ基、およびシアノ基からなる群からそれぞれ独立して選択され、好ましくは、各Rは水素原子である。 In one embodiment, each R 8 is independently selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, and a cyano group, and preferably each R 8 is a hydrogen atom.
別の実施態様では、Rは水素原子、ハロゲン原子、ヒドロキシ基、シアノ基、および1~3個のハロゲン原子で置換されていてもよいメチル基からなる群から選択され、好ましくは水素原子である。 In another embodiment, R 9 is selected from the group consisting of a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, and a methyl group optionally substituted with 1 to 3 halogen atoms, preferably a hydrogen atom. be.
別の実施態様では、R10は水素原子またはメチル基であり、好ましくはメチル基である。 In another embodiment, R 10 is a hydrogen atom or a methyl group, preferably a methyl group.
別の実施態様では、qは1である。別の実施態様では、Rは水素原子またはヒドロキシ基であり、Rは水素原子またはメチル基であり、R10は水素原子またはメチル基であり、qは1である。 In another embodiment, q is 1. In another embodiment, R 8 is a hydrogen atom or a hydroxy group, R 9 is a hydrogen atom or a methyl group, R 10 is a hydrogen atom or a methyl group, and q is 1.
別の実施態様では、式(V)で示される化合物またはその医薬的に許容される塩は、下記式(V’):
Figure JPOXMLDOC01-appb-C000018
[式中、R、R、およびR10は前記と同一意味を有する]
で示される化合物またはその医薬的に許容される塩である。
In another embodiment, the compound represented by formula (V) or a pharmaceutically acceptable salt thereof has the following formula (V'):
Figure JPOXMLDOC01-appb-C000018
[In the formula, R 8 , R 9 , and R 10 have the same meanings as above]
or a pharmaceutically acceptable salt thereof.
好ましい実施態様では、式(V)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000019
で示される化合物(RS56812;化合物名:(R)-N-(1-アザビシクロ[2.2.2]オクト-3-イル)-2-(1-メチル-1H-インドール-3-イル)-2-(1-メチル-1H-インドール-3-イル)-2-オキソアセトアミド;以下「化合物G」とも称する)またはその医薬的に許容される塩であり、特に好ましくは化合物Gの塩酸塩である。
In a preferred embodiment, the compound of formula (V) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000019
The compound represented by (RS56812; compound name: (R)-N-(1-azabicyclo[2.2.2]oct-3-yl)-2-(1-methyl-1H-indol-3-yl)- 2-(1-methyl-1H-indol-3-yl)-2-oxoacetamide; hereinafter also referred to as "Compound G") or a pharmaceutically acceptable salt thereof, particularly preferably the hydrochloride of Compound G. be.
別の実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、下記式(VI):
Figure JPOXMLDOC01-appb-C000020
In another embodiment, the active ingredient of the present invention, a serotonin 3 receptor agonist, has the following formula (VI):
Figure JPOXMLDOC01-appb-C000020
[式中、Qは、下記式(a)~(c):
Figure JPOXMLDOC01-appb-C000021
(式中、R11は、水素原子、またはC1-6アルキル基を表し;
 R12およびR13は、同一または異なって、水素原子、またはC1-6アルキル基を表すか;
 あるいは、それらが結合する炭素原子と一緒になって、3員~8員のシクロアルカン環を形成してもよく;
 R14およびR15は、同一または異なって、水素原子、またはC1-6アルキル基を表すか;
 あるいは、それらが結合する窒素原子と一緒になって、3員~8員の環状アミンを形成してもよく;
 nは0、1、2、3、4、または5を表し;
 ここにおいて、R14、およびR15がいずれも水素原子であるときは、R12は、C2-6アルキル基である)のいずれか一つで表される基を表す]
で示される化合物またはその医薬的に許容される塩である。
[In the formula, Q is the following formula (a) to (c):
Figure JPOXMLDOC01-appb-C000021
(In the formula, R 11 represents a hydrogen atom or a C 1-6 alkyl group;
R 12 and R 13 are the same or different and represent a hydrogen atom or a C 1-6 alkyl group;
Alternatively, they may be combined with the carbon atoms to which they are bonded to form a 3- to 8-membered cycloalkane ring;
R 14 and R 15 are the same or different and represent a hydrogen atom or a C 1-6 alkyl group;
Alternatively, they may be combined with the nitrogen atom to which they are bonded to form a 3- to 8-membered cyclic amine;
n represents 0, 1, 2, 3, 4, or 5;
Here, when R 14 and R 15 are both hydrogen atoms, R 12 represents a group represented by any one of C 2-6 alkyl group]
or a pharmaceutically acceptable salt thereof.
好適には、Qは式(a)または(b)で表される基である。さらに好適には、Qは式(a)で表される基である。 Preferably, Q is a group of formula (a) or (b). More preferably, Q is a group represented by formula (a).
好適には、nは1、2、または3である。 Preferably n is 1, 2 or 3.
好適には、R12は水素原子である。好適には、R13は水素原子またはC1-6アルキル基である。さらに好適には、R12は水素原子であり、R13は水素原子またはC1-6アルキル基である。 Preferably R 12 is a hydrogen atom. Preferably, R 13 is a hydrogen atom or a C 1-6 alkyl group. More preferably, R 12 is a hydrogen atom, and R 13 is a hydrogen atom or a C 1-6 alkyl group.
好適には、R14は水素原子またはC1-6アルキル基である。好適には、R15はC1-6アルキル基である。さらに好適には、R14は水素原子またはC1-6アルキル基であり、R15はC1-6アルキル基である。 Preferably, R 14 is a hydrogen atom or a C 1-6 alkyl group. Suitably R 15 is a C 1-6 alkyl group. More preferably, R 14 is a hydrogen atom or a C 1-6 alkyl group, and R 15 is a C 1-6 alkyl group.
好適には、R11は水素原子である。好適には、R11とR12は水素原子である。好適には、R11は水素原子であり、R13は水素原子またはC1-6アルキル基である。さらに好適には、R11とR12は水素原子であり、R13は水素原子またはC1-6アルキル基である。 Preferably, R 11 is a hydrogen atom. Preferably, R 11 and R 12 are hydrogen atoms. Preferably, R 11 is a hydrogen atom, and R 13 is a hydrogen atom or a C 1-6 alkyl group. More preferably, R 11 and R 12 are hydrogen atoms, and R 13 is a hydrogen atom or a C 1-6 alkyl group.
好適には、R11は水素原子であり、R14は水素原子またはC1-6アルキル基である。好適には、R11は水素原子であり、R15はC1-6アルキル基である。さらに好適には、R11は水素原子であり、R14は水素原子またはC1-6アルキル基であり、R15はC1-6アルキル基である。 Preferably, R 11 is a hydrogen atom, and R 14 is a hydrogen atom or a C 1-6 alkyl group. Preferably, R 11 is a hydrogen atom and R 15 is a C 1-6 alkyl group. More preferably, R 11 is a hydrogen atom, R 14 is a hydrogen atom or a C 1-6 alkyl group, and R 15 is a C 1-6 alkyl group.
「C1-6アルキル基」は、炭素数1~6個を有する直鎖状もしくは分枝状の飽和炭化水素基を意味する。好ましくは、「C1-4アルキル基」である。「C1-6アルキル基」の具体例としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、1-エチルプロピル、ヘキシル、イソヘキシル、1,1-ジメチルブチル、2,2-ジメチルブチル、3,3-ジメチルブチル、2-エチルブチル等が挙げられる。 "C 1-6 alkyl group" means a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms. Preferably it is a "C 1-4 alkyl group". Specific examples of "C 1-6 alkyl group" include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, 1-ethylpropyl, hexyl, isohexyl , 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 2-ethylbutyl and the like.
12およびR13が、「それらが結合する炭素原子と一緒になって、3員~8員のシクロアルカン環を形成してもよい」の該「シクロアルカン環」としては、例えば、シクロプロパン環、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環等が挙げられる。 Examples of the "cycloalkane ring" in which R 12 and R 13 "may form a 3- to 8-membered cycloalkane ring together with the carbon atom to which they are bonded" include, for example, cyclopropane. ring, cyclobutane ring, cyclopentane ring, cyclohexane ring, cycloheptane ring, cyclooctane ring, etc.
12およびR13が、「それらが結合する炭素原子と一緒になって、3員~8員のシクロアルカン環を形成してもよい」場合におけるQの具体例としては、下記式で表される基等が挙げられる。 A specific example of Q in the case where R 12 and R 13 "may be combined with the carbon atom to which they are bonded to form a 3- to 8-membered cycloalkane ring" is represented by the following formula: Examples include groups such as
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
「3員~8員の環状アミン」は、3員~8員の飽和または不飽和環状アミンを意味する。R14およびR15が、「それらが結合する窒素原子と一緒になって、3員~8員の環状アミンを形成してもよい」の該「環状アミン」としては、例えば、アジリジン環、アゼチジン環、ピロリジン環、ピペリジン環、アゼパン環、アゾカン環等が挙げられる。 "3- to 8-membered cyclic amine" means a 3- to 8-membered saturated or unsaturated cyclic amine. Examples of the "cyclic amine" in which R 14 and R 15 "may form a 3- to 8-membered cyclic amine together with the nitrogen atom to which they are bonded" include, for example, an aziridine ring, an azetidine ring, pyrrolidine ring, piperidine ring, azepane ring, azocane ring and the like.
14およびR15が、「それらが結合する窒素原子と一緒になって、3員~8員の環状アミンを形成してもよい」場合におけるQの具体例としては、下記式で表される基等が挙げられる。 A specific example of Q in the case where R 14 and R 15 "may be combined with the nitrogen atom to which they are bonded to form a 3- to 8-membered cyclic amine" is represented by the following formula: Examples include groups.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
式(a)で表される基:
Figure JPOXMLDOC01-appb-C000024
としては、2-アジリジニル基、3-アゼチジニル基、3-ピロリジニル基、3-ピペリジニル基等が挙げられる。好ましくは、3-アゼチジニル基、3-ピロリジニル基、3-ピペリジニル基である。
Group represented by formula (a):
Figure JPOXMLDOC01-appb-C000024
Examples include 2-aziridinyl group, 3-azetidinyl group, 3-pyrrolidinyl group, and 3-piperidinyl group. Preferred are 3-azetidinyl group, 3-pyrrolidinyl group, and 3-piperidinyl group.
式(b)で表される基:
Figure JPOXMLDOC01-appb-C000025
としては、アジリジン-2-イルメチル基、アゼチジン-2-イルメチル基、ピロリジン-2-イルメチル基、ピペリジン-2-イルメチル基等が挙げられる。好ましくは、ピロリジン-2-イルメチル基である。
Group represented by formula (b):
Figure JPOXMLDOC01-appb-C000025
Examples include aziridin-2-ylmethyl group, azetidin-2-ylmethyl group, pyrrolidin-2-ylmethyl group, piperidin-2-ylmethyl group, and the like. Preferably it is a pyrrolidin-2-ylmethyl group.
好ましい実施態様では、式(VI)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000026
で示される化合物(化合物名:(2-アミノフェニル)(アゼチジン-3-イル)メタノン;以下「化合物H」とも称する)またはその医薬的に許容される塩である。
In a preferred embodiment, the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000026
(Compound name: (2-aminophenyl)(azetidin-3-yl)methanone; hereinafter also referred to as "compound H") or a pharmaceutically acceptable salt thereof.
好ましい実施態様では、式(VI)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000027
で示される化合物(化合物名:1-(2-アミノフェニル)-3-(メチルアミノ)プロパン-1-オン;以下「化合物I」とも称する)またはその医薬的に許容される塩である。特に好ましくは、化合物Iの塩酸塩である。
In a preferred embodiment, the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000027
(Compound name: 1-(2-aminophenyl)-3-(methylamino)propan-1-one; hereinafter also referred to as "Compound I") or a pharmaceutically acceptable salt thereof. Particularly preferred is the hydrochloride of compound I.
好ましい実施態様では、式(VI)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000028
で示される化合物(化合物名:(2-アミノフェニル)(ピロリジン-3-イル)メタノン;以下「化合物J」とも称する)またはその医薬的に許容される塩である。特に好ましくは、化合物Jの塩酸塩である。
In a preferred embodiment, the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000028
(Compound name: (2-aminophenyl)(pyrrolidin-3-yl)methanone; hereinafter also referred to as "Compound J") or a pharmaceutically acceptable salt thereof. Particularly preferred is the hydrochloride of Compound J.
好ましい実施態様では、式(VI)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000029
で示される化合物(化合物名:(2-アミノフェニル)(ピペリジン-3-イル)メタノン;以下「化合物K」とも称する)またはその医薬的に許容される塩である。
In a preferred embodiment, the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000029
(Compound name: (2-aminophenyl)(piperidin-3-yl)methanone; hereinafter also referred to as "compound K") or a pharmaceutically acceptable salt thereof.
好ましい実施態様では、式(VI)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000030
で示される化合物(化合物名:1-(2-アミノフェニル)-2-(ピロリジン-2-イル)エタノン;以下「化合物L」とも称する)またはその医薬的に許容される塩である。特に好ましくは、化合物Lの塩酸塩である。
In a preferred embodiment, the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000030
(Compound name: 1-(2-aminophenyl)-2-(pyrrolidin-2-yl)ethanone; hereinafter also referred to as "Compound L") or a pharmaceutically acceptable salt thereof. Particularly preferred is the hydrochloride of compound L.
好ましい実施態様では、式(VI)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000031
で示される化合物(化合物名:1-(2-アミノフェニル)-3-(メチルアミノ)ブタン-1-オン;以下「化合物M」とも称する)またはその医薬的に許容される塩である。
In a preferred embodiment, the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000031
(Compound name: 1-(2-aminophenyl)-3-(methylamino)butan-1-one; hereinafter also referred to as "compound M") or a pharmaceutically acceptable salt thereof.
好ましい実施態様では、式(VI)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000032
で示される化合物(化合物名:3-アミノ-1-(2-アミノフェニル)ブタン-1-オン;以下「化合物N」とも称する)またはその医薬的に許容される塩である。
In a preferred embodiment, the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000032
(Compound name: 3-amino-1-(2-aminophenyl)butan-1-one; hereinafter also referred to as "compound N") or a pharmaceutically acceptable salt thereof.
好ましい実施態様では、式(VI)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000033
で示される化合物(化合物名:(-)-(2-アミノフェニル)(ピロリジン-3-イル)メタノン;以下「化合物O」とも称する)またはその医薬的に許容される塩である。特に好ましくは、化合物Oの塩酸塩である。
In a preferred embodiment, the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000033
(Compound name: (-)-(2-aminophenyl)(pyrrolidin-3-yl)methanone; hereinafter also referred to as "compound O") or a pharmaceutically acceptable salt thereof. Particularly preferred is the hydrochloride of compound O.
好ましい実施態様では、式(VI)で示される化合物またはその医薬的に許容される塩は、下記式:
Figure JPOXMLDOC01-appb-C000034
で示される化合物(化合物名:(+)-(2-アミノフェニル)(ピロリジン-3-イル)メタノン;以下「化合物P」とも称する)またはその医薬的に許容される塩である。特に好ましくは、化合物Pの塩酸塩である。
In a preferred embodiment, the compound of formula (VI) or a pharmaceutically acceptable salt thereof has the following formula:
Figure JPOXMLDOC01-appb-C000034
(Compound name: (+)-(2-aminophenyl)(pyrrolidin-3-yl)methanone; hereinafter also referred to as "compound P") or a pharmaceutically acceptable salt thereof. Particularly preferred is the hydrochloride of compound P.
1つの実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、式(I)、(II)、(III)、(IV)、(V)または(VI)のいずれかで示される化合物またはその医薬的に許容される塩である。別の実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、式(I)、(II)、(IV)、(V)または(VI)のいずれかで示される化合物またはその医薬的に許容される塩である。別の実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、式(I’)、(II’)、(III’)、(IV’)、または(V’)のいずれかで示される化合物またはその医薬的に許容される塩である。別の実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、式(I’)、(II’)、(IV’)、または(V’)のいずれかで示される化合物またはその医薬的に許容される塩である。別の実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、化合物A、B、C、D、E、F、G、H、I、J、K、L、M、N、OもしくはPまたはその医薬的に許容される塩である。別の実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、化合物A、B、C、F、G、H、I、J、K、L、M、N、OもしくはPまたはその医薬的に許容される塩であるである。 In one embodiment, the serotonin 3 receptor agonist that is the active ingredient of the present invention is represented by any of formulas (I), (II), (III), (IV), (V) or (VI). compound or a pharmaceutically acceptable salt thereof. In another embodiment, the serotonin 3 receptor agonist that is the active ingredient of the present invention is a compound represented by any one of formula (I), (II), (IV), (V) or (VI) or a pharmaceutical thereof. It is an acceptable salt. In another embodiment, the active ingredient of the present invention, a serotonin 3 receptor agonist, has the formula (I'), (II'), (III'), (IV'), or (V'). The indicated compound or a pharmaceutically acceptable salt thereof. In another embodiment, the serotonin 3 receptor agonist that is the active ingredient of the present invention is a compound represented by any of formulas (I'), (II'), (IV'), or (V') or its It is a pharmaceutically acceptable salt. In another embodiment, the active ingredient of the present invention, a serotonin 3 receptor agonist, is a compound A, B, C, D, E, F, G, H, I, J, K, L, M, N, O or P or a pharmaceutically acceptable salt thereof. In another embodiment, the active ingredient of the present invention, a serotonin 3 receptor agonist, is a compound A, B, C, F, G, H, I, J, K, L, M, N, O or P or its It is a pharmaceutically acceptable salt.
好ましい実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、式(I)で示される化合物またはその医薬的に許容される塩である。より好ましい実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、式(I’)で示される化合物またはその医薬的に許容される塩である。さらに好ましい実施態様では、本発明の有効成分であるセロトニン3受容体アゴニストは、化合物Aまたはその医薬的に許容される塩である。 In a preferred embodiment, the serotonin 3 receptor agonist that is the active ingredient of the present invention is a compound represented by formula (I) or a pharmaceutically acceptable salt thereof. In a more preferred embodiment, the serotonin 3 receptor agonist that is the active ingredient of the present invention is a compound represented by formula (I') or a pharmaceutically acceptable salt thereof. In a further preferred embodiment, the serotonin 3 receptor agonist that is the active ingredient of the present invention is Compound A or a pharmaceutically acceptable salt thereof.
本発明の有効成分であるセロトニン3受容体アゴニスト、例えば式(I)、(II)、(III)、(IV)、(V)または(VI)のいずれかで示される化合物は、遊離の形でも、また医薬的に許容される塩の形でもよい。医薬的に許容される塩としては、例えば、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、硝酸塩、リン酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、フマル酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、メタンスルホン酸塩、エタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、マレイン酸塩、二マレイン酸塩、乳酸塩、リンゴ酸塩、酒石酸塩、クエン酸塩、パモ酸塩およびトリフルオロ酢酸塩等の酸付加塩;リチウム塩、カリウム塩、カルシウム塩、マグネシウム塩、ナトリウム塩、亜鉛塩、およびアルミニウム塩等の金属塩;ならびにアンモニウム塩、ジエタノールアミン塩、エチレンジアミン塩、トリエタノールアミン塩、およびトリエチルアミン塩等の塩基付加塩等が挙げられる。 The serotonin 3 receptor agonist, which is an active ingredient of the present invention, such as a compound represented by any of formulas (I), (II), (III), (IV), (V) or (VI), can be used in free form. However, it may also be in the form of a pharmaceutically acceptable salt. Pharmaceutically acceptable salts include, for example, hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, formate, acetate, propionate, fumarate, Oxalate, malonate, succinate, methanesulfonate, ethanesulfonate, benzenesulfonate, toluenesulfonate, maleate, dimaleate, lactate, malate, tartrate , acid addition salts such as citrate, pamoate and trifluoroacetate; metal salts such as lithium, potassium, calcium, magnesium, sodium, zinc and aluminum salts; and ammonium salts, diethanolamine. salts, base addition salts such as ethylenediamine salts, triethanolamine salts, and triethylamine salts.
本発明の有効成分であるセロトニン3受容体アゴニスト、例えば式(I)、(II)、(III)、(IV)、(V)または(VI)のいずれかで示される化合物またはその医薬的に許容し得る塩は、その分子内塩や付加物、それらの溶媒和物あるいは水和物、共結晶等をいずれも含む。 The serotonin 3 receptor agonist which is the active ingredient of the present invention, such as a compound represented by any one of formulas (I), (II), (III), (IV), (V) or (VI) or its pharmaceutical Acceptable salts include any of their internal salts, adducts, solvates or hydrates, co-crystals, and the like.
本発明の有効成分であるセロトニン3受容体アゴニスト、例えば式(I)、(II)、(III)、(IV)、(V)または(VI)のいずれかで示される化合物は、分子内に不斉炭素原子を有する場合、当該不斉炭素原子に基づく複数の立体異性体(すなわち、ジアステレオマー異性体、光学異性体)として存在し得るが、本発明の有効成分はこれらの内のいずれか1個の立体異性体およびその混合物をいずれも包含する。 The serotonin 3 receptor agonist, which is the active ingredient of the present invention, for example, a compound represented by formula (I), (II), (III), (IV), (V) or (VI), has a When it has an asymmetric carbon atom, it may exist as a plurality of stereoisomers (i.e., diastereoisomers, optical isomers) based on the asymmetric carbon atom, and the active ingredient of the present invention does not contain any of these stereoisomers. It includes both stereoisomers and mixtures thereof.
また、本発明の有効成分であるセロトニン3受容体アゴニスト、例えば式(I)、(II)、(III)、(IV)、(V)または(VI)のいずれかで示される化合物は、幾何異性体としてシスおよびトランス異性体を含み得て、更に分子内に軸不斉を有する場合には軸不斉に基づく異性体を含み得て、これらの内のいずれか1個の異性体またはその混合物をいずれも包含する。 In addition, the serotonin 3 receptor agonist, which is the active ingredient of the present invention, such as a compound represented by any one of formulas (I), (II), (III), (IV), (V) or (VI), may be The isomers may include cis and trans isomers, and if the molecule has axial asymmetry, it may include isomers based on axial asymmetry, and any one of these isomers or its Both include mixtures.
本発明の有効成分であるセロトニン3受容体アゴニスト、例えば式(I)、(II)、(III)、(IV)、(V)または(VI)のいずれかで示される化合物は、同位元素(例えば、H、H、13C、14C、15N、18F、32P、35S、125I等)等で標識された化合物および重水素変換体を包含する。 The serotonin 3 receptor agonist which is the active ingredient of the present invention, for example, a compound represented by any one of formulas (I), (II), (III), (IV), (V) or (VI), is an isotope ( For example, compounds labeled with 2 H, 3 H, 13 C, 14 C, 15 N, 18 F, 32 P, 35 S, 125 I, etc.) and deuterium converters are included.
本発明は、本発明化合物またはその薬学上許容される塩のプロドラッグも含む。該プロドラッグは、必要な化合物に生体内で容易に変換され得る本発明の化合物の機能性誘導体である。 The invention also includes prodrugs of the compounds of the invention or pharmaceutically acceptable salts thereof. The prodrugs are functional derivatives of the compounds of the invention that can be easily converted in vivo to the required compound.
MOC(medial olivocochlear)ニューロンは、脳幹の上オリーブ核から蝸牛に投射する神経細胞である。本発明においてMOCニューロンを活性化するとは、MOCニューロンに発現している5-HT3受容体をそのアゴニストにより刺激することによりMOCニューロンの神経活動を亢進させることを意味する。オリーブ蝸牛経路によって伝えられる蝸牛の遠心性のフィードバックシステムは聴覚処理において重要な役割を果たす。脳幹の上オリーブ核から蝸牛に投射するMOCニューロンが、蝸牛の遠心性のフィードバックシステムで中心的役割を有する。MOCニューロンを介する遠心性のフィードバックシステムをMOCフィードバックシステムという。MOCニューロンの神経活動には、聴覚のダイナミックレンジの調整、音響外傷からの防御、および、雑音環境下での信号検出が含まれ、MOCニューロン活性化作用には、これら神経活動の活性化が含まれる。 MOC (medial olivocochlear) neurons are nerve cells that project from the superior olivary nucleus of the brain stem to the cochlea. In the present invention, activating MOC neurons means increasing the neural activity of MOC neurons by stimulating the 5-HT3 receptors expressed in MOC neurons with its agonist. The cochlear efferent feedback system conveyed by the olivocochlear pathway plays an important role in auditory processing. MOC neurons, which project to the cochlea from the superior olivary nucleus of the brainstem, have a central role in the cochlear efferent feedback system. The efferent feedback system via MOC neurons is called the MOC feedback system. Neural activity of MOC neurons includes adjustment of the dynamic range of hearing, protection from acoustic trauma, and signal detection in a noisy environment, and MOC neuron activation includes activation of these neural activities. It will be done.
音(物理的な空気の振動)が外耳道に入ると、鼓膜と耳小骨で内リンパ液の振動に変換され、さらに内耳では内リンパ液の振動が基底膜と呼ばれる膜を振動させる。基底膜の振動は更に基底膜上にあるコルチ器の有毛細胞の感覚毛を振動させ、音の周波数に応じて対応する部位の基底膜が振動する。有毛細胞の感覚毛が振動すると、物理的な信号を電気信号に変換させるイオンチャネルが開閉する。そこで発生した電気的シグナルが、求心性神経のシグナルとして脳に音の情報を伝える。 When sound (physical air vibrations) enters the ear canal, it is converted into vibrations of endolymph fluid in the eardrum and ossicles, and in the inner ear, the vibrations of endolymph fluid cause a membrane called the basilar membrane to vibrate. The vibration of the basilar membrane further vibrates the sensory hairs of the hair cells of the organ of Corti on the basilar membrane, and the basilar membrane of the corresponding region vibrates in response to the frequency of the sound. When the sensory hairs of hair cells vibrate, ion channels that convert physical signals into electrical signals open and close. The electrical signals generated there transmit sound information to the brain as signals from afferent nerves.
音が脳に情報を伝える過程で、MOCニューロンを介するMOCフィードバックシステムの機能として、主に2つの機能が存在する。その一つの機能は、強大音に対応する強すぎる基底膜の振動により有毛細胞等が損傷しないように基底膜の揺れを抑える機能である。もう一つの機能は、特定の周波数に対応する基底膜の振動を増幅および抑制する機能である。例えば会話のためには人の声の周波数領域に対応する基底膜の振動を増幅し、周りの車の音など雑音の周波数領域に対応する基底膜の振動を抑える。 In the process of sound conveying information to the brain, there are two main functions of the MOC feedback system via MOC neurons. One of its functions is to suppress the vibration of the basement membrane so that hair cells and the like are not damaged due to the excessive vibration of the basement membrane in response to strong and loud noises. Another function is to amplify and suppress vibrations of the basement membrane that correspond to specific frequencies. For example, for conversation, the vibrations of the basilar membrane that correspond to the frequency range of the human voice are amplified, and the vibrations of the basilar membrane that correspond to the frequency range of noise such as the sounds of surrounding cars are suppressed.
本発明の組成物は、MOCニューロンを介するMOCフィードバックシステムを活性化することにより、該システムの機能を向上させてMOCニューロンが関与する聴覚障害の予防または治療を可能にする。本発明におけるMOCニューロンが関与する聴覚障害とは、MOCニューロンを介するMOCフィードバックシステムの機能の低下もしくは不十分による障害である。MOCニューロンが関与する聴覚障害には、音響外傷や加齢などによる感音難聴が含まれる。感音難聴には、聴力低下、聴力が正常であっても雑音環境下での不十分な語音弁別能、聴力低下を伴う雑音環境下での不十分な語音弁別能、耳鳴り、聴覚過敏等が含まれる。本発明の組成物は、感音難聴の予防または治療を可能にし、音響外傷、加齢性難聴、および聴力が正常であっても雑音環境下での不十分な語音弁別能の予防または治療に好適に用いられ得る。 By activating the MOC feedback system via MOC neurons, the composition of the present invention improves the function of the system, making it possible to prevent or treat hearing disorders involving MOC neurons. In the present invention, a hearing disorder involving MOC neurons is a disorder due to decreased or insufficient function of the MOC feedback system via MOC neurons. Hearing disorders involving MOC neurons include sensorineural hearing loss due to acoustic trauma, aging, etc. Sensorineural hearing loss includes hearing loss, insufficient speech discrimination ability in a noisy environment even if hearing is normal, insufficient speech discrimination ability in a noisy environment accompanied by hearing loss, tinnitus, hyperacusis, etc. included. The compositions of the present invention enable the prevention or treatment of sensorineural hearing loss, acoustic trauma, age-related hearing loss, and poor speech discrimination ability in a noisy environment even when hearing is normal. It can be suitably used.
本発明において、聴力低下とは、聴力が正常に比べて劣っている状態であり、聴力閾値が上昇した状態である。平均聴力レベルが25dB未満であれば聴力は正常であるとされている。 In the present invention, hearing loss is a state in which hearing ability is inferior to normal, and a state in which the hearing threshold is increased. Hearing is considered normal if the average hearing level is less than 25 dB.
中耳が障害されて生じる伝音難聴は、慢性中耳炎や耳小骨奇形などが原因となり、これらの難聴は手術等による治療が可能である。一方、内耳が障害されて生じる感音難聴は、騒音、加齢等が原因となり、治療は対症療法となり根治は難しい。MOCニューロンを介するMOCフィードバックシステムの機能の低下もしくは不十分による聴覚障害には、内耳が障害されて生じる感音難聴が含まれる。 Conductive hearing loss caused by damage to the middle ear is caused by chronic otitis media, ossicular malformation, and the like, and these hearing losses can be treated by surgery or the like. On the other hand, sensorineural hearing loss caused by damage to the inner ear is caused by noise, aging, etc., and treatment is symptomatic and a complete cure is difficult. Hearing disorders due to decreased or insufficient function of the MOC feedback system via MOC neurons include sensorineural hearing loss caused by damage to the inner ear.
本発明の組成物は、感音難聴の予防または治療を可能にする。感音難聴は、内耳が障害されて生じる難聴である。感音難聴には、音響外傷、加齢性難聴等が含まれる。症状は、聴力低下、聴力が正常であっても雑音環境下での不十分な語音弁別能、聴力低下を伴う雑音環境下での不十分な語音弁別能、耳鳴り、聴覚過敏等が含まれる。これら症状には、MOCニューロンを介するMOCフィードバックシステムの機能の低下もしくは不十分が大きく関与している。 The compositions of the invention allow prevention or treatment of sensorineural hearing loss. Sensorineural hearing loss is hearing loss caused by damage to the inner ear. Sensorineural hearing loss includes acoustic trauma, age-related hearing loss, etc. Symptoms include hearing loss, insufficient speech discrimination ability in a noisy environment even with normal hearing ability, insufficient speech discrimination ability in a noisy environment accompanied by hearing loss, tinnitus, and hyperacusis. These symptoms are largely related to decreased or insufficient function of the MOC feedback system mediated by MOC neurons.
本発明の組成物は、音響外傷の予防または治療を可能にする。音響外傷は強大音暴露によって感音性難聴を来す疾患である。本発明における音響外傷には慢性音響外傷と急性音響外傷が含まれる。慢性音響外傷は騒音性難聴とも呼ばれる。音響外傷の症状には、聴力低下、雑音環境下での不十分な語音弁別能、耳鳴り、聴覚過敏等が含まれる。音響外傷(強大音暴露による聴力低下)には、騒音性難聴、ヘッドホンやイヤホン等の音響機器による難聴、コンサートやライブによる難聴、および爆発音等による難聴等が含まれる。本発明の組成物は、強大音暴露による聴力低下、すなわち音響外傷における聴力低下の予防および治療に好適に用いられ得る。 The compositions of the invention enable the prevention or treatment of acoustic trauma. Acoustic trauma is a disease that causes sensorineural hearing loss due to exposure to powerful sounds. Acoustic trauma in the present invention includes chronic acoustic trauma and acute acoustic trauma. Chronic acoustic trauma is also called noise-induced hearing loss. Symptoms of acoustic trauma include hearing loss, poor speech discrimination in noisy environments, tinnitus, and hyperacusis. Acoustic trauma (hearing loss due to exposure to loud noises) includes noise-induced hearing loss, hearing loss due to audio equipment such as headphones and earphones, hearing loss due to concerts and live performances, and hearing loss due to explosion sounds, etc. The composition of the present invention can be suitably used for the prevention and treatment of hearing loss due to exposure to loud sounds, that is, hearing loss due to acoustic trauma.
本発明の組成物は、加齢性難聴の予防または治療を可能にする。加齢性難聴の症状には、聴力低下、雑音環境下での不十分な語音弁別能、小さい音が聞こえず、大きな音がうるさく不快である(ダイナミックレンジが狭い)、耳鳴り、聴覚過敏等の症状が含まれる。また、聴力がさほど低下していない場合でも雑音環境下における語音弁別能が低下している場合が多い。本発明の組成物は、加齢性難聴における聴力低下の予防または治療に好適に用いられ得る。また、本発明の組成物は、加齢性難聴における聴力が正常であっても雑音環境下での不十分な語音弁別能の予防または治療に好適に用いられ得る。また、本発明の組成物は加齢性難聴における聴力低下を伴う雑音環境下での不十分な語音弁別能の予防または治療に好適に用いられ得る。 The compositions of the invention enable the prevention or treatment of age-related hearing loss. Symptoms of age-related hearing loss include hearing loss, insufficient speech discrimination ability in noisy environments, inability to hear small sounds and loud and unpleasant sounds (narrow dynamic range), tinnitus, and hyperacusis. Symptoms included. Furthermore, even in cases where hearing ability has not deteriorated significantly, the ability to discriminate speech in a noisy environment is often impaired. The composition of the present invention can be suitably used for the prevention or treatment of hearing loss due to age-related hearing loss. Furthermore, the composition of the present invention can be suitably used for the prevention or treatment of insufficient speech discrimination ability in a noisy environment even when hearing is normal due to age-related hearing loss. Furthermore, the composition of the present invention can be suitably used for the prevention or treatment of insufficient speech discrimination ability in a noisy environment accompanied by hearing loss due to age-related hearing loss.
本発明における雑音環境下での不十分な語音弁別能とは、雑音の中でうまく会話が聞き取れない、声は聞こえているが内容が理解できない等の症状であり、聴力低下を伴わない場合(聴力が正常な場合)と聴力低下を伴う場合を含む。MOCニューロンを介するMOCフィードバックシステムは、会話のために人の声の周波数領域に対応する基底膜の振動を増幅し、周りの車の音など雑音の周波数領域に対応する基底膜の振動を抑える機能を有することから、5-HT3受容体アゴニストによるMOCニューロンの活性化により、雑音環境下での不十分な語音弁別能を改善し得る。本発明の組成物は、雑音環境下での不十分な語音弁別能の予防または治療に好適に用いられ得、聴力が正常であっても雑音環境下での不十分な語音弁別能の予防または治療にさらに好適に用いられ得る。 In the present invention, insufficient speech discrimination ability in a noisy environment refers to symptoms such as not being able to understand conversations well in noise, or being unable to understand the content although hearing voices, and in cases where there is no hearing loss ( cases with normal hearing) and cases with hearing loss. The MOC feedback system via MOC neurons has the function of amplifying the vibrations of the basilar membrane corresponding to the frequency range of human voices for conversation, and suppressing the vibrations of the basilar membrane corresponding to the frequency range of noise such as the sound of surrounding cars. Therefore, activation of MOC neurons by a 5-HT3 receptor agonist can improve the insufficient speech discrimination ability in a noisy environment. The composition of the present invention can be suitably used for the prevention or treatment of insufficient speech discrimination ability in a noisy environment, and can be suitably used for preventing or treating insufficient speech discrimination ability in a noisy environment even if hearing is normal. It can be further suitably used for treatment.
5-HT3受容体はMOCフィードバックシステムで基本的な役割を果たし、強大音暴露による聴力低下に関与している。5-HT3受容体の刺激は、強大音暴露による聴力低下とリボンシナプスの喪失を軽減し、MOCフィードバックシステムによる蝸牛保護を強化する。したがって、5-HT3受容体を介したMOCニューロン活性の薬理学的増強は、強大音暴露による聴覚障害の予防と治療を可能にする。正常な聴力を伴う機能的聴覚障害(例えば、強大音暴露による聴覚障害および加齢性聴覚障害)を有する患者は、しばしば、雑音環境での不十分な語音弁別能と、耳鳴りおよび聴覚過敏を含む知覚異常などの聴覚症状を呈する。蝸牛シナプトパチーは、これらの聴覚障害の病態生理と関連することが示唆されており、MOCフィードバックシステム機能障害が原因の一つとして関係している(Guinan JJ Jr. Ear Hear. 2006;27:589-607, Maison SF et al. J Neurosci. 2013;33:5542-5552)。したがって、5-HT3受容体は、MOCフィードバックシステムの機能障害に関連する聴覚症状の治療のための重要な治療標的となり得、5-HT3受容体アゴニストによる予防と治療が可能になる。 5-HT3 receptors play a fundamental role in the MOC feedback system and are involved in hearing loss due to exposure to high-intensity sounds. Stimulation of 5-HT3 receptors attenuates hearing loss and loss of ribbon synapses due to high-intensity sound exposure and enhances cochlear protection by the MOC feedback system. Therefore, pharmacological enhancement of MOC neuron activity via 5-HT3 receptors allows for the prevention and treatment of hearing loss caused by exposure to high-intensity sounds. Patients with functional hearing loss (e.g., loud sound exposure hearing loss and age-related hearing loss) with normal hearing often have poor speech discrimination in noisy environments, including tinnitus and hyperacusis. The patient exhibits auditory symptoms such as paresthesia. Cochlear synaptopathy has been suggested to be related to the pathophysiology of these hearing disorders, and dysfunction of the MOC feedback system is implicated as one of the causes (Guinan JJ Jr. Ear Hear. 2006;27:589- 607, Maison SF et al. J Neurosci. 2013;33:5542-5552). Therefore, 5-HT3 receptors may be an important therapeutic target for the treatment of auditory symptoms associated with dysfunction of the MOC feedback system, allowing for prevention and treatment with 5-HT3 receptor agonists.
本発明における予防または治療用組成物には、予防する組成物、治療する組成物、及び予防及び治療する組成物が含まれる。 The prophylactic or therapeutic composition in the present invention includes a prophylactic composition, a therapeutic composition, and a prophylactic and therapeutic composition.
本発明における予防または治療には、聴覚障害に係る1つ以上の症状について、発症の予防、症状の改善、症状の増悪の抑制、症状の再発防止、症状の早期回復等を含む。本発明の組成物は、好ましくは治療用組成物であり得る。治療用組成物は、症状の発症の予防、症状の改善、症状の増悪の抑制、症状の再発防止、症状の早期回復等を目的として投与される組成物である。 Prevention or treatment in the present invention includes prevention of onset, improvement of symptoms, suppression of exacerbation of symptoms, prevention of recurrence of symptoms, early recovery of symptoms, etc. with respect to one or more symptoms related to hearing impairment. The composition of the invention may preferably be a therapeutic composition. A therapeutic composition is a composition that is administered for the purpose of preventing the onset of symptoms, improving symptoms, suppressing exacerbation of symptoms, preventing recurrence of symptoms, early recovery of symptoms, and the like.
本発明の組成物は、有効成分として2種以上のセロトニン3受容体アゴニストを含有していてもよい。本発明の組成物は、セロトニン3受容体アゴニスト以外の聴覚障害治療薬を含有していてもよい。また、本発明の組成物は、聴覚障害治療薬以外の薬物を含有していてもよい。 The composition of the present invention may contain two or more types of serotonin 3 receptor agonists as active ingredients. The composition of the present invention may contain a hearing impairment therapeutic other than a serotonin 3 receptor agonist. Furthermore, the composition of the present invention may contain drugs other than the hearing impairment therapeutic.
本発明の組成物は、有効成分であるセロトニン3受容体アゴニストと、医薬的に許容される担体を含むことができる。その様な担体としては、賦形剤(例えば、マンニトール、ソルビトールの如き糖誘導体;トウモロコシデンプン、バレイショデンプンの如きデンプン誘導体;または、結晶セルロースの如きセルロース誘導体等)、滑沢剤(例えば、ステアリン酸マグネシウムの如きステアリン酸金属塩;またはタルク等)、結合剤(例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、またはポリビニルピロリドン等)、崩壊剤(例えば、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウムの如きセルロース誘導体等)、水、防腐剤(例えば、メチルパラベン、プロピルパラベンの如きパラオキシ安息香酸エステル類;またはクロロブタノール、ベンジルアルコールの如きアルコール類等)、pH調整剤(例えば、塩酸、硫酸またはリン酸等の無機酸、酢酸、コハク酸、フマル酸またはリンゴ酸等の有機酸、あるいはこれらの塩等)、ならびに希釈剤(例えば、注射用水等)等の通常使用される医薬製剤用担体を、単独または2種以上を混合して配合することができる。本発明の組成物には有効成分を水に溶解させた液剤を含む。 The composition of the present invention can include a serotonin 3 receptor agonist as an active ingredient and a pharmaceutically acceptable carrier. Such carriers include excipients (for example, sugar derivatives such as mannitol and sorbitol; starch derivatives such as corn starch and potato starch; or cellulose derivatives such as crystalline cellulose), lubricants (for example, stearic acid metal stearates such as magnesium; or talc, etc.), binders (e.g., hydroxypropylcellulose, hydroxypropylmethylcellulose, or polyvinylpyrrolidone, etc.), disintegrants (e.g., cellulose derivatives such as carboxymethylcellulose, carboxymethylcellulose calcium, etc.), Water, preservatives (e.g. paraoxybenzoic acid esters such as methylparaben, propylparaben; or alcohols such as chlorobutanol, benzyl alcohol, etc.), pH adjusters (e.g. inorganic acids such as hydrochloric acid, sulfuric acid or phosphoric acid, acetic acid) , organic acids such as succinic acid, fumaric acid, or malic acid, or their salts), and commonly used carriers for pharmaceutical preparations, such as diluents (e.g., water for injection, etc.), singly or in combination of two or more. It can be blended. The composition of the present invention includes a solution in which the active ingredient is dissolved in water.
本発明の有効成分であるセロトニン3受容体アゴニストは、必要に応じて上記の担体と混合した後、錠剤、顆粒剤、カプセル剤、粉末剤、溶液製剤、懸濁液製剤、もしくは乳化液剤等の剤形で経口投与することができ、または坐剤、注射剤、静脈内点滴剤、経皮剤、経粘膜剤、もしくは吸入剤等の剤形で非経口投与することができる。 The serotonin 3 receptor agonist, which is the active ingredient of the present invention, is mixed with the above-mentioned carrier as necessary, and then prepared into tablets, granules, capsules, powders, solutions, suspensions, emulsions, etc. It can be administered orally in the form of a suppository, injection, intravenous infusion, transdermal, transmucosal, or inhaled parenterally.
本発明の有効成分であるセロトニン3受容体アゴニストは、上記の剤形に製剤化した後、それを必要とする対象、例えばヒトまたは動物、好ましくはヒトに投与される。 The serotonin 3 receptor agonist, which is the active ingredient of the present invention, is formulated into the above-mentioned dosage form and then administered to a subject in need thereof, such as a human or an animal, preferably a human.
本発明の組成物は、それを必要とする対象に医薬、食品、または飲料として投与され得る。好適には医薬として投与され得る。  The composition of the present invention can be administered to a subject in need thereof as a medicine, food, or drink. Preferably, it can be administered as a medicine.​
本発明のセロトニン3受容体アゴニストの投与量および投与回数は、症状の重篤度、患者の年齢、体重、性別、薬物の種類、剤形、投与経路等の条件によって適宜変化し得る。ヒトに投与する場合、有効成分は、例えば非経口的には皮下、静脈内、腹腔内、筋肉内、または直腸内等に、1回の投与当たり、約0.01~10mg/kg体重、好ましくは約0.1~5mg/kg体重、特に好ましくは約0.3~3mg/kg体重、また経口的には約0.01~100mg/kg体重、好ましくは約0.1~50mg/kg体重、特に好ましくは約1~30mg/kg体重投与される。また、投与回数は、1日当たり1回または複数回、例えば1日当たり1~3回、1~2回、または1回であってよい。 The dosage and frequency of administration of the serotonin 3 receptor agonist of the present invention can be changed as appropriate depending on conditions such as the severity of symptoms, age, weight, sex of the patient, type of drug, dosage form, and route of administration. When administered to humans, the active ingredient is administered parenterally, such as subcutaneously, intravenously, intraperitoneally, intramuscularly, or intrarectally, at a dose of about 0.01 to 10 mg/kg body weight, preferably about 0.01 to 10 mg/kg body weight per administration. about 0.1 to 5 mg/kg body weight, particularly preferably about 0.3 to 3 mg/kg body weight, and orally about 0.01 to 100 mg/kg body weight, preferably about 0.1 to 50 mg/kg body weight. , particularly preferably about 1 to 30 mg/kg body weight. The frequency of administration may also be one or more times per day, such as 1 to 3 times, 1 to 2 times, or once per day.
本発明のセロトニン3受容体アゴニストは、公知の方法に従って製造できる。例えば、式(I)で示される化合物またはその医薬的に許容し得る塩は、特許文献1に記載の方法で製造することができる。また、化合物H、I、J、K、L、M、N、OもしくはPは国際公開公報WO2016/027757に記載の方法で製造することができる。化合物A、B、C、D、E、F、またはGは市販のものを用いることもできる。 The serotonin 3 receptor agonist of the present invention can be produced according to known methods. For example, the compound represented by formula (I) or a pharmaceutically acceptable salt thereof can be produced by the method described in Patent Document 1. Moreover, compound H, I, J, K, L, M, N, O or P can be manufactured by the method described in International Publication No. WO2016/027757. Commercially available compounds can also be used as compounds A, B, C, D, E, F, or G.
本発明は、また、セロトニン3受容体アゴニスト活性を測定する工程を含む、感音難聴の予防または治療用化合物のスクリーニング方法の発明に関する。該感音難聴の予防または治療用化合物は、好適には、音響外傷または加齢性難聴の予防または治療用化合物である。より好適には強大音暴露による聴力低下の予防または治療用化合物である。 The present invention also relates to a method for screening a compound for prevention or treatment of sensorineural hearing loss, which comprises a step of measuring serotonin 3 receptor agonist activity. The compound for preventing or treating sensorineural hearing loss is preferably a compound for preventing or treating acoustic trauma or age-related hearing loss. More preferably, it is a compound for preventing or treating hearing loss due to exposure to loud noises.
さらに本発明は、セロトニン3受容体アゴニスト活性を測定する工程を含む、MOCニューロン活性化化合物、またはMOCニューロンが関与する聴覚障害を予防または治療するための化合物のスクリーニング方法に関する。 Furthermore, the present invention relates to a method of screening for a MOC neuron activating compound or a compound for preventing or treating a hearing disorder involving MOC neurons, which comprises the step of measuring serotonin 3 receptor agonist activity.
本発明のスクリーニング方法は、例えば化合物ライブラリーについてセロトニン3受容体アゴニスト活性を測定する工程を含む。化合物ライブラリーは、公知のものでも公知でないものでもよい。公知の化合物ライブラリーとしては、既に食品(例えば、米国食品医薬品局(FDA))または医薬品(例えば、欧州医薬品審査庁(EMEA))の承認を得た化合物を集めた化合物ライブラリー(例えば、PRESTWICK  CHEMICALライブラリー)(これは、特許期間が満了した化合物を集めたものである)、および未だそれら食品または医薬品の承認を得ていない化合物を集めた化合物ライブラリー等が挙げられる。 The screening method of the present invention includes, for example, the step of measuring serotonin 3 receptor agonist activity for a compound library. The compound library may be known or unknown. Known compound libraries include compound libraries that have already been approved by food (e.g., U.S. Food and Drug Administration (FDA)) or drugs (e.g., European Medicines Agency (EMEA)) (e.g., PRESTWICK). Chemical libraries) (this is a collection of compounds whose patent terms have expired), and compound libraries that are a collection of compounds that have not yet been approved for food or medicine.
また、セロトニン3受容体アゴニスト活性を測定する方法として、細胞(アフリカツメガエルの卵母細胞やHEK293細胞等)にセロトニン3受容体のサブユニットであるA、またはAおよびBのcDNAを細胞に発現させ、電気生理学的に細胞内に流入する電流を計測する方法(Nakamura  Y  et  al. Biochem  Biophys  Res  Commun.  415(2)  (2011)  416-20)やfluorescent  membrane-potential  sensitive  dyeを使用して蛍光強度を計測することによって細胞内に流入する電流を計測する方法(Lummis  S  et al.  Neuropharmacology  73  (2013)  241-246)等が挙げられる。いずれの方法においても、化合物を細胞に投与することで得られる応答を調べることにより、セロトニン3受容体アゴニスト活性を測定することができる。 In addition, as a method for measuring serotonin 3 receptor agonist activity, cells (Xenopus oocytes, HEK293 cells, etc.) are made to express cDNA of serotonin 3 receptor subunit A, or A and B. , a method of electrophysiologically measuring the current flowing into cells (Nakamura Y et al. Biochem Biophys Res Commun. 415(2) (2011) 416-20) and fluorescent membrane-poten Fluorescence intensity using tial sensitive dye Examples include a method of measuring the current flowing into the cell by measuring the current flowing into the cell (Lummis et al. Neuropharmacology 73 (2013) 241-246). In either method, serotonin 3 receptor agonist activity can be measured by administering the compound to cells and examining the response obtained.
本発明のスクリーニング方法は、測定したセロトニン3受容体アゴニスト活性に基づいて化合物を選別する工程をさらに含んでもよい。 The screening method of the present invention may further include the step of selecting compounds based on the measured serotonin 3 receptor agonist activity.
本発明のスクリーニング方法で得られた化合物は、セロトニン3受容体アゴニスト活性を有し、MOCニューロンを活性化することができ、また、MOCニューロンが関与する聴覚障害の予防または治療および感音難聴の予防または治療に用いることができる。 The compounds obtained by the screening method of the present invention have serotonin 3 receptor agonist activity and can activate MOC neurons, and also prevent or treat hearing disorders involving MOC neurons and sensorineural hearing loss. It can be used for prevention or treatment.
以下に、実施例と試験例を挙げて本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be explained in more detail below with reference to Examples and Test Examples, but the present invention is not limited thereto.
<実施例1>
SR57227A(TOCRIS、化合物Aの塩酸塩)を生理食塩水に溶解し注射用製剤(0.5mg/ml)を作製した。
<Example 1>
SR57227A (TOCRIS, hydrochloride of compound A) was dissolved in physiological saline to prepare an injection preparation (0.5 mg/ml).
<試験例> <Test example>
1.素材と方法 1. Materials and methods
<1.1 動物> 
5-HT3A受容体欠損(Htr3a-/-)マウス(RRID:IMSR_JAX:005251)(Zeitz et al. J Neurosci. 2002;22:1010-1019)と5-HT3AR-EGFP(Enhanced green fluorescent protein)トランスジェニックレポーターマウス(RRID:MMRRC_000273-UNC)(Chittajallu et al. Nat Neurosci. 2013;16:1598-1607)を、それぞれ、Jackson Laboratory(Bar Harbor, ME, USA)と Mutant Mouse Regional Resource Center (Chapel Hill, NC, USA) から入手した。以前の報告(Kondo et al. Mol Psychiatry. 2018;23:833-842)と同様にHtr3a-/-マウスを少なくとも10世代にわたりC57BL/6Jのマウスと戻し交配した。5-HT3Aは機能的な受容体の形成に必須であることから、Htr3a-/-マウスは、5-HT3受容体の機能が欠損したマウスである。我々は7週齢、雄の野生型(C57BL/6J)とHtr3a-/-マウス、そして7-12週齢、雄の5-HT3AR-EGFPトランスジェニックレポーターマウスを使った。我々の以前の研究は、EGFP発現が5-HT3AR-EGFPトランスジェニックレポーターマウスにおける正常な5-HT3受容体発現を反映することを示した(Koyama et al. Sci Rep. 2017;7:42884)。すべてのマウスを23-25℃で、コントロールされた明暗サイクルの下に置き、標準的な実験用の餌と水を自由に摂取させた。すべてのマウスは各実験において種々の処置群に無作為に割り当てられた。
<1.1 Animals>
5-HT3A receptor-deficient (Htr3a −/− ) mice (RRID:IMSR_JAX:005251) (Zeitz et al. J Neurosci. 2002;22:1010-1019) and 5-HT3AR-EGFP (Enhanced green fluorescent protein) transgenic Reporter mice (RRID: MMRRC_000273-UNC) (Chittajallu et al. Nat Neurosci. 2013;16:1598-1607) were incubated at Jackson Laboratory (Bar Harbor, ME, USA) and Mutant Mouse Regional Resource Center (Chapel Hill, NC), respectively. , USA). Htr3a −/− mice were backcrossed with C57BL/6J mice for at least 10 generations as previously reported (Kondo et al. Mol Psychiatry. 2018;23:833-842). Since 5-HT3A is essential for the formation of a functional receptor, Htr3a −/− mice are mice deficient in 5-HT3 receptor function. We used 7-week-old male wild-type (C57BL/6J) and Htr3a −/− mice and 7-12-week-old male 5-HT3AR-EGFP transgenic reporter mice. Our previous study showed that EGFP expression reflects normal 5-HT3 receptor expression in 5-HT3AR-EGFP transgenic reporter mice (Koyama et al. Sci Rep. 2017;7:42884). All mice were kept at 23-25°C under a controlled light-dark cycle and had standard laboratory chow and water ad libitum. All mice were randomly assigned to various treatment groups in each experiment.
<1.2 強大音暴露>
天井にスピーカー(MF1-M, Tucker-Davis Technologies, Alachua, FL, USA)が設置された特別に設計された防音ボックス(50×50×55cm)内で、動物は、4時間、95dBの音圧レベル(SPL)で1-50kHzの広帯域強大音にさらされた。強大音暴露の間、動物はケージの中で起きていて、抑制されていなかった。1-4匹のマウスを各ケージに入れ、1つまたは2つのケージを同時に暴露した。電気ガウス強大音はパワー増幅(SA1 Stereo power amp, Tucker-Davis Technologies)後にスピーカーを通して伝えられた。SPLを各音暴露の直前に較正した。SPLはボックス内のケージ内で1dB以内で変化した。
<1.2 Strong sound exposure>
Animals were exposed to a sound pressure of 95 dB for 4 hours in a specially designed soundproof box (50 x 50 x 55 cm) with ceiling-mounted speakers (MF1-M, Tucker-Davis Technologies, Alachua, FL, USA). Subjects were exposed to broadband high-intensity sound from 1 to 50 kHz (SPL). During loud sound exposure, animals were awake and unrestrained in their cages. 1-4 mice were placed in each cage and one or two cages were exposed simultaneously. The electric Gaussian loud sound was transmitted through the loudspeaker after power amplification (SA1 Stereo power amp, Tucker-Davis Technologies). SPL was calibrated immediately before each sound exposure. SPL varied within 1 dB within the cage within the box.
<1.3 蝸牛の機能テスト>
聴性脳幹反応(ABR):マウスを100mg/kgケタミンと10mg/kgキシラジンにより麻酔した。針電極を頭頂と耳介に挿入し、接地電極を尾部の近くに設置した。ABR用のTDTハードウェア(Tucker-Davis Technologies)を刺激発生とバイオシグナル取得のために使用した。我々は、持続時間100μs、トーン8kHzと16kHz、および0.1ms線形上昇と下降包絡線(envelope)を持つバーストの交互極性クリック刺激を用いた。トーンバーストの持続は1msであった。上記の定義に基づいたABR振幅の自動化決定のためのアルゴリズムはバイオリサーチセンター(名古屋、日本)によって開発された(Hanada et al. Sci Rep. 2018;8:11491)。波形が再現可能な形態を失うまで刺激強度を5dBのステップで減少させて(SPL80dBから5dB未満まで)閾値を決定した。各サウンドレベルで、1024の反応が平均化された。
<1.3 Cochlea function test>
Auditory brainstem response (ABR): Mice were anesthetized with 100 mg/kg ketamine and 10 mg/kg xylazine. Needle electrodes were inserted into the top of the head and pinnae, and a ground electrode was placed near the tail. TDT hardware for ABR (Tucker-Davis Technologies) was used for stimulus generation and biosignal acquisition. We used alternating polarity click stimuli of 100 μs duration, tones of 8 kHz and 16 kHz, and bursts with 0.1 ms linear rising and falling envelopes. The tone burst duration was 1 ms. An algorithm for automated determination of ABR amplitude based on the above definition was developed by the BioResearch Center (Nagoya, Japan) (Hanada et al. Sci Rep. 2018;8:11491). Thresholds were determined by decreasing the stimulus intensity in 5 dB steps (from 80 dB SPL to less than 5 dB) until the waveform lost its reproducible morphology. At each sound level, 1024 responses were averaged.
歪成分耳音響放射(DPOAE):各マウスの外耳道は、DPOAEを表す音圧の変化を検出するために使用される小さなマイクロフォンに結合された。DP-2000(モリタ、京都、日本)を使用し、4000Hzから16000Hzの間の13のf2周波数(周波数比率f2/f1=1.2)で、f1=65dB SPLとf2=55dB SPLの一定のレベルでプライマリートーンに対するDPOAEが記録された。2f1-f2でのDPOAE反応と周辺の強大音フロアの振幅が外耳道音圧測定から抽出された(Kujawa et al. J Neurosci. 2009;29:14077-14085)。DPOAE対側の抑制(CS)のために、ワイドバンド強大音(3-30kHz帯域幅)を55dBで反対側の耳に提供した。55dBのレベルが選ばれたのは、55dBがマウスや他の齧歯類の中耳反射より低いレベルであるからである。CSの大きさは、各テスト周波数における反対側の音に伴う歪成分(DP)(dBSPL)から静かな条件の下での歪成分(DP)(dBSPL)を差し引くことによって計算および定義された。 Distortion Product Otoacoustic Emissions (DPOAEs): The ear canal of each mouse was coupled to a small microphone used to detect changes in sound pressure representing DPOAEs. Using DP-2000 (Morita, Kyoto, Japan), 13 f2 frequencies between 4000 Hz and 16000 Hz (frequency ratio f2/f1 = 1.2) with constant levels of f1 = 65 dB SPL and f2 = 55 dB SPL. The DPOAE for the primary tone was recorded. The DPOAE response at 2f1-f2 and the amplitude of the surrounding loud sound floor were extracted from ear canal sound pressure measurements (Kujawa et al. J Neurosci. 2009;29:14077-14085). For contralateral suppression (CS) of DPOAE, a wideband high-intensity sound (3-30 kHz bandwidth) was delivered to the contralateral ear at 55 dB. A level of 55 dB was chosen because 55 dB is a level below the middle ear reflex of mice and other rodents. The magnitude of the CS was calculated and defined by subtracting the distortion component (DP) (dBSPL) under quiet conditions from the distortion component (DP) (dBSPL) associated with the contralateral sound at each test frequency.
5-HT3受容体の薬物による刺激のために、マウスに、生理食塩水または5mg/kgのSR57227A [4-amino-1-(6-chloro-2-pyridyl)-piperidine hydrochloride, Sigma, USA; Cat# S1688](選択的5-HT3受容体アゴニスト)を強大音暴露30分前に腹腔内投与した。そして、強大音暴露7日後に、上記のようにDPOAEとABRテストを行なった。 For drug stimulation of 5-HT3 receptors, mice were treated with saline or 5 mg/kg of SR57227A [4-amino-1-(6-chloro-2-pyridyl)-piperidine hydrochloride, Sigma, USA; Cat # S1688] (selective 5-HT3 receptor agonist) was administered intraperitoneally 30 minutes before exposure to loud noise. Then, 7 days after the exposure to intense sound, DPOAE and ABR tests were conducted as described above.
<1.4 蝸牛ホールマウントの調製と免疫染色> <1.4 Preparation of cochlear whole mount and immunostaining>
単離した蝸牛は0.1Mのリン酸緩衝液(PBS)中4%のパラホルムアルデヒドで2h固定化され、4日間10%EDTAで脱灰された(Hanada et al. Sci Rep. 2018;8:11491)。コルチ器を含んでいる基底膜は顕微解剖され、基部(basal)、中間部(middle)および頂部(apical)の3領域に分割された(Boero et al. J Neurosci.2018;38:7440-7451)。顕微解剖された切片は、GFPに対する抗体(chicken; Abcam, UK; 1:1000; Cat# ab13970, RRID: AB_300798)とコリンアセチルトランスフェラーゼ(ChAT)に対する抗体(goat; Merck Millipore, USA; 1:200; Cat# AB144P, RRID: AB_2079751)で免疫染色された。また、切片は核染料 4',6-diamidino-2-phenylindole (DAPI; Thermo Fisher Scientific, USA; Cat# D1306,RRID: AB_2629482) で染色された。標本の画像はLSM880共焦点レーザー走査顕微鏡 (Carl Zeiss, Jena, Germany)で取得された。画像は、高解像度の油浸対物レンズ(63×、開口数1.3)を使用して1024×1024ラスターで収集された。画像は画像処理ソフトウェア(ZEN、Carl Zeiss)にロードされた。緑、赤、青のチャネルを個別に分析し、最大の投影を生成した。各チャネルからの最大投影がマージされ、三重画像に変換された。 The isolated cochlea was fixed with 4% paraformaldehyde in 0.1 M phosphate buffer (PBS) for 2 h and decalcified with 10% EDTA for 4 days (Hanada et al. Sci Rep. 2018;8: 11491). The basement membrane containing the organ of Corti was microdissected and divided into three regions: basal, middle, and apical (Boero et al. J Neurosci.2018;38:7440-7451 ). Microdissected sections were treated with antibodies against GFP (chicken; Abcam, UK; 1:1000; Cat# ab13970, RRID: AB_300798) and choline acetyltransferase (ChAT) (goat; Merck Millipore, USA; 1:200; Immunostained with Cat# AB144P, RRID: AB_2079751). Sections were also stained with the nuclear dye 4',6-diamidino-2-phenylindole (DAPI; Thermo Fisher Scientific, USA; Cat# D1306, RRID: AB_2629482). Images of the specimens were acquired with an LSM880 confocal laser scanning microscope (Carl Zeiss, Jena, Germany). Images were collected in a 1024×1024 raster using a high resolution oil immersion objective (63×, numerical aperture 1.3). Images were loaded into image processing software (ZEN, Carl Zeiss). The green, red, and blue channels were analyzed separately to generate the maximum projection. The maximum projections from each channel were merged and converted into triplicate images.
<1.5 蝸牛の解剖と免疫染色>
マウスを麻酔し、0.1M PBS中4%パラホルムアルデヒドで経心的に灌流した。次に、側頭骨を除去し、ポストフィックスし、脱灰した(Whitlon et ai. Brain Res Brain Res Protoc. 2001;6:159-166)。蝸牛サンプルは、クリオスタットを使用して厚さ10μmの切片に切断され、GFPおよびChATに対する抗体で免疫染色された。その切片はDAPIで対比染色された。
<1.5 Dissection and immunostaining of the cochlea>
Mice were anesthetized and perfused transcardially with 4% paraformaldehyde in 0.1 M PBS. The temporal bone was then removed, postfixed, and decalcified (Whitlon et ai. Brain Res Brain Res Protoc. 2001;6:159-166). Cochlear samples were cut into 10 μm thick sections using a cryostat and immunostained with antibodies against GFP and ChAT. The sections were counterstained with DAPI.
<1.6 蝸牛後聴覚経路のFGラベル> <1.6 FG label of retrocochlear auditory pathway>
ケタミン(100mg/kg)とキシラジン(10mg/kg)の混合物の腹腔内注射によってマウスを麻酔した。顕微鏡下で、外耳道軟骨に小さな切開を行うことによって鼓膜が視覚化された。32Gの鈍針を備えた5μLのハミルトンシリンジを使用して、0.9%の生理食塩水に溶解した3μLの5%フルオロゴールド(FG)(Sigma-Aldrich、USA; Ca# 223769-64-0)を鼓膜のinferior posterior quadrantを通してゆっくりと注入した(Dean et al. Otol Neurotol. 2012;33:1085-1091)。FG注射の5日後にマウスを犠牲にし、免疫蛍光染色のために脳全体の摘出を行った。Dean等の研究では、ニューロントレーサーの鼓室内注射は、蝸牛遠心性ニューロンを追跡するための蝸牛内注射よりも特異的で侵襲性が低いことが報告されているため、FGの鼓室内投与を行った。FG標識MOCニューロンにおけるEGFP(図1D)およびc-Fos(図3B)発現の定量分析のために、3匹のマウスからの50個のFG標識MOCニューロンを評価した。 Mice were anesthetized by intraperitoneal injection of a mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg). Under the microscope, the tympanic membrane was visualized by making a small incision in the ear canal cartilage. Using a 5 μL Hamilton syringe with a 32G blunt needle, add 3 μL of 5% Fluorogold (FG) (Sigma-Aldrich, USA; Ca# 223769-64-0) dissolved in 0.9% saline. ) was slowly injected through the inferior posterior quadrant of the tympanic membrane (Dean et al. Otol Neurotol. 2012;33:1085-1091). Mice were sacrificed 5 days after FG injection, and whole brains were removed for immunofluorescence staining. In a study by Dean et al., intratympanic injection of FG was performed because intratympanic injection of a neuron tracer was reported to be more specific and less invasive than intracochlear injection for tracking cochlear efferent neurons. Ta. For quantitative analysis of EGFP (Fig. 1D) and c-Fos (Fig. 3B) expression in FG-labeled MOC neurons, 50 FG-labeled MOC neurons from three mice were evaluated.
<1.7 c-Fos発現の免疫染色と分析>
マウスに麻酔をかけ、0.1M PBS(pH7.4)中の4%パラホルムアルデヒドで経心的に灌流した。各マウスの脳全体を取り出し、4℃、4%パラホルムアルデヒドで一晩固定し、次に4℃で0.1M PBS中の30%スクロース中に置いた(Kondo et al. Neuron. 2012;73:743-757)。次に、脳をOCT化合物に包埋し凍結した。脳サンプルは、クリオスタットによって20μmの冠状切片に切断された。0.1M PBSで洗浄した後、切片を0.3%Triton X-100/0.1M PBS中の5%ウシ血清アルブミンとともに室温でインキュベートした(Kondo et al. Mol Psychiatry. 2018;23:833-842)。続いて、切片を一次抗体とともに4℃で一晩インキュベートした。次に切片を0.1M PBSで洗浄し、適切な二次抗体とともに室温で1時間インキュベートした。画像は、BX53顕微鏡(オリンパス、東京、日本)およびBZ-X700顕微鏡(キーエンス、大阪、日本)で取得した。切片は、また、ヘマトキシリンおよびエオシンで染色された。MOCニューロンの位置は、マウス脳地図(Franklin & Paxinos  2007)に従って決定された。MOCフィードバックシステムにおけるc-Fos陽性細胞を定量化するために、各マウスの脳から4つおきの冠状切片を評価した(各マウス合計10切片)(図3E)(Ueda et al. Biochem Biophys Res Comm. 2018;506:498-503)。強大音暴露後のEGFP陽性MOCニューロンにおけるc-Fos発現を定量的に分析するために、3匹の5-HT3AR-EGFPトランスジェニックレポーターマウスからの50個のEGFP陽性細胞を評価した(図3C)。次の一次抗体を使用した:抗GFP(chicken; Abcam; 1:1000; Cat# ab13970, RRID: AB_300798)および抗c-Fos(rabbit; Santa Cruz Biotechnology, USA; 1:1000; Cat# sc-52, RRID: AB_2106783)。
<1.7 Immunostaining and analysis of c-Fos expression>
Mice were anesthetized and perfused transcardially with 4% paraformaldehyde in 0.1 M PBS (pH 7.4). The whole brain of each mouse was removed and fixed in 4% paraformaldehyde overnight at 4°C, then placed in 30% sucrose in 0.1 M PBS at 4°C (Kondo et al. Neuron. 2012;73: 743-757). The brains were then embedded in OCT compound and frozen. Brain samples were cut into 20 μm coronal sections by cryostat. After washing with 0.1M PBS, sections were incubated with 0.3% Triton X-100/5% bovine serum albumin in 0.1M PBS at room temperature (Kondo et al. Mol Psychiatry. 2018;23:833- 842). Sections were subsequently incubated with primary antibodies overnight at 4°C. Sections were then washed with 0.1 M PBS and incubated with appropriate secondary antibodies for 1 hour at room temperature. Images were acquired with a BX53 microscope (Olympus, Tokyo, Japan) and a BZ-X700 microscope (Keyence, Osaka, Japan). Sections were also stained with hematoxylin and eosin. The location of MOC neurons was determined according to the mouse brain map (Franklin & Paxinos 2007). To quantify c-Fos-positive cells in the MOC feedback system, every fourth coronal section from the brain of each mouse was evaluated (total of 10 sections per mouse) (Figure 3E) (Ueda et al. Biochem Biophys Res Comm . 2018;506:498-503). To quantitatively analyze c-Fos expression in EGFP-positive MOC neurons after high-intensity sound exposure, 50 EGFP-positive cells from three 5-HT3AR-EGFP transgenic reporter mice were evaluated (Fig. 3C). . The following primary antibodies were used: anti-GFP (chicken; Abcam; 1:1000; Cat# ab13970, RRID: AB_300798) and anti-c-Fos (rabbit; Santa Cruz Biotechnology, USA; 1:1000; Cat# sc-52 , RRID: AB_2106783).
<1.8 OHC喪失の定量>
蝸牛ホールマウントサンプルは前述のように調製した。顕微解剖された断片は、ローダミンファロイジン(Cytoskeleton; 1:500; Cat# PHDR1)で染色された。標本の画像は、LSM880共焦点レーザー走査型顕微鏡で取得した。画像は、高解像度の油浸対物レンズ(63×、開口数1.3)を使用して1024×1024ラスターで収集された。画像はZEN画像処理ソフトウェアにロードされた。外有毛細胞(OHC)の損失は、200μmの視野で評価された。強大音暴露後のOHCの数は、強大音暴露前のOHCの数のパーセンテージとして表した(Maison et al. J Neurosci. 2013;33:5542-5552)。
<1.8 Quantification of OHC loss>
Cochlear whole-mount samples were prepared as previously described. Microdissected fragments were stained with rhodamine phalloidin (Cytoskeleton; 1:500; Cat# PHDR1). Images of the specimens were acquired with an LSM880 confocal laser scanning microscope. Images were collected in a 1024×1024 raster using a high resolution oil immersion objective (63×, numerical aperture 1.3). Images were loaded into ZEN image processing software. Outer hair cell (OHC) loss was assessed in a 200 μm field. The number of OHCs after exposure to high-intensity sound was expressed as a percentage of the number of OHCs before exposure to high-intensity sound (Maison et al. J Neurosci. 2013;33:5542-5552).
<1.9 リボンシナプスの定量>
単離された蝸牛は、0.1M PBS中の4%パラホルムアルデヒドで2時間ポストフィックスされ、次に10%EDTAで4日間脱灰された。蝸牛の顕微解剖切片を、抗CtBP2抗体(mouse; BD Biosciences, USA; 1:200; Cat# 612 044, RRID: AB_399431)および抗GluA2抗体(mouse, Millipore; 1:2000; Cat# MAB397, RRID:AB_2113875)、および、適切な二次抗体で免疫染色した。標本の画像は、LSM880共焦点レーザー走査型顕微鏡で取得した。Zスタック画像は、蝸牛表面標本の各部分(基部(basal)、中間部(middle)および頂部(apical))より、下方にある内らせん神経束から約16個の内有毛細胞のシナプス極にわたって、0.25μmのzステップで取り込んだ。画像は、高解像度の油浸対物レンズ(63×、開口数1.3)、およびデジタルズーム(×2)を使用して1024×1024ラスターで収集された。画像はZEN画像処理ソフトウェアにロードされ、内有毛細胞(IHC)はCtBP2で染色された核によって識別された。緑と赤のチャネルを別々に分析し、CtBP2およびGluA2陽性点を定量化するために最大の投影を生成した。各チャネルからの最大投影がマージされ、バイナリイメージに変換された。並列するCtBP2陽性点とGluA2陽性点によって識別されるリボンシナプスの数は、CtBP2とGluA2の共局在によって手動でカウントされた。5-HT3受容体の薬理学的刺激または遮断のために、マウスに生理食塩水、5mg/kg SR57227A(選択的5-HT3受容体アゴニスト)、または3mg/kgオンダンセトロン(東京化成工業, 東京 日本; Cat# O0470)(選択的5-HT3受容体拮抗薬)を、強大音暴露の30分前に腹腔内注射した。これらの用量は、以前の報告に従って選択された(Kondo M. et al. Mol Psychiatry.  2018;23:833-842)。次に、強大音暴露の24時間後、蝸牛中央部の顕微解剖を上記のように行った。
<1.9 Quantification of ribbon synapses>
Isolated cochleae were postfixed with 4% paraformaldehyde in 0.1 M PBS for 2 hours and then decalcified with 10% EDTA for 4 days. Microdissected sections of the cochlea were treated with anti-CtBP2 antibody (mouse; BD Biosciences, USA; 1:200; Cat# 612 044, RRID: AB_399431) and anti-GluA2 antibody (mouse, Millipore; 1:2000; Cat# MAB397, RRID: AB_2113875) and immunostained with appropriate secondary antibodies. Images of the specimens were acquired with an LSM880 confocal laser scanning microscope. Z-stack images are obtained from each part of the cochlear surface preparation (basal, middle, and apical) from the inner spiral nerve bundle downward to the synaptic poles of approximately 16 inner hair cells. , with a z step of 0.25 μm. Images were collected in a 1024×1024 raster using a high-resolution oil immersion objective (63×, numerical aperture 1.3), and digital zoom (×2). Images were loaded into ZEN image processing software and inner hair cells (IHCs) were identified by CtBP2-stained nuclei. The green and red channels were analyzed separately and the maximum projection was generated to quantify CtBP2 and GluA2 positive puncta. Maximum projections from each channel were merged and converted to a binary image. The number of ribbon synapses identified by parallel CtBP2-positive puncta and GluA2-positive puncta was manually counted by colocalization of CtBP2 and GluA2. For pharmacological stimulation or blockade of 5-HT3 receptors, mice were treated with saline, 5 mg/kg SR57227A (selective 5-HT3 receptor agonist), or 3 mg/kg ondansetron (Tokyo Kasei Kogyo, Tokyo). Japan; Cat# O0470) (selective 5-HT3 receptor antagonist) was injected intraperitoneally 30 minutes before loud sound exposure. These doses were selected according to previous reports (Kondo M. et al. Mol Psychiatry. 2018;23:833-842). Next, 24 hours after exposure to intense sound, microdissection of the central cochlea was performed as described above.
<1.10 データおよび統計分析>
マウスは無作為に各実験における種々の処置群に割り当てられた。蝸牛機能検査の分析は、バイアスを排除するために自動化された。他の実験のデータ分析は盲検化された。統計分析は、図面の説明の欄で説明される。MOCフィードバックシステムにおけるc-Fos陽性細胞の数は、unpaired two-tailed Student's t-testを使用して分析された。蝸牛機能テスト(ABRおよびDPOAE)からのデータは、one-way ANOVAと、それに続くHolm-Sidak multiple comparison testによって分析された。リボンシナプスの定量は、Holm-Sidak correctionとone-way ANOVAを使用したStudent's t- testとそれに続くTukey's multiple comparison testによって分析された。OHC損失の定量は、Holm-Sidak correctionを使用したStudent's t-testによって分析された。すべての統計分析は、GraphPad Prismソフトウェアバージョン7(GraphPad Software, Inc. San Diego, CA, USA)を使用して実行された。データの平均値と標準誤差が各グラフに表示される。すべての分析で、P<0.05は統計的に有意であると見なされた。
<1.10 Data and statistical analysis>
Mice were randomly assigned to various treatment groups in each experiment. Analysis of cochlear function tests was automated to eliminate bias. Data analysis of other experiments was blinded. Statistical analysis is explained in the figure legends. The number of c-Fos positive cells in the MOC feedback system was analyzed using an unpaired two-tailed Student's t-test. Data from cochlear function tests (ABR and DPOAE) were analyzed by one-way ANOVA followed by Holm-Sidak multiple comparison test. Quantification of ribbon synapses was analyzed by Student's t-test followed by Tukey's multiple comparison test using Holm-Sidak correction and one-way ANOVA. Quantification of OHC loss was analyzed by Student's t-test using Holm-Sidak correction. All statistical analyzes were performed using GraphPad Prism software version 7 (GraphPad Software, Inc. San Diego, CA, USA). The mean and standard error of the data are displayed on each graph. For all analyses, P<0.05 was considered statistically significant.
2.結果 2. result
<2.1 蝸牛のOHCを神経支配するMOC遠心性ニューロンで、5-HT3受容体は発現する> <2.1 5-HT3 receptors are expressed in MOC efferent neurons that innervate the OHC of the cochlea>
OHCとIHCはどちらも、求心性および遠心性神経線維によって神経支配されている。求心性線維は蝸牛神経の樹状突起であり、それらの神経細胞体はらせん神経節に位置している。対照的に、遠心性線維は、MOCおよびLOCニューロンが位置する脳幹の上オリーブ核(SOC)に端を発する。MOCニューロンはOHCを神経支配するが、LOCニューロンはIHCに接触する求心性線維を神経支配する。我々は最近の研究で、SOCのニューロンに5-HT3受容体が発現していることを明らかにした(Koyama et al.  Sci Rep. 2017;7:42884)。 Both OHC and IHC are innervated by afferent and efferent nerve fibers. Afferent fibers are the dendrites of the cochlear nerve, and their neuronal cell bodies are located in the spiral ganglion. In contrast, efferent fibers originate in the superior olivary nucleus (SOC) of the brainstem, where MOC and LOC neurons are located. MOC neurons innervate the OHC, whereas LOC neurons innervate afferent fibers that contact the IHC. In a recent study, we revealed that 5-HT3 receptors are expressed in SOC neurons (Koyama et al. Sci Rep. 2017;7:42884).
5-HT3AR-EGFPトランスジェニックレポーターマウスを使用して、SOCニューロンにおける5-HT3受容体の発現パターンをより詳細に調べた。レポーターマウスの免疫組織化学的分析は、MOCニューロンでのみEGFPシグナルを示した(図1A、B)。MOCニューロンによる遠心性神経支配を確認するために、5-HT3AR-EGFPレポーターマウスへのFGの鼓室内投与により、逆行性に蝸牛聴覚経路のニューロン追跡を行った。FGラベルは注射と同側のMOCニューロンとLOCニューロンの両方で検出されたが、対側では、FGラベルはMOCニューロンでのみ観察された(図1C)。これはオリーブ蝸牛ニューロンの分岐パターンに関する以前の報告と一致している。レポーターマウスの分析は、FG標識MOCニューロンの約95%がEGFPシグナルと共局在していることを示した(3匹のマウスからの50個のFG標識MOCニューロン中47個がEGFP陽性ニューロンであった;図1D)。これは、5-HT3受容体を発現するMOCニューロンが、遠心性軸索を蝸牛に投射していることを示す。 Using 5-HT3AR-EGFP transgenic reporter mice, we investigated the expression pattern of 5-HT3 receptors in SOC neurons in more detail. Immunohistochemical analysis of reporter mice showed EGFP signals only in MOC neurons (Fig. 1A,B). To confirm efferent innervation by MOC neurons, we performed retrograde neuronal tracing of the cochlear auditory pathway by intratympanic administration of FG to 5-HT3AR-EGFP reporter mice. FG labeling was detected in both MOC and LOC neurons ipsilateral to the injection, whereas contralaterally, FG labeling was observed only in MOC neurons (Fig. 1C). This is consistent with previous reports on the branching pattern of olivocochlear neurons. Analysis of reporter mice showed that approximately 95% of FG-labeled MOC neurons colocalized with EGFP signals (47 out of 50 FG-labeled MOC neurons from 3 mice were EGFP-positive neurons). There was; Figure 1D). This indicates that MOC neurons expressing 5-HT3 receptors project efferent axons to the cochlea.
MOCニューロンの遠心性線維は、らせん神経節を通過し、コルチのトンネルを通過し、OHCとシナプス結合を形成する。5-HT3AR-EGFPレポーターマウスは、5-HT3受容体を発現する軸索と樹状突起を含むニューロン全体においてEGFPシグナルを示すので、我々はさらに、5-HT3受容体発現MOCニューロンによる蝸牛におけるOHCへの遠心性神経支配のパターンを調べた。基部(basal)、中間部(middle)および頂部(apical)の領域を含むレポーターマウスの蝸牛ホールマウント免疫染色は、コルチのトンネルを通過し、OHCに投射する神経線維におけるEGFPシグナルを明確に示した(図2A)。また、蝸牛切片の免疫染色により、EGFP陽性線維の分布を確認した(図2B)。蝸牛の遠心性線維はコリン作動性であるため、ChATは遠心性線維のマーカーとして使用される。我々の分析では、コルチのトンネルを横切り、OHCの下方に伸びる線維にChATシグナルが位置することが示された(図2A、B)。さらに、二重免疫染色により、蝸牛において、EGFP陽性線維とOHCの大きな末端がChATシグナルと共局在していることが明らかになり(図2A、B)、EGFP陽性線維がOHCに投射する遠心性線維であることが示唆された。IHCで観察されたEGFPシグナル(図2A、B)は、IHCに接触する求心性線維を神経支配するLOC線維ではなく、内側のスパイラル束のMOC線維の束である可能性がある。以上の結果は、5-HT3受容体が蝸牛のOHCを神経支配するMOC遠心性ニューロンで発現していることを示した。 The efferent fibers of MOC neurons pass through the spiral ganglion, pass through the tunnel of Corti, and form synaptic connections with OHCs. Since 5-HT3AR-EGFP reporter mice show EGFP signals throughout neurons, including axons and dendrites expressing 5-HT3 receptors, we further hypothesized that OHC in the cochlea by 5-HT3 receptor-expressing MOC neurons. We investigated the pattern of efferent innervation to. Whole-mount immunostaining of the cochlea of reporter mice, including the basal, middle, and apical regions, clearly showed EGFP signals in nerve fibers passing through the tunnel of Corti and projecting to the OHC. (Figure 2A). Furthermore, the distribution of EGFP-positive fibers was confirmed by immunostaining of cochlear sections (Fig. 2B). Since cochlear efferent fibers are cholinergic, ChAT is used as a marker for efferent fibers. Our analysis showed that ChAT signals were located in fibers extending downwards in the OHC across the tunnel of Corti (Fig. 2A,B). Furthermore, double immunostaining revealed that in the cochlea, EGFP-positive fibers and large terminals of OHCs colocalized with ChAT signals (Fig. 2A,B), indicating that EGFP-positive fibers project to OHCs It was suggested that these were sexual fibers. The EGFP signal observed in IHC (Fig. 2A,B) may be a bundle of MOC fibers in the inner spiral bundle rather than LOC fibers innervating afferent fibers contacting IHC. These results indicated that 5-HT3 receptors are expressed in MOC efferent neurons that innervate the OHC of the cochlea.
<2.2 MOCニューロンは強大音暴露によって活性化される> <2.2 MOC neurons are activated by exposure to loud sounds>
MOCフィードバック経路の活動が音響外傷からの保護に重要な役割を果たすことが報告されている。MOCニューロンの活性化を調べるために、我々は、強大音暴露後の野生型マウスで、ニューロン活性化マーカーであるc-Fosの免疫組織化学的分析を行った。強大音にさらされていない場合、c-Fos陽性細胞は検出されなかった(図3A)。対照的に、強大音暴露の1時間後に、いくつかのMOCニューロンでc-Fosの発現が検出された(図3B)。FGラベルと組み合わせたさらなる分析により、強大音暴露後1時間に、ほとんどすべてのFGラベルMOCニューロンがc-Fos陽性であることが明らかになった(3匹のマウスからの50個のFGラベルMOCニューロン中50個がc-Fos陽性ニューロンであった;図3B)。これらの結果は、OHCを神経支配するMOCニューロンが強大音暴露によって活性化されたことを示した。 It has been reported that the activity of the MOC feedback pathway plays an important role in protection from acoustic trauma. To examine the activation of MOC neurons, we performed immunohistochemical analysis of c-Fos, a neuronal activation marker, in wild-type mice after exposure to high-intensity sound. No c-Fos-positive cells were detected when not exposed to high-intensity sound (Fig. 3A). In contrast, c-Fos expression was detected in some MOC neurons 1 h after high-intensity sound exposure (Fig. 3B). Further analysis in combination with FG labeling revealed that almost all FG-labeled MOC neurons were c-Fos positive 1 h after loud sound exposure (50 FG-labeled MOCs from 3 mice). Fifty of the neurons were c-Fos positive neurons; Fig. 3B). These results indicated that MOC neurons innervating the OHC were activated by high-intensity sound exposure.
<2.3 強大音暴露によるMOCニューロンの活性化に5-HT3受容体が関与する> <2.3 5-HT3 receptors are involved in the activation of MOC neurons by exposure to high-intensity sounds>
次に、強大音暴露によるMOCニューロンの活性化と5-HT3受容体との関係を調べた。5-HT3AR-EGFPトランスジェニックレポーターマウスの免疫組織化学的分析は、強大音暴露後のEGFP陽性MOCニューロンの約70%でc-Fos発現を示した(3匹のマウスからの50個のEGFP陽性細胞中36個がc-Fos陽性細胞であった;図3C)。次に、5-HT3受容体欠損(Htr3a-/-)マウスを使用して、強大音暴露によるMOCニューロン活性化における5-HT3受容体の役割をさらに調べた。興味深いことに、c-Fos陽性MOC細胞の数は、強大音暴露後1時間で、野生型マウスよりもHtr3a-/-マウスで有意に少なかった(P=0.0209;図3D、E)。野生型マウスとHtr3a-/-マウスの間でMOC領域の総細胞数に有意差はなかった(野生型、105.6±3.70細胞/セクション;Htr3a-/-、98.4±3.76細胞/セクション、各群n=5、P=0.21、two-tailed Student's t-test)。これらの結果は、5-HT3受容体が強大音暴露によるMOCニューロンの活性化に重要な役割を果たしたことを示唆している。 Next, we investigated the relationship between activation of MOC neurons by exposure to high-intensity sound and 5-HT3 receptors. Immunohistochemical analysis of 5-HT3AR-EGFP transgenic reporter mice showed c-Fos expression in approximately 70% of EGFP-positive MOC neurons after high-intensity sound exposure (50 EGFP-positive from 3 mice Thirty-six of the cells were c-Fos positive cells; Figure 3C). Next, we further investigated the role of 5-HT3 receptors in MOC neuron activation by high-intensity sound exposure using 5-HT3 receptor-deficient (Htr3a −/− ) mice. Interestingly, the number of c-Fos-positive MOC cells was significantly lower in Htr3a −/− mice than in wild-type mice at 1 h after high-intensity sound exposure (P=0.0209; Fig. 3D,E). There was no significant difference in the total number of cells in the MOC area between wild-type and Htr3a −/− mice (wild type, 105.6 ± 3.70 cells/section; Htr3a −/− , 98.4 ± 3. 76 cells/section, n=5 in each group, P=0.21, two-tailed Student's t-test). These results suggest that 5-HT3 receptors played an important role in the activation of MOC neurons by exposure to high-intensity sound.
<2.4 Htr3a-/-マウスは、MOC機能の障害と、強大音暴露による聴力低下の増悪を示す> <2.4 Htr3a −/− mice show impaired MOC function and worsening of hearing loss due to exposure to loud sounds>
強大音で活性化されたMOCニューロンにおいて、5-HT3受容体が発現していることが図1-図3に示された。MOCニューロンはOHCを神経支配するニューロンである。これらの結果は、5-HT3受容体がMOC機能に影響を与えることを示唆した。DPOAEは、感覚上皮を介した2種類の入力音に対する出力音の歪みによって生成された音であり、機械的な動きに変換され、MOCを介したOHCによって増幅されてから、鼓膜に逆伝播されマイクで測定できる。従って、DPOAEはOHC機能と、これらの細胞へのMOCニューロンの調節効果を評価するために使用される。MOC活動を誘発する対側強大音刺激を伴うDPOAE測定によって、MOC機能を分析できることが報告されている(Zhu X. et al. J Comp Neurol. 2007;503:593-604)。したがって、MOC機能における5-HT3受容体の役割を調べるために、Htr3a-/-マウスにおけるDPOAEの対側抑制(CS)を測定した。興味深いことに、Htr3a-/-マウスは、野生型マウスと比較して対側抑制(CS)が小さかった(11kHzでP=0.04;14kHzでP=0.04;図4A)。これは、Htr3a-/-マウスにおいてMOC機能が障害されていることを示している。次に、OHC機能の強大音による変化を調べるために、強大音暴露後、静穏条件下で野生型およびHtr3a-/-マウスにおけるDPOAEの大きさを測定した。強大音暴露の7日後、Htr3a-/-マウスは、野生型マウスと比較して、いくつかのf2周波数で低いDPOAEを示した(12kHzでP=0.02;14kHzでP=0.04;16kHzでP=0.07)(図4B)。これらのマウス間で、強大音暴露前のDPOAE振幅に有意差は観察されなかった(図4B)。これらの結果は、Htr3a-/-マウスにおける強大音によるOHC機能障害がより大きいことを示す。 Figures 1 to 3 show that 5-HT3 receptors are expressed in MOC neurons activated by high-intensity sounds. MOC neurons are neurons that innervate the OHC. These results suggested that 5-HT3 receptors influenced MOC function. DPOAE is a sound generated by the distortion of output sound for two types of input sound through the sensory epithelium, which is converted into mechanical movement, amplified by OHC through MOC, and then back-propagated to the eardrum. Can be measured with a microphone. Therefore, DPOAE is used to assess OHC function and the regulatory effects of MOC neurons on these cells. It has been reported that MOC function can be analyzed by DPOAE measurement with contralateral high-intensity stimulation that induces MOC activity (Zhu X. et al. J Comp Neurol. 2007;503:593-604). Therefore, to investigate the role of 5-HT3 receptors in MOC function, we measured contralateral suppression (CS) of DPOAE in Htr3a −/− mice. Interestingly, Htr3a −/− mice had less contralateral suppression (CS) compared to wild-type mice (P = 0.04 at 11 kHz; P = 0.04 at 14 kHz; Fig. 4A). This indicates that MOC function is impaired in Htr3a −/− mice. Next, in order to examine changes in OHC function due to high-intensity sound, we measured the magnitude of DPOAE in wild-type and Htr3a −/− mice under quiet conditions after exposure to high-intensity sound. After 7 days of loud sound exposure, Htr3a −/− mice showed lower DPOAEs at several f2 frequencies compared to wild-type mice (P = 0.02 at 12 kHz; P = 0.04 at 14 kHz; P = 0.07 at 16 kHz) (Fig. 4B). No significant difference was observed in DPOAE amplitude before loud sound exposure between these mice (Fig. 4B). These results indicate that loud sound-induced OHC dysfunction is greater in Htr3a −/− mice.
強大音暴露による聴覚機能の変化における5-HT3受容体の役割をさらに明らかにするために、強大音暴露後のHtr3a-/-マウスのABRを記録した。強大音にさらされる前は、野生型マウスとHtr3a-/-マウスの間でABR閾値に有意差は観察されなかった(図4C)。強大音暴露後7日では、野生型とHtr3a-/-マウスの両方のABR閾値は増加したが、重要なことに、高い周波数で、野生型マウスと比較してHtr3a-/-マウスでより高い閾値が観察された(16kHzでP=0.06;24kHzでP=0.007;32kHzでP<0.001;図4C)。 To further clarify the role of 5-HT3 receptors in changes in auditory function due to exposure to high-intensity sound, ABR of Htr3a −/− mice was recorded after exposure to high-intensity sound. Prior to exposure to high-intensity sound, no significant differences in ABR thresholds were observed between wild-type and Htr3a −/− mice (Fig. 4C). Seven days after high-noise exposure, ABR thresholds of both wild-type and Htr3a −/− mice were increased, but importantly, at higher frequencies, they were higher in Htr3a −/− mice compared with wild-type mice. Thresholds were observed (P = 0.06 at 16 kHz; P = 0.007 at 24 kHz; P < 0.001 at 32 kHz; Fig. 4C).
まとめると、蝸牛機能テストデータ(DPOAEおよびABR)は、Htr3a-/-マウスが、MOC機能の障害と強大音暴露による聴力低下の増悪を示すことを示唆した。一方、我々の実験での強大音暴露は、野生型マウスとHtr3a-/-マウスで、7日後と14日後に同程度のOHC損失を引き起こした(図5)。 Taken together, cochlear function test data (DPOAE and ABR) suggested that Htr3a −/− mice exhibit impaired MOC function and exacerbation of hearing loss with loud sound exposure. On the other hand, high-intensity sound exposure in our experiments caused similar OHC loss after 7 and 14 days in wild-type and Htr3a −/− mice (Fig. 5).
<2.5 Htr3a-/-マウスでは、強大音により多くのリボンシナプスを喪失する> <2.5 Htr3a −/− mice lose many ribbon synapses due to intense sound>
強大音暴露がIHCと蝸牛神経の間のリボンシナプス喪失を広範囲に引き起こすことが報告されている。蝸牛シナプトパチーとして知られているリボンシナプスの喪失は、強大音暴露による聴覚障害に関与することが報告されている。したがって、我々は、Htr3a-/-マウスおいて強大音暴露後のリボンシナプス喪失を調べるために免疫組織化学的分析を行った。強大音暴露後における、IHCと蝸牛神経の間のリボンシナプスを確認するために、既報(Kujawa et al. J Neurosci. 2009;29:14077-14085)の方法により、CtBP2陽性点(シナプス前)、GluA2陽性点(シナプス後)、および並列CtBP2/GluA2陽性点の数を定量した(図6A、B)。強大音暴露前は、野生型マウスとHtr3a-/-マウスの間で、各蝸牛領域(基部(basal)、中間部(middle)および頂部(apical))におけるCtBP2陽性点、GluA2陽性点、または並列CtBP2/GluA2陽性点の数に違いは観察されなかった(図7-図9)。強大音暴露により、野生型マウスとHtr3a-/-マウスの両方で明らかに陽性点の数が減少した(図7-図9)。野生型マウスにおける強大音暴露によるシナプス喪失のこの観察は、以前の報告と一致していた。しかし、強大音暴露の1時間後、24時間後、および7日後において、Htr3a-/-マウスの蝸牛領域基部および中間部における並列CtBP2/GluA2陽性点の数は、野生型マウスよりも有意に低かった(基部:1時間 P=0.0159;24時間 P=0.0079;7日 P=0.0238(図7C);中間部:1時間 P=0.03;24時間 P=0.001;7日 P=0.03(図8C)。また、強大音暴露後、Htr3a-/-マウスの蝸牛の基部領域および中間部領域におけるCtBP2陽性点およびGluA2陽性点の数が、野生型マウスに比較して少ないことが観察された(CtBP2 中間部:7日 P=0.042(図8A);GluA2 基部:1時間 P=0.04;24時間 P=0.001(図7B);中間部:24時間 P=0.0013(図8B)。強大音暴露後、蝸牛頂部領域におけるCtBP2陽性点、GluA2陽性点、および並列CtBP2/GluA2陽性点の数の減少については、野生型およびHtr3a-/-マウスで同程度であった(図9)。これらの結果は、5-HT3受容体の欠如が、強大音暴露後のリボンシナプスの喪失をより多く生じさせることを示した。 It has been reported that high-intensity sound exposure causes extensive ribbon synapse loss between the IHC and the cochlear nerve. Loss of ribbon synapses, known as cochlear synaptopathy, has been reported to be involved in hearing loss due to exposure to high-intensity sounds. Therefore, we performed immunohistochemical analysis to examine ribbon synapse loss after loud sound exposure in Htr3a −/− mice. In order to confirm ribbon synapses between IHC and cochlear nerves after exposure to high-intensity sound, CtBP2-positive points (presynaptic), The number of GluA2-positive puncta (postsynaptic) and parallel CtBP2/GluA2-positive puncta was quantified (Fig. 6A, B). Before exposure to high-intensity sound, CtBP2-positive points, GluA2 -positive points, or parallel No difference was observed in the number of CtBP2/GluA2 positive puncta (Figures 7-9). High-intensity sound exposure clearly decreased the number of positive points in both wild-type and Htr3a −/− mice (Figures 7-9). This observation of synaptic loss upon high-intensity sound exposure in wild-type mice was consistent with previous reports. However, at 1 h, 24 h, and 7 days after high-intensity sound exposure, the number of parallel CtBP2/GluA2-positive puncta in the base and middle cochlear regions of Htr3a −/− mice was significantly lower than that of wild-type mice. (Base: 1 hour P = 0.0159; 24 hours P = 0.0079; 7 days P = 0.0238 (Fig. 7C); Middle part: 1 hour P = 0.03; 24 hours P = 0.001 ; 7 days P = 0.03 (Fig. 8C). Furthermore, after exposure to high-intensity sound, the number of CtBP2-positive puncta and GluA2-positive puncta in the basal and medial regions of the cochlea of Htr3a −/− mice was lower than that of wild-type mice. Comparatively less was observed (CtBP2 intermediate: 7 days P = 0.042 (Figure 8A); GluA2 base: 1 hour P = 0.04; 24 hours P = 0.001 (Figure 7B); intermediate P = 0.0013 (Fig. 8B). For the reduction in the number of CtBP2-positive puncta, GluA2-positive puncta, and parallel CtBP2/GluA2-positive puncta in the cochlear apex region after high-intensity sound exposure, wild type and Htr3a − /− mice (FIG. 9). These results indicated that lack of 5-HT3 receptors resulted in more loss of ribbon synapses after high-intensity sound exposure.
<2.6 5-HT3受容体アゴニストは、強大音暴露による聴力低下およびリボンシナプスの喪失を軽減する> <2.6 5-HT3 receptor agonists reduce hearing loss and loss of ribbon synapses due to exposure to high-intensity sounds>
強大音暴露による蝸牛機能障害における5-HT3受容体の役割をさらに解明するために、強大音暴露による聴力低下に対する5-HT3受容体の薬理学的刺激の影響を調べた。強大音暴露によりいくつかのf2周波数で野生型マウスのDPOAE値が減少するが、強大音暴露の30分前にSR57227A(選択的5-HT3受容体アゴニスト)(5mg/kg)を投与すると、強大音暴露によるDPOAE値の減少が軽減した(Sal vs Ag:10kHzでP=0.02;11kHzでP=0.14;12kHzでP=0.09;14kHzでP=0.11;16kHzでP=0.04;図10A)。また、SR57227A投与は、野生型マウスにおけるABRの強大音暴露による閾値増大を軽減させた(Sal vs Ag:4kHzでP=0.03;8kHzでP=0.09;16kHzでP=0.004;24kHzでP=0.13;32kHzでP=0.04;図10B)。これらの結果は、5-HT3受容体アゴニストによる5-HT3受容体刺激が強大音暴露による聴力低下を軽減したことを示している。 In order to further elucidate the role of 5-HT3 receptors in cochlear dysfunction caused by exposure to high-intensity sounds, we investigated the effects of pharmacological stimulation of 5-HT3 receptors on hearing loss due to exposure to high-intensity sounds. High-intensity sound exposure decreased DPOAE levels in wild-type mice at several f2 frequencies, but administration of SR57227A (selective 5-HT3 receptor agonist) (5 mg/kg) 30 minutes before high-intensity sound exposure significantly reduced DPOAE levels in wild-type mice. The decrease in DPOAE value due to sound exposure was reduced (Sal vs. Ag: P = 0.02 at 10 kHz; P = 0.14 at 11 kHz; P = 0.09 at 12 kHz; P = 0.11 at 14 kHz; P at 16 kHz =0.04; Figure 10A). In addition, SR57227A administration reduced the threshold increase in ABR caused by loud sound exposure in wild-type mice (Sal vs. Ag: P = 0.03 at 4 kHz; P = 0.09 at 8 kHz; P = 0.004 at 16 kHz). ; P = 0.13 at 24 kHz; P = 0.04 at 32 kHz; Figure 10B). These results indicate that 5-HT3 receptor stimulation with a 5-HT3 receptor agonist alleviated hearing loss caused by exposure to high-intensity sound.
強大音暴露によって誘発されるリボンシナプスの喪失における5-HT3受容体の役割を調べるために、我々は、強大音暴露による蝸牛中間部領域のリボンシナプス喪失に対する5-HT3受容体薬理学的処置(5-HT3受容体アゴニスト投与)の効果を調べた(図11A-C)。5-HT3受容体ノックアウトによるリボンシナプス喪失の最大効果が、強大音暴露24時間後に観察されたので(図8C)、この時点での5-HT3受容体アゴニストの効果を評価した。強大音暴露24時間後、野生型マウスでは並列CtBP2/GluA2陽性点の数が減少し、Htr3a-/-マウスではかなり少ない数の陽性点が観察された(図11C)、これは図8Cに示す結果と一致していた。強大音暴露の30分前にオンダンセトロン(選択的5-HT3受容体拮抗薬)を投与すると、野生型マウスのリボンシナプスの強大音暴露による喪失が悪化した(図11C)。これは5-HT3受容体欠損(Htr3a-/-)マウスで観察された重度の強大音暴露によるシナプス喪失レベル(図8C)と一致していた。興味深いことに、強大音暴露の30分前にSR57227Aを投与すると、野生型マウスの強大音によるリボンシナプスの喪失が大幅に軽減された(NE+Sal vs NE+Ag:P=0.0374;図11C)。SR57227Aのこの神経保護効果はHtr3a-/-マウスでは観察されなかった(図11C)。強大音にさらされていない野生型マウスでは、SR57227A、オンダンセトロンのいずれも、リボンシナプスの数に影響を与えなかった(図11C)。CtBP2陽性点およびGluA2陽性点の数に関するデータ(図11A、B)は、図11Cに示す結果を裏付けており、図8に示す結果と一致していた。これらの結果は、5-HT3受容体アゴニストによる5-HT3受容体刺激が強大音暴露によるリボンシナプスの喪失を弱めることを示した。まとめると、5-HT3受容体アゴニストのこれらの保護効果は、5-HT3受容体の活性化がMOCフィードバックシステムによる蝸牛保護を強化することを示唆した。 To investigate the role of 5-HT3 receptors in ribbon synapse loss induced by high-intensity sound exposure, we investigated the role of 5-HT3 receptor pharmacological treatment ( 5-HT3 receptor agonist administration) was investigated (FIGS. 11A-C). Since the maximal effect of ribbon synapse loss due to 5-HT3 receptor knockout was observed 24 hours after high-intensity sound exposure (FIG. 8C), the effects of 5-HT3 receptor agonists were evaluated at this time point. After 24 h of loud sound exposure, the number of parallel CtBP2/GluA2 positive puncta decreased in wild-type mice, and a significantly lower number of positive puncta was observed in Htr3a −/− mice (Fig. 11C), which is shown in Fig. 8C. It was consistent with the results. Administration of ondansetron (a selective 5-HT3 receptor antagonist) 30 minutes before loud sound exposure exacerbated loud sound exposure-induced loss of ribbon synapses in wild-type mice (FIG. 11C). This was consistent with the level of synaptic loss due to severe loud sound exposure observed in 5-HT3 receptor-deficient (Htr3a −/− ) mice (FIG. 8C). Interestingly, administration of SR57227A 30 minutes before loud sound exposure significantly attenuated loud sound-induced loss of ribbon synapses in wild-type mice (NE+Sal vs NE+Ag: P=0.0374; Figure 11C). This neuroprotective effect of SR57227A was not observed in Htr3a −/− mice (FIG. 11C). In wild-type mice not exposed to high-intensity sound, neither SR57227A nor ondansetron affected the number of ribbon synapses (FIG. 11C). Data regarding the number of CtBP2-positive and GluA2-positive points (FIGS. 11A, B) supported the results shown in FIG. 11C and were consistent with the results shown in FIG. 8. These results indicated that 5-HT3 receptor stimulation with a 5-HT3 receptor agonist attenuated the loss of ribbon synapses due to high-intensity sound exposure. Taken together, these protective effects of 5-HT3 receptor agonists suggested that activation of 5-HT3 receptors enhanced cochlear protection by the MOC feedback system.
<まとめ> <Summary>
この研究では、OHCを神経支配するMOCニューロンで5-HT3受容体の発現が見られた(図1および図2)。さらに、5-HT3受容体は、強大音暴露によるMOCニューロンの活性化に関与していた(図3)。さらに、Htr3a-/-マウスは、MOC機能の障害(DPOAEの対側抑制が小さい;図4A)と強大音暴露による聴力低下の増悪(強大音暴露によるDPOAE値の低下とABR閾値の上昇;図4B、C)を示した。さらに、Htr3a-/-マウスでは、強大音暴露後に多くのリボンシナプスの喪失が観察された(図6-図9)。さらに、5-HT3受容体アゴニストによる5-HT3受容体刺激は、強大音暴露による聴力低下およびリボンシナプスの喪失を軽減した(図10-図11)。以上の結果は、5-HT3受容体がMOC機能において基本的な役割を果たし、強大音暴露に対する蝸牛保護に寄与することを示した。我々の研究結果は、新しい5-HT3受容体を介したメカニズムを示しており、これは、MOCフィードバックシステムの根底にあるメカニズムである。 In this study, expression of 5-HT3 receptors was found in MOC neurons innervating OHCs (Figures 1 and 2). Furthermore, 5-HT3 receptors were involved in the activation of MOC neurons by exposure to high-intensity sound (Figure 3). Furthermore, Htr3a −/− mice have impaired MOC function (smaller contralateral inhibition of DPOAE; Fig. 4A ) and worsened hearing loss due to high-intensity sound exposure (reduced DPOAE values and increased ABR thresholds due to high-intensity sound exposure; 4B,C) were shown. Furthermore, in Htr3a −/− mice, loss of many ribbon synapses was observed after exposure to high-intensity sound (FIGS. 6-9). Furthermore, 5-HT3 receptor stimulation with a 5-HT3 receptor agonist attenuated hearing loss and loss of ribbon synapses due to high-intensity sound exposure (Figures 10-11). The above results indicated that 5-HT3 receptor plays a fundamental role in MOC function and contributes to cochlear protection against high-intensity sound exposure. Our findings demonstrate a novel 5-HT3 receptor-mediated mechanism, which is the mechanism underlying the MOC feedback system.
本発明は、聴覚障害の予防と治療に貢献する。

 
The present invention contributes to the prevention and treatment of hearing impairment.

Claims (13)

  1. セロトニン3受容体アゴニストを含有する感音難聴の予防または治療用組成物。 A composition for preventing or treating sensorineural hearing loss containing a serotonin 3 receptor agonist.
  2. 前記感音難聴が音響外傷または加齢性難聴である、請求項1に記載の組成物。 2. The composition of claim 1, wherein the sensorineural hearing loss is acoustic trauma or age-related hearing loss.
  3. 前記音響外傷または加齢性難聴の症状が、聴力低下、聴力が正常であっても雑音環境下での不十分な語音弁別能、および、聴力低下を伴う雑音環境下での不十分な語音弁別能からなる群から選択される少なくとも1である、請求項2に記載の組成物。 The symptoms of acoustic trauma or age-related hearing loss include hearing loss, insufficient speech discrimination in a noisy environment even with normal hearing, and insufficient speech discrimination in a noisy environment accompanied by hearing loss. The composition according to claim 2, wherein the composition has at least one selected from the group consisting of:
  4. 前記感音難聴が強大音暴露による聴力低下である、請求項1に記載の組成物。 2. The composition of claim 1, wherein the sensorineural hearing loss is hearing loss due to exposure to high-intensity sound.
  5. 前記セロトニン3受容体アゴニストが、下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     mは1~4の整数であり;
     Rは水素原子、ハロゲン原子、1~3個のハロゲン原子で置換されていてもよいメチル基、1~3個のハロゲン原子で置換されていてもよいメトキシ基、1~3個のハロゲン原子で置換されていてもよいエトキシ基、1~3個のハロゲン原子で置換されていてもよいメチルチオ基、および、ハロゲン原子、トリフルオロメチル、C1-3アルキル、C1-3アルコキシ、C1-3アルキルチオもしくはシアノ基で置換されていてもよいフェノキシ基、からなる群からそれぞれ独立して選択される]
    で示される化合物またはその医薬的に許容される塩である請求項1~4のいずれか1に記載の組成物。
    The serotonin 3 receptor agonist has the following formula (I):
    Figure JPOXMLDOC01-appb-C000001
    [In the formula,
    m is an integer from 1 to 4;
    R 1 is a hydrogen atom, a halogen atom, a methyl group optionally substituted with 1 to 3 halogen atoms, a methoxy group optionally substituted with 1 to 3 halogen atoms, 1 to 3 halogen atoms an ethoxy group which may be substituted with , a methylthio group which may be substituted with 1 to 3 halogen atoms, and a halogen atom, trifluoromethyl, C 1-3 alkyl, C 1-3 alkoxy, C 1 -3 phenoxy groups optionally substituted with alkylthio or cyano groups, each independently selected from the group consisting of
    The composition according to any one of claims 1 to 4, which is a compound represented by or a pharmaceutically acceptable salt thereof.
  6. がそれぞれ独立してハロゲン原子である、請求項5に記載の組成物。 6. The composition according to claim 5, wherein each R 1 is independently a halogen atom.
  7. 前記ハロゲン原子が塩素原子である、請求項6に記載の組成物。 The composition according to claim 6, wherein the halogen atom is a chlorine atom.
  8. 治療用組成物である、請求項1~4のいずれか1に記載の組成物。 A composition according to any one of claims 1 to 4, which is a therapeutic composition.
  9. セロトニン3受容体アゴニストを含有するMOCニューロン活性化用組成物。 A composition for activating MOC neurons containing a serotonin 3 receptor agonist.
  10. MOCニューロンが関与する聴覚障害の予防または治療用である、請求項9に記載の組成物。 The composition according to claim 9, which is used for the prevention or treatment of hearing disorders involving MOC neurons.
  11. セロトニン3受容体アゴニスト活性を測定する工程を含む、感音難聴の予防または治療用化合物のスクリーニング方法。 A method for screening a compound for prevention or treatment of sensorineural hearing loss, comprising the step of measuring serotonin 3 receptor agonist activity.
  12. セロトニン3受容体アゴニスト活性を測定する工程を含む、MOCニューロン活性化化合物のスクリーニング方法。 A method for screening MOC neuron activating compounds, the method comprising the step of measuring serotonin 3 receptor agonist activity.
  13. 前記MOCニューロン活性化化合物が、MOCニューロンが関与する聴覚障害の予防または治療用化合物である、請求項12に記載のスクリーニング方法。

     
    13. The screening method according to claim 12, wherein the MOC neuron activating compound is a compound for preventing or treating hearing disorders involving MOC neurons.

PCT/JP2023/012857 2022-03-30 2023-03-29 Composition for preventing or treating sensorineural hearing loss WO2023190707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022055212 2022-03-30
JP2022-055212 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190707A1 true WO2023190707A1 (en) 2023-10-05

Family

ID=88202014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012857 WO2023190707A1 (en) 2022-03-30 2023-03-29 Composition for preventing or treating sensorineural hearing loss

Country Status (1)

Country Link
WO (1) WO2023190707A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107995A (en) * 2009-05-20 2015-06-11 インセルム(インスティチュート ナショナル デ ラ サンテ エ デ ラリシェルシェ メディカル) Serotonin 5-ht3 receptor antagonists for use in treatment of lesional vestibular disorders
US10434097B1 (en) * 2015-09-14 2019-10-08 Gateway Biotechnology, Inc. Methods and compositions for treating hearing disorders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107995A (en) * 2009-05-20 2015-06-11 インセルム(インスティチュート ナショナル デ ラ サンテ エ デ ラリシェルシェ メディカル) Serotonin 5-ht3 receptor antagonists for use in treatment of lesional vestibular disorders
US10434097B1 (en) * 2015-09-14 2019-10-08 Gateway Biotechnology, Inc. Methods and compositions for treating hearing disorders

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CRUZ OSWALDO LAERICO M., KASSE CRISTIANE A, SANCHEZ MAURA, BARBOSA FLAVIO, BARROS FLAVIA A: "Serotonin Reuptake Inhibitors in Auditory Processing Disorders in Elderly Patients: Preliminary Results", THE LARYNGOSCOPE, vol. 114, 1 September 2004 (2004-09-01), pages 1656 - 1659, XP093096398 *
KANG HSIAO-HSIEN; WANG CHIH-HUNG; CHEN HSIN-CHIEN; LI I-HSUN; CHENG CHENG-YI; LIU REN-SHYAN; HUANG WEN-SHENG; SHIUE CHYNG-YANN; MA: "Investigating the effects of noise-induced hearing loss on serotonin transporters in rat brain using 4-[18F]-ADAM/small animal PET", NEUROIMAGE, ELSEVIER, AMSTERDAM, NL, vol. 75, 2 July 2012 (2012-07-02), AMSTERDAM, NL , pages 262 - 269, XP028579875, ISSN: 1053-8119, DOI: 10.1016/j.neuroimage.2012.06.049 *
KOYAMA YOSHIHISA, KONDO MAKOTO, SHIMADA SHOICHI: "Building a 5-HT3A Receptor Expression Map in the Mouse Brain", SCIENTIFIC REPORTS, vol. 7, no. 1, XP093096401, DOI: 10.1038/srep42884 *
OHATA KAZUYA, KONDO MAKOTO, OZONO YOSHIYUKI, HANADA YUKIKO, SATO TAKASHI, INOHARA HIDENORI, SHIMADA SHOICHI: "Cochlear protection against noise exposure requires serotonin type 3A receptor via the medial olivocochlear system", THE FASEB JOURNAL, FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY, US, vol. 35, no. 5, 1 May 2021 (2021-05-01), US, XP093096347, ISSN: 0892-6638, DOI: 10.1096/fj.202002383R *
OHATA KAZUYA: "Cochlear protection against noise exposure requires serotonin type 3A receptor via the medial olivocochlear system", OSAKA UNIVERSITY KNOWLEDGE ARCHIVE, 17 December 2021 (2021-12-17), XP093096355, Retrieved from the Internet <URL:https://ir.library.osaka-u.ac.jp/repo/ouka/all/85239/32114_Abstract.pdf> *
OHATA, KAZUYA ET AL.: "O38-1 Cochlear protection against noise exposure requires serotonin type 3A receptor via the medial olivocochlear system", THE 31ST ANNUAL MEETING OF THE JAPAN OTOLOGICAL SOCIETY; TOKYO, JAPAN; OCTOBER 13-16, 2021, vol. 31, 13 October 2021 (2021-10-13), pages 356, XP009549840 *

Similar Documents

Publication Publication Date Title
Wan et al. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss
JP6904612B2 (en) How to treat cochlear synaptic disorders
Guinan Physiology of the medial and lateral olivocochlear systems
Maison et al. Olivocochlear suppression of outer hair cells in vivo: evidence for combined action of BK and SK2 channels throughout the cochlea
JP2002525329A (en) Method for preventing / treating damage to sensory hair cells and cochlear neurons
US10786513B2 (en) Use of GABAA receptor modulators for treatment of itch
JP2022028941A (en) Calcineurin inhibitors of the setron family for the treatment of hearing loss
Li et al. Acoustic trauma increases cochlear and hair cell uptake of gentamicin
Seist et al. Regeneration of cochlear synapses by systemic administration of a bisphosphonate
Intskirveli et al. Nicotinic neuromodulation in auditory cortex requires MAPK activation in thalamocortical and intracortical circuits
Lee et al. Effect of M-current modulation on mammalian vestibular responses to transient head motion
US20180256514A1 (en) Methods for the treatment of tinnitus induced by cochlear excitotoxicity
El‐Badry et al. Physiological effects of auditory nerve myelinopathy in chinchillas
Shen et al. AUY922 induces retinal toxicity through attenuating TRPM1
WO2023190707A1 (en) Composition for preventing or treating sensorineural hearing loss
Jie et al. Cochlear protection against cisplatin by viral transfection of X-linked inhibitor of apoptosis protein across round window membrane
Maison et al. Contralateral-noise effects on cochlear responses in anesthetized mice are dominated by feedback from an unknown pathway
Wang et al. Physiopathological relevance of D-serine in the mammalian cochlea
Ohata et al. Cochlear protection against noise exposure requires serotonin type 3A receptor via the medial olivocochlear system
Canlon et al. Cell biology and physiology of the aging central auditory pathway
Zhang et al. Loss of CX3CR1 augments neutrophil infiltration into cochlear tissues after acoustic overstimulation
Manickam et al. Local Delivery of Soluble Fractalkine (CX3CL1) Peptide Restore Ribbon Synapses After Noise-Induced Cochlear Synaptopathy
Kim et al. Objective Verification of Acute Tinnitus and Validation of Efficacy of Systemic Steroids in Rats
Kempfle et al. Experimental drugs for the prevention or treatment of sensorineural hearing loss
Hyzer et al. Effects of Cochlear Implantation and Steroids on the Aging Guinea Pig Cochlea

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780715

Country of ref document: EP

Kind code of ref document: A1