WO2023190440A1 - Two-pack type curable composition set, cured product and electronic device - Google Patents

Two-pack type curable composition set, cured product and electronic device Download PDF

Info

Publication number
WO2023190440A1
WO2023190440A1 PCT/JP2023/012377 JP2023012377W WO2023190440A1 WO 2023190440 A1 WO2023190440 A1 WO 2023190440A1 JP 2023012377 W JP2023012377 W JP 2023012377W WO 2023190440 A1 WO2023190440 A1 WO 2023190440A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
agent
parts
curable composition
thermally conductive
Prior art date
Application number
PCT/JP2023/012377
Other languages
French (fr)
Japanese (ja)
Inventor
正雄 小野塚
朋之 金井
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023190440A1 publication Critical patent/WO2023190440A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a two-component curable composition set, a cured product, and an electronic device.
  • heat-generating electronic components such as the CPU (central processing unit) of personal computers
  • the amount of heat generated by these electronic components per unit area has become extremely large.
  • the amount of heat they produce is about 20 times that of an iron.
  • Metal heat sinks and casings are used for cooling, but when heat-generating electronic components and heat sinks are brought into direct contact, air exists microscopically at the interface, which impedes heat conduction. It may become. Therefore, in order to efficiently transfer heat, a heat-generating electronic component and a heat sink or the like are sometimes placed with a thermally conductive material interposed therebetween.
  • the thermally conductive material used is, for example, a thermally conductive grease prepared by adding thermally conductive powder to room temperature curing liquid silicone rubber.
  • Room temperature curable liquid silicone rubbers are mainly classified into one-component types and two-component types, and the two-component types are further divided into condensation reaction types and addition reaction types.
  • Two-component type thermally conductive grease containing liquid silicone rubber is used as a two-component curable composition set containing two types of compositions having different compositions.
  • Patent Document 1 discloses that an addition reaction silicone rubber composition containing an alkenyl group-containing organopolysiloxane, an organohydrogenpolysiloxane, a platinum catalyst, and an adhesion promoter is less susceptible to curing inhibitors. It is described that it has excellent adhesive properties.
  • the two-component curable composition set is used by mixing two types of compositions and then applying the mixture to a predetermined area.
  • the thermal conductivity of the cured product obtained from the two types of compositions is controlled by adjusting the amount and type of thermally conductive filler added.
  • the amount of thermally conductive filler is increased too much in order to increase thermal conductivity, the viscosity of the two types of compositions and their mixtures will increase, resulting in a problem that the handling properties such as application performance will decrease. be.
  • the present invention was made in view of the above problems, and provides a two-component curable composition set with excellent handleability and thermal conductivity, and a cured product obtained from the two-component curable composition set. , and an electronic device provided with the cured product.
  • the present inventors have found that a two-component curable composition set in which the heat resistance value and viscosity of the first and second parts are within a predetermined range solves the above problems.
  • the present inventors have discovered that the present invention can be obtained, and have completed the present invention.
  • the present invention is as follows. [1] Comprising a first agent and a second agent, The thermal resistance value of the first part and the second part at a thickness of 1.0 mm measured by a method in accordance with ASTM D5470 is 1.4 to 2.1 cm 2 °C/W, respectively. , The viscosity of the first agent and the second agent as measured by a rotary rheometer is 50 to 120 Pa ⁇ s, respectively; Two-component curing composition set.
  • the first agent includes a surfactant A1, a vinyl-modified organopolysiloxane B1 having a viscosity of 80 to 120 mPa s, a thermally conductive filler C1, and an addition reaction catalyst D1
  • the second agent comprises a surfactant A2, a vinyl-modified organopolysiloxane B2 having a viscosity of 80 to 120 mPas, a thermally conductive filler C2, and a hydrosilyl-modified organopolysiloxane having a viscosity of 1 to 100 mPas.
  • E2 and The two-component curable composition set according to [1].
  • the vinyl-modified organopolysiloxane B1 and the vinyl-modified organopolysiloxane B2 each independently have an average of 2.0 or more vinyl groups per molecule,
  • the hydrosilyl-modified organopolysiloxane E2 has an average of more than 2.0 hydrosilyl groups per molecule,
  • the content of the surfactant A1 is 5 to 25 parts by weight,
  • the content of the thermally conductive filler C1 is 1500 to 2400 parts by weight,
  • the surfactant A1 and the surfactant A2 have a (meth)acrylic monomer unit ⁇ having a carboxy group, a (meth)acrylic monomer unit ⁇ having a tertiary amino group, and a siloxane skeleton.
  • the hydrosilyl-modified organopolysiloxane E2 includes a hydrosilyl-modified organopolysiloxane E21 having a hydrosilyl group at both ends, and a hydrosilyl-modified organopolysiloxane E22 having a hydrosilyl group in a side chain.
  • the two-component curable composition set according to any one of [2] to [9].
  • the thermally conductive filler C1 and the thermally conductive filler C2 are each independently selected from the group consisting of boron nitride, aluminum nitride, aluminum oxide, silicon nitride, silicon oxide, magnesium oxide, metallic aluminum, and zinc oxide.
  • the thermally conductive filler C1 and the thermally conductive filler C2 include aluminum oxide powder;
  • the first part and the second part are mixed in equal volumes, molded into a sheet, and then heated and cured at 60°C for 20 minutes.
  • the withstand voltage of the sheet obtained according to JIS C2110 is 8 kV/mm or more. is, The two-component curable composition set according to any one of [1] to [12].
  • the thickness of the mixture when a load of 50 N is applied per 10 mm x 10 mm area is 70 to 120 ⁇ m to a mixture of the first agent and the second agent in equal volumes.
  • the two-component curable composition set according to any one of [1] to [13].
  • the first agent and the second agent have the following formula: R 1 a R 2 b Si(OR 3 ) 4-(a+b) (R 1 is each independently an alkyl group having 1 to 15 carbon atoms, R 2 is each independently a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, Each R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is 1 to 3, b is 0 to 2, and a+b is 1 to 3.) Does not contain organosilane represented by The two-component curable composition set according to any one of [1] to [14].
  • a two-component curable composition set a cured product obtained from the two-component curable composition set, and an electronic device equipped with the cured product, which has excellent handleability and thermal conductivity. be able to.
  • this embodiment an embodiment of the present invention (hereinafter referred to as “this embodiment”) will be described in detail.
  • the present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist thereof.
  • Two-component curable composition set The two-component curable composition set of this embodiment includes a first agent and a second agent, and the 1
  • the thermal resistance value at a thickness of .0 mm is independently 1.4 to 2.1 cm 2 °C/W (both extreme values are included. The same applies hereinafter in this specification unless otherwise specified.)
  • the viscosity of the first agent and the second agent as measured by a rotary rheometer is 50 to 120 Pa ⁇ s, respectively.
  • the present inventors have determined that the heat resistance values of the first agent and the second agent are each independently 1.4 to 2.1 cm 2 ⁇ °C/W, and the viscosity is 50 It has been found that a temperature of 120 Pa ⁇ s provides an excellent balance between thermal conductivity and handleability, and satisfies the thermal conductivity and handleability required in practical use.
  • the thermal resistance value of the first part and the second part at a thickness of 1.0 mm measured by a method based on ASTM D5470 is 1.4 to 2.1 cm 2 ⁇ °C/W, respectively. It is preferably 1.5 to 2.0 cm 2 ⁇ °C/W. Since the above-mentioned thermal resistance value is 2.1 cm 2 ⁇ ° C./W or less, the cured product obtained from the two-component curable composition set of this embodiment can satisfy the thermal conductivity required in practical use. In addition, since the above thermal resistance value is 1.4 cm 2 ⁇ °C/W or more, the viscosity of the first and second parts does not become too high, and the two-component curable composition set of this embodiment is required for practical use. It is possible to meet the requirements for ease of handling.
  • the thermal resistance values of the first and second parts are measured at a thickness of 1.0 mm by a method based on ASTM D5470, and more specifically by the method described in Examples.
  • the thermal conductivity of the first part and the second part as measured by a method based on ASTM D5470 is preferably 4.7 to 7.0 W/m ⁇ K, more preferably 5.0 ⁇ 6.5W/m ⁇ K.
  • the thermal conductivity of the first agent and the second agent is measured by a method based on ASTM D5470, and more specifically, by a method described in Examples.
  • the particle size and content of the thermally conductive filler contained in the first and second parts must be adjusted.
  • a filler with high thermal conductivity may be used.
  • An example of a specific composition of the first agent and the second agent will be described later.
  • the viscosity of the first agent and the second agent as measured by a rotary rheometer is 50 to 120 Pa ⁇ s, preferably 60 to 110 Pa ⁇ s, respectively. Since the above-mentioned viscosity is 50 Pa ⁇ s or more, the two-component curable composition set of this embodiment can satisfy the handling property required in practical use. In addition, since the viscosity is 120 Pa ⁇ s or less, the thermal conductivity does not become too low, and the cured product obtained from the two-component curable composition set of this embodiment satisfies the thermal conductivity required in practical use. I can do it.
  • the viscosity of the first agent and the second agent measured with a rotary rheometer is measured at 25° C. and a shear rate of 10 s ⁇ 1 .
  • the viscosity can be measured using, for example, a rotary rheometer "HANKE MARS III" manufactured by Thermo Fisher Scientific. More specifically, the measurement can be performed using a parallel plate with a diameter of 35 mm ⁇ , a gap of 0.5 mm, a temperature of 25° C., and a shear rate of 10 s ⁇ 1 .
  • the viscosity of the first and second parts In order to keep the viscosity of the first and second parts within the above range, it is necessary to adjust the viscosity of the matrix component such as organopolysiloxane contained in the first and second parts, and to adjust the viscosity of the matrix component such as organopolysiloxane contained in the first and second parts. What is necessary is to add a component that improves wettability with the matrix component, such as polysiloxane, or to adjust the particle size and content of the thermally conductive filler. An example of a specific composition of the first agent and the second agent will be described later.
  • 1.3. Voltage resistance of cured product obtained from the first and second parts The first and second parts are mixed and then used by coating on a predetermined area. The first part and the second part start a curing reaction by being mixed, and a cured product is obtained after a predetermined period of time has passed.
  • the two-component curable composition set of this embodiment is used in an electronic device or the like, it is assumed that the cured product and the electronic component are placed in electrical contact with each other. Therefore, it is preferable that the cured product obtained by mixing the first part and the second part has insulating properties.
  • the withstand voltage measured in accordance with JIS C2110 of the sheet obtained by mixing the first part and the second part in equal volumes, molding into a sheet, and heating and curing at 60 ° C. for 20 minutes is , preferably 8 kV/mm or more, more preferably 10 kV/mm or more.
  • the withstand voltage is within the above range, the insulation properties of the cured product can be made more reliable.
  • the upper limit of the withstand voltage is not particularly limited, but for example, the withstand voltage may be 50 kV/mm or less.
  • the withstand voltage can be lowered by using a thermally conductive filler with low conductivity or by reducing the content of the thermally conductive filler.
  • the withstand voltage may be measured by the method described in Examples.
  • Minimum film thickness of the cured product obtained from the first and second parts The thickness of the mixture when a 50N load is applied to a 10 mm x 10 mm area on a mixture of equal volumes of the first and second parts. is preferably 70 to 120 ⁇ m. In this specification, the thickness of the mixture measured in this manner is the minimum thickness of the film (cured product) that can be formed from the first agent and the second agent. Therefore, the minimum thickness of the film that can be formed with the two-component curable composition set of this embodiment is preferably 70 to 120 ⁇ m. When the first and second parts contain a thermally conductive filler, the minimum film thickness that can be formed using the mixture of the first and second parts depends on the particle size and content of the thermally conductive filler. value exists.
  • the minimum thickness of the film is between 70 and 120 ⁇ m, it is preferable to use comparative materials such as boron nitride, aluminum nitride, aluminum oxide, silicon nitride, silicon oxide, magnesium oxide, metallic aluminum, and zinc oxide, especially aluminum oxide. Even when an inexpensive thermally conductive filler is used, it tends to be possible to obtain a two-component curable composition set with an excellent balance between handleability and thermal conductivity. From the same point of view, the minimum thickness of the film is more preferably 80 to 100 ⁇ m. The minimum thickness of the film may be measured by the method described in Examples.
  • the first part and second part are not particularly limited as long as they are a combination that causes a curing reaction when mixed.
  • the reaction form of the first agent and the second agent may be a condensation reaction, an addition reaction, a radical reaction, or the like.
  • a combination of a first part and a second part that are cured by a condensation reaction is, for example, a first part containing an epoxy-modified organopolysiloxane having an epoxy group and a second part containing an amino-modified organopolysiloxane having an amino group.
  • Examples include combinations.
  • a combination of a first part and a second part that are cured by an addition reaction is, for example, a first part containing a vinyl-modified organopolysiloxane having a vinyl group and a second part containing a hydrosilyl-modified organopolysiloxane having a hydrosilyl group. and a combination of a first agent and a second agent that cause a Michael addition reaction.
  • composition of the first part and the second part will be described in detail by taking a combination of vinyl-modified organopolysiloxane and hydrosilyl-modified organopolysiloxane as an example.
  • the first agent and the second agent are not limited to these compositions.
  • a combination of epoxy-modified organopolysiloxane and amino-modified organopolysiloxane may be used instead of the combination of vinyl-modified organopolysiloxane and hydrosilyl-modified organopolysiloxane.
  • the first part preferably contains a surfactant A1, a vinyl-modified organopolysiloxane B1 having a viscosity of 80 to 120 mPa ⁇ s, a thermally conductive filler C1, and an addition reaction catalyst D1.
  • the first agent may further contain other components as necessary.
  • the surfactant A1 is not particularly limited as long as it can improve the wettability of the thermally conductive filler C1 to the vinyl-modified organopolysiloxane B1. From the viewpoint of further improving the wettability of the thermally conductive filler, the surfactant A1 is preferably a copolymer having at least two of an anionic group, a cationic group, and a group having a siloxane skeleton.
  • anionic group examples include, but are not limited to, a carboxy group, a phosphoric acid group, a phenolic hydroxy group, and a sulfonic acid group.
  • the anionic group is preferably one or more selected from the group consisting of a carboxy group, a phosphoric acid group, and a phenolic hydroxy group, and is preferably a carboxy group.
  • the cationic group is not particularly limited, but includes, for example, a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium cation group.
  • the anionic group is preferably a tertiary amino group.
  • the group having a siloxane skeleton is not particularly limited, but includes, for example, a group having an organopolysiloxane skeleton.
  • the group having a siloxane skeleton is preferably a group consisting of a polydimethylsiloxane skeleton.
  • the content of surfactant A1 is, for example, 3 to 28 parts by weight, preferably 4 to 25 parts by weight, and more preferably 5 to 20 parts by weight, based on 100 parts by weight of vinyl-modified organopolysiloxane B1. Parts by weight, more preferably 5 to 15 parts by weight.
  • the content of the surfactant A1 is within the above range, the dispersibility of the thermally conductive filler C1 tends to be further improved, and the viscosity of the first agent tends to be further reduced.
  • the weight average molecular weight of surfactant A1 is preferably 20,000 to 150,000, more preferably 30,000 to 120,000, and even more preferably 40,000 to 100,000. When the weight average molecular weight of the surfactant A1 is within the above range, the dispersibility of the thermally conductive filler C1 is further improved, and the viscosity of the first agent tends to be further reduced.
  • the weight average molecular weight can be determined by GPC (gel permeation chromatography).
  • (meth)acrylic includes acrylic and methacryl
  • (meth)acrylic monomer includes (meth)acrylate and (meth)acrylamide.
  • (meth)acrylic monomer unit ⁇ " and the like are also simply referred to as “monomer unit ⁇ ” and the like.
  • Surfactant A1 preferably comprises a (meth)acrylic monomer unit ⁇ having a carboxy group, a (meth)acrylic monomer unit ⁇ having a tertiary amino group, and a (meth)acrylic monomer unit ⁇ having a siloxane skeleton. It is a copolymer having an acrylic monomer unit ⁇ . When such a copolymer is used, the dispersibility of the thermally conductive filler C1 can be further improved, and the viscosity of the first agent tends to be lowered.
  • the monomer units ⁇ , monomer units ⁇ , and monomer units ⁇ may be included randomly or in blocks.
  • surfactant A1 at least monomer unit ⁇ and monomer unit ⁇ are preferably contained as a random copolymer.
  • (meth)acrylic monomer unit ⁇ having a carboxy group The monomer unit ⁇ is a repeating unit having a carboxy group.
  • the surfactant A1 has such a monomer unit, the dispersibility of the thermally conductive filler C1 tends to be further improved.
  • the monomer unit ⁇ further has an electron-withdrawing group bonded to the carboxy group.
  • an electron-withdrawing group is not particularly limited as long as it has the effect of stabilizing the negative charge on the carboxy group.
  • the monomer unit ⁇ may be a unit derived from an acrylic monomer containing an electron-withdrawing substituent such as a halogen element on the carbon atom at the ⁇ -position of the carboxy group.
  • the monomer unit ⁇ has no electron-donating group bonded to the carboxy group or has a group with low electron-donating property.
  • an electron-donating group is not particularly limited as long as it has the effect of destabilizing the negative charge on the carboxy group.
  • the monomer unit ⁇ may be a unit derived from an acrylic monomer that does not contain a substituent of an electron-donating group such as a methyl group on the carbon atom at the ⁇ -position of the carboxy group. By including such a monomer unit, the dispersibility of the thermally conductive filler C1 tends to be further improved.
  • Such (meth)acrylic monomers are not particularly limited, but include, for example, acrylic acid, methacrylic acid, 2-acryloyloxyethylsuccinic acid, 2-methacryloyloxyethylsuccinic acid, and the like. Among these, acrylic acid and 2-methacryloyloxyethylsuccinic acid are preferred, and acrylic acid is more preferred.
  • acrylic acid and 2-methacryloyloxyethylsuccinic acid are preferred, and acrylic acid is more preferred.
  • the monomer units ⁇ may be used alone or in combination of two or more types.
  • the content of the monomer unit ⁇ is, for example, 0.05 to 20 parts by weight with respect to the total of 100 parts by weight of the monomer unit ⁇ , monomer unit ⁇ , and monomer unit ⁇ , and is preferably The amount is 0.08 to 6.0 parts by weight, more preferably 0.1 to 5.0 parts by weight, even more preferably 0.3 to 4.0 parts by weight, and even more preferably 0.5 to 4.0 parts by weight. It is 3.0 parts by weight.
  • the content of the monomer unit ⁇ may be 0.7 parts by weight or more, or 2.0 parts by weight or less within the above range. When the content of the monomer unit ⁇ is within the above range, the dispersibility of the thermally conductive filler C1 tends to be further improved, and the viscosity of the first agent tends to be further reduced.
  • (meth)acrylic monomer unit ⁇ having a tertiary amino group The monomer unit ⁇ is a repeating unit having a tertiary amino group.
  • the surfactant A1 has such a monomer unit, the dispersibility of the thermally conductive filler C1 tends to be further improved.
  • the monomer unit ⁇ further has an electron-donating group bonded to the carbon atom adjacent to the nitrogen atom in the tertiary amino group.
  • an electron-donating group is not particularly limited as long as it has the effect of stabilizing the positive charge on the tertiary amino group.
  • the monomer unit ⁇ may be, for example, a unit derived from an acrylic monomer containing an electron-donating substituent such as a methyl group at the carbon atom at the ⁇ -position of a tertiary amino group.
  • the monomer unit ⁇ does not have an electron-withdrawing group bonded to the carbon atom adjacent to the nitrogen atom in the tertiary amino group, or has a group with low electron-withdrawing property.
  • Such an electron-withdrawing group is not particularly limited as long as it has the effect of destabilizing the positive charge on the tertiary amino group.
  • the monomer unit ⁇ may be, for example, a unit derived from an acrylic monomer that does not contain a substituent of an electron-withdrawing group such as a carboxy group on the carbon atom at the ⁇ -position of the tertiary amino group.
  • Such (meth)acrylic monomers are not particularly limited, but examples include dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate. Can be mentioned. Among these, dimethylaminoethyl methacrylate and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate are preferred, and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate is preferred. is more preferable.
  • the affinity for the thermally conductive filler C1 tends to be further improved, and the dispersibility of the thermally conductive filler C1 tends to be further improved.
  • the monomer units ⁇ may be used alone or in combination of two or more.
  • the content of monomer unit ⁇ is, for example, 0.02 to 4.0 parts by weight with respect to 100 parts by weight of the total of monomer unit ⁇ , monomer unit ⁇ , and monomer unit ⁇ , Preferably it is 0.05 to 4.0 parts by weight, more preferably 0.07 to 3.0 parts by weight, even more preferably 0.08 to 2.0 parts by weight, and even more preferably 0.08 to 2.0 parts by weight. It is 1 to 1.0 parts by weight.
  • the content of the monomer unit ⁇ may be 0.3 parts by weight or more, or 0.8 parts by weight or less within the above range. When the content of the monomer unit ⁇ is within the above range, the dispersibility of the thermally conductive filler C1 tends to be further improved, and the viscosity of the first agent tends to be further reduced.
  • (meth)acrylic monomer unit ⁇ having a siloxane skeleton The monomer unit ⁇ is a repeating unit having a siloxane skeleton.
  • surfactant A1 has such a monomer unit, the affinity or compatibility between surfactant A1 and vinyl-modified organopolysiloxane B1 increases, and the viscosity of the first agent tends to decrease further. be.
  • Examples of the siloxane skeleton in the monomer unit ⁇ include organopolysiloxane skeletons such as dialkylpolysiloxane, diphenylpolysiloxane, and alkylphenylpolysiloxane.
  • the alkyl contained in the siloxane skeleton is not particularly limited, and examples thereof include methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group.
  • the phenyl group that the siloxane skeleton has is not particularly limited, but examples include phenyl groups and phenyl groups having substituents, and specific examples include phenyl groups and benzyl groups.
  • Examples of the substituent include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • Such (meth)acrylic monomers are not particularly limited, but include, for example, (meth)acrylic acid polysiloxanes in which the terminals of the siloxane skeleton are modified with (meth)acrylic acid as described above. Specific examples include ⁇ -butyl- ⁇ -(3-methacryloxypropyl)polydimethylsiloxane.
  • the monomer units ⁇ may be used alone or in combination of two or more.
  • the number average molecular weight of the monomer unit ⁇ is preferably 1,500 to 50,000, more preferably 3,000 to 30,000, and still more preferably 4,000 to 20,000.
  • the number average molecular weight of the monomer unit ⁇ is 1,500 or more, the curability when the first part and the second part are mixed tends to be improved.
  • the number average molecular weight of the monomer unit ⁇ is 50,000 or less, the viscosity of the first agent tends to be further reduced.
  • the number average molecular weight of the monomer unit ⁇ can be determined by GPC (gel permeation chromatography).
  • the content of the monomer unit ⁇ is, for example, 70.0 to 99.9 parts by weight with respect to the total of 100 parts by weight of the monomer unit ⁇ , monomer unit ⁇ , and monomer unit ⁇ , Preferably it is 80.0 to 99.5 parts by weight, preferably 90.0 to 99.0 parts by weight, more preferably 93.0 to 98.8 parts by weight, still more preferably 96.0 to 98.8 parts by weight. It is 98.7 parts by weight.
  • the content of the monomer unit ⁇ is within the above range, the dispersibility of the thermally conductive filler C1 tends to be further improved, and the viscosity of the first agent tends to be further reduced. Furthermore, the curability tends to improve when the first part and the second part are mixed.
  • the total content of monomer units ⁇ , monomer units ⁇ , and monomer units ⁇ in surfactant A1 is preferably 90% by weight or more based on the total amount of surfactant A1, It is more preferably 95% by weight or more, still more preferably 99% by weight or more, and even more preferably 100% by weight.
  • the upper limit of the total content of monomer units ⁇ , monomer units ⁇ , and monomer units ⁇ is not particularly limited, and is, for example, 100% by weight, 99% by weight, 98% by weight, or 95% by weight. It's good.
  • the method for manufacturing surfactant A1 is not particularly limited, and any known polymerization method for (meth)acrylic monomers can be used. Examples of polymerization methods include radical polymerization and anionic polymerization. Among these, radical polymerization is preferred.
  • Thermal polymerization initiators used in radical polymerization are not particularly limited, but include, for example, azo compounds such as azobisisobutyronitrile; organic peroxides such as benzoyl peroxide, tert-butyl hydroperoxide, and di-tert-butyl peroxide. Examples include things.
  • the photopolymerization initiator used in radical polymerization is not particularly limited, but includes benzoin derivatives.
  • known polymerization initiators used in living radical polymerization such as ATRP and RAFT can also be used.
  • the polymerization conditions are not particularly limited and can be adjusted as appropriate depending on the initiator used, the boiling point of the solvent, and other types of monomers.
  • the order of adding the monomers is not particularly limited, but for example, when synthesizing a random copolymer, the monomers may be mixed to start polymerization, or when synthesizing a block copolymer, the monomers may be mixed to start polymerization.
  • the monomers may be sequentially added to the polymerization system.
  • Organopolysiloxane B1 Vinyl-modified organopolysiloxane B1 (hereinafter also simply referred to as "organopolysiloxane B1") is an organopolysiloxane having a viscosity of 80 to 120 mPa ⁇ s and having at least one vinyl group. Organopolysiloxane B1 may have a vinyl group in a side chain and/or at a terminal. Such an organopolysiloxane has a structural unit represented by the following formula (b1-1) or a terminal structure represented by the formula (b1-2). Organopolysiloxane B1 includes, for example, at least one of a structural unit represented by formula (b1-1) and a terminal structure represented by formula (b1-2), and a structural unit represented by formula (b1-3). It may have.
  • R is any monovalent hydrocarbon group that may have a substituent. That is, in organopolysiloxane B1, any monovalent hydrocarbon group that may have a substituent is bonded to the side chain of the siloxane skeleton.
  • Examples of such monovalent hydrocarbon groups include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and dodecyl.
  • Alkyl groups such as groups; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, tolyl group, xylyl group, and naphthyl group; aralkyl groups such as benzyl group, 2-phenylethyl group, and 2-phenylpropyl group groups; and groups having substituents in these groups.
  • Examples of the substituent that the above-mentioned monovalent hydrocarbon group has include a halogen atom, particularly a fluorine atom or a chlorine atom.
  • Organopolysiloxane B1 is contained in the first agent singly or in combination of two or more.
  • the number of vinyl groups in organopolysiloxane B1 contained in the first agent is preferably 2.0 or more per molecule on average. That is, when the first agent contains one type of organopolysiloxane B1, it is preferable that the organopolysiloxane has two or more vinyl groups per molecule.
  • the arithmetic average of the number of vinyl groups in each organopolysiloxane is 2.0 or more.
  • the number of vinyl groups per molecule is 2.0 or more, when it is reacted with the hydrosilyl-modified organopolysiloxane E2 contained in the second agent, it forms a network structure, causing shear displacement and rupture. It tends to be possible to obtain a cured product with better mechanical strength such as elongation.
  • the upper limit of the number of vinyl groups in organopolysiloxane B1 is not particularly limited, and may be, for example, 4.0, 3.0, or 2.5 on average per molecule.
  • the average number of vinyl groups per molecule of organopolysiloxane B1 may be 2.0.
  • the average number of vinyl groups per molecule of organopolysiloxane B1 may be measured by NMR. Specifically, the measurement may be performed using, for example, ECP-300NMR manufactured by JEOL, and dissolving organopolysiloxane B1 in heavy chloroform as a heavy solvent. The average number of vinyl groups per molecule can be calculated by dividing the measurement results obtained in this way by the average molecular weight of organopolysiloxane B1.
  • the organopolysiloxane B1 contains at least an organopolysiloxane having vinyl groups at both ends.
  • an organopolysiloxane By using such an organopolysiloxane, it tends to be possible to adjust the crosslinking density when the first part and the second part are mixed. From the same viewpoint, it is preferable that the organopolysiloxane B1 contains at least polydimethylsiloxane having vinyl groups at both ends.
  • the viscosity of organopolysiloxane B1 at 25° C. may be, for example, 30 to 300 mPa ⁇ s, preferably 80 to 120 mPa ⁇ s, and more preferably 90 to 110 mPa ⁇ s.
  • the viscosity of organopolysiloxane B1 is 300 mPa ⁇ s or less, the viscosity of the first agent tends to decrease further.
  • the viscosity of organopolysiloxane B1 is 30 mPa ⁇ s or more, mechanical strength such as shear displacement and elongation at break in a cured product, which will be described later, tends to be further improved.
  • the viscosity of the organopolysiloxane at 25°C can be measured using a digital viscometer "DV-1" manufactured by BROOKFIELD.
  • DV-1 digital viscometer
  • rotor no Using the RV spindle set, rotor no.
  • the rotor Using a container that can accommodate the rotor and fill the organopolysiloxane up to the reference line, the rotor is immersed in the organopolysiloxane, and the viscosity is measured at 25° C. and a rotation speed of 10 rpm.
  • vinyl-modified organopolysiloxane B1 undergoes an addition reaction with hydrosilyl-modified organopolysiloxane E2 contained in the second agent in the presence of addition reaction catalyst D1.
  • addition reaction catalyst D1 By appropriately adjusting the number of vinyl groups and the number of hydrosilyl groups of vinyl-modified organopolysiloxane B1 and hydrosilyl-modified organopolysiloxane E2, and the viscosity, the viscosity of the first and second parts and the mixing of the first and second parts are adjusted.
  • the curing speed can be controlled.
  • the content of vinyl-modified organopolysiloxane B1 is preferably 60 to 99% by weight, more preferably 70 to 98% by weight, based on the total of components other than the thermally conductive filler C1 of the first part, More preferably, it is 80 to 95% by weight.
  • the content of vinyl-modified organopolysiloxane B1 is within the above range, the viscosity of the first agent tends to be further reduced.
  • Thermal conductive filler C1 The thermally conductive filler C1 is a filler that has thermal conductivity.
  • the thermal conductivity of the thermally conductive filler C1 is not particularly limited, but is, for example, 10 W/m ⁇ K or more, 20 W/m ⁇ K or more, or 30 W/m ⁇ K or more.
  • the upper limit of the thermal conductivity of the thermally conductive filler C1 is not particularly limited, and may be, for example, 400 W/m ⁇ K or 300 W/m ⁇ K.
  • thermally conductive filler C1 is not particularly limited, but includes, for example, aluminum oxide (hereinafter also referred to as "alumina"), aluminum nitride, silica, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, and metal.
  • alumina aluminum oxide
  • aluminum nitride aluminum nitride
  • silica aluminum nitride
  • boron nitride silicon nitride
  • zinc oxide aluminum hydroxide
  • metal examples include aluminum, magnesium oxide, diamond, carbon, indium, gallium, copper, silver, iron, nickel, gold, tin, and metallic silicon.
  • the first agent contains one or more types selected from the group consisting of boron nitride, aluminum nitride, aluminum oxide, silicon nitride, silicon oxide, magnesium oxide, metal aluminum, and zinc oxide as the thermally conductive filler C1. It is preferable that it contains one or more selected from the group consisting of aluminum oxide, magnesium oxide, aluminum nitride, and metal aluminum, and it is even more preferable that it contains aluminum oxide powder. This is because the thermally conductive filler has high thermal conductivity, high insulation properties, and is inexpensive.
  • the thermally conductive filler C1 may be used alone or in combination of two or more.
  • the average particle size of the thermally conductive filler C1 is preferably 0.05 to 120 ⁇ m, more preferably 0.1 to 60 ⁇ m. When the average particle size of the thermally conductive filler C1 is within the above range, the fluidity of the first agent and the dispersibility and filling properties of the thermally conductive filler C1 tend to be further improved.
  • the thermally conductive filler C1 may be a mixture of fillers having different average particle diameters.
  • the average particle size of the thermally conductive filler can be measured using, for example, "Laser Diffraction Particle Size Distribution Analyzer SALD-20" (trade name) manufactured by Shimadzu Corporation.
  • the evaluation sample is prepared, for example, by adding 50 ml of pure water and 5 g of the thermally conductive filler powder to be measured into a glass beaker, stirring with a spatula, and then performing dispersion treatment with an ultrasonic cleaner for 10 minutes. do. Thereafter, the solution of the thermally conductive filler powder subjected to the dispersion treatment is added drop by drop to the sampler section of the apparatus using a dropper, and the measurement is performed when the absorbance becomes stable.
  • the particle size distribution is calculated from data on the light intensity distribution of diffraction/scattering holes by particles detected by a sensor.
  • the average particle size is determined by multiplying the measured particle size value by the relative particle amount (difference %) and dividing by the total relative particle amount (100%). Note that the average particle size is the average diameter of particles, and can be determined as a cumulative weight average value D50 (median diameter). Note that D50 is the particle diameter with the highest appearance rate.
  • the content of the thermally conductive filler (C1-1) is preferably 30 to 70% by weight, more preferably 40 to 60% by weight, based on the total amount of the thermally conductive filler C1.
  • the content of the thermally conductive filler (C1-2) is preferably 10 to 50% by weight, more preferably 20 to 40% by weight, based on the total amount of the thermally conductive filler C1.
  • the content of the thermally conductive filler (C1-3) is preferably 5 to 30% by weight, more preferably 10 to 20% by weight, based on the total amount of the thermally conductive filler C1.
  • the thermally conductive filler C1 By using the thermally conductive filler C1 as described above, the fluidity of the first agent and the dispersibility and filling properties of the thermally conductive filler C1 tend to be further improved.
  • the average particle diameter in this specification shall mean D50 (median diameter).
  • the content of the thermally conductive filler C1 is, for example, 400 to 3000 parts by weight, preferably 1500 to 2400 parts by weight, and more preferably 1700 to 2400 parts by weight, based on 100 parts by weight of the vinyl-modified organopolysiloxane B1. It is 2200 parts by weight.
  • the content of the thermally conductive filler C1 is 400 parts by weight or more, the thermal conductivity of the obtained cured product tends to be further improved, and when it is 3000 parts by weight or less, the viscosity of the first agent is further reduced. There is a tendency.
  • the addition reaction catalyst D1 is not particularly limited as long as it catalyzes the addition reaction between the vinyl-modified organopolysiloxane B1 and the hydrosilyl-modified organopolysiloxane E2.
  • Examples of the addition reaction catalyst D1 include platinum compound catalysts, rhodium compound catalysts, palladium compound catalysts, and the like. Among these, platinum compound catalysts are preferred. By using such an addition reaction catalyst D1, the curing rate when the first part and the second part are mixed tends to be within a suitable range.
  • the platinum compound catalyst is not particularly limited, but includes, for example, simple platinum, platinum compounds, and platinum-supported inorganic powder.
  • the platinum compound include, but are not limited to, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, platinum coordination compounds, and the like.
  • the platinum-supported inorganic powder is not particularly limited, and examples thereof include platinum-supported alumina powder, platinum-supported silica powder, and platinum-supported carbon powder.
  • addition reaction catalyst D1 may be used alone or in combination of two or more. Further, when preparing the first agent, addition reaction catalyst D1 may be blended alone, or may be mixed in advance with other components such as vinyl-modified organopolysiloxane B1 or other organopolysiloxanes. May be blended.
  • the content of the addition reaction catalyst D1 is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight, based on 100 parts by weight of the vinyl-modified organopolysiloxane B1. More preferably, it is 1 to 10 parts by weight.
  • the curing rate when the first part and the second part are mixed tends to be within a suitable range.
  • the first part may contain additives such as a coloring agent and a reaction retarder, if necessary.
  • the content of the colorant is preferably 0.001 to 0.2 parts by weight based on 100 parts by weight of the total amount of the first agent.
  • the reaction retarder is not particularly limited as long as it is a component that retards the reaction when the first part and the second part are mixed, but examples thereof include alkenyl alcohols, among which 1-ethynyl-1-cyclohexanol is used. preferable.
  • the content of the reaction retarder is preferably 0.1 to 20 parts by weight, more preferably The amount is 0.5 to 10 parts by weight.
  • the reaction retarder may not be included in the first part but only in the second part.
  • the first agent has the following formula: R 1 a R 2 b Si(OR 3 ) 4-(a+b) (R 1 is each independently an alkyl group having 1 to 15 carbon atoms, R 2 is each independently a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, Each R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is 1 to 3, b is 0 to 2, and a+b is 1 to 3.) It is preferable that the organosilane represented by is not included.
  • Such organosilane has been conventionally used to improve the wettability of thermally conductive fillers, but it is not included in the first agent in the two-component curable composition set of this embodiment. Preferably not. According to such an embodiment, the viscosity of the first agent tends to be further reduced compared to the case where the organosilane as described above is included. The reason for this is not necessarily clear, but when the first agent contains an organosilane, the surfactant A1 and the organosilane compete as components that improve the wettability of the thermally conductive filler. It is conceivable that the effect of
  • R 1 in the above formula is not particularly limited, and examples thereof include a methyl group, ethyl group, propyl group, hexyl group, nonyl group, decyl group, dodecyl group, and tetradecyl group.
  • R 1 is preferably an alkyl group having 6 to 12 carbon atoms.
  • R2 in the above formula is not particularly limited, but includes, for example, alkyl groups such as methyl, ethyl, propyl, hexyl, and octyl; cycloalkyl groups such as cyclopentyl and cyclohexyl; vinyl and allyl groups; alkenyl groups such as phenyl groups, tolyl groups; aralkyl groups such as 2-phenylethyl groups and 2-methyl-2-phenylethyl groups; 3,3,3-trifluoropropyl groups, 2-( Examples include halogenated hydrocarbon groups such as perfluorobutyl)ethyl group, 2-(perfluorooctyl)ethyl group, and p-chlorophenyl group.
  • alkyl groups such as methyl, ethyl, propyl, hexyl, and octyl
  • cycloalkyl groups such as cyclopentyl and cyclohe
  • R 3 in the above formula is not particularly limited, but is, for example, an alkyl group having 1 to 6 carbon atoms such as a methyl group, ethyl group, propyl group, butyl group, pentyl group, or hexyl group, preferably a methyl group. Or it is an ethyl group.
  • a is an integer from 1 to 3, preferably 1.
  • b is an integer of 0 to 2, preferably 0.
  • a+b is an integer from 1 to 3, preferably 1.
  • the content of the organosilane in the first agent is preferably 1 part by weight or less, more preferably 0.1 part by weight or less, based on 100 parts by weight of the thermally conductive filler C1. It is preferably 0.01 part by weight or less, particularly preferably 0 part by weight (ie, does not contain organosilane). When the content of organosilane is within the above range, the wettability of the thermally conductive filler tends to be effectively improved.
  • Second Part consists of surfactant A2, vinyl-modified organopolysiloxane B2 with a viscosity of 80 to 120 mPas, thermally conductive filler C2, and hydrosilyl-modified organopolysiloxane with a viscosity of 1 to 100 mPas. It is preferable to include polysiloxane E2.
  • the second agent may contain other components as necessary.
  • Surfactant A2 Details such as specific examples and preferred embodiments of surfactant A2 are the same as those of surfactant A1 contained in the first agent, and redundant explanation will be omitted. Surfactant A1 contained in the first part and surfactant A2 contained in the second part may be the same or different.
  • the content of surfactant A2 is, for example, 3 to 28 parts by weight, preferably 4 to 25 parts by weight, based on a total of 100 parts by weight of vinyl-modified organopolysiloxane B2 and hydrosilyl-modified organopolysiloxane E2. Parts by weight, more preferably 5 to 20 parts by weight, still more preferably 5 to 15 parts by weight.
  • the content of the surfactant A2 is within the above range, the dispersibility of the thermally conductive filler C2 tends to be further improved, and the viscosity of the second agent tends to be further reduced.
  • Vinyl modified organopolysiloxane B2 Details such as specific examples and preferred embodiments of the vinyl-modified organopolysiloxane B2 are the same as those of the vinyl-modified organopolysiloxane B1 contained in the first agent, and redundant explanations will be omitted.
  • the vinyl-modified organopolysiloxane B1 contained in the first part and the vinyl-modified organopolysiloxane B2 contained in the second part may be the same or different.
  • the content of vinyl-modified organopolysiloxane B2 is preferably 30 to 98 parts by weight, more preferably is 40 to 95 parts by weight, more preferably 45 to 93 parts by weight.
  • the curing rate when the first part and the second part are mixed tends to be within a more suitable range.
  • the content of vinyl-modified organopolysiloxane B2 may be 90 parts by weight or less, 80 parts by weight or less, or 70 parts by weight or less within the above range.
  • Thermal conductive filler C2 Details such as specific examples and preferred embodiments of the thermally conductive filler C2 are the same as those of the thermally conductive filler C1 included in the first agent, and redundant explanation will be omitted.
  • the thermally conductive filler C1 contained in the first part and the thermally conductive filler C2 contained in the second part may be the same or different.
  • the content of the thermally conductive filler C2 is, for example, 400 to 3000 parts by weight, preferably 1500 to 2400 parts by weight, based on a total of 100 parts by weight of the vinyl-modified organopolysiloxane B2 and the hydrosilyl-modified organopolysiloxane E2. , more preferably 1,700 to 2,200 parts by weight.
  • the content of the thermally conductive filler C2 is 400 parts by weight or more, the thermal conductivity of the obtained cured product tends to be further improved, and when it is 3000 parts by weight or less, the viscosity of the second agent is further reduced. There is a tendency.
  • Organopolysiloxane E2 Hydrosilyl-modified organopolysiloxane E2 (hereinafter also simply referred to as "organopolysiloxane E2") is an organopolysiloxane having a viscosity of 1 to 100 mPa ⁇ s and having at least one hydrosilyl group. Organopolysiloxane E2 may have a hydrosilyl group in the side chain and/or at the end. Such an organopolysiloxane has a structural unit represented by the following formula (e2-1) or a terminal structure represented by the formula (e2-2). Organopolysiloxane E2 includes, for example, at least one of a structural unit represented by formula (e2-1) and a terminal structure represented by formula (e2-2), and a structural unit represented by formula (e2-3). It may have.
  • R is any monovalent hydrocarbon group which may have a substituent. That is, in organopolysiloxane E2, any monovalent hydrocarbon group that may have a substituent is bonded to the side chain of the siloxane skeleton.
  • Examples of such monovalent hydrocarbon groups include the same monovalent hydrocarbon groups that vinyl-modified organopolysiloxane B1 may have.
  • the viscosity of organopolysiloxane E2 at 25° C. is 1 to 100 mPa ⁇ s, preferably 2 to 80 mPa ⁇ s, and more preferably 3 to 50 mPa ⁇ s.
  • the viscosity of organopolysiloxane E2 is 100 mPa ⁇ s or less, the viscosity of the second agent tends to decrease further.
  • the viscosity of organopolysiloxane E2 is 1 mPa ⁇ s or more, mechanical strength such as shear displacement and elongation at break in a cured product, which will be described later, tends to be further improved.
  • the organopolysiloxane E2 contains a plurality of components, it is preferable that the above viscosity satisfies the above value for each of the plurality of components.
  • Organopolysiloxane E2 is contained in the second agent singly or in combination of two or more types.
  • the second agent contains at least a hydrosilyl-modified organopolysiloxane E22 having a hydrosilyl group in a side chain as the organopolysiloxane E2, and a hydrosilyl-modified organopolysiloxane E21 having a hydrosilyl group at both ends; It is more preferable to include organopolysiloxane E22.
  • Organopolysiloxane E21 has at least two hydrosilyl groups at both ends of the organopolysiloxane skeleton. Organopolysiloxane E21 may further have a hydrosilyl group in the side chain. Organopolysiloxane E21 may be an organopolysiloxane having hydrosilyl groups only at both ends.
  • Organopolysiloxane E22 has at least one hydrogen atom in the side chain of the organopolysiloxane skeleton, and the hydrogen atom and silicon atom constitute a hydrosilyl group. Organopolysiloxane E22 may further have hydrosilyl groups at both ends of the organopolysiloxane skeleton.
  • the number of hydrosilyl groups in organopolysiloxane E22 is preferably more than 2.0 on average per molecule, more preferably 2.5 or more on average per molecule, even more preferably on average per molecule. 3.0 or more. Note that the upper limit of the number of hydrosilyl groups in organopolysiloxane E22 is not particularly limited, and may be, for example, 8.0, 6.0, or 5.0 on average per molecule.
  • the number of hydrosilyl groups in the organopolysiloxane E2 contained in the second agent is preferably more than 2.0 on average per molecule, more preferably 2.5 or more on average per molecule. That is, when the second agent contains one type of organopolysiloxane E2, it is preferable that the organopolysiloxane has more than two (that is, three or more) hydrosilyl groups per molecule. When the second agent contains two or more types of organopolysiloxanes E2, the arithmetic average of the number of hydrosilyl groups in each organopolysiloxane is preferably more than 2.0.
  • organopolysiloxane E21 and organopolysiloxane E22 can be controlled separately as described above, by appropriately mixing them and using them, while controlling the viscosity of the second agent, It tends to be possible to control the reactivity with the first agent.
  • the second agent contains organopolysiloxane E22, it forms a network structure when reacting with vinyl-modified organopolysiloxanes B1 and B2, resulting in a cured product with better mechanical strength such as shear displacement and elongation at break. You tend to be able to get it.
  • the average number of hydrosilyl groups per molecule of organopolysiloxane E2 may be measured by NMR. Specifically, the measurement may be performed by dissolving organopolysiloxane E2 in heavy chloroform as a heavy solvent using, for example, ECP-300NMR manufactured by JEOL. The average number of hydrosilyl groups per molecule can be calculated by dividing the measurement results obtained in this manner by the average molecular weight of organopolysiloxane E2.
  • the viscosity of organopolysiloxane E21 at 25° C. is preferably 5 to 100 mPa ⁇ s, more preferably 10 to 80 mPa ⁇ s, and still more preferably 15 to 50 mPa ⁇ s.
  • the viscosity of organopolysiloxane E21 is 100 mPa ⁇ s or less, the viscosity of the second agent tends to decrease further.
  • the viscosity of organopolysiloxane E21 is 5 mPa ⁇ s or more, mechanical strength such as shear displacement and elongation at break in a cured product, which will be described later, tends to be further improved.
  • the viscosity of organopolysiloxane E22 at 25° C. is preferably 1 to 100 mPa ⁇ s, more preferably 2 to 90 mPa ⁇ s, and still more preferably 3 to 80 mPa ⁇ s.
  • the viscosity of organopolysiloxane E22 is 100 mPa ⁇ s or less, the viscosity of the second agent tends to decrease further.
  • the viscosity of organopolysiloxane E22 is 1 mPa ⁇ s or more, mechanical strength such as shear displacement and elongation at break in a cured product, which will be described later, tends to be further improved.
  • the viscosity of organopolysiloxane E22 at 25° C. may be 60 to 80 mPa ⁇ s within the above range.
  • the content of hydrosilyl-modified organopolysiloxane E2 is preferably 2 to 70 parts by weight, more preferably is 5 to 60 parts by weight, more preferably 7 to 55 parts by weight.
  • the curing rate when the first part and the second part are mixed tends to be within a more suitable range.
  • the content of the hydrosilyl-modified organopolysiloxane E2 may be 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more within the above range.
  • the total content of vinyl-modified organopolysiloxane B2 and hydrosilyl-modified organopolysiloxane E2 is preferably 60 to 99% by weight, more preferably is 70 to 98% by weight, more preferably 80 to 95% by weight.
  • reaction retarder F2 is an additive that is optionally added to control the reaction between the hydrosilyl group and the vinylsilyl group.
  • the first part contains the addition reaction catalyst D1 and the second part contains a reaction retarder.
  • the reaction retarder F2 is not particularly limited as long as it is a component that retards the reaction when the first part and the second part are mixed, but examples thereof include alkenyl alcohols, among which 1-ethynyl-1-cyclohexanol is preferred. By using such a reaction retarder F2, the curing rate when the first part and the second part are mixed tends to be within a suitable range.
  • the content of the reaction retarder F2 is preferably 0.1 to 20 parts by weight based on a total of 100 parts by weight of the vinyl-modified organopolysiloxane B2 and the hydrosilyl-modified organopolysiloxane E2. Parts by weight, more preferably 0.5 to 10 parts by weight.
  • the content of the reaction retarder F2 is within the above range, the curing rate when the first part and the second part are mixed tends to be within a suitable range.
  • the second agent may contain additives such as colorants, if necessary. Details such as specific examples, preferred embodiments, and content of the colorant are the same as those for the first agent, and redundant explanations will be omitted.
  • the additives contained in the first part and the additives contained in the second part may be the same or different.
  • the second agent has the following formula: R 1 a R 2 b Si(OR 3 ) 4-(a+b) (R 1 is each independently an alkyl group having 1 to 15 carbon atoms, R 2 is each independently a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, Each R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is 1 to 3, b is 0 to 2, and a+b is 1 to 3.) It is preferable that the organosilane represented by is not included. By not containing the organosilane, the viscosity of the second agent tends to be further reduced.
  • organosilane described above are the same as the organosilane that is preferably not included in the first agent. Further, the preferable content of the organosilane in the second part is also the same as that in the first part.
  • the two-component curable composition set of this embodiment can be suitably used as a thermally conductive heat dissipating material such as thermally conductive grease.
  • the cured product of this embodiment is obtained by mixing the first part and the second part in the above-mentioned two-component curable composition set. More specifically, the cured product (crosslinked cured product) is a mixture obtained by mixing the first part and the second part, in which two or more types of reactive groups undergo an addition reaction, a condensation reaction, a radical reaction, etc. By doing so, the above-mentioned cured product is obtained.
  • the vinyl-modified organopolysiloxanes B1 and B2 are The above-mentioned cured product is obtained by the addition reaction between the group and the hydrosilyl group of the hydrosilyl-modified organopolysiloxane E2.
  • a cured product having a desired shape can be obtained by molding it into a desired shape before curing.
  • the cured product of this embodiment contains a thermally conductive filler, it can be suitably used as a thermally conductive heat dissipating material.
  • a mixer such as a roll mill, kneader, Banbury mixer, or line mixer is used, for example. More specifically, examples include a method of kneading using a universal mixer, a hybrid mixer, a trimix (manufactured by Inoue Seisakusho), and a static mixer.
  • a doctor blade method is preferred as the molding method, but extrusion methods, press methods, calender roll methods, etc. may also be used depending on the viscosity of the resin.
  • the reaction conditions for the addition reaction are not particularly limited, but it is usually carried out at room temperature (for example, 25°C) to 150°C for 0.1 to 24 hours.
  • the electronic device of this embodiment includes an electronic component, a cured product, and a heat sink, and the electronic component and the heat sink are in contact with each other via the cured product.
  • electronic components include, but are not particularly limited to, electronic components that generate heat, such as motors, battery packs, circuit boards mounted on vehicle power supply systems, power transistors, microprocessors, and the like.
  • the heat sink is not particularly limited, but includes, for example, a casing, particularly a metal casing.
  • ((meth)acrylic monomer ⁇ having a siloxane skeleton) ( ⁇ -1) ⁇ -butyl- ⁇ -(3-methacryloxypropyl)polydimethylsiloxane), “Siraplane FM-0725” manufactured by JNC, number average molecular weight 10,000 ( ⁇ -2) ⁇ -butyl- ⁇ -(3-methacryloxypropyl)polydimethylsiloxane), “Siraplane FM-0721” manufactured by JNC, number average molecular weight 5000 ( ⁇ -3) ⁇ -butyl- ⁇ -(3-methacryloxypropyl)polydimethylsiloxane), “Siraplane FM-0711” manufactured by JNC, number average molecular weight 1000
  • Surfactant 1 was synthesized as follows. First, in an autoclave equipped with a stirrer, 1.5 parts by weight of acrylic acid, 0.5 parts by weight of 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, and ⁇ -butyl- ⁇ -( 98.0 parts by weight of 3-methacryloxypropyl) polydimethylsiloxane ( ⁇ -1) was added.
  • the polymerization rate based on 100% monomer charge amount was 98% or more when analyzed by gas chromatography. From this, it was estimated that the ratio of each monomer unit in the surfactant was approximately the same as the monomer loading ratio.
  • the weight average molecular weight of the obtained surfactant 1 was determined as a standard polystyrene equivalent weight average molecular weight using GPC (gel permeation chromatography) method.
  • GPC gel permeation chromatography
  • Surfactant 2-14 The composition ratio of (meth)acrylic monomers listed in Table 1 was used, except that the mixing ratio of toluene and isopropyl alcohol was adjusted to control the solubility of the monomer and the weight average molecular weight of the surfactant.
  • Surfactants 2 to 14 were obtained by radical polymerization in the same manner as in Surfactant 1. The polymerization rates of the obtained surfactants 2 to 14 were all 98% or more, and the ratio of each monomer unit contained in the surfactant was estimated to be about the same as the monomer charge ratio. Moreover, the weight average molecular weight was also determined in the same manner as above.
  • composition of monomers is shown in weight %.
  • the weight ratio of ⁇ -butyl- ⁇ -(3-methacryloxypropyl)polydimethylsiloxane was calculated based on its number average molecular weight.
  • A1-1 to 1-14 Surfactants 1 to 14 obtained by the above synthesis method (A1-1 to 1-14 correspond to surfactants 1 to 14 in order, respectively.)
  • A1-15 Z6210 (manufactured by Dow Toray Industries, Inc., trade name), n-decyltrimethoxysilane
  • C1-1 Thermal conductive filler
  • C1-1 DAW45S (manufactured by Denka, trade name), spherical alumina, average particle size: 45 ⁇ m, thermal conductivity 35 W/m ⁇ K C1-2: DAW05 (manufactured by Denka, trade name), spherical alumina, average particle size: 5 ⁇ m, thermal conductivity 35 W/m ⁇ K C1-3: ASFP40 (manufactured by Denka, trade name), ultrafine powder alumina, average particle size: 0.4 ⁇ m, thermal conductivity 35 W/m ⁇ K C1-4: DMG60 (manufactured by Denka, trade name), magnesium oxide, average particle size: 60 ⁇ m, thermal conductivity 60 W/m ⁇ K C1-5: AN-HF50LG (manufactured by Yasushi Gosei Co., Ltd., trade name), aluminum nitride, average particle size: 50 ⁇ m, thermal conductivity 170 W/m ⁇ K C1-6: Al-63
  • D1-1 Platinum complex polymethylvinylsiloxane solution (manufactured by Blue Star Silicone Co., Ltd., product name: Silicoreath Catalyst 12070)
  • Second agent The following A2 component to C2 component, E2 component, and F2 component were mixed based on the blending ratio (parts by weight) listed in Table 3 to prepare second agent II-1 to II-34. did. The components were mixed using a hybrid mixer ARE-310 (manufactured by Shinky Co., Ltd., trade name).
  • A2-1 to 1-14 Surfactants 1 to 14 obtained by the above synthesis method (A2-1 to 1-14 correspond to surfactants 1 to 14 in order, respectively.)
  • A2-15 Z6210 (manufactured by Dow Toray Industries, Inc., trade name), n-decyltrimethoxysilane
  • B2 Vinyl-modified organopolysiloxane
  • B2-1 RH-Vi100E (manufactured by Runhe Chemical Industry, trade name), vinyl-modified organopolysiloxane, viscosity at 25°C: 105 mPa ⁇ s, average number of vinyl groups per molecule: 2, linear structure, vinyl Group bonding position: Both ends
  • C2 Thermal conductive filler
  • C2-1 DAW45S (manufactured by Denka, trade name), spherical alumina, average particle size: 45 ⁇ m, thermal conductivity 35 W/m ⁇ K
  • C2-2 DAW05 (manufactured by Denka, trade name), spherical alumina, average particle size: 5 ⁇ m, thermal conductivity 35 W/m ⁇ K C2-3: ASFP40 (manufactured by Denka, trade name), ultrafine alumina powder, average particle size: 0.4 ⁇ m, thermal conductivity 35 W/m ⁇ K C2-4: DMG60 (manufactured by Denka, trade name), magnesium oxide, average particle size: 60 ⁇ m, thermal conductivity 60 W/m ⁇ K C2-5: AN-HF50LG (manufactured by Yasushi Gosei Co., Ltd., trade name), aluminum nitride, average particle size: 50 ⁇ m, thermal conductivity 170 W/m ⁇ K C2-6: Al-
  • E2 Hydrosilyl-modified organopolysiloxane
  • E2-1 RH-LHC-3 (manufactured by Runhe Chemical Industry, trade name), hydrosilyl-modified organopolysiloxane, viscosity at 25°C: 5 mPa ⁇ s, average number of hydrosilyl groups per molecule: 3 or more
  • linear Structure, hydrosilyl group bonding position: side chain E2-2: 626V30H2.5 (manufactured by Elkem, trade name), hydrosilyl-modified organopolysiloxane, viscosity at 25°C: 30 mPa ⁇ s, average number of hydrosilyl groups per molecule: 3
  • E2-3 RH-H45 (manufactured by Runhe Chemical Industry, trade name), hydrosilyl-modified organopolysiloxane, viscosity at 25°C: 20 mPa ⁇
  • F2-1 PA90 (manufactured by Elkem, trade name), a mixture of 1-ethynyl-1-cyclohexanol, polyorganosiloxane, and filler
  • the viscosity of the first and second agents at 25° C. and a shear rate of 10 s ⁇ 1 was measured using a rotary rheometer “HANKE MARS III” manufactured by Thermo Fisher Scientific. Specifically, the measurement was performed using a parallel plate with a diameter of 35 mm ⁇ , a gap of 0.5 mm, a temperature of 25° C., and a shear rate of 10 s ⁇ 1 . The results are shown in Table 4.
  • Thermal resistance value and thermal conductivity of the first part and the second part were measured using a resin material thermal resistance measuring device manufactured by Hitachi Technologies Co., Ltd. by a method based on ASTM D5470.
  • each of the first and second agents was applied to a measurement area of 10 mm x 10 mm in thicknesses of 0.2 mm, 0.5 mm, and 1.0 mm, and the thermal resistance values of each were measured. did.
  • the thermal conductivity of the first and second parts was calculated by calculating the slope of a straight line with the thermal resistance value as the vertical axis and the thickness of the first and second parts as the horizontal axis.
  • Table 4 shows the measurement results of thermal resistance value and thermal conductivity.
  • the two-part curable composition sets of Comparative Examples 7, 15, 18, 19, 26, 27, 29 to 34, in which the viscosity of the first part and/or the second part exceeds 120 Pa ⁇ s have poor discharge properties. It was not easy to handle.
  • the thermal resistance value of the first and second parts at a thickness of 1.0 mm measured by a method based on ASTM D5470 is 1.4 to 2.1 cm 2 °C/W, respectively.
  • cured products with excellent thermal conductivity could be obtained from the two-component curable composition set of Examples.
  • the cured product obtained from the two-part curable composition set of Comparative Example 14 in which the heat resistance value of the first part and/or the second part exceeds 2.1 cm 2 ⁇ °C/W is as follows. Thermal conductivity was not sufficient.
  • the thermal conductivity of the cured product is 4.7 W/m ⁇ K or more, it is evaluated as having excellent thermal conductivity, and when the thermal conductivity is less than 4.7 W/m ⁇ K, it is evaluated as having poor thermal conductivity. did.
  • the mixture obtained by mixing the first and second agents in the combinations shown in Table 4 at a volume ratio of 1:1 was applied to the measurement surface of a resin material thermal resistance measuring device manufactured by Hitachi Technologies, Ltd. A load of 50 N was applied to a measurement area of 10 mm x 10 mm. The thickness of the mixture at that time was determined as the minimum thickness of the film that could be formed. The measurement results are shown in Table 4.
  • the two-component curable composition set of this embodiment is a thermally conductive cured product, in particular, for thermally bonding a heating element and a heat sink by mixing and curing a first part and a second part. It has industrial applicability as a material.

Abstract

The present invention provides a two-pack type curable composition set which comprises a first agent and a second agent, wherein: the respective thermal resistances at a thickness of 1.0 mm of the first agent and the second agent as determined by a specific method in accordance with ASTM D5470 are independently within the range of 1.4 to 2.1 cm2∙°C/W; and the respective viscosities of the first agent and the second agent as determined by a rotational rheometer are independently within the range of 50 to 120 Pa∙s.

Description

二液硬化型組成物セット、硬化物及び電子機器Two-part curable composition set, cured products and electronic equipment
 本発明は、二液硬化型組成物セット、硬化物及び電子機器に関する。 The present invention relates to a two-component curable composition set, a cured product, and an electronic device.
 パソコンのCPU(中央処理装置)等の発熱性電子部品の小型化、高出力化に伴い、それらの電子部品から発生する単位面積当たりの熱量は非常に大きくなってきている。それらの熱量は、アイロンの約20倍の熱量にも達する。この発熱性の電子部品を長期にわたり故障しないようにするためには、発熱する電子部品の冷却が必要とされる。冷却には、金属製のヒートシンクや筐体が使用されるが、発熱性電子部品とヒートシンク等とをそのまま接触させた場合、その界面において、微視的には空気が存在し、熱伝導の障害となることがある。したがって、効率よく熱を伝えるために、発熱性電子部品とヒートシンク等は、その間に熱伝導性材料を介して配置されることがある。 With the miniaturization and increase in output of heat-generating electronic components such as the CPU (central processing unit) of personal computers, the amount of heat generated by these electronic components per unit area has become extremely large. The amount of heat they produce is about 20 times that of an iron. In order to prevent these heat-generating electronic components from failing over a long period of time, it is necessary to cool the heat-generating electronic components. Metal heat sinks and casings are used for cooling, but when heat-generating electronic components and heat sinks are brought into direct contact, air exists microscopically at the interface, which impedes heat conduction. It may become. Therefore, in order to efficiently transfer heat, a heat-generating electronic component and a heat sink or the like are sometimes placed with a thermally conductive material interposed therebetween.
 熱伝導性材料としては、例えば室温硬化型の液状シリコーンゴムに熱伝導性粉末を添加した熱伝導性グリースが使用されている。室温硬化型の液状シリコーンゴムは、主に一液タイプと二液タイプに分類され、二液タイプはさらに縮合反応型と付加反応型に分けられる。二液タイプの液状シリコーンゴムを含む熱伝導性グリースは、組成の異なる二種の組成物を含む二液硬化型組成物セットとして使用されている。 The thermally conductive material used is, for example, a thermally conductive grease prepared by adding thermally conductive powder to room temperature curing liquid silicone rubber. Room temperature curable liquid silicone rubbers are mainly classified into one-component types and two-component types, and the two-component types are further divided into condensation reaction types and addition reaction types. Two-component type thermally conductive grease containing liquid silicone rubber is used as a two-component curable composition set containing two types of compositions having different compositions.
 例えば、特許文献1には、アルケニル基を含有するオルガノポリシロキサン、オルガノハイドロジェンポリシロキサン、白金触媒、及び接着性付与剤を含む付加反応型シリコーンゴム組成物が、硬化阻害物質の影響を受けにくく、優れた接着性を有することが記載されている。 For example, Patent Document 1 discloses that an addition reaction silicone rubber composition containing an alkenyl group-containing organopolysiloxane, an organohydrogenpolysiloxane, a platinum catalyst, and an adhesion promoter is less susceptible to curing inhibitors. It is described that it has excellent adhesive properties.
特開2006-22284号公報Japanese Patent Application Publication No. 2006-22284
 二液硬化型組成物セットは、二種の組成物を混合させた後、所定の部分に塗布等して使用される。一般に当該二種の組成物から得られる硬化物の熱伝導性は、熱伝導性フィラーの添加量や種類を調整することにより制御される。ここで、熱伝導性を高めるために熱伝導性フィラーを増やしすぎてしまうと、当該二種の組成物及びその混合物の粘度が上昇し、塗布性能等の取り扱い性が低下してしまうという問題がある。 The two-component curable composition set is used by mixing two types of compositions and then applying the mixture to a predetermined area. Generally, the thermal conductivity of the cured product obtained from the two types of compositions is controlled by adjusting the amount and type of thermally conductive filler added. Here, if the amount of thermally conductive filler is increased too much in order to increase thermal conductivity, the viscosity of the two types of compositions and their mixtures will increase, resulting in a problem that the handling properties such as application performance will decrease. be.
 本発明者らが特許文献1に記載のような従来の熱伝導性グリースを検討したところ、従来の熱伝導性グリースは取り扱い性及び熱伝導性の少なくとも一方が不十分であることがわかった。 When the present inventors investigated conventional thermally conductive greases such as those described in Patent Document 1, it was found that the conventional thermally conductive greases were insufficient in at least one of handleability and thermal conductivity.
 そこで、本発明は、上記の課題に鑑みてなされたものであり、取り扱い性及び熱伝導性に優れた、二液硬化型組成物セット、及び当該二液硬化型組成物セットから得られる硬化物、並びに当該硬化物を備える電子機器を提供することを目的とする。 Therefore, the present invention was made in view of the above problems, and provides a two-component curable composition set with excellent handleability and thermal conductivity, and a cured product obtained from the two-component curable composition set. , and an electronic device provided with the cured product.
 本発明者らは、上記目的を達成するために鋭意検討した結果、第一剤及び第二剤の熱抵抗値及び粘度が所定の範囲にある二液硬化型組成物セットが上記課題を解決し得ることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that a two-component curable composition set in which the heat resistance value and viscosity of the first and second parts are within a predetermined range solves the above problems. The present inventors have discovered that the present invention can be obtained, and have completed the present invention.
 すなわち、本発明は以下のとおりである。
[1]
 第一剤と、第二剤とを備え、
 前記第一剤及び前記第二剤のASTM D5470に準拠した方法により測定される1.0mm厚での熱抵抗値が、それぞれ独立して、1.4~2.1cm・℃/Wであり、
 前記第一剤及び前記第二剤の回転式レオメータにて測定される粘度が、それぞれ独立して、50~120Pa・sである、
 二液硬化型組成物セット。
[2]
 前記第一剤が、界面活性剤A1と、粘度が80~120mPa・sであるビニル変性オルガノポリシロキサンB1と、熱伝導性フィラーC1と、付加反応触媒D1と、を含み、
 前記第二剤が、界面活性剤A2と、粘度が80~120mPa・sであるビニル変性オルガノポリシロキサンB2と、熱伝導性フィラーC2と、粘度が1~100mPa・sであるヒドロシリル変性オルガノポリシロキサンE2と、を含む、
 [1]に記載の二液硬化型組成物セット。
[3]
 前記ビニル変性オルガノポリシロキサンB1及び前記ビニル変性オルガノポリシロキサンB2は、それぞれ独立して、一分子あたり平均して2.0個以上のビニル基を有し、
 前記ヒドロシリル変性オルガノポリシロキサンE2は、一分子あたり平均して2.0個超のヒドロシリル基を有する、
 [2]に記載の二液硬化型組成物セット。
[4]
 前記第一剤において、前記ビニル変性オルガノポリシロキサンB1 100重量部に対して、
 前記界面活性剤A1の含有量が、5~25重量部であり、
 前記熱伝導性フィラーC1の含有量が、1500~2400重量部である、
 [2]又は[3]に記載の二液硬化型組成物セット。
[5]
 前記第二剤において、前記ビニル変性オルガノポリシロキサンB2及び前記ヒドロシリル変性オルガノポリシロキサンE2の合計100重量部に対して、
 前記界面活性剤A2の含有量が、5~25重量部であり、
 前記熱伝導性フィラーC2の含有量が、1500~2400重量部である、
 [2]~[4]のいずれか1つに記載の二液硬化型組成物セット。
[6]
 前記界面活性剤A1及び前記界面活性剤A2が、カルボキシ基を有する(メタ)アクリル系単量体単位αと、第三級アミノ基を有する(メタ)アクリル系単量体単位βと、シロキサン骨格を有する(メタ)アクリル系単量体単位γとを有する共重合体である、
 [2]~[5]のいずれか1つに記載の二液硬化型組成物セット。
[7]
 前記単量体単位γの数平均分子量が1,500~50,000である、
 [6]に記載の二液硬化型組成物セット。
[8]
 前記共重合体において、前記単量体単位α、前記単量体単位β、及び前記単量体単位γの合計100重量部に対して、
 前記単量体単位αの含有量が0.08~6.0重量部であり、
 前記単量体単位βの含有量が0.02~4.0重量部であり、
 前記単量体単位γの含有量が90.0~99.9重量部である、
 [6]又は[7]に記載の二液硬化型組成物セット。
[9]
 前記界面活性剤A1及び前記界面活性剤A2の重量平均分子量が、それぞれ独立して20,000~150,000である、
 [2]~[8]のいずれか1つに記載の二液硬化型組成物セット。
[10]
 前記ヒドロシリル変性オルガノポリシロキサンE2が、両末端にヒドロシリル基を有するヒドロシリル変性オルガノポリシロキサンE21と、側鎖にヒドロシリル基を有するヒドロシリル変性オルガノポリシロキサンE22と、を含む、
 [2]~[9]のいずれか1つに記載の二液硬化型組成物セット。
[11]
 前記熱伝導性フィラーC1及び前記熱伝導性フィラーC2が、それぞれ独立して、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、窒化ケイ素、酸化ケイ素、酸化マグネシウム、金属アルミニウム、及び酸化亜鉛からなる群より選ばれる一種以上である、
 [2]~[10]のいずれか1つに記載の二液硬化型組成物セット。
[12]
 前記熱伝導性フィラーC1及び前記熱伝導性フィラーC2が酸化アルミニウム粉末を含む、
 [11]に記載の二液硬化型組成物セット。
[13]
 前記第一剤と前記第二剤を等体積で混合しシート状に成型後、60℃で20分間加熱硬化させて得られるシートのJIS C2110に準拠して測定される耐電圧が8kV/mm以上である、
 [1]~[12]のいずれか1つに記載の二液硬化型組成物セット。
[14]
 前記第一剤と前記第二剤を等体積で混合した混合物に、10mm×10mmの領域当たり50N荷重をかけた際の前記混合物の厚さが、70~120μmである、
 [1]~[13]のいずれか1つに記載の二液硬化型組成物セット。
[15]
 前記第一剤及び前記第二剤が、下記式:
  R Si(OR4-(a+b)
(Rは、各々独立して、炭素数1~15のアルキル基であり、Rは、各々独立して、炭素数1~8の飽和又は不飽和の1価の炭化水素基であり、Rは、各々独立して、炭素数1~6のアルキル基であり、aは1~3であり、bは0~2であり、a+bは1~3である。)
で表されるオルガノシランを含んでいない、
 [1]~[14]のいずれか1つに記載の二液硬化型組成物セット。
[16]
 熱伝導性放熱材料として使用される、
 [1]~[15]のいずれか1つに記載の二液硬化型組成物セット。
[17]
 [1]~[16]のいずれか1つに記載の二液硬化型組成物セットにおける、第一剤と第二剤の混合物から得られる、
 硬化物。
[18]
 熱伝導性放熱材料として使用される、
 [17]に記載の硬化物。
[19]
 電子部品と、[18]に記載の硬化物と、ヒートシンクと、を備え、
 前記電子部品及び前記ヒートシンクが、前記硬化物を介して接触している、
 電子機器。
That is, the present invention is as follows.
[1]
Comprising a first agent and a second agent,
The thermal resistance value of the first part and the second part at a thickness of 1.0 mm measured by a method in accordance with ASTM D5470 is 1.4 to 2.1 cm 2 °C/W, respectively. ,
The viscosity of the first agent and the second agent as measured by a rotary rheometer is 50 to 120 Pa·s, respectively;
Two-component curing composition set.
[2]
The first agent includes a surfactant A1, a vinyl-modified organopolysiloxane B1 having a viscosity of 80 to 120 mPa s, a thermally conductive filler C1, and an addition reaction catalyst D1,
The second agent comprises a surfactant A2, a vinyl-modified organopolysiloxane B2 having a viscosity of 80 to 120 mPas, a thermally conductive filler C2, and a hydrosilyl-modified organopolysiloxane having a viscosity of 1 to 100 mPas. E2 and
The two-component curable composition set according to [1].
[3]
The vinyl-modified organopolysiloxane B1 and the vinyl-modified organopolysiloxane B2 each independently have an average of 2.0 or more vinyl groups per molecule,
The hydrosilyl-modified organopolysiloxane E2 has an average of more than 2.0 hydrosilyl groups per molecule,
The two-component curable composition set according to [2].
[4]
In the first agent, based on 100 parts by weight of the vinyl-modified organopolysiloxane B1,
The content of the surfactant A1 is 5 to 25 parts by weight,
The content of the thermally conductive filler C1 is 1500 to 2400 parts by weight,
The two-component curable composition set according to [2] or [3].
[5]
In the second agent, based on a total of 100 parts by weight of the vinyl-modified organopolysiloxane B2 and the hydrosilyl-modified organopolysiloxane E2,
The content of the surfactant A2 is 5 to 25 parts by weight,
The content of the thermally conductive filler C2 is 1500 to 2400 parts by weight,
The two-component curable composition set according to any one of [2] to [4].
[6]
The surfactant A1 and the surfactant A2 have a (meth)acrylic monomer unit α having a carboxy group, a (meth)acrylic monomer unit β having a tertiary amino group, and a siloxane skeleton. A copolymer having a (meth)acrylic monomer unit γ having
The two-component curable composition set according to any one of [2] to [5].
[7]
The number average molecular weight of the monomer unit γ is 1,500 to 50,000,
The two-component curable composition set according to [6].
[8]
In the copolymer, for a total of 100 parts by weight of the monomer unit α, the monomer unit β, and the monomer unit γ,
The content of the monomer unit α is 0.08 to 6.0 parts by weight,
The content of the monomer unit β is 0.02 to 4.0 parts by weight,
The content of the monomer unit γ is 90.0 to 99.9 parts by weight,
The two-component curable composition set according to [6] or [7].
[9]
The weight average molecular weights of the surfactant A1 and the surfactant A2 are each independently from 20,000 to 150,000,
The two-component curable composition set according to any one of [2] to [8].
[10]
The hydrosilyl-modified organopolysiloxane E2 includes a hydrosilyl-modified organopolysiloxane E21 having a hydrosilyl group at both ends, and a hydrosilyl-modified organopolysiloxane E22 having a hydrosilyl group in a side chain.
The two-component curable composition set according to any one of [2] to [9].
[11]
The thermally conductive filler C1 and the thermally conductive filler C2 are each independently selected from the group consisting of boron nitride, aluminum nitride, aluminum oxide, silicon nitride, silicon oxide, magnesium oxide, metallic aluminum, and zinc oxide. more than one type,
The two-component curable composition set according to any one of [2] to [10].
[12]
the thermally conductive filler C1 and the thermally conductive filler C2 include aluminum oxide powder;
The two-component curable composition set according to [11].
[13]
The first part and the second part are mixed in equal volumes, molded into a sheet, and then heated and cured at 60°C for 20 minutes.The withstand voltage of the sheet obtained according to JIS C2110 is 8 kV/mm or more. is,
The two-component curable composition set according to any one of [1] to [12].
[14]
The thickness of the mixture when a load of 50 N is applied per 10 mm x 10 mm area is 70 to 120 μm to a mixture of the first agent and the second agent in equal volumes.
The two-component curable composition set according to any one of [1] to [13].
[15]
The first agent and the second agent have the following formula:
R 1 a R 2 b Si(OR 3 ) 4-(a+b)
(R 1 is each independently an alkyl group having 1 to 15 carbon atoms, R 2 is each independently a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, Each R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is 1 to 3, b is 0 to 2, and a+b is 1 to 3.)
Does not contain organosilane represented by
The two-component curable composition set according to any one of [1] to [14].
[16]
Used as a thermally conductive heat dissipation material,
The two-component curable composition set according to any one of [1] to [15].
[17]
Obtained from a mixture of the first part and the second part in the two-component curable composition set according to any one of [1] to [16],
cured product.
[18]
Used as a thermally conductive heat dissipation material,
The cured product according to [17].
[19]
Comprising an electronic component, the cured product according to [18], and a heat sink,
the electronic component and the heat sink are in contact with each other via the cured product;
Electronics.
 本発明によれば、取り扱い性及び熱伝導性に優れた、二液硬化型組成物セット、及び当該二液硬化型組成物セットから得られる硬化物、並びに当該硬化物を備える電子機器を提供することができる。 According to the present invention, there is provided a two-component curable composition set, a cured product obtained from the two-component curable composition set, and an electronic device equipped with the cured product, which has excellent handleability and thermal conductivity. be able to.
 以下、本発明の実施形態(以下、「本実施形態」という。)について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 Hereinafter, an embodiment of the present invention (hereinafter referred to as "this embodiment") will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist thereof.
1.二液硬化型組成物セット
 本実施形態の二液硬化型組成物セットは第一剤と、第二剤とを備え、第一剤及び第二剤のASTM D5470に準拠した方法により測定される1.0mm厚での熱抵抗値が、それぞれ独立して、1.4~2.1cm・℃/W(両端値を含む。以下本明細書中、特に言及する場合を除き同様である。)であり、第一剤及び第二剤の回転式レオメータにて測定される粘度が、それぞれ独立して、50~120Pa・sである。
1. Two-component curable composition set The two-component curable composition set of this embodiment includes a first agent and a second agent, and the 1 The thermal resistance value at a thickness of .0 mm is independently 1.4 to 2.1 cm 2 °C/W (both extreme values are included. The same applies hereinafter in this specification unless otherwise specified.) The viscosity of the first agent and the second agent as measured by a rotary rheometer is 50 to 120 Pa·s, respectively.
 本発明者らは、第一剤及び第二剤の上記熱抵抗値が、それぞれ独立して1.4~2.1cm・℃/Wであり、かつ、上記粘度が、それぞれ独立して50~120Pa・sであると、熱伝導性及び取り扱い性のバランスに優れ、実用で要求される熱伝導性及び取り扱い性を満たすことを見出した。 The present inventors have determined that the heat resistance values of the first agent and the second agent are each independently 1.4 to 2.1 cm 2 ·°C/W, and the viscosity is 50 It has been found that a temperature of 120 Pa·s provides an excellent balance between thermal conductivity and handleability, and satisfies the thermal conductivity and handleability required in practical use.
1.1.熱抵抗値
 第一剤及び第二剤のASTM D5470に準拠した方法により測定される1.0mm厚での熱抵抗値は、それぞれ独立して、1.4~2.1cm・℃/Wであり、好ましくは1.5~2.0cm・℃/Wである。上記熱抵抗値が2.1cm・℃/W以下であるため、本実施形態の二液硬化型組成物セットから得られる硬化物は実用で要求される熱伝導性を満たすことができる。また、上記熱抵抗値が1.4cm・℃/W以上であるため、第一剤及び第二剤の粘度が高くなりすぎず、本実施形態の二液硬化型組成物セットは実用で要求される取り扱い性を満たすことができる。第一剤及び第二剤の熱抵抗値は、ASTM D5470に準拠した方法により、1.0mm厚で測定され、より具体的には実施例に記載の方法により測定される。
1.1. Thermal resistance value The thermal resistance value of the first part and the second part at a thickness of 1.0 mm measured by a method based on ASTM D5470 is 1.4 to 2.1 cm 2・℃/W, respectively. It is preferably 1.5 to 2.0 cm 2 ·°C/W. Since the above-mentioned thermal resistance value is 2.1 cm 2 ·° C./W or less, the cured product obtained from the two-component curable composition set of this embodiment can satisfy the thermal conductivity required in practical use. In addition, since the above thermal resistance value is 1.4 cm 2 ·°C/W or more, the viscosity of the first and second parts does not become too high, and the two-component curable composition set of this embodiment is required for practical use. It is possible to meet the requirements for ease of handling. The thermal resistance values of the first and second parts are measured at a thickness of 1.0 mm by a method based on ASTM D5470, and more specifically by the method described in Examples.
 第一剤及び第二剤のASTM D5470に準拠した方法により測定される熱伝導率は、それぞれ独立して、好ましくは4.7~7.0W/m・Kであり、より好ましくは5.0~6.5W/m・Kである。第一剤及び第二剤の熱伝導率は、ASTM D5470に準拠した方法により測定され、より具体的には実施例に記載の方法により測定される。 The thermal conductivity of the first part and the second part as measured by a method based on ASTM D5470 is preferably 4.7 to 7.0 W/m·K, more preferably 5.0 ~6.5W/m・K. The thermal conductivity of the first agent and the second agent is measured by a method based on ASTM D5470, and more specifically, by a method described in Examples.
 第一剤及び第二剤の熱抵抗値及び熱伝導率を上記の範囲内とするためには、例えば第一剤及び第二剤に含まれる熱伝導性フィラーの粒径及び含有量を調整したり、熱伝導性の高いフィラーを用いたりすればよい。第一剤及び第二剤の具体的な組成の一例は後述する。 In order to keep the thermal resistance value and thermal conductivity of the first and second parts within the above range, for example, the particle size and content of the thermally conductive filler contained in the first and second parts must be adjusted. Alternatively, a filler with high thermal conductivity may be used. An example of a specific composition of the first agent and the second agent will be described later.
1.2.粘度
 第一剤及び第二剤の回転式レオメータにて測定される粘度は、それぞれ独立して、50~120Pa・sであり、好ましくは60~110Pa・sである。上記粘度が50Pa・s以上であるため、本実施形態の二液硬化型組成物セットは実用で要求される取り扱い性を満たすことができる。また、上記粘度が120Pa・s以下であるため、熱伝導率が低くなりすぎず、本実施形態の二液硬化型組成物セットから得られる硬化物は実用で要求される熱伝導性を満たすことができる。
1.2. Viscosity The viscosity of the first agent and the second agent as measured by a rotary rheometer is 50 to 120 Pa·s, preferably 60 to 110 Pa·s, respectively. Since the above-mentioned viscosity is 50 Pa·s or more, the two-component curable composition set of this embodiment can satisfy the handling property required in practical use. In addition, since the viscosity is 120 Pa·s or less, the thermal conductivity does not become too low, and the cured product obtained from the two-component curable composition set of this embodiment satisfies the thermal conductivity required in practical use. I can do it.
 本明細書中、第一剤及び第二剤の回転式レオメータにて測定される粘度は、25℃、せん断速度10s-1において測定される。当該粘度は、例えば、Thermo Fisher Scientific社製の回転式レオメータ「HANKE MARSIII」を用いて測定することができる。より具体的には、直径35mmφのパラレルプレートを用い、ギャップ0.5mm、温度25℃、せん断速度10s-1の条件で測定することができる。 In this specification, the viscosity of the first agent and the second agent measured with a rotary rheometer is measured at 25° C. and a shear rate of 10 s −1 . The viscosity can be measured using, for example, a rotary rheometer "HANKE MARS III" manufactured by Thermo Fisher Scientific. More specifically, the measurement can be performed using a parallel plate with a diameter of 35 mmφ, a gap of 0.5 mm, a temperature of 25° C., and a shear rate of 10 s −1 .
 第一剤及び第二剤の粘度を上記の範囲内とするためには、第一剤及び第二剤に含まれるオルガノポリシロキサン等のマトリックス成分の粘度を調整したり、熱伝導性フィラーとオルガノポリシロキサン等のマトリックス成分との濡れ性を向上させる成分を添加したり、熱伝導性フィラーの粒径及び含有量を調整したりすればよい。第一剤及び第二剤の具体的な組成の一例は後述する。 In order to keep the viscosity of the first and second parts within the above range, it is necessary to adjust the viscosity of the matrix component such as organopolysiloxane contained in the first and second parts, and to adjust the viscosity of the matrix component such as organopolysiloxane contained in the first and second parts. What is necessary is to add a component that improves wettability with the matrix component, such as polysiloxane, or to adjust the particle size and content of the thermally conductive filler. An example of a specific composition of the first agent and the second agent will be described later.
1.3.第一剤及び第二剤から得られる硬化物の耐電圧
 第一剤及び第二剤は、混合した後、所定の部分に塗布等して使用される。第一剤及び第二剤は、混合されることにより硬化反応を開始し、所定の時間経過後に硬化物が得られる。本実施形態の二液硬化型組成物セットが電子機器等において使用される場合、硬化物と電子部品とは電気的に接触して配置されることが想定される。したがって、第一剤及び第二剤を混合して得られる硬化物は絶縁性を有することが好ましい。
1.3. Voltage resistance of cured product obtained from the first and second parts The first and second parts are mixed and then used by coating on a predetermined area. The first part and the second part start a curing reaction by being mixed, and a cured product is obtained after a predetermined period of time has passed. When the two-component curable composition set of this embodiment is used in an electronic device or the like, it is assumed that the cured product and the electronic component are placed in electrical contact with each other. Therefore, it is preferable that the cured product obtained by mixing the first part and the second part has insulating properties.
 より具体的には、第一剤と第二剤を等体積で混合しシート状に成型後、60℃で20分間加熱硬化させて得られるシートのJIS C2110に準拠して測定される耐電圧は、好ましくは8kV/mm以上であり、より好ましくは10kV/mm以上である。耐電圧が上記の範囲内にあることにより、硬化物の絶縁性をより確実にすることができる。なお、耐電圧の上限は特に制限されないが、例えば、耐電圧は50kV/mm以下としてもよい。 More specifically, the withstand voltage measured in accordance with JIS C2110 of the sheet obtained by mixing the first part and the second part in equal volumes, molding into a sheet, and heating and curing at 60 ° C. for 20 minutes is , preferably 8 kV/mm or more, more preferably 10 kV/mm or more. When the withstand voltage is within the above range, the insulation properties of the cured product can be made more reliable. Note that the upper limit of the withstand voltage is not particularly limited, but for example, the withstand voltage may be 50 kV/mm or less.
 当該耐電圧は、導電性の低い熱伝導性フィラーを用いたり、熱伝導性フィラーの含有量を少なくしたりすることで、低下させることができる。耐電圧は、実施例に記載の方法により測定すればよい。 The withstand voltage can be lowered by using a thermally conductive filler with low conductivity or by reducing the content of the thermally conductive filler. The withstand voltage may be measured by the method described in Examples.
1.4.第一剤及び第二剤から得られる硬化物の最小膜厚
 第一剤と第二剤を等体積で混合した混合物に、10mm×10mmの領域当たり50N荷重をかけた際の当該混合物の厚さは、好ましくは70~120μmである。本明細書では、そのようにして測定される混合物の厚さを、第一剤及び第二剤から形成可能な膜(硬化物)の最小厚さとする。よって、本実施形態の二液硬化型組成物セットにより形成可能な膜の最小厚さは、好ましくは70~120μmである。第一剤及び第二剤が熱伝導性フィラーを含む場合、熱伝導性フィラーの粒径及び含有量等に応じて、第一剤及び第二剤の混合物を用いて形成可能な膜厚に最小値が存在する。当該膜の最小厚さが70~120μmの間であると、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、窒化ケイ素、酸化ケイ素、酸化マグネシウム、金属アルミニウム、及び酸化亜鉛等、特に酸化アルミニウムのような比較的安価な熱伝導性フィラーを用いた場合でも、取り扱い性及び熱伝導性のバランスに優れた二液硬化型組成物セットとすることができる傾向にある。同様の観点から、当該膜の最小厚さは、より好ましくは80~100μmである。当該膜の最小厚さは、実施例に記載の方法により測定すればよい。
1.4. Minimum film thickness of the cured product obtained from the first and second parts The thickness of the mixture when a 50N load is applied to a 10 mm x 10 mm area on a mixture of equal volumes of the first and second parts. is preferably 70 to 120 μm. In this specification, the thickness of the mixture measured in this manner is the minimum thickness of the film (cured product) that can be formed from the first agent and the second agent. Therefore, the minimum thickness of the film that can be formed with the two-component curable composition set of this embodiment is preferably 70 to 120 μm. When the first and second parts contain a thermally conductive filler, the minimum film thickness that can be formed using the mixture of the first and second parts depends on the particle size and content of the thermally conductive filler. value exists. When the minimum thickness of the film is between 70 and 120 μm, it is preferable to use comparative materials such as boron nitride, aluminum nitride, aluminum oxide, silicon nitride, silicon oxide, magnesium oxide, metallic aluminum, and zinc oxide, especially aluminum oxide. Even when an inexpensive thermally conductive filler is used, it tends to be possible to obtain a two-component curable composition set with an excellent balance between handleability and thermal conductivity. From the same point of view, the minimum thickness of the film is more preferably 80 to 100 μm. The minimum thickness of the film may be measured by the method described in Examples.
1.5.第一剤及び第二剤の組成例
 本実施形態において、第一剤及び第二剤は、両者を混合することにより硬化反応が生じる組み合わせであれば特に限定されない。また、第一剤及び第二剤の反応形態は、縮合反応、付加反応、又はラジカル反応等であってよい。
1.5. Composition Example of First Part and Second Part In the present embodiment, the first part and second part are not particularly limited as long as they are a combination that causes a curing reaction when mixed. Moreover, the reaction form of the first agent and the second agent may be a condensation reaction, an addition reaction, a radical reaction, or the like.
 縮合反応により硬化する第一剤及び第二剤の組み合わせとしては、例えばエポキシ基を有するエポキシ変性オルガノポリシロキサンを含む第一剤と、アミノ基を有するアミノ変性オルガノポリシロキサンを含む第二剤との組み合わせが挙げられる。付加反応により硬化する第一剤及び第二剤の組み合わせとしては、例えばビニル基を有するビニル変性オルガノポリシロキサンを含む第一剤と、ヒドロシリル基を有するヒドロシリル変性オルガノポリシロキサンを含む第二剤との組み合わせや、マイケル付加反応を生じる第一剤及び第二剤の組み合わせが挙げられる。 A combination of a first part and a second part that are cured by a condensation reaction is, for example, a first part containing an epoxy-modified organopolysiloxane having an epoxy group and a second part containing an amino-modified organopolysiloxane having an amino group. Examples include combinations. A combination of a first part and a second part that are cured by an addition reaction is, for example, a first part containing a vinyl-modified organopolysiloxane having a vinyl group and a second part containing a hydrosilyl-modified organopolysiloxane having a hydrosilyl group. and a combination of a first agent and a second agent that cause a Michael addition reaction.
 以下、ビニル変性オルガノポリシロキサン及びヒドロシリル変性オルガノポリシロキサンの組み合わせを例として、第一剤及び第二剤の組成の一例について詳述するが、本実施形態の二液硬化型組成物セットが備える第一剤及び第二剤はこれらの組成に限られない。例えば、ビニル変性オルガノポリシロキサン及びヒドロシリル変性オルガノポリシロキサンの組み合わせに代えて、エポキシ変性オルガノポリシロキサン及びアミノ変性オルガノポリシロキサンの組み合わせを用いてもよい。 Hereinafter, an example of the composition of the first part and the second part will be described in detail by taking a combination of vinyl-modified organopolysiloxane and hydrosilyl-modified organopolysiloxane as an example. The first agent and the second agent are not limited to these compositions. For example, instead of the combination of vinyl-modified organopolysiloxane and hydrosilyl-modified organopolysiloxane, a combination of epoxy-modified organopolysiloxane and amino-modified organopolysiloxane may be used.
1.5.1.第一剤
 第一剤は、界面活性剤A1と、粘度が80~120mPa・sであるビニル変性オルガノポリシロキサンB1と、熱伝導性フィラーC1と、付加反応触媒D1とを含むことが好ましい。第一剤は、必要に応じてその他の成分をさらに含んでいてもよい。
1.5.1. First Part The first part preferably contains a surfactant A1, a vinyl-modified organopolysiloxane B1 having a viscosity of 80 to 120 mPa·s, a thermally conductive filler C1, and an addition reaction catalyst D1. The first agent may further contain other components as necessary.
1.5.1.1.界面活性剤A1
 界面活性剤A1は、熱伝導性フィラーC1のビニル変性オルガノポリシロキサンB1に対する濡れ性を向上させることができるものであれば特に限定されない。熱伝導性フィラーの濡れ性を一層高める観点から、界面活性剤A1は、好ましくはアニオン性基、カチオン性基、及びシロキサン骨格を有する基の少なくとも2種を有する共重合体である。
1.5.1.1. Surfactant A1
The surfactant A1 is not particularly limited as long as it can improve the wettability of the thermally conductive filler C1 to the vinyl-modified organopolysiloxane B1. From the viewpoint of further improving the wettability of the thermally conductive filler, the surfactant A1 is preferably a copolymer having at least two of an anionic group, a cationic group, and a group having a siloxane skeleton.
 アニオン性基としては、特に制限されないが、例えば、カルボキシ基、リン酸基、フェノール性ヒドロキシ基、スルホン酸基が挙げられる。アニオン性基は、この中でも、カルボキシ基、リン酸基、及びフェノール性ヒドロキシ基からなる群より選ばれる一種以上であることが好ましく、カルボキシ基であることが好ましい。 Examples of the anionic group include, but are not limited to, a carboxy group, a phosphoric acid group, a phenolic hydroxy group, and a sulfonic acid group. Among these, the anionic group is preferably one or more selected from the group consisting of a carboxy group, a phosphoric acid group, and a phenolic hydroxy group, and is preferably a carboxy group.
 カチオン性基としては、特に制限されないが、例えば、第一級アミノ基、第二級アミノ基、第三級アミノ基、及び第四級アンモニウムカチオン基が挙げられる。アニオン性基は、この中でも、第三級アミノ基であることが好ましい。 The cationic group is not particularly limited, but includes, for example, a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium cation group. Among these, the anionic group is preferably a tertiary amino group.
 シロキサン骨格を有する基としては、特に制限されないが、例えば、オルガノポリシロキサン骨格からなる基が挙げられる。シロキサン骨格を有する基は、この中でも、ポリジメチルシロキサン骨格からなる基であることが好ましい。 The group having a siloxane skeleton is not particularly limited, but includes, for example, a group having an organopolysiloxane skeleton. Among these, the group having a siloxane skeleton is preferably a group consisting of a polydimethylsiloxane skeleton.
 界面活性剤A1の含有量は、ビニル変性オルガノポリシロキサンB1の含有量100重量部に対して、例えば3~28重量部であり、好ましくは4~25重量部であり、より好ましくは5~20重量部であり、更に好ましくは5~15重量部である。界面活性剤A1の含有量が上記の範囲内にあることにより、熱伝導性フィラーC1の分散性がより向上し、また第一剤の粘度がより低下する傾向にある。 The content of surfactant A1 is, for example, 3 to 28 parts by weight, preferably 4 to 25 parts by weight, and more preferably 5 to 20 parts by weight, based on 100 parts by weight of vinyl-modified organopolysiloxane B1. Parts by weight, more preferably 5 to 15 parts by weight. When the content of the surfactant A1 is within the above range, the dispersibility of the thermally conductive filler C1 tends to be further improved, and the viscosity of the first agent tends to be further reduced.
 界面活性剤A1の重量平均分子量は、好ましくは20,000~150,000であり、より好ましくは30,000~120,000であり、更に好ましくは40,000~100,000である。界面活性剤A1の重量平均分子量が上記の範囲内にあることにより、熱伝導性フィラーC1の分散性がより向上し、また第一剤の粘度がより低下する傾向にある。重量平均分子量は、GPC(ゲルパーミネーションクロマトグラフィ)により求めることができる。 The weight average molecular weight of surfactant A1 is preferably 20,000 to 150,000, more preferably 30,000 to 120,000, and even more preferably 40,000 to 100,000. When the weight average molecular weight of the surfactant A1 is within the above range, the dispersibility of the thermally conductive filler C1 is further improved, and the viscosity of the first agent tends to be further reduced. The weight average molecular weight can be determined by GPC (gel permeation chromatography).
 以下、界面活性剤A1の好ましい一態様についてより詳細に説明する。本実施形態において、「単量体」とは、重合前の重合性不飽和結合を有するモノマーをいい、「単量体単位」とは、重合後に共重合体の一部を構成する繰り返し単位であって、所定の単量体に由来する単位をいう。また、(メタ)アクリルには、アクリル及びメタクリルが含まれ、(メタ)アクリル系単量体には、(メタ)アクリレート及び(メタ)アクリルアミドが含まれる。さらに、以下において、「(メタ)アクリル系単量体単位α」等を、単に「単量体単位α」等ともいう。 Hereinafter, one preferred embodiment of surfactant A1 will be explained in more detail. In this embodiment, "monomer" refers to a monomer having a polymerizable unsaturated bond before polymerization, and "monomer unit" refers to a repeating unit that forms part of the copolymer after polymerization. It refers to a unit derived from a specific monomer. Further, (meth)acrylic includes acrylic and methacryl, and (meth)acrylic monomer includes (meth)acrylate and (meth)acrylamide. Furthermore, hereinafter, "(meth)acrylic monomer unit α" and the like are also simply referred to as "monomer unit α" and the like.
 界面活性剤A1は、好ましくはカルボキシ基を有する(メタ)アクリル系単量体単位αと、第三級アミノ基を有する(メタ)アクリル系単量体単位βと、シロキサン骨格を有する(メタ)アクリル系単量体単位γとを有する共重合体である。このような共重合体を用いると、熱伝導性フィラーC1の分散性をより高めることができるうえ、第一剤の粘度をより低くすることができる傾向にある。 Surfactant A1 preferably comprises a (meth)acrylic monomer unit α having a carboxy group, a (meth)acrylic monomer unit β having a tertiary amino group, and a (meth)acrylic monomer unit β having a siloxane skeleton. It is a copolymer having an acrylic monomer unit γ. When such a copolymer is used, the dispersibility of the thermally conductive filler C1 can be further improved, and the viscosity of the first agent tends to be lowered.
 上記共重合体において、単量体単位αと、単量体単位βと、単量体単位γとは、ランダムに含まれていてもよく、ブロックで含まれていてもよい。界面活性剤A1において、少なくとも単量体単位α及び単量体単位γは、ランダム共重合体として含まれていることが好ましい。単量体単位α及び単量体単位γがランダム共重合体として含まれていることにより、第一剤の粘度がより低下する傾向にある。 In the above copolymer, the monomer units α, monomer units β, and monomer units γ may be included randomly or in blocks. In surfactant A1, at least monomer unit α and monomer unit γ are preferably contained as a random copolymer. By containing the monomer unit α and the monomer unit γ as a random copolymer, the viscosity of the first agent tends to be further reduced.
1.5.1.1.1.カルボキシ基を有する(メタ)アクリル系単量体単位α
 単量体単位αは、カルボキシ基を有する繰り返し単位である。界面活性剤A1がこのような単量体単位を有することにより、熱伝導性フィラーC1の分散性がより向上する傾向にある。
1.5.1.1.1. (meth)acrylic monomer unit α having a carboxy group
The monomer unit α is a repeating unit having a carboxy group. When the surfactant A1 has such a monomer unit, the dispersibility of the thermally conductive filler C1 tends to be further improved.
 単量体単位αは、カルボキシ基に結合した電子吸引性基をさらに有することが好ましい。このような電子吸引性基としては、カルボキシ基上の負電荷を安定化させる作用を有するものであれば特に限定されない。例えば、単量体単位αは、カルボキシ基のα位の炭素原子にハロゲン元素等の電子吸引性の置換基を含むアクリル系単量体に由来する単位であってよい。このような単量体単位を含むことにより、熱伝導性フィラーC1の分散性がより向上する傾向にある。 It is preferable that the monomer unit α further has an electron-withdrawing group bonded to the carboxy group. Such an electron-withdrawing group is not particularly limited as long as it has the effect of stabilizing the negative charge on the carboxy group. For example, the monomer unit α may be a unit derived from an acrylic monomer containing an electron-withdrawing substituent such as a halogen element on the carbon atom at the α-position of the carboxy group. By including such a monomer unit, the dispersibility of the thermally conductive filler C1 tends to be further improved.
 単量体単位αは、カルボキシ基に結合した電子供与性基を有しないか、あるいは、電子供与性の低い基を有することが好ましい。このような電子供与性基としては、カルボキシ基上の負電荷を不安定化させる作用を有するものであれば特に限定されない。例えば、単量体単位αは、カルボキシ基のα位の炭素原子にメチル基等の電子供与性基の置換基を含まないアクリル系単量体に由来する単位であってよい。このような単量体単位を含むことにより、熱伝導性フィラーC1の分散性がより向上する傾向にある。 It is preferable that the monomer unit α has no electron-donating group bonded to the carboxy group or has a group with low electron-donating property. Such an electron-donating group is not particularly limited as long as it has the effect of destabilizing the negative charge on the carboxy group. For example, the monomer unit α may be a unit derived from an acrylic monomer that does not contain a substituent of an electron-donating group such as a methyl group on the carbon atom at the α-position of the carboxy group. By including such a monomer unit, the dispersibility of the thermally conductive filler C1 tends to be further improved.
 このような(メタ)アクリル系単量体としては、特に制限されないが、例えば、アクリル酸、メタクリル酸、2-アクリロイルオキシエチルコハク酸、2-メタクリロイルオキシエチルコハク酸等が挙げられる。このなかでも、アクリル酸、2-メタクリロイルオキシエチルコハク酸が好ましく、アクリル酸がより好ましい。このような単量体に由来する単位を含むことにより、熱伝導性フィラーC1に対する親和性がより向上し、熱伝導性フィラーC1の分散性がより向上する傾向にある。単量体単位αは、一種単独で用いても、二種以上を併用してもよい。 Such (meth)acrylic monomers are not particularly limited, but include, for example, acrylic acid, methacrylic acid, 2-acryloyloxyethylsuccinic acid, 2-methacryloyloxyethylsuccinic acid, and the like. Among these, acrylic acid and 2-methacryloyloxyethylsuccinic acid are preferred, and acrylic acid is more preferred. By including a unit derived from such a monomer, the affinity for the thermally conductive filler C1 tends to be further improved, and the dispersibility of the thermally conductive filler C1 tends to be further improved. The monomer units α may be used alone or in combination of two or more types.
 単量体単位αの含有量は、単量体単位α、単量体単位β、及び単量体単位γの合計100重量部に対して、例えば0.05~20重量部であり、好ましくは0.08~6.0重量部であり、より好ましくは0.1~5.0重量部であり、更に好ましくは0.3~4.0重量部であり、更により好ましくは0.5~3.0重量部である。単量体単位αの含有量は、上記範囲内において、0.7重量部以上であってもよく、あるいは、2.0重量部以下であってもよい。単量体単位αの含有量が上記の範囲内にあることにより、熱伝導性フィラーC1の分散性がより向上し、また第一剤の粘度がより低下する傾向にある。 The content of the monomer unit α is, for example, 0.05 to 20 parts by weight with respect to the total of 100 parts by weight of the monomer unit α, monomer unit β, and monomer unit γ, and is preferably The amount is 0.08 to 6.0 parts by weight, more preferably 0.1 to 5.0 parts by weight, even more preferably 0.3 to 4.0 parts by weight, and even more preferably 0.5 to 4.0 parts by weight. It is 3.0 parts by weight. The content of the monomer unit α may be 0.7 parts by weight or more, or 2.0 parts by weight or less within the above range. When the content of the monomer unit α is within the above range, the dispersibility of the thermally conductive filler C1 tends to be further improved, and the viscosity of the first agent tends to be further reduced.
1.5.1.1.2.第三級アミノ基を有する(メタ)アクリル系単量体単位β
 単量体単位βは、第三級アミノ基を有する繰り返し単位である。界面活性剤A1がこのような単量体単位を有することにより、熱伝導性フィラーC1の分散性がより向上する傾向にある。
1.5.1.1.2. (meth)acrylic monomer unit β having a tertiary amino group
The monomer unit β is a repeating unit having a tertiary amino group. When the surfactant A1 has such a monomer unit, the dispersibility of the thermally conductive filler C1 tends to be further improved.
 単量体単位βは、第三級アミノ基における窒素原子に隣接する炭素原子に結合した電子供与性基をさらに有することが好ましい。このような電子供与性基としては、第三級アミノ基上の正電荷を安定化させる作用を有するものであれば特に限定されない。単量体単位βは、例えば、第三級アミノ基のα位の炭素原子にメチル基等の電子供与性の置換基を含むアクリル系単量体に由来する単位であってよい。このような単量体単位を含むことにより、熱伝導性フィラーC1の分散性がより向上する傾向にある。 It is preferable that the monomer unit β further has an electron-donating group bonded to the carbon atom adjacent to the nitrogen atom in the tertiary amino group. Such an electron-donating group is not particularly limited as long as it has the effect of stabilizing the positive charge on the tertiary amino group. The monomer unit β may be, for example, a unit derived from an acrylic monomer containing an electron-donating substituent such as a methyl group at the carbon atom at the α-position of a tertiary amino group. By including such a monomer unit, the dispersibility of the thermally conductive filler C1 tends to be further improved.
 単量体単位βは、第三級アミノ基における窒素原子に隣接する炭素原子に結合した電子吸引性基を有しないか、あるいは、電子吸引性の低い基を有することが好ましい。このような電子吸引性基としては、第三級アミノ基上の正電荷を不安定化させる作用を有するものであれば特に限定されない。単量体単位βは、例えば、第三級アミノ基のα位の炭素原子にカルボキシ基等の電子吸引性基の置換基を含まないアクリル系単量体に由来する単位であってよい。このような単量体単位を含むことにより、熱伝導性フィラーC1の分散性がより向上する傾向にある。 It is preferable that the monomer unit β does not have an electron-withdrawing group bonded to the carbon atom adjacent to the nitrogen atom in the tertiary amino group, or has a group with low electron-withdrawing property. Such an electron-withdrawing group is not particularly limited as long as it has the effect of destabilizing the positive charge on the tertiary amino group. The monomer unit β may be, for example, a unit derived from an acrylic monomer that does not contain a substituent of an electron-withdrawing group such as a carboxy group on the carbon atom at the α-position of the tertiary amino group. By including such a monomer unit, the dispersibility of the thermally conductive filler C1 tends to be further improved.
 このような(メタ)アクリル系単量体としては、特に制限されないが、例えば、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、メタクリル酸-1,2,2,6,6-ペンタメチル-4-ピペリジル等が挙げられる。これらのなかでも、ジメチルアミノエチルメタクリレート、及びメタクリル酸-1,2,2,6,6-ペンタメチル-4-ピペリジルが好ましく、メタクリル酸-1,2,2,6,6-ペンタメチル-4-ピペリジルがより好ましい。このような単量体に由来する単位を含むことにより、熱伝導性フィラーC1に対する親和性がより向上し、熱伝導性フィラーC1の分散性がより向上する傾向にある。単量体単位βは、一種単独で用いても、二種以上を併用してもよい。 Such (meth)acrylic monomers are not particularly limited, but examples include dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate. Can be mentioned. Among these, dimethylaminoethyl methacrylate and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate are preferred, and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate is preferred. is more preferable. By including a unit derived from such a monomer, the affinity for the thermally conductive filler C1 tends to be further improved, and the dispersibility of the thermally conductive filler C1 tends to be further improved. The monomer units β may be used alone or in combination of two or more.
 単量体単位βの含有量は、単量体単位α、単量体単位β、及び単量体単位γの合計100重量部に対して、例えば0.02~4.0重量部であり、好ましくは0.05~4.0重量部であり、より好ましくは0.07~3.0重量部であり、更に好ましくは0.08~2.0重量部であり、更により好ましくは0.1~1.0重量部である。単量体単位βの含有量は、上記範囲内において、0.3重量部以上であってもよく、あるいは、0.8重量部以下であってもよい。単量体単位βの含有量が上記の範囲内にあることにより、熱伝導性フィラーC1の分散性がより向上し、また第一剤の粘度がより低下する傾向にある。 The content of monomer unit β is, for example, 0.02 to 4.0 parts by weight with respect to 100 parts by weight of the total of monomer unit α, monomer unit β, and monomer unit γ, Preferably it is 0.05 to 4.0 parts by weight, more preferably 0.07 to 3.0 parts by weight, even more preferably 0.08 to 2.0 parts by weight, and even more preferably 0.08 to 2.0 parts by weight. It is 1 to 1.0 parts by weight. The content of the monomer unit β may be 0.3 parts by weight or more, or 0.8 parts by weight or less within the above range. When the content of the monomer unit β is within the above range, the dispersibility of the thermally conductive filler C1 tends to be further improved, and the viscosity of the first agent tends to be further reduced.
1.5.1.1.3.シロキサン骨格を有する(メタ)アクリル系単量体単位γ
 単量体単位γは、シロキサン骨格を有する繰り返し単位である。界面活性剤A1がこのような単量体単位を有することにより、界面活性剤A1とビニル変性オルガノポリシロキサンB1との親和性又は相溶性が高くなり、第一剤の粘度がより低下する傾向にある。
1.5.1.1.3. (meth)acrylic monomer unit γ having a siloxane skeleton
The monomer unit γ is a repeating unit having a siloxane skeleton. When surfactant A1 has such a monomer unit, the affinity or compatibility between surfactant A1 and vinyl-modified organopolysiloxane B1 increases, and the viscosity of the first agent tends to decrease further. be.
 単量体単位γ中のシロキサン骨格としては、例えばジアルキルポリシロキサン、ジフェニルポリシロキサン、及びアルキルフェニルポリシロキサン等のオルガノポリシロキサン骨格が挙げられる。シロキサン骨格が有するアルキルとしては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、及びヘキシル基等が挙げられる。シロキサン骨格が有するフェニル基としては、特に限定されないが、例えば、フェニル基及び置換基を有するフェニル基が挙げられ、具体的にはフェニル基、及びベンジル基等が挙げられる。置換基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、及びヘキシル基等が挙げられる。 Examples of the siloxane skeleton in the monomer unit γ include organopolysiloxane skeletons such as dialkylpolysiloxane, diphenylpolysiloxane, and alkylphenylpolysiloxane. The alkyl contained in the siloxane skeleton is not particularly limited, and examples thereof include methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group. The phenyl group that the siloxane skeleton has is not particularly limited, but examples include phenyl groups and phenyl groups having substituents, and specific examples include phenyl groups and benzyl groups. Examples of the substituent include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
 このような(メタ)アクリル系単量体としては、特に制限されないが、例えば、上記のようなシロキサン骨格の末端が(メタ)アクリル酸により変性された(メタ)アクリル酸ポリシロキサンが挙げられる。具体的には、例えば、α-ブチル-ω-(3-メタクリロキシプロピル)ポリジメチルシロキサン等が挙げられる。単量体単位γは、一種単独で用いても、二種以上を併用してもよい。 Such (meth)acrylic monomers are not particularly limited, but include, for example, (meth)acrylic acid polysiloxanes in which the terminals of the siloxane skeleton are modified with (meth)acrylic acid as described above. Specific examples include α-butyl-ω-(3-methacryloxypropyl)polydimethylsiloxane. The monomer units γ may be used alone or in combination of two or more.
 単量体単位γの数平均分子量は、好ましくは1,500~50,000であり、より好ましくは3,000~30,000であり、さらに好ましくは4,000~20,000である。単量体単位γの数平均分子量が1,500以上であることにより、第一剤及び第二剤を混合した際の硬化性が向上する傾向にある。単量体単位γの数平均分子量が50,000以下であることにより、第一剤の粘度がより低下する傾向にある。単量体単位γの数平均分子量は、GPC(ゲルパーミネーションクロマトグラフィ)により求めることができる。 The number average molecular weight of the monomer unit γ is preferably 1,500 to 50,000, more preferably 3,000 to 30,000, and still more preferably 4,000 to 20,000. When the number average molecular weight of the monomer unit γ is 1,500 or more, the curability when the first part and the second part are mixed tends to be improved. When the number average molecular weight of the monomer unit γ is 50,000 or less, the viscosity of the first agent tends to be further reduced. The number average molecular weight of the monomer unit γ can be determined by GPC (gel permeation chromatography).
 単量体単位γの含有量は、単量体単位α、単量体単位β、及び単量体単位γの合計100重量部に対して、例えば70.0~99.9重量部であり、好ましくは80.0~99.5重量部であり、好ましくは90.0~99.0重量部であり、より好ましくは93.0~98.8重量部であり、更に好ましくは96.0~98.7重量部である。単量体単位γの含有量が上記の範囲内にあることにより、熱伝導性フィラーC1の分散性がより向上し、また第一剤の粘度がより低下する傾向にある。さらに、第一剤及び第二剤を混合した際の硬化性が向上する傾向にある。 The content of the monomer unit γ is, for example, 70.0 to 99.9 parts by weight with respect to the total of 100 parts by weight of the monomer unit α, monomer unit β, and monomer unit γ, Preferably it is 80.0 to 99.5 parts by weight, preferably 90.0 to 99.0 parts by weight, more preferably 93.0 to 98.8 parts by weight, still more preferably 96.0 to 98.8 parts by weight. It is 98.7 parts by weight. When the content of the monomer unit γ is within the above range, the dispersibility of the thermally conductive filler C1 tends to be further improved, and the viscosity of the first agent tends to be further reduced. Furthermore, the curability tends to improve when the first part and the second part are mixed.
 界面活性剤A1における、単量体単位α、単量体単位β、及び単量体単位γの含有量の合計は、界面活性剤A1の総量に対して、好ましくは90重量%以上であり、より好ましくは95重量%以上であり、更に好ましくは99重量%以上であり、更により好ましくは100重量%である。上記含有量の合計が上記の範囲内にあることにより、熱伝導性フィラーC1の分散性がより向上し、また第一剤の粘度がより低下する傾向にある。単量体単位α、単量体単位β、及び単量体単位γの含有量の合計の上限値は特に限定されず、例えば100重量%、99重量%、98重量%、又は95重量%であってよい。 The total content of monomer units α, monomer units β, and monomer units γ in surfactant A1 is preferably 90% by weight or more based on the total amount of surfactant A1, It is more preferably 95% by weight or more, still more preferably 99% by weight or more, and even more preferably 100% by weight. When the total content is within the above range, the dispersibility of the thermally conductive filler C1 tends to be further improved, and the viscosity of the first agent tends to be further reduced. The upper limit of the total content of monomer units α, monomer units β, and monomer units γ is not particularly limited, and is, for example, 100% by weight, 99% by weight, 98% by weight, or 95% by weight. It's good.
1.5.1.1.4.製造方法
 界面活性剤A1の製造方法は、特に制限されず、(メタ)アクリル系単量体の公知の重合方法を用いることができる。重合方法としては、ラジカル重合、アニオン重合等が挙げられる。この中でも、ラジカル重合が好ましい。
1.5.1.1.4. Manufacturing method The method for manufacturing surfactant A1 is not particularly limited, and any known polymerization method for (meth)acrylic monomers can be used. Examples of polymerization methods include radical polymerization and anionic polymerization. Among these, radical polymerization is preferred.
 ラジカル重合に用いる熱重合開始剤としては、特に制限されないが、例えば、アゾビスイソブチロニトリル等のアゾ化合物;過酸化ベンゾイル、tert-ブチルヒドロペルオキシドやジ-tert-ブチルペルオキシド等の有機過酸化物などが挙げられる。また、ラジカル重合に用いる光重合開始剤としては、特に制限されないが、ベンゾイン誘導体が挙げられる。また、そのほかATRPやRAFTなどのリビングラジカル重合に用いる公知の重合開始剤を用いることもできる。 Thermal polymerization initiators used in radical polymerization are not particularly limited, but include, for example, azo compounds such as azobisisobutyronitrile; organic peroxides such as benzoyl peroxide, tert-butyl hydroperoxide, and di-tert-butyl peroxide. Examples include things. Furthermore, the photopolymerization initiator used in radical polymerization is not particularly limited, but includes benzoin derivatives. In addition, known polymerization initiators used in living radical polymerization such as ATRP and RAFT can also be used.
 重合条件は、特に制限されず、用いる開始剤や溶剤の沸点、その他単量体の種類により適宜調整することができる。 The polymerization conditions are not particularly limited and can be adjusted as appropriate depending on the initiator used, the boiling point of the solvent, and other types of monomers.
 単量体の添加順序は、特に制限されないが、例えば、ランダム共重合体を合成する場合には単量体を混合して重合を開始してもよいし、ブロック共重合体を合成する場合には単量体を重合系に順次添加してもよい。 The order of adding the monomers is not particularly limited, but for example, when synthesizing a random copolymer, the monomers may be mixed to start polymerization, or when synthesizing a block copolymer, the monomers may be mixed to start polymerization. The monomers may be sequentially added to the polymerization system.
1.5.1.2.ビニル変性オルガノポリシロキサンB1
 ビニル変性オルガノポリシロキサンB1(以下、「単にオルガノポリシロキサンB1」ともいう。)は、粘度が80~120mPa・sであり、少なくとも1つのビニル基を有するオルガノポリシロキサンである。オルガノポリシロキサンB1は、側鎖及び/又は末端にビニル基を有していてよい。このようなオルガノポリシロキサンは、以下の式(b1-1)で表される構造単位又は式(b1-2)で表される末端構造を有する。オルガノポリシロキサンB1は、例えば、式(b1-1)で表される構造単位及び式(b1-2)で表される末端構造の少なくとも一方と、式(b1-3)で表される構造単位とを有していてもよい。
1.5.1.2. Vinyl modified organopolysiloxane B1
Vinyl-modified organopolysiloxane B1 (hereinafter also simply referred to as "organopolysiloxane B1") is an organopolysiloxane having a viscosity of 80 to 120 mPa·s and having at least one vinyl group. Organopolysiloxane B1 may have a vinyl group in a side chain and/or at a terminal. Such an organopolysiloxane has a structural unit represented by the following formula (b1-1) or a terminal structure represented by the formula (b1-2). Organopolysiloxane B1 includes, for example, at least one of a structural unit represented by formula (b1-1) and a terminal structure represented by formula (b1-2), and a structural unit represented by formula (b1-3). It may have.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここで、式(b1-1)、(b1-2)及び(b1-3)中、Rは置換基を有していてよい任意の1価の炭化水素基である。すなわち、オルガノポリシロキサンB1において、シロキサン骨格の側鎖には、置換基を有していてよい任意の1価の炭化水素基が結合している。 Here, in formulas (b1-1), (b1-2) and (b1-3), R is any monovalent hydrocarbon group that may have a substituent. That is, in organopolysiloxane B1, any monovalent hydrocarbon group that may have a substituent is bonded to the side chain of the siloxane skeleton.
 そのような1価の炭化水素基としては、特に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基;並びにこれらの基において置換基を有する基等が挙げられる。上記の1価の炭化水素基が有する置換基としては、例えばハロゲン原子、特にフッ素原子又は塩素原子が挙げられる。 Examples of such monovalent hydrocarbon groups include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, and dodecyl. Alkyl groups such as groups; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group, tolyl group, xylyl group, and naphthyl group; aralkyl groups such as benzyl group, 2-phenylethyl group, and 2-phenylpropyl group groups; and groups having substituents in these groups. Examples of the substituent that the above-mentioned monovalent hydrocarbon group has include a halogen atom, particularly a fluorine atom or a chlorine atom.
 オルガノポリシロキサンB1は、一種単独で、又は二種以上を組み合わせて、第一剤に含まれる。第一剤に含まれるオルガノポリシロキサンB1のビニル基数は、好ましくは一分子あたり平均して2.0個以上である。すなわち、第一剤に含まれるオルガノポリシロキサンB1が一種類の場合は、当該オルガノポリシロキサンが、一分子あたり2個以上のビニル基を有することが好ましい。第一剤に含まれるオルガノポリシロキサンB1が二種類以上の場合は、各オルガノポリシロキサンのビニル基の数の相加平均が2.0個以上であると好ましい。一分子あたりのビニル基の数が2.0個以上であることにより、第二剤に含まれるヒドロシリル変性オルガノポリシロキサンE2と反応させたときに、網目状の構造を形成し、せん断変位及び破断伸び等の機械強度により優れる硬化物を得ることができる傾向にある。なお、オルガノポリシロキサンB1のビニル基数の上限は特に限定されず、例えば一分子あたり平均して4.0個、3.0個又は2.5個であってよい。オルガノポリシロキサンB1の一分子あたりの平均ビニル基数は2.0個であってよい。 Organopolysiloxane B1 is contained in the first agent singly or in combination of two or more. The number of vinyl groups in organopolysiloxane B1 contained in the first agent is preferably 2.0 or more per molecule on average. That is, when the first agent contains one type of organopolysiloxane B1, it is preferable that the organopolysiloxane has two or more vinyl groups per molecule. When there are two or more types of organopolysiloxanes B1 contained in the first agent, it is preferable that the arithmetic average of the number of vinyl groups in each organopolysiloxane is 2.0 or more. Since the number of vinyl groups per molecule is 2.0 or more, when it is reacted with the hydrosilyl-modified organopolysiloxane E2 contained in the second agent, it forms a network structure, causing shear displacement and rupture. It tends to be possible to obtain a cured product with better mechanical strength such as elongation. Note that the upper limit of the number of vinyl groups in organopolysiloxane B1 is not particularly limited, and may be, for example, 4.0, 3.0, or 2.5 on average per molecule. The average number of vinyl groups per molecule of organopolysiloxane B1 may be 2.0.
 オルガノポリシロキサンB1の一分子あたりの平均ビニル基数は、NMRにより測定すればよい。具体的には、例えばJEOL社製、ECP-300NMRを使用し、重溶媒としての重クロロホルムに、オルガノポリシロキサンB1を溶解して測定すればよい。このようにして得られる測定結果をオルガノポリシロキサンB1の平均分子量で除することにより一分子あたりの平均ビニル基数を算出できる。 The average number of vinyl groups per molecule of organopolysiloxane B1 may be measured by NMR. Specifically, the measurement may be performed using, for example, ECP-300NMR manufactured by JEOL, and dissolving organopolysiloxane B1 in heavy chloroform as a heavy solvent. The average number of vinyl groups per molecule can be calculated by dividing the measurement results obtained in this way by the average molecular weight of organopolysiloxane B1.
 オルガノポリシロキサンB1は、両末端にビニル基を有するオルガノポリシロキサンを少なくとも含むことが好ましい。そのようなオルガノポリシロキサンを用いることにより、第一剤及び第二剤を混合した際の架橋密度を調整することができる傾向にある。同様の観点から、オルガノポリシロキサンB1は、両末端にビニル基を有するポリジメチルシロキサンを少なくとも含むことが好ましい。 Preferably, the organopolysiloxane B1 contains at least an organopolysiloxane having vinyl groups at both ends. By using such an organopolysiloxane, it tends to be possible to adjust the crosslinking density when the first part and the second part are mixed. From the same viewpoint, it is preferable that the organopolysiloxane B1 contains at least polydimethylsiloxane having vinyl groups at both ends.
 オルガノポリシロキサンB1の25℃での粘度は、例えば30~300mPa・sであってよいが、好ましくは80~120mPa・sであり、より好ましくは90~110mPa・sである。オルガノポリシロキサンB1の粘度が300mPa・s以下であると、第一剤の粘度がより低下する傾向にある。オルガノポリシロキサンB1の粘度が30mPa・s以上であると、後述する硬化物におけるせん断変位及び破断伸び等の機械強度がより向上する傾向にある。 The viscosity of organopolysiloxane B1 at 25° C. may be, for example, 30 to 300 mPa·s, preferably 80 to 120 mPa·s, and more preferably 90 to 110 mPa·s. When the viscosity of organopolysiloxane B1 is 300 mPa·s or less, the viscosity of the first agent tends to decrease further. When the viscosity of organopolysiloxane B1 is 30 mPa·s or more, mechanical strength such as shear displacement and elongation at break in a cured product, which will be described later, tends to be further improved.
 本明細書中、オルガノポリシロキサンの25℃での粘度は、BROOKFIELD社製のデジタル粘度計「DV-1」を用いて測定することができる。RVスピンドルセットを用いて、ローターNo.1を使用し、当該ローターが入り、かつ基準線までオルガノポリシロキサンを入れることができる容器を用いて、ローターをオルガノポリシロキサンに浸し、25℃、回転数10rpmで粘度を測定する。 In this specification, the viscosity of the organopolysiloxane at 25°C can be measured using a digital viscometer "DV-1" manufactured by BROOKFIELD. Using the RV spindle set, rotor no. Using a container that can accommodate the rotor and fill the organopolysiloxane up to the reference line, the rotor is immersed in the organopolysiloxane, and the viscosity is measured at 25° C. and a rotation speed of 10 rpm.
 後述するように、ビニル変性オルガノポリシロキサンB1は、付加反応触媒D1の存在下、第二剤に含まれるヒドロシリル変性オルガノポリシロキサンE2と付加反応を生じる。ビニル変性オルガノポリシロキサンB1及びヒドロシリル変性オルガノポリシロキサンE2のビニル基数及びヒドロシリル基数と、粘度とを適宜調整することにより、第一剤及び第二剤の粘度、並びに第一剤及び第二剤を混合したときの硬化速度を制御することができる。 As described below, vinyl-modified organopolysiloxane B1 undergoes an addition reaction with hydrosilyl-modified organopolysiloxane E2 contained in the second agent in the presence of addition reaction catalyst D1. By appropriately adjusting the number of vinyl groups and the number of hydrosilyl groups of vinyl-modified organopolysiloxane B1 and hydrosilyl-modified organopolysiloxane E2, and the viscosity, the viscosity of the first and second parts and the mixing of the first and second parts are adjusted. The curing speed can be controlled.
 ビニル変性オルガノポリシロキサンB1の含有量は、第一剤の熱伝導性フィラーC1以外の成分の合計に対して、好ましくは60~99重量%であり、より好ましくは70~98重量%であり、更に好ましくは80~95重量%である。ビニル変性オルガノポリシロキサンB1の含有量が上記の範囲内にあることにより、第一剤の粘度がより低下する傾向にある。 The content of vinyl-modified organopolysiloxane B1 is preferably 60 to 99% by weight, more preferably 70 to 98% by weight, based on the total of components other than the thermally conductive filler C1 of the first part, More preferably, it is 80 to 95% by weight. When the content of vinyl-modified organopolysiloxane B1 is within the above range, the viscosity of the first agent tends to be further reduced.
1.5.1.3.熱伝導性フィラーC1
 熱伝導性フィラーC1は、熱伝導性を有するフィラーである。熱伝導性フィラーC1の熱伝導率は、特に限定されないが、例えば、10W/m・K以上、20W/m・K以上上、又は30W/m・K以上である。熱伝導性フィラーC1の熱伝導率の上限は特に限定されず、例えば400W/m・K、又は300W/m・Kであってよい。このような熱伝導性フィラーC1としては、特に制限されないが、例えば、酸化アルミニウム(以下、「アルミナ」ともいう。)、窒化アルミニウム、シリカ、窒化ホウ素、窒化ケイ素、酸化亜鉛、水酸化アルミニウム、金属アルミニウム、酸化マグネシウム、ダイヤモンド、カーボン、インジウム、ガリウム、銅、銀、鉄、ニッケル、金、錫、金属ケイ素等が挙げられる。
1.5.1.3. Thermal conductive filler C1
The thermally conductive filler C1 is a filler that has thermal conductivity. The thermal conductivity of the thermally conductive filler C1 is not particularly limited, but is, for example, 10 W/m·K or more, 20 W/m·K or more, or 30 W/m·K or more. The upper limit of the thermal conductivity of the thermally conductive filler C1 is not particularly limited, and may be, for example, 400 W/m·K or 300 W/m·K. Such thermally conductive filler C1 is not particularly limited, but includes, for example, aluminum oxide (hereinafter also referred to as "alumina"), aluminum nitride, silica, boron nitride, silicon nitride, zinc oxide, aluminum hydroxide, and metal. Examples include aluminum, magnesium oxide, diamond, carbon, indium, gallium, copper, silver, iron, nickel, gold, tin, and metallic silicon.
 第一剤は、これらの中でも、熱伝導性フィラーC1として、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、窒化ケイ素、酸化ケイ素、酸化マグネシウム、金属アルミニウム、及び酸化亜鉛からなる群より選ばれる一種以上を含むことが好ましく、酸化アルミニウム、酸化マグネシウム、窒化アルミニウム、及び金属アルミニウムからなる群より選ばれる一種以上を含むことがより好ましく、酸化アルミニウム粉末を含むことが更に好ましい。上記熱伝導性フィラーは、熱伝導性が高く、絶縁性が高く、かつ安価であるためである。熱伝導性フィラーC1は、一種単独で用いても、二種以上を併用してもよい。 Among these, the first agent contains one or more types selected from the group consisting of boron nitride, aluminum nitride, aluminum oxide, silicon nitride, silicon oxide, magnesium oxide, metal aluminum, and zinc oxide as the thermally conductive filler C1. It is preferable that it contains one or more selected from the group consisting of aluminum oxide, magnesium oxide, aluminum nitride, and metal aluminum, and it is even more preferable that it contains aluminum oxide powder. This is because the thermally conductive filler has high thermal conductivity, high insulation properties, and is inexpensive. The thermally conductive filler C1 may be used alone or in combination of two or more.
 熱伝導性フィラーC1の平均粒径は、好ましくは0.05~120μmであり、より好ましくは0.1~60μmである。熱伝導性フィラーC1の平均粒径が上記範囲内であることにより、第一剤の流動性や熱伝導性フィラーC1の分散性、充填性がより向上する傾向にある。 The average particle size of the thermally conductive filler C1 is preferably 0.05 to 120 μm, more preferably 0.1 to 60 μm. When the average particle size of the thermally conductive filler C1 is within the above range, the fluidity of the first agent and the dispersibility and filling properties of the thermally conductive filler C1 tend to be further improved.
 また、熱伝導性フィラーC1は、平均粒径の異なるフィラーを混合して用いてもよい。熱伝導性フィラーC1として、平均粒径が30~55μmである熱伝導性フィラー(C1-1)、平均粒径が1.5~25μmである熱伝導性フィラー(C1-2)、及び平均粒径が0.05~1.0μmである熱伝導性フィラー(C1-3)の二種以上を組み合わせて用いることが好ましく、少なくとも熱伝導性フィラー(C1-1)及び熱伝導性フィラー(C1-2)を用いることがより好ましく、熱伝導性フィラー(C1-1)、熱伝導性フィラー(C1-2)、及び熱伝導性フィラー(C1-3)の全てを用いることが更に好ましい。 Furthermore, the thermally conductive filler C1 may be a mixture of fillers having different average particle diameters. As the thermally conductive filler C1, a thermally conductive filler (C1-1) having an average particle size of 30 to 55 μm, a thermally conductive filler (C1-2) having an average particle size of 1.5 to 25 μm, and an average particle It is preferable to use a combination of two or more types of thermally conductive filler (C1-3) having a diameter of 0.05 to 1.0 μm, and at least the thermally conductive filler (C1-1) and the thermally conductive filler (C1-3) are used in combination. It is more preferable to use 2), and it is even more preferable to use all of the thermally conductive filler (C1-1), the thermally conductive filler (C1-2), and the thermally conductive filler (C1-3).
 なお、熱伝導性フィラーの平均粒径は、例えば島津製作所製「レーザー回折式粒度分布測定装置SALD-20」(商品名)を用いて測定することができる。評価サンプルは、例えばガラスビーカーに50mlの純水と測定する熱伝導性フィラー粉末5gとを添加して、スパチュラを用いて撹拌し、その後超音波洗浄機で10分間、分散処理を行うことで調製する。その後分散処理を行った熱伝導性フィラー粉末の溶液を、スポイトを用いて、装置のサンプラ部に一滴ずつ添加して、吸光度が安定したところで測定を行えばよい。レーザー回折式粒度分布測定装置では、センサで検出した粒子による回折/散乱孔の光強度分布のデータから粒度分布を計算する。平均粒径は、測定される粒子径の値に相対粒子量(差分%)を乗じ、相対粒子量の合計(100%)で割って求められる。なお、平均粒径は粒子の平均直径であり、累積重量平均値D50(メジアン径)として求めることができる。なお、D50は、出現率が最も大きい粒子径になる。 Note that the average particle size of the thermally conductive filler can be measured using, for example, "Laser Diffraction Particle Size Distribution Analyzer SALD-20" (trade name) manufactured by Shimadzu Corporation. The evaluation sample is prepared, for example, by adding 50 ml of pure water and 5 g of the thermally conductive filler powder to be measured into a glass beaker, stirring with a spatula, and then performing dispersion treatment with an ultrasonic cleaner for 10 minutes. do. Thereafter, the solution of the thermally conductive filler powder subjected to the dispersion treatment is added drop by drop to the sampler section of the apparatus using a dropper, and the measurement is performed when the absorbance becomes stable. In a laser diffraction type particle size distribution measurement device, the particle size distribution is calculated from data on the light intensity distribution of diffraction/scattering holes by particles detected by a sensor. The average particle size is determined by multiplying the measured particle size value by the relative particle amount (difference %) and dividing by the total relative particle amount (100%). Note that the average particle size is the average diameter of particles, and can be determined as a cumulative weight average value D50 (median diameter). Note that D50 is the particle diameter with the highest appearance rate.
 この場合、熱伝導性フィラー(C1-1)の含有量は、熱伝導性フィラーC1の総量に対して、好ましくは30~70重量%であり、より好ましくは40~60重量%である。
 熱伝導性フィラー(C1-2)の含有量は、熱伝導性フィラーC1の総量に対して、好ましくは10~50重量%であり、より好ましくは20~40重量%である。
 熱伝導性フィラー(C1-3)の含有量は、熱伝導性フィラーC1の総量に対して、好ましくは5~30重量%であり、より好ましくは10~20重量%である。
 上記のような熱伝導性フィラーC1を用いることにより、第一剤の流動性や熱伝導性フィラーC1の分散性、充填性がより向上する傾向にある。なお、本明細書中における平均粒径は、D50(メジアン径)を意味するものとする。
In this case, the content of the thermally conductive filler (C1-1) is preferably 30 to 70% by weight, more preferably 40 to 60% by weight, based on the total amount of the thermally conductive filler C1.
The content of the thermally conductive filler (C1-2) is preferably 10 to 50% by weight, more preferably 20 to 40% by weight, based on the total amount of the thermally conductive filler C1.
The content of the thermally conductive filler (C1-3) is preferably 5 to 30% by weight, more preferably 10 to 20% by weight, based on the total amount of the thermally conductive filler C1.
By using the thermally conductive filler C1 as described above, the fluidity of the first agent and the dispersibility and filling properties of the thermally conductive filler C1 tend to be further improved. In addition, the average particle diameter in this specification shall mean D50 (median diameter).
 熱伝導性フィラーC1の含有量は、ビニル変性オルガノポリシロキサンB1の含有量100重量部に対して、例えば400~3000重量部であり、好ましくは1500~2400重量部であり、より好ましくは1700~2200重量部である。熱伝導性フィラーC1の含有量が400重量部以上であると、得られる硬化物の熱伝導率がより向上する傾向にあり、3000重量部以下であると、第一剤の粘度がより低下する傾向にある。 The content of the thermally conductive filler C1 is, for example, 400 to 3000 parts by weight, preferably 1500 to 2400 parts by weight, and more preferably 1700 to 2400 parts by weight, based on 100 parts by weight of the vinyl-modified organopolysiloxane B1. It is 2200 parts by weight. When the content of the thermally conductive filler C1 is 400 parts by weight or more, the thermal conductivity of the obtained cured product tends to be further improved, and when it is 3000 parts by weight or less, the viscosity of the first agent is further reduced. There is a tendency.
1.5.1.4.付加反応触媒D1
 付加反応触媒D1は、ビニル変性オルガノポリシロキサンB1とヒドロシリル変性オルガノポリシロキサンE2との付加反応を触媒するものであれば特に限定されない。付加反応触媒D1としては、例えば、白金化合物触媒、ロジウム化合物触媒、パラジウム化合物触媒等が挙げられる。このなかでも、白金化合物触媒が好ましい。このような付加反応触媒D1を用いることにより、第一剤及び第二剤を混合したときの硬化速度を好適な範囲とすることができる傾向にある。
1.5.1.4. Addition reaction catalyst D1
The addition reaction catalyst D1 is not particularly limited as long as it catalyzes the addition reaction between the vinyl-modified organopolysiloxane B1 and the hydrosilyl-modified organopolysiloxane E2. Examples of the addition reaction catalyst D1 include platinum compound catalysts, rhodium compound catalysts, palladium compound catalysts, and the like. Among these, platinum compound catalysts are preferred. By using such an addition reaction catalyst D1, the curing rate when the first part and the second part are mixed tends to be within a suitable range.
 白金化合物触媒としては、特に制限されないが、例えば、単体の白金、白金化合物、白金担持無機粉末が挙げられる。白金化合物としては、特に制限されないが、例えば、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物等が挙げられる。また、白金担持無機粉末としては、特に制限されないが、例えば、白金担持のアルミナ粉末、白金担持のシリカ粉末、白金担持のカーボン粉末が挙げられる。 The platinum compound catalyst is not particularly limited, but includes, for example, simple platinum, platinum compounds, and platinum-supported inorganic powder. Examples of the platinum compound include, but are not limited to, chloroplatinic acid, platinum-olefin complexes, platinum-alcohol complexes, platinum coordination compounds, and the like. Further, the platinum-supported inorganic powder is not particularly limited, and examples thereof include platinum-supported alumina powder, platinum-supported silica powder, and platinum-supported carbon powder.
 付加反応触媒D1は、一種単独で用いても、二種以上を併用してもよい。また、付加反応触媒D1は、第一剤を調製する際に、単独で配合してもよいし、他の成分、例えばビニル変性オルガノポリシロキサンB1やそれ以外のオルガノポリシロキサンと予め混合した状態で配合してもよい。 The addition reaction catalyst D1 may be used alone or in combination of two or more. Further, when preparing the first agent, addition reaction catalyst D1 may be blended alone, or may be mixed in advance with other components such as vinyl-modified organopolysiloxane B1 or other organopolysiloxanes. May be blended.
 付加反応触媒D1の含有量は、ビニル変性オルガノポリシロキサンB1の含有量100重量部に対して、好ましくは0.1~30重量部であり、より好ましくは0.5~20重量部であり、更に好ましくは1~10重量部である。付加反応触媒D1の含有量が上記範囲内にあることにより、第一剤及び第二剤を混合したときの硬化速度を好適な範囲とすることができる傾向にある。 The content of the addition reaction catalyst D1 is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight, based on 100 parts by weight of the vinyl-modified organopolysiloxane B1. More preferably, it is 1 to 10 parts by weight. When the content of the addition reaction catalyst D1 is within the above range, the curing rate when the first part and the second part are mixed tends to be within a suitable range.
1.5.1.5.その他の成分
 第一剤は、上記成分に加え、必要に応じて、着色剤、反応遅延剤等の添加剤をそれぞれ含有してもよい。
1.5.1.5. Other Components In addition to the above-mentioned components, the first part may contain additives such as a coloring agent and a reaction retarder, if necessary.
 第一剤が着色剤を含む場合、着色剤の含有量は、第一剤の総量100重量部に対して、好ましくは0.001~0.2重量部である。 When the first agent contains a colorant, the content of the colorant is preferably 0.001 to 0.2 parts by weight based on 100 parts by weight of the total amount of the first agent.
 反応遅延剤としては、第一剤と第二剤とを混合した時の反応を遅延させる成分であれば特に制限されないが、例えば、アルケニルアルコールが挙げられ、中でも1-エチニル-1-シクロヘキサノールが好ましい。第一剤が反応遅延剤を含む場合、反応遅延剤の含有量は、ビニル変性オルガノポリシロキサンB1の含有量100重量部に対して、好ましくは0.1~20重量部であり、より好ましくは0.5~10重量部である。反応遅延剤は、第一剤に含まれず、第二剤のみに含まれていてもよい。 The reaction retarder is not particularly limited as long as it is a component that retards the reaction when the first part and the second part are mixed, but examples thereof include alkenyl alcohols, among which 1-ethynyl-1-cyclohexanol is used. preferable. When the first part contains a reaction retarder, the content of the reaction retarder is preferably 0.1 to 20 parts by weight, more preferably The amount is 0.5 to 10 parts by weight. The reaction retarder may not be included in the first part but only in the second part.
 また、第一剤は、下記式:
  R Si(OR4-(a+b)
(Rは、各々独立して、炭素数1~15のアルキル基であり、Rは、各々独立して、炭素数1~8の飽和又は不飽和の1価の炭化水素基であり、Rは、各々独立して、炭素数1~6のアルキル基であり、aは1~3であり、bは0~2であり、a+bは1~3である。)
で表されるオルガノシランを含んでいないことが好ましい。
In addition, the first agent has the following formula:
R 1 a R 2 b Si(OR 3 ) 4-(a+b)
(R 1 is each independently an alkyl group having 1 to 15 carbon atoms, R 2 is each independently a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, Each R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is 1 to 3, b is 0 to 2, and a+b is 1 to 3.)
It is preferable that the organosilane represented by is not included.
 このようなオルガノシランは、熱伝導性フィラーの濡れ性を向上させるために従来から用いられているものであるが、本実施形態の二液硬化型組成物セットにおける第一剤には含まれていないことが好ましい。そのような態様によれば、上記のようなオルガノシランを含む場合と比較して第一剤の粘度が一層低下する傾向にある。その要因は、必ずしも明らかではないが、第一剤がオルガノシランを含む場合、熱伝導性フィラーの濡れ性を向上させる成分として、界面活性剤A1及びオルガノシランが競合することにより、界面活性剤A1の効果が低減されてしまうことが考えられる。 Such organosilane has been conventionally used to improve the wettability of thermally conductive fillers, but it is not included in the first agent in the two-component curable composition set of this embodiment. Preferably not. According to such an embodiment, the viscosity of the first agent tends to be further reduced compared to the case where the organosilane as described above is included. The reason for this is not necessarily clear, but when the first agent contains an organosilane, the surfactant A1 and the organosilane compete as components that improve the wettability of the thermally conductive filler. It is conceivable that the effect of
 上記式中のRとしては、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ヘキシル基、ノニル基、デシル基、ドデシル基、テトラデシル基等が挙げられる。このなかでも、Rは、好ましくは炭素数6~12のアルキル基である。 R 1 in the above formula is not particularly limited, and examples thereof include a methyl group, ethyl group, propyl group, hexyl group, nonyl group, decyl group, dodecyl group, and tetradecyl group. Among these, R 1 is preferably an alkyl group having 6 to 12 carbon atoms.
 上記式中のRとしては、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基等のアルケニル基;フェニル基、トリル基等のアリール基;2-フェニルエチル基、2-メチル-2-フェニルエチル基等のアラルキル基;3,3,3-トリフロロプロピル基、2-(パーフロロブチル)エチル基、2-(パーフロロオクチル)エチル基、p-クロロフェニル基等のハロゲン化炭化水素基等が挙げられる。 R2 in the above formula is not particularly limited, but includes, for example, alkyl groups such as methyl, ethyl, propyl, hexyl, and octyl; cycloalkyl groups such as cyclopentyl and cyclohexyl; vinyl and allyl groups; alkenyl groups such as phenyl groups, tolyl groups; aralkyl groups such as 2-phenylethyl groups and 2-methyl-2-phenylethyl groups; 3,3,3-trifluoropropyl groups, 2-( Examples include halogenated hydrocarbon groups such as perfluorobutyl)ethyl group, 2-(perfluorooctyl)ethyl group, and p-chlorophenyl group.
 上記式中のRとしては、特に制限されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の炭素数1~6のアルキル基であり、好ましくはメチル基又はエチル基である。 R 3 in the above formula is not particularly limited, but is, for example, an alkyl group having 1 to 6 carbon atoms such as a methyl group, ethyl group, propyl group, butyl group, pentyl group, or hexyl group, preferably a methyl group. Or it is an ethyl group.
 上記式中、aは、1~3の整数であり、好ましくは1である。また、bは、0~2の整数であり、好ましくは0である。さらに、a+bは1~3の整数であり、好ましくは1である。 In the above formula, a is an integer from 1 to 3, preferably 1. Further, b is an integer of 0 to 2, preferably 0. Further, a+b is an integer from 1 to 3, preferably 1.
 第一剤における上記のオルガノシランの含有量は、熱伝導性フィラーC1の含有量100重量部に対して、好ましくは1重量部以下であり、より好ましくは0.1重量部以下であり、さらに好ましくは0.01重量部以下であり、特に好ましくは0重量部(すなわちオルガノシランを含まない)である。オルガノシランの含有量が上記範囲内であることにより、熱伝導性フィラーの濡れ性を効果的に向上させることができる傾向にある。 The content of the organosilane in the first agent is preferably 1 part by weight or less, more preferably 0.1 part by weight or less, based on 100 parts by weight of the thermally conductive filler C1. It is preferably 0.01 part by weight or less, particularly preferably 0 part by weight (ie, does not contain organosilane). When the content of organosilane is within the above range, the wettability of the thermally conductive filler tends to be effectively improved.
1.5.2.第二剤
 第二剤は、界面活性剤A2と、粘度が80~120mPa・sであるビニル変性オルガノポリシロキサンB2と、熱伝導性フィラーC2と、粘度が1~100mPa・sであるヒドロシリル変性オルガノポリシロキサンE2とを含むことが好ましい。第二剤は、必要に応じてその他の成分を含んでいてもよい。
1.5.2. Second Part The second part consists of surfactant A2, vinyl-modified organopolysiloxane B2 with a viscosity of 80 to 120 mPas, thermally conductive filler C2, and hydrosilyl-modified organopolysiloxane with a viscosity of 1 to 100 mPas. It is preferable to include polysiloxane E2. The second agent may contain other components as necessary.
1.5.2.1.界面活性剤A2
 界面活性剤A2の具体例、好ましい態様等の詳細は、第一剤に含まれる界面活性剤A1と同様であり、重複する説明は省略する。第一剤に含まれる界面活性剤A1と第二剤に含まれる界面活性剤A2とは同一であってもよく、異なっていてもよい。
1.5.2.1. Surfactant A2
Details such as specific examples and preferred embodiments of surfactant A2 are the same as those of surfactant A1 contained in the first agent, and redundant explanation will be omitted. Surfactant A1 contained in the first part and surfactant A2 contained in the second part may be the same or different.
 第二剤において、界面活性剤A2の含有量は、ビニル変性オルガノポリシロキサンB2及びヒドロシリル変性オルガノポリシロキサンE2の合計100重量部に対して、例えば3~28重量部であり、好ましくは4~25重量部であり、より好ましくは5~20重量部であり、更に好ましくは5~15重量部である。界面活性剤A2の含有量が上記の範囲内にあることにより、熱伝導性フィラーC2の分散性がより向上し、また第二剤の粘度がより低下する傾向にある。 In the second agent, the content of surfactant A2 is, for example, 3 to 28 parts by weight, preferably 4 to 25 parts by weight, based on a total of 100 parts by weight of vinyl-modified organopolysiloxane B2 and hydrosilyl-modified organopolysiloxane E2. Parts by weight, more preferably 5 to 20 parts by weight, still more preferably 5 to 15 parts by weight. When the content of the surfactant A2 is within the above range, the dispersibility of the thermally conductive filler C2 tends to be further improved, and the viscosity of the second agent tends to be further reduced.
1.5.2.2.ビニル変性オルガノポリシロキサンB2
 ビニル変性オルガノポリシロキサンB2の具体例、好ましい態様等の詳細は、第一剤に含まれるビニル変性オルガノポリシロキサンB1と同様であり、重複する説明は省略する。第一剤に含まれるビニル変性オルガノポリシロキサンB1と第二剤に含まれるビニル変性オルガノポリシロキサンB2とは同一であってもよく、異なっていてもよい。
1.5.2.2. Vinyl modified organopolysiloxane B2
Details such as specific examples and preferred embodiments of the vinyl-modified organopolysiloxane B2 are the same as those of the vinyl-modified organopolysiloxane B1 contained in the first agent, and redundant explanations will be omitted. The vinyl-modified organopolysiloxane B1 contained in the first part and the vinyl-modified organopolysiloxane B2 contained in the second part may be the same or different.
 第二剤において、ビニル変性オルガノポリシロキサンB2の含有量は、ビニル変性オルガノポリシロキサンB2及びヒドロシリル変性オルガノポリシロキサンE2の合計100重量部に対して、好ましくは30~98重量部であり、より好ましくは40~95重量部であり、更に好ましくは45~93重量部である。ビニル変性オルガノポリシロキサンB2の含有量が上記の範囲内にあることにより、第一剤及び第二剤を混合したときの硬化速度をより好適な範囲とすることができる傾向にある。ビニル変性オルガノポリシロキサンB2の含有量は、上記範囲内において、90重量部以下、80重量部以下、又は70重量部以下であってもよい。 In the second agent, the content of vinyl-modified organopolysiloxane B2 is preferably 30 to 98 parts by weight, more preferably is 40 to 95 parts by weight, more preferably 45 to 93 parts by weight. When the content of the vinyl-modified organopolysiloxane B2 is within the above range, the curing rate when the first part and the second part are mixed tends to be within a more suitable range. The content of vinyl-modified organopolysiloxane B2 may be 90 parts by weight or less, 80 parts by weight or less, or 70 parts by weight or less within the above range.
1.5.2.3.熱伝導性フィラーC2
 熱伝導性フィラーC2の具体例、好ましい態様等の詳細は、第一剤に含まれる熱伝導性フィラーC1と同様であり、重複する説明は省略する。第一剤に含まれる熱伝導性フィラーC1と第二剤に含まれる熱伝導性フィラーC2とは同一であってもよく、異なっていてもよい。
1.5.2.3. Thermal conductive filler C2
Details such as specific examples and preferred embodiments of the thermally conductive filler C2 are the same as those of the thermally conductive filler C1 included in the first agent, and redundant explanation will be omitted. The thermally conductive filler C1 contained in the first part and the thermally conductive filler C2 contained in the second part may be the same or different.
 熱伝導性フィラーC2の含有量は、ビニル変性オルガノポリシロキサンB2及びヒドロシリル変性オルガノポリシロキサンE2の合計100重量部に対して、例えば400~3000重量部であり、好ましくは1500~2400重量部であり、より好ましくは1700~2200重量部である。熱伝導性フィラーC2の含有量が400重量部以上であると、得られる硬化物の熱伝導率がより向上する傾向にあり、3000重量部以下であると、第二剤の粘度がより低下する傾向にある。 The content of the thermally conductive filler C2 is, for example, 400 to 3000 parts by weight, preferably 1500 to 2400 parts by weight, based on a total of 100 parts by weight of the vinyl-modified organopolysiloxane B2 and the hydrosilyl-modified organopolysiloxane E2. , more preferably 1,700 to 2,200 parts by weight. When the content of the thermally conductive filler C2 is 400 parts by weight or more, the thermal conductivity of the obtained cured product tends to be further improved, and when it is 3000 parts by weight or less, the viscosity of the second agent is further reduced. There is a tendency.
1.5.2.4.ヒドロシリル変性オルガノポリシロキサンE2
 ヒドロシリル変性オルガノポリシロキサンE2(以下、「単にオルガノポリシロキサンE2」ともいう。)は、粘度が1~100mPa・sであり、少なくとも1つのヒドロシリル基を有するオルガノポリシロキサンである。オルガノポリシロキサンE2は、側鎖及び/又は末端にヒドロシリル基を有していてよい。このようなオルガノポリシロキサンは、以下の式(e2-1)で表される構造単位又は式(e2-2)で表される末端構造を有する。オルガノポリシロキサンE2は、例えば、式(e2-1)で表される構造単位及び式(e2-2)で表される末端構造の少なくとも一方と、式(e2-3)で表される構造単位とを有していてもよい。
1.5.2.4. Hydrosilyl-modified organopolysiloxane E2
Hydrosilyl-modified organopolysiloxane E2 (hereinafter also simply referred to as "organopolysiloxane E2") is an organopolysiloxane having a viscosity of 1 to 100 mPa·s and having at least one hydrosilyl group. Organopolysiloxane E2 may have a hydrosilyl group in the side chain and/or at the end. Such an organopolysiloxane has a structural unit represented by the following formula (e2-1) or a terminal structure represented by the formula (e2-2). Organopolysiloxane E2 includes, for example, at least one of a structural unit represented by formula (e2-1) and a terminal structure represented by formula (e2-2), and a structural unit represented by formula (e2-3). It may have.
Figure JPOXMLDOC01-appb-C000002
 ここで、式(e2-1)、(e2-2)及び(e2-3)中、Rは置換基を有していてよい任意の1価の炭化水素基である。すなわち、オルガノポリシロキサンE2において、シロキサン骨格の側鎖には、置換基を有していてよい任意の1価の炭化水素基が結合している。
Figure JPOXMLDOC01-appb-C000002
Here, in formulas (e2-1), (e2-2) and (e2-3), R is any monovalent hydrocarbon group which may have a substituent. That is, in organopolysiloxane E2, any monovalent hydrocarbon group that may have a substituent is bonded to the side chain of the siloxane skeleton.
 そのような1価の炭化水素基としては、ビニル変性オルガノポリシロキサンB1が有していてよい1価の炭化水素基と同じものが挙げられる。 Examples of such monovalent hydrocarbon groups include the same monovalent hydrocarbon groups that vinyl-modified organopolysiloxane B1 may have.
 オルガノポリシロキサンE2の25℃での粘度は、1~100mPa・sであり、好ましくは2~80mPa・sであり、より好ましくは3~50mPa・sである。オルガノポリシロキサンE2の粘度が100mPa・s以下であると、第二剤の粘度がより低下する傾向にある。オルガノポリシロキサンE2の粘度が1mPa・s以上であると、後述する硬化物におけるせん断変位及び破断伸び等の機械強度がより向上する傾向にある。なお、オルガノポリシロキサンE2が複数の成分を含む場合には、上記粘度は、それら複数の成分のそれぞれが上記値を満たすことが好ましい。 The viscosity of organopolysiloxane E2 at 25° C. is 1 to 100 mPa·s, preferably 2 to 80 mPa·s, and more preferably 3 to 50 mPa·s. When the viscosity of organopolysiloxane E2 is 100 mPa·s or less, the viscosity of the second agent tends to decrease further. When the viscosity of organopolysiloxane E2 is 1 mPa·s or more, mechanical strength such as shear displacement and elongation at break in a cured product, which will be described later, tends to be further improved. In addition, when the organopolysiloxane E2 contains a plurality of components, it is preferable that the above viscosity satisfies the above value for each of the plurality of components.
 オルガノポリシロキサンE2は、一種単独で、又は二種以上を組み合わせて、第二剤に含まれる。例えば、第二剤が、オルガノポリシロキサンE2として、側鎖にヒドロシリル基を有するヒドロシリル変性オルガノポリシロキサンE22を少なくとも含むと好ましく、両末端にヒドロシリル基を有するヒドロシリル変性オルガノポリシロキサンE21と、上記ヒドロシリル変性オルガノポリシロキサンE22とを含むとより好ましい。 Organopolysiloxane E2 is contained in the second agent singly or in combination of two or more types. For example, it is preferable that the second agent contains at least a hydrosilyl-modified organopolysiloxane E22 having a hydrosilyl group in a side chain as the organopolysiloxane E2, and a hydrosilyl-modified organopolysiloxane E21 having a hydrosilyl group at both ends; It is more preferable to include organopolysiloxane E22.
 オルガノポリシロキサンE21は、オルガノポリシロキサン骨格の両末端にヒドロシリル基を少なくとも2個有する。オルガノポリシロキサンE21は、更に側鎖にヒドロシリル基を有していてもよい。オルガノポリシロキサンE21は、両末端のみにヒドロシリル基を有するオルガノポリシロキサンであってよい。 Organopolysiloxane E21 has at least two hydrosilyl groups at both ends of the organopolysiloxane skeleton. Organopolysiloxane E21 may further have a hydrosilyl group in the side chain. Organopolysiloxane E21 may be an organopolysiloxane having hydrosilyl groups only at both ends.
 オルガノポリシロキサンE22は、オルガノポリシロキサン骨格の側鎖に少なくとも1つの水素原子を有し、当該水素原子とケイ素原子によりヒドロシリル基が構成される。オルガノポリシロキサンE22は、更にオルガノポリシロキサン骨格の両末端にヒドロシリル基を有していてもよい。オルガノポリシロキサンE22のヒドロシリル基数は、好ましくは一分子あたり平均して2.0個超であり、より好ましくは一分子あたり平均して2.5個以上であり、更に好ましくは一分子あたり平均して3.0個以上である。なお、オルガノポリシロキサンE22のヒドロシリル基の上限は特に限定されず、例えば一分子あたり平均して8.0個、6.0個又は5.0個であってよい。 Organopolysiloxane E22 has at least one hydrogen atom in the side chain of the organopolysiloxane skeleton, and the hydrogen atom and silicon atom constitute a hydrosilyl group. Organopolysiloxane E22 may further have hydrosilyl groups at both ends of the organopolysiloxane skeleton. The number of hydrosilyl groups in organopolysiloxane E22 is preferably more than 2.0 on average per molecule, more preferably 2.5 or more on average per molecule, even more preferably on average per molecule. 3.0 or more. Note that the upper limit of the number of hydrosilyl groups in organopolysiloxane E22 is not particularly limited, and may be, for example, 8.0, 6.0, or 5.0 on average per molecule.
 第二剤に含まれるオルガノポリシロキサンE2のヒドロシリル基数は、好ましくは一分子あたり平均して2.0個超であり、より好ましくは一分子あたり平均して2.5個以上である。すなわち、第二剤に含まれるオルガノポリシロキサンE2が一種類の場合は、当該オルガノポリシロキサンが、一分子あたり2個超(すなわち、3個以上)のヒドロシリル基を有することが好ましい。第二剤に含まれるオルガノポリシロキサンE2が二種類以上の場合は、各オルガノポリシロキサンのヒドロシリル基の数の相加平均が2.0個超であると好ましい。 The number of hydrosilyl groups in the organopolysiloxane E2 contained in the second agent is preferably more than 2.0 on average per molecule, more preferably 2.5 or more on average per molecule. That is, when the second agent contains one type of organopolysiloxane E2, it is preferable that the organopolysiloxane has more than two (that is, three or more) hydrosilyl groups per molecule. When the second agent contains two or more types of organopolysiloxanes E2, the arithmetic average of the number of hydrosilyl groups in each organopolysiloxane is preferably more than 2.0.
 オルガノポリシロキサンE21と、オルガノポリシロキサンE22とは、上記のようにヒドロシリル基数を別々に制御することができるので、両者を適宜混合して用いることにより、第二剤の粘度の制御をしながら、第一剤との反応性を制御することができる傾向にある。特に、第二剤がオルガノポリシロキサンE22を含むことにより、ビニル変性オルガノポリシロキサンB1及びB2と反応した際に網目状の構造を形成し、せん断変位及び破断伸び等の機械強度により優れる硬化物を得ることができる傾向にある。 Since the number of hydrosilyl groups of organopolysiloxane E21 and organopolysiloxane E22 can be controlled separately as described above, by appropriately mixing them and using them, while controlling the viscosity of the second agent, It tends to be possible to control the reactivity with the first agent. In particular, since the second agent contains organopolysiloxane E22, it forms a network structure when reacting with vinyl-modified organopolysiloxanes B1 and B2, resulting in a cured product with better mechanical strength such as shear displacement and elongation at break. You tend to be able to get it.
 オルガノポリシロキサンE2の一分子あたりの平均ヒドロシリル基数は、NMRにより測定すればよい。具体的には、例えばJEOL社製、ECP-300NMRを使用し、重溶媒としての重クロロホルムに、オルガノポリシロキサンE2を溶解して測定すればよい。このようにして得られる測定結果をオルガノポリシロキサンE2の平均分子量で除することにより一分子あたりの平均ヒドロシリル基数を算出できる。 The average number of hydrosilyl groups per molecule of organopolysiloxane E2 may be measured by NMR. Specifically, the measurement may be performed by dissolving organopolysiloxane E2 in heavy chloroform as a heavy solvent using, for example, ECP-300NMR manufactured by JEOL. The average number of hydrosilyl groups per molecule can be calculated by dividing the measurement results obtained in this manner by the average molecular weight of organopolysiloxane E2.
 オルガノポリシロキサンE21の25℃での粘度は、好ましくは5~100mPa・sであり、より好ましくは10~80mPa・sであり、更に好ましくは15~50mPa・sである。オルガノポリシロキサンE21の粘度が100mPa・s以下であると、第二剤の粘度がより低下する傾向にある。オルガノポリシロキサンE21の粘度が5mPa・s以上であると、後述する硬化物におけるせん断変位及び破断伸び等の機械強度がより向上する傾向にある。 The viscosity of organopolysiloxane E21 at 25° C. is preferably 5 to 100 mPa·s, more preferably 10 to 80 mPa·s, and still more preferably 15 to 50 mPa·s. When the viscosity of organopolysiloxane E21 is 100 mPa·s or less, the viscosity of the second agent tends to decrease further. When the viscosity of organopolysiloxane E21 is 5 mPa·s or more, mechanical strength such as shear displacement and elongation at break in a cured product, which will be described later, tends to be further improved.
 オルガノポリシロキサンE22の25℃での粘度は、好ましくは1~100mPa・sであり、より好ましくは2~90mPa・sであり、更に好ましくは3~80mPa・sである。オルガノポリシロキサンE22の粘度が100mPa・s以下であると、第二剤の粘度がより低下する傾向にある。オルガノポリシロキサンE22の粘度が1mPa・s以上であると、後述する硬化物におけるせん断変位及び破断伸び等の機械強度がより向上する傾向にある。オルガノポリシロキサンE22の25℃での粘度は、上記範囲内において、50mPa・s以下、又は20mPa・s以下であってもよい。あるいは、別の態様において、オルガノポリシロキサンE22の25℃での粘度は、上記範囲内において、60~80mPa・sであってもよい。 The viscosity of organopolysiloxane E22 at 25° C. is preferably 1 to 100 mPa·s, more preferably 2 to 90 mPa·s, and still more preferably 3 to 80 mPa·s. When the viscosity of organopolysiloxane E22 is 100 mPa·s or less, the viscosity of the second agent tends to decrease further. When the viscosity of organopolysiloxane E22 is 1 mPa·s or more, mechanical strength such as shear displacement and elongation at break in a cured product, which will be described later, tends to be further improved. The viscosity of organopolysiloxane E22 at 25° C. may be 50 mPa·s or less, or 20 mPa·s or less within the above range. Alternatively, in another embodiment, the viscosity of organopolysiloxane E22 at 25° C. may be 60 to 80 mPa·s within the above range.
 第二剤において、ヒドロシリル変性オルガノポリシロキサンE2の含有量は、ビニル変性オルガノポリシロキサンB2及びヒドロシリル変性オルガノポリシロキサンE2の合計100重量部に対して、好ましくは2~70重量部であり、より好ましくは5~60重量部であり、更に好ましくは7~55重量部である。ヒドロシリル変性オルガノポリシロキサンE2の含有量が上記の範囲内にあることにより、第一剤及び第二剤を混合したときの硬化速度をより好適な範囲とすることができる傾向にある。ヒドロシリル変性オルガノポリシロキサンE2の含有量は、上記範囲内において、10重量部以上、20重量部以上、又は30重量部以上であってもよい。 In the second agent, the content of hydrosilyl-modified organopolysiloxane E2 is preferably 2 to 70 parts by weight, more preferably is 5 to 60 parts by weight, more preferably 7 to 55 parts by weight. When the content of the hydrosilyl-modified organopolysiloxane E2 is within the above range, the curing rate when the first part and the second part are mixed tends to be within a more suitable range. The content of the hydrosilyl-modified organopolysiloxane E2 may be 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more within the above range.
 ビニル変性オルガノポリシロキサンB2及びヒドロシリル変性オルガノポリシロキサンE2の含有量の合計は、第二剤の熱伝導性フィラーC1以外の成分の合計に対して、好ましくは60~99重量%であり、より好ましくは70~98重量%であり、更に好ましくは80~95重量%である。当該含有量が上記の範囲内にあることにより、第二剤の粘度がより低下し、また第一剤及び第二剤を混合したときの硬化速度をより好適な範囲とすることができる傾向にある。 The total content of vinyl-modified organopolysiloxane B2 and hydrosilyl-modified organopolysiloxane E2 is preferably 60 to 99% by weight, more preferably is 70 to 98% by weight, more preferably 80 to 95% by weight. By having the content within the above range, the viscosity of the second agent tends to be further reduced, and the curing speed when the first agent and the second agent are mixed tends to be within a more suitable range. be.
1.5.2.5.反応遅延剤F2
 反応遅延剤F2は、ヒドロシリル基とビニルシリル基の反応を制御するために任意で添加される添加剤である。本実施形態において、第一剤が付加反応触媒D1を含み、第二剤が反応遅延剤を含むと好ましい。反応遅延剤F2としては、第一剤と第二剤とを混合した時の反応を遅延させる成分であれば特に限定されないが、例えば、アルケニルアルコールが挙げられ、中でも1-エチニル-1-シクロヘキサノールが好ましい。このような反応遅延剤F2を用いることにより、第一剤及び第二剤を混合したときの硬化速度を好適な範囲とすることができる傾向にある。
1.5.2.5. Reaction retarder F2
The reaction retarder F2 is an additive that is optionally added to control the reaction between the hydrosilyl group and the vinylsilyl group. In this embodiment, it is preferable that the first part contains the addition reaction catalyst D1 and the second part contains a reaction retarder. The reaction retarder F2 is not particularly limited as long as it is a component that retards the reaction when the first part and the second part are mixed, but examples thereof include alkenyl alcohols, among which 1-ethynyl-1-cyclohexanol is preferred. By using such a reaction retarder F2, the curing rate when the first part and the second part are mixed tends to be within a suitable range.
 第二剤が反応遅延剤F2を含む場合、反応遅延剤F2の含有量は、ビニル変性オルガノポリシロキサンB2及びヒドロシリル変性オルガノポリシロキサンE2の合計100重量部に対して、好ましくは0.1~20重量部であり、より好ましくは0.5~10重量部である。反応遅延剤F2の含有量が上記範囲内にあることにより、第一剤及び第二剤を混合したときの硬化速度を好適な範囲とすることができる傾向にある。 When the second agent contains the reaction retarder F2, the content of the reaction retarder F2 is preferably 0.1 to 20 parts by weight based on a total of 100 parts by weight of the vinyl-modified organopolysiloxane B2 and the hydrosilyl-modified organopolysiloxane E2. Parts by weight, more preferably 0.5 to 10 parts by weight. When the content of the reaction retarder F2 is within the above range, the curing rate when the first part and the second part are mixed tends to be within a suitable range.
1.5.2.6.その他の成分
 第二剤は、上記成分に加え、必要に応じて、着色剤等の添加剤をそれぞれ含有してもよい。着色剤の具体例、好ましい態様、含有量等の詳細は、第一剤と同様であり、重複する説明は省略する。第一剤に含まれる添加剤と第二剤に含まれる添加剤とは同一であってもよく、異なっていてもよい。
1.5.2.6. Other Components In addition to the above components, the second agent may contain additives such as colorants, if necessary. Details such as specific examples, preferred embodiments, and content of the colorant are the same as those for the first agent, and redundant explanations will be omitted. The additives contained in the first part and the additives contained in the second part may be the same or different.
 また、第二剤は、下記式:
  R Si(OR4-(a+b)
(Rは、各々独立して、炭素数1~15のアルキル基であり、Rは、各々独立して、炭素数1~8の飽和又は不飽和の1価の炭化水素基であり、Rは、各々独立して、炭素数1~6のアルキル基であり、aは1~3であり、bは0~2であり、a+bは1~3である。)
で表されるオルガノシランを含んでいないことが好ましい。上記オルガノシランを含まないことによって、第二剤の粘度を一層低下させることができる傾向にある。
In addition, the second agent has the following formula:
R 1 a R 2 b Si(OR 3 ) 4-(a+b)
(R 1 is each independently an alkyl group having 1 to 15 carbon atoms, R 2 is each independently a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, Each R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is 1 to 3, b is 0 to 2, and a+b is 1 to 3.)
It is preferable that the organosilane represented by is not included. By not containing the organosilane, the viscosity of the second agent tends to be further reduced.
 上記オルガノシランの具体的態様等は第一剤において含まないことが好ましいオルガノシランと同様である。また、上記オルガノシランの第二剤における好ましい含有量も第一剤と同様である。 The specific embodiments of the organosilane described above are the same as the organosilane that is preferably not included in the first agent. Further, the preferable content of the organosilane in the second part is also the same as that in the first part.
1.6.用途
 本実施形態の二液硬化型組成物セットは、熱伝導性グリース等の熱伝導性放熱材料として好適に使用することができる。
1.6. Application The two-component curable composition set of this embodiment can be suitably used as a thermally conductive heat dissipating material such as thermally conductive grease.
2.硬化物
 本実施形態の硬化物は、上述した二液硬化型組成物セットにおける第一剤及び第二剤を混合することにより得られる。より具体的には、硬化物(架橋硬化物)は、当該第一剤及び第二剤を混合して得られる混合物において、2種以上の反応性基が付加反応、縮合反応、ラジカル反応等をすることにより、上記硬化物が得られる。第一剤がビニル変性オルガノポリシロキサンを含み、第二剤がビニル変性オルガノポリシロキサン及びヒドロシリル変性オルガノポリシロキサンを含む上述の本実施形態の一態様においては、ビニル変性オルガノポリシロキサンB1及びB2のビニル基と、ヒドロシリル変性オルガノポリシロキサンE2のヒドロシリル基との付加反応が進行することにより、上記硬化物が得られる。
2. Cured Product The cured product of this embodiment is obtained by mixing the first part and the second part in the above-mentioned two-component curable composition set. More specifically, the cured product (crosslinked cured product) is a mixture obtained by mixing the first part and the second part, in which two or more types of reactive groups undergo an addition reaction, a condensation reaction, a radical reaction, etc. By doing so, the above-mentioned cured product is obtained. In one aspect of the present embodiment described above, in which the first part contains a vinyl-modified organopolysiloxane and the second part contains a vinyl-modified organopolysiloxane and a hydrosilyl-modified organopolysiloxane, the vinyl-modified organopolysiloxanes B1 and B2 are The above-mentioned cured product is obtained by the addition reaction between the group and the hydrosilyl group of the hydrosilyl-modified organopolysiloxane E2.
 第一剤及び第二剤を混合した後、硬化前に所望の形に成形することにより、所望の形を有する硬化物を得ることができる。また、本実施形態の硬化物は熱伝導性フィラーを含むため熱伝導性放熱材料として好適に用いることができる。 After mixing the first part and the second part, a cured product having a desired shape can be obtained by molding it into a desired shape before curing. Moreover, since the cured product of this embodiment contains a thermally conductive filler, it can be suitably used as a thermally conductive heat dissipating material.
 第一剤及び第二剤の混合には、例えば、ロールミル、ニーダー、バンバリーミキサー、ラインミキサー等の混合機が用いられる。より具体的には、例えば、万能混合撹拌機、ハイブリッドミキサー、トリミックス(井上製作所製)、スタティックミキサーを用いて混練する方法等が挙げられる。成形方法はドクターブレード法が好ましいが、樹脂の粘度によって押出法、プレス法、カレンダーロール法等を用いてもよい。付加反応の進行における反応条件は、特に限定されないが、通常、室温(例えば25℃)~150℃、0.1~24時間で行われる。 For mixing the first part and the second part, a mixer such as a roll mill, kneader, Banbury mixer, or line mixer is used, for example. More specifically, examples include a method of kneading using a universal mixer, a hybrid mixer, a trimix (manufactured by Inoue Seisakusho), and a static mixer. A doctor blade method is preferred as the molding method, but extrusion methods, press methods, calender roll methods, etc. may also be used depending on the viscosity of the resin. The reaction conditions for the addition reaction are not particularly limited, but it is usually carried out at room temperature (for example, 25°C) to 150°C for 0.1 to 24 hours.
 第一剤及び第二剤の混合割合は、用いる第一剤及び第二剤の種類、及び使用目的に応じて適宜設定できるが、例えば、体積比で第一剤:第二剤=1.5:1.0~1.0:1.5であってよく、1.0:1.0であってよい。 The mixing ratio of the first part and the second part can be set as appropriate depending on the types of the first part and the second part used and the purpose of use, but for example, the volume ratio of the first part: the second part = 1.5 :1.0 to 1.0:1.5, or 1.0:1.0.
3.電子機器
 本実施形態の電子機器は、電子部品と、硬化物と、ヒートシンクと、を備え、電子部品及びヒートシンクが、硬化物を介して接触しているものである。
3. Electronic Device The electronic device of this embodiment includes an electronic component, a cured product, and a heat sink, and the electronic component and the heat sink are in contact with each other via the cured product.
 ここで、電子部品としては、特に制限されないが、例えば、モーター、電池パック、車載電源システムに搭載される回路基板、パワートランジスタ、マイクロプロセッサ等の発熱する電子部品等が挙げられる。また、ヒートシンクとしては、特に制限されないが、例えば、筐体、特に金属筐体等が挙げられる。 Here, electronic components include, but are not particularly limited to, electronic components that generate heat, such as motors, battery packs, circuit boards mounted on vehicle power supply systems, power transistors, microprocessors, and the like. Moreover, the heat sink is not particularly limited, but includes, for example, a casing, particularly a metal casing.
 以下、実施例により本発明を更に詳述するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples.
1.界面活性剤の合成
1.1.原料
(カルボキシ基を有する(メタ)アクリル系単量体α)
 アクリル酸、東亞合成社製
1. Synthesis of surfactant 1.1. Raw material ((meth)acrylic monomer α having a carboxy group)
Acrylic acid, manufactured by Toagosei Co., Ltd.
(第三級アミノ基を有する(メタ)アクリル系単量体β)
 メタクリル酸-1,2,2,6,6-ペンタメチル-4-ピペリジル、ADEKA株式会社製「アデカスタブLA-82」
((meth)acrylic monomer β having a tertiary amino group)
1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, “ADEKASTAB LA-82” manufactured by ADEKA Corporation
(シロキサン骨格を有する(メタ)アクリル系単量体γ)
 (γ-1)α-ブチル-ω-(3-メタクリロキシプロピル)ポリジメチルシロキサン)、JNC社製「サイラプレーンFM-0725」数平均分子量10000
 (γ-2)α-ブチル-ω-(3-メタクリロキシプロピル)ポリジメチルシロキサン)、JNC社製「サイラプレーンFM-0721」数平均分子量5000
 (γ-3)α-ブチル-ω-(3-メタクリロキシプロピル)ポリジメチルシロキサン)、JNC社製「サイラプレーンFM-0711」数平均分子量1000
((meth)acrylic monomer γ having a siloxane skeleton)
(γ-1)α-butyl-ω-(3-methacryloxypropyl)polydimethylsiloxane), “Siraplane FM-0725” manufactured by JNC, number average molecular weight 10,000
(γ-2)α-butyl-ω-(3-methacryloxypropyl)polydimethylsiloxane), “Siraplane FM-0721” manufactured by JNC, number average molecular weight 5000
(γ-3)α-butyl-ω-(3-methacryloxypropyl)polydimethylsiloxane), “Siraplane FM-0711” manufactured by JNC, number average molecular weight 1000
1.2.界面活性剤1
 界面活性剤1の合成は以下のようにして行った。まず、撹拌機付のオートクレーブ内にアクリル酸:1.5重量部、メタクリル酸-1,2,2,6,6-ペンタメチル-4-ピペリジル:0.5重量部、α-ブチル-ω-(3-メタクリロキシプロピル)ポリジメチルシロキサン)(γ-1):98.0重量部を添加した。次いで、開始剤としてアゾビスイソブチロニトリル(東京化成社製)を、(メタ)アクリル系単量体の総和100重量部に対して0.05重量部、溶媒としてトルエン(試薬特級)、及びイソプロピルアルコール(試薬特級)の体積比=7:3の混合溶液を1000重量部加え、オートクレーブ内を窒素により置換した。その後、オートクレーブをオイルバス中で65℃にて20時間加熱し、ラジカル重合を行った。重合終了後、減圧下に120℃で1時間脱気し、界面活性剤1を得た。
1.2. Surfactant 1
Surfactant 1 was synthesized as follows. First, in an autoclave equipped with a stirrer, 1.5 parts by weight of acrylic acid, 0.5 parts by weight of 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, and α-butyl-ω-( 98.0 parts by weight of 3-methacryloxypropyl) polydimethylsiloxane (γ-1) was added. Next, 0.05 parts by weight of azobisisobutyronitrile (manufactured by Tokyo Kasei Co., Ltd.) as an initiator, based on 100 parts by weight of the total amount of (meth)acrylic monomers, toluene (special grade reagent) as a solvent, and 1000 parts by weight of a mixed solution of isopropyl alcohol (reagent grade) in a volume ratio of 7:3 was added, and the inside of the autoclave was purged with nitrogen. Thereafter, the autoclave was heated in an oil bath at 65° C. for 20 hours to perform radical polymerization. After the polymerization was completed, the mixture was degassed at 120° C. for 1 hour under reduced pressure to obtain Surfactant 1.
 単量体の仕込み量100%に対する重合率は、ガスクロマトグラフィ分析により分析したところ、98%以上であった。このことから、界面活性剤が有する各単量体単位の比率は、単量体の仕込み比と同程度と推定された。 The polymerization rate based on 100% monomer charge amount was 98% or more when analyzed by gas chromatography. From this, it was estimated that the ratio of each monomer unit in the surfactant was approximately the same as the monomer loading ratio.
 また、得られた界面活性剤1の重量平均分子量を、GPC(ゲルパーミネーションクロマトグラフィ)法を用いて、標準ポリスチレン換算の重量平均分子量として求めた。なお、測定条件は以下のとおりである。
 高速GPC装置:東ソー社製「HLC-8020」
 カラム    :東ソー社製「TSK guardcolumnMP(×L)」6.0mmID×4.0cm1本、及び東ソー社製「TSK-GELMULTIPOREHXL-M」7.8mmID×30.0cm(理論段数16000段)2本、計3本(全体として理論段数32000段)
 展開溶媒   :テトラヒドロフラン
 ディテクター :RI(示差屈折率計)
Further, the weight average molecular weight of the obtained surfactant 1 was determined as a standard polystyrene equivalent weight average molecular weight using GPC (gel permeation chromatography) method. Note that the measurement conditions are as follows.
High-speed GPC device: “HLC-8020” manufactured by Tosoh Corporation
Column: 1 piece of “TSK guardcolumn MP (×L)” 6.0 mm ID x 4.0 cm manufactured by Tosoh Corporation, and 2 pieces of “TSK-GELMULTIPOREHXL-M” 7.8 mm ID x 30.0 cm (16000 theoretical plates) manufactured by Tosoh Corporation, total 3 (total number of theoretical plates 32,000)
Developing solvent: Tetrahydrofuran Detector: RI (differential refractometer)
1.3.界面活性剤2~14
 表1に記載の(メタ)アクリル系単量体の組成比を用い、単量体の可溶性と界面活性剤の重量平均分子量を制御するためにトルエン及びイソプロピルアルコールの混合比を調整したこと以外は、界面活性剤1と同様の方法により、ラジカル重合を行い、界面活性剤2~14を得た。得られた界面活性剤2~14における重合率はいずれも98%以上であり、界面活性剤が有する各単量体単位の比率は、単量体の仕込み比と同程度と推定された。また、重量平均分子量についても上記と同様に求めた。
1.3. Surfactant 2-14
The composition ratio of (meth)acrylic monomers listed in Table 1 was used, except that the mixing ratio of toluene and isopropyl alcohol was adjusted to control the solubility of the monomer and the weight average molecular weight of the surfactant. , Surfactants 2 to 14 were obtained by radical polymerization in the same manner as in Surfactant 1. The polymerization rates of the obtained surfactants 2 to 14 were all 98% or more, and the ratio of each monomer unit contained in the surfactant was estimated to be about the same as the monomer charge ratio. Moreover, the weight average molecular weight was also determined in the same manner as above.
 なお、表1において単量体の組成は重量%で示した。α-ブチル-ω-(3-メタクリロキシプロピル)ポリジメチルシロキサンの重量比は、その数平均分子量に基づいて算出した。 In addition, in Table 1, the composition of monomers is shown in weight %. The weight ratio of α-butyl-ω-(3-methacryloxypropyl)polydimethylsiloxane was calculated based on its number average molecular weight.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
2.第一剤の調製
 以下に示すA1成分~D1成分を、表2に記載の配合比(重量部)に基づき混合し、第一剤I-1~I~30を作製した。各成分の混合はハイブリッドミキサーARE-310(シンキー株式会社製、商品名)を用いて行った。
2. Preparation of First Part The following components A1 to D1 were mixed based on the blending ratio (parts by weight) shown in Table 2 to prepare first parts I-1 to I-30. The components were mixed using a hybrid mixer ARE-310 (manufactured by Shinky Co., Ltd., trade name).
〔A1:界面活性剤〕
 A1-1~1-14:上記合成方法により得られた界面活性剤1~14
(A1-1~1-14は、それぞれ、界面活性剤1~14に順に対応する。)
 A1-15:Z6210(ダウ・東レ株式会社製、商品名)、n-デシルトリメトキシシラン
[A1: Surfactant]
A1-1 to 1-14: Surfactants 1 to 14 obtained by the above synthesis method
(A1-1 to 1-14 correspond to surfactants 1 to 14 in order, respectively.)
A1-15: Z6210 (manufactured by Dow Toray Industries, Inc., trade name), n-decyltrimethoxysilane
〔B1:ビニル変性オルガノポリシロキサン〕
 B1-1:RH-Vi100E(Runhe Chemical Industry社製、商品名)、ビニル変性オルガノポリシロキサン、25℃における粘度:105mPa・s、一分子あたりの平均ビニル基数:2個、直鎖状構造、ビニル基結合位置:両末端
 B1-2:621V100(エルケム シリコーンズ社製、商品名)、ビニル変性オルガノポリシロキサン、25℃における粘度:100mPa・s、一分子あたりの平均ビニル基数:2個、直鎖状構造、ビニル基結合位置:両末端
 B1-3:SE1885A(ダウ・ケミカル日本社製、商品名)、ビニル変性オルガノポリシロキサン、25℃における粘度:500mPa・s
[B1: Vinyl-modified organopolysiloxane]
B1-1: RH-Vi100E (manufactured by Runhe Chemical Industry, trade name), vinyl-modified organopolysiloxane, viscosity at 25°C: 105 mPa・s, average number of vinyl groups per molecule: 2, linear structure, vinyl Group bonding position: both ends B1-2: 621V100 (manufactured by Elchem Silicones, trade name), vinyl-modified organopolysiloxane, viscosity at 25°C: 100 mPa・s, average number of vinyl groups per molecule: 2, linear chain Structure, vinyl group bonding position: both ends B1-3: SE1885A (manufactured by Dow Chemical Japan Co., Ltd., trade name), vinyl-modified organopolysiloxane, viscosity at 25°C: 500 mPa・s
〔C1:熱伝導性フィラー〕
 C1-1:DAW45S(デンカ社製、商品名)、球状アルミナ、平均粒径:45μm、熱伝導率35W/m・K
 C1-2:DAW05(デンカ社製、商品名)、球状アルミナ、平均粒径:5μm、熱伝導率35W/m・K
 C1-3:ASFP40(デンカ社製、商品名)、超微粉アルミナ、平均粒径:0.4μm、熱伝導率35W/m・K
 C1-4:DMG60(デンカ社製、商品名)、酸化マグネシウム、平均粒径:60μm、熱伝導率60W/m・K
 C1-5:AN-HF50LG(株式会社燃焼合成社製、商品名)、窒化アルミニウム、平均粒径:50μm、熱伝導率170W/m・K
 C1-6:Al-63μm(ヒカリ素材工業株式会社製、商品名)、金属アルミニウム、平均粒径:63μm、熱伝導率240W/m・K
 C1-7:DAW70(デンカ社製、商品名)、球状アルミナ、平均粒径:70μm、熱伝導率35W/m・K
[C1: Thermal conductive filler]
C1-1: DAW45S (manufactured by Denka, trade name), spherical alumina, average particle size: 45 μm, thermal conductivity 35 W/m・K
C1-2: DAW05 (manufactured by Denka, trade name), spherical alumina, average particle size: 5 μm, thermal conductivity 35 W/m・K
C1-3: ASFP40 (manufactured by Denka, trade name), ultrafine powder alumina, average particle size: 0.4 μm, thermal conductivity 35 W/m・K
C1-4: DMG60 (manufactured by Denka, trade name), magnesium oxide, average particle size: 60 μm, thermal conductivity 60 W/m・K
C1-5: AN-HF50LG (manufactured by Yasushi Gosei Co., Ltd., trade name), aluminum nitride, average particle size: 50 μm, thermal conductivity 170 W/m・K
C1-6: Al-63μm (manufactured by Hikari Materials Co., Ltd., trade name), metal aluminum, average particle size: 63μm, thermal conductivity 240W/m・K
C1-7: DAW70 (manufactured by Denka, trade name), spherical alumina, average particle size: 70 μm, thermal conductivity 35 W/m・K
〔D1:付加反応触媒〕
 D1-1:白金錯体ポリメチルビニルシロキサン溶液(ブルースターシリコーン社製、商品名:シリコリース キャタリスト 12070)
[D1: Addition reaction catalyst]
D1-1: Platinum complex polymethylvinylsiloxane solution (manufactured by Blue Star Silicone Co., Ltd., product name: Silicoreath Catalyst 12070)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
3.第二剤の調製
 以下に示すA2成分~C2成分、E2成分、及びF2成分を、表3に記載の配合比(重量部)に基づき混合し、第二剤II-1~II~34を作製した。各成分の混合はハイブリッドミキサーARE-310(シンキー株式会社製、商品名)を用いて行った。
3. Preparation of second agent The following A2 component to C2 component, E2 component, and F2 component were mixed based on the blending ratio (parts by weight) listed in Table 3 to prepare second agent II-1 to II-34. did. The components were mixed using a hybrid mixer ARE-310 (manufactured by Shinky Co., Ltd., trade name).
〔A2:界面活性剤〕
 A2-1~1-14:上記合成方法により得られた界面活性剤1~14
(A2-1~1-14は、それぞれ、界面活性剤1~14に順に対応する。)
 A2-15:Z6210(ダウ・東レ株式会社製、商品名)、n-デシルトリメトキシシラン
[A2: Surfactant]
A2-1 to 1-14: Surfactants 1 to 14 obtained by the above synthesis method
(A2-1 to 1-14 correspond to surfactants 1 to 14 in order, respectively.)
A2-15: Z6210 (manufactured by Dow Toray Industries, Inc., trade name), n-decyltrimethoxysilane
〔B2:ビニル変性オルガノポリシロキサン〕
 B2-1:RH-Vi100E(Runhe Chemical Industry社製、商品名)、ビニル変性オルガノポリシロキサン、25℃における粘度:105mPa・s、一分子あたりの平均ビニル基数:2個、直鎖状構造、ビニル基結合位置:両末端
 B2-2:621V100(エルケム シリコーンズ社製、商品名)、ビニル変性オルガノポリシロキサン、25℃における粘度:100mPa・s、一分子あたりの平均ビニル基数:2個、直鎖状構造、ビニル基結合位置:両末端
[B2: Vinyl-modified organopolysiloxane]
B2-1: RH-Vi100E (manufactured by Runhe Chemical Industry, trade name), vinyl-modified organopolysiloxane, viscosity at 25°C: 105 mPa・s, average number of vinyl groups per molecule: 2, linear structure, vinyl Group bonding position: Both ends B2-2: 621V100 (manufactured by Elkem Silicones, trade name), vinyl-modified organopolysiloxane, viscosity at 25°C: 100 mPa・s, average number of vinyl groups per molecule: 2, linear chain Structure, vinyl group bonding position: both ends
〔C2:熱伝導性フィラー〕
 C2-1:DAW45S(デンカ社製、商品名)、球状アルミナ、平均粒径:45μm、熱伝導率35W/m・K
 C2-2:DAW05(デンカ社製、商品名)、球状アルミナ、平均粒径:5μm、熱伝導率35W/m・K
 C2-3:ASFP40(デンカ社製、商品名)、超微粉アルミナ、平均粒径:0.4μm、熱伝導率35W/m・K
 C2-4:DMG60(デンカ社製、商品名)、酸化マグネシウム、平均粒径:60μm、熱伝導率60W/m・K
 C2-5:AN-HF50LG(株式会社燃焼合成社製、商品名)、窒化アルミニウム、平均粒径:50μm、熱伝導率170W/m・K
 C2-6:Al-63μm(ヒカリ素材工業株式会社製、商品名)、金属アルミニウム、平均粒径:63μm、熱伝導率240W/m・K
 C2-7:DAW70(デンカ社製、商品名)、球状アルミナ、平均粒径:70μm、熱伝導率35W/m・K
[C2: Thermal conductive filler]
C2-1: DAW45S (manufactured by Denka, trade name), spherical alumina, average particle size: 45 μm, thermal conductivity 35 W/m・K
C2-2: DAW05 (manufactured by Denka, trade name), spherical alumina, average particle size: 5 μm, thermal conductivity 35 W/m・K
C2-3: ASFP40 (manufactured by Denka, trade name), ultrafine alumina powder, average particle size: 0.4 μm, thermal conductivity 35 W/m・K
C2-4: DMG60 (manufactured by Denka, trade name), magnesium oxide, average particle size: 60 μm, thermal conductivity 60 W/m・K
C2-5: AN-HF50LG (manufactured by Yasushi Gosei Co., Ltd., trade name), aluminum nitride, average particle size: 50 μm, thermal conductivity 170 W/m・K
C2-6: Al-63μm (manufactured by Hikari Materials Co., Ltd., trade name), metal aluminum, average particle size: 63μm, thermal conductivity 240W/m・K
C2-7: DAW70 (manufactured by Denka, trade name), spherical alumina, average particle size: 70 μm, thermal conductivity 35 W/m・K
〔E2:ヒドロシリル変性オルガノポリシロキサン〕
 E2-1:RH-LHC-3(Runhe Chemical Industry社製、商品名)、ヒドロシリル変性オルガノポリシロキサン、25℃における粘度:5mPa・s、一分子あたりの平均ヒドロシリル基数:3個以上、直鎖状構造、ヒドロシリル基結合位置:側鎖
 E2-2:626V30H2.5(エルケム社製、商品名)、ヒドロシリル変性オルガノポリシロキサン、25℃における粘度:30mPa・s、一分子あたりの平均ヒドロシリル基数:3個以上、直鎖状構造、ヒドロシリル基結合位置:両末端・側鎖
 E2-3:RH-H45(Runhe Chemical Industry社製、商品名)、ヒドロシリル変性オルガノポリシロキサン、25℃における粘度:20mPa・s、一分子あたりの平均ヒドロシリル基数:2個、直鎖状構造、ヒドロシリル基結合位置:両末端
 E2-4:620V20(エルケム社製、商品名)、ヒドロシリル変性オルガノポリシロキサン、25℃における粘度:20mPa・s、一分子あたりの平均ヒドロシリル基数:2個、直鎖状構造、ヒドロシリル基結合位置:両末端
 E2-5:SE1885B(ダウ・ケミカル日本社製、商品名)、ビニル変性オルガノポリシロキサンとヒドロシリル変性オルガノポリシロキサンの混合物、25℃における粘度:350mPa・s
[E2: Hydrosilyl-modified organopolysiloxane]
E2-1: RH-LHC-3 (manufactured by Runhe Chemical Industry, trade name), hydrosilyl-modified organopolysiloxane, viscosity at 25°C: 5 mPa・s, average number of hydrosilyl groups per molecule: 3 or more, linear Structure, hydrosilyl group bonding position: side chain E2-2: 626V30H2.5 (manufactured by Elkem, trade name), hydrosilyl-modified organopolysiloxane, viscosity at 25°C: 30 mPa・s, average number of hydrosilyl groups per molecule: 3 As above, linear structure, hydrosilyl group bonding position: both ends/side chain E2-3: RH-H45 (manufactured by Runhe Chemical Industry, trade name), hydrosilyl-modified organopolysiloxane, viscosity at 25°C: 20 mPa・s, Average number of hydrosilyl groups per molecule: 2, linear structure, hydrosilyl group bonding positions: both ends E2-4: 620V20 (manufactured by Elchem, trade name), hydrosilyl-modified organopolysiloxane, viscosity at 25°C: 20 mPa. s, average number of hydrosilyl groups per molecule: 2, linear structure, hydrosilyl group bonding position: both ends E2-5: SE1885B (manufactured by Dow Chemical Japan Co., Ltd., trade name), vinyl-modified organopolysiloxane and hydrosilyl-modified Organopolysiloxane mixture, viscosity at 25°C: 350 mPa・s
〔F2:反応遅延剤〕
 F2-1:PA90(エルケム社製、商品名)、1-エチニル-1-シクロヘキサノールとポリオルガノシロキサンとフィラーとの混合物
[F2: Reaction retarder]
F2-1: PA90 (manufactured by Elkem, trade name), a mixture of 1-ethynyl-1-cyclohexanol, polyorganosiloxane, and filler
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
4.第一剤及び第二剤の特性
(粘度)
 第一剤及び第二剤の25℃、せん断速度10s-1における粘度は、Thermo Fisher Scientific社製の回転式レオメータ「HANKE MARSIII」を用いて測定した。具体的には、直径35mmφのパラレルプレートを用い、ギャップ0.5mm、温度25℃、せん断速度10s-1の条件で測定した。結果を表4に示す。
4. Characteristics of the first and second agents (viscosity)
The viscosity of the first and second agents at 25° C. and a shear rate of 10 s −1 was measured using a rotary rheometer “HANKE MARS III” manufactured by Thermo Fisher Scientific. Specifically, the measurement was performed using a parallel plate with a diameter of 35 mmφ, a gap of 0.5 mm, a temperature of 25° C., and a shear rate of 10 s −1 . The results are shown in Table 4.
(熱抵抗値及び熱伝導率)
 株式会社日立テクノロジー社製の樹脂材料熱抵抗測定装置を用い、ASTM D5470に準拠した方法により、第一剤及び第二剤の熱抵抗値及び熱伝導率を測定した。
(Thermal resistance value and thermal conductivity)
The thermal resistance value and thermal conductivity of the first part and the second part were measured using a resin material thermal resistance measuring device manufactured by Hitachi Technologies Co., Ltd. by a method based on ASTM D5470.
 具体的には、第一剤及び第二剤のそれぞれを、測定面積10mm×10mmの領域に、0.2mm、0.5mm及び1.0mmの厚さで塗布し、それぞれの熱抵抗値を測定した。 Specifically, each of the first and second agents was applied to a measurement area of 10 mm x 10 mm in thicknesses of 0.2 mm, 0.5 mm, and 1.0 mm, and the thermal resistance values of each were measured. did.
 次いで、熱抵抗値を縦軸とし第一剤及び第二剤の厚さを横軸として得られる直線の傾きを算出することで第一剤及び第二剤の熱伝導率を計算した。熱抵抗値及び熱伝導率の測定結果を表4に示す。 Next, the thermal conductivity of the first and second parts was calculated by calculating the slope of a straight line with the thermal resistance value as the vertical axis and the thickness of the first and second parts as the horizontal axis. Table 4 shows the measurement results of thermal resistance value and thermal conductivity.
5.第一剤及び第二剤の混合物性
 第一剤及び第二剤を表4に示す組合せにて1:1の体積比で混合して使用して、各第一剤及び第二剤の取り扱い性を評価した。具体的には、50ml(1:1)カートリッジに第一剤及び第二剤を表4に示す組合せにて入れて蓋をし、ディスペンサーガン(製品名「MixPac DMA50」)に取り付け、カートリッジの吐出口に第一剤及び第二剤を混合するミキサー(長さ9.5cm、羽根12枚)を取り付けて1:1の体積比で混合しながら吐出した。その結果、第一剤及び第二剤の回転式レオメータにて測定される粘度が、それぞれ独立して、50~120Pa・sである実施例の二液硬化型組成物セットは、吐出性が良く取り扱い性に優れており、容易に硬化物を形成することができた。一方、第一剤及び/又は第二剤の粘度が120Pa・sを超える比較例7、15、18、19、26、27、29~34の二液硬化型組成物セットは、吐出性が悪く取り扱い性が十分ではなかった。
5. Properties of the mixture of the first and second parts Handling properties of each first and second part When the first and second parts are mixed in the combinations shown in Table 4 at a volume ratio of 1:1. was evaluated. Specifically, the first and second agents were put into a 50ml (1:1) cartridge in the combination shown in Table 4, the lid was placed, and the cartridge was attached to a dispenser gun (product name "MixPac DMA50"), and the cartridge was discharged. A mixer (length 9.5 cm, 12 blades) for mixing the first agent and the second agent was attached to the outlet, and the mixture was discharged while being mixed at a volume ratio of 1:1. As a result, the two-component curable composition set of the example in which the viscosity of the first part and the second part measured by a rotary rheometer was 50 to 120 Pa·s, respectively, had good discharge properties. It had excellent handling properties and could be easily formed into a cured product. On the other hand, the two-part curable composition sets of Comparative Examples 7, 15, 18, 19, 26, 27, 29 to 34, in which the viscosity of the first part and/or the second part exceeds 120 Pa·s, have poor discharge properties. It was not easy to handle.
 また、第一剤及び第二剤のASTM D5470に準拠した方法により測定される1.0mm厚での熱抵抗値が、それぞれ独立して、1.4~2.1cm・℃/Wである実施例の二液硬化型組成物セットからは、表4に記載のとおり熱伝導性に優れた硬化物を得ることができた。一方、第一剤及び/又は第二剤の熱抵抗値が2.1cm・℃/Wを超える比較例14の二液硬化型組成物セットから得られた硬化物は、表4に記載のとおり熱伝導性が十分ではなかった。なお、硬化物の熱伝導率が4.7W/m・K以上である場合を熱伝導性に優れ、熱伝導率が4.7W/m・K未満である場合を熱伝導性に劣ると評価した。 In addition, the thermal resistance value of the first and second parts at a thickness of 1.0 mm measured by a method based on ASTM D5470 is 1.4 to 2.1 cm 2 ℃/W, respectively. As shown in Table 4, cured products with excellent thermal conductivity could be obtained from the two-component curable composition set of Examples. On the other hand, the cured product obtained from the two-part curable composition set of Comparative Example 14 in which the heat resistance value of the first part and/or the second part exceeds 2.1 cm 2 ·°C/W is as follows. Thermal conductivity was not sufficient. In addition, when the thermal conductivity of the cured product is 4.7 W/m・K or more, it is evaluated as having excellent thermal conductivity, and when the thermal conductivity is less than 4.7 W/m・K, it is evaluated as having poor thermal conductivity. did.
(耐電圧)
 第一剤及び第二剤を表4に示す組合せにて1:1の体積比で混合して得られた混合物をシート状に成型後、60℃で20分間加熱硬化させて熱伝導性シートを得た。この熱伝導性シートについて、菊水電子工業株式会社製の耐電圧試験機TOS5101を用い、JIS C2110に準拠した方法により絶縁破壊電圧(耐電圧)を測定した。測定結果を表4に示す。
(Withstand voltage)
The mixture obtained by mixing the first part and the second part in the combinations shown in Table 4 at a volume ratio of 1:1 was molded into a sheet, and then heated and cured at 60°C for 20 minutes to form a thermally conductive sheet. Obtained. The dielectric breakdown voltage (withstand voltage) of this thermally conductive sheet was measured using a withstand voltage tester TOS5101 manufactured by Kikusui Electronics Co., Ltd. by a method based on JIS C2110. The measurement results are shown in Table 4.
(形成可能な膜の最小厚さ)
 第一剤及び第二剤を表4に示す組合せにて1:1の体積比で混合して得られた混合物を、株式会社日立テクノロジー社製の樹脂材料熱抵抗測定装置の測定面に塗布し、測定面積10mm×10mmの領域に50N荷重を印加した。その際の混合物の厚さを形成可能な膜の最小厚さとした。測定結果を表4に示す。
(Minimum thickness of film that can be formed)
The mixture obtained by mixing the first and second agents in the combinations shown in Table 4 at a volume ratio of 1:1 was applied to the measurement surface of a resin material thermal resistance measuring device manufactured by Hitachi Technologies, Ltd. A load of 50 N was applied to a measurement area of 10 mm x 10 mm. The thickness of the mixture at that time was determined as the minimum thickness of the film that could be formed. The measurement results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本実施形態の二液硬化型組成物セットは、第一剤及び第二剤を混合して硬化させることで熱伝導性の硬化物、特には、発熱体とヒートシンクとを熱的に結合させるための材料として産業上の利用可能性を有する。 The two-component curable composition set of this embodiment is a thermally conductive cured product, in particular, for thermally bonding a heating element and a heat sink by mixing and curing a first part and a second part. It has industrial applicability as a material.

Claims (19)

  1.  第一剤と、第二剤とを備え、
     前記第一剤及び前記第二剤のASTM D5470に準拠した方法により測定される1.0mm厚での熱抵抗値が、それぞれ独立して、1.4~2.1cm・℃/Wであり、
     前記第一剤及び前記第二剤の回転式レオメータにて測定される粘度が、それぞれ独立して、50~120Pa・sである、
     二液硬化型組成物セット。
    Comprising a first agent and a second agent,
    The thermal resistance value of the first part and the second part at a thickness of 1.0 mm measured by a method in accordance with ASTM D5470 is 1.4 to 2.1 cm 2 °C/W, respectively. ,
    The viscosity of the first agent and the second agent as measured by a rotary rheometer is 50 to 120 Pa·s, respectively;
    Two-component curing composition set.
  2.  前記第一剤が、界面活性剤A1と、粘度が80~120mPa・sであるビニル変性オルガノポリシロキサンB1と、熱伝導性フィラーC1と、付加反応触媒D1と、を含み、
     前記第二剤が、界面活性剤A2と、粘度が80~120mPa・sであるビニル変性オルガノポリシロキサンB2と、熱伝導性フィラーC2と、粘度が1~100mPa・sであるヒドロシリル変性オルガノポリシロキサンE2と、を含む、
     請求項1に記載の二液硬化型組成物セット。
    The first agent includes a surfactant A1, a vinyl-modified organopolysiloxane B1 having a viscosity of 80 to 120 mPa s, a thermally conductive filler C1, and an addition reaction catalyst D1,
    The second agent comprises a surfactant A2, a vinyl-modified organopolysiloxane B2 having a viscosity of 80 to 120 mPas, a thermally conductive filler C2, and a hydrosilyl-modified organopolysiloxane having a viscosity of 1 to 100 mPas. E2 and
    The two-component curable composition set according to claim 1.
  3.  前記ビニル変性オルガノポリシロキサンB1及び前記ビニル変性オルガノポリシロキサンB2は、それぞれ独立して、一分子あたり平均して2.0個以上のビニル基を有し、
     前記ヒドロシリル変性オルガノポリシロキサンE2は、一分子あたり平均して2.0個超のヒドロシリル基を有する、
     請求項2に記載の二液硬化型組成物セット。
    The vinyl-modified organopolysiloxane B1 and the vinyl-modified organopolysiloxane B2 each independently have an average of 2.0 or more vinyl groups per molecule,
    The hydrosilyl-modified organopolysiloxane E2 has an average of more than 2.0 hydrosilyl groups per molecule,
    The two-component curable composition set according to claim 2.
  4.  前記第一剤において、前記ビニル変性オルガノポリシロキサンB1 100重量部に対して、
     前記界面活性剤A1の含有量が、5~25重量部であり、
     前記熱伝導性フィラーC1の含有量が、1500~2400重量部である、
     請求項2に記載の二液硬化型組成物セット。
    In the first agent, based on 100 parts by weight of the vinyl-modified organopolysiloxane B1,
    The content of the surfactant A1 is 5 to 25 parts by weight,
    The content of the thermally conductive filler C1 is 1500 to 2400 parts by weight,
    The two-component curable composition set according to claim 2.
  5.  前記第二剤において、前記ビニル変性オルガノポリシロキサンB2及び前記ヒドロシリル変性オルガノポリシロキサンE2の合計100重量部に対して、
     前記界面活性剤A2の含有量が、5~25重量部であり、
     前記熱伝導性フィラーC2の含有量が、1500~2400重量部である、
     請求項2に記載の二液硬化型組成物セット。
    In the second agent, based on a total of 100 parts by weight of the vinyl-modified organopolysiloxane B2 and the hydrosilyl-modified organopolysiloxane E2,
    The content of the surfactant A2 is 5 to 25 parts by weight,
    The content of the thermally conductive filler C2 is 1500 to 2400 parts by weight,
    The two-component curable composition set according to claim 2.
  6.  前記界面活性剤A1及び前記界面活性剤A2が、カルボキシ基を有する(メタ)アクリル系単量体単位αと、第三級アミノ基を有する(メタ)アクリル系単量体単位βと、シロキサン骨格を有する(メタ)アクリル系単量体単位γとを有する共重合体である、
     請求項2に記載の二液硬化型組成物セット。
    The surfactant A1 and the surfactant A2 have a (meth)acrylic monomer unit α having a carboxy group, a (meth)acrylic monomer unit β having a tertiary amino group, and a siloxane skeleton. A copolymer having a (meth)acrylic monomer unit γ having
    The two-component curable composition set according to claim 2.
  7.  前記単量体単位γの数平均分子量が1,500~50,000である、
     請求項6に記載の二液硬化型組成物セット。
    The number average molecular weight of the monomer unit γ is 1,500 to 50,000,
    The two-component curable composition set according to claim 6.
  8.  前記共重合体において、前記単量体単位α、前記単量体単位β、及び前記単量体単位γの合計100重量部に対して、
     前記単量体単位αの含有量が0.08~6.0重量部であり、
     前記単量体単位βの含有量が0.02~4.0重量部であり、
     前記単量体単位γの含有量が90.0~99.9重量部である、
     請求項6に記載の二液硬化型組成物セット。
    In the copolymer, for a total of 100 parts by weight of the monomer unit α, the monomer unit β, and the monomer unit γ,
    The content of the monomer unit α is 0.08 to 6.0 parts by weight,
    The content of the monomer unit β is 0.02 to 4.0 parts by weight,
    The content of the monomer unit γ is 90.0 to 99.9 parts by weight,
    The two-component curable composition set according to claim 6.
  9.  前記界面活性剤A1及び前記界面活性剤A2の重量平均分子量が、それぞれ独立して20,000~150,000である、
     請求項2に記載の二液硬化型組成物セット。
    The weight average molecular weights of the surfactant A1 and the surfactant A2 are each independently from 20,000 to 150,000,
    The two-component curable composition set according to claim 2.
  10.  前記ヒドロシリル変性オルガノポリシロキサンE2が、両末端にヒドロシリル基を有するヒドロシリル変性オルガノポリシロキサンE21と、側鎖にヒドロシリル基を有するヒドロシリル変性オルガノポリシロキサンE22と、を含む、
     請求項2に記載の二液硬化型組成物セット。
    The hydrosilyl-modified organopolysiloxane E2 includes a hydrosilyl-modified organopolysiloxane E21 having a hydrosilyl group at both ends, and a hydrosilyl-modified organopolysiloxane E22 having a hydrosilyl group in a side chain.
    The two-component curable composition set according to claim 2.
  11.  前記熱伝導性フィラーC1及び前記熱伝導性フィラーC2が、それぞれ独立して、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、窒化ケイ素、酸化ケイ素、酸化マグネシウム、金属アルミニウム、及び酸化亜鉛からなる群より選ばれる一種以上である、
     請求項2に記載の二液硬化型組成物セット。
    The thermally conductive filler C1 and the thermally conductive filler C2 are each independently selected from the group consisting of boron nitride, aluminum nitride, aluminum oxide, silicon nitride, silicon oxide, magnesium oxide, metallic aluminum, and zinc oxide. more than one type,
    The two-component curable composition set according to claim 2.
  12.  前記熱伝導性フィラーC1及び前記熱伝導性フィラーC2が酸化アルミニウム粉末を含む、
     請求項11に記載の二液硬化型組成物セット。
    the thermally conductive filler C1 and the thermally conductive filler C2 include aluminum oxide powder;
    The two-component curable composition set according to claim 11.
  13.  前記第一剤と前記第二剤を等体積で混合しシート状に成型後、60℃で20分間加熱硬化させて得られるシートのJIS C2110に準拠して測定される耐電圧が8kV/mm以上である、
     請求項1に記載の二液硬化型組成物セット。
    The first part and the second part are mixed in equal volumes, molded into a sheet, and then heated and cured at 60°C for 20 minutes.The withstand voltage of the sheet obtained according to JIS C2110 is 8 kV/mm or more. is,
    The two-component curable composition set according to claim 1.
  14.  前記第一剤と前記第二剤を等体積で混合した混合物に、10mm×10mmの領域当たり50N荷重をかけた際の前記混合物の厚さが、70~120μmである、
     請求項1に記載の二液硬化型組成物セット。
    The thickness of the mixture when a 50N load is applied to a 10 mm x 10 mm area is 70 to 120 μm to a mixture in which the first agent and the second agent are mixed in equal volumes.
    The two-component curable composition set according to claim 1.
  15.  前記第一剤及び前記第二剤が、下記式:
      R Si(OR4-(a+b)
    (Rは、各々独立して、炭素数1~15のアルキル基であり、Rは、各々独立して、炭素数1~8の飽和又は不飽和の1価の炭化水素基であり、Rは、各々独立して、炭素数1~6のアルキル基であり、aは1~3であり、bは0~2であり、a+bは1~3である。)
    で表されるオルガノシランを含んでいない、
     請求項1に記載の二液硬化型組成物セット。
    The first agent and the second agent have the following formula:
    R 1 a R 2 b Si(OR 3 ) 4-(a+b)
    (R 1 is each independently an alkyl group having 1 to 15 carbon atoms, R 2 is each independently a saturated or unsaturated monovalent hydrocarbon group having 1 to 8 carbon atoms, Each R 3 is independently an alkyl group having 1 to 6 carbon atoms, a is 1 to 3, b is 0 to 2, and a+b is 1 to 3.)
    Does not contain organosilane represented by
    The two-component curable composition set according to claim 1.
  16.  熱伝導性放熱材料として使用される、
     請求項1~15のいずれか1項に記載の二液硬化型組成物セット。
    Used as a thermally conductive heat dissipation material,
    The two-part curable composition set according to any one of claims 1 to 15.
  17.  請求項1~15のいずれか1項に記載の二液硬化型組成物セットにおける、第一剤と第二剤の混合物から得られる、
     硬化物。
    Obtained from a mixture of the first part and the second part in the two-component curable composition set according to any one of claims 1 to 15,
    cured product.
  18.  熱伝導性放熱材料として使用される、
     請求項17に記載の硬化物。
    Used as a thermally conductive heat dissipation material,
    The cured product according to claim 17.
  19.  電子部品と、請求項18に記載の硬化物と、ヒートシンクと、を備え、
     前記電子部品及び前記ヒートシンクが、前記硬化物を介して接触している、
     電子機器。
    An electronic component, a cured product according to claim 18, and a heat sink,
    the electronic component and the heat sink are in contact with each other via the cured product;
    Electronics.
PCT/JP2023/012377 2022-03-29 2023-03-28 Two-pack type curable composition set, cured product and electronic device WO2023190440A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022053827 2022-03-29
JP2022-053827 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190440A1 true WO2023190440A1 (en) 2023-10-05

Family

ID=88202521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012377 WO2023190440A1 (en) 2022-03-29 2023-03-28 Two-pack type curable composition set, cured product and electronic device

Country Status (2)

Country Link
TW (1) TW202348765A (en)
WO (1) WO2023190440A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286370A (en) * 1999-03-31 2000-10-13 Denki Kagaku Kogyo Kk Heat radiation member of electronic component
WO2013129600A1 (en) * 2012-03-02 2013-09-06 富士高分子工業株式会社 Putty-like heat transfer material and method for producing same
WO2014034508A1 (en) * 2012-08-27 2014-03-06 日本バルカー工業株式会社 Molded body suppressed in bleeding and method for producing same
WO2019111852A1 (en) * 2017-12-04 2019-06-13 積水ポリマテック株式会社 Thermally conductive composition
WO2020080256A1 (en) * 2018-10-15 2020-04-23 デンカ株式会社 Two-pack curable composition set, thermally conductive cured product, and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286370A (en) * 1999-03-31 2000-10-13 Denki Kagaku Kogyo Kk Heat radiation member of electronic component
WO2013129600A1 (en) * 2012-03-02 2013-09-06 富士高分子工業株式会社 Putty-like heat transfer material and method for producing same
WO2014034508A1 (en) * 2012-08-27 2014-03-06 日本バルカー工業株式会社 Molded body suppressed in bleeding and method for producing same
WO2019111852A1 (en) * 2017-12-04 2019-06-13 積水ポリマテック株式会社 Thermally conductive composition
WO2020080256A1 (en) * 2018-10-15 2020-04-23 デンカ株式会社 Two-pack curable composition set, thermally conductive cured product, and electronic device

Also Published As

Publication number Publication date
TW202348765A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
JP7134582B2 (en) Thermally conductive polyorganosiloxane composition
CN110709474B (en) Thermally conductive polyorganosiloxane composition
TWI828778B (en) Two-component curable composition group, thermally conductive cured material and electronic equipment
US11254849B2 (en) Method for producing a thermally conductive polysiloxane composition
TW202043306A (en) Copolymer, dispersant and resin composition
CN108350183B (en) Method for producing thermally conductive silicone composition
CN114466905A (en) Heat-conductive silicone composition and method for producing same
JP2009221310A (en) Heat-conductive silicone grease composition
JP6890898B2 (en) Surface treatment agent for thermally conductive polyorganosiloxane composition
JP7136065B2 (en) THERMALLY CONDUCTIVE SILICONE COMPOSITION AND THERMALLY CONDUCTIVE SILICONE SHEET
WO2023190440A1 (en) Two-pack type curable composition set, cured product and electronic device
WO2023190439A1 (en) Two-pack type curable composition set, cured product and electronic device
JP2009221311A (en) Heat conductive grease composition
JP7264850B2 (en) Thermally conductive silicone composition, cured product thereof, and heat dissipation sheet
JP7144645B2 (en) Thermally conductive resin composition and electronic device
CN116057092A (en) Thermally conductive resin composition and electronic device
WO2022075214A1 (en) Two-part curable composition set, thermally conductive cured product, and electronic apparatus
JP7466062B2 (en) Copolymer, surfactant, resin composition and heat dissipation sheet
JP2023064208A (en) Two-component curable composition set, thermally conductive cured product and electronic apparatus
JP2023064230A (en) Two-component curable composition set, thermally conductive cured product and electronic apparatus
JP7262699B1 (en) thermal grease
WO2022249754A1 (en) Heat-conductive silicone composition
JP2020172408A (en) Method for producing surface-treated alumina powder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780449

Country of ref document: EP

Kind code of ref document: A1