WO2023190465A1 - Human anti-sema7a antibody - Google Patents

Human anti-sema7a antibody Download PDF

Info

Publication number
WO2023190465A1
WO2023190465A1 PCT/JP2023/012409 JP2023012409W WO2023190465A1 WO 2023190465 A1 WO2023190465 A1 WO 2023190465A1 JP 2023012409 W JP2023012409 W JP 2023012409W WO 2023190465 A1 WO2023190465 A1 WO 2023190465A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
human
sema7a
amino acid
seq
Prior art date
Application number
PCT/JP2023/012409
Other languages
French (fr)
Japanese (ja)
Inventor
耕太郎 山本
Original Assignee
株式会社カイオム・バイオサイエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カイオム・バイオサイエンス filed Critical 株式会社カイオム・バイオサイエンス
Publication of WO2023190465A1 publication Critical patent/WO2023190465A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to antibodies against human SEMA7A or fragments thereof, and uses thereof.
  • Human SEMA7A (Semaphorin 7A) is a GPI (glycosylphosphatidylinositol)-anchored protein with a total length of 604 amino acids and a sema domain and an Ig-like domain. SEMA7A is involved in immune and nervous system regulation. Plexin C1 and integrin ⁇ 1 are known receptors for SEMA7A, and binding to integrin ⁇ 1 exerts a significant effect on axonal outgrowth and nerve sprouting via the mitogen-activated protein (MAP) kinase pathway.
  • MAP mitogen-activated protein
  • SEMA7A expressed on activated T cells is known to induce inflammatory cytokine production from monocytes and macrophages via ⁇ 1 ⁇ 1 integrin (see, for example, Non-Patent Document 1). Furthermore, SEMA7A knockout mice show resistance to the development of contact hypersensitivity reactions and experimental autoimmune encephalomyelitis, suggesting that local inflammatory responses are promoted by activating macrophages via ⁇ 1 ⁇ 1 integrin. It has been suggested that.
  • SEMA7A has been reported to be involved in various diseases.
  • fibrosis such as idiopathic pulmonary fibrosis (IPF) and non-alcoholic steatohepatitis (NASH), inflammatory diseases such as Crohn's disease and allergic dermatitis, rheumatoid arthritis, multiple sclerosis (MS),
  • IPF idiopathic pulmonary fibrosis
  • NASH non-alcoholic steatohepatitis
  • inflammatory diseases such as Crohn's disease and allergic dermatitis
  • rheumatoid arthritis multiple sclerosis
  • MS multiple sclerosis
  • Expression of SEMA7A mRNA and protein has been reported in autoimmune diseases such as systemic scleroderma and Sjögren's syndrome, and in various cancers such as lung cancer and breast cancer (see, for example, Non-Patent Document 2).
  • EGFR tyrosine kinase inhibitors are excellent molecular-targeted drugs for the treatment of lung cancer, but EGFR activating gene mutations such as exon 19 deletion mutations (Del19) cause treatment resistance in 30% to 40% of patients. Displaying gender has become an issue.
  • Non-Patent Document 3 studies using mouse fibroblasts (NIH3T3) and lung cancer patient specimens have shown that SEMA7A expression is induced downstream of EGFR-activating gene mutations, and this SEMA7A is induced by EGFR-TKI. has been identified as a molecule involved in treatment resistance.
  • Non-Patent Document 4 It has been reported that cell proliferation is enhanced by SEMA7A expression in breast cancer cells (see, for example, Non-Patent Document 4). This is evidenced by a significant reduction in the rate of tumor formation in a xenograft model implanted with a breast cancer cell line in which SEMA7A was knocked down using short hairpin RNA (shRNA).
  • shRNA short hairpin RNA
  • Plexin C1 and integrin ⁇ 1 which are receptors for SEMA7A, exhibit physiological activity by binding to the sema domain of SEMA7A. That is, in order for the anti-SEMA7A antibody to have functionality, it is preferable to bind to the sema domain and inhibit or suppress interaction with Plexin C1 and integrin ⁇ 1. Looking at the homology to the human sema domain, the homology is high at 99.1% in cynomolgus monkeys, 90.1% in mice, and 91.1% in rats. Therefore, as mentioned above, it is not easy to obtain antibodies against SEMA7A, and it is also considered difficult to produce antibodies that have the function of inhibiting or suppressing the interaction. In fact, the present inventors confirmed the functionality of commercially available monoclonal antibodies against SEMA7A, but no antibodies with clear functionality existed.
  • the present invention has been made in consideration of the above circumstances, and provides the following anti-human SEMA7A antibodies, antibody fragments thereof, and uses thereof (pharmaceutical compositions, etc.).
  • CDR complementarity determining region
  • VH heavy chain variable region
  • Amino acid sequences shown in SEQ ID NOs: 10, 11 and 12 Amino acid sequences shown in SEQ ID NOs: 18, 19 and 20, Amino acid sequences shown in SEQ ID NOs: 22, 23 and 24, Amino acid sequences shown in SEQ ID NO: 26, 27 and 28, Amino acid sequences shown in SEQ ID NO: 30, 31 and 32, Amino acid sequences shown in SEQ ID NOs: 34, 35 and 36, consisting of the amino acid sequences shown in SEQ ID NOs: 38, 39 and 40, or the amino acid sequences shown in SEQ ID NOs: 42, 43 and 44, and the amino acid sequences of CDR1, CDR2 and CDR3 of the light chain variable region (VL), respectively, in that order: Consisting of the amino acid sequences shown in SEQ ID NO: 14, 15 and 16,
  • [2] An antibody against human SEMA7A The amino acid sequence of the heavy chain variable region (VH) consists of the amino acid sequence shown in SEQ ID NO: 9, 17, 21, 25, 29, 33, 37 or 41, and The amino acid sequence of the light chain variable region (VL) consists of the amino acid sequence shown in SEQ ID NO: 13, The antibody.
  • the antibody according to [1] or [2] above which is an antibody that binds to the sema domain of human SEMA7A.
  • [5] The antibody according to any one of [1] to [4] above, which has the activity of inhibiting or suppressing the interaction between human SEMA7A and Plexin C1 and/or integrin ⁇ 1.
  • [6] The antibody according to any one of [1] to [5] above, wherein the antibody has antitumor activity.
  • [7] The antibody according to any one of [1] to [6] above, which is used for tumor treatment or prevention.
  • the inflammatory disease is selected from the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH).
  • IPF idiopathic pulmonary fibrosis
  • NASH nonalcoholic steatohepatitis
  • At least one type of The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome, The antibody according to [9] above.
  • [14] Comprising the antibody according to any one of [1] to [10] above, the antibody fragment according to [11] above, and/or the complex according to [12] or [13] above, Pharmaceutical composition.
  • the pharmaceutical composition according to [14] above which is used for the treatment or prevention of tumors.
  • the pharmaceutical composition according to [15] above, wherein the tumor is at least one selected from the group consisting of human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, and human chondrosarcoma.
  • the pharmaceutical composition according to [14] above which is used for the treatment or prevention of inflammatory diseases and/or autoimmune diseases.
  • the inflammatory disease is selected from the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH).
  • NASH nonalcoholic steatohepatitis
  • At least one type of The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome, The pharmaceutical composition according to [17] above.
  • the pharmaceutical composition according to [14] above which is used for inhibiting or suppressing the interaction between human SEMA7A and Plexin C1 and/or integrin ⁇ 1.
  • [20] A method for treating or preventing a tumor, which comprises administering to a subject the pharmaceutical composition according to any one of [14] to [16]. [21] The method according to [20] above, wherein the tumor is at least one selected from the group consisting of human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, and human chondrosarcoma. [22] A method for treating or preventing inflammatory diseases and/or autoimmune diseases, comprising administering to a subject the pharmaceutical composition according to any one of [14], [17], and [18]. .
  • the inflammatory disease is selected from the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH).
  • IPF idiopathic pulmonary fibrosis
  • NASH nonalcoholic steatohepatitis
  • At least one type of The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome, The method described in [22] above.
  • [25] Contains the antibody according to any one of [1] to [10] above, the antibody fragment according to [11] above, and/or the complex according to [12] or [13] above.
  • a kit for treating, preventing or diagnosing tumors. [26] The kit according to [25] above, wherein the tumor is at least one selected from the group consisting of human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, and human chondrosarcoma.
  • kits for treating, preventing or diagnosing inflammatory diseases and/or autoimmune diseases comprising the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH).
  • IPF idiopathic pulmonary fibrosis
  • NASH nonalcoholic steatohepatitis
  • At least one type of The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome, The kit according to [27] above.
  • a highly active functional antibody that binds to human SEMA7A preferably its sema domain
  • the anti-human SEMA7A antibody according to the present invention can inhibit or suppress the interaction between human SEMA7A and Plexin C1 or integrin ⁇ 1, and can be used to treat, for example, idiopathic pulmonary fibrosis (IPF) and non-alcoholic steatohepatitis (NASH).
  • IPF idiopathic pulmonary fibrosis
  • NASH non-alcoholic steatohepatitis
  • Organ fibrosis inflammatory diseases such as Crohn's disease, allergic dermatitis, and interstitial pneumonia; autoimmune diseases such as rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome , and can be effective as a therapeutic and preventive drug for various cancers such as lung cancer, breast cancer, oral cancer, osteosarcoma, and chondrosarcoma.
  • inflammatory diseases such as Crohn's disease, allergic dermatitis, and interstitial pneumonia
  • autoimmune diseases such as rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome
  • MS multiple sclerosis
  • Sjögren's syndrome Sjögren's syndrome
  • FIG. 2 is a diagram showing the locations where CDR mutations were introduced when producing the heavy chain of anti-SEMA7A antibody.
  • FIG. 2 is a diagram showing the locations where CDR mutations were introduced when producing the light chain of anti-SEMA7A antibody.
  • FIG. 2 is a diagram showing combinations of CDR mutation introduction in the heavy chain of anti-SEMA7A antibody.
  • FIG. 2 is a diagram showing the observation results of the SEMA7A protein expression level on the cell surface of resting HSCs and active HSCs by flow cytometry.
  • FIG. 3 is a diagram showing the ADCC activity of anti-SEMA7A antibody against primary cultured human HSCs.
  • FIG. 3 is a diagram showing the cytotoxic activity of anti-SEMA7A antibody using a second immunotoxin.
  • FIG. 2 is a diagram showing the results of a comparison of the binding affinity between the novel anti-SEMA7A antibody of the present invention and a commercially available anti-SEMA7A antibody.
  • FIG. 3 is a diagram showing the results of comparing the Plexin C1-SEMA7A binding inhibitory activity of anti-SEMA7A antibodies.
  • FIG. 3 is a diagram showing the results of comparing the internalization activities of anti-SEMA7A antibodies.
  • FIG. 2 is a diagram showing the results of comparing the reactivity of anti-SEMA7A antibodies to the semaphorin family (SEMA4F, SEMA5A, SEMA6C, SEMA7A).
  • FIG. 3 is a diagram showing the isoelectric point (pI) of anti-SEMA7A antibody.
  • FIG. 3 is a diagram showing Tm values of Fab in anti-SEMA7A antibodies. The amount of antibody produced by anti-SEMA7A antibody is shown.
  • FIG. 2 is a diagram schematically showing a method for calculating internalization activity. In the figure, "MFI" means Mean Fluorescence Intensity.
  • FIG. 3 is a diagram showing changes over time in internalization activity of anti-SEMA7A antibodies.
  • FIG. 3 is a diagram showing the results of SEMA7A expression analysis in each cancer type.
  • FIG. 3 is a diagram showing changes in SEMA7A expression level due to EGFR mutations in NSCLC.
  • FIG. 3 is a diagram showing the results of SEMA7A expression analysis in each cancer cell line.
  • FIG. 3 is a diagram showing the cytotoxic activity of HC2 second immunotoxin in each cancer type. It is a figure showing the cytotoxic activity of HC1-PBD and HC2-PBD in each cancer cell line.
  • Antibody against human SEMA7A (anti-human SEMA7A antibody)
  • hSEMA7A antigen Information on the amino acid sequence (SEQ ID NO: 46) of human SEMA7A (hereinafter also referred to as hSEMA7A) can be found, for example, on the Uniprot website (https://www.uniprot.org/) under "Primary (citable)”. ) accession number: O75326" or on the NCBI (GenBank) website (http://www.ncbi.nlm.nih.gov/) as "Accession number: NP 003603" and "Accession number: O75326".
  • Information on the nucleotide sequence (SEQ ID NO: 45) encoding the amino acid sequence of hSEMA7A is available on the NCBI (GenBank) website under “Accession number: NM 003612”.
  • a polypeptide or peptide (hereinafter also simply referred to as peptide) containing all or part of the amino acid sequence of hSEMA7A can be used.
  • Peptides containing part of the amino acid sequence of hSEMA7A are not limited, but, for example, those containing the extracellular domain of hSEMA7A are preferred, and those containing the sema domain are more preferred.
  • the sema domain is a domain consisting of amino acids 53rd to 490th in the amino acid sequence of hSEMA7A (SEQ ID NO: 46).
  • the peptide to be used as an antigen may be produced by chemical synthesis or by genetic engineering techniques using Escherichia coli or the like, and methods well known to those skilled in the art can be used.
  • chemically synthesizing a peptide it can be carried out by a well-known method of peptide synthesis.
  • solid phase synthesis method and liquid phase synthesis method can be applied to the synthesis.
  • a commercially available peptide synthesizer for example, CEM Japan: Parallel automatic peptide synthesizer MultiPep 2, etc. may be used.
  • DNA encoding the peptide is designed and synthesized.
  • the design and synthesis can be performed, for example, by PCR using a vector containing the full-length hSEMA7A gene as a template and primers designed to synthesize the desired DNA region.
  • primers designed to synthesize the desired DNA region.
  • a recombinant vector for protein expression is obtained by ligating the above DNA to an appropriate vector, and a transformant is obtained by introducing this recombinant vector into a host so that the target gene can be expressed (Molecular cloning 4th Ed. Cold Spring Harbor Laboratory Press (2012)).
  • a phage or plasmid that can autonomously propagate in a host microorganism is used as a vector.
  • animal virus and insect virus vectors can also be used.
  • purified DNA may be cut with an appropriate restriction enzyme, inserted into the restriction enzyme site of an appropriate vector DNA, and ligated to the vector.
  • the host used for transformation is not particularly limited as long as it can express the gene of interest. Examples include bacteria (E. coli, Bacillus subtilis, etc.), yeast, animal cells (COS cells, CHO cells, etc.), insect cells, or insects. It is also possible to use mammals such as goats as hosts. Methods for introducing recombinant vectors into hosts are known. Then, the transformant is cultured, and a peptide used as an antigen is collected from the culture. "Culture” means any of (a) culture supernatant, (b) cultured cells or cultured bacteria, or a crushed product thereof.
  • the target peptide is produced within the bacterial body or cells, the peptide is extracted by crushing the bacterial body or cells. Furthermore, when the target peptide is produced outside the bacterial body or cells, the culture solution may be used as is, or the bacterial body or cells may be removed by centrifugation or the like. Thereafter, the target peptide is isolated by using general biochemical methods used for isolation and purification of peptides, such as ammonium sulfate precipitation, gel filtration, ion exchange chromatography, affinity chromatography, etc. alone or in appropriate combinations. Can be separated and purified.
  • general biochemical methods used for isolation and purification of peptides such as ammonium sulfate precipitation, gel filtration, ion exchange chromatography, affinity chromatography, etc. alone or in appropriate combinations. Can be separated and purified.
  • Peptides serving as antigens can also be obtained by in vitro translation using a cell-free synthesis system.
  • two methods can be used: a method using RNA as a template and a method using DNA as a template (transcription/translation).
  • the cell-free synthesis system commercially available systems such as Expressway TM system (Invitrogen), PURESYSTEM (registered trademark; Post Genome Institute), TNT system (registered trademark; Promega), etc. can be used.
  • the peptides obtained as described above can also be conjugated to suitable carrier proteins, such as bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), human thyroglobulin, chicken gamma globulin, and the like.
  • BSA bovine serum albumin
  • KLH keyhole limpet hemocyanin
  • human thyroglobulin chicken gamma globulin, and the like.
  • the antigen may also be a peptide consisting of the amino acid sequence of hSEMA7A (SEQ ID NO: 46) or a partial sequence thereof in which one or more amino acids are deleted, substituted, or added.
  • one or more (preferably one or several (for example, 1 to 10, more preferably 1 to 5)) amino acids are deleted from the amino acid sequence of hSEMA7A or a partial sequence thereof.
  • one or more (preferably one or several (for example, 1 to 10, more preferably 1 to 5)) amino acids are substituted with other amino acids, or one or more (preferably 1 to 10, more preferably 1 to 5)) amino acids are substituted with other amino acids, It is also possible to use a peptide consisting of an amino acid sequence to which one or several (eg, 1 to 10, more preferably 1 to 5) other amino acids are added.
  • Genes to be introduced into cells include genes encoding hSEMA7A protein, partial fragments thereof, or mutant proteins or fragments thereof.
  • a gene for example, one having the base sequence shown in SEQ ID NO: 45 or a partial sequence thereof can be used.
  • a base sequence that hybridizes under stringent conditions with a sequence complementary to the base sequence shown in SEQ ID NO: 45 and that encodes a protein that has the same activity as hSEMA7A is used. , or a subarray thereof.
  • “Stringent conditions” are conditions for washing after hybridization, in which the salt (sodium) concentration of the buffer is 10 to 500 mM, and the temperature is 42°C to 72°C, preferably the above salt This refers to conditions where the concentration is 50-300mM and the temperature is 55-68°C.
  • a known method such as the Kunkel method or the Gapped duplex method can be used, for example, a mutation introduction kit using site-directed mutagenesis, such as the GeneArt TM Site-Directed Mutagenesis System (manufactured by Invitrogen). , TaKaRa Site-Directed Mutagenesis System (Mutan-K, Mutan-Super Express Km, etc.: manufactured by Takara Bio Inc.).
  • the prepared antigen is administered to mammals for immunization.
  • Mammals are not particularly limited, and include, for example, rats, mice, rabbits, etc., with mice being particularly preferred.
  • the dose of antigen per animal can be appropriately determined depending on the presence or absence of an adjuvant.
  • the adjuvant include Freund's complete adjuvant (FCA), Freund's incomplete adjuvant (FIA), aluminum hydroxide adjuvant, and the like. Immunization can be mainly performed by injecting intravenously, into the footpad, subcutaneously, intraperitoneally, etc.
  • the interval between immunizations is not particularly limited, and immunizations are performed 1 to 10 times, preferably 2 to 3 times, at intervals of several days to several weeks, preferably one week. Then, 3 to 7 days after the final immunization date, the antibody titer is measured using enzyme-linked immunosorbent assay (ELISA or EIA) or radioimmunoassay (RIA), and blood is collected on the day when the desired antibody titer is shown. , antiserum can be obtained.
  • ELISA or EIA enzyme-linked immunosorbent assay
  • RIA radioimmunoassay
  • the antibody needs to be purified, a known method such as ammonium sulfate salting-out method, ion exchange chromatography, gel filtration chromatography, or affinity chromatography may be selected as appropriate; Purification can be achieved by combining them. After that, the reactivity of the polyclonal antibody in the antiserum is measured by ELISA or the like.
  • the anti-hSEMA7A antibody of the present invention is preferably, but not limited to, a monoclonal antibody.
  • the prepared antigen is administered to mammals such as rats, mice, and rabbits for immunization.
  • the dose of antigen per animal can be appropriately determined depending on the presence or absence of an adjuvant.
  • the adjuvant is the same as above.
  • the immunization method is also the same as above.
  • Antibody-producing cells are then collected 1 to 60 days, preferably 1 to 14 days after the final immunization date.
  • Antibody-producing cells include spleen cells, lymph node cells, peripheral blood cells, and the like, with lymph node cells and spleen cells being preferred.
  • (3-2) Cell fusion To obtain a hybridoma (antibody-producing cell line), perform cell fusion between antibody-producing cells and myeloma cells.
  • myeloma cells to be fused with antibody-producing cells commonly available cell lines of animals such as mice can be used.
  • the cell line to be used has drug selectivity, cannot survive in HAT selection medium (containing hypoxanthine, aminopterin, and thymidine) in an unfused state, and can only survive in a state fused with antibody-producing cells. It is preferable to have one.
  • myeloma cells examples include P3-X63-Ag8.653, P3-X63-Ag8(X63), P3-X63-Ag8.U1(P3U1), P3/NS I/1-Ag4-1(NS1), and Sp2 Examples include mouse myeloma cell lines such as /0-Ag14 (Sp2/0). Myeloma cells can be selected by appropriately considering compatibility with antibody-producing cells.
  • the myeloma cells and antibody-producing cells are fused.
  • Cell fusion is carried out in animal cell culture media such as serum-free DMEM and RPMI-1640 medium with 1 ⁇ 10 6 to 1 ⁇ 10 7 antibody-producing cells/mL and 2 ⁇ 10 5 to 2 ⁇ 10 6 cells/mL. /mL of myeloma cells.
  • the cell ratio between antibody-producing cells and myeloma cells is usually preferably 1:1 to 10:1, more preferably 3:1, although it is not limited.
  • a fusion reaction is performed in the presence of a cell fusion promoter.
  • cell fusion promoter for example, polyethylene glycol having an average molecular weight of 1,000 to 6,000 Daltons (D) can be used.
  • antibody-producing cells and myeloma cells can be fused using a commercially available cell fusion device that utilizes electrical stimulation (eg, electroporation).
  • Target hybridomas are selected from cells after cell fusion treatment.
  • the method is to appropriately dilute the cell suspension in RPMI-1640 medium containing fetal bovine serum, plate it on a microtiter plate, add selective medium to each well, and then replace the selective medium appropriately. Perform culture. As a result, cells that grow about 14 days after the start of culture in the selective medium can be obtained as hybrida.
  • the culture supernatant of the proliferating hybridoma is screened for the presence of an antibody that reacts with hSEMA7A. Screening for hybridomas may be carried out in accordance with conventional methods and is not particularly limited.
  • a portion of the culture supernatant contained in a well grown as a hybridoma can be collected and screened by ELISA, EIA, RIA, or the like. Cloning of fused cells can be performed by limiting dilution method or the like. Antibodies that show strong reactivity to hSEMA7A are determined by flow cytometry, etc., and hybridomas that produce these are selected and established as clones.
  • hybridomas are intraperitoneally administered to an animal of the same species as the mammal derived from myeloma cells, and the hybridomas are grown in large quantities. Then, it is preferable to collect ascitic fluid after 2 to 3 weeks.
  • antibody collection method if antibody purification is required, appropriately select known methods such as ammonium sulfate salting out, ion exchange chromatography, gel filtration, affinity chromatography, or a combination of these methods. It can be purified by
  • the anti-hSEMA7A antibody of the present invention inhibits or inhibits the interaction (preferably binding) between hSEMA7A and Plexin C1 and/or integrin ⁇ 1.
  • the antibody has inhibitory activity.
  • the anti-hSEMA7A antibody of the present invention is preferably an antibody having antitumor activity, for example.
  • antitumor activity means an activity that kills tumor cells (cancer cells) or an activity that inhibits tumor growth.
  • Preferable examples of the antitumor activity include cancer cell proliferation inhibitory activity and tumor angiogenesis inhibitory activity.
  • the types of human tumors (tumor cells) in which the antibody of the present invention can exhibit antitumor activity include various known human tumors in which expression of hSEMA7A has been confirmed, and is not particularly limited.
  • the human tumors include human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, human chondrosarcoma, human stomach cancer, human pancreatic cancer, human skin cancer, human ovarian cancer, human colon cancer, and human bladder cancer.
  • Preferred examples include one or more of various human tumors such as cancer, human liver cancer, human esophageal cancer, prostate cancer, and human biliary tract cancer, more preferably human breast cancer, human lung cancer, human oral cavity cancer, and human bone cancer.
  • sarcoma, and human chondrosarcoma examples include non-small cell lung cancer, more preferably non-small cell lung cancer in which an activating mutation of the EGFR (epidermal growth factor receptor) gene is observed.
  • the type of tumor mentioned above may be recurrent cancer or metastatic cancer, and the antibody of the present invention can exhibit excellent antitumor activity against these tumors as well.
  • a tumor-bearing mouse tumor-bearing animal treatment model in which the desired tumor cells are subcutaneously implanted is used, and the antibody obtained as described above is administered to this mouse.
  • the antibody may be administered immediately after tumor cell transplantation (prevention model), or after confirming that the tumor has reached a predetermined volume for transplantation (treatment model).
  • the administration method is not limited, but may be, for example, intraperitoneal administration at 5 to 20 mg/kg body weight once every 3 days, 1 week, 10 days, or 2 weeks, or once (only once). can.
  • the presence or absence and level of antitumor activity can be evaluated based on tumor formation frequency and tumor volume.
  • the presence or absence and level of antitumor activity can be evaluated based on tumor volume.
  • Tumor growth inhibitory activity in a tumor-bearing animal model is preferably shown at a lower dose, for example, 20 mg/kg body weight or less (preferably 10 mg/kg body weight or less, more preferably 5 mg The dosage is preferably 1 mg/kg body weight or less, more preferably 1 mg/kg body weight or less.
  • the anti-hSEMA7A antibody of the present invention is preferably one that can be used for the treatment or prevention of tumors, or one that can be used for the treatment or prevention of symptomatic diseases and/or autoimmune diseases.
  • Inflammatory diseases include, but are not limited to, idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, as well as organ fibrosis, including non-alcoholic steatohepatitis (NASH). At least one selected from the group consisting of is preferably mentioned.
  • the autoimmune disease is not limited, but preferably includes, for example, at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome.
  • the anti-hSEMA7A antibody of the present invention has, for example, excellent internalization activity into cells expressing hSEMA7A.
  • the intracellular internalization activity can be evaluated by fluorescently labeling the antibody with rhodamine or the like and observing the intracellular migration behavior and localization of the antibody using a fluorescence microscope or the like. For the method of calculating the activity, see, for example, the description in FIG. 12A.
  • the epitope (antigenic determinant) of the anti-hSEMA7A antibody in the present invention may be at least a partial region of the antigen hSEMA7A, but preferably at least the extracellular domain of hSEMA7A. A partial region, more preferably at least a partial region of the sema domain.
  • An anti-hSEMA7A antibody that recognizes the region (binds to the region or a portion containing it) is useful because it can, for example, more effectively exhibit the properties of the anti-hSEMA7A antibody as described below.
  • the present invention also includes antibodies that can bind to the epitope region that is bound (recognized) by the anti-hSEMA7A antibody of the present invention.
  • the anti-hSEMA7A antibody of the present invention preferably has a dissociation constant (Kd value) of 1.0 ⁇ 10 -10 M or less, more preferably 1.0 ⁇ 10 -11 M or less, and even more preferably 1.0 ⁇ 10 -12 M or less.
  • the binding ability (affinity) of the antibody can be determined by, for example, the dissociation constant (Kd value), dissociation rate constant (Kdiss [1/Sec]), binding rate, etc. using Scatchard analysis or a surface plasmon resonance sensor called Biacore. It can be measured as a constant (Kass [1/M.Sec]).
  • Biacore devices include Biacore 3000, Biacore 2000, Biacore X, Biacore J, and Biacore Q (all manufactured by Biacore).
  • Antibodies are preferable in that the smaller the dissociation constant (Kd value), the higher the binding ability (affinity).
  • Genetically recombinant antibodies and antibody fragments are genetically recombinant antibodies.
  • Genetically recombinant antibodies include, but are not limited to, chimeric antibodies, humanized antibodies (humanized antibodies), human antibodies (fully human antibodies), and the like.
  • a chimeric antibody i.e., a humanized chimeric antibody
  • a chimeric antibody is an antibody in which the variable region of a mouse-derived antibody is linked (conjugated) to a human-derived constant region (Proc. Natl. Acad. Sci. USA 81, 6851-6855, (1984 ), etc.), chimeras can be easily constructed by recombinant genetic techniques to obtain such linked antibodies.
  • CDRs complementarity determining regions
  • FR framework regions
  • CDR grafting humanized rearranged human variable regions are then linked to human constant regions.
  • Methods for producing such humanized antibodies are well known in the art (Nature, 321, 522-525 (1986); J. Mol. Biol., 196, 901-917 (1987); Queen C et al. ., Proc. Natl. Acad. Sci. USA, 86: 10029-10033 (1989); see Special Publication No. 4-502408 (Patent No. 2828340; Queen et al.), etc.).
  • a human antibody generally has the same structure as a human antibody in the structure of the hypervariable region (Hyper Variable region) which is the antigen binding site of the V region, other parts of the V region, and the constant region. be.
  • the hypervariable region may be derived from other animals.
  • Techniques for producing human antibodies are also well known, and methods for producing gene sequences common to humans using genetic engineering techniques have been established. Human antibodies can be produced, for example, by a method using human antibody-producing mice that have human chromosome fragments containing the H chain and L chain genes of human antibodies (Tomizuka, K. et al., Nature Genetics, (1977) 16, 133- 143; Kuroiwa, Y.et.al., Nuc.
  • Human antibodies can also be produced (and purified) from clones that specifically bind to the desired antigen (hSEMA7A in the present invention) using human ADLib technology (library described in WO 2015/167011). (in particular, the amino acid sequence of VH or VL, preferably at least one CDR sequence in VH or VL) (preferably with amino acid substitution). You can also do it.
  • the amino acid sequences of CDR1, CDR2 and CDR3 of VH are as follows: Amino acid sequences shown in SEQ ID NOs: 10, 11 and 12, Amino acid sequences shown in SEQ ID NOs: 18, 19 and 20, Amino acid sequences shown in SEQ ID NOs: 22, 23 and 24, Amino acid sequences shown in SEQ ID NO: 26, 27 and 28, Amino acid sequences shown in SEQ ID NO: 30, 31 and 32, Amino acid sequences shown in SEQ ID NOs: 34, 35 and 36, consisting of the amino acid sequences shown in SEQ ID NOs: 38, 39, and 40, or the amino acid sequences shown in SEQ ID NOs: 42, 43, and 44, and the amino acid sequences of CDR1, CDR2, and CDR3 of VL, respectively, in that order, Preferable examples include antibodies having the amino acid sequences shown in SEQ ID NOs: 14, 15, and 16.
  • more preferred embodiments of the anti-hSEMA7A antibody of the present invention include, for example, The amino acid sequence of VH consists of the amino acid sequence shown in SEQ ID NO: 9, 17, 21, 25, 29, 33, 37 or 41, and Preferred examples include antibodies whose VL amino acid sequence consists of the amino acid sequence shown in SEQ ID NO: 13.
  • the above-mentioned chimeric antibodies, humanized antibodies, and human antibodies are those in which the N-glycoside-linked complex sugar chain in the antibody Fc region is a sugar chain in which fucose is not bound to N-acetylglucosamine at the reducing end of the sugar chain.
  • Examples include antibodies consisting of molecules. Such antibodies can improve ADCC activity. Note that this point (characteristics of N-glycoside-bonded complex sugar chains in the antibody Fc region) is similarly preferable for the above-mentioned polyclonal antibodies and monoclonal antibodies.
  • the antibody fragment of the present invention like the anti-hSEMA7A antibody of the present invention, has binding activity for hSEMA7A (preferably sema domain) (ie, is capable of binding to hSEMA7A).
  • hSEMA7A preferably sema domain
  • it has the above-mentioned activity of inhibiting or suppressing the interaction (preferably binding) between SEMA7A and Plexin C1 and/or integrin ⁇ 1, or has antitumor activity. More preferred are those that can be used for the treatment or prevention of tumors, and those that can be used for the treatment or prevention of symptomatic diseases and/or autoimmune diseases, as described above.
  • the fragment of the antibody means a partial region of an anti-hSEMA7A polyclonal antibody or an anti-hSEMA7A monoclonal antibody (i.e., an antibody fragment derived from the anti-hSEMA7A antibody of the present invention), such as Fab, Fab', F(ab' ) 2 , Fv (variable fragment of antibody), single chain antibody (H chain, L chain, H chain V region, L chain V region, etc.), scFv, diabody (scFv dimer), dsFv (disulfide stabilized V region) and a peptide that includes at least a portion of a complementarity determining region (CDR).
  • an antibody fragment derived from the anti-hSEMA7A antibody of the present invention such as Fab, Fab', F(ab' ) 2 , Fv (variable fragment of antibody), single chain antibody (H chain, L chain, H chain V region, L chain V region, etc.), scFv, dia
  • Fab is a fragment obtained by treating an antibody molecule with the proteolytic enzyme papain, and has antigen-binding activity with a molecular weight of approximately 50,000, in which approximately half of the N-terminal side of the H chain and the entire L chain are bonded by disulfide bonds. It is an antibody fragment.
  • Fab can also be produced by inserting the DNA encoding the Fab of the antibody into a prokaryotic expression vector or a eukaryotic expression vector, and expressing the vector by introducing the vector into the prokaryotic or eukaryotic organism. can.
  • F(ab') 2 is an antigen-binding fragment with a molecular weight of approximately 100,000, which is slightly larger than the fragment obtained by treating an antibody molecule with the proteolytic enzyme pepsin, in which Fab is bound via disulfide bonds in the hinge region. It is an active antibody fragment. Moreover, it can also be produced by linking Fab described below with a thioether bond or a disulfide bond.
  • Fab' is an antibody fragment with a molecular weight of about 50,000 and antigen-binding activity, obtained by cleaving the disulfide bond in the hinge region of F(ab') 2 described above.
  • Fab' can be produced by inserting the DNA encoding the Fab' fragment of the antibody into a prokaryotic expression vector or a eukaryotic expression vector, and expressing the vector by introducing the vector into a prokaryotic or eukaryotic organism. You can also.
  • scFv is VH-P-VL or VL-P-VH, in which one heavy chain variable region (VH) and one light chain variable region (VL) are linked using an appropriate peptide linker (P).
  • scFv is produced by obtaining cDNA encoding the VH and VL of an antibody, constructing the DNA encoding the scFv, inserting the DNA into a prokaryotic expression vector or a eukaryotic expression vector, and converting the expression vector into a prokaryotic expression vector. It can be expressed and produced by introducing it into an organism or eukaryote.
  • a diabody is an antibody fragment that is a dimerization of scFv and has bivalent antigen-binding activity.
  • the two valent antigen-binding activities can be the same, or one can have a different antigen-binding activity.
  • Diabody obtains cDNA encoding the VH and VL of an antibody, constructs the scFv-encoding DNA so that the amino acid sequence of the peptide linker (P) is 8 residues or less, and converts the DNA into a prokaryote. It can be produced by inserting it into an expression vector for organisms or an expression vector for eukaryotes, and expressing it by introducing the expression vector into prokaryotes or eukaryotes.
  • dsFv refers to a polypeptide in which one amino acid residue in each of VH and VL is replaced with a cysteine residue, which are linked via a disulfide bond between the cysteine residues.
  • the amino acid residue to be substituted for the cysteine residue can be selected based on the prediction of the three-dimensional structure of the antibody according to the method shown by Reiter et al. (Protein Engineering, 7, 697-704, 1994).
  • dsFv is produced by obtaining cDNA encoding the VH and VL of an antibody, constructing a DNA encoding dsFv, inserting the DNA into a prokaryotic expression vector or a eukaryotic expression vector, and translating the expression vector into a prokaryotic expression vector. It can be expressed and produced by introducing it into an organism or eukaryote.
  • Peptides containing CDRs are composed of at least one region of VH CDRs (CDR1 to 3) and VL CDRs (CDR1 to 3), and include those containing all VH CDRs and all VL CDRs. It is more preferable to include all CDRs of VH and VL (six regions in total), and particularly preferable.
  • Preferred amino acid sequences of CDRs include the various amino acid sequences of CDRs 1 to 3 of VH and VL described above.
  • Peptides containing multiple CDRs can be linked directly or via a suitable peptide linker.
  • Peptides containing CDRs can be produced by constructing DNA encoding the CDRs of VH and VL of an antibody, inserting the DNA into an expression vector for prokaryotes or an expression vector for eukaryotes, and translating the expression vector into a prokaryotic or eukaryotic expression vector. It can be expressed and produced by introducing it into an organism.
  • Peptides containing CDRs can also be produced by chemical synthesis methods such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
  • the antibody fragment of the present invention may be a part of the antibody Fc region in which the N-glycoside-linked complex sugar chain does not have fucose bound to N-acetylglucosamine at the reducing end of the sugar chain, or Alternatively, an antibody fragment containing the entirety of the antibody fragment and the N-glycoside-linked complex sugar chain may be used in the antibody Fc region, which is a sugar chain in which fucose is not bound to N-acetylglucosamine at the reducing end of the sugar chain. It may be a fusion protein with a part or all of it. Such antibody fragments are preferred because they can dramatically improve ADCC activity.
  • the above-mentioned antibody fragments are also included in the anti-hSEMA7A antibody of the present invention.
  • the present invention can also provide a polynucleotide (gene, DNA) encoding the anti-hSEMA7A antibody of the present invention described above or an antibody fragment thereof.
  • the polynucleotide is preferably a polynucleotide containing a base sequence encoding each of the amino acid sequences shown as examples of the anti-hSEMA7A antibody and antibody fragment of the present invention described above.
  • the polynucleotide of the present invention may consist only of a polynucleotide encoding the anti-hSEMA7A antibody or antibody fragment of the present invention, or it may contain the polynucleotide as a part and contain other components necessary for gene expression. It may also contain known base sequences (transcription promoter, SD sequence, Kozak sequence, terminator, etc.), and is not limited to such sequences.
  • codons corresponding to individual amino acids after translation are not particularly limited, and codons that are commonly used in mammals such as humans after transcription are used. It may contain nucleotide DNA indicating codons (preferably frequently used codons), or it may contain nucleotide DNA indicating codons (preferably frequently used codons) that are commonly used in microorganisms such as E. coli and yeast, plants, etc. It may also contain nucleotide DNA that exhibits high codons.
  • the present invention can also provide a recombinant vector containing the polynucleotide of the present invention and a transformant containing the recombinant vector.
  • the polynucleotide (gene, DNA) to be incorporated into the expression vector used as a recombinant vector has a transcription promoter, an SD sequence (if the host is a prokaryotic cell) and a Kozak sequence (if the host is a eukaryotic cell) as necessary. ) may be linked, a terminator may be linked downstream, and an enhancer, splicing signal, polyA addition signal, selection marker, etc. may also be linked.
  • Each element necessary for gene expression such as the above-mentioned transcription promoter, may be included in the polynucleotide from the beginning, or if it is originally included in the expression vector, it may be used. The manner of use is not particularly limited.
  • Expression vectors include, for example, plasmid DNA, bacteriophage DNA, retrotransposon DNA, retrovirus vectors, artificial chromosome DNA, etc. that contain polynucleotides (genes, DNA) encoding the anti-hSEMA7A antibody of the present invention or antibody fragments thereof. There are no limitations as long as the vector can be retained, and a vector suitable for the host cell to be used can be appropriately selected and used.
  • the constructed recombinant vector is introduced into a host to obtain a transformant, which is then cultured to express the anti-hSEMA7A antibody or antibody fragment thereof of the present invention.
  • transformant used in the present invention refers to a host into which a foreign gene has been introduced; for example, a transformant into which a foreign gene has been introduced by introducing plasmid DNA or the like into the host (transformation); It also includes those into which foreign genes have been introduced by infecting the host with various viruses and phages (transduction).
  • the host is not limited as long as it can express the anti-hSEMA7A antibody of the present invention or its antibody fragment after the recombinant vector is introduced, and it can be selected as appropriate.
  • Known hosts include various animal cells such as mice, various plant cells, bacteria, yeast, and plant cells.
  • animal cells for example, human fibroblasts, human fetal kidney cells, HEK293 cells, 293F cells, CHO cells, monkey cells COS-7, Vero, mouse L cells, rat GH3, human FL cells, etc. used.
  • insect cells such as Sf9 cells and Sf21 cells can also be used.
  • bacteria for example, Escherichia coli, Bacillus subtilis, etc.
  • yeast for example, Saccharomyces cerevisiae, Schizosaccharomyces pombe, etc. are used.
  • plant cells for example, tobacco BY-2 cells are used.
  • the method for obtaining the transformant is not limited and can be selected as appropriate, taking into consideration the combination of host and expression vector, but includes, for example, electroporation, lipofection, heat shock, PEG, Preferred examples include the calcium phosphate method, the DEAE dextran method, and methods of infecting various viruses such as DNA viruses and RNA viruses.
  • the codon type of the polynucleotide contained in the recombinant vector may be the same as or different from the codon type of the host used, and is not limited.
  • Antibody or antibody fragment-drug conjugate contains the antibody or antibody fragment and a drug (preferably, the antibody or antibody fragment contains a drug). , a drug conjugated), an antibody or antibody fragment-drug conjugate.
  • the above-mentioned drug is preferably, but not limited to, a compound having antitumor activity and/or cell-killing activity, and specifically, for example, - Tubulin inhibitors and/or microtubule polymerization inhibitors (more specifically, Auristatins (MMAE, MMAF, etc.), Maytansines (DM1, DM4, etc.), Tubulysins, cryptophycins, rhizoxin, etc.); ⁇ Antibiotics (more specifically, Calicheamicins, Doxorubicin, anthracyclines, etc.); ⁇ DNA synthesis inhibitors (more specifically, Duocarmycins, PBDs (Benzodiazepines), IGNs (Indolinobenzodiazepines), etc.); ⁇ Topoisomerase I inhibitors (more specifically, camptothecin analogues (SN-38, DXd, etc.), etc.); ⁇ RNA polymerase II inhibitors (more specifically, Amanitins, etc.); and
  • a drug exhibiting antitumor activity for example, a compound that is excited by light energy and exhibits toxicity can also be used.
  • a protein toxin as a substance with antitumor activity and/or cell killing activity is linked to an antibody gene or antibody fragment gene on the gene and expressed as one protein (fusion protein).
  • the resulting products are generally called immunotoxins.
  • substances having antitumor activity include doxorubicin, calicheamicin, mitomycin C, Auristatin E, pyrrolobenzodiazepine (PBD), and radioisotope (RI).
  • substance having cell-killing activity include saporin, ricin, Pseudomonas aeruginosa exotoxin, diphtheria toxin, and radioisotope (RI), among which saporin and Pseudomonas aeruginosa exotoxin are preferably used.
  • RI having antitumor activity and/or cell-killing activity includes, but is not limited to, 90 Y, 111 In, 125 I, 3 H, 35 S, 14 C, 186 Re, 188 Re, 189 Re. , 177 Lu, 67 Cu, 212 Bi, 213 Bi, 211 At, 198 Au, 224 Ac, 126 I, 133 I, 77 Br, 113m In, 95 Ru, 97 Ru, 103 Ru, 105 Ru, 107 Hg, 203 Hg, 94m Tc, 121m Te, 122m Te, 125m Te, 165 Tm, 167 Tm, 168 Tm, 111 Ag, 197 Pt, 109 Pd, 32 P, 33 P, 47 Sc, 153 Sm, 177 Lu , 105 Rh, 142 Pr, 143 Pr, 161 Tb, 166 Ho, 199 Au, 57 Co, 58 Co, 51 Cr, 59 Fe, 18 F, 75 Se, 201 Tl, 225 Ac,
  • Methods for producing antibody or antibody fragment-drug complexes include, but are not limited to, methods in which an antibody or antibody fragment is coupled to a drug via a disulfide bond or a hydrazone bond.
  • the anti-hSEMA7A antibody and antibody fragments thereof of the present invention have excellent internalization activity into cells expressing hSEMA7A, and therefore are preliminarily treated with substances having antitumor activity and/or cell-killing activity. By conjugating these substances to the antibody or antibody fragment, these substances can be made to act directly and highly selectively on cells (especially tumor cells).
  • the antibody or antibody fragment-drug conjugate of the present invention has an excellent ability to deliver a drug to target tumor cells.
  • the present invention can also provide an antibody fragment-drug complex using the above-mentioned antibody fragment instead of the antibody.
  • the above explanation of the antibody-drug conjugate can be similarly applied.
  • the antibody-drug conjugate of the present invention includes an antibody fragment-drug conjugate.
  • the anti-hSEMA7A antibody and antibody-drug conjugate (hereinafter also referred to as the conjugate of the present invention) of the present invention are useful as active ingredients contained in pharmaceutical compositions. Since the anti-hSEMA7A antibody of the present invention may have antitumor activity as described above, the anti-hSEMA7A antibody of the present invention and the complex of the present invention are preferably used for the treatment and/or prevention of tumors. . Therefore, the pharmaceutical composition is useful as a pharmaceutical composition for treating and/or preventing tumors, and further for diagnosis. That is, the anti-hSEMA7A antibody of the present invention and the complex of the present invention are useful as active ingredients contained in tumor therapeutic agents and tumor diagnostic agents.
  • the above-mentioned tumor treatment includes the meaning of tumor growth inhibition and growth suppression, and specifically, for example, in the case of a tumor therapeutic agent, a tumor growth inhibitor and a form of the growth inhibitor are included. shall also be included.
  • the anti-hSEMA7A antibody of the present invention and the complex of the present invention are preferably used for the treatment and/or prevention of inflammatory diseases and/or autoimmune diseases, as described above. Therefore, the pharmaceutical composition is useful as a pharmaceutical composition for treating and/or preventing inflammatory diseases and/or autoimmune diseases, as well as for diagnosing them.
  • the anti-hSEMA7A antibody of the present invention and the complex of the present invention are useful as active ingredients contained in therapeutic and diagnostic agents for inflammatory diseases and/or autoimmune diseases.
  • the pharmaceutical composition of the present invention may be a composition for inhibiting or suppressing interaction (preferably binding) between hSEMA7A and Plexin C1 and/or integrin ⁇ 1.
  • the pharmaceutical composition of the present invention is preferably provided in the form of a pharmaceutical composition containing the anti-hSEMA7A antibody of the present invention as an active ingredient, and further containing a pharmaceutically acceptable carrier.
  • the pharmaceutical composition of the present invention can also be used in combination with a known compound having antitumor activity (eg, cisplatin) and/or a compound having cell killing activity.
  • a known compound having antitumor activity eg, cisplatin
  • the mode of combined use may be, for example, a mode in which the pharmaceutical composition of the present invention further contains the compound, or a mode in which it is used in combination with the compound, and is not limited. Such a combination provides even higher antitumor effects.
  • the above explanation can be similarly applied to human tumors to which the pharmaceutical composition of the present invention is applied.
  • the tumor to be applied may be recurrent cancer or metastatic cancer, and the pharmaceutical composition of the present invention (as well as the anti-hSEMA7A antibody of the present invention or the complex of the present invention) is suitable for the treatment of recurrent cancer or metastatic cancer. It can also be effectively used as an agent, preventive agent, and diagnostic agent. Further, the above explanation can be similarly applied to inflammatory diseases and autoimmune diseases to which the pharmaceutical composition of the present invention is applied.
  • “Pharmaceutically acceptable carrier” means excipients, diluents, fillers, disintegrants, stabilizers, preservatives, buffers, emulsifiers, fragrances, colorants, sweeteners, thickeners, flavoring agents, etc. agents, solubilizing agents, and other additives.
  • pharmaceutical compositions in the form of injections, solutions, capsules, suspensions, emulsions, syrups, etc. can be prepared. These pharmaceutical compositions can be administered orally or parenterally. Other forms for parenteral administration include injections containing one or more active substances and formulated in a conventional manner. In the case of an injection, it can be produced by dissolving or suspending it in a pharmaceutically acceptable carrier such as physiological saline or commercially available distilled water for injection.
  • colloidal dispersion systems are expected to have the effect of increasing the stability of compounds (antibody fragments) in vivo and the effect of efficiently transporting compounds to specific organs, tissues, or cells.
  • Colloidal dispersion systems are not limited as long as they are commonly used, but include polyethylene glycol, polymer complexes, polymer aggregates, nanocapsules, microspheres, beads, oil-in-water emulsifiers, micelles, mixed micelles.
  • liposomes preferably a plurality of liposomes, artificial membrane vesicles, which have the effect of efficiently transporting compounds to specific organs, tissues or cells.
  • Liposomes preferably a plurality of liposomes, artificial membrane vesicles, which have the effect of efficiently transporting compounds to specific organs, tissues or cells.
  • the dosage of the pharmaceutical composition of the present invention is determined depending on the patient's age, sex, weight, symptoms, therapeutic effect, administration method, treatment time, or the anti-hSEMA7A antibody of the present invention or the complex of the present invention contained in the pharmaceutical composition. It varies depending on the type etc. Usually, the dose per adult can be administered in the range of 600 ⁇ g to 6000 mg at a time, but the dose is not limited to this range.
  • the amount of 100 ⁇ g to 100 mg per 1 kg body weight may be administered to human patients once to several times per day on average, preferably for 3 days. It is also possible to administer the drug once every 1 week, 10 days, or 2 weeks, or to administer it once (the total number of administrations is 1 time).
  • the form of administration includes intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection, and intraperitoneal injection, with intravenous injection being preferred.
  • Injections can also be prepared as non-aqueous diluents (for example, polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol, etc.), suspensions, or emulsions, depending on the case.
  • injections can be sterilized by filter sterilization, addition of a bactericide, and the like. Injections can be manufactured in a ready-to-use form. That is, it can be prepared into a sterile solid composition by freeze-drying or the like, and dissolved in sterile distilled water for injection or other solvent before use.
  • the present invention also relates to the treatment, prevention, and/or diagnosis of tumors, inflammatory diseases, and/or autoimmune diseases (hereinafter also referred to as tumors), or the interaction between hSEMA7A and Plexin C1 and/or integrin ⁇ 1 (
  • the present invention also provides the use of the anti-hSEMA7A antibody of the present invention and/or the conjugate of the present invention for producing a medicament (drug) that inhibits or suppresses hSEMA7A binding.
  • the present invention provides a method for treating, preventing, and/or diagnosing tumors, etc., or for inhibiting or suppressing the interaction (preferably binding) between hSEMA7A and Plexin C1 and/or integrin ⁇ 1.
  • anti-hSEMA7A antibodies and/or conjugates of the invention provides a method for treating, preventing, and/or diagnosing tumors, etc., which uses the anti-hSEMA7A antibody of the present invention and/or the complex of the present invention (that is, administering it to a subject (patient));
  • the present invention provides a method for inhibiting or suppressing the interaction (preferably binding) between hSEMA7A and Plexin C1 and/or integrin ⁇ 1, and also provides a method for inhibiting or suppressing the interaction (preferably binding) between hSEMA7A and Plexin C1 and/or integrin ⁇ 1, and for treating, preventing and/or diagnosing tumors, etc., or between hSEMA7A and Plexin
  • the use of the anti-hSEMA7A antibody of the invention and/or the conjugate of the invention to inhibit or suppress interaction (preferably binding) with C1 and/or integrin ⁇ 1.
  • the anti-hSEMA7A antibody of the present invention and the complex of the present invention can be used in kits for the treatment and/or prevention of tumors, etc., such as kits for diagnosis or detection of tumors, or for the interaction of hSEMA7A with Plexin C1 and/or integrin ⁇ 1 (preferably).
  • kits for diagnosis or detection of tumors or for the interaction of hSEMA7A with Plexin C1 and/or integrin ⁇ 1 (preferably).
  • kits for inhibiting or suppressing the binding of the compound it can also be provided in the form of a kit for diagnosing or detecting tumors, etc.
  • the above explanation can be similarly applied to specific examples of tumors, inflammatory diseases, and autoimmune diseases to be diagnosed or detected.
  • the diagnosis and detection involves, for example, reacting the anti-hSEMA7A antibody of the present invention and/or the complex of the present invention with a sample collected from a living body (hereinafter referred to as biological sample), and detecting a signal of the reacted antibody, etc.
  • biological sample a sample collected from a living body
  • hSEMA7A can also be used as a marker for various tumors.
  • the detected signals of antibodies and the like serve as an indicator of the amount of antigen (ie, the amount of hSEMA7A) in the biological sample. Diagnosis and detection of tumors, etc. using the antibodies, etc.
  • the present invention involves first applying an antigen-antibody reaction between a biological sample collected from a subject as a specimen, such as a tissue piece or blood to be tested, and the antibodies, etc. of the present invention. Combine by. Next, the amount of the target antigen in the biological sample is measured based on the measurement result of the amount of bound antibody.
  • the measurement may be performed according to a known immunoassay method, for example, immunoprecipitation method, immunoagglutination method, labeled immunoassay method, immunospecific suspension method, Western blotting method, flow cytometry method, etc. can.
  • the antibody signal may be expressed by the amount of label directly detected using a labeled antibody, or may be expressed relatively using an antibody of known concentration or known antibody titer as a standard solution. That is, a standard solution and a specimen are measured using a measuring meter, and signals of antibodies, etc. in a biological sample can be expressed relatively based on the value of the standard solution.
  • labeled immunoassay methods include ELISA method, EI method, RIA method, fluorescence immunoassay (FIA) method, and chemiluminescence immunoassay method.
  • the ELISA method is particularly preferred because it is simple and highly sensitive.
  • the condition of a tumor, etc. can be evaluated or diagnosed using the detection results obtained as described above as an index. For example, a detection result exceeding a predetermined standard value is considered positive, a detection result below a predetermined reference value is considered negative, and in the case of a positive result, it is determined that there is a possibility that one of the tumors has developed.
  • the condition of tumors etc. can be evaluated.
  • the condition of a tumor, etc. refers to the presence or absence of a tumor, etc., or the degree of progression thereof, and includes the presence or absence of a tumor, etc. onset, degree of progression, malignancy, and presence or absence of recurrence. Examples include presence or absence.
  • one state of the tumor, etc. may be selected, or a combination of multiple states may be selected.
  • the presence or absence of a tumor or the like can be evaluated by determining whether or not the patient is suffering from a tumor or the like using a predetermined reference value as a boundary based on the obtained detection results.
  • the malignancy of a tumor, etc. is an index indicating how far the symptoms of a tumor, etc. have progressed.
  • Tumor metastasis can be evaluated by using the detection results as an indicator and determining whether a neoplasm has appeared in a site distant from the primary tumor.
  • Recurrence of a tumor, etc. can be evaluated by determining whether the detection result exceeds a predetermined reference value again after an intermittent period or remission.
  • the kit of the present invention may also contain a labeling substance, or a solid-phase reagent on which the antibody or its label is immobilized.
  • Labeling substances for antibodies refer to those labeled with enzymes, radioactive isotopes, fluorescent compounds, chemiluminescent compounds, and the like.
  • the kit of the present invention includes other reagents for carrying out the detection of the present invention, such as an enzyme substrate (such as a chromogenic substrate) and an enzyme substrate solution when the labeled substance is an enzyme label. , an enzyme reaction stop solution, or a sample diluent.
  • buffers sterile water, various cell culture vessels, various reaction vessels (Eppendorf tubes, etc.), blocking agents (serum components such as Bovine Serum Albumin (BSA), Skim milk, Goat serum, etc.), detergents, surfactants, It may also include various plates, preservatives such as sodium azide, and experimental operation manuals (instructions).
  • BSA Bovine Serum Albumin
  • Skim milk Skim milk
  • Goat serum etc.
  • surfactants surfactants
  • plates preservatives such as sodium azide, and experimental operation manuals (instructions).
  • the prepared expression vector plasmid was transiently transfected into FreeStyle 293 cells (Thermo Fisher Scientific) using the polyethyleneimine method, and then cultured at 37° C. in a 5% CO 2 incubator for 5 days. The culture supernatant was collected, filtered through a 0.22 ⁇ m filter, and then bound to a HisTrap excel column (GE Healthcare). It was then eluted with a concentration gradient from 20mM to 500mM imidazole in 20mM phosphate buffer/300mM NaCl/pH 7.5 buffer. The elution fraction was separated into 1 mL portions, and the fraction in which a band of approximately 75 kDa was observed by SDS-PAGE was collected. The recovered protein was used as purified recombinant hSEMA7A extracellular domain protein (hereinafter referred to as hSEMA7A-ECD).
  • hSEMA7A-ECD purified recombinant hSEMA7A extracellular domain protein
  • CS(-) medium refers to the medium described above.
  • CS/FK506-containing medium refers to CS(-) medium to which 5% avian serum (Life Technologies) and 1 ⁇ M FK506 (Cayman) are added.
  • the monoclonal antibody selection library by the ADLib system was a mixture of the human library described in WO 2015/167011 and the Kappa human library (Human bioKI Lib mix).
  • Biotinylated hSEMA7A-ECD antigen was added to the library suspended in CS/FK506-containing medium to a final concentration of 30 nM, and the mixture was allowed to react at 4°C for 30 minutes while being mixed by inversion. After the reaction was completed, the cells were washed twice with CS/FK506-containing medium and resuspended in CS/FK506-containing medium.
  • the column was concentrated using an autoMACS Pro Separator (Miltenyi Biotec), and the fraction that was not adsorbed to the column (negative fraction) was measured using a FACS Aria Fusion (Becton Dickinson) to set the sorting range. Thereafter, the entire positive fraction sample was loaded, and the positive cell population was sorted at 1 cell/well in a 96-well plate into which each medium was dispensed.
  • the solution was removed by centrifugation using GYRO mini, 25 ⁇ L of culture supernatant was added, and the mixture was allowed to react at room temperature for 1 hour.
  • the solution was removed by centrifugation with GYRO mini, 25 ⁇ L of Goat anti-Human IgG-Fc HRP-conjugated (BETHYL) diluted 2000 times with blocking solution was added, and the mixture was allowed to react at room temperature for 30 minutes. It was washed five times with a washing solution (PBS containing 0.05% Tween20 (Wako)), and 25 ⁇ L of TMB (Nacalai Tesque) was added and reacted for 10 minutes. The reaction was stopped by adding 25 ⁇ L of 1 N sulfuric acid (Wako), and the absorbance at 450 nm was measured using a microplate reader (TECAN).
  • the obtained DNA fragment was amplified using CH2a 620R and VL7 SEQ R7, and DNA sequence analysis was performed.
  • CDR regions were determined according to the method of Kabat et al. (Sequences of Proteins of Immunological Interests, Fifth edition, NIH Publication No. 91-3242, US Department of Health and Human Services, 1991).
  • the amino acid sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the analyzed cloned antibody (antibody name: pre-AM) and the amino acid sequences of their respective CDR regions are shown in Table 1 below. Indicate by number.
  • the cells were washed twice with CS/FK506-containing medium and resuspended in CS/FK506-containing medium. Next, 1/500 amount of Streptavidin Alexa Fluor 488 Conjugate (Life Technologies) was added, and the mixture was allowed to react at 4°C for 30 minutes while being mixed by inversion. After the reaction was completed, the cells were washed twice with CS/FK506-containing medium and resuspended in CS/FK506-containing medium.
  • DT40 cells which were sorted in Section 6 (Improvement of affinity by Affinity maturation (AM)) and were considered to have improved affinity, were screened by flow cytometry. After the sorted single clones have grown sufficiently, biotinylated hHER2-His antigen was added to the DT40 cells suspended in CS(-) medium to a final concentration of 10 nM, and the mixture was incubated at 4°C for 30 minutes by inversion. Made it react. After the reaction was completed, the cells were washed twice with CS(-) medium and resuspended in CS(-) medium.
  • the buffer used was HBS-EP+ (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% (v/v) surfactant P20 (pH 7.4) (GE Healthcare)), and the flow rate was measured at 30 ⁇ L/min.
  • ADCC activity in primary cultured human HSCs First, we compared the expression level of SEMA7A on the cell surface of normal, resting HSCs and active HSCs, which are thought to be involved in pathological conditions. Activated HSCs were obtained by treating quiescent HSCs with 1 ng/mL hTGF- ⁇ 1 (R&D) overnight. Next, the isotype control antibody and anti-SEMA7A antibody (HC2) were reacted at 4°C for 30 minutes at a final concentration of 1 ⁇ g/mL, and after the reaction was completed, the cells were washed twice with CS(-) medium.
  • HC2 isotype control antibody and anti-SEMA7A antibody
  • the ADCC assay was performed according to the protocol of the ADCC Reporter Bioassay, Complete Kit (Promega). First, as described above, quiescent HSCs and activated HSCs were seeded at 6 ⁇ 10 3 cells/well in CellBIND 384-well plate (CORNING), and a dilution series of anti-SEMA7A antibody (HC1 to HC8) was diluted to a final concentration of 4 to 1000 ng. /mL. Next, ADCC Bioassay Effector Cell was added at 1.2 ⁇ 10 4 cells/well and reacted at 37° C. for 6 hours.
  • the strength of the ADCC activity of anti-SEMA7A antibodies against activated HSCs differs depending on the antibody variant, and in descending order of activity, HC6 > HC2 > HC1 ⁇ HC3 ⁇ HC4 ⁇ HC5 > HC7 ⁇ HC8. Ta.
  • MDA-MB-231 cells (ATCC) were seeded at 500 cells/well in a CellBIND 384-well plate (CORNING), and an ADC antibody dilution series was added. Thereafter, the cells were cultured at 37° C. in the presence of 0% CO 2 , and after 7 days, CellTiter-Glo Luminescent Cell Viability Assay (Promega) was added and the number of living cells was measured using an EnspireAlpha plate reader (ParkinElmer). As a result, anti-SEMA7A antibody-specific cytotoxic activity was observed ( Figure 4).
  • affinity with the antigen was measured using the SPR method (Biacore T200, GE Healthcare). After immobilizing anti-mouse IgG Fc antibodies on a CM5 chip (GE Healthcare) using a Mouse Antibody Capture Kit (GE Healthcare), the antibodies in the culture supernatant were captured. 4-100 nM hSEMA7A-EDC was reacted for 240 seconds and then dissociated for 300 seconds. One cycle was completed by reacting 10 mM Gly-HCl (pH 1.7) as a regeneration solution for 30 seconds.
  • the buffer used was HBS-EP+ (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% (v/v) surfactant P20 (pH 7.4) (GE Healthcare)), and the flow rate was measured at 30 ⁇ L/min.
  • the affinities other than 3A5G1 were so weak that they could not be detected.
  • the affinity of anti-SEMA7A antibodies was approximately 100 times stronger than that of 3A5G1 that could be measured.
  • the solution was removed by centrifugation using GYRO mini, and 25 ⁇ L of dilution series of anti-SEMA7A antibody and isotype control antibody and 25 ⁇ L of 10 nM biotinylated hSEMA7A-Fc (R&D) were simultaneously added and reacted for 1 hour at room temperature.
  • the solution was removed by centrifugation using GYRO mini, 25 ⁇ L of High Sensitivity Streptavidin-HRP (Thermo Fisher Scientific) diluted 5000 times with blocking solution was added, and the mixture was allowed to react at room temperature for 30 minutes.
  • novel anti-SEMA7A antibodies of the present invention have an activity that can virtually 100% inhibit Plexin C1-SEMA7A binding, which is overwhelmingly superior to commercially available antibodies. It had a strong inhibitory activity.
  • the plasmid was linearized with the restriction enzyme PvuI, and 2 ⁇ g was introduced into 2 ⁇ 10 6 mouse B cell-derived cell line Ba/F3 cells using Amaxa Cell Line Nucleofector Kit V (Lonza). After gene introduction, cells were seeded in a 96-well plate, and G418 (Nacalai Tesque) was added at a final concentration of 1 ⁇ g/mL. After 6 days, colonies with G418-resistant growth were collected from the wells, and the expression of hSEMA7A was confirmed by flow cytometry using anti-c-Myc antibody (Santa Cruz Biotechnology). Limit dilution was performed.
  • antigen specificity in anti-SEMA7A antibodies From the viewpoint of side effects, it is very important to ensure the antigen specificity of antibodies. Therefore, the antigen specificities of the novel anti-SEMA7A antibody of the present invention and a commercially available anti-SEMA7A antibody were compared using hSEMA4F, hSEMA5A, and hSEMA6C, which are highly homologous to the sema domain of hSEMA7A.
  • hSEMA7A-ECD, hSEMA4F-GST (Abnova), hSEMA5A-His (SINO BIO), hSEMA6C-GST (Abnova) and negative control antigen (hHER2 -His, GST) solution was dispensed onto MAXISORP 384 IMMUNO PLATE (NUNC) and reacted overnight at 4°C to solidify.
  • the solution was removed by centrifugation using a small centrifuge dedicated to microplates (GYRO mini GM-01, MICRONIX), and 45 ⁇ L of blocking solution (PBS containing 1% BSA (SIGMA)) was added and reacted at room temperature for 1 hour.
  • the solution was removed by centrifugation using GYRO mini, and 25 ⁇ L of 10 ⁇ g/mL anti-SEMA7A antibody was added and reacted for 1 hour at room temperature.
  • the solution was removed by centrifugation using GYRO mini, and 25 ⁇ L of Goat anti-Human/Mouse IgG-Fc HRP-conjugated (BETHYL) diluted 2000 times with blocking solution was added, and the mixture was allowed to react at room temperature for 30 minutes.
  • the cells were washed 5 times with a washing solution (PBS containing 0.05% Tween20 (Wako)), and 25 ⁇ L of TMB (Nacalai Tesque) was added and reacted for 10 minutes.
  • the analysis method involved reacting each cancer cell line with anti-SEMA7A antibody (HC2) at 4°C for 30 minutes, followed by detection with PE-labeled anti-hIgG Fc antibody.
  • HC2 anti-SEMA7A antibody
  • PE-labeled anti-hIgG Fc antibody PE-labeled anti-hIgG Fc antibody.
  • Cytotoxic activity of HC2 second immunotoxin in each cancer cell line Using cancer cell lines in which SEMA7A expression was confirmed, the second immunotoxin conjugated with PBD was used to verify the potential of anti-SEMA7A antibody (HC2) as an ADC. Cytotoxic activity was investigated using immunotoxins. Equal volumes of 80 nM anti-SEMA7A antibody and 240 nM PBD-conjugated secondary antibody (IgGs Anti-Mouse IgG Fc-PBD Antibody with Cleavable Linker (Moradec)) were mixed and incubated at room temperature for 1 hour. A 3-fold dilution series was prepared with the mixture and administered to each cancer cell line.
  • HC2 showed significant cytotoxic activity against the four types of cancer cell lines tested this time. From the above, it was demonstrated that HC2 is an antibody suitable for ADC as well.
  • a highly active functional antibody that binds to human SEMA7A preferably its sema domain
  • the anti-human SEMA7A antibody according to the present invention can inhibit or suppress the interaction between human SEMA7A and Plexin C1 or integrin ⁇ 1, and can be used to treat, for example, idiopathic pulmonary fibrosis (IPF) and non-alcoholic steatohepatitis (NASH).
  • IPF idiopathic pulmonary fibrosis
  • NASH non-alcoholic steatohepatitis
  • Organ fibrosis inflammatory diseases such as Crohn's disease, allergic dermatitis, and interstitial pneumonia; autoimmune diseases such as rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome , and can be effective as a therapeutic and preventive drug for various cancers such as lung cancer, breast cancer, oral cancer, osteosarcoma, and chondrosarcoma.
  • inflammatory diseases such as Crohn's disease, allergic dermatitis, and interstitial pneumonia
  • autoimmune diseases such as rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome
  • MS multiple sclerosis
  • Sjögren's syndrome Sjögren's syndrome
  • SEQ ID NO: 1-44 Recombinant peptide
  • SEQ ID NO: 47-50 Synthetic DNA

Abstract

Provided is a functional human anti-SEMA7A antibody. This invention relates to an anti-SEMA7A antibody in human having a specific CDR sequence, or an antibody fragment of this antibody.

Description

抗ヒトSEMA7A抗体Anti-human SEMA7A antibody
 本発明は、ヒトSEMA7Aに対する抗体又はその断片、及びその用途に関する。 The present invention relates to antibodies against human SEMA7A or fragments thereof, and uses thereof.
 ヒトSEMA7A (Semaphorin 7A)は、全長604アミノ酸からなり、semaドメインとIg-likeドメインを有するGPI(glycosylphosphatidylinositol)アンカー型タンパク質である。SEMA7Aは免疫と神経系の調節に関与している。SEMA7Aの受容体としては、Plexin C1とインテグリンβ1が知られており、そのうちインテグリンβ1に結合するとmitogen-activated protein (MAP) キナーゼ経路を介して軸索伸長および神経発芽に顕著な作用を及ぼす。また、活性化T細胞上に発現するSEMA7Aは、α1β1インテグリンを介して単球・マクロファージからの炎症性サイトカイン産生を誘導することが知られている(例えば、非特許文献1参照)。さらにSEMA7Aノックアウトマウスでは接触性過敏反応や実験的自己免疫性脳脊髄炎の発症抵抗性を示すことから、α1β1インテグリンを介してマクロファージを活性化することにより、局所での炎症反応を促進していることが示唆されている。 Human SEMA7A (Semaphorin 7A) is a GPI (glycosylphosphatidylinositol)-anchored protein with a total length of 604 amino acids and a sema domain and an Ig-like domain. SEMA7A is involved in immune and nervous system regulation. Plexin C1 and integrin β1 are known receptors for SEMA7A, and binding to integrin β1 exerts a significant effect on axonal outgrowth and nerve sprouting via the mitogen-activated protein (MAP) kinase pathway. Furthermore, SEMA7A expressed on activated T cells is known to induce inflammatory cytokine production from monocytes and macrophages via α1β1 integrin (see, for example, Non-Patent Document 1). Furthermore, SEMA7A knockout mice show resistance to the development of contact hypersensitivity reactions and experimental autoimmune encephalomyelitis, suggesting that local inflammatory responses are promoted by activating macrophages via α1β1 integrin. It has been suggested that.
 また、SEMA7Aは様々な疾患に関与していることが報告されている。例えば、特発性肺線維症(IPF)、非アルコール性脂肪肝炎(NASH)などの線維症、クローン病、及びアレルギー性皮膚炎などの炎症性疾患や、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群などの自己免疫疾患や、肺がん、及び乳がんなどの各種がんにおいてSEMA7A mRNAおよびタンパク質の発現が報告されている(例えば、非特許文献2参照)。 Additionally, SEMA7A has been reported to be involved in various diseases. For example, fibrosis such as idiopathic pulmonary fibrosis (IPF) and non-alcoholic steatohepatitis (NASH), inflammatory diseases such as Crohn's disease and allergic dermatitis, rheumatoid arthritis, multiple sclerosis (MS), Expression of SEMA7A mRNA and protein has been reported in autoimmune diseases such as systemic scleroderma and Sjögren's syndrome, and in various cancers such as lung cancer and breast cancer (see, for example, Non-Patent Document 2).
 肺がんの治療においてEGFR チロシンキナーゼ阻害薬(EGFR-TKI)は優れた分子標的薬であるが、エクソン19欠失変異(Del19)などのEGFR活性型遺伝子変異によって30%~40%の患者で治療抵抗性を示すことが問題となっている。例えば非特許文献3では、EGFR活性型遺伝子変異の下流でSEMA7Aが発現誘導されることがマウス線維芽細胞(NIH3T3)や肺がん患者検体を使った検討で示されており、このSEMA7AがEGFR-TKIの治療抵抗性に関わる分子であると同定されている。このことは、CRISPR-Cas9システムで作製したSEMA7Aノックアウト肺腺がん細胞株を免疫不全マウスに移植し、SEMA7A発現が無くなることでEGFR-TKIへの感受性が高まることから証明されている。 EGFR tyrosine kinase inhibitors (EGFR-TKIs) are excellent molecular-targeted drugs for the treatment of lung cancer, but EGFR activating gene mutations such as exon 19 deletion mutations (Del19) cause treatment resistance in 30% to 40% of patients. Displaying gender has become an issue. For example, in Non-Patent Document 3, studies using mouse fibroblasts (NIH3T3) and lung cancer patient specimens have shown that SEMA7A expression is induced downstream of EGFR-activating gene mutations, and this SEMA7A is induced by EGFR-TKI. has been identified as a molecule involved in treatment resistance. This has been proven by transplanting a SEMA7A knockout lung adenocarcinoma cell line created using the CRISPR-Cas9 system into immunodeficient mice, and the loss of SEMA7A expression increases sensitivity to EGFR-TKIs.
 乳がん細胞では、SEMA7A発現によって細胞増殖が亢進することが報告されている(例えば、非特許文献4参照)。このことは、短鎖ヘアピンRNA(shRNA)によりSEMA7Aをノックダウンした乳がん細胞株を移植したゼノグラフトモデルにおいて、腫瘍の形成速度が著しく低下することから証明されている。 It has been reported that cell proliferation is enhanced by SEMA7A expression in breast cancer cells (see, for example, Non-Patent Document 4). This is evidenced by a significant reduction in the rate of tumor formation in a xenograft model implanted with a breast cancer cell line in which SEMA7A was knocked down using short hairpin RNA (shRNA).
 一般的に、マウスなどのげっ歯類を用いて抗体を作製する場合、哺乳類間で相同性の高い分子に対する抗体の取得は困難である。つまり、そのような分子(ヒト由来分子)をターゲットとして、げっ歯類を用いて抗体を作製しようとした場合、抗体が産生されにくいという問題がある。 Generally, when producing antibodies using rodents such as mice, it is difficult to obtain antibodies against molecules that are highly homologous between mammals. In other words, when attempting to produce antibodies using rodents targeting such molecules (human-derived molecules), there is a problem in that antibodies are difficult to produce.
 SEMA7Aの受容体であるPlexin C1やインテグリンβ1は、SEMA7Aのsemaドメインと結合することで生理活性を示す。すなわち抗SEMA7A抗体が機能性を持つためには、semaドメインに結合してPlexin C1やインテグリンβ1との相互作用を阻害又は抑制することが好ましい。ここで、ヒトsemaドメインに対する相同性を見ると、カニクイザルでは99.1%、マウスでは90.1%、ラットでは91.1%と相同性は高い。そうすると、SEMA7Aに対する抗体は、前述したように、その取得自体が容易ではなく、さらに前記相互作用を阻害又は抑制するという機能まで有する抗体を作製することは困難であると考えられる。実際に本発明者らは、SEMA7Aに対する市販のモノクローナル抗体についてその機能性の有無を確認したが、明確な機能性を有する抗体は存在しなかった。 Plexin C1 and integrin β1, which are receptors for SEMA7A, exhibit physiological activity by binding to the sema domain of SEMA7A. That is, in order for the anti-SEMA7A antibody to have functionality, it is preferable to bind to the sema domain and inhibit or suppress interaction with Plexin C1 and integrin β1. Looking at the homology to the human sema domain, the homology is high at 99.1% in cynomolgus monkeys, 90.1% in mice, and 91.1% in rats. Therefore, as mentioned above, it is not easy to obtain antibodies against SEMA7A, and it is also considered difficult to produce antibodies that have the function of inhibiting or suppressing the interaction. In fact, the present inventors confirmed the functionality of commercially available monoclonal antibodies against SEMA7A, but no antibodies with clear functionality existed.
 このような状況下において、機能性を有する抗ヒトSEMA7A抗体等の取得及び開発が望まれていた。 Under these circumstances, it has been desired to obtain and develop functional anti-human SEMA7A antibodies.
 本発明は、上記状況を考慮してなされたもので、以下に示す、抗ヒトSEMA7A抗体及びその抗体断片、並びにその用途(医薬組成物等)等を提供するものである。 The present invention has been made in consideration of the above circumstances, and provides the following anti-human SEMA7A antibodies, antibody fragments thereof, and uses thereof (pharmaceutical compositions, etc.).
[1]ヒトSEMA7Aに対する抗体であって、
 重鎖可変領域(VH)の相補性決定領域(CDR)1、CDR2及びCDR3のアミノ酸配列が、それぞれ順に、
配列番号10、11及び12に示されるアミノ酸配列、
配列番号18、19及び20に示されるアミノ酸配列、
配列番号22、23及び24に示されるアミノ酸配列、
配列番号26、27及び28に示されるアミノ酸配列、
配列番号30、31及び32に示されるアミノ酸配列、
配列番号34、35及び36に示されるアミノ酸配列、
配列番号38、39及び40されるアミノ酸配列、又は
配列番号42、43及び44に示されるアミノ酸配列
からなり、かつ
 軽鎖可変領域(VL)のCDR1、CDR2及びCDR3のアミノ酸配列が、それぞれ順に、
配列番号14、15及び16に示されるアミノ酸配列からなる、
前記抗体。
[1] An antibody against human SEMA7A,
The amino acid sequences of complementarity determining region (CDR) 1, CDR2, and CDR3 of the heavy chain variable region (VH) are, in order,
Amino acid sequences shown in SEQ ID NOs: 10, 11 and 12,
Amino acid sequences shown in SEQ ID NOs: 18, 19 and 20,
Amino acid sequences shown in SEQ ID NOs: 22, 23 and 24,
Amino acid sequences shown in SEQ ID NO: 26, 27 and 28,
Amino acid sequences shown in SEQ ID NO: 30, 31 and 32,
Amino acid sequences shown in SEQ ID NOs: 34, 35 and 36,
consisting of the amino acid sequences shown in SEQ ID NOs: 38, 39 and 40, or the amino acid sequences shown in SEQ ID NOs: 42, 43 and 44, and the amino acid sequences of CDR1, CDR2 and CDR3 of the light chain variable region (VL), respectively, in that order:
Consisting of the amino acid sequences shown in SEQ ID NO: 14, 15 and 16,
The antibody.
[2]ヒトSEMA7Aに対する抗体であって、
 重鎖可変領域(VH)のアミノ酸配列が、配列番号9、17、21、25、29、33、37又は41に示されるアミノ酸配列からなり、かつ、
 軽鎖可変領域(VL)のアミノ酸配列が、配列番号13に示されるアミノ酸配列からなる、
前記抗体。
[3]ヒトSEMA7Aのsemaドメインに結合する抗体である、前記[1]又は[2]に記載の抗体。
[4]抗体がヒト抗体である、前記[1]~[3]のいずれか1項に記載の抗体。
[2] An antibody against human SEMA7A,
The amino acid sequence of the heavy chain variable region (VH) consists of the amino acid sequence shown in SEQ ID NO: 9, 17, 21, 25, 29, 33, 37 or 41, and
The amino acid sequence of the light chain variable region (VL) consists of the amino acid sequence shown in SEQ ID NO: 13,
The antibody.
[3] The antibody according to [1] or [2] above, which is an antibody that binds to the sema domain of human SEMA7A.
[4] The antibody according to any one of [1] to [3] above, wherein the antibody is a human antibody.
[5]ヒトSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用を阻害又は抑制する活性を有する、前記[1]~[4]のいずれか1項に記載の抗体。
[6]抗体が抗腫瘍活性を有するものである、前記[1]~[5]のいずれか1項に記載の抗体。
[7]腫瘍の治療又は予防に用いるものである、前記[1]~[6]のいずれか1項に記載の抗体。
[5] The antibody according to any one of [1] to [4] above, which has the activity of inhibiting or suppressing the interaction between human SEMA7A and Plexin C1 and/or integrin β1.
[6] The antibody according to any one of [1] to [5] above, wherein the antibody has antitumor activity.
[7] The antibody according to any one of [1] to [6] above, which is used for tumor treatment or prevention.
[8]腫瘍が、ヒト乳癌、ヒト肺癌、ヒト口腔癌、ヒト骨肉腫、及びヒト軟骨肉腫からなる群より選ばれる少なくとも1種である、前記[6]又は[7]に記載の抗体。
[9]炎症性疾患及び/又は自己免疫疾患の治療又は予防に用いるものである、前記[1]~[5]のいずれか1項に記載の抗体。
[10]炎症性疾患が、特発性肺線維症(IPF)、クローン病、アレルギー性皮膚炎、及び間質性肺炎、並びに非アルコール性脂肪肝炎(NASH)を含む臓器線維症からなる群より選ばれる少なくとも1種であり、
 自己免疫疾患が、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群からなる群より選ばれる少なくとも1種である、
前記[9]に記載の抗体。
[8] The antibody according to [6] or [7] above, wherein the tumor is at least one selected from the group consisting of human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, and human chondrosarcoma.
[9] The antibody according to any one of [1] to [5] above, which is used for the treatment or prevention of inflammatory diseases and/or autoimmune diseases.
[10] The inflammatory disease is selected from the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH). At least one type of
The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome,
The antibody according to [9] above.
[11]前記[1]~[10]のいずれか1項に記載の抗体に由来する抗体断片。
[12]前記[1]~[10]のいずれか1項に記載の抗体、又は前記[11]に記載の抗体断片に、薬物がコンジュゲートされたものである、抗体又は抗体断片-薬物複合体。
[13]薬物が、抗腫瘍活性及び/又は殺細胞活性を有する化合物である、前記[12]に記載の複合体。
[11] An antibody fragment derived from the antibody according to any one of [1] to [10] above.
[12] An antibody or antibody fragment-drug conjugate, which is a drug conjugated to the antibody according to any one of [1] to [10] above, or the antibody fragment according to [11] above. body.
[13] The complex according to [12] above, wherein the drug is a compound having antitumor activity and/or cell killing activity.
[14]前記[1]~[10]のいずれか1項に記載の抗体、前記[11]に記載の抗体断片、及び/又は前記[12]若しくは[13]に記載の複合体を含む、医薬組成物。
[15]腫瘍の治療又は予防に用いるものである、前記[14]に記載の医薬組成物。
[16]腫瘍が、ヒト乳癌、ヒト肺癌、ヒト口腔癌、ヒト骨肉腫、及びヒト軟骨肉腫からなる群より選ばれる少なくとも1種である、前記[15]に記載の医薬組成物。
[14] Comprising the antibody according to any one of [1] to [10] above, the antibody fragment according to [11] above, and/or the complex according to [12] or [13] above, Pharmaceutical composition.
[15] The pharmaceutical composition according to [14] above, which is used for the treatment or prevention of tumors.
[16] The pharmaceutical composition according to [15] above, wherein the tumor is at least one selected from the group consisting of human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, and human chondrosarcoma.
[17]炎症性疾患及び/又は自己免疫疾患の治療又は予防に用いるものである、前記[14]に記載の医薬組成物。
[18]炎症性疾患が、特発性肺線維症(IPF)、クローン病、アレルギー性皮膚炎、及び間質性肺炎、並びに非アルコール性脂肪肝炎(NASH)を含む臓器線維症からなる群より選ばれる少なくとも1種であり、
 自己免疫疾患が、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群からなる群より選ばれる少なくとも1種である、
前記[17]に記載の医薬組成物。
[19]ヒトSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用の阻害又は抑制に用いるものである、前記[14]に記載の医薬組成物。
[17] The pharmaceutical composition according to [14] above, which is used for the treatment or prevention of inflammatory diseases and/or autoimmune diseases.
[18] The inflammatory disease is selected from the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH). At least one type of
The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome,
The pharmaceutical composition according to [17] above.
[19] The pharmaceutical composition according to [14] above, which is used for inhibiting or suppressing the interaction between human SEMA7A and Plexin C1 and/or integrin β1.
[20]前記[14]~[16]のいずれか1項に記載の医薬組成物を、対象に投与することを含む、腫瘍の治療又は予防方法。
[21]腫瘍が、ヒト乳癌、ヒト肺癌、ヒト口腔癌、ヒト骨肉腫、及びヒト軟骨肉腫からなる群より選ばれる少なくとも1種である、前記[20]に記載の方法。
[22]前記[14]、[17]及び[18]のいずれか1項に記載の医薬組成物を、対象に投与することを含む、炎症性疾患及び/又は自己免疫疾患の治療又は予防方法。
[23]炎症性疾患が、特発性肺線維症(IPF)、クローン病、アレルギー性皮膚炎、及び間質性肺炎、並びに非アルコール性脂肪肝炎(NASH)を含む臓器線維症からなる群より選ばれる少なくとも1種であり、
 自己免疫疾患が、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群からなる群より選ばれる少なくとも1種である、
前記[22]に記載の方法。
[20] A method for treating or preventing a tumor, which comprises administering to a subject the pharmaceutical composition according to any one of [14] to [16].
[21] The method according to [20] above, wherein the tumor is at least one selected from the group consisting of human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, and human chondrosarcoma.
[22] A method for treating or preventing inflammatory diseases and/or autoimmune diseases, comprising administering to a subject the pharmaceutical composition according to any one of [14], [17], and [18]. .
[23] The inflammatory disease is selected from the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH). At least one type of
The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome,
The method described in [22] above.
[24]前記[14]又は[19]に記載の医薬組成物を、対象に投与することを含む、ヒトSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用を阻害又は抑制する方法。
[25]前記[1]~[10]のいずれか1項に記載の抗体、前記[11]に記載の抗体断片、及び/又は前記[12]若しくは[13]に記載の複合体を含む、腫瘍の治療、予防又は診断用キット。
[26]腫瘍が、ヒト乳癌、ヒト肺癌、ヒト口腔癌、ヒト骨肉腫、及びヒト軟骨肉腫からなる群より選ばれる少なくとも1種である、前記[25]に記載のキット。
[24] A method for inhibiting or suppressing the interaction between human SEMA7A and Plexin C1 and/or integrin β1, which comprises administering to a subject the pharmaceutical composition according to [14] or [19] above.
[25] Contains the antibody according to any one of [1] to [10] above, the antibody fragment according to [11] above, and/or the complex according to [12] or [13] above. A kit for treating, preventing or diagnosing tumors.
[26] The kit according to [25] above, wherein the tumor is at least one selected from the group consisting of human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, and human chondrosarcoma.
[27]前記[1]~[10]のいずれか1項に記載の抗体、前記[11]に記載の抗体断片、及び/又は前記[12]若しくは[13]に記載の複合体を含む、炎症性疾患及び/若しくは自己免疫疾患の治療、予防又は診断用キット。
[28]炎症性疾患が、特発性肺線維症(IPF)、クローン病、アレルギー性皮膚炎、及び間質性肺炎、並びに非アルコール性脂肪肝炎(NASH)を含む臓器線維症からなる群より選ばれる少なくとも1種であり、
 自己免疫疾患が、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群からなる群より選ばれる少なくとも1種である、
前記[27]に記載のキット。
[27] Comprising the antibody according to any one of [1] to [10] above, the antibody fragment according to [11] above, and/or the complex according to [12] or [13] above, A kit for treating, preventing or diagnosing inflammatory diseases and/or autoimmune diseases.
[28] The inflammatory disease is selected from the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH). At least one type of
The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome,
The kit according to [27] above.
 本発明によれば、ヒトSEMA7A、好ましくはそのsemaドメインに結合する、高活性の機能性抗体を提供することができる。本発明に係る抗ヒトSEMA7A抗体は、ヒトSEMA7AとPlexin C1やインテグリンβ1との相互作用を阻害又は抑制することができ、例えば、特発性肺線維症(IPF)、非アルコール性脂肪肝炎(NASH)などの臓器線維症、クローン病、アレルギー性皮膚炎、及び間質性肺炎などの炎症性疾患、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群などの自己免疫疾患、並びに、肺がん、乳がん、口腔がん、骨肉腫、軟骨肉腫などの各種がんに対する治療及び予防薬として効果を発揮し得るものである。 According to the present invention, a highly active functional antibody that binds to human SEMA7A, preferably its sema domain, can be provided. The anti-human SEMA7A antibody according to the present invention can inhibit or suppress the interaction between human SEMA7A and Plexin C1 or integrin β1, and can be used to treat, for example, idiopathic pulmonary fibrosis (IPF) and non-alcoholic steatohepatitis (NASH). Organ fibrosis, inflammatory diseases such as Crohn's disease, allergic dermatitis, and interstitial pneumonia; autoimmune diseases such as rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome , and can be effective as a therapeutic and preventive drug for various cancers such as lung cancer, breast cancer, oral cancer, osteosarcoma, and chondrosarcoma.
抗SEMA7A抗体の重鎖を作製した際のCDR変異導入箇所を示す図である。FIG. 2 is a diagram showing the locations where CDR mutations were introduced when producing the heavy chain of anti-SEMA7A antibody. 抗SEMA7A抗体の軽鎖を作製した際のCDR変異導入箇所を示す図である。FIG. 2 is a diagram showing the locations where CDR mutations were introduced when producing the light chain of anti-SEMA7A antibody. 抗SEMA7A抗体の重鎖におけるCDR変異導入の組み合わせを示す図である。FIG. 2 is a diagram showing combinations of CDR mutation introduction in the heavy chain of anti-SEMA7A antibody. 静止型HSCと活性型HSCの細胞表面のSEMA7Aタンパク発現量のフローサイトメトリーによる観察結果を示す図である。FIG. 2 is a diagram showing the observation results of the SEMA7A protein expression level on the cell surface of resting HSCs and active HSCs by flow cytometry. 初代培養ヒトHSCに対する抗SEMA7A抗体のADCC活性を示す図である。FIG. 3 is a diagram showing the ADCC activity of anti-SEMA7A antibody against primary cultured human HSCs. セカンドイムノトキシンを用いた抗SEMA7A抗体の細胞障害活性を示す図である。FIG. 3 is a diagram showing the cytotoxic activity of anti-SEMA7A antibody using a second immunotoxin. 本発明の新規抗SEMA7A抗体と、市販の抗SEMA7A抗体との結合親和性を比較した結果を示す図である。FIG. 2 is a diagram showing the results of a comparison of the binding affinity between the novel anti-SEMA7A antibody of the present invention and a commercially available anti-SEMA7A antibody. 抗SEMA7A抗体におけるPlexin C1-SEMA7A結合阻害活性を比較した結果を示す図である。FIG. 3 is a diagram showing the results of comparing the Plexin C1-SEMA7A binding inhibitory activity of anti-SEMA7A antibodies. 抗SEMA7A抗体におけるインターナリゼーション活性を比較した結果を示す図である。FIG. 3 is a diagram showing the results of comparing the internalization activities of anti-SEMA7A antibodies. 抗SEMA7A抗体におけるセマフォリンファミリー(SEMA4F, SEMA5A, SEMA6C, SEMA7A)に対する反応性を比較した結果を示す図である。FIG. 2 is a diagram showing the results of comparing the reactivity of anti-SEMA7A antibodies to the semaphorin family (SEMA4F, SEMA5A, SEMA6C, SEMA7A). 抗SEMA7A抗体の等電点(pI)を示す図である。FIG. 3 is a diagram showing the isoelectric point (pI) of anti-SEMA7A antibody. 抗SEMA7A抗体におけるFabのTm値を示す図である。FIG. 3 is a diagram showing Tm values of Fab in anti-SEMA7A antibodies. 抗SEMA7A抗体における抗体産生量を示す。The amount of antibody produced by anti-SEMA7A antibody is shown. インターナリゼーション活性の算出方法の概略を示す図である。図中「MFI」はMean Fluorescence Intensity(平均蛍光強度)を意味する。FIG. 2 is a diagram schematically showing a method for calculating internalization activity. In the figure, "MFI" means Mean Fluorescence Intensity. 抗SEMA7A抗体におけるインターナリゼーション活性の経時変化を示す図である。FIG. 3 is a diagram showing changes over time in internalization activity of anti-SEMA7A antibodies. 各がん種におけるSEMA7A発現解析の結果を示す図である。FIG. 3 is a diagram showing the results of SEMA7A expression analysis in each cancer type. NSCLCにおけるEGFR変異によるSEMA7A発現量の変化を示す図である。FIG. 3 is a diagram showing changes in SEMA7A expression level due to EGFR mutations in NSCLC. 各がん細胞株におけるSEMA7A発現解析の結果を示す図である。FIG. 3 is a diagram showing the results of SEMA7A expression analysis in each cancer cell line. 各がん種におけるHC2セカンドイムノトキシンの細胞障害活性を示す図である。FIG. 3 is a diagram showing the cytotoxic activity of HC2 second immunotoxin in each cancer type. 各がん細胞株におけるHC1-PBD及びHC2-PBDの細胞障害活性を示す図である。It is a figure showing the cytotoxic activity of HC1-PBD and HC2-PBD in each cancer cell line.
 以下、本発明を詳細に説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。
 なお、本明細書は、本願優先権主張の基礎となる、特願2022-054142号明細書(2022年3月29日出願)及び特願2022-173382号明細書(2022年10月28日出願)の全体を包含する。また、本明細書において引用された全ての刊行物、例えば先行技術文献、及び公開公報、特許公報その他の特許文献は、参照として本明細書に組み込まれる。
The present invention will be explained in detail below. The scope of the present invention is not limited to these explanations, and other than the examples below may be modified and implemented as appropriate without departing from the spirit of the present invention.
This specification is based on the specification of Japanese Patent Application No. 2022-054142 (filed on March 29, 2022) and the specification of Japanese Patent Application No. 2022-173382 (filed on October 28, 2022), which are the basis of the priority claim of this application. ). In addition, all publications cited in this specification, such as prior art documents, publications, patent publications, and other patent documents, are incorporated herein by reference.
1.ヒトSEMA7Aに対する抗体(抗ヒトSEMA7A抗体)
(1) 抗原の調製
 ヒトSEMA7A(以下、hSEMA7Aともいう)のアミノ酸配列(配列番号46)の情報は、例えば、Uniprotのウェブサイト(https://www.uniprot.org/)に「Primary (citable) accession number:O75326」として公表されており、あるいは、NCBI(GenBank)のウェブサイト(http://www.ncbi.nlm.nih.gov/)に「Accession number:NP 003603」や「Accession number:O75326」として公表されている。なお、hSEMA7Aのアミノ酸配列をコードする塩基配列(配列番号45)の情報は、NCBI(GenBank)のウェブサイトに「Accession number:NM 003612」として公表されている。
1. Antibody against human SEMA7A (anti-human SEMA7A antibody)
(1) Preparation of antigen Information on the amino acid sequence (SEQ ID NO: 46) of human SEMA7A (hereinafter also referred to as hSEMA7A) can be found, for example, on the Uniprot website (https://www.uniprot.org/) under "Primary (citable)". ) accession number: O75326" or on the NCBI (GenBank) website (http://www.ncbi.nlm.nih.gov/) as "Accession number: NP 003603" and "Accession number: O75326". Information on the nucleotide sequence (SEQ ID NO: 45) encoding the amino acid sequence of hSEMA7A is available on the NCBI (GenBank) website under “Accession number: NM 003612".
 抗原としては、hSEMA7Aのアミノ酸配列の全部又は一部を含むポリペプチド又はペプチド(以下、単にペプチドともいう)を使用することができる。hSEMA7Aのアミノ酸配列の一部を含むペプチドとしては、限定はされないが、例えば、hSEMA7Aの細胞外ドメインを含むものが好ましく、semaドメインを含むものがより好ましい。当該semaドメインは、hSEMA7Aのアミノ酸配列(配列番号46)における第53番目から第490番目のアミノ酸からなるドメインである。
 抗原とするペプチドの作製方法は、化学合成でも、大腸菌などを用いる遺伝子工学的手法による合成でもよく、当業者に周知の方法を用いることができる。
 ペプチドの化学合成を行う場合は、ペプチド合成の周知方法によって行うことができる。また、その合成は、固相合成法及び液相合成法のいずれをも適用することができる。市販のペプチド合成装置(例えば、CEM Japan:パラレル型自動ペプチド合成装置 MultiPep 2など)を使用してもよい。
As the antigen, a polypeptide or peptide (hereinafter also simply referred to as peptide) containing all or part of the amino acid sequence of hSEMA7A can be used. Peptides containing part of the amino acid sequence of hSEMA7A are not limited, but, for example, those containing the extracellular domain of hSEMA7A are preferred, and those containing the sema domain are more preferred. The sema domain is a domain consisting of amino acids 53rd to 490th in the amino acid sequence of hSEMA7A (SEQ ID NO: 46).
The peptide to be used as an antigen may be produced by chemical synthesis or by genetic engineering techniques using Escherichia coli or the like, and methods well known to those skilled in the art can be used.
When chemically synthesizing a peptide, it can be carried out by a well-known method of peptide synthesis. Moreover, both solid phase synthesis method and liquid phase synthesis method can be applied to the synthesis. A commercially available peptide synthesizer (for example, CEM Japan: Parallel automatic peptide synthesizer MultiPep 2, etc.) may be used.
 ペプチドを遺伝子工学的に合成する場合は、まず、当該ペプチドをコードするDNAを設計し合成する。当該設計及び合成は、例えば、全長hSEMA7A遺伝子を含むベクター等を鋳型とし、所望のDNA領域を合成し得るように設計したプライマーを用いて、PCR法により行うことができる。また当該ペプチドのアミノ酸配列に基づいて、5’末端にKozak翻訳開始配列、3’側に翻訳終止コドンを挿入したDNAを遺伝子合成することもできる(GENEWIZ社のサービス等を利用)。そして、上記DNAを適当なベクターに連結することによってタンパク質発現用組換えベクターを得、この組換えベクターを目的遺伝子が発現し得るように宿主中に導入することによって形質転換体を得る(Molecular cloning 4th Ed. Cold Spring Harbor Laboratory Press (2012))。 When synthesizing a peptide using genetic engineering, first, DNA encoding the peptide is designed and synthesized. The design and synthesis can be performed, for example, by PCR using a vector containing the full-length hSEMA7A gene as a template and primers designed to synthesize the desired DNA region. Furthermore, based on the amino acid sequence of the peptide, it is also possible to gene synthesize a DNA with a Kozak translation initiation sequence inserted at the 5' end and a translation stop codon at the 3' end (using the services of GENEWIZ, etc.). Then, a recombinant vector for protein expression is obtained by ligating the above DNA to an appropriate vector, and a transformant is obtained by introducing this recombinant vector into a host so that the target gene can be expressed (Molecular cloning 4th Ed. Cold Spring Harbor Laboratory Press (2012)).
 ベクターには、宿主微生物で自律的に増殖し得るファージ又はプラスミドが使用される。さらに、動物ウイルス、昆虫ウイルスベクターを用いることもできる。組換えベクターの作製は、精製されたDNAを適当な制限酵素で切断し、適当なベクターDNAの制限酵素部位等に挿入してベクターに連結すればよい。形質転換に使用する宿主としては、目的の遺伝子を発現できるものであれば特に限定されるものではない。例えば、細菌(大腸菌、枯草菌等)、酵母、動物細胞(COS細胞、CHO細胞等)、昆虫細胞又は昆虫が挙げられる。ヤギ等の哺乳動物を宿主として使用することも可能である。宿主への組換えベクターの導入方法は公知である。そして、前記形質転換体を培養し、その培養物から抗原として使用されるペプチドを採取する。「培養物」とは、(a)培養上清、(b)培養細胞若しくは培養菌体又はその破砕物のいずれをも意味するものである。 A phage or plasmid that can autonomously propagate in a host microorganism is used as a vector. Furthermore, animal virus and insect virus vectors can also be used. To create a recombinant vector, purified DNA may be cut with an appropriate restriction enzyme, inserted into the restriction enzyme site of an appropriate vector DNA, and ligated to the vector. The host used for transformation is not particularly limited as long as it can express the gene of interest. Examples include bacteria (E. coli, Bacillus subtilis, etc.), yeast, animal cells (COS cells, CHO cells, etc.), insect cells, or insects. It is also possible to use mammals such as goats as hosts. Methods for introducing recombinant vectors into hosts are known. Then, the transformant is cultured, and a peptide used as an antigen is collected from the culture. "Culture" means any of (a) culture supernatant, (b) cultured cells or cultured bacteria, or a crushed product thereof.
 培養後、目的ペプチドが菌体内又は細胞内に生産される場合には、菌体又は細胞を破砕することによりペプチドを抽出する。また、目的ペプチドが菌体外又は細胞外に生産される場合には、培養液をそのまま使用するか、遠心分離等により菌体又は細胞を除去する。その後、ペプチドの単離精製に用いられる一般的な生化学的方法、例えば硫酸アンモニウム沈殿、ゲル濾過、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等を単独で又は適宜組み合わせて用いることにより、目的のペプチドを単離精製することができる。 After culturing, if the target peptide is produced within the bacterial body or cells, the peptide is extracted by crushing the bacterial body or cells. Furthermore, when the target peptide is produced outside the bacterial body or cells, the culture solution may be used as is, or the bacterial body or cells may be removed by centrifugation or the like. Thereafter, the target peptide is isolated by using general biochemical methods used for isolation and purification of peptides, such as ammonium sulfate precipitation, gel filtration, ion exchange chromatography, affinity chromatography, etc. alone or in appropriate combinations. Can be separated and purified.
 抗原となるペプチドは、無細胞合成系を用いたin vitro翻訳により得ることもできる。この場合は、RNAを鋳型にする方法とDNAを鋳型にする方法(転写/翻訳)の2通りの方法を用いることができる。無細胞合成系としては、市販のシステム、例えばExpresswayTMシステム(インビトロジェン社)、PURESYSTEM(登録商標;ポストゲノム研究所)、TNTシステム(登録商標;プロメガ社)等を用いることができる。
 上記のごとく得られたペプチドは、適当なキャリアタンパク質、例えば牛血清アルブミン(BSA)、キーホールリンペットヘモシアニン(KLH)、ヒトチログロブリン、ニワトリガンマグロブリン等に結合することも可能である。
Peptides serving as antigens can also be obtained by in vitro translation using a cell-free synthesis system. In this case, two methods can be used: a method using RNA as a template and a method using DNA as a template (transcription/translation). As the cell-free synthesis system, commercially available systems such as Expressway TM system (Invitrogen), PURESYSTEM (registered trademark; Post Genome Institute), TNT system (registered trademark; Promega), etc. can be used.
The peptides obtained as described above can also be conjugated to suitable carrier proteins, such as bovine serum albumin (BSA), keyhole limpet hemocyanin (KLH), human thyroglobulin, chicken gamma globulin, and the like.
 また抗原は、hSEMA7Aのアミノ酸配列(配列番号46)又はその部分配列において1又は複数のアミノ酸が欠失、置換又は付加されたアミノ酸配列からなるペプチドであってもよい。例えば、hSEMA7Aのアミノ酸配列又はその部分配列のうち1又は複数個(好ましくは1個又は数個(例えば1個~10個、さらに好ましくは1個~5個))のアミノ酸が欠失しており、1又は複数個(好ましくは1個又は数個(例えば1個~10個、さらに好ましくは1個~5個))のアミノ酸が他のアミノ酸で置換されており、あるいは、1又は複数個(好ましくは1個又は数個(例えば1個~10個、さらに好ましくは1個~5個))の他のアミノ酸が付加されたアミノ酸配列からなるペプチドを使用することもできる。 The antigen may also be a peptide consisting of the amino acid sequence of hSEMA7A (SEQ ID NO: 46) or a partial sequence thereof in which one or more amino acids are deleted, substituted, or added. For example, one or more (preferably one or several (for example, 1 to 10, more preferably 1 to 5)) amino acids are deleted from the amino acid sequence of hSEMA7A or a partial sequence thereof. , one or more (preferably one or several (for example, 1 to 10, more preferably 1 to 5)) amino acids are substituted with other amino acids, or one or more (preferably 1 to 10, more preferably 1 to 5)) amino acids are substituted with other amino acids, It is also possible to use a peptide consisting of an amino acid sequence to which one or several (eg, 1 to 10, more preferably 1 to 5) other amino acids are added.
 細胞等に導入するための遺伝子としては、hSEMA7Aタンパク質若しくはその部分断片又はこれらの変異型のタンパク質又は断片をコードする遺伝子が挙げられる。そのような遺伝子としては、例えば、配列番号45に示される塩基配列又はその部分配列を有するものを使用することができる。
 また、細胞等に導入するための遺伝子としては、配列番号45に示される塩基配列に相補的な配列とストリンジェントな条件下でハイブリダイズし且つhSEMA7Aと同様の活性を有するタンパク質をコードする塩基配列、又はその部分配列を使用することも可能である。
Genes to be introduced into cells include genes encoding hSEMA7A protein, partial fragments thereof, or mutant proteins or fragments thereof. As such a gene, for example, one having the base sequence shown in SEQ ID NO: 45 or a partial sequence thereof can be used.
In addition, as a gene to be introduced into cells, etc., a base sequence that hybridizes under stringent conditions with a sequence complementary to the base sequence shown in SEQ ID NO: 45 and that encodes a protein that has the same activity as hSEMA7A is used. , or a subarray thereof.
 「ストリンジェントな条件」とは、ハイブリダイズさせた後の洗浄時の条件であって、バッファーの塩(ナトリウム)濃度が10~500mMであり、温度が42℃~72℃、好ましくは、上記塩濃度が50~300mMであり、温度が55~68℃での条件をいう。
 遺伝子に変異を導入するには、Kunkel法やGapped duplex法等の公知手法により、例えば部位特異的突然変異誘発法を利用した変異導入用キット、例えばGeneArtTM Site-Directed Mutagenesis System (インビトロジェン社製)、TaKaRa Site-Directed Mutagenesis System(Mutan-K、Mutan-Super Express Km等:タカラバイオ社製)を用いて行うことができる。
"Stringent conditions" are conditions for washing after hybridization, in which the salt (sodium) concentration of the buffer is 10 to 500 mM, and the temperature is 42°C to 72°C, preferably the above salt This refers to conditions where the concentration is 50-300mM and the temperature is 55-68°C.
To introduce a mutation into a gene, a known method such as the Kunkel method or the Gapped duplex method can be used, for example, a mutation introduction kit using site-directed mutagenesis, such as the GeneArt TM Site-Directed Mutagenesis System (manufactured by Invitrogen). , TaKaRa Site-Directed Mutagenesis System (Mutan-K, Mutan-Super Express Km, etc.: manufactured by Takara Bio Inc.).
(2) ポリクローナル抗体の作製
 調製した抗原を、免疫のため哺乳動物に投与する。哺乳動物は特に限定はされず、例えばラット、マウス及びウサギなどを挙げることができ、なかでもマウスが好ましい。
 抗原の動物一匹あたりの投与量は、アジュバントの有無により適宜設定することができる。アジュバントとしては、フロイント完全アジュバント(FCA)、フロイント不完全アジュバント(FIA)、水酸化アルミニウムアジュバント等が挙げられる。免疫は、主として静脈内、足蹠、皮下、腹腔内等に注入することにより行うことができる。また、免疫の間隔については、特に限定されず、数日から数週間間隔、好ましくは1週間間隔で、1~10回、好ましくは2~3回免疫を行う。そして、最終の免疫日から3~7日後に、酵素免疫測定法(ELISA又はEIA)や放射性免疫測定法(RIA)等で抗体価を測定し、所望の抗体価を示した日に採血して、抗血清を得ることができる。上記抗体の採取方法において、抗体の精製が必要とされる場合は、硫安塩析法、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、アフィニティークロマトグラフィー等の公知の方法を適宜選択して、又はこれらを組み合わせることにより、精製することができる。その後は、抗血清中のポリクローナル抗体の反応性をELISA法などで測定する。
(2) Preparation of polyclonal antibodies The prepared antigen is administered to mammals for immunization. Mammals are not particularly limited, and include, for example, rats, mice, rabbits, etc., with mice being particularly preferred.
The dose of antigen per animal can be appropriately determined depending on the presence or absence of an adjuvant. Examples of the adjuvant include Freund's complete adjuvant (FCA), Freund's incomplete adjuvant (FIA), aluminum hydroxide adjuvant, and the like. Immunization can be mainly performed by injecting intravenously, into the footpad, subcutaneously, intraperitoneally, etc. Furthermore, the interval between immunizations is not particularly limited, and immunizations are performed 1 to 10 times, preferably 2 to 3 times, at intervals of several days to several weeks, preferably one week. Then, 3 to 7 days after the final immunization date, the antibody titer is measured using enzyme-linked immunosorbent assay (ELISA or EIA) or radioimmunoassay (RIA), and blood is collected on the day when the desired antibody titer is shown. , antiserum can be obtained. In the above antibody collection method, if the antibody needs to be purified, a known method such as ammonium sulfate salting-out method, ion exchange chromatography, gel filtration chromatography, or affinity chromatography may be selected as appropriate; Purification can be achieved by combining them. After that, the reactivity of the polyclonal antibody in the antiserum is measured by ELISA or the like.
(3) モノクローナル抗体の作製
 (3-1) 抗体産生細胞の採取
 本発明の抗hSEMA7A抗体は、限定はされないが、モノクローナル抗体であることが好ましい。
 調製した抗原を、免疫のため哺乳動物、例えばラット、マウス及びウサギなどに投与する。抗原の動物一匹あたりの投与量は、アジュバントの有無により適宜設定することができる。アジュバントとしては上記と同様である。免疫手法も前記と同様である。そして、最終の免疫日から1~60日後、好ましくは1~14日後に、抗体産生細胞を採取する。抗体産生細胞としては、脾臓細胞、リンパ節細胞及び末梢血細胞などが挙げられるが、なかでもリンパ節細胞及び脾臓細胞が好ましい。
(3) Production of monoclonal antibody (3-1) Collection of antibody-producing cells The anti-hSEMA7A antibody of the present invention is preferably, but not limited to, a monoclonal antibody.
The prepared antigen is administered to mammals such as rats, mice, and rabbits for immunization. The dose of antigen per animal can be appropriately determined depending on the presence or absence of an adjuvant. The adjuvant is the same as above. The immunization method is also the same as above. Antibody-producing cells are then collected 1 to 60 days, preferably 1 to 14 days after the final immunization date. Antibody-producing cells include spleen cells, lymph node cells, peripheral blood cells, and the like, with lymph node cells and spleen cells being preferred.
 (3-2) 細胞融合
 ハイブリドーマ(抗体産生細胞株)を得るため、抗体産生細胞とミエローマ細胞との細胞融合を行う。抗体産生細胞と融合させるミエローマ細胞として、マウスなどの動物の一般に入手可能な株化細胞を用いることができる。用いる細胞株としては、薬剤選択性を有し、未融合の状態ではHAT選択培地(ヒポキサンチン、アミノプテリン及びチミジンを含む)で生存できず、抗体産生細胞と融合した状態でのみ生存できる性質を有するものが好ましい。
 ミエローマ細胞としては、例えば、P3-X63-Ag8.653、P3-X63-Ag8(X63)、P3-X63-Ag8.U1(P3U1)、P3/NS I/1-Ag4-1(NS1) 及びSp2/0-Ag14(Sp2/0)等のマウスミエローマ細胞株が挙げられる。ミエローマ細胞の選択は、抗体産生細胞との適合性を適宜考慮して行うことができる。
(3-2) Cell fusion To obtain a hybridoma (antibody-producing cell line), perform cell fusion between antibody-producing cells and myeloma cells. As myeloma cells to be fused with antibody-producing cells, commonly available cell lines of animals such as mice can be used. The cell line to be used has drug selectivity, cannot survive in HAT selection medium (containing hypoxanthine, aminopterin, and thymidine) in an unfused state, and can only survive in a state fused with antibody-producing cells. It is preferable to have one.
Examples of myeloma cells include P3-X63-Ag8.653, P3-X63-Ag8(X63), P3-X63-Ag8.U1(P3U1), P3/NS I/1-Ag4-1(NS1), and Sp2 Examples include mouse myeloma cell lines such as /0-Ag14 (Sp2/0). Myeloma cells can be selected by appropriately considering compatibility with antibody-producing cells.
 次いで、ミエローマ細胞と抗体産生細胞とを細胞融合させる。細胞融合は、血清を含まないDMEM及びRPMI-1640培地などの動物細胞用培地中で、1×106~1×107個/mLの抗体産生細胞と2×105~2×106個/mLのミエローマ細胞とを混合する。抗体産生細胞とミエローマ細胞との細胞比(抗体産生細胞:ミエローマ細胞)は、限定はされないが、通常、1:1~10:1とすることが好ましく、より好ましくは3:1である。次に、細胞融合促進剤の存在下で融合反応を行う。細胞融合促進剤として、例えば、平均分子量1,000~6,000ダルトン(D)のポリエチレングリコールなどを使用することができる。また、電気刺激(例えばエレクトロポレーション)を利用した市販の細胞融合装置を用いて、抗体産生細胞とミエローマ細胞とを融合させることもできる。 Next, the myeloma cells and antibody-producing cells are fused. Cell fusion is carried out in animal cell culture media such as serum-free DMEM and RPMI-1640 medium with 1×10 6 to 1×10 7 antibody-producing cells/mL and 2×10 5 to 2×10 6 cells/mL. /mL of myeloma cells. The cell ratio between antibody-producing cells and myeloma cells (antibody-producing cells: myeloma cells) is usually preferably 1:1 to 10:1, more preferably 3:1, although it is not limited. Next, a fusion reaction is performed in the presence of a cell fusion promoter. As the cell fusion promoter, for example, polyethylene glycol having an average molecular weight of 1,000 to 6,000 Daltons (D) can be used. Furthermore, antibody-producing cells and myeloma cells can be fused using a commercially available cell fusion device that utilizes electrical stimulation (eg, electroporation).
 (3-3) ハイブリドーマの選別及びクローニング
 細胞融合処理後の細胞から目的とするハイブリドーマを選別する。その方法として、細胞懸濁液を、例えばウシ胎児血清含有RPMI-1640培地などに適当に希釈後、マイクロタイタープレート上に播き、各ウェルに選択培地を加え、以後適当に選択培地を交換して培養を行う。その結果、選択培地で培養開始後、14日前後から生育してくる細胞をハイブリーマとして得ることができる。
 次に、増殖してきたハイブリドーマの培養上清中に、hSEMA7Aに反応する抗体が存在するか否かをスクリーニングする。ハイブリドーマのスクリーニングは、通常の方法に従えばよく、特に限定はされない。例えば、ハイブリドーマとして生育したウェルに含まれる培養上清の一部を採取し、ELISA、EIA及びRIAなどによってスクリーニングすることができる。
 融合細胞のクローニングは、限界希釈法等により行うことができる。hSEMA7Aに強い反応性を示す抗体をフローサイトメトリー等により判定し、これを産生するハイブリドーマを選択し、クローンとして樹立する。
(3-3) Selection and cloning of hybridomas Target hybridomas are selected from cells after cell fusion treatment. The method is to appropriately dilute the cell suspension in RPMI-1640 medium containing fetal bovine serum, plate it on a microtiter plate, add selective medium to each well, and then replace the selective medium appropriately. Perform culture. As a result, cells that grow about 14 days after the start of culture in the selective medium can be obtained as hybrida.
Next, the culture supernatant of the proliferating hybridoma is screened for the presence of an antibody that reacts with hSEMA7A. Screening for hybridomas may be carried out in accordance with conventional methods and is not particularly limited. For example, a portion of the culture supernatant contained in a well grown as a hybridoma can be collected and screened by ELISA, EIA, RIA, or the like.
Cloning of fused cells can be performed by limiting dilution method or the like. Antibodies that show strong reactivity to hSEMA7A are determined by flow cytometry, etc., and hybridomas that produce these are selected and established as clones.
 (3-4) モノクローナル抗体の採取
 樹立したハイブリドーマを培養し、得られる培養物からモノクローナル抗体を採取する方法として、通常の細胞培養法、又は腹水形成法等を採用することができる。「培養」とは、ハイブリドーマを培養皿又は培養ボトル中で生育させること、あるいはハイブリドーマを下記のように動物の腹腔内で増殖させることを意味する。
 細胞培養法においては、ハイブリドーマを10%ウシ胎児血清含有RPMI-1640培地、MEM培地又は無血清培地等の動物細胞培養培地中で、通常の培養条件(例えば37℃、5%CO2濃度)で7~14日間培養し、その培養上清から抗体を取得することができる。
(3-4) Collection of monoclonal antibodies As a method for culturing established hybridomas and collecting monoclonal antibodies from the resulting culture, a conventional cell culture method, ascites formation method, etc. can be adopted. "Culture" means growing the hybridoma in a culture dish or bottle, or growing the hybridoma intraperitoneally in an animal as described below.
In the cell culture method, hybridomas are grown in an animal cell culture medium such as RPMI-1640 medium containing 10% fetal bovine serum, MEM medium, or serum-free medium under normal culture conditions (e.g., 37°C, 5% CO 2 concentration). Antibodies can be obtained from the culture supernatant after culturing for 7 to 14 days.
 腹水形成法の場合は、ミエローマ細胞由来の哺乳動物と同種系動物の腹腔内にハイブリドーマを約1×107個投与し、ハイブリドーマを大量に増殖させる。そして、2~3週間後に腹水を採取することが好ましい。
 上記抗体の採取方法において、抗体の精製が必要とされる場合は、硫安塩析法、イオン交換クロマトグラフィー、ゲル濾過、アフィニティークロマトグラフィー等の公知の方法を適宜選択して、又はこれらを組み合わせることにより精製することができる。
In the case of the ascites formation method, about 1×10 7 hybridomas are intraperitoneally administered to an animal of the same species as the mammal derived from myeloma cells, and the hybridomas are grown in large quantities. Then, it is preferable to collect ascitic fluid after 2 to 3 weeks.
In the above antibody collection method, if antibody purification is required, appropriately select known methods such as ammonium sulfate salting out, ion exchange chromatography, gel filtration, affinity chromatography, or a combination of these methods. It can be purified by
 (3-5) 機能性を有するクローンの選別
 (3-5-1)本発明の抗hSEMA7A抗体は、例えば、hSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用(好ましくは結合)を阻害又は抑制する活性を有する抗体であることが好ましい。
 ここで、hSEMA7Aとインテグリンβ1との相互作用の阻害又は抑制活性(%)は、例えば、下記式により算出することができる。
  阻害又は抑制活性(%)= 100-(抗体を添加したときの発光強度/抗体が未添加のときの発光強度)×100
 また、hSEMA7AとPlexin C1との相互作用の阻害又は抑制活性(%)は、例えば、下記式により算出することができる。
  阻害又は抑制活性(%)= 100-(抗体を添加したときのOD450/抗体が未添加のときのOD450)×100
(3-5) Selection of functional clones (3-5-1) The anti-hSEMA7A antibody of the present invention inhibits or inhibits the interaction (preferably binding) between hSEMA7A and Plexin C1 and/or integrin β1. Preferably, the antibody has inhibitory activity.
Here, the inhibition or suppressive activity (%) of the interaction between hSEMA7A and integrin β1 can be calculated, for example, by the following formula.
Inhibition or suppressive activity (%) = 100 - (luminescence intensity when antibody is added/luminescence intensity when antibody is not added) x 100
Furthermore, the inhibition or suppressive activity (%) of the interaction between hSEMA7A and Plexin C1 can be calculated, for example, by the following formula.
Inhibition or suppressive activity (%) = 100 - (OD450 when antibody is added/OD450 when antibody is not added) x 100
 (3-5-2)本発明の抗hSEMA7A抗体は、例えば、抗腫瘍活性を有する抗体であることが好ましい。
 ここで、「抗腫瘍活性」とは、腫瘍細胞(癌細胞)を死滅させる活性又は腫瘍成長を阻害する活性を意味する。抗腫瘍活性としては、例えば、癌細胞の増殖阻害活性や腫瘍血管新生阻害活性が好ましく挙げられる。また、本発明の抗体が抗腫瘍活性を発揮しうるヒト腫瘍(腫瘍細胞)の種類としては、hSEMA7Aの発現が確認されている公知の各種ヒト腫瘍が挙げられ、特に限定はされない。具体的には、当該ヒト腫瘍としては、ヒト乳癌、ヒト肺癌、ヒト口腔癌、ヒト骨肉腫、ヒト軟骨肉腫、ヒト胃癌、ヒト膵臓癌、ヒト皮膚癌、ヒト卵巣癌、ヒト大腸癌、ヒト膀胱癌、ヒト肝癌、ヒト食道癌、前立腺癌、及びヒト胆道癌などの各種ヒト腫瘍のうちの1種又は2種以上が好ましく挙げられ、より好ましくはヒト乳癌、ヒト肺癌、ヒト口腔癌、ヒト骨肉腫、及びヒト軟骨肉腫である。また、ヒト肺癌としては、非小細胞肺癌、より好ましくはEGFR(上皮成長因子受容体)遺伝子の活性化変異が認められる非小細胞肺癌が挙げられる。さらに、上記腫瘍の種類としては、再発癌や転移癌であってもよく、本発明の抗体はこれらに腫瘍に対しても優れた抗腫瘍活性を発揮し得る。
(3-5-2) The anti-hSEMA7A antibody of the present invention is preferably an antibody having antitumor activity, for example.
Here, "antitumor activity" means an activity that kills tumor cells (cancer cells) or an activity that inhibits tumor growth. Preferable examples of the antitumor activity include cancer cell proliferation inhibitory activity and tumor angiogenesis inhibitory activity. Furthermore, the types of human tumors (tumor cells) in which the antibody of the present invention can exhibit antitumor activity include various known human tumors in which expression of hSEMA7A has been confirmed, and is not particularly limited. Specifically, the human tumors include human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, human chondrosarcoma, human stomach cancer, human pancreatic cancer, human skin cancer, human ovarian cancer, human colon cancer, and human bladder cancer. Preferred examples include one or more of various human tumors such as cancer, human liver cancer, human esophageal cancer, prostate cancer, and human biliary tract cancer, more preferably human breast cancer, human lung cancer, human oral cavity cancer, and human bone cancer. sarcoma, and human chondrosarcoma. Furthermore, examples of human lung cancer include non-small cell lung cancer, more preferably non-small cell lung cancer in which an activating mutation of the EGFR (epidermal growth factor receptor) gene is observed. Furthermore, the type of tumor mentioned above may be recurrent cancer or metastatic cancer, and the antibody of the present invention can exhibit excellent antitumor activity against these tumors as well.
 in vivoでの抗腫瘍活性の確認は、例えば、所望の腫瘍細胞をマウスの皮下に移植した担癌マウス(担癌動物治療モデル)を用い、このマウスに前記のとおり得られた抗体を投与することにより行うことができる。この場合、抗体の投与は、腫瘍細胞の移植直後から行ってもよいし(preventionモデル)、移植に腫瘍が所定の体積になったのを確認してから行ってもよい(treatmentモデル)。投与方法は、限定はされないが、例えば、3日、1週間,10日又は2週間に1回あるいは単回(1回のみ)で、5~20mg/kg体重、腹腔内投与等とすることができる。preventionモデルの場合は、腫瘍形成頻度と腫瘍体積により抗腫瘍活性の有無及びレベルを評価することができる。treatmentモデルの場合は、腫瘍体積により抗腫瘍活性の有無及びレベルを評価することができる。 To confirm in vivo antitumor activity, for example, a tumor-bearing mouse (tumor-bearing animal treatment model) in which the desired tumor cells are subcutaneously implanted is used, and the antibody obtained as described above is administered to this mouse. This can be done by In this case, the antibody may be administered immediately after tumor cell transplantation (prevention model), or after confirming that the tumor has reached a predetermined volume for transplantation (treatment model). The administration method is not limited, but may be, for example, intraperitoneal administration at 5 to 20 mg/kg body weight once every 3 days, 1 week, 10 days, or 2 weeks, or once (only once). can. In the case of the prevention model, the presence or absence and level of antitumor activity can be evaluated based on tumor formation frequency and tumor volume. In the case of a treatment model, the presence or absence and level of antitumor activity can be evaluated based on tumor volume.
 担癌動物モデルにおける腫瘍成長阻害活性は、より低用量で、示されることが好ましく、例えば、担癌動物モデルに対して、20mg/kg体重以下(好ましくは10mg/kg体重以下、より好ましくは5mg/kg体重以下、さらに好ましくは1mg/kg体重以下)の投与量であることが好ましい。
 ここで、腫瘍成長阻害活性(%)は、例えば、下記式により算出することができる。
  腫瘍成長阻害活性(%)= 100-〔(抗体投与群の腫瘍体積又は腫瘍重量)÷(対照群の腫瘍体積又は腫瘍重量)〕×100
Tumor growth inhibitory activity in a tumor-bearing animal model is preferably shown at a lower dose, for example, 20 mg/kg body weight or less (preferably 10 mg/kg body weight or less, more preferably 5 mg The dosage is preferably 1 mg/kg body weight or less, more preferably 1 mg/kg body weight or less.
Here, the tumor growth inhibitory activity (%) can be calculated, for example, by the following formula.
Tumor growth inhibitory activity (%) = 100 - [(Tumor volume or tumor weight of antibody administration group) ÷ (Tumor volume or tumor weight of control group)] × 100
 (3-5-3)本発明の抗hSEMA7A抗体は、例えば、腫瘍の治療又は予防に用い得るものや、症性疾患及び/又は自己免疫疾患の治療又は予防に用い得るものが好ましい。
 ここで、腫瘍としては、前述した各種ヒト腫瘍の説明が同様に適用できる。
 炎症性疾患としては、限定はされないが、例えば、特発性肺線維症(IPF)、クローン病、アレルギー性皮膚炎、及び間質性肺炎、並びに非アルコール性脂肪肝炎(NASH)を含む臓器線維症からなる群より選ばれる少なくとも1種が好ましく挙げられる。
 自己免疫疾患としては、限定はされないが、例えば、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群からなる群より選ばれる少なくとも1種が好ましく挙げられる。
(3-5-3) The anti-hSEMA7A antibody of the present invention is preferably one that can be used for the treatment or prevention of tumors, or one that can be used for the treatment or prevention of symptomatic diseases and/or autoimmune diseases.
Here, as for the tumor, the explanations for various human tumors described above are similarly applicable.
Inflammatory diseases include, but are not limited to, idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, as well as organ fibrosis, including non-alcoholic steatohepatitis (NASH). At least one selected from the group consisting of is preferably mentioned.
The autoimmune disease is not limited, but preferably includes, for example, at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome.
 (3-5-4) 本発明の抗hSEMA7A抗体は、例えば、hSEMA7Aを発現する細胞内へのインターナリゼーション活性に優れたものである。細胞内へのインターナリゼーション活性は、抗体をローダミン等により蛍光標識し、細胞内への移行挙動及び抗体の局在性について蛍光顕微鏡等を用いて観察することにより評価することができる。当該活性の算出方法は、例えば、図12Aの記載を参照することができる。 (3-5-4) The anti-hSEMA7A antibody of the present invention has, for example, excellent internalization activity into cells expressing hSEMA7A. The intracellular internalization activity can be evaluated by fluorescently labeling the antibody with rhodamine or the like and observing the intracellular migration behavior and localization of the antibody using a fluorescence microscope or the like. For the method of calculating the activity, see, for example, the description in FIG. 12A.
(3-6) 抗hSEMA7A抗体のエピトープ
 本発明における抗hSEMA7A抗体のエピトープ(抗原決定基)は、抗原であるhSEMA7Aの少なくとも一部の領域であればよいが、好ましくはhSEMA7Aの細胞外ドメインの少なくとも一部の領域であり、より好ましくはsemaドメインの少なくとも一部の領域である。前記領域を認識する(前記領域又はそれを含む部分と結合する)抗hSEMA7A抗体は、例えば、後述するような抗hSEMA7A抗体の特性をより効果的に発揮することができ、有用なものである。
 また、本発明における抗hSEMA7A抗体が結合(認識)するエピトープ領域に結合し得る抗体も、本発明に含まれる。
(3-6) Epitope of anti-hSEMA7A antibody The epitope (antigenic determinant) of the anti-hSEMA7A antibody in the present invention may be at least a partial region of the antigen hSEMA7A, but preferably at least the extracellular domain of hSEMA7A. A partial region, more preferably at least a partial region of the sema domain. An anti-hSEMA7A antibody that recognizes the region (binds to the region or a portion containing it) is useful because it can, for example, more effectively exhibit the properties of the anti-hSEMA7A antibody as described below.
The present invention also includes antibodies that can bind to the epitope region that is bound (recognized) by the anti-hSEMA7A antibody of the present invention.
 本発明の抗hSEMA7A抗体は、限定はされないが、解離定数(Kd値)が1.0×10-10 M以下であることが好ましく、より好ましくは1.0×10-11 M以下であり、さらに好ましくは1.0×10-12 M以下である。ここで、抗体の結合能(親和性)は、例えば、スキャッチャード解析やBiacoreと呼ばれる表面プラズモン共鳴センサーにより、解離定数(Kd値)、解離速度定数(Kdiss [1/Sec])、結合速度定数(Kass [1/M.Sec])として測定することができる。Biacore装置としては、例えばBiacore 3000、Biacore 2000、Biacore X、Biacore J、Biacore Q(いずれもBiacore社)などが挙げられる。抗体は、解離定数(Kd値)が小さい値であるほど結合能(親和性)が高いという点で好ましい。Kd値は、Kdiss及びKassの2つのパラメーターにより決定され、例えば、式:Kd[M]=Kdiss/Kass により表すことができる。 The anti-hSEMA7A antibody of the present invention preferably has a dissociation constant (Kd value) of 1.0×10 -10 M or less, more preferably 1.0×10 -11 M or less, and even more preferably 1.0 ×10 -12 M or less. Here, the binding ability (affinity) of the antibody can be determined by, for example, the dissociation constant (Kd value), dissociation rate constant (Kdiss [1/Sec]), binding rate, etc. using Scatchard analysis or a surface plasmon resonance sensor called Biacore. It can be measured as a constant (Kass [1/M.Sec]). Examples of Biacore devices include Biacore 3000, Biacore 2000, Biacore X, Biacore J, and Biacore Q (all manufactured by Biacore). Antibodies are preferable in that the smaller the dissociation constant (Kd value), the higher the binding ability (affinity). The Kd value is determined by two parameters, Kdiss and Kass, and can be expressed, for example, by the formula: Kd[M]=Kdiss/Kass.
(4) 遺伝子組換え抗体、及び抗体断片
 (4-1) 遺伝子組換え抗体
 本発明の抗hSEMA7A抗体の好ましい態様の一つとして、遺伝子組換え抗体が挙げられる。遺伝子組換え抗体としては、限定はされないが、例えば、キメラ抗体、ヒト型化抗体(ヒト化抗体)、及びヒト抗体(完全ヒト抗体)等が挙げられる。
 キメラ抗体(すなわちヒト型キメラ抗体)は、マウス由来抗体の可変領域をヒト由来の定常領域に連結(接合)した抗体であり(Proc. Natl. Acad. Sci. U.S.A. 81, 6851-6855, (1984) 等を参照)、キメラを作製する場合は、そのように連結した抗体が得られるよう、遺伝子組換え技術によって容易に構築できる。
(4) Genetically recombinant antibodies and antibody fragments (4-1) Genetically recombinant antibodies One of the preferred embodiments of the anti-hSEMA7A antibody of the present invention is a genetically recombinant antibody. Genetically recombinant antibodies include, but are not limited to, chimeric antibodies, humanized antibodies (humanized antibodies), human antibodies (fully human antibodies), and the like.
A chimeric antibody (i.e., a humanized chimeric antibody) is an antibody in which the variable region of a mouse-derived antibody is linked (conjugated) to a human-derived constant region (Proc. Natl. Acad. Sci. USA 81, 6851-6855, (1984 ), etc.), chimeras can be easily constructed by recombinant genetic techniques to obtain such linked antibodies.
 ヒト型化抗体を作製する場合は、マウス抗体の可変領域から相補性決定領域(CDR)をヒト可変領域に移植して、フレームワーク領域(FR)はヒト由来のものでCDRはマウス由来のものからなる、再構成した可変領域を作製する(いわゆるCDRグラフティング(CDR移植))。次に、これらのヒト型化された再構成ヒト可変領域をヒト定常領域に連結する。このようなヒト型化抗体の作製法は、当分野において周知である(Nature, 321, 522-525 (1986);J. Mol. Biol., 196, 901-917 (1987);Queen C et al., Proc. Natl. Acad. Sci. USA, 86: 10029-10033 (1989);特表平4-502408号公報(特許第2828340号公報;クイーンら)等を参照)。 When creating a humanized antibody, the complementarity determining regions (CDRs) from the variable region of a mouse antibody are grafted onto the human variable region, so that the framework regions (FR) are of human origin and the CDRs are of mouse origin. (so-called CDR grafting). These humanized rearranged human variable regions are then linked to human constant regions. Methods for producing such humanized antibodies are well known in the art (Nature, 321, 522-525 (1986); J. Mol. Biol., 196, 901-917 (1987); Queen C et al. ., Proc. Natl. Acad. Sci. USA, 86: 10029-10033 (1989); see Special Publication No. 4-502408 (Patent No. 2828340; Queen et al.), etc.).
 ヒト抗体(完全ヒト抗体)は、一般にV領域の抗原結合部位である超可変領域(Hyper Variable region)、V領域のその他の部分及び定常領域の構造が、ヒトの抗体と同じ構造を有するものである。但し、超可変部位は他の動物由来であってもよい。ヒト抗体を作製する技術も公知であり、ヒトに共通の遺伝子配列については遺伝子工学的手法によって作製する方法が確立されている。ヒト抗体は、例えば、ヒト抗体のH鎖及びL鎖の遺伝子を含むヒト染色体断片を有するヒト抗体産生マウスを用いた方法(Tomizuka, K.et al., Nature Genetics, (1977)16, 133-143; Kuroiwa, Y.et.al., Nuc. Acids Res., (1998)26, 3447-3448; Yoshida, H.et.al., Animal Cell Technology: Basic and Applied Aspects,(1999)10, 69-73 (Kitagawa, Y.,Matuda, T. and Iijima, S. eds.), Kluwer Academic Publishers; Tomizuka, K.et.al., Proc. Natl. Acad. Sci. USA, (2000)97, 722-727 等を参照)や、ヒト抗体ライブラリーより選別したファージディスプレイ由来のヒト抗体を取得する方法(Wormstone, I. M.et.al, Investigative Ophthalmology & Visual Science., (2002)43 (7), 2301-8; Carmen, S. et.al., Briefings in Functional Genomics and Proteomics,(2002)1 (2), 189-203; Siriwardena, D. et.al., Opthalmology, (2002)109 (3), 427-431 等を参照)により取得することができる。 A human antibody (fully human antibody) generally has the same structure as a human antibody in the structure of the hypervariable region (Hyper Variable region) which is the antigen binding site of the V region, other parts of the V region, and the constant region. be. However, the hypervariable region may be derived from other animals. Techniques for producing human antibodies are also well known, and methods for producing gene sequences common to humans using genetic engineering techniques have been established. Human antibodies can be produced, for example, by a method using human antibody-producing mice that have human chromosome fragments containing the H chain and L chain genes of human antibodies (Tomizuka, K. et al., Nature Genetics, (1977) 16, 133- 143; Kuroiwa, Y.et.al., Nuc. Acids Res., (1998)26, 3447-3448; Yoshida, H.et.al., Animal Cell Technology: Basic and Applied Aspects, (1999)10, 69 -73 (Kitagawa, Y., Matuda, T. and Iijima, S. eds.), Kluwer Academic Publishers; Tomizuka, K.et.al., Proc. Natl. Acad. Sci. USA, (2000)97, 722 -727 etc.) and a method for obtaining human antibodies derived from phage display selected from a human antibody library (Wormstone, I. M. et.al, Investigative Ophthalmology & Visual Science., (2002)43 (7) , 2301-8; Carmen, S. et.al., Briefings in Functional Genomics and Proteomics,(2002)1(2), 189-203; Siriwardena, D. et.al., Opthalmology,(2002)109(3) ), 427-431 etc.).
 また、ヒト抗体は、ヒトADLib技術(WO 2015/167011に記載されたライブラリー)を用いて、所望の抗原(本発明においてはhSEMA7A)に特異的に結合するクローンから産生された(さらには精製された)抗体や、当該抗体のアミノ酸配列(特に、VHやVLのアミノ酸配列、好ましくはVHやVL中の少なくとも1つのCDR配列)を改変したもの(好ましくはアミノ酸置換をしたもの)を用いることもできる。 Human antibodies can also be produced (and purified) from clones that specifically bind to the desired antigen (hSEMA7A in the present invention) using human ADLib technology (library described in WO 2015/167011). (in particular, the amino acid sequence of VH or VL, preferably at least one CDR sequence in VH or VL) (preferably with amino acid substitution). You can also do it.
 本発明の抗hSEMA7A抗体としては、例えば、
 VHのCDR1、CDR2及びCDR3のアミノ酸配列が、それぞれ順に、
配列番号10、11及び12に示されるアミノ酸配列、
配列番号18、19及び20に示されるアミノ酸配列、
配列番号22、23及び24に示されるアミノ酸配列、
配列番号26、27及び28に示されるアミノ酸配列、
配列番号30、31及び32に示されるアミノ酸配列、
配列番号34、35及び36に示されるアミノ酸配列、
配列番号38、39及び40されるアミノ酸配列、又は
配列番号42、43及び44に示されるアミノ酸配列
からなり、かつ
 VLのCDR1、CDR2及びCDR3のアミノ酸配列が、それぞれ順に、
配列番号14、15及び16に示されるアミノ酸配列からなる
抗体などが好ましく挙げられる。
As the anti-hSEMA7A antibody of the present invention, for example,
The amino acid sequences of CDR1, CDR2 and CDR3 of VH are as follows:
Amino acid sequences shown in SEQ ID NOs: 10, 11 and 12,
Amino acid sequences shown in SEQ ID NOs: 18, 19 and 20,
Amino acid sequences shown in SEQ ID NOs: 22, 23 and 24,
Amino acid sequences shown in SEQ ID NO: 26, 27 and 28,
Amino acid sequences shown in SEQ ID NO: 30, 31 and 32,
Amino acid sequences shown in SEQ ID NOs: 34, 35 and 36,
consisting of the amino acid sequences shown in SEQ ID NOs: 38, 39, and 40, or the amino acid sequences shown in SEQ ID NOs: 42, 43, and 44, and the amino acid sequences of CDR1, CDR2, and CDR3 of VL, respectively, in that order,
Preferable examples include antibodies having the amino acid sequences shown in SEQ ID NOs: 14, 15, and 16.
 また本発明の抗hSEMA7A抗体の、より好ましい態様としては、例えば、
 VHのアミノ酸配列が、配列番号9、17、21、25、29、33、37又は41に示されるアミノ酸配列からなり、かつ、
 VLのアミノ酸配列が、配列番号13に示されるアミノ酸配列からなる
抗体などが好ましく挙げられる。
Further, more preferred embodiments of the anti-hSEMA7A antibody of the present invention include, for example,
The amino acid sequence of VH consists of the amino acid sequence shown in SEQ ID NO: 9, 17, 21, 25, 29, 33, 37 or 41, and
Preferred examples include antibodies whose VL amino acid sequence consists of the amino acid sequence shown in SEQ ID NO: 13.
 上記のキメラ抗体、ヒト型化抗体及びヒト抗体は、抗体Fc領域におけるN-グリコシド結合複合型糖鎖が該糖鎖の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖であるものが好ましく、詳しくは、該フコースの1位がN-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンの6位にα結合していない糖鎖を抗体分子のFc領域に有する遺伝子組換え抗体分子からなる抗体が挙げられる。このような抗体であれば、ADCC活性を向上させることができる。なお、この点(抗体Fc領域におけるN-グリコシド結合複合型糖鎖の特徴)は、前述したポリクローナル抗体及びモノクローナル抗体についても同様に好ましい。 The above-mentioned chimeric antibodies, humanized antibodies, and human antibodies are those in which the N-glycoside-linked complex sugar chain in the antibody Fc region is a sugar chain in which fucose is not bound to N-acetylglucosamine at the reducing end of the sugar chain. is preferable, and more specifically, a genetically recombinant antibody having a sugar chain in the Fc region of the antibody molecule that is not α-linked to the 6th position of N-acetylglucosamine in which the 1st position of the fucose is the reducing end of an N-glycoside-linked complex type sugar chain. Examples include antibodies consisting of molecules. Such antibodies can improve ADCC activity. Note that this point (characteristics of N-glycoside-bonded complex sugar chains in the antibody Fc region) is similarly preferable for the above-mentioned polyclonal antibodies and monoclonal antibodies.
 (4-2) 抗体断片
 本発明の抗hSEMA7A抗体の断片(部分断片)も、本発明の抗体に含まれるものとする。ここで、本発明の抗体断片は、本発明の抗hSEMA7A抗体と同様に、hSEMA7A(好ましくはsemaドメイン)に対する結合活性を有するもの(すなわちhSEMA7Aに結合し得るもの)である。好ましくは、前述した、SEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用(好ましくは結合)を阻害又は抑制する活性を有するものや、抗腫瘍活性を有するものである。さらに好ましくは、前述した、腫瘍の治療又は予防に用い得るものや、症性疾患及び/又は自己免疫疾患の治療又は予防に用い得るものである。
(4-2) Antibody fragment Fragments (partial fragments) of the anti-hSEMA7A antibody of the present invention are also included in the antibody of the present invention. Here, the antibody fragment of the present invention, like the anti-hSEMA7A antibody of the present invention, has binding activity for hSEMA7A (preferably sema domain) (ie, is capable of binding to hSEMA7A). Preferably, it has the above-mentioned activity of inhibiting or suppressing the interaction (preferably binding) between SEMA7A and Plexin C1 and/or integrin β1, or has antitumor activity. More preferred are those that can be used for the treatment or prevention of tumors, and those that can be used for the treatment or prevention of symptomatic diseases and/or autoimmune diseases, as described above.
 当該抗体の断片としては、抗hSEMA7Aポリクローナル抗体又は抗hSEMA7Aモノクローナル抗体の一部分の領域(すなわち、本発明の抗hSEMA7A抗体に由来する抗体断片)を意味し、例えば、Fab、Fab'、F(ab')2、Fv(variable fragment of antibody)、一本鎖抗体(H鎖、L鎖、H鎖V領域、及びL鎖V領域等)、scFv、diabody(scFv二量体)、dsFv(ジスルフィド安定化V領域)、並びに、相補性決定領域(complementarity determining region:CDR)を少なくとも一部に含むペプチド等が挙げられる。 The fragment of the antibody means a partial region of an anti-hSEMA7A polyclonal antibody or an anti-hSEMA7A monoclonal antibody (i.e., an antibody fragment derived from the anti-hSEMA7A antibody of the present invention), such as Fab, Fab', F(ab' ) 2 , Fv (variable fragment of antibody), single chain antibody (H chain, L chain, H chain V region, L chain V region, etc.), scFv, diabody (scFv dimer), dsFv (disulfide stabilized V region) and a peptide that includes at least a portion of a complementarity determining region (CDR).
 Fabは、抗体分子をタンパク質分解酵素パパインで処理して得られる断片のうち、H鎖のN末端側約半分とL鎖全体とがジスルフィド結合で結合した、分子量約5万の抗原結合活性を有する抗体断片である。また、抗体のFabをコードするDNAを、原核生物用発現ベクター又は真核生物用発現ベクターに挿入し、該ベクターを原核生物又は真核生物へ導入することにより発現させ、Fabを製造することもできる。
 F(ab')2は、抗体分子をタンパク質分解酵素ペプシンで処理して得られる断片のうち、Fabがヒンジ領域のジスルフィド結合を介して結合されたものよりやや大きい、分子量約10万の抗原結合活性を有する抗体断片である。また、後述するFabをチオエーテル結合あるいはジスルフィド結合させて、作製することもできる。
Fab is a fragment obtained by treating an antibody molecule with the proteolytic enzyme papain, and has antigen-binding activity with a molecular weight of approximately 50,000, in which approximately half of the N-terminal side of the H chain and the entire L chain are bonded by disulfide bonds. It is an antibody fragment. Alternatively, Fab can also be produced by inserting the DNA encoding the Fab of the antibody into a prokaryotic expression vector or a eukaryotic expression vector, and expressing the vector by introducing the vector into the prokaryotic or eukaryotic organism. can.
F(ab') 2 is an antigen-binding fragment with a molecular weight of approximately 100,000, which is slightly larger than the fragment obtained by treating an antibody molecule with the proteolytic enzyme pepsin, in which Fab is bound via disulfide bonds in the hinge region. It is an active antibody fragment. Moreover, it can also be produced by linking Fab described below with a thioether bond or a disulfide bond.
 Fab'は、上記F(ab')2のヒンジ領域のジスルフィド結合を切断した、分子量約5万の抗原結合活性を有する抗体断片である。また、抗体のFab'断片をコードするDNAを、原核生物用発現ベクター又は真核生物用発現ベクターに挿入し、該ベクターを原核生物又は真核生物へ導入することにより発現させ、Fab'を製造することもできる。
 scFvは、1本の重鎖可変領域(VH)と1本の軽鎖可変領域(VL)とを適当なペプチドリンカー(P)を用いて連結した、VH-P-VLないしはVL-P-VHポリペプチドで、抗原結合活性を有する抗体断片である。scFvは、抗体のVHおよびVLをコードするcDNAを取得し、scFvをコードするDNAを構築して、該DNAを原核生物用発現ベクター又は真核生物用発現ベクターに挿入し、該発現ベクターを原核生物又は真核生物へ導入することにより発現させて、製造することができる。
Fab' is an antibody fragment with a molecular weight of about 50,000 and antigen-binding activity, obtained by cleaving the disulfide bond in the hinge region of F(ab') 2 described above. In addition, Fab' can be produced by inserting the DNA encoding the Fab' fragment of the antibody into a prokaryotic expression vector or a eukaryotic expression vector, and expressing the vector by introducing the vector into a prokaryotic or eukaryotic organism. You can also.
scFv is VH-P-VL or VL-P-VH, in which one heavy chain variable region (VH) and one light chain variable region (VL) are linked using an appropriate peptide linker (P). It is a polypeptide and an antibody fragment with antigen-binding activity. scFv is produced by obtaining cDNA encoding the VH and VL of an antibody, constructing the DNA encoding the scFv, inserting the DNA into a prokaryotic expression vector or a eukaryotic expression vector, and converting the expression vector into a prokaryotic expression vector. It can be expressed and produced by introducing it into an organism or eukaryote.
 diabodyは、scFvが二量体化した抗体断片で、二価の抗原結合活性を有する抗体断片である。二価の抗原結合活性は、同一であることもできるし、一方を異なる抗原結合活性とすることもできる。diabodyは、抗体のVHおよびVLをコードするcDNAを取得し、scFvをコードするDNAをペプチドリンカー(P)のアミノ酸配列の長さが8残基以下となるように構築して、該DNAを原核生物用発現ベクター又は真核生物用発現ベクターに挿入し、該発現ベクターを原核生物又は真核生物へ導入することにより発現させて、製造することができる。 A diabody is an antibody fragment that is a dimerization of scFv and has bivalent antigen-binding activity. The two valent antigen-binding activities can be the same, or one can have a different antigen-binding activity. Diabody obtains cDNA encoding the VH and VL of an antibody, constructs the scFv-encoding DNA so that the amino acid sequence of the peptide linker (P) is 8 residues or less, and converts the DNA into a prokaryote. It can be produced by inserting it into an expression vector for organisms or an expression vector for eukaryotes, and expressing it by introducing the expression vector into prokaryotes or eukaryotes.
 dsFvは、VHおよびVL中のそれぞれ1アミノ酸残基をシステイン残基に置換したポリペプチドを、該システイン残基間のジスルフィド結合を介して結合させたものをいう。システイン残基に置換するアミノ酸残基は、Reiterらにより示された方法(Protein Engineering, 7, 697-704, 1994)に従って、抗体の立体構造予測に基づいて選択することができる。dsFvは、抗体のVHおよびVLをコードするcDNAを取得し、dsFvをコードするDNAを構築して、該DNAを原核生物用発現ベクター又は真核生物用発現ベクターに挿入し、該発現ベクターを原核生物又は真核生物へ導入することにより発現させて、製造することができる。 dsFv refers to a polypeptide in which one amino acid residue in each of VH and VL is replaced with a cysteine residue, which are linked via a disulfide bond between the cysteine residues. The amino acid residue to be substituted for the cysteine residue can be selected based on the prediction of the three-dimensional structure of the antibody according to the method shown by Reiter et al. (Protein Engineering, 7, 697-704, 1994). dsFv is produced by obtaining cDNA encoding the VH and VL of an antibody, constructing a DNA encoding dsFv, inserting the DNA into a prokaryotic expression vector or a eukaryotic expression vector, and translating the expression vector into a prokaryotic expression vector. It can be expressed and produced by introducing it into an organism or eukaryote.
 CDRを含むペプチドは、VHのCDR(CDR1~3)及びVLのCDR(CDR1~3)の中の少なくとも1領域以上を含んで構成され、VHのCDRをすべて含むもの、及びVLのCDRをすべて含むものがより好ましく、VH及びVLのCDR(計6領域)をすべて含むものが特に好ましい。CDRのアミノ酸配列としては、前述したVH及びVLのCDR1~3の各種アミノ酸配列が好ましく挙げられる。複数のCDRを含むペプチドは、直接又は適当なペプチドリンカーを介して結合させることができる。CDRを含むペプチドは、抗体のVHおよびVLのCDRをコードするDNAを構築し、該DNAを原核生物用発現ベクター又は真核生物用発現ベクターに挿入して、該発現ベクターを原核生物又は真核生物へ導入することにより発現させて、製造することができる。また、CDRを含むペプチドは、Fmoc法(フルオレニルメチルオキシカルボニル法)及びtBoc法(t-ブチルオキシカルボニル法)等の化学合成法によって製造することもできる。 Peptides containing CDRs are composed of at least one region of VH CDRs (CDR1 to 3) and VL CDRs (CDR1 to 3), and include those containing all VH CDRs and all VL CDRs. It is more preferable to include all CDRs of VH and VL (six regions in total), and particularly preferable. Preferred amino acid sequences of CDRs include the various amino acid sequences of CDRs 1 to 3 of VH and VL described above. Peptides containing multiple CDRs can be linked directly or via a suitable peptide linker. Peptides containing CDRs can be produced by constructing DNA encoding the CDRs of VH and VL of an antibody, inserting the DNA into an expression vector for prokaryotes or an expression vector for eukaryotes, and translating the expression vector into a prokaryotic or eukaryotic expression vector. It can be expressed and produced by introducing it into an organism. Peptides containing CDRs can also be produced by chemical synthesis methods such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
 本発明の抗体断片としては、そのままの形状でN-グリコシド結合複合型糖鎖が該糖鎖の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖である抗体Fc領域の一部または全部を含む抗体断片でもよく、また、上述した抗体断片とN-グリコシド結合複合型糖鎖が該糖鎖の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖である抗体Fc領域の一部または全部との融合タンパク質であってもよい。このような抗体断片であれば、ADCC活性を飛躍的に向上させることができるため、好ましい。
 以下、本明細書中の説明においては、上述した抗体断片も、本発明の抗hSEMA7A抗体に含まれるものとする。
The antibody fragment of the present invention may be a part of the antibody Fc region in which the N-glycoside-linked complex sugar chain does not have fucose bound to N-acetylglucosamine at the reducing end of the sugar chain, or Alternatively, an antibody fragment containing the entirety of the antibody fragment and the N-glycoside-linked complex sugar chain may be used in the antibody Fc region, which is a sugar chain in which fucose is not bound to N-acetylglucosamine at the reducing end of the sugar chain. It may be a fusion protein with a part or all of it. Such antibody fragments are preferred because they can dramatically improve ADCC activity.
Hereinafter, in the description herein, the above-mentioned antibody fragments are also included in the anti-hSEMA7A antibody of the present invention.
2.ポリヌクレオチド、組換えベクター及び形質転換体
 本発明においては、上述した本発明の抗hSEMA7A抗体やその抗体断片をコードするポリヌクレオチド(遺伝子、DNA)も提供することができる。当該ポリヌクレオチドとしては、具体的には、上述した本発明の抗hSEMA7A抗体や抗体断片の例示として示した各アミノ酸配列をコードする塩基配列を含むポリヌクレオチドであることが好ましい。また、本発明のポリヌクレオチドは、本発明の抗hSEMA7A抗体や抗体断片をコードするポリヌクレオチドのみからなるものであってもよいし、当該ポリヌクレオチドを一部に含み、その他に遺伝子発現に必要な公知の塩基配列(転写プロモーター、SD配列、Kozak配列、ターミネーター等)をも含むものであってもよく、限定はされない。
2. Polynucleotide, Recombinant Vector, and Transformant The present invention can also provide a polynucleotide (gene, DNA) encoding the anti-hSEMA7A antibody of the present invention described above or an antibody fragment thereof. Specifically, the polynucleotide is preferably a polynucleotide containing a base sequence encoding each of the amino acid sequences shown as examples of the anti-hSEMA7A antibody and antibody fragment of the present invention described above. Furthermore, the polynucleotide of the present invention may consist only of a polynucleotide encoding the anti-hSEMA7A antibody or antibody fragment of the present invention, or it may contain the polynucleotide as a part and contain other components necessary for gene expression. It may also contain known base sequences (transcription promoter, SD sequence, Kozak sequence, terminator, etc.), and is not limited to such sequences.
 本発明の抗hSEMA7A抗体や抗体断片をコードするポリヌクレオチドとしては、翻訳後の個々のアミノ酸に対応するコドンは、特に限定はされず、転写後、ヒト等の哺乳類において一般的に用いられているコドン(好ましくは使用頻度の高いコドン)を示すヌクレオチドDNAを含むものであってもよいし、また、大腸菌や酵母等の微生物や、植物等において一般的に用いられているコドン(好ましくは使用頻度の高いコドン)を示すヌクレオチドDNAを含むものであってもよい。
 本発明においては、上記本発明のポリヌクレオチドを含む組換えベクターや、当該組換えベクターを含む形質転換体を提供することもできる。
In the polynucleotide encoding the anti-hSEMA7A antibody or antibody fragment of the present invention, codons corresponding to individual amino acids after translation are not particularly limited, and codons that are commonly used in mammals such as humans after transcription are used. It may contain nucleotide DNA indicating codons (preferably frequently used codons), or it may contain nucleotide DNA indicating codons (preferably frequently used codons) that are commonly used in microorganisms such as E. coli and yeast, plants, etc. It may also contain nucleotide DNA that exhibits high codons.
The present invention can also provide a recombinant vector containing the polynucleotide of the present invention and a transformant containing the recombinant vector.
 組換えベクターとして用いる発現ベクターに組込むポリヌクレオチド(遺伝子、DNA)には、必要に応じて、予め、上流に転写プロモーター、SD配列(宿主が原核細胞の場合)及びKozak配列(宿主が真核細胞の場合)を連結しておいてもよいし、下流にターミネーターを連結しておいてもよく、その他、エンハンサー、スプライシングシグナル、ポリA付加シグナル、選択マーカー等を連結しておくこともできる。なお、上記転写プロモーター等の遺伝子発現に必要な各要素は、初めから当該ポリヌクレオチドに含まれていてもよいし、もともと発現ベクターに含まれている場合はそれを利用してもよく、各要素の使用態様は特に限定されない。 The polynucleotide (gene, DNA) to be incorporated into the expression vector used as a recombinant vector has a transcription promoter, an SD sequence (if the host is a prokaryotic cell) and a Kozak sequence (if the host is a eukaryotic cell) as necessary. ) may be linked, a terminator may be linked downstream, and an enhancer, splicing signal, polyA addition signal, selection marker, etc. may also be linked. Each element necessary for gene expression, such as the above-mentioned transcription promoter, may be included in the polynucleotide from the beginning, or if it is originally included in the expression vector, it may be used. The manner of use is not particularly limited.
 発現ベクターに当該ポリヌクレオチドを組込む方法としては、例えば、制限酵素を用いる方法や、トポイソメラーゼを用いる方法など、公知の遺伝子組換え技術を利用した各種方法が採用できる。また、発現ベクターとしては、例えば、プラスミドDNA、バクテリオファージDNA、レトロトランスポゾンDNA、レトロウイルスベクター、人工染色体DNAなど、本発明の抗hSEMA7A抗体やその抗体断片をコードするポリヌクレオチド(遺伝子、DNA)を保持し得るものであれば、限定はされず、使用する宿主細胞に適したベクターを適宜選択して使用することができる。 As a method for integrating the polynucleotide into an expression vector, various methods using known genetic recombination techniques can be employed, such as methods using restriction enzymes and methods using topoisomerase. Expression vectors include, for example, plasmid DNA, bacteriophage DNA, retrotransposon DNA, retrovirus vectors, artificial chromosome DNA, etc. that contain polynucleotides (genes, DNA) encoding the anti-hSEMA7A antibody of the present invention or antibody fragments thereof. There are no limitations as long as the vector can be retained, and a vector suitable for the host cell to be used can be appropriately selected and used.
 次いで、構築した上記組換えベクターを宿主に導入して形質転換体を得、これを培養することにより、本発明の抗hSEMA7A抗体やその抗体断片を発現させることができる。なお、本発明で言う「形質転換体」とは宿主に外来遺伝子が導入されたものを意味し、例えば、宿主にプラスミドDNA等を導入すること(形質転換)で外来遺伝子が導入されたもの、並びに、宿主に各種ウイルス及びファージを感染させること(形質導入)で外来遺伝子が導入されたものが含まれる。
 宿主としては、上記組換えベクターが導入された後、本発明の抗hSEMA7A抗体やその抗体断片を発現し得るものであれば、限定はされず、適宜選択することができるが、例えば、ヒトやマウス等の各種動物細胞、各種植物細胞、細菌、酵母、植物細胞等の公知の宿主が挙げられる。
Next, the constructed recombinant vector is introduced into a host to obtain a transformant, which is then cultured to express the anti-hSEMA7A antibody or antibody fragment thereof of the present invention. The term "transformant" used in the present invention refers to a host into which a foreign gene has been introduced; for example, a transformant into which a foreign gene has been introduced by introducing plasmid DNA or the like into the host (transformation); It also includes those into which foreign genes have been introduced by infecting the host with various viruses and phages (transduction).
The host is not limited as long as it can express the anti-hSEMA7A antibody of the present invention or its antibody fragment after the recombinant vector is introduced, and it can be selected as appropriate. Known hosts include various animal cells such as mice, various plant cells, bacteria, yeast, and plant cells.
 動物細胞を宿主とする場合は、例えば、ヒト繊維芽細胞、ヒト胎児腎細胞、HEK293細胞、293F細胞、CHO細胞、サル細胞COS-7、Vero、マウスL細胞、ラットGH3、ヒトFL細胞等が用いられる。また、Sf9細胞、Sf21細胞等の昆虫細胞を用いることもできる。
 細菌を宿主とする場合、例えば、大腸菌、枯草菌等が用いられる。
 酵母を宿主とする場合は、例えば、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)等が用いられる。
 植物細胞を宿主とする場合は、例えば、タバコBY-2細胞等が用いられる。
When using animal cells as hosts, for example, human fibroblasts, human fetal kidney cells, HEK293 cells, 293F cells, CHO cells, monkey cells COS-7, Vero, mouse L cells, rat GH3, human FL cells, etc. used. Furthermore, insect cells such as Sf9 cells and Sf21 cells can also be used.
When using bacteria as a host, for example, Escherichia coli, Bacillus subtilis, etc. are used.
When using yeast as a host, for example, Saccharomyces cerevisiae, Schizosaccharomyces pombe, etc. are used.
When using plant cells as hosts, for example, tobacco BY-2 cells are used.
 形質転換体を得る方法は、限定はされず、宿主と発現ベクターとの種類の組み合わせを考慮し、適宜選択することができるが、例えば、電気穿孔法、リポフェクション法、ヒートショック法、PEG法、リン酸カルシウム法、DEAEデキストラン法、並びに、DNAウイルスやRNAウイルス等の各種ウイルスを感染させる方法などが好ましく挙げられる。
 得られる形質転換体においては、組換えベクターに含まれるポリヌクレオチドのコドン型は、用いた宿主のコドン型と一致していても異なっていてもよく、限定はされない。
The method for obtaining the transformant is not limited and can be selected as appropriate, taking into consideration the combination of host and expression vector, but includes, for example, electroporation, lipofection, heat shock, PEG, Preferred examples include the calcium phosphate method, the DEAE dextran method, and methods of infecting various viruses such as DNA viruses and RNA viruses.
In the resulting transformant, the codon type of the polynucleotide contained in the recombinant vector may be the same as or different from the codon type of the host used, and is not limited.
3.抗体又は抗体断片-薬物複合体
 前述した本発明の抗hSEMA7A抗体やその抗体断片を用いたイムノコンジュゲート等として、当該抗体又は抗体断片と、薬物とを含む(好ましくは、当該抗体又は抗体断片に、薬物がコンジュゲートされた)、抗体又は抗体断片-薬物複合体を提供することができる。
 上記薬物としては、限定はされないが、例えば、抗腫瘍活性及び/又は殺細胞活性を有する化合物が好ましく、具体的には、例えば、
・チューブリン阻害剤及び/又は微小管重合阻害剤(より具体的には、Auristatin類(MMAE、MMAFなど)、Maytansine類(DM1、DM4など)、Tubulysin類、cryptophycin類、rhizoxinなど);
・抗生物質(より具体的には、Calicheamicin類、Doxorubicin、anthracycline類など);
・DNA合成阻害剤(より具体的には、Duocarmycin類、PBD(Benzodiazepine)類、IGNs(indolinobenzodiazepine)など);
・トポイソメラーゼI阻害剤(より具体的には、Canptothecinアナログ(SN-38、DXdなど)など);
・RNAポリメラーゼII阻害剤(より具体的には、Amanitin類など);及び
・RNAスプライソソーム阻害剤(より具体的には、spliceostatin類、thailanstatin類など)
などが挙げられる。また、抗腫瘍活性を示す薬物としては、例えば、光エネルギーによって励起され毒性を発現するような化合物を用いることもできる。なお、遺伝子組換え技術を用い、抗腫瘍活性及び/又は殺細胞活性を有する物質としてのタンパク質トキシンを、遺伝子上で抗体遺伝子又は抗体断片遺伝子と連結させて、1つのタンパク質(融合タンパク質)として発現させて得られたものは、一般に、イムノトキシンと称される。
3. Antibody or antibody fragment-drug conjugate The above-mentioned immunoconjugate using the anti-hSEMA7A antibody or antibody fragment of the present invention contains the antibody or antibody fragment and a drug (preferably, the antibody or antibody fragment contains a drug). , a drug conjugated), an antibody or antibody fragment-drug conjugate.
The above-mentioned drug is preferably, but not limited to, a compound having antitumor activity and/or cell-killing activity, and specifically, for example,
- Tubulin inhibitors and/or microtubule polymerization inhibitors (more specifically, Auristatins (MMAE, MMAF, etc.), Maytansines (DM1, DM4, etc.), Tubulysins, cryptophycins, rhizoxin, etc.);
・Antibiotics (more specifically, Calicheamicins, Doxorubicin, anthracyclines, etc.);
・DNA synthesis inhibitors (more specifically, Duocarmycins, PBDs (Benzodiazepines), IGNs (Indolinobenzodiazepines), etc.);
・Topoisomerase I inhibitors (more specifically, camptothecin analogues (SN-38, DXd, etc.), etc.);
・RNA polymerase II inhibitors (more specifically, Amanitins, etc.); and ・RNA spliceosome inhibitors (more specifically, spliceostatins, thailanstatins, etc.)
Examples include. Further, as a drug exhibiting antitumor activity, for example, a compound that is excited by light energy and exhibits toxicity can also be used. In addition, using genetic recombination technology, a protein toxin as a substance with antitumor activity and/or cell killing activity is linked to an antibody gene or antibody fragment gene on the gene and expressed as one protein (fusion protein). The resulting products are generally called immunotoxins.
 抗腫瘍活性を有する物質としては、例えば、ドキソルビシン、カリケアマイシン、マイトマイシンC、Auristatin E、ピロロベンゾジアゼピン(PBD)、放射性同位体(RI)などが挙げられる。殺細胞活性を有する物質としては、例えば、サポリン、リシン、緑膿菌外毒素、ジフテリアトキシン、放射性同位体(RI)等が挙げられ、なかでもサポリン及び緑膿菌外毒素が好ましく用いられる。なお、抗腫瘍活性及び/又は殺細胞活性を有するRIとしては、限定はされないが、例えば、90Y、111In、125I、3H、35S、14C、186Re、188Re、189Re、177Lu、67Cu、212Bi、213Bi、211At、198Au、224Ac、126I、133I、77Br、113mIn、95Ru、97Ru、103Ru、105Ru、107Hg、203Hg、94mTc、121mTe、122mTe、125mTe、165Tm、167Tm、168Tm、111Ag、197Pt、109Pd、32P、33P、47Sc、153Sm、177Lu、105Rh、142Pr、143Pr、161Tb、166Ho、199Au、57Co、58Co、51Cr、59Fe、18F、75Se、201Tl、225Ac、76Br、86Y、169Yb、166Dy、212Pb及び223Ra等が挙げられる。 Examples of substances having antitumor activity include doxorubicin, calicheamicin, mitomycin C, Auristatin E, pyrrolobenzodiazepine (PBD), and radioisotope (RI). Examples of the substance having cell-killing activity include saporin, ricin, Pseudomonas aeruginosa exotoxin, diphtheria toxin, and radioisotope (RI), among which saporin and Pseudomonas aeruginosa exotoxin are preferably used. Note that RI having antitumor activity and/or cell-killing activity includes, but is not limited to, 90 Y, 111 In, 125 I, 3 H, 35 S, 14 C, 186 Re, 188 Re, 189 Re. , 177 Lu, 67 Cu, 212 Bi, 213 Bi, 211 At, 198 Au, 224 Ac, 126 I, 133 I, 77 Br, 113m In, 95 Ru, 97 Ru, 103 Ru, 105 Ru, 107 Hg, 203 Hg, 94m Tc, 121m Te, 122m Te, 125m Te, 165 Tm, 167 Tm, 168 Tm, 111 Ag, 197 Pt, 109 Pd, 32 P, 33 P, 47 Sc, 153 Sm, 177 Lu , 105 Rh, 142 Pr, 143 Pr, 161 Tb, 166 Ho, 199 Au, 57 Co, 58 Co, 51 Cr, 59 Fe, 18 F, 75 Se, 201 Tl, 225 Ac, 76 Br, 86 Y, 169 Yb, 166 Dy , 212 Pb and 223 Ra.
 抗体又は抗体断片-薬物複合体の作製方法としては、限定はされないが、例えば、ジスルフィド結合やヒドラゾン結合によって抗体又は抗体断片と薬物とをカップリングする方法などが挙げられる。
 前述したように本発明の抗hSEMA7A抗体やその抗体断片は、hSEMA7Aを発現する細胞内へのインターナリゼーション活性に優れたものであるため、予め、抗腫瘍活性及び/又は殺細胞活性を有する物質を当該抗体又は抗体断片に複合化(コンジュゲート)させておくことにより、これら物質を細胞(特に腫瘍細胞)に直接かつ高選択的に作用させることができる。本発明の抗体又は抗体断片-薬物複合体は、標的腫瘍細胞への薬剤送達能に優れたものである。
Methods for producing antibody or antibody fragment-drug complexes include, but are not limited to, methods in which an antibody or antibody fragment is coupled to a drug via a disulfide bond or a hydrazone bond.
As mentioned above, the anti-hSEMA7A antibody and antibody fragments thereof of the present invention have excellent internalization activity into cells expressing hSEMA7A, and therefore are preliminarily treated with substances having antitumor activity and/or cell-killing activity. By conjugating these substances to the antibody or antibody fragment, these substances can be made to act directly and highly selectively on cells (especially tumor cells). The antibody or antibody fragment-drug conjugate of the present invention has an excellent ability to deliver a drug to target tumor cells.
 また本発明においては、抗体-薬剤複合体において、抗体の代わりに前述の抗体断片を用いた抗体断片-薬剤複合体を提供することもできる。抗体断片-薬剤複合体の詳細については、上述の抗体-薬剤複合体の説明を同様に適用することができる。
 以下、本明細書中の説明においては、本発明の抗体-薬物複合体には、抗体断片-薬物複合体も含まれるものとする。
Furthermore, the present invention can also provide an antibody fragment-drug complex using the above-mentioned antibody fragment instead of the antibody. For details of the antibody fragment-drug conjugate, the above explanation of the antibody-drug conjugate can be similarly applied.
Hereinafter, in the description herein, the antibody-drug conjugate of the present invention includes an antibody fragment-drug conjugate.
4.医薬組成物等
 本発明の抗hSEMA7A抗体、及び抗体-薬物複合体(以下、本発明の複合体ともいう)は、医薬組成物に含まれる有効成分として有用である。
 本発明の抗hSEMA7A抗体は、前述のとおり抗腫瘍活性を有し得るため、本発明の抗hSEMA7A抗体及び本発明の複合体は、腫瘍の治療用及び/又は予防用に使用されることが好ましい。従って、当該医薬組成物は、腫瘍の治療用及び/又は予防用、さらには診断用の医薬組成物として有用である。すなわち、本発明の抗hSEMA7A抗体及び本発明の複合体は、腫瘍治療剤及び腫瘍診断剤に含まれる有効成分として有用なものである。なお、本発明において、上記腫瘍の治療には、腫瘍の成長阻害及び成長抑制の意味も含むものとし、具体的には、例えば腫瘍治療剤であれば、腫瘍の成長阻害剤及び成長抑制剤の形態も含むものとする。
 また、本発明の抗hSEMA7A抗体及び本発明の複合体は、前述のとおり炎症性疾患及び/又は自己免疫疾患の治療用及び/又は予防用に使用されることが好ましい。従って、当該医薬組成物は、炎症性疾患及び/又は自己免疫疾患の治療用及び/又は予防用、さらには診断用の医薬組成物として有用である。すなわち、本発明の抗hSEMA7A抗体及び本発明の複合体は、炎症性疾患及び/又は自己免疫疾患の治療剤及び診断剤に含まれる有効成分として有用なものである。
 さらに、本発明の医薬組成物は、hSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用(好ましくは結合)の阻害又は抑制用の組成物であってもよい。
4. Pharmaceutical compositions, etc. The anti-hSEMA7A antibody and antibody-drug conjugate (hereinafter also referred to as the conjugate of the present invention) of the present invention are useful as active ingredients contained in pharmaceutical compositions.
Since the anti-hSEMA7A antibody of the present invention may have antitumor activity as described above, the anti-hSEMA7A antibody of the present invention and the complex of the present invention are preferably used for the treatment and/or prevention of tumors. . Therefore, the pharmaceutical composition is useful as a pharmaceutical composition for treating and/or preventing tumors, and further for diagnosis. That is, the anti-hSEMA7A antibody of the present invention and the complex of the present invention are useful as active ingredients contained in tumor therapeutic agents and tumor diagnostic agents. In addition, in the present invention, the above-mentioned tumor treatment includes the meaning of tumor growth inhibition and growth suppression, and specifically, for example, in the case of a tumor therapeutic agent, a tumor growth inhibitor and a form of the growth inhibitor are included. shall also be included.
Further, the anti-hSEMA7A antibody of the present invention and the complex of the present invention are preferably used for the treatment and/or prevention of inflammatory diseases and/or autoimmune diseases, as described above. Therefore, the pharmaceutical composition is useful as a pharmaceutical composition for treating and/or preventing inflammatory diseases and/or autoimmune diseases, as well as for diagnosing them. That is, the anti-hSEMA7A antibody of the present invention and the complex of the present invention are useful as active ingredients contained in therapeutic and diagnostic agents for inflammatory diseases and/or autoimmune diseases.
Furthermore, the pharmaceutical composition of the present invention may be a composition for inhibiting or suppressing interaction (preferably binding) between hSEMA7A and Plexin C1 and/or integrin β1.
 本発明の医薬組成物は、本発明の抗hSEMA7A抗体等を有効成分として含み、さらに薬学的に許容される担体を含む医薬組成物の形態で提供されることが好ましい。また、本発明の医薬組成物は、既知の抗腫瘍活性を有する化合物(例えば、シスプラチン)及び/又は殺細胞活性を有する化合物と併用することもできる。併用の態様は、例えば、本発明の医薬組成物が、当該化合物をさらに含む態様であってもよいし、当該化合物と組み合わせて用いる態様であってもよく、限定はされない。このような併用によりさらに高い抗腫瘍効果が得られる。 The pharmaceutical composition of the present invention is preferably provided in the form of a pharmaceutical composition containing the anti-hSEMA7A antibody of the present invention as an active ingredient, and further containing a pharmaceutically acceptable carrier. Furthermore, the pharmaceutical composition of the present invention can also be used in combination with a known compound having antitumor activity (eg, cisplatin) and/or a compound having cell killing activity. The mode of combined use may be, for example, a mode in which the pharmaceutical composition of the present invention further contains the compound, or a mode in which it is used in combination with the compound, and is not limited. Such a combination provides even higher antitumor effects.
 本発明の医薬組成物の適用対象となるヒト腫瘍については、前述した説明を同様に適用できる。適用対象となる腫瘍は、再発癌や転移癌であってもよく、本発明の医薬組成物(ひいては、本発明の抗hSEMA7A抗体や、本発明の複合体)は、再発癌や転移癌の治療剤、予防剤及び診断剤としても有効に用いることができる。
 また、本発明の医薬組成物の適用対象となる炎症性疾患及び自己免疫疾患についても、前述した説明を同様に適用できる。
The above explanation can be similarly applied to human tumors to which the pharmaceutical composition of the present invention is applied. The tumor to be applied may be recurrent cancer or metastatic cancer, and the pharmaceutical composition of the present invention (as well as the anti-hSEMA7A antibody of the present invention or the complex of the present invention) is suitable for the treatment of recurrent cancer or metastatic cancer. It can also be effectively used as an agent, preventive agent, and diagnostic agent.
Further, the above explanation can be similarly applied to inflammatory diseases and autoimmune diseases to which the pharmaceutical composition of the present invention is applied.
 「薬学的に許容され得る担体」とは、賦形剤、希釈剤、増量剤、崩壊剤、安定剤、保存剤、緩衝剤、乳化剤、芳香剤、着色剤、甘味剤、粘稠剤、矯味剤、溶解補助剤あるいはその他の添加剤等が挙げられる。そのような担体の1種以上を用いることにより、注射剤、液剤、カプセル剤、懸濁剤、乳剤あるいはシロップ剤等の形態の医薬組成物を調製することができる。これらの医薬組成物は、経口あるいは非経口的に投与することができる。非経口投与のためのその他の形態としては、1つ以上の活性物質を含み、常法により処方される注射剤などが含まれる。注射剤の場合には、生理食塩水又は市販の注射用蒸留水等の薬学的に許容される担体中に溶解または懸濁することにより製造することができる。 "Pharmaceutically acceptable carrier" means excipients, diluents, fillers, disintegrants, stabilizers, preservatives, buffers, emulsifiers, fragrances, colorants, sweeteners, thickeners, flavoring agents, etc. agents, solubilizing agents, and other additives. By using one or more of such carriers, pharmaceutical compositions in the form of injections, solutions, capsules, suspensions, emulsions, syrups, etc. can be prepared. These pharmaceutical compositions can be administered orally or parenterally. Other forms for parenteral administration include injections containing one or more active substances and formulated in a conventional manner. In the case of an injection, it can be produced by dissolving or suspending it in a pharmaceutically acceptable carrier such as physiological saline or commercially available distilled water for injection.
 特に、本発明の抗hSEMA7A抗体由来の抗体断片(中でも低分子のもの)を生体内に投与する場合は、上記に加えて、コロイド分散系を用いることができる。コロイド分散系は化合物(抗体断片)の生体内の安定性を高める効果や、特定の臓器、組織又は細胞へ化合物を効率的に輸送する効果が期待される。コロイド分散系は、通常用いられるものであればよく限定はされないが、ポリエチレングリコール、高分子複合体、高分子凝集体、ナノカプセル、ミクロスフェア、ビーズ、及び水中油系の乳化剤、ミセル、混合ミセル及びリポソームを包含する脂質をベースとする分散系を挙げることができ、好ましくは、特定の臓器、組織又は細胞へ化合物を効率的に輸送する効果のある、複数のリポソーム、人工膜の小胞である(Mannino et al., Biotechniques, 1988, 6, 682; Blume and Cevc, Biochem.et Biophys. Acta, 1990, 1029, 91; Lappalainen et al., Antiviral Res., 1994, 23, 119; Chonn and Cullis, Current Op. Biotech., 1995, 6, 698)。 In particular, when administering antibody fragments (especially low molecular weight ones) derived from the anti-hSEMA7A antibody of the present invention into a living body, a colloidal dispersion system can be used in addition to the above. Colloidal dispersion systems are expected to have the effect of increasing the stability of compounds (antibody fragments) in vivo and the effect of efficiently transporting compounds to specific organs, tissues, or cells. Colloidal dispersion systems are not limited as long as they are commonly used, but include polyethylene glycol, polymer complexes, polymer aggregates, nanocapsules, microspheres, beads, oil-in-water emulsifiers, micelles, mixed micelles. and lipid-based dispersion systems including liposomes, preferably a plurality of liposomes, artificial membrane vesicles, which have the effect of efficiently transporting compounds to specific organs, tissues or cells. (Mannino et al., Biotechniques, 1988, 6, 682; Blume and Cevc, Biochem.et Biophys. Acta, 1990, 1029, 91; Lappalainen et al., Antiviral Res., 1994, 23, 119; Chonn and Cull is , Current Op. Biotech., 1995, 6, 698).
 本発明の医薬組成物の投与量は、患者の年齢、性別、体重及び症状、治療効果、投与方法、処理時間、あるいは医薬組成物に含有される本発明の抗hSEMA7A抗体や本発明の複合体の種類などにより異なる。通常、成人一人あたり、一回につき600μgから6000mgの範囲で投与することができるが、この範囲に限定されるものではない。 The dosage of the pharmaceutical composition of the present invention is determined depending on the patient's age, sex, weight, symptoms, therapeutic effect, administration method, treatment time, or the anti-hSEMA7A antibody of the present invention or the complex of the present invention contained in the pharmaceutical composition. It varies depending on the type etc. Usually, the dose per adult can be administered in the range of 600 μg to 6000 mg at a time, but the dose is not limited to this range.
 例えば注射剤により投与する場合は、ヒト患者に対し、1回の投与において1kg体重あたり、100μg~100mgの量を、1日平均あたり1回~数回投与してもよく、好ましくは3日、1週間、10日又は2週間に1回投与したり、あるいは単回(合計投与回数が1回)投与する態様も採ることができる。投与の形態としては、静脈内注射、皮下注射、皮内注射、筋肉内注射あるいは腹腔内注射などが挙げられるが、好ましくは静脈内注射である。また、注射剤は、場合により、非水性の希釈剤(例えばポリエチレングリコール、オリーブ油等の植物油、エタノール等のアルコール類など)、懸濁剤あるいは乳濁剤として調製することもできる。そのような注射剤の無菌化は、フィルターによる濾過滅菌、殺菌剤の配合等により行うことができる。注射剤は、用時調製の形態として製造することができる。すなわち、凍結乾燥法などによって無菌の固体組成物とし、使用前に無菌の注射用蒸留水または他の溶媒に溶解して使用することができる。 For example, when administered by injection, the amount of 100 μg to 100 mg per 1 kg body weight may be administered to human patients once to several times per day on average, preferably for 3 days. It is also possible to administer the drug once every 1 week, 10 days, or 2 weeks, or to administer it once (the total number of administrations is 1 time). The form of administration includes intravenous injection, subcutaneous injection, intradermal injection, intramuscular injection, and intraperitoneal injection, with intravenous injection being preferred. Injections can also be prepared as non-aqueous diluents (for example, polyethylene glycol, vegetable oils such as olive oil, alcohols such as ethanol, etc.), suspensions, or emulsions, depending on the case. Such injections can be sterilized by filter sterilization, addition of a bactericide, and the like. Injections can be manufactured in a ready-to-use form. That is, it can be prepared into a sterile solid composition by freeze-drying or the like, and dissolved in sterile distilled water for injection or other solvent before use.
 なお、本発明は、腫瘍又は炎症性疾患及び/若しくは自己免疫疾患(以下、腫瘍等ともいう)を治療、予防及び/又は診断する、あるいはhSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用(好ましくは結合)を阻害又は抑制する医薬(薬剤)を製造するための本発明の抗hSEMA7A抗体及び/又は本発明の複合体の使用を提供するものでもある。
 また、本発明は、腫瘍等の治療用、予防用及び/又は診断用の、あるいはhSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用(好ましくは結合)の阻害又は抑制用の、本発明の抗hSEMA7A抗体及び/又は本発明の複合体を提供するものでもある。
 さらに本発明は、本発明の抗hSEMA7A抗体及び/又は本発明の複合体を用いる(すなわち対象(患者)に投与する)ことを特徴とする、腫瘍等の治療、予防及び/又は診断方法、あるいはhSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用(好ましくは結合)の阻害又は抑制方法を提供するものであり、また、腫瘍等を治療、予防及び/又は診断するための、あるいはhSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用(好ましくは結合)を阻害又は抑制するための、本発明の抗hSEMA7A抗体及び/又は本発明の複合体の使用を提供するものでもある。
The present invention also relates to the treatment, prevention, and/or diagnosis of tumors, inflammatory diseases, and/or autoimmune diseases (hereinafter also referred to as tumors), or the interaction between hSEMA7A and Plexin C1 and/or integrin β1 ( The present invention also provides the use of the anti-hSEMA7A antibody of the present invention and/or the conjugate of the present invention for producing a medicament (drug) that inhibits or suppresses hSEMA7A binding.
Furthermore, the present invention provides a method for treating, preventing, and/or diagnosing tumors, etc., or for inhibiting or suppressing the interaction (preferably binding) between hSEMA7A and Plexin C1 and/or integrin β1. Also provided are anti-hSEMA7A antibodies and/or conjugates of the invention.
Furthermore, the present invention provides a method for treating, preventing, and/or diagnosing tumors, etc., which uses the anti-hSEMA7A antibody of the present invention and/or the complex of the present invention (that is, administering it to a subject (patient)); The present invention provides a method for inhibiting or suppressing the interaction (preferably binding) between hSEMA7A and Plexin C1 and/or integrin β1, and also provides a method for inhibiting or suppressing the interaction (preferably binding) between hSEMA7A and Plexin C1 and/or integrin β1, and for treating, preventing and/or diagnosing tumors, etc., or between hSEMA7A and Plexin Also provided is the use of the anti-hSEMA7A antibody of the invention and/or the conjugate of the invention to inhibit or suppress interaction (preferably binding) with C1 and/or integrin β1.
5.腫瘍の診断用又は検出用キット等
 本発明の抗hSEMA7A抗体及び本発明の複合体は、腫瘍等の治療及び/又は予防用キット、あるいはhSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用(好ましくは結合)の阻害又は抑制用キットの形態のほか、腫瘍等の診断用又は検出用キットの形態で提供することもできる。診断又は検出対象となる腫瘍や炎症性疾患及び自己免疫疾患の具体例については、前述した説明を同様に適用できる。
5. The anti-hSEMA7A antibody of the present invention and the complex of the present invention can be used in kits for the treatment and/or prevention of tumors, etc., such as kits for diagnosis or detection of tumors, or for the interaction of hSEMA7A with Plexin C1 and/or integrin β1 (preferably). In addition to the form of a kit for inhibiting or suppressing the binding of the compound, it can also be provided in the form of a kit for diagnosing or detecting tumors, etc. The above explanation can be similarly applied to specific examples of tumors, inflammatory diseases, and autoimmune diseases to be diagnosed or detected.
 当該診断及び検出は、例えば、本発明の抗hSEMA7A抗体及び/又は本発明の複合体と、生体から採取された試料(以下、生体試料)とを反応させ、反応した抗体等のシグナルを検出することにより行うことができる。なお、hSEMA7Aは各種腫瘍細胞における発現が確認されているため、hSEMA7Aは、各種腫瘍マーカーとして利用することも可能である。
 検出された抗体等のシグナルは、生体試料中の抗原量(すなわちhSEMA7A量)の指標となる。本発明の抗体等を用いた腫瘍等の診断及び検出は、まず、検体として被験者から採取した生体試料、例えば検査対象とする組織片又は血液等と、本発明の抗体等とを、抗原抗体反応によって結合させる。次いで、結合した抗体量の測定結果に基づいて、生体試料中の目的とする抗原量を測定することにより行う。当該測定は、公知の免疫学的測定法に従って行えばよく、例えば、免疫沈降法、免疫凝集法、標識免疫測定法、免疫比懸濁法、ウエスタンブロット法、フローサイトメトリー法などを用いることができる。標識免疫測定法では、抗体のシグナルは、標識抗体を用いて直接検出した標識量で表すほか、既知濃度あるいは既知抗体価の抗体を標準液として相対的に表してもよい。すなわち、標準液と検体を測定計により測定し、標準液の値を基準にして生体試料中の抗体等のシグナルを相対的に表すことができる。標識免疫測定法としては、例えばELISA法、EI法、RIA法、蛍光免疫測定(FIA)法、化学発光免疫測定法(Luminescence immunoassay)等が挙げられる。なかでも特に、ELISA法が、簡便かつ高感度という点で好ましい。
The diagnosis and detection involves, for example, reacting the anti-hSEMA7A antibody of the present invention and/or the complex of the present invention with a sample collected from a living body (hereinafter referred to as biological sample), and detecting a signal of the reacted antibody, etc. This can be done by Note that since hSEMA7A has been confirmed to be expressed in various tumor cells, hSEMA7A can also be used as a marker for various tumors.
The detected signals of antibodies and the like serve as an indicator of the amount of antigen (ie, the amount of hSEMA7A) in the biological sample. Diagnosis and detection of tumors, etc. using the antibodies, etc. of the present invention involves first applying an antigen-antibody reaction between a biological sample collected from a subject as a specimen, such as a tissue piece or blood to be tested, and the antibodies, etc. of the present invention. Combine by. Next, the amount of the target antigen in the biological sample is measured based on the measurement result of the amount of bound antibody. The measurement may be performed according to a known immunoassay method, for example, immunoprecipitation method, immunoagglutination method, labeled immunoassay method, immunospecific suspension method, Western blotting method, flow cytometry method, etc. can. In labeled immunoassay, the antibody signal may be expressed by the amount of label directly detected using a labeled antibody, or may be expressed relatively using an antibody of known concentration or known antibody titer as a standard solution. That is, a standard solution and a specimen are measured using a measuring meter, and signals of antibodies, etc. in a biological sample can be expressed relatively based on the value of the standard solution. Examples of labeled immunoassay methods include ELISA method, EI method, RIA method, fluorescence immunoassay (FIA) method, and chemiluminescence immunoassay method. Among these, the ELISA method is particularly preferred because it is simple and highly sensitive.
 上記のようにして得られた検出結果を指標として腫瘍等の状態を評価又は診断することができる。例えば、検出結果が所定の基準値を超えるものを陽性、所定の基準値以下のものを陰性とし、陽性の場合には、いずれかの腫瘍等を発症している可能性があると判断し、腫瘍等の状態を評価することができる。ここで、腫瘍等の状態とは、腫瘍等の罹患の有無又はその進行度を意味し、腫瘍等の発症の有無、進行度、悪性度、再発の有無等が挙げられ、腫瘍については転移の有無等も挙げられる。 The condition of a tumor, etc. can be evaluated or diagnosed using the detection results obtained as described above as an index. For example, a detection result exceeding a predetermined standard value is considered positive, a detection result below a predetermined reference value is considered negative, and in the case of a positive result, it is determined that there is a possibility that one of the tumors has developed. The condition of tumors etc. can be evaluated. Here, the condition of a tumor, etc. refers to the presence or absence of a tumor, etc., or the degree of progression thereof, and includes the presence or absence of a tumor, etc. onset, degree of progression, malignancy, and presence or absence of recurrence. Examples include presence or absence.
 上記評価にあたり、腫瘍等の状態としては1つを選択してもよいし、複数個を組み合わせて選択してもよい。腫瘍等の有無の評価は、得られた検出結果に基づいて、所定の基準値を境界として腫瘍等に罹患しているか否かを判断することにより行うことができる。腫瘍等の悪性度は、腫瘍等の症状がどの程度進行しているのかを示す指標となるものである。腫瘍の場合は、検出結果に基づいて、病期(Stage)を分類して評価したり、あるいは早期癌や進行癌を分類して評価したりすることも可能である。例えば、検出結果を指標として早期癌又は進行癌であると評価することもできる。腫瘍の転移は、検出結果を指標として、原発巣の位置から離れた部位に新生物が出現しているか否かにより評価することができる。腫瘍等の再発は、間欠期又は寛解の後に検出結果が再び所定の基準値を超えたか否かにより評価することができる。 In the above evaluation, one state of the tumor, etc. may be selected, or a combination of multiple states may be selected. The presence or absence of a tumor or the like can be evaluated by determining whether or not the patient is suffering from a tumor or the like using a predetermined reference value as a boundary based on the obtained detection results. The malignancy of a tumor, etc. is an index indicating how far the symptoms of a tumor, etc. have progressed. In the case of tumors, it is also possible to classify and evaluate the disease stage, or to classify and evaluate early cancer or advanced cancer, based on the detection results. For example, it is possible to evaluate whether the cancer is early stage cancer or advanced cancer using the detection result as an indicator. Tumor metastasis can be evaluated by using the detection results as an indicator and determining whether a neoplasm has appeared in a site distant from the primary tumor. Recurrence of a tumor, etc. can be evaluated by determining whether the detection result exceeds a predetermined reference value again after an intermittent period or remission.
 本発明のキットは、本発明の抗hSEMA7A抗体や本発明の複合体を含むほか、標識物質、あるいは抗体又はその標識物を固定した固相化試薬などを含んでいてもよい。抗体の標識物質とは、酵素、放射性同位体、蛍光化合物及び化学発光化合物等によって標識されたものを意味する。本発明のキットは、上記の構成要素のほか、本発明の検出を実施するための他の試薬、例えば標識物が酵素標識物の場合は、酵素基質(発色性基質等)、酵素基質溶解液、酵素反応停止液、あるいは検体用希釈液等を含んでいてもよい。また、各種バッファー、滅菌水、各種細胞培養容器、各種反応容器(エッペンドルフチューブ等)、ブロッキング剤(Bovine Serum Albumin (BSA), Skim milk, Goat血清等の血清成分)、洗浄剤、界面活性剤、各種プレート、アジ化ナトリウム等の防腐剤、及び実験操作マニュアル(説明書)等を含んでいてもよい。 In addition to containing the anti-hSEMA7A antibody of the present invention or the complex of the present invention, the kit of the present invention may also contain a labeling substance, or a solid-phase reagent on which the antibody or its label is immobilized. Labeling substances for antibodies refer to those labeled with enzymes, radioactive isotopes, fluorescent compounds, chemiluminescent compounds, and the like. In addition to the above-mentioned components, the kit of the present invention includes other reagents for carrying out the detection of the present invention, such as an enzyme substrate (such as a chromogenic substrate) and an enzyme substrate solution when the labeled substance is an enzyme label. , an enzyme reaction stop solution, or a sample diluent. In addition, various buffers, sterile water, various cell culture vessels, various reaction vessels (Eppendorf tubes, etc.), blocking agents (serum components such as Bovine Serum Albumin (BSA), Skim milk, Goat serum, etc.), detergents, surfactants, It may also include various plates, preservatives such as sodium azide, and experimental operation manuals (instructions).
 以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described below in more detail with reference to Examples, but the present invention is not limited thereto.
1.組み換えヒトSEMA7A細胞外ドメインタンパクの発現と精製
 ヒトSEMA7A(hSEMA7A)タンパク質のアミノ酸配列(配列番号46)の第45番目から第643番目のアミノ酸に対し、C末側に6×Hisタグを挿入した配列を設計した。このように設計したアミノ酸配列を、哺乳類のコドン表を基に塩基配列に変換し、5’末端にKozak翻訳開始配列、3’側に翻訳終止コドンを挿入したDNA配列を遺伝子合成により合成した(GENEWIZ)。合成したDNAをpEF1/V5-His A(Thermo Fisher Scientific)の制限酵素KpnI認識配列とXbaI認識配列の間に挿入した発現ベクターを作製した。
1. Expression and purification of recombinant human SEMA7A extracellular domain protein Sequence with a 6×His tag inserted at the C-terminus of amino acids 45 to 643 of the amino acid sequence (SEQ ID NO: 46) of human SEMA7A (hSEMA7A) protein designed. The amino acid sequence designed in this way was converted into a base sequence based on the mammalian codon table, and a DNA sequence with a Kozak translation initiation sequence inserted at the 5' end and a translation stop codon at the 3' end was synthesized by gene synthesis ( GENEWIZ). An expression vector was created by inserting the synthesized DNA between the restriction enzyme KpnI recognition sequence and the XbaI recognition sequence of pEF1/V5-His A (Thermo Fisher Scientific).
 作製した発現ベクターのプラスミドを、ポリエチレンイミン法を用いてFreeStyle293細胞(Thermo Fisher Scientific)に一過性トランスフェクションした後、37℃、5% CO2インキュベータで5日間培養した。培養上清を回収し0.22μmフィルターで濾過したのち、HisTrap excel カラム(GE Healthcare)に結合させた。次に、20mMリン酸バッファー/300mM NaCl/pH 7.5バッファー中で20mMから500mMイミダゾールの濃度勾配によって溶出した。溶出画分は1mLごとに分取し、SDS-PAGE法で約75 kDaのバンドを認めたフラクションを回収した。回収されたタンパク質を、精製組み換えhSEMA7A細胞外ドメインタンパク質(以下、hSEMA7A-ECDと呼ぶ)として使用した。 The prepared expression vector plasmid was transiently transfected into FreeStyle 293 cells (Thermo Fisher Scientific) using the polyethyleneimine method, and then cultured at 37° C. in a 5% CO 2 incubator for 5 days. The culture supernatant was collected, filtered through a 0.22 μm filter, and then bound to a HisTrap excel column (GE Healthcare). It was then eluted with a concentration gradient from 20mM to 500mM imidazole in 20mM phosphate buffer/300mM NaCl/pH 7.5 buffer. The elution fraction was separated into 1 mL portions, and the fraction in which a band of approximately 75 kDa was observed by SDS-PAGE was collected. The recovered protein was used as purified recombinant hSEMA7A extracellular domain protein (hereinafter referred to as hSEMA7A-ECD).
2.ライブラリーの培養
 ニワトリB細胞由来細胞株であるDT40細胞を宿主とするヒトライブラリーの培養方法は以下の方法で行った。39.5℃、5 % CO2存在下で培養し、培地はIMDM(Life Technologies)を用い、10 % FBS(Biosera)、1 % Penicillin-Streptomycinを加えて使用した。以下、特に断りが無い限り、CS(-)培地とは前記のものを指す。CS/FK506含有培地とは、CS(-)培地に5 %トリ血清(Life Technologies)と1μM FK506(Cayman)を添加したものを指す。
2. Culture of the library The human library was cultured using DT40 cells, a cell line derived from chicken B cells, as a host according to the following method. The cells were cultured at 39.5° C. in the presence of 5% CO 2 , and the medium used was IMDM (Life Technologies) with the addition of 10% FBS (Biosera) and 1% Penicillin-Streptomycin. Hereinafter, unless otherwise specified, CS(-) medium refers to the medium described above. CS/FK506-containing medium refers to CS(-) medium to which 5% avian serum (Life Technologies) and 1 μM FK506 (Cayman) are added.
3.ADLibシステムによるモノクローナル抗体のセレクション
 ライブラリーは、WO 2015/167011に記載のヒトライブラリーおよびKappaヒトライブラリー(Human bioKI Lib mix)を混合したものを使用した。CS/FK506含有培地で懸濁したライブラリーに終濃度30 nMとなるようビオチン化hSEMA7A-ECD抗原を添加し、4℃で30分間転倒混和しながら反応させた。反応終了後はCS/FK506含有培地で2回洗浄し、CS/FK506含有培地で再懸濁した。1/50量のAnti-Biotin MicroBeads UltraPure(Miltenyi Biotec)と1/2000量のGoat Anti-Human IgG-PE(SouthernBiotech)を添加し、4℃で30分間転倒混和しながら反応させた。反応終了後、1/1000量のStreptavidin Alexa Fluor 647 Conjugate(Life Technologies)を添加し、4℃で10分間転倒混和しながら反応させた。反応終了後、autoMACS Pro Separator (Miltenyi Biotec)でカラム濃縮を行い、カラムに吸着されなかったフラクション(ネガティブフラクション)をFACS Aria Fusion(Becton Dickinson)で測定してソート範囲の設定を行った。その後ポジティブフラクションサンプルを全量ロードし、それぞれの培地を分注した96 well plateに陽性細胞集団を1細胞/wellになるようソーティングを実施した。
3. The monoclonal antibody selection library by the ADLib system was a mixture of the human library described in WO 2015/167011 and the Kappa human library (Human bioKI Lib mix). Biotinylated hSEMA7A-ECD antigen was added to the library suspended in CS/FK506-containing medium to a final concentration of 30 nM, and the mixture was allowed to react at 4°C for 30 minutes while being mixed by inversion. After the reaction was completed, the cells were washed twice with CS/FK506-containing medium and resuspended in CS/FK506-containing medium. 1/50 amount of Anti-Biotin MicroBeads UltraPure (Miltenyi Biotec) and 1/2000 amount of Goat Anti-Human IgG-PE (SouthernBiotech) were added, and the mixture was allowed to react while being mixed by inversion at 4°C for 30 minutes. After the reaction was completed, 1/1000 amount of Streptavidin Alexa Fluor 647 Conjugate (Life Technologies) was added, and the mixture was allowed to react at 4°C for 10 minutes while being mixed by inversion. After the reaction was completed, the column was concentrated using an autoMACS Pro Separator (Miltenyi Biotec), and the fraction that was not adsorbed to the column (negative fraction) was measured using a FACS Aria Fusion (Becton Dickinson) to set the sorting range. Thereafter, the entire positive fraction sample was loaded, and the positive cell population was sorted at 1 cell/well in a 96-well plate into which each medium was dispensed.
4.抗原固相ELISAによるスクリーニング
 D-PBS(-)(ナカライテスク)で2.5μg/mLに希釈したhSEMA7A-ECD抗原溶液および陰性対照抗原(hHER2-His)溶液20μLをMAXISORP 384 IMMUNO PLATE(NUNC)に分注し、4℃で一晩反応させて固相化した。マイクロプレート専用小型遠心機(GYRO mini GM-01、MICRONIX)で遠心して溶液を除き、ブロッキング溶液(1 % BSA(SIGMA)を含むPBS)45μLを加えて室温で1時間反応させた。GYRO miniで遠心して溶液を除き、培養上清25μLを加えて室温で1時間反応させた。GYRO miniで遠心して溶液を除き、ブロッキング溶液で2000倍に希釈したGoat anti-Human IgG-Fc HRP-conjugated(BETHYL)を25μL加え、室温で30分間反応させた。洗浄溶液(0.05 % Tween20(Wako)を含むPBS)で5回洗浄し、TMB(ナカライテスク)を25μL加えて10分間反応させた。1 N硫酸(Wako)25μLを加えて反応を停止させ、マイクロプレートリーダー(TECAN)を用いて450 nmの吸光度を測定した。
4. Screening by antigen solid-phase ELISA D-PBS(-) (Nacalai Tesque) diluted hSEMA7A-ECD antigen solution to 2.5 μg/mL and negative control antigen (hHER2-His) solution 20 μL were divided into MAXISORP 384 IMMUNO PLATE (NUNC). The mixture was poured into a solid phase by reacting at 4°C overnight. The solution was removed by centrifugation using a small centrifuge dedicated to microplates (GYRO mini GM-01, MICRONIX), and 45 μL of blocking solution (PBS containing 1% BSA (SIGMA)) was added and reacted at room temperature for 1 hour. The solution was removed by centrifugation using GYRO mini, 25 μL of culture supernatant was added, and the mixture was allowed to react at room temperature for 1 hour. The solution was removed by centrifugation with GYRO mini, 25 μL of Goat anti-Human IgG-Fc HRP-conjugated (BETHYL) diluted 2000 times with blocking solution was added, and the mixture was allowed to react at room temperature for 30 minutes. It was washed five times with a washing solution (PBS containing 0.05% Tween20 (Wako)), and 25 μL of TMB (Nacalai Tesque) was added and reacted for 10 minutes. The reaction was stopped by adding 25 μL of 1 N sulfuric acid (Wako), and the absorbance at 450 nm was measured using a microplate reader (TECAN).
5.抗体配列解析
 前記4項で述べた、hSEMA7A-ECDに特異的に反応する抗体を産生するDT40細胞について、その免疫グロブリン遺伝子可変領域の配列の解析を以下の通り実施した。
 DT40細胞を拡大培養し、Wizard SV Genomic DNA Purification System(Promega)を使用してゲノムDNAの抽出を行った。抽出したDNAより、PCR法により抗体遺伝子を増幅した。重鎖、軽鎖ともに可変領域上流、および定常領域下流を認識するプライマーを使用し増幅した。使用した各プライマー及びその配列は以下の通りである。
5. Antibody Sequence Analysis Regarding the DT40 cells that produce antibodies that specifically react with hSEMA7A-ECD, as described in Section 4 above, the sequence of the immunoglobulin gene variable region was analyzed as follows.
DT40 cells were expanded and cultured, and genomic DNA was extracted using the Wizard SV Genomic DNA Purification System (Promega). Antibody genes were amplified from the extracted DNA by PCR. Both the heavy chain and light chain were amplified using primers that recognize the upstream of the variable region and the downstream of the constant region. Each primer used and its sequence are as follows.
重鎖5’増幅用:SEQ3777F(AAGCAATTAAGTCGAGGCTGACGA(配列番号47))
重鎖3’増幅用:CH2a_620R(CCGCAAATGATGGACCGACC(配列番号48))
κ/λ軽鎖5’増幅用:Primer05(CCCACACCTCAGGTACTCGT(配列番号49))
κ/λ軽鎖3’増幅用:VL7 SEQ R7(CGCCAAGTCCAAGAAAAACCCCCA(配列番号50))
For heavy chain 5' amplification: SEQ3777F (AAGCAATTAAGTCGAGGCTGACGA (SEQ ID NO: 47))
For heavy chain 3' amplification: CH2a_620R (CCGCAAATGATGGACCGACC (SEQ ID NO: 48))
For κ/λ light chain 5' amplification: Primer05 (CCCACACCTCAGGTACTCGT (SEQ ID NO: 49))
For κ/λ light chain 3' amplification: VL7 SEQ R7 (CGCCAAGTCCAAGAAAACCCCCA (SEQ ID NO: 50))
 得られたDNA断片をCH2a 620R、VL7 SEQ R7で増幅し、DNA配列解析を行った。
結果として得られた抗体配列について、Kabatらの方法 (Sequences of Proteins of Immunological Interests, Fifth edition, NIH Publication No. 91-3242, U.S. Department of Health and Human Services, 1991) に従ってCDR領域を決定した。解析されたクローン抗体(抗体名:pre-AM)の重鎖可変領域(VH)及び軽鎖可変領域(VL)のアミノ酸配列並びにそれらの各CDR領域のアミノ酸配列を、以下の表1に各配列番号で示す。
The obtained DNA fragment was amplified using CH2a 620R and VL7 SEQ R7, and DNA sequence analysis was performed.
For the resulting antibody sequences, CDR regions were determined according to the method of Kabat et al. (Sequences of Proteins of Immunological Interests, Fifth edition, NIH Publication No. 91-3242, US Department of Health and Human Services, 1991). The amino acid sequences of the heavy chain variable region (VH) and light chain variable region (VL) of the analyzed cloned antibody (antibody name: pre-AM) and the amino acid sequences of their respective CDR regions are shown in Table 1 below. Indicate by number.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
6.Affinity maturation (AM)による親和性向上
 hSEMA7A-ECDに特異的に反応する抗体を産生するDT40細胞を39.5℃、5 % CO2存在下で培養し、培地はIMDM(Life Technologies)を用い、10 % FBS(Biosera)、1 % Penicillin-Streptomycin、10μM A66(SIGMA)を加えて使用した。2~3週間培養したのちに、CS/FK506含有培地で懸濁したDT40細胞に終濃度10 nMとなるようビオチン化hHER2-His抗原を添加し、4℃で30分間転倒混和しながら反応させた。反応終了後はCS/FK506含有培地で2回洗浄し、CS/FK506含有培地で再懸濁した。次に1/500量のStreptavidin Alexa Fluor 488 Conjugate(Life Technologies)を添加し、4℃で30分間転倒混和しながら反応させた。反応終了後はCS/FK506含有培地で2回洗浄し、CS/FK506含有培地で再懸濁した。次に終濃度1~10 nMとなるようにhSEMA7A-EDC Alexa Fluor 647 Conjugateと1/2000量のGoat Anti-Human IgG-PE(SouthernBiotech)を添加し、4℃で30分間転倒混和しながら反応させた。反応終了後はCS/FK506含有培地で2回洗浄し、CS/FK506含有培地で再懸濁した。懸濁液をFACS Aria Fusion(Becton Dickinson)で測定して親和性が向上した上位約0.1%の集団を含むようにソート範囲の設定を行った。その後、CS/FK506含有培地を分注した96 well plateに陽性細胞集団を1細胞/wellになるようソーティングを実施した。
6. Improving affinity by affinity maturation (AM) DT40 cells that produce antibodies that specifically react with hSEMA7A-ECD were cultured at 39.5°C in the presence of 5% CO2 , and the medium was IMDM (Life Technologies) with 10% FBS (Biosera), 1% Penicillin-Streptomycin, and 10 μM A66 (SIGMA) were added and used. After culturing for 2 to 3 weeks, biotinylated hHER2-His antigen was added to the DT40 cells suspended in CS/FK506-containing medium to a final concentration of 10 nM, and the cells were reacted with inversion for 30 minutes at 4°C. . After the reaction was completed, the cells were washed twice with CS/FK506-containing medium and resuspended in CS/FK506-containing medium. Next, 1/500 amount of Streptavidin Alexa Fluor 488 Conjugate (Life Technologies) was added, and the mixture was allowed to react at 4°C for 30 minutes while being mixed by inversion. After the reaction was completed, the cells were washed twice with CS/FK506-containing medium and resuspended in CS/FK506-containing medium. Next, add hSEMA7A-EDC Alexa Fluor 647 Conjugate and 1/2000 amount of Goat Anti-Human IgG-PE (SouthernBiotech) to a final concentration of 1 to 10 nM, and react with inversion for 30 minutes at 4°C. Ta. After the reaction was completed, the cells were washed twice with CS/FK506-containing medium and resuspended in CS/FK506-containing medium. The suspension was measured using FACS Aria Fusion (Becton Dickinson), and the sorting range was set to include the top approximately 0.1% of the population with improved affinity. Thereafter, the positive cell population was sorted to 1 cell/well in a 96-well plate into which the CS/FK506-containing medium was dispensed.
前記6項(Affinity maturation (AM)による親和性向上)でソーティングした親和性が向上したと考えられるDT40細胞について、フローサイトメトリーによるスクリーニングを行った。
 ソーティングしたシングルクローンが十分に生育したのちに、CS(-)培地で懸濁したDT40細胞に終濃度10 nMとなるようビオチン化hHER2-His抗原を添加し、4℃で30分間転倒混和しながら反応させた。反応終了後はCS(-)培地で2回洗浄し、CS(-)培地で再懸濁した。次に1/500量のStreptavidin Alexa Fluor 488 Conjugate(Life Technologies)を添加し、4℃で30分間転倒混和しながら反応させた。反応終了後はCS(-)培地で2回洗浄し、CS(-)培地で再懸濁した。次に終濃度1~10 nMとなるようにhSEMA7A-EDC Alexa Fluor 647 Conjugateと1/2000量のGoat Anti-Human IgG-PE(SouthernBiotech)を添加し、4℃で30分間転倒混和しながら反応させた。反応終了後はCS(-)培地で2回洗浄し、CS(-)培地で再懸濁した。懸濁液をFACS CantoII(Becton Dickinson)で測定してオリジナルクローンよりもhSEMA7A-EDCによる染色度が向上したクローンのスクリーニングを行った。
DT40 cells, which were sorted in Section 6 (Improvement of affinity by Affinity maturation (AM)) and were considered to have improved affinity, were screened by flow cytometry.
After the sorted single clones have grown sufficiently, biotinylated hHER2-His antigen was added to the DT40 cells suspended in CS(-) medium to a final concentration of 10 nM, and the mixture was incubated at 4°C for 30 minutes by inversion. Made it react. After the reaction was completed, the cells were washed twice with CS(-) medium and resuspended in CS(-) medium. Next, 1/500 amount of Streptavidin Alexa Fluor 488 Conjugate (Life Technologies) was added, and the mixture was allowed to react at 4°C for 30 minutes while being mixed by inversion. After the reaction was completed, the cells were washed twice with CS(-) medium and resuspended in CS(-) medium. Next, add hSEMA7A-EDC Alexa Fluor 647 Conjugate and 1/2000 amount of Goat Anti-Human IgG-PE (SouthernBiotech) to a final concentration of 1 to 10 nM, and react with inversion for 30 minutes at 4°C. Ta. After the reaction was completed, the cells were washed twice with CS(-) medium and resuspended in CS(-) medium. The suspension was measured using FACS CantoII (Becton Dickinson) to screen for clones with improved staining intensity with hSEMA7A-EDC than the original clone.
 スクリーニング後、親和性が向上したクローンについては前項で述べた抗体配列解析を行い、抗体配列における変異導入個所を同定した(図1A、図1B、図1C)。得られたクローン抗体(抗体名:HC1~HC8)のVH及びVLのアミノ酸配列並びにそれらの各CDR領域のアミノ酸配列を、前記表1に各配列番号で示す。 After screening, clones with improved affinity were subjected to antibody sequence analysis as described in the previous section, and the site of mutation in the antibody sequence was identified (Figure 1A, Figure 1B, Figure 1C). The amino acid sequences of VH and VL of the obtained cloned antibodies (antibody names: HC1 to HC8) and the amino acid sequences of their respective CDR regions are shown in Table 1 above by each sequence number.
7.抗体の親和性測定
 各配列グループの代表クローンについて、培養上清を調製し、SPR法(Biacore T200、GE Healthcare)を用いて、抗原との親和性を測定した。Human Antibody Capture Kit(GE Healthcare)を用いてCM5チップ(GE Healthcare)にanti-human IgG Fc抗体を固定した後、培養上清中の抗体をキャプチャーした。4~100 nM hSEMA7A-EDCを240秒反応させ、その後300秒解離させた。再生溶液として3 M MgCl2を30秒間反応させて、1サイクルを完了させた。バッファーはHBS-EP+(10 mM HEPES、150 mM NaCl、3 mM EDTA、0.05 % (v/v) surfactant P20(pH 7.4)(GE Healthcare))を使用し、流速は30μL/minで測定した。
7. Antibody Affinity Measurement Culture supernatants were prepared for representative clones of each sequence group, and affinity with the antigen was measured using the SPR method (Biacore T200, GE Healthcare). After anti-human IgG Fc antibodies were immobilized on a CM5 chip (GE Healthcare) using a Human Antibody Capture Kit (GE Healthcare), the antibodies in the culture supernatant were captured. 4-100 nM hSEMA7A-EDC was reacted for 240 seconds and then dissociated for 300 seconds. One cycle was completed by reacting 3 M MgCl2 as a regeneration solution for 30 seconds. The buffer used was HBS-EP+ (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% (v/v) surfactant P20 (pH 7.4) (GE Healthcare)), and the flow rate was measured at 30 μL/min.
 各SPRセンサーグラムに対しLangmuir 1:1 binding modelによるフィッティングを行い、結合速度定数kon, 解離速度定数koffを算出し、KD=koff/kon の式よりKD値を決定した。抗SEMA7A抗体(HC1~HC8)のKD値は図5に示した。 Fitting was performed using the Langmuir 1:1 binding model for each SPR sensorgram, the binding rate constant kon and dissociation rate constant koff were calculated, and the KD value was determined using the formula KD=koff/kon. The KD values of anti-SEMA7A antibodies (HC1 to HC8) are shown in Figure 5.
8.初代培養ヒトHSCにおけるADCC活性
 まず正常な状態である静止型HSCと、病態に関わるとされる活性型HSCにおける細胞表面上のSEMA7Aの発現量を比較した。活性型HSCは静止型HSCを1 ng/mL hTGF-β1(R&D)で一晩処理することで得た。次に終濃度が1μg/mLとなるようにアイソタイプコントロール抗体と抗SEMA7A抗体(HC2)を4℃で30分間反応させ、反応終了後はCS(-)培地で2回洗浄した。続いて1/2000量のGoat Anti-Human IgG-PE(SouthernBiotech)を添加し、4℃で30分間転倒混和しながら反応させた。反応終了後はCS(-)培地で2回洗浄し、CS(-)培地で再懸濁した。懸濁液をFACS CantoII(Becton Dickinson)で測定してSEMA7A発現量を比較した。その結果、静止型HSCではほとんどSEMA7Aは発現していなかった一方で、活性型HSCではSEMA7Aの強力な発現誘導が確認された(図2)。
8. ADCC activity in primary cultured human HSCs First, we compared the expression level of SEMA7A on the cell surface of normal, resting HSCs and active HSCs, which are thought to be involved in pathological conditions. Activated HSCs were obtained by treating quiescent HSCs with 1 ng/mL hTGF-β1 (R&D) overnight. Next, the isotype control antibody and anti-SEMA7A antibody (HC2) were reacted at 4°C for 30 minutes at a final concentration of 1 μg/mL, and after the reaction was completed, the cells were washed twice with CS(-) medium. Subsequently, 1/2000 amount of Goat Anti-Human IgG-PE (SouthernBiotech) was added, and the mixture was allowed to react at 4°C for 30 minutes while being mixed by inversion. After the reaction was completed, the cells were washed twice with CS(-) medium and resuspended in CS(-) medium. The suspension was measured using FACS CantoII (Becton Dickinson) and the SEMA7A expression levels were compared. As a result, while SEMA7A was hardly expressed in resting HSCs, strong induction of SEMA7A expression was confirmed in active HSCs (Figure 2).
 ADCCアッセイはADCC Reporter Bioassay, Complete Kit(Promega)のプロトコルに従って実施した。まず前述のように静止型HSCと活性型HSCをCellBIND 384ウェルプレート(CORNING)に6×103cells/wellで播種し、抗SEMA7A抗体(HC1~HC8)の希釈系列を終濃度4~1000 ng/mLとなるように添加した。次にADCC Bioassay Effector Cellを1.2×104cells/wellで添加し、37℃で6時間反応させた。反応終了後はBio-GloTM Luciferase Assay Bufferを添加し、遮光しながら室温で15分間反応させた。反応液はEnspireAlphaプレートリーダー(ParkinElmer)で発光を測定し、抗SEMA7A抗体のADCC活性を評価した。その結果、静止型HSCではADCC活性は認められず、活性型HSCに対してはいずれの抗SEMA7A抗体(HC1~HC8)も有意なADCC活性が認められた(図3)。また、活性型HSCに対する抗SEMA7A抗体のADCC活性の強さは、抗体のバリアントごとに異なっており、活性の強い方から順に、HC6>HC2>HC1≒HC3≒HC4≒HC5>HC7≒HC8であった。 The ADCC assay was performed according to the protocol of the ADCC Reporter Bioassay, Complete Kit (Promega). First, as described above, quiescent HSCs and activated HSCs were seeded at 6 × 10 3 cells/well in CellBIND 384-well plate (CORNING), and a dilution series of anti-SEMA7A antibody (HC1 to HC8) was diluted to a final concentration of 4 to 1000 ng. /mL. Next, ADCC Bioassay Effector Cell was added at 1.2×10 4 cells/well and reacted at 37° C. for 6 hours. After the reaction was completed, Bio-Glo Luciferase Assay Buffer was added, and the reaction was allowed to proceed at room temperature for 15 minutes while shielding from light. Luminescence of the reaction solution was measured using an EnspireAlpha plate reader (ParkinElmer) to evaluate the ADCC activity of the anti-SEMA7A antibody. As a result, no ADCC activity was observed in resting HSCs, and significant ADCC activity was observed in all anti-SEMA7A antibodies (HC1 to HC8) against active HSCs (Figure 3). In addition, the strength of the ADCC activity of anti-SEMA7A antibodies against activated HSCs differs depending on the antibody variant, and in descending order of activity, HC6 > HC2 > HC1 ≒ HC3 ≒ HC4 ≒ HC5 > HC7 ≒ HC8. Ta.
9.セカンドイムノトキシンを用いた抗SEMA7A抗体の細胞障害活性
 抗SEMA7A抗体(HC1~HC8)では強いインターナリゼーション活性が認められた(図7)。次に、抗SEMA7A抗体の抗体薬物複合体(ADC)としての可能性を評価した。まず480 nM IgGs Anti-Mouse IgG Fc-PBD Antibody with Cleavable Linker(Moradec)と160 nM抗SEMA7A抗体およびアイソタイプコントロール抗体を等量ずつ混合し、室温で1時間インキュベーションした(なお、PBDはピロロベンゾジアゼピンである。)。ADC化した抗体の2倍希釈を9回繰り返し、希釈系列を調製した。次にCellBIND 384ウェルプレート(CORNING)に500 cells/wellでMDA-MB-231細胞(ATCC)を播種し、ADC化抗体希釈系列を添加した。その後、37℃、0% CO2存在下で培養し、7日後にCellTiter-Glo Luminescent Cell Viability Assay(Promega)を添加して生細胞数をEnspireAlphaプレートリーダー(ParkinElmer)で測定した。その結果、抗SEMA7A抗体特異的な細胞障害活性が認められた(図4)。
9. Cytotoxic activity of anti-SEMA7A antibodies using second immunotoxin Strong internalization activity was observed with anti-SEMA7A antibodies (HC1 to HC8) (Figure 7). Next, we evaluated the potential of anti-SEMA7A antibody as an antibody-drug conjugate (ADC). First, equal volumes of 480 nM IgGs Anti-Mouse IgG Fc-PBD Antibody with Cleavable Linker (Moradec), 160 nM anti-SEMA7A antibody, and isotype control antibody were mixed and incubated at room temperature for 1 hour (PBD is pyrrolobenzodiazepine). ). A dilution series was prepared by repeating 2-fold dilution of the ADC antibody nine times. Next, MDA-MB-231 cells (ATCC) were seeded at 500 cells/well in a CellBIND 384-well plate (CORNING), and an ADC antibody dilution series was added. Thereafter, the cells were cultured at 37° C. in the presence of 0% CO 2 , and after 7 days, CellTiter-Glo Luminescent Cell Viability Assay (Promega) was added and the number of living cells was measured using an EnspireAlpha plate reader (ParkinElmer). As a result, anti-SEMA7A antibody-specific cytotoxic activity was observed (Figure 4).
10.本発明の新規抗SEMA7A抗体と市販抗体との結合親和性の比較
 比較に用いた市販の抗SEMA7Aマウスモノクローナル抗体のクローン名と入手先は下記の表2の通りである。
10. The clone names and sources of commercially available anti-SEMA7A mouse monoclonal antibodies used for comparison of binding affinity between the novel anti-SEMA7A antibody of the present invention and commercially available antibodies are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 市販の各抗SEMA7Aマウスモノクローナル抗体について、SPR法(Biacore T200、GE Healthcare)を用いて、抗原との親和性を測定した。Mouse Antibody Capture Kit(GE Healthcare)を用いてCM5チップ(GE Healthcare)にanti-mouse IgG Fc抗体を固定した後、培養上清中の抗体をキャプチャーした。4~100 nM hSEMA7A-EDCを240秒反応させ、その後300秒解離させた。再生溶液として10 mM Gly-HCl(pH 1.7)を30秒間反応させて、1サイクルを完了させた。バッファーはHBS-EP+(10 mM HEPES、150 mM NaCl、3 mM EDTA、0.05 % (v/v) surfactant P20(pH 7.4)(GE Healthcare))を使用し、流速は30μL/minで測定した。 For each commercially available anti-SEMA7A mouse monoclonal antibody, affinity with the antigen was measured using the SPR method (Biacore T200, GE Healthcare). After immobilizing anti-mouse IgG Fc antibodies on a CM5 chip (GE Healthcare) using a Mouse Antibody Capture Kit (GE Healthcare), the antibodies in the culture supernatant were captured. 4-100 nM hSEMA7A-EDC was reacted for 240 seconds and then dissociated for 300 seconds. One cycle was completed by reacting 10 mM Gly-HCl (pH 1.7) as a regeneration solution for 30 seconds. The buffer used was HBS-EP+ (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% (v/v) surfactant P20 (pH 7.4) (GE Healthcare)), and the flow rate was measured at 30 μL/min.
 各SPRセンサーグラムに対しLangmuir 1:1 binding modelによるフィッティングを行い、結合速度定数kon、解離速度定数koffを算出し、KD=koff/kon の式よりKD値を決定した。結果は図5に示す通り、3A5G1以外の親和性は検出できないほど弱かった。また、抗SEMA7A抗体(HC1~HC8)の親和性は、測定できた3A5G1の約100倍以上強かった。 Each SPR sensorgram was fitted using the Langmuir 1:1 binding model, the binding rate constant kon and the dissociation rate constant koff were calculated, and the KD value was determined using the formula KD=koff/kon. As shown in Figure 5, the affinities other than 3A5G1 were so weak that they could not be detected. Furthermore, the affinity of anti-SEMA7A antibodies (HC1 to HC8) was approximately 100 times stronger than that of 3A5G1 that could be measured.
11.抗SEMA7A抗体におけるPlexin C1-SEMA7A結合阻害活性の比較
 D-PBS(-)(ナカライテスク)で1.25μg/mLに希釈したhPlexin C1溶液(R&D)25μLをMAXISORP 384 IMMUNO PLATE(NUNC)に分注し、4℃で一晩反応させて固相化した。マイクロプレート専用小型遠心機(GYRO mini GM-01、MICRONIX)で遠心して溶液を除き、ブロッキング溶液(1 % BSA(SIGMA)を含むPBS)45μLを加えて室温で1時間反応させた。GYRO miniで遠心して溶液を除き、抗SEMA7A抗体およびアイソタイプコントロール抗体の希釈系列25μLと10 nMビオチン化hSEMA7A-Fc(R&D)25μLを同時に加えて室温で1時間反応させた。GYRO miniで遠心して溶液を除き、ブロッキング溶液で5000倍に希釈したHigh Sensitivity Streptavidin-HRP(Thermo Fisher Scientific)を25μL加え、室温で30分間反応させた。洗浄溶液(0.05 % Tween20(Wako)を含むPBS)で5回洗浄し、TMB(ナカライテスク)を25μL加えて10分間反応させた。1 N硫酸(Wako)25μLを加えて反応を停止させ、マイクロプレートリーダー(TECAN)を用いて450 nmの吸光度を測定した結果を図6に示した。市販の抗SEMA7A抗体の中では3A5G1が唯一Plexin C1-SEMA7A結合阻害活性を示したが、その活性は弱く、IC50を算出できないほどであった。一方で、本発明の新規抗SEMA7A抗体(特に、HC1、HC2、HC4、HC6、HC8)はPlexin C1-SEMA7A結合阻害を実質100%阻害できる活性を有しており、市販抗体と比較して圧倒的に強い阻害活性であった。
11. Comparison of Plexin C1-SEMA7A binding inhibitory activity in anti-SEMA7A antibodies Dispense 25 μL of hPlexin C1 solution (R&D) diluted to 1.25 μg/mL with D-PBS(-) (Nacalai Tesque) to MAXISORP 384 IMMUNO PLATE (NUNC). , and solidified by reacting overnight at 4°C. The solution was removed by centrifugation using a small centrifuge dedicated to microplates (GYRO mini GM-01, MICRONIX), and 45 μL of blocking solution (PBS containing 1% BSA (SIGMA)) was added and reacted at room temperature for 1 hour. The solution was removed by centrifugation using GYRO mini, and 25 μL of dilution series of anti-SEMA7A antibody and isotype control antibody and 25 μL of 10 nM biotinylated hSEMA7A-Fc (R&D) were simultaneously added and reacted for 1 hour at room temperature. The solution was removed by centrifugation using GYRO mini, 25 μL of High Sensitivity Streptavidin-HRP (Thermo Fisher Scientific) diluted 5000 times with blocking solution was added, and the mixture was allowed to react at room temperature for 30 minutes. It was washed five times with a washing solution (PBS containing 0.05% Tween20 (Wako)), and 25 μL of TMB (Nacalai Tesque) was added and reacted for 10 minutes. The reaction was stopped by adding 25 μL of 1 N sulfuric acid (Wako), and the absorbance at 450 nm was measured using a microplate reader (TECAN). The results are shown in Figure 6. Among commercially available anti-SEMA7A antibodies, 3A5G1 was the only one that showed Plexin C1-SEMA7A binding inhibitory activity, but the activity was so weak that IC 50 could not be calculated. On the other hand, the novel anti-SEMA7A antibodies of the present invention (particularly HC1, HC2, HC4, HC6, and HC8) have an activity that can virtually 100% inhibit Plexin C1-SEMA7A binding, which is overwhelmingly superior to commercially available antibodies. It had a strong inhibitory activity.
12.全長hSEMA7A安定発現Ba/F3細胞の構築
 UniProt番号O75326の第1番目から第666番目のアミノ酸配列(配列番号46)に対し、第640番目のC末端側にc-Mycタグを挿入した配列を設計した。このアミノ酸配列を、哺乳類のコドン表を基に塩基配列に変換し、この配列を含み5’末端にKozak配列および3’末端の翻訳終止コドンを挿入したDNA配列を遺伝子合成により合成した(GENEWIZ)。合成したDNAはpCDNA3.1+(Thermo Fisher Scientific)のKpnI/XhoI認識配列の間に挿入し、発現ベクターとした。
12. Construction of Ba/F3 cells stably expressing full-length hSEMA7A A sequence was designed in which a c-Myc tag was inserted at the C-terminal side of position 640 for the amino acid sequence from positions 1 to 666 of UniProt number O75326 (SEQ ID NO: 46). did. This amino acid sequence was converted into a nucleotide sequence based on the mammalian codon table, and a DNA sequence containing this sequence with a Kozak sequence at the 5' end and a translation stop codon at the 3' end was synthesized by gene synthesis (GENEWIZ). . The synthesized DNA was inserted between the KpnI/XhoI recognition sequences of pCDNA3.1+ (Thermo Fisher Scientific) to create an expression vector.
 プラスミドを制限酵素PvuIによって線状化し、2×106個のマウスB細胞由来細胞株Ba/F3細胞に対して2μgをAmaxa Cell Line Nucleofector Kit V(Lonza)により導入した。遺伝子導入後、細胞を96 wellプレートに播種して最終濃度1μg/mLのG418(ナカライテスク)を添加した。6日後、G418耐性的な増殖のみられたコロニーをウェルから回収し、抗c-Myc抗体(Santa Cruz Biotechnology)を用いたフローサイトメトリーによってhSEMA7Aの発現を確認し、確認できたコロニー由来の細胞の限界希釈を行った。増殖した細胞を回収し、抗hSEMA7A抗体(Abnova)を用いたフローサイトメトリーによりhSEMA7Aの発現を確認し、最終的に単クローン由来の細胞株を選択した。この細胞をBa/F3-hSEMA7A細胞株として、以下の実験に用いた。 The plasmid was linearized with the restriction enzyme PvuI, and 2 μg was introduced into 2×10 6 mouse B cell-derived cell line Ba/F3 cells using Amaxa Cell Line Nucleofector Kit V (Lonza). After gene introduction, cells were seeded in a 96-well plate, and G418 (Nacalai Tesque) was added at a final concentration of 1 μg/mL. After 6 days, colonies with G418-resistant growth were collected from the wells, and the expression of hSEMA7A was confirmed by flow cytometry using anti-c-Myc antibody (Santa Cruz Biotechnology). Limit dilution was performed. Proliferated cells were collected, hSEMA7A expression was confirmed by flow cytometry using an anti-hSEMA7A antibody (Abnova), and a monoclonal cell line was finally selected. These cells were used as the Ba/F3-hSEMA7A cell line in the following experiments.
13.抗SEMA7A抗体におけるインターナリゼーション活性の比
 まず480 nM AcidiFluor ORANGE標識anti-human/mouse IgG Fc Fab抗体と160 nM抗SEMA7A抗体およびアイソタイプコントロール抗体を等量ずつ混合し、室温で10分間インキュベーションした。こうして調製した抗体複合体とBa/F3-hSEMA7A細胞を37℃、1時間反応させた。反応終了後、懸濁液をFACS CantoII(Becton Dickinson)で測定して各抗体のインターナリゼーション活性を比較した。その結果、本発明の新規抗SEMA7A抗体(HC1~HC8)はすべてで強いインターナリゼーション活性を示したが、市販の抗SEMA7A抗体は全くインターナリゼーション活性を示さなかった(図7)。
13. Comparison of internalization activity in anti-SEMA7A antibodies First, equal amounts of 480 nM AcidiFluor ORANGE-labeled anti-human/mouse IgG Fc Fab antibody, 160 nM anti-SEMA7A antibody, and isotype control antibody were mixed and incubated at room temperature for 10 minutes. The antibody complex thus prepared and Ba/F3-hSEMA7A cells were reacted at 37°C for 1 hour. After the reaction was completed, the suspension was measured using FACS CantoII (Becton Dickinson) to compare the internalization activities of each antibody. As a result, all of the novel anti-SEMA7A antibodies (HC1 to HC8) of the present invention showed strong internalization activity, while commercially available anti-SEMA7A antibodies showed no internalization activity at all (FIG. 7).
14.抗SEMA7A抗体における抗原特異性の比較
 副作用の観点から、抗体の抗原特異性を担保することは非常に重要である。そのため、hSEMA7A のsemaドメインと相同性の高いhSEMA4F、hSEMA5A、hSEMA6Cを用いて、本発明の新規抗SEMA7A抗体および市販の抗SEMA7A抗体の抗原特異性を比較した。
14. Comparison of antigen specificity in anti-SEMA7A antibodies From the viewpoint of side effects, it is very important to ensure the antigen specificity of antibodies. Therefore, the antigen specificities of the novel anti-SEMA7A antibody of the present invention and a commercially available anti-SEMA7A antibody were compared using hSEMA4F, hSEMA5A, and hSEMA6C, which are highly homologous to the sema domain of hSEMA7A.
 まずD-PBS(-)(ナカライテスク)で2.5μg/mLに希釈したhSEMA7A-ECD、hSEMA4F-GST(Abnova)、hSEMA5A-His(SINO BIO)、hSEMA6C-GST(Abnova)および陰性対照抗原(hHER2-His、GST)溶液20μLをMAXISORP 384 IMMUNO PLATE(NUNC)に分注し、4℃で一晩反応させて固相化した。マイクロプレート専用小型遠心機(GYRO mini GM-01、MICRONIX)で遠心して溶液を除き、ブロッキング溶液(1 % BSA(SIGMA)を含むPBS)45μLを加えて室温で1時間反応させた。GYRO miniで遠心して溶液を除き、10μg/mL 抗SEMA7A抗体25μLを加えて室温で1時間反応させた。GYRO miniで遠心して溶液を除き、ブロッキング溶液で2000倍に希釈したGoat anti-Human/Mouse IgG-Fc HRP-conjugated(BETHYL)を25μL加え、室温で30分間反応させた。洗浄溶液(0.05 % Tween20(Wako)を含むPBS)で5回洗浄し、TMB(ナカライテスク)を25μL加えて10分間反応させた。1 N硫酸(Wako)25μLを加えて反応を停止させ、マイクロプレートリーダー(TECAN)を用いて450 nmの吸光度を測定した。結果は図8に示す通り、本発明の新規抗SEMA7A抗体(HC1~HC8)はすべてhSEMA7A特異的であることが確認された。一方で、市販の抗SEMA7A抗体の中でも親和性が弱くPlexin C1-SEMA7A結合阻害活性を有さないC-6、D-4、1G1、1D5G8はhSEMA7A特異的であったが、3A5G1はhSEMA4F、hSEMA5A、hSEMA6Cにも交差し、また3D3はhSEMA4FとhSEMA6Cにも交差することが確認された。したがって、市販の抗SEMA7A抗体と比較して本発明の新規抗SEMA7A抗体(HC1~HC8)のほうが優れた抗原特異性を有していることが明らかとなった。 First, hSEMA7A-ECD, hSEMA4F-GST (Abnova), hSEMA5A-His (SINO BIO), hSEMA6C-GST (Abnova) and negative control antigen (hHER2 -His, GST) solution was dispensed onto MAXISORP 384 IMMUNO PLATE (NUNC) and reacted overnight at 4°C to solidify. The solution was removed by centrifugation using a small centrifuge dedicated to microplates (GYRO mini GM-01, MICRONIX), and 45 μL of blocking solution (PBS containing 1% BSA (SIGMA)) was added and reacted at room temperature for 1 hour. The solution was removed by centrifugation using GYRO mini, and 25 μL of 10 μg/mL anti-SEMA7A antibody was added and reacted for 1 hour at room temperature. The solution was removed by centrifugation using GYRO mini, and 25 μL of Goat anti-Human/Mouse IgG-Fc HRP-conjugated (BETHYL) diluted 2000 times with blocking solution was added, and the mixture was allowed to react at room temperature for 30 minutes. The cells were washed 5 times with a washing solution (PBS containing 0.05% Tween20 (Wako)), and 25 μL of TMB (Nacalai Tesque) was added and reacted for 10 minutes. The reaction was stopped by adding 25 μL of 1 N sulfuric acid (Wako), and the absorbance at 450 nm was measured using a microplate reader (TECAN). As shown in FIG. 8, all of the novel anti-SEMA7A antibodies (HC1 to HC8) of the present invention were confirmed to be hSEMA7A-specific. On the other hand, among commercially available anti-SEMA7A antibodies, C-6, D-4, 1G1, and 1D5G8, which have weak affinity and do not have Plexin C1-SEMA7A binding inhibitory activity, were hSEMA7A-specific, but 3A5G1 was hSEMA4F, hSEMA5A-specific. It was confirmed that 3D3 also intersected with hSEMA6C, and hSEMA4F and hSEMA6C. Therefore, it was revealed that the novel anti-SEMA7A antibodies (HC1 to HC8) of the present invention have superior antigen specificity compared to commercially available anti-SEMA7A antibodies.
15.抗SEMA7A抗体における等電点(pI)の測定
 pIは抗体医薬の薬物動態(PK)に影響を及ぼす重要なファクターである。一般的に高pI (9.5 以上)であるとPKは良好でないと予想されるので、変異導入で改変が必要となる。抗SEMA7A抗体のPKを予測するために、pH5.6のバッファーとpH10.2のバッファーを用いたグラジエント分析法により、それぞれの抗体のpIを算出した。その結果、HC1~HC5はpI9.5以下であり、PKは良好といえる範囲でると予想された(図9)。
15. Measurement of isoelectric point (pI) of anti-SEMA7A antibody pI is an important factor that affects the pharmacokinetics (PK) of antibody drugs. Generally, if the pI is high (9.5 or higher), the PK is expected to be poor, so modification by introducing mutations is necessary. In order to predict the PK of anti-SEMA7A antibodies, the pI of each antibody was calculated using a gradient analysis method using a pH 5.6 buffer and a pH 10.2 buffer. As a result, the pI of HC1 to HC5 was below 9.5, and the PK was expected to be in a good range (Figure 9).
16.抗SEMA7A抗体の熱安定性の評価
 0.5 mg/mLに希釈したHC1~HC8に適宜SYPRO Orange蛍光色素を混合した。抗SEMA7A抗体の比較対象として、すでに上市されている抗体医薬品8種類(Herceptin, Humira, Lucentis, Poteligio, Avastin, Atezolizumab, Nivolumab, Synagis)についても同様の操作を行った。Fab領域の熱変性曲線の中間点であるTm値は、3℃/分の速度で30℃から99℃まで温度を上昇させるようにプログラムされたRT-PCR装置を使用し、蛍光を連続的に読み取ることで算出した。結果は図10に示した結果から、抗SEMA7A抗体は、上市抗体と比較すると遜色ないTm値であり、全体的に高い熱安定性を有するものであることが示された。
16. Evaluation of thermal stability of anti-SEMA7A antibodies SYPRO Orange fluorescent dye was mixed as appropriate with HC1 to HC8 diluted to 0.5 mg/mL. As a comparison target for anti-SEMA7A antibodies, the same procedure was performed for eight antibody drugs already on the market (Herceptin, Humira, Lucentis, Poteligio, Avastin, Atezolizumab, Nivolumab, Synagis). The Tm value, which is the midpoint of the thermal denaturation curve for the Fab region, was determined using an RT-PCR machine programmed to increase the temperature from 30°C to 99°C at a rate of 3°C/min, and continuously Calculated by reading. The results shown in FIG. 10 show that the anti-SEMA7A antibody has a Tm value comparable to that of commercially available antibodies, and has high overall thermal stability.
17.抗SEMA7A抗体における抗体産生量の評価
 抗SEMA7A抗体の抗体産生量を見積もるために、Expi293 Expression Systemを用いて小スケールの抗体発現・精製を行った。トランスフェクションしたExpi293の培地からは、Protein Aカラムによるアフィニティー精製を行い、抗体濃度はBCA法で測定した。その結果、HC1とHC2は特に高い抗体産生量であることが分かった(図11)。
17. Evaluation of antibody production amount of anti-SEMA7A antibody In order to estimate the antibody production amount of anti-SEMA7A antibody, small-scale antibody expression and purification was performed using Expi293 Expression System. The transfected Expi293 culture medium was subjected to affinity purification using a Protein A column, and the antibody concentration was measured by the BCA method. As a result, it was found that HC1 and HC2 produced particularly high amounts of antibodies (Figure 11).
18.抗SEMA7A抗体におけるインターナリゼーション活性の経時変化
 図7では抗SEMA7A抗体と細胞を37℃で1時間反応させ、インターナリゼーション活性の有無だけを確認している。そこで、今回は細胞表面上のSEMA7Aがどれぐらいの割合で経時的にインターナリゼーションによって消失するか評価した。図12Aに示した評価方法およびインターナリゼーション活性の算出法にしたがって評価したところ、抗SEMA7A抗体(HC2)のインターナリゼーション活性は1時間でプラトーに達しており、細胞表面上のSEMA7Aの約90%をインターナリゼーションさせていることが分かった(図12B)。したがって、HC2はインターナリゼーション活性が高い部類の抗体であることが判明した。
18. Time course of internalization activity of anti-SEMA7A antibody In Figure 7, anti-SEMA7A antibody and cells were reacted at 37°C for 1 hour, and only the presence or absence of internalization activity was confirmed. Therefore, this time we evaluated the rate at which SEMA7A on the cell surface disappears over time due to internalization. When evaluated according to the evaluation method and internalization activity calculation method shown in Figure 12A, the internalization activity of anti-SEMA7A antibody (HC2) reached a plateau in 1 hour, and approximately 90% of SEMA7A on the cell surface It was found that % was internalized (Figure 12B). Therefore, HC2 was found to be a class of antibody with high internalization activity.
19.各がん種組織におけるSEMA7A発現解析
 トリプルネガティブ乳がん(TNBC)、骨肉腫、軟骨肉腫、非小細胞肺がん(NSCLC:EGFR野生型(EGFR WT)、EGFR変異型(EGFR Mut))におけるSEMA7A発現強度と頻度を調べるために、US Biomax社およびTriStar Technology Group社から組織マイクロアレイを購入し発現解析を行った。まずスライドの脱パラフィン化を行い、マウスモノクローナル抗SEMA7A抗体(クローン:C-6)で反応させた。その後、HRP標識二次抗体で反応させ、最終的にDAB溶液で発色させた。染色結果は図13Aの指標に従ってスコア0からスコア3+に分類し、その頻度を算出した。その結果、TNBC、骨肉腫、軟骨肉腫ではスコア2+が多い傾向にあった。NSCLCにおけるEGFR変異の有無の違いという点では、明らかにEGFR変異がある患者のほうがSEMA7A発現強度が強くなるという傾向にあった(図13B)。
19. Analysis of SEMA7A expression in tissues of each cancer type SEMA7A expression intensity and To investigate the frequency, tissue microarrays were purchased from US Biomax and TriStar Technology Group and expression analysis was performed. First, the slides were deparaffinized and reacted with mouse monoclonal anti-SEMA7A antibody (clone: C-6). Thereafter, it was reacted with an HRP-labeled secondary antibody, and finally colored with a DAB solution. The staining results were classified from score 0 to score 3+ according to the index in FIG. 13A, and the frequency was calculated. As a result, TNBC, osteosarcoma, and chondrosarcoma tended to have a score of 2+. Regarding the difference in the presence or absence of EGFR mutations in NSCLC, there was a clear tendency for SEMA7A expression intensity to be stronger in patients with EGFR mutations (Figure 13B).
20.各がん細胞株におけるSEMA7A発現解析
 免疫組織染色でSEMA7A発現が確認できたTNBC、骨肉腫、軟骨肉腫、NSCLCに関して、それぞれのがん細胞株をATCC社から入手し、FACSにてSEMA7A発現の解析を行った。具体的には、TNBC細胞株としては「MDA-MB-231」、骨肉腫細胞株としては「U-2 OS」及び「143B」、軟骨肉腫細胞株としては「SW1353」、並びに、NSCLC細胞株としては「SK-MES-1」(EGFR WT)及び「H1975」(EGFR Mut)を用いた。
 解析手法は、各がん細胞株と抗SEMA7A抗体(HC2)を4℃で30分間反応させ、その後にPE標識抗hIgG Fc抗体で検出した。その結果、軟骨肉腫細胞であるSW1353が最も強く発現しており、残りの細胞株は中程度の発現量であった(図14)。
20. Analysis of SEMA7A expression in each cancer cell line For TNBC, osteosarcoma, chondrosarcoma, and NSCLC for which SEMA7A expression was confirmed by immunohistochemistry, we obtained each cancer cell line from ATCC and analyzed SEMA7A expression using FACS. I did it. Specifically, the TNBC cell line is "MDA-MB-231," the osteosarcoma cell line is "U-2 OS" and "143B," the chondrosarcoma cell line is "SW1353," and the NSCLC cell line. "SK-MES-1" (EGFR WT) and "H1975" (EGFR Mut) were used.
The analysis method involved reacting each cancer cell line with anti-SEMA7A antibody (HC2) at 4°C for 30 minutes, followed by detection with PE-labeled anti-hIgG Fc antibody. As a result, SW1353, a chondrosarcoma cell, was most strongly expressed, and the remaining cell lines had moderate expression levels (Figure 14).
21.各がん細胞株におけるHC2セカンドイムノトキシンの細胞障害活性
 SEMA7A発現が確認されたがん細胞株を用いて、抗SEMA7A抗体(HC2)のADCとしての可能性の検証するためにPBDが結合したセカンドイムノトキシンを用いて細胞障害活性を調べた。80 nM 抗SEMA7A抗体と240 nM PBD結合二次抗体(IgGs Anti-Mouse IgG Fc-PBD Antibody with Cleavable Linker(Moradec))を等量で混合し、室温で1時間インキュベーションした。その混合液で3倍希釈系列を作製し、各がん細胞株に投与した。投与1週間後にCellTiter-Gloを添加して室温で10分間置き、EnspireAlphaプレートリーダー(ParkinElmer)で発光を測定した。図15に示したように今回試した4種類のがん細胞株に対してHC2は、顕著な細胞障害活性を示した。以上のことから、HC2はADCにも適している抗体であることが実証された。
21. Cytotoxic activity of HC2 second immunotoxin in each cancer cell line Using cancer cell lines in which SEMA7A expression was confirmed, the second immunotoxin conjugated with PBD was used to verify the potential of anti-SEMA7A antibody (HC2) as an ADC. Cytotoxic activity was investigated using immunotoxins. Equal volumes of 80 nM anti-SEMA7A antibody and 240 nM PBD-conjugated secondary antibody (IgGs Anti-Mouse IgG Fc-PBD Antibody with Cleavable Linker (Moradec)) were mixed and incubated at room temperature for 1 hour. A 3-fold dilution series was prepared with the mixture and administered to each cancer cell line. One week after administration, CellTiter-Glo was added and left at room temperature for 10 minutes, and luminescence was measured using an EnspireAlpha plate reader (ParkinElmer). As shown in Figure 15, HC2 showed significant cytotoxic activity against the four types of cancer cell lines tested this time. From the above, it was demonstrated that HC2 is an antibody suitable for ADC as well.
22.各がん細胞株におけるPBD直接ラベル抗SEMA7A抗体の細胞障害活性
 次に、PBDを直接ラベルした抗SEMA7A抗体のADC化抗体を用いて細胞障害アッセイを行った。アッセイに用いた抗体の抗体薬物比(DAR; Drug to Antibody Ratio)は、アイソタイプコントロール抗体が3.2、HC1が3.0、HC2が3.1であった。500 cells/wellで各がん細胞株を播種したプレートに各ADCの3倍希釈系列(0~40 nM)を投与した。投与1週間後にCellTiter-Gloを添加して室温で10分間置き、EnspireAlphaプレートリーダー(ParkinElmer)で発光を測定した。結果は5種類すべてのがん細胞株で顕著な細胞障害活性が確認できた(図16)。
22. Cytotoxic activity of anti-SEMA7A antibody directly labeled with PBD in each cancer cell line Next, a cytotoxicity assay was performed using an ADC-conjugated anti-SEMA7A antibody directly labeled with PBD. The drug to antibody ratio (DAR) of the antibodies used in the assay was 3.2 for the isotype control antibody, 3.0 for HC1, and 3.1 for HC2. A 3-fold dilution series (0 to 40 nM) of each ADC was administered to a plate seeded with each cancer cell line at 500 cells/well. One week after administration, CellTiter-Glo was added and left at room temperature for 10 minutes, and luminescence was measured using an EnspireAlpha plate reader (ParkinElmer). As a result, significant cytotoxic activity was confirmed in all five types of cancer cell lines (Figure 16).
 本発明によれば、ヒトSEMA7A、好ましくはそのsemaドメインに結合する、高活性の機能性抗体を提供することができる。本発明に係る抗ヒトSEMA7A抗体は、ヒトSEMA7AとPlexin C1やインテグリンβ1との相互作用を阻害又は抑制することができ、例えば、特発性肺線維症(IPF)、非アルコール性脂肪肝炎(NASH)などの臓器線維症、クローン病、アレルギー性皮膚炎、及び間質性肺炎などの炎症性疾患、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群などの自己免疫疾患、並びに、肺がん、乳がん、口腔がん、骨肉腫、軟骨肉腫などの各種がんに対する治療及び予防薬として効果を発揮し得るものである。 According to the present invention, a highly active functional antibody that binds to human SEMA7A, preferably its sema domain, can be provided. The anti-human SEMA7A antibody according to the present invention can inhibit or suppress the interaction between human SEMA7A and Plexin C1 or integrin β1, and can be used to treat, for example, idiopathic pulmonary fibrosis (IPF) and non-alcoholic steatohepatitis (NASH). Organ fibrosis, inflammatory diseases such as Crohn's disease, allergic dermatitis, and interstitial pneumonia; autoimmune diseases such as rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome , and can be effective as a therapeutic and preventive drug for various cancers such as lung cancer, breast cancer, oral cancer, osteosarcoma, and chondrosarcoma.
配列番号1~44:組換えペプチド
配列番号47~50:合成DNA
SEQ ID NO: 1-44: Recombinant peptide SEQ ID NO: 47-50: Synthetic DNA
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026

Claims (28)

  1.  ヒトSEMA7Aに対する抗体であって、
     重鎖可変領域(VH)の相補性決定領域(CDR)1、CDR2及びCDR3のアミノ酸配列が、それぞれ順に、
    配列番号10、11及び12に示されるアミノ酸配列、
    配列番号18、19及び20に示されるアミノ酸配列、
    配列番号22、23及び24に示されるアミノ酸配列、
    配列番号26、27及び28に示されるアミノ酸配列、
    配列番号30、31及び32に示されるアミノ酸配列、
    配列番号34、35及び36に示されるアミノ酸配列、
    配列番号38、39及び40されるアミノ酸配列、又は
    配列番号42、43及び44に示されるアミノ酸配列
    からなり、かつ
     軽鎖可変領域(VL)のCDR1、CDR2及びCDR3のアミノ酸配列が、それぞれ順に、
    配列番号14、15及び16に示されるアミノ酸配列からなる、
    前記抗体。
    An antibody against human SEMA7A,
    The amino acid sequences of complementarity determining region (CDR) 1, CDR2, and CDR3 of the heavy chain variable region (VH) are, in order,
    Amino acid sequences shown in SEQ ID NOs: 10, 11 and 12,
    Amino acid sequences shown in SEQ ID NOs: 18, 19 and 20,
    Amino acid sequences shown in SEQ ID NOs: 22, 23 and 24,
    Amino acid sequences shown in SEQ ID NO: 26, 27 and 28,
    Amino acid sequences shown in SEQ ID NO: 30, 31 and 32,
    Amino acid sequences shown in SEQ ID NOs: 34, 35 and 36,
    consisting of the amino acid sequences shown in SEQ ID NOs: 38, 39 and 40, or the amino acid sequences shown in SEQ ID NOs: 42, 43 and 44, and the amino acid sequences of CDR1, CDR2 and CDR3 of the light chain variable region (VL), respectively, in that order:
    Consisting of the amino acid sequences shown in SEQ ID NO: 14, 15 and 16,
    The antibody.
  2.  ヒトSEMA7Aに対する抗体であって、
     重鎖可変領域(VH)のアミノ酸配列が、配列番号9、17、21、25、29、33、37又は41に示されるアミノ酸配列からなり、かつ、
     軽鎖可変領域(VL)のアミノ酸配列が、配列番号13に示されるアミノ酸配列からなる、
    前記抗体。
    An antibody against human SEMA7A,
    The amino acid sequence of the heavy chain variable region (VH) consists of the amino acid sequence shown in SEQ ID NO: 9, 17, 21, 25, 29, 33, 37 or 41, and
    The amino acid sequence of the light chain variable region (VL) consists of the amino acid sequence shown in SEQ ID NO: 13,
    The antibody.
  3.  ヒトSEMA7Aのsemaドメインに結合する抗体である、請求項1又は2に記載の抗体。 The antibody according to claim 1 or 2, which is an antibody that binds to the sema domain of human SEMA7A.
  4.  抗体がヒト抗体である、請求項1~3のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 3, wherein the antibody is a human antibody.
  5.  ヒトSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用を阻害又は抑制する活性を有する、請求項1~4のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 4, which has the activity of inhibiting or suppressing the interaction between human SEMA7A and Plexin C1 and/or integrin β1.
  6.  抗体が抗腫瘍活性を有するものである、請求項1~5のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 5, wherein the antibody has antitumor activity.
  7.  腫瘍の治療又は予防に用いるものである、請求項1~6のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 6, which is used for the treatment or prevention of tumors.
  8.  腫瘍が、ヒト乳癌、ヒト肺癌、ヒト口腔癌、ヒト骨肉腫、及びヒト軟骨肉腫からなる群より選ばれる少なくとも1種である、請求項6又は7に記載の抗体。 The antibody according to claim 6 or 7, wherein the tumor is at least one selected from the group consisting of human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, and human chondrosarcoma.
  9.  炎症性疾患及び/又は自己免疫疾患の治療又は予防に用いるものである、請求項1~5のいずれか1項に記載の抗体。 The antibody according to any one of claims 1 to 5, which is used for the treatment or prevention of inflammatory diseases and/or autoimmune diseases.
  10.  炎症性疾患が、特発性肺線維症(IPF)、クローン病、アレルギー性皮膚炎、及び間質性肺炎、並びに非アルコール性脂肪肝炎(NASH)を含む臓器線維症からなる群より選ばれる少なくとも1種であり、
     自己免疫疾患が、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群からなる群より選ばれる少なくとも1種である、
    請求項9に記載の抗体。
    The inflammatory disease is at least one selected from the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH). is a seed,
    The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome,
    The antibody according to claim 9.
  11.  請求項1~10のいずれか1項に記載の抗体に由来する抗体断片。 An antibody fragment derived from the antibody according to any one of claims 1 to 10.
  12.  請求項1~10のいずれか1項に記載の抗体、又は請求項11に記載の抗体断片に、薬物がコンジュゲートされたものである、抗体又は抗体断片-薬物複合体。 An antibody or antibody fragment-drug conjugate, which is a drug conjugated to the antibody according to any one of claims 1 to 10 or the antibody fragment according to claim 11.
  13.  薬物が、抗腫瘍活性及び/又は殺細胞活性を有する化合物である、請求項12に記載の複合体。 The complex according to claim 12, wherein the drug is a compound having antitumor activity and/or cell killing activity.
  14.  請求項1~10のいずれか1項に記載の抗体、請求項11に記載の抗体断片、及び/又は請求項12若しくは13に記載の複合体を含む、医薬組成物。 A pharmaceutical composition comprising the antibody according to any one of claims 1 to 10, the antibody fragment according to claim 11, and/or the conjugate according to claim 12 or 13.
  15.    腫瘍の治療又は予防に用いるものである、請求項14に記載の医薬組成物。 The pharmaceutical composition according to claim 14, which is used for the treatment or prevention of tumors.
  16.  腫瘍が、ヒト乳癌、ヒト肺癌、ヒト口腔癌、ヒト骨肉腫、及びヒト軟骨肉腫からなる群より選ばれる少なくとも1種である、請求項15に記載の医薬組成物。 The pharmaceutical composition according to claim 15, wherein the tumor is at least one selected from the group consisting of human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, and human chondrosarcoma.
  17.  炎症性疾患及び/又は自己免疫疾患の治療又は予防に用いるものである、請求項14に記載の医薬組成物。 The pharmaceutical composition according to claim 14, which is used for the treatment or prevention of inflammatory diseases and/or autoimmune diseases.
  18.  炎症性疾患が、特発性肺線維症(IPF)、クローン病、アレルギー性皮膚炎、及び間質性肺炎、並びに非アルコール性脂肪肝炎(NASH)を含む臓器線維症からなる群より選ばれる少なくとも1種であり、
     自己免疫疾患が、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群からなる群より選ばれる少なくとも1種である、
    請求項17に記載の医薬組成物。
    The inflammatory disease is at least one selected from the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH). is a seed,
    The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome,
    The pharmaceutical composition according to claim 17.
  19.  ヒトSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用の阻害又は抑制に用いるものである、請求項14に記載の医薬組成物。 The pharmaceutical composition according to claim 14, which is used for inhibiting or suppressing the interaction between human SEMA7A and Plexin C1 and/or integrin β1.
  20.  請求項14~16のいずれか1項に記載の医薬組成物を、対象に投与することを含む、腫瘍の治療又は予防方法。 A method for treating or preventing a tumor, which comprises administering to a subject the pharmaceutical composition according to any one of claims 14 to 16.
  21.  腫瘍が、ヒト乳癌、ヒト肺癌、ヒト口腔癌、ヒト骨肉腫、及びヒト軟骨肉腫からなる群より選ばれる少なくとも1種である、請求項20に記載の方法。 The method according to claim 20, wherein the tumor is at least one selected from the group consisting of human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, and human chondrosarcoma.
  22.  請求項14、17及び18のいずれか1項に記載の医薬組成物を、対象に投与することを含む、炎症性疾患及び/又は自己免疫疾患の治療又は予防方法。 A method for treating or preventing inflammatory diseases and/or autoimmune diseases, which comprises administering to a subject the pharmaceutical composition according to any one of claims 14, 17, and 18.
  23.  炎症性疾患が、特発性肺線維症(IPF)、クローン病、アレルギー性皮膚炎、及び間質性肺炎、並びに非アルコール性脂肪肝炎(NASH)を含む臓器線維症からなる群より選ばれる少なくとも1種であり、
     自己免疫疾患が、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群からなる群より選ばれる少なくとも1種である、
    請求項22に記載の方法。
    The inflammatory disease is at least one selected from the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH). is a seed,
    The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome,
    23. The method according to claim 22.
  24.  請求項14又は19に記載の医薬組成物を、対象に投与することを含む、ヒトSEMA7AとPlexin C1及び/又はインテグリンβ1との相互作用を阻害又は抑制する方法。 A method for inhibiting or suppressing the interaction between human SEMA7A and Plexin C1 and/or integrin β1, which comprises administering to a subject the pharmaceutical composition according to claim 14 or 19.
  25.  請求項1~10のいずれか1項に記載の抗体、請求項11に記載の抗体断片、及び/又は請求項12若しくは13に記載の複合体を含む、腫瘍の治療、予防又は診断用キット。 A kit for treating, preventing or diagnosing a tumor, comprising the antibody according to any one of claims 1 to 10, the antibody fragment according to claim 11, and/or the conjugate according to claim 12 or 13.
  26.  腫瘍が、ヒト乳癌、ヒト肺癌、ヒト口腔癌、ヒト骨肉腫、及びヒト軟骨肉腫からなる群より選ばれる少なくとも1種である、請求項25に記載のキット。 The kit according to claim 25, wherein the tumor is at least one selected from the group consisting of human breast cancer, human lung cancer, human oral cavity cancer, human osteosarcoma, and human chondrosarcoma.
  27.  請求項1~10のいずれか1項に記載の抗体、請求項11に記載の抗体断片、及び/又は請求項12若しくは13に記載の複合体を含む、炎症性疾患及び/若しくは自己免疫疾患の治療、予防又は診断用キット。 A method for treating inflammatory diseases and/or autoimmune diseases, comprising the antibody according to any one of claims 1 to 10, the antibody fragment according to claim 11, and/or the conjugate according to claim 12 or 13. Kits for treatment, prevention or diagnosis.
  28.  炎症性疾患が、特発性肺線維症(IPF)、クローン病、アレルギー性皮膚炎、及び間質性肺炎、並びに非アルコール性脂肪肝炎(NASH)を含む臓器線維症からなる群より選ばれる少なくとも1種であり、
     自己免疫疾患が、関節リウマチ、多発性硬化症(MS)、全身性強皮症、及びシェーグレン症候群からなる群より選ばれる少なくとも1種である、
    請求項27に記載のキット。
    The inflammatory disease is at least one selected from the group consisting of idiopathic pulmonary fibrosis (IPF), Crohn's disease, allergic dermatitis, and interstitial pneumonia, and organ fibrosis including nonalcoholic steatohepatitis (NASH). is a seed,
    The autoimmune disease is at least one selected from the group consisting of rheumatoid arthritis, multiple sclerosis (MS), systemic sclerosis, and Sjögren's syndrome,
    A kit according to claim 27.
PCT/JP2023/012409 2022-03-29 2023-03-28 Human anti-sema7a antibody WO2023190465A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-054142 2022-03-29
JP2022054142 2022-03-29
JP2022-173382 2022-10-28
JP2022173382 2022-10-28

Publications (1)

Publication Number Publication Date
WO2023190465A1 true WO2023190465A1 (en) 2023-10-05

Family

ID=88202444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012409 WO2023190465A1 (en) 2022-03-29 2023-03-28 Human anti-sema7a antibody

Country Status (1)

Country Link
WO (1) WO2023190465A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156890A (en) * 2019-04-09 2019-08-23 苏州大学 Semaphorin7A monoclonal antibody and its application in terms of preparation is for treating inflammation disease drug

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156890A (en) * 2019-04-09 2019-08-23 苏州大学 Semaphorin7A monoclonal antibody and its application in terms of preparation is for treating inflammation disease drug

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JOSHUA GHOFRANI; OLIVIER LUCAR; HALEY DUGAN; R. KEITH REEVES; STEPHANIE JOST: "Semaphorin 7A modulates cytokine‐induced memory‐like responses by human natural killer cells", EUROPEAN JOURNAL OF IMMUNOLOGY, WILEY-VCH, HOBOKEN, USA, vol. 49, no. 8, 2 May 2019 (2019-05-02), Hoboken, USA, pages 1153 - 1166, XP071228673, ISSN: 0014-2980, DOI: 10.1002/eji.201847931 *
LIU T-J, GUO J-L, WANG H-K, XU X: "Semaphorin-7A contributes to growth, migration and invasion of oral tongue squamous cell carcinoma through TGF-β-mediated EMT signaling pathway", EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, ITALY, vol. 22, no. 4, 1 February 2018 (2018-02-01), Italy, pages 1035 - 1043, XP093095391 *
SONG YAO, WANG LIU, ZHANG LAN, HUANG DINGMING: "The involvement of semaphorin 7A in tumorigenic and immunoinflammatory regulation", JOURNAL OF CELLULAR PHYSIOLOGY, WILEY SUBSCRIPTION SERVICES, INC., US, vol. 236, no. 9, 1 September 2021 (2021-09-01), US , pages 6235 - 6248, XP093075424, ISSN: 0021-9541, DOI: 10.1002/jcp.30340 *
SUZUKI KAZUHIRO; KUMANOGOH ATSUSHI; KIKUTANI HITOSHI: "Semaphorins and their receptors in immune cell interactions", NATURE IMMULOGY, NATURE PUBLISHING GROUP US, NEW YORK, vol. 9, no. 1, 17 December 2007 (2007-12-17), New York , pages 17 - 23, XP037924626, ISSN: 1529-2908, DOI: 10.1038/ni1553 *
THOMAS WORZFELD, STEFAN OFFERMANNS: "Semaphorins and plexins as therapeutic targets", NATURE REVIEWS DRUG DISCOVERY, NATURE PUB. GROUP, vol. 13, no. 8, pages 603 - 621, XP055167541, ISSN: 14741776, DOI: 10.1038/nrd4337 *

Similar Documents

Publication Publication Date Title
US11802158B2 (en) Bispecific anti-CD3 antibodies, bispecific activatable anti-CD3 antibodies, and methods of using the same
US20220306759A1 (en) Anti-cd71 antibodies, activatable anti-cd71 antibodies, and methods of use thereof
US11174316B2 (en) Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of use thereof
CA2855699C (en) Anti-human trop-2 antibody having an antitumor activity in vivo
CN109963591B (en) B7H3 antibody-drug conjugate and medical application thereof
AU2011255870B2 (en) Anti-human TROP-2 antibody having antitumor activity in vivo
CA2669731C (en) Anti-human dlk-1 antibody showing anti-tumor activity in vivo
WO2019042119A1 (en) Antibody against human cd47 and use thereof
CN110662766A (en) CD147 antibodies, activatable CD147 antibodies, and methods of making and using the same
WO2019173771A1 (en) Activatable cd147 antibodies and methods of making and use thereof
US11820831B2 (en) Antibody binding to carbonic anhydrase and use thereof
WO2023190465A1 (en) Human anti-sema7a antibody
WO2018181656A1 (en) Anti-gpr20 antibody
WO2023145844A1 (en) Anti-human cxcl1 antibody
TW202405010A (en) Anti-human SEMA7A antibody
TW202340250A (en) Antibody targeting CD25, and preparation method therefor and use thereof
WO2022078424A1 (en) Anti-trop-2 antibody, antigen-binding fragment thereof or mutant thereof, and medical use thereof
NZ716839B2 (en) Anti-human trop-2 antibody having an antitumor activity in vivo
NZ716839A (en) Anti-human trop-2 antibody having an antitumor activity in vivo
NZ623464B2 (en) Anti-human trop-2 antibody having an antitumor activity in vivo

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780474

Country of ref document: EP

Kind code of ref document: A1