WO2023190352A1 - Growing condition evaluation system - Google Patents

Growing condition evaluation system Download PDF

Info

Publication number
WO2023190352A1
WO2023190352A1 PCT/JP2023/012220 JP2023012220W WO2023190352A1 WO 2023190352 A1 WO2023190352 A1 WO 2023190352A1 JP 2023012220 W JP2023012220 W JP 2023012220W WO 2023190352 A1 WO2023190352 A1 WO 2023190352A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
point
section
approximate curve
animal
Prior art date
Application number
PCT/JP2023/012220
Other languages
French (fr)
Japanese (ja)
Inventor
裕 竹村
彩乃 矢羽田
エリアス ペトリリ バルセロ アルベルト
俊和 阿出川
Original Assignee
学校法人東京理科大学
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022054131A external-priority patent/JP2023146765A/en
Priority claimed from JP2022054130A external-priority patent/JP2023146764A/en
Application filed by 学校法人東京理科大学, 株式会社トプコン filed Critical 学校法人東京理科大学
Publication of WO2023190352A1 publication Critical patent/WO2023190352A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry

Definitions

  • the present disclosure relates to a growth status evaluation system.
  • BCS body condition score
  • a health condition estimation device is being considered that can automatically determine the BCS without touching the animal (see, for example, Patent Document 1).
  • the health state estimation device uses a distance image sensor to acquire a group of three-dimensional coordinates that indicate the three-dimensional shape of the animal, and based on the group of three-dimensional coordinates, it calculates feature values that indicate the width of the animal's body and the animal's Feature values indicating the position of the spine are obtained, and the BCS is calculated based on them. Therefore, the conventional health state estimation device can obtain an evaluation based on the BCS with suppressed variations while reducing the burden on the animal.
  • the evaluation of the breeding status is obtained from the feature amount indicating the degree of concavity of the lumen, based on the three-dimensional shape of the animal reproduced from the three-dimensional coordinate group of the animal.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a growth status evaluation system that can appropriately evaluate the growth status of animals.
  • the growth condition evaluation system of the present disclosure uses a laser beam that receives reflected light from the animal of the emitted laser beam to obtain point cloud data indicating the external shape of the animal in three-dimensional coordinates.
  • a measuring device a reference point detection unit that detects a reference point in the point cloud data, and a normalization unit that adjusts the size of the point cloud data so that the reference point has a uniform size to generate normalized data.
  • an approximate curve calculation unit that calculates an approximate curve that matches the normalized data
  • an evaluation value calculation unit that calculates an evaluation value indicating the evaluation of the animal based on the approximate curve. shall be.
  • the growth status evaluation system of the present disclosure it is possible to appropriately obtain an evaluation of the growth status of an animal.
  • FIG. 1 is an explanatory diagram showing the overall configuration of a growth situation evaluation system of Example 1 as an example of a growth situation evaluation system according to the present disclosure. It is a block diagram showing composition of a control system in a growth situation evaluation system.
  • FIG. 2 is an explanatory diagram showing how an imaging device is attached to the growth status evaluation system.
  • FIG. 2 is an explanatory diagram showing an image of a dairy cow taken by an imaging device.
  • FIG. 2 is a block diagram showing the configuration of a control system in a laser measuring instrument. It is an explanatory view showing point group data acquired by one laser measuring instrument (the 1st).
  • FIG. 1 is an explanatory diagram showing the overall configuration of a growth situation evaluation system of Example 1 as an example of a growth situation evaluation system according to the present disclosure. It is a block diagram showing composition of a control system in a growth situation evaluation system.
  • FIG. 2 is an explanatory diagram showing
  • FIG. 7 is an explanatory diagram showing point cloud data acquired by the other laser measuring device (second).
  • FIG. FIG. 3 is an explanatory diagram showing how the spine direction in specific part data is made to coincide with the reference axis direction.
  • FIG. 3 is an explanatory diagram showing how a reference point (a pair of hook bones) is detected in specific part data.
  • FIG. 16 is an explanatory diagram showing specific part alignment data corresponding to the specific part data of FIG. 15.
  • FIG. It is an explanatory diagram showing specific part alignment data of different sizes, where (a) on the left side shows the appearance seen from the tail side in the reference axis direction, and (b) on the right side shows the appearance seen from above in the vertical direction. .
  • FIG. 3 is an explanatory diagram showing how four slice positions are set on normalized data.
  • 19 is an explanatory diagram showing cross-sectional data, in which data corresponding to each slice position in FIG. 18 are arranged in order from the left.
  • FIG. 19 is an explanatory diagram showing thinned cross-sectional data and calculation data generated from cross-sectional data, and corresponds to the second cross-sectional data from the left in FIG. 19.
  • FIG. 20 is an explanatory diagram showing thinned-out cross-sectional data and calculation data generated from cross-sectional data, and corresponds to the cross-sectional data at the right end of FIG. 19.
  • FIG. 20 is an explanatory diagram showing calculation data, and is shown arranged in order from the left in correspondence with the cross-sectional data of FIG. 19.
  • FIG. 3 is an explanatory diagram showing how an approximate curve of calculation data is obtained. It is an explanatory view showing the relationship between calculation data of various shapes and approximate curves.
  • It is a flowchart which shows the growth situation evaluation process (growth situation evaluation processing method) performed by the control mechanism of a growth situation evaluation system. This is a table summarizing the relationship between the theoretical cross section and each value obtained using the growth situation evaluation system.
  • FIG. 20 is an explanatory diagram showing thinned-out cross-sectional data and calculation data generated from cross-sectional data, and corresponds to the cross-sectional data at the right end of FIG. 19.
  • FIG. 20 is an explan
  • FIG. 19 is an explanatory diagram showing approximate curves for each BCS value at the first slice position shown in FIG. 18;
  • FIG. 19 is an explanatory diagram showing approximate curves for each BCS value at the second slice position shown in FIG. 18;
  • FIG. 19 is an explanatory diagram showing approximate curves for each BCS value at the third slice position shown in FIG. 18;
  • FIG. 19 is an explanatory diagram showing approximate curves for each BCS value at the fourth slice position shown in FIG. 18;
  • Example 1 of a growth situation evaluation system 10 as an embodiment of the growth situation evaluation system according to the present disclosure will be described below with reference to FIGS. 1 to 30.
  • FIGS. 1 and 3 schematically show the area around the drinking fountain 52 (data acquisition area 14) in the cowshed 50, and do not necessarily match the actual appearance of the cowshed 50.
  • the growth status evaluation system 10 automatically evaluates the growth status of animals.
  • the growth status evaluation system 10 of Example 1 evaluates the growth status of a Holstein cow (hereinafter referred to as dairy cow 51) as an example of an animal. As shown in FIGS. 1 to 3, this growth status evaluation system 10 is installed in a cowshed 50 and includes a control mechanism 11, a camera 12, and two laser measuring instruments 13.
  • a plurality of dairy cows 51 are kept in the cowshed 50, and each dairy cow 51 can be moved.
  • a drinking fountain 52 for the dairy cows 51 is provided in the cowshed 50.
  • the drinking fountain 52 is configured by placing a water pail 53 in a space in which a plurality of dairy cows 51 can enter.
  • the water pail 53 is long and arranged at one corner of the drinking fountain 52.
  • the dairy cow 51 periodically visits the water trough 53 of its own will and stops in front of the water trough 53. For this reason, in the growth status evaluation system 10, the drinking fountain 52 is set as the data acquisition area 14.
  • the control mechanism 11 comprehensively controls the operation of the growth condition evaluation system 10 by deploying a program stored in the storage unit 18 or built-in internal memory 11a on, for example, RAM (Random Access Memory).
  • the internal memory 11a is composed of a RAM or the like
  • the storage section 18 is composed of a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable ROM), or the like.
  • the growth status evaluation system 10 includes a printer that prints measurement results in response to measurement completion signals and instructions from the measurer, an output unit that outputs measurement results to an external memory or server, and an operation controller. An audio output section for notifying the situation etc. is provided as appropriate.
  • the control mechanism 11 is connected to a camera 12 and two laser measuring instruments 13 (in FIG. 2, one is designated as the first and the other as the second), and controls them as appropriate, and also receives signals (data) from them. It is possible to receive.
  • This connection may be wired or wireless as long as it allows the exchange of signals with the camera 12 and each laser measuring device 13.
  • This control mechanism 11 may be provided at a location different from the cowshed 50, or may be provided within the cowshed 50.
  • An operation section 15 , a display section 16 , a communication section 17 , and a storage section 18 are connected to the control mechanism 11 .
  • the operation unit 15 is used to operate various settings for evaluating the growth situation, operations and settings of the camera 12 and each laser measuring device 13, and the like.
  • the operation unit 15 may be configured with an input device such as a keyboard and a mouse, or may be configured with software keys displayed on the display screen of the display unit 16 as a touch panel.
  • the display unit 16 displays the image I (which may be a still image or a moving image (see FIG. 4)) acquired by the camera 12, the point cloud data D1 (see FIGS. 7 and 8) acquired by each laser measuring device 13, and the like. Various data based on the information (see FIGS. 9 to 22, etc.), an evaluation value Ev indicating the evaluation of the animal (dairy cow 51), etc. are displayed.
  • the display section 16 is configured by, for example, a liquid crystal display device (LCD monitor), and is provided in the control mechanism 11 together with the operation section 15. Note that the operation unit 15 and the display unit 16 may be configured by a mobile terminal such as a smartphone or a tablet, and are not limited to the configuration of the first embodiment.
  • the communication unit 17 communicates with the camera 12, each laser measurement device 13 (its communication unit 45), and external equipment, and drives the camera 12 and each laser measurement device 13, and transmits the image I from the camera 12 and each other.
  • the point cloud data D1 from the laser measuring device 13 can be received.
  • the control mechanism 11 can be configured as a tablet terminal, and in that case, the operation section 15 and the display section 16 can be configured integrally with the control mechanism 11.
  • the camera 12 is capable of photographing the entire area of the data acquisition area 14, and in the first embodiment, a 4K camera (having a resolution of 3840 ⁇ 2160 pixels) is used. As shown in FIGS. 1 and 3, the camera 12 is attached to an installation plate 54 above the drinking fountain 52, which is the data acquisition area 14, and can photograph the drinking fountain 52 without disturbing the dairy cows 51. It is said that The installation plate 54 is provided on a support 55 of the cowshed 50 for installing the camera 12. The camera 12 constantly photographs the drinking fountain 52 while the growth condition evaluation system 10 is in the operating state, and outputs the photographed image I (its data (see FIG. 4)) to the control mechanism 11.
  • a 4K camera having a resolution of 3840 ⁇ 2160 pixels
  • the two laser measuring instruments 13 are installed at known points, project a pulsed laser beam toward the measurement point, receive the reflected light (pulsed reflected light) of the pulsed laser beam from the measurement point, and measure the pulsed laser beam for each pulse. Performs distance measurement and averages the distance measurement results to perform highly accurate distance measurement. Then, each laser measuring device 13 scans within the set measurement range and sets measurement points evenly over the entire measurement range, thereby determining the surface shape of the object existing in the entire measurement range in three dimensions. A collection of three-dimensional position data (hereinafter referred to as point group data D1) indicated by original coordinates can be obtained. Thereby, each laser measuring device 13 can acquire point cloud data D1 indicating the surface shape of objects existing within the set measurement range.
  • point group data D1 three-dimensional position data indicated by original coordinates
  • these two laser measuring instruments 13 are located at paired positions across the drinking fountain 52, which is the data acquisition area 14, and at a height that does not interfere with the movement of the dairy cow 51. placed in position. Both laser measuring devices 13 are capable of acquiring point cloud data D1 of at least half of the torso 51a (either the left or right) of the dairy cow 51, regardless of the posture of the dairy cow 51 in the drinking fountain 52 (data acquisition area 14).
  • the positional relationship with respect to the drinking fountain 52 is set as follows.
  • These two laser measuring devices 13 have the same configuration except that they are provided at different positions.
  • the laser measuring device 13 may employ a phase difference measurement method using a light beam modulated at a predetermined frequency, or may employ other methods, and is not limited to the first embodiment.
  • this laser measuring instrument 13 includes a pedestal 31, a main body part 32, and a vertical rotating part 33.
  • the pedestal 31 is a part that is attached to the installation base 34.
  • the installation stand 34 is attached to a support 55 of the cowshed 50 for installing the laser measuring device 13.
  • the main body portion 32 is provided on the pedestal 31 so as to be rotatable about a vertical axis relative to the pedestal 31 .
  • the main body portion 32 has a U-shape as a whole, and a vertical rotation portion 33 is provided in the portion between the two.
  • This main body portion 32 is provided with a measuring instrument display section 35 and a measuring instrument operating section 36.
  • the measuring instrument display section 35 is a section that displays various operation icons, settings, etc. for measurement under the control of a measuring instrument control section 43, which will be described later.
  • the measuring device operation section 36 is a place where operations for using and setting various functions in the laser measuring device 13 are performed, and outputs inputted information to the measuring device control section 43.
  • various operation icons displayed on the measuring instrument display section 35 function as a measuring instrument operating section 36.
  • the measuring instrument display section 35 and the measuring instrument operating section 36 can be installed on the installation base 34 of the support column 55 by providing the above-mentioned functions to the operating section 15 and display section 16 in the growth condition evaluation system 10. Remote operation is possible while the device is in the same state.
  • the location and method of installing the laser measuring device 13 can be set as appropriate, as long as it is capable of scanning the data acquisition area 14 (animals such as the dairy cow 51 located there).
  • the present invention is not limited to the configuration of the first embodiment.
  • the vertical rotation section 33 is provided in the main body section 32 so as to be rotatable about a rotation axis extending in the horizontal direction.
  • This vertical rotation section 33 has a distance measuring optical section 37 built therein.
  • the distance measuring optical section 37 projects a pulsed laser beam as distance measuring light and receives reflected light (pulsed reflected light) from a measurement point to measure the optical distance to the measurement point.
  • a horizontal rotation drive section 38 and a horizontal angle detection section 39 are provided in the main body section 32 that allows the vertical rotation section 33 to rotate around the horizontal axis.
  • the horizontal rotation drive section 38 rotates the main body section 32 relative to the pedestal 31 around the vertical axis, that is, in the horizontal direction.
  • the horizontal angle detection section 39 detects (angle measurement) the horizontal angle of the collimation direction by detecting the horizontal rotation angle of the main body section 32 with respect to the pedestal 31.
  • the horizontal rotation drive section 38 can be configured with a motor
  • the horizontal angle detection section 39 can be configured with an encoder.
  • the main body portion 32 is provided with a vertical rotation drive portion 41 and a vertical angle detection portion 42.
  • the vertical rotation driving section 41 rotates the vertical rotation section 33 relative to the main body section 32 around the horizontal axis, that is, in the vertical direction.
  • the vertical angle detection section 42 detects (angle measurement) the vertical angle of the collimation direction by detecting the vertical angle of the vertical rotation section 33 with respect to the main body section 32 .
  • the vertical rotation drive section 41 can be configured with a motor
  • the vertical angle detection section 42 can be configured with an encoder.
  • a measuring instrument control section 43 is built into the main body section 32.
  • the measuring instrument control section 43 controls the operation of the laser measuring instrument 13 in an integrated manner using a program stored in a connected storage section 44 .
  • the storage unit 44 is composed of a semiconductor memory and various storage media, and stores programs such as a calculation program necessary for measurement and a data transmission program that generates and transmits information, as well as setting data and points. Group data D1 is stored as appropriate. The information and data are appropriately transmitted to the control mechanism 11 via the communication section 45 described later and the communication section 17 described above (see FIG. 2).
  • the measuring instrument control section 43 includes a measuring instrument display section 35, a measuring instrument operating section 36, a distance measuring optical section 37, a horizontal rotation drive section 38, a horizontal angle detection section 39, a vertical rotation drive section 41, and a vertical angle detection section 42. , a storage section 44 and a communication section 45 are connected.
  • the communication unit 45 enables communication between the control mechanism 11 (see FIG. 2) and the measuring instrument control unit 43 via the communication unit 17, and allows communication between each unit stored in the storage unit 44 under the control of the measuring instrument control unit 43. Send information accordingly.
  • This communication section 45 enables exchange of data and the like with the control mechanism 11 (communication section 17).
  • the communication unit 45 may communicate with the communication unit 17 by wire via an installed LAN cable, or may communicate with the communication unit 17 wirelessly.
  • the measurement device control section 43 receives output values for measurement from the distance measuring optical section 37, the horizontal angle detection section 39, and the vertical angle detection section 42. Based on these output values, the measuring device control section 43 determines the arrival time difference or phase difference between the reference light propagating through the reference optical path provided in the main body section 32 and the reflected light acquired via the distance measuring optical section 37. Calculate the distance from to the measurement point (reflection point). Further, the measuring device control unit 43 measures (calculates) the elevation angle and horizontal angle during the calculated distance measurement. Then, the measuring instrument control unit 43 stores the measurement results in the storage unit 44 and transmits them to the control mechanism 11 (communication unit 17) via the communication unit 45 as appropriate.
  • the measuring instrument control section 43 controls the driving of the horizontal rotation drive section 38 and the vertical rotation drive section 41 to appropriately rotate the main body section 32 and the vertical rotation section 33 (see FIG. 1). can be directed in a predetermined direction and can scan a predetermined range.
  • the measuring instrument control unit 43 of the first embodiment scans the drinking fountain 52, which is the data acquisition area 14, and sets each position of the drinking fountain 52 including the dairy cow 51 there as a measurement point. Since the positional relationship between both laser measuring instruments 13 and the drinking fountain 52 is known in advance and is constant (does not change), the scanning range can be appropriately adjusted to cover the entire area of the drinking fountain 52.
  • the measuring device control unit 43 of the first embodiment sets measurement points at intervals of 12.5 mm on the scanning surface.
  • the scanning plane can be appropriately set within the drinking fountain 52, and in the first embodiment, it is set at a position where the body 51a of the dairy cow 51 is assumed to be located.
  • the measuring device control section 43 controls the distance measuring optical section 37 to scan the drinking fountain 52 and perform distance measurement (distance measurement) at each set measurement point. At this time, the measuring device control unit 43 measures the three-dimensional coordinate position of each measurement point of the drinking fountain 52 by measuring (calculating) the elevation angle and horizontal angle in the collimation direction. Then, the measuring device control unit 43 generates point cloud data D1, which is a collection of three-dimensional coordinate positions (coordinate data) of each measured point of the drinking fountain 52 (one example is shown in FIG. 7, the other example is shown in FIG. 8) is generated and transmitted to the control mechanism 11 via the communication unit 45 and the communication unit 17 as appropriate.
  • the point group data D1 indicates the surface shape of the drinking fountain 52, and if a dairy cow 51 is present in the drinking fountain 52, the surface shape of the dairy cow 51 is also included.
  • the control mechanism 11 includes an animal detection section 61, a data acquisition section 62, a data synthesis section 63, an animal extraction section 64, and a specific part cutting section 65, as shown in FIG. Specific part alignment section 66, reference point detection section 67, data alignment section 68, normalization section 69, cut plane extraction section 71, calculation data generation section 72, calculation area extraction section 73, approximate curve calculation section 74, and evaluation value calculation 75.
  • the animal detection unit 61 detects from the image I acquired by the camera 12 that an animal (in Example 1, the dairy cow 51 (see FIG. 4)) is present at the drinking fountain 52, which is the data acquisition area 14.
  • the animal detection unit 61 recognizes various shapes in the image I based on contrast and the like, and discriminates between equipment such as the water trough 53 in the drinking fountain 52 and the dairy cow 51 based on the recognized shapes and the like.
  • the camera 12 is disposed at a predetermined position, the animal detection unit 61 knows in advance the image of the equipment such as the water trough 53 in the drinking fountain 52. Not only is it easy to distinguish, it is also easy to obtain data indicating the area in which the dairy cow 51 is displayed.
  • the animal detection unit 61 When the dairy cow 51 is shown in the image I, the animal detection unit 61 outputs a signal indicating that the dairy cow 51 has been detected at the drinking fountain 52 to the data acquisition unit 62. Therefore, the animal detection unit 61 functions as an animal detection mechanism that detects the presence of an animal in the data acquisition area 14 in cooperation with the camera 12.
  • the animal detection unit 61 of Example 1 identifies the detected animals (dairy cows 51) individually, and generates individual identification data D2 indicating the identified information.
  • the animal detection unit 61 identifies which dairy cow 51 among the dairy cows kept in the cow shed 50 is shown based on the image I showing the dairy cow 51 .
  • the animal detection unit 61 recognizes the shape and position of the black and white pattern on the dairy cow 51 based on the contrast etc. from the area where the dairy cow 51 in image I is shown, and the recognized black and white pattern is used in each of the pre-registered areas.
  • the dairy cow 51 is identified by comparing it with the black and white pattern of the dairy cow.
  • the animal detection unit 61 generates individual identification data D2 that identifies each dairy cow 51 according to the identification, and outputs the individual identification data D2 to the data acquisition unit 62.
  • the animal detection unit 61 identifies which of the dairy cows kept in the cowshed 50 the dairy cow 51 shown in the image I, that is, the dairy cow 51 currently in the drinking fountain 52 is, and Any other method may be used, such as using tags, as long as it generates individual identification data D2 that individually identifies each dairy cow 51 based on the method, and is not limited to the configuration of the first embodiment.
  • the data acquisition unit 62 drives each of the two laser measurement devices 13 to scan the drinking fountain 52 (data acquisition area 14).
  • Each laser measuring device 13 acquires point cloud data D1 (see FIGS. 7 and 8) of the drinking fountain 52, associates individual identification data D2 with the point cloud data D1, and outputs the data to the data synthesis section 63.
  • point cloud data D1 includes the dairy cow 51 indicated by the individual identification data D2.
  • the data synthesis unit 63 synthesizes the point cloud data D1 acquired by the two laser measuring instruments 13 to generate combined point cloud data D3 (see FIG. 9).
  • the two laser measurement devices 13 are provided at paired positions with the drinking fountain 52 in between as described above, they measure the same drinking fountain 52 from different directions. Therefore, by combining the respective point cloud data D1 (so-called point cloud composition), different sides of the drinking fountain 52 (for example, one is the right side and the other is the left side of the dairy cow 51 there). It can be a collection of three-dimensional position data including the surface shape of.
  • the data synthesis unit 63 connects overlapping parts of point clouds (so-called point cloud matching), uses targets as landmarks (so-called tie point method), and uses other known techniques.
  • the point group data D1 are combined to generate combined point group data D3.
  • the drinking fountain 52 is set as the data acquisition area 14, and the positional relationship of the laser measuring device 13 with respect to the drinking fountain 52 is known in advance. For this reason, it is easy to determine the portion where the point clouds in the two point cloud data D1 acquired by the respective laser measuring devices 13 overlap, so that the data synthesis unit 63 can appropriately generate the composite point cloud data D3.
  • the data synthesis unit 63 associates the generated composite point group data D3 with the individual identification data D2 and outputs the data to the animal extraction unit 64.
  • the animal extraction unit 64 extracts only the three-dimensional coordinate position (coordinate data) corresponding to the dairy cow 51 from the composite point cloud data D3 generated by the data synthesis unit 63, thereby extracting an animal that shows the surface shape of the dairy cow 51.
  • Point cloud data D4 (see FIGS. 11 and 12) is generated.
  • the drinking fountain 52 is set as the data acquisition area 14, and the positional relationship of the laser measuring device 13 with respect to the drinking fountain 52 is known in advance.
  • the point cloud data of the drinking fountain 52 to be acquired is also known in advance.
  • the animal extraction unit 64 calculates the difference between the composite point cloud data D3 and the point cloud data indicating the drinking fountain 52 without the dairy cow 51, thereby obtaining the temporary animal point cloud data D4' (see FIG. 10). ) is generated. Since both laser measurement devices 13 are arranged as described above, this virtual animal point cloud data D4' always includes at least half of the body 51a, regardless of the posture of the dairy cow 51 in the drinking fountain 52. There is. However, the virtual animal point cloud data D4' includes objects other than the dairy cow 51, such as the water trough 53 and a part of the water therein when the dairy cow 51 is drinking water from the water trough 53. , objects that are very close to the dairy cow 51 may be included.
  • the virtual animal point group data D4' shown in FIG. 10 includes a point group A indicating a dairy cow 51 and a point group B indicating a part of a water pail 53. Therefore, the animal extraction unit 64 performs clustering processing on the temporary animal point group data D4' to generate animal point group data D4. This clustering process groups items that have similar tendencies, positions, characteristics, etc., and the dairy cow 51 and other items can be grouped into separate groups.
  • the point indicating the dairy cow 51 is Two groups are generated: group A and point group B showing a part of the water pail 53.
  • the animal extraction unit 64 of the first embodiment divides the pseudo-animal point cloud data D4' into a plurality of groups by clustering the clusters of point cloud data that are close to each other, and extracts the largest cluster among them (point cloud A in the example of FIG. 10). is extracted as the dairy cow 51, and animal point cloud data D4 (see FIGS. 11 and 12) is generated. As a result, the animal point cloud data D4 always includes at least half of the torso 51a, and objects other than the dairy cow 51 are removed.
  • the animal extraction unit 64 associates the generated animal point cloud data D4 with the individual identification data D2 and outputs the data to the specific region extraction unit 65.
  • the animal extraction unit 64 may have any other configuration as long as it generates the animal point cloud data D4, and is not limited to the configuration of the first embodiment.
  • the animal extraction unit 64 performs a clustering process on the pseudo animal point cloud data D4' generated as described above, when there is a low possibility that it contains animals other than the target animal (dairy cow 51).
  • the temporary animal point group data D4' may be used as the animal point group data D4.
  • the animal extraction unit 64 registers in advance three-dimensional coordinate positions (coordinate data) indicating the dairy cows 51 at various angles, sizes, and types, and extracts the animal point group data D4 by comparing them. good.
  • the animal extraction unit 64 extracts a clean plane such as the floor or wall of the drinking fountain 52 from the composite point cloud data D3, and performs threshold processing on a place where the dairy cow 51 is likely to be found using the plane as a reference.
  • the temporary animal point group data D4' and the animal point group data D4 may be generated by extracting locations where there is a high possibility that the animal 51 is present.
  • the specific region cutting unit 65 removes the vicinity of the head 51b and the tail 51c from the animal point group data D4 (see FIG. 12) representing the dairy cow 51 to generate specific region data D5 (see FIG. 13).
  • the animal point cloud data D4 is Specific part data D5 is generated from which the vicinity of the head 51b and the tail 51c are removed.
  • the specific part extraction unit 65 of the first embodiment extracts a predetermined number of points (10,000 points as an example in the first embodiment) from the upper side of the animal point cloud data D4 in the vertical direction, and
  • the first principal component is the direction in which the spine 51d extends (hereinafter referred to as the spine direction Ds (see FIG. 14)).
  • This first principal component has its axis in the direction where the variance is greatest, and indicates the direction in which the extracted upper point group extends.
  • the specific part cutting unit 65 registers in advance three-dimensional coordinate positions (coordinate data) indicating various angles, sizes, and types of the spine 51d, and extracts the spine direction Ds by comparing with these. or other methods may be used.
  • the specific part cutting unit 65 determines that the thinner part at one end in the spinal direction Ds is near the head 51b (including the neck), and also determines that the narrower part at one end in the spinal direction Ds is near the head 51b (including the neck), and the other end in the longitudinal direction.
  • the extremely thin and long part is determined to be the tail 51c.
  • the specific part cutting unit 65 is used to determine the head vicinity 51b and the tail 51c in the animal point cloud data D4, for example, the head vicinity 51b can be determined by comparing with the shape and position registered in advance. or the tail 51c, or other methods may be used, and the method is not limited to the method of the first embodiment.
  • the specific part cutting unit 65 associates the generated specific part data D5 with the individual identification data D2 and outputs the data to the specific part aligning unit 66.
  • the specific region alignment unit 66 aligns the specific region data D5 generated by the specific region cutting unit 65 so that the spine direction Ds coincides with the reference axis direction Db (see FIG. 14).
  • the reference axis direction Db is assumed to extend along the horizontal plane, and the direction along the horizontal plane that is orthogonal to the reference axis direction Db is defined as the width direction Dw, and the direction orthogonal to the horizontal plane is defined as the vertical direction Dh.
  • the specific region alignment unit 66 of the first embodiment moves the specific region data D5 on the horizontal plane so that the spine direction Ds coincides with the reference axis direction Db (see arrow A1).
  • the specific part alignment unit 66 is not limited to the configuration of the first embodiment as long as it aligns the spine direction Ds in the specific part data D5 to match the reference axis direction Db.
  • the specific part alignment unit 66 outputs specific part data D5 with the spine direction Ds aligned with the reference axis direction Db to the reference part detection unit 67.
  • the reference location detection unit 67 detects a reference location Pr (see FIG. 15) in the specific region data D5 in which the spine direction Ds is matched with the reference axial direction Db.
  • This reference point Pr is used as a reference for alignment by the data alignment unit 68 and a reference for normalization by the normalization unit 69, and is a point that is easy to detect regardless of individual differences and has common characteristics.
  • Set. In the first embodiment, as shown in FIG. 15, a straight line connecting two hook bones (Bh) that form a pair across the reference axis direction Db (backbone 51d) is defined as the reference point Pr.
  • the reference point detection unit 67 first detects the positions of a pair of hook bones.
  • the reference point detection unit 67 of the first embodiment registers in advance three-dimensional coordinate positions (coordinate data) indicating the vicinity of the hook bone (Bh) in the dairy cows 51 of various angles, sizes, and types, and compares them with the three-dimensional coordinate positions (coordinate data). Extract the position of hook bone (Bh) by Note that the reference point detection unit 67 may use any other method as long as it extracts the position of the hook bone (Bh) in the aligned specific part data D5, and is not limited to the configuration of the first embodiment. Thereafter, the reference point detection unit 67 connects the detected pair of hook bones (Bh) (their positions) to generate a reference point Pr (their data).
  • the reference location detecting section 67 outputs the reference location Pr (the data) detected in the specific region data D5 in which the direction in which the spine 51d extends coincides with the reference axis direction Db to the data alignment section 68.
  • the reference point Pr may be set as appropriate as long as it is a point that is easy to detect and has common characteristics regardless of individual differences in the animals whose breeding status is to be evaluated. Not limited.
  • the data alignment unit 68 generates specific part alignment data D6 (see FIG. 16) by adjusting the position of the specific part data D5 with respect to the reference axis direction Db using the detected reference point Pr as a reference.
  • the data alignment unit 68 generates specific part alignment data D6 (see FIG. 16) by finely adjusting the inclination of the specific part data D5 on the horizontal plane so that the reference part Pr is perpendicular to the reference axis direction Db.
  • the data alignment unit 68 of the first embodiment aligns the direction of the specific part data D5 by positioning the cut end 51e on the side of the tail 51c at the origin in the reference axis direction Db, thereby aligning the specific part data D6. generate.
  • the data alignment unit 68 It is determined that the side is directed toward the origin, and the specific part data D5 is rotated 180 degrees to position the end 51e on the tail 51c side at the origin in the reference axis direction Db. Note that the data alignment unit 68 may position the cut end on the side near the head 51b at the origin in the reference axis direction Db, and is not limited to the configuration of the first embodiment.
  • the data alignment section 68 outputs the specific part alignment data D6 to the normalization section 69.
  • the normalization unit 69 generates normalized data D7 (see FIG. 18) by normalizing the specific part alignment data D6 using the above-described reference position as a reference. This is because animals (dairy cows 51) have different skeletons and fleshiness, so in the specific part alignment data D6, as shown in FIG. 17, even if they are aligned as described above, the position in the vertical direction Dh is In addition to being different, the size of the vertical direction Dh is also different.
  • the normalization unit 69 of the first embodiment uses the reference point Pr (positions of both hook bones) as a standard for normalization, and makes sure that the above-mentioned reference point Pr in each specific part alignment data D6 has a uniform size. , each normalized data D7 (see FIG.
  • the normalization unit 69 may appropriately set a location to be used as a standard for normalization, and is not limited to the configuration of the first embodiment.
  • the normalization section 69 outputs the normalized data D7 to the cut plane extraction section 71.
  • the cutting plane extraction unit 71 generates cross-sectional data D8 (see FIG. 19), which is a cross-section of the dairy cow 51 (its body) cut along a predetermined plane, from the normalized data D7.
  • the cut plane extraction unit 71 of the first embodiment assumes that a predetermined plane is orthogonal to the front-back direction of the dairy cow 51, and cuts the normalized data D7 along a slice position Sp set at an arbitrary position in the front-back direction. By doing so, cross-sectional data D8 is generated.
  • This slice position Sp may be set as appropriate, but in Example 1, it is set at four locations shown in FIG. There is.
  • the slice positions Sp1 to Sp3 are planes perpendicular to the reference axis direction Db. Further, the slice position Sp4 is a plane perpendicular to the width direction Dw.
  • the slice position Sp1 is an intermediate position in the reference axis direction Db between the hook bone position (reference point Pr) and the end 51e on the tail 51c side (the origin in the reference axis direction Db).
  • the slice position Sp2 is the position of a reference point Pr (hook bone) in the reference axis direction Db.
  • the slice position Sp3 is set to be 1.5 times the distance from the end 51e (origin of the reference axis direction Db) to the slice position Sp2 in the reference axis direction Db.
  • the slice position Sp4 is an intermediate position between the position of one hook bone and the reference axis direction Db in the width direction Dw.
  • FIG. 19 An example of the cross-sectional data D8 is shown in FIG. 19.
  • the slice positions Sp are arranged in order from the left side when viewed from the front, corresponding to the numbers at the end of each slice position Sp, and numbers 1 to 4 are attached to the ends. That is, the cross-section data D81 corresponds to the slice position Sp1, the cross-section data D82 corresponds to the slice position Sp2, the cross-section data D83 corresponds to the slice position Sp3, and the cross-section data D84 corresponds to the slice position Sp4.
  • the cut plane extracting unit 71 associates the generated cross-sectional data D8 with the individual identification data D2 and outputs it to the calculation data generating unit 72. Note that the cut plane extraction unit 71 may appropriately set the number and position of the cross section data D8 to be generated for each normalized data D7, and is not limited to the configuration of the first embodiment.
  • the calculation data generation unit 72 generates calculation data D9 (see FIG. 20) for use in calculation from the cross-sectional data D8.
  • An example of this will be explained using cross-sectional data D82 (hereinafter simply referred to as cross-sectional data D8) corresponding to slice position Sp2 in FIG. 19.
  • the calculation data generation unit 72 interpolates the point group of the cross-sectional data D8 (see FIG. 19) using the average value, thereby generating thinned-out cross-sectional data D8' (left side in FIG. 20) for thinning out the number of point groups. generate.
  • the calculation data generation unit 72 generates a thinned cross section so that the position indicating the spine 51d in the thinned cross section data D8' is located at the origin (center position) in the cutting plane direction (width direction Dw in the example shown in FIG. 20).
  • the data D8' is displaced in the direction of the cutting surface (width direction Dw) (see arrow A2).
  • the calculation data generation unit 72 compares the number and distribution of point groups located on both sides of the origin (center position) in the cross-section direction (width direction Dw) in the thinned-out cross-section data D8'.
  • calculation data D9 can reduce the number of missing data points in the width direction Dw while suppressing an increase in the amount of data, and has a symmetrical shape (distribution) in the width direction Dw.
  • the original animal point cloud data D4 represents the surface shape of the dairy cow 51 as a very vivid point cloud
  • the points do not necessarily cover the entire cross section at a predetermined position.
  • the group is not dispersed.
  • the calculation data D9 can suppress an increase in the amount of data while having a point group necessary for obtaining an approximate curve for evaluating the growth status.
  • the calculation data generation unit 72 when the plane perpendicular to the width direction Dw is set as the slice position Sp, the calculation data generation unit 72 generates the calculation data D9 as follows. An example of this will be explained using cross-sectional data D84 corresponding to slice position Sp4 in FIG. 19. First, the calculation data generation unit 72 interpolates the point group of the cross-sectional data D84 (see FIG. 19) using the average value, thereby generating thinned-out cross-sectional data D84' (left side in FIG. 21) for thinning out the number of point groups. generate. In addition, the calculation data generation unit 72 determines that the right end (the highest position in the example shown in FIG.
  • the thinned cross-section data D84' is displaced in the cutting plane direction (reference axis direction Db) so that the thinned-out cross-section data D84' is located at the same position (see arrow A3).
  • the thinned cross-section data D84' since the thinned cross-section data D84' has a plane perpendicular to the width direction Dw as the slice position Sp, a point group exists only on one side of the cut plane direction (reference axis direction Db), and the other side is the empty part of the distribution. is on the smaller side.
  • the calculation data generation unit 72 copies the point group (the data) existing on one side in the thinned cross-section data D84' to the opposite side, and calculates the calculation data D9 (the right side in FIG. 21). generate.
  • the calculation data D9 is twice the size of the thinned cross-section data D84' in the direction of the cut plane (reference axis direction Db), but in FIG. 21, the scale in the direction of the cut plane (reference axis direction Db) is changed. It shows.
  • FIG. 22 An example of the calculation data D9 generated in this way is shown in FIG. 22.
  • the slice positions Sp are arranged in order from the left side when viewed from the front, corresponding to the numbers at the end of each slice position Sp, and numbers 1 to 4 are attached to the ends. That is, the calculation data D91 corresponds to the cross-section data D81, the calculation data D92 corresponds to the cross-section data D82, the calculation data D93 corresponds to the cross-section data D83, and the calculation data D94 corresponds to the cross-section data D84.
  • the calculation data generation unit 72 associates the generated calculation data D9 with the individual identification data D2 and outputs the generated calculation data D9 to the calculation area extraction unit 73. At this time, when the calculation data generation unit 72 generates a plurality of calculation data D9 for the single individual identification data D2, the calculation data generation unit 72 outputs them to the calculation area extraction unit 73 in association with the slice position Sp. do.
  • the calculation area extraction unit 73 extracts a starting point Ps and an ending point Pe for calculating an approximate curve Ac, which will be described later, in the curve indicated by the arrangement of points in the calculation data D9.
  • the present applicant has found that when looking at the vicinity of the hook bone of the dairy cow 51 in a cross section orthogonal to the reference axis direction Db, there are roughly convex portions, concave portions, and convex portions from the end, regardless of the position in the reference axis direction Db. , we focused on the fact that there is a tendency to form a curved line that has concave parts and convex parts, with the spine 51d located in the central convex part.
  • the calculation area extraction unit 73 extracts a convex shape at both ends of the external shape (outline of the dairy cow 51) indicated by the calculation data D9, that is, at the center. One of the end points (points of inflection) of the convex part on the outside of the part is extracted as the starting point Ps, and the other as the ending point Pe (see FIG. 22). Then, the calculation area extraction unit 73 outputs the starting point Ps and the ending point Pe in the calculation data D9 to the approximate curve calculation unit 74.
  • the present applicant has proposed that when the slice position Sp is a plane orthogonal to the width direction Dw in the vicinity of the hook bone of the dairy cow 51, convex portions, concave portions, convex portions, etc. We also focused on the fact that there is a tendency for the shape to be a curved line. For this reason, as described above, when the plane perpendicular to the width direction Dw is set as the slice position Sp, the calculation data generation unit 72 creates a The thinned cross-sectional data D84' is displaced in the direction of the cut plane and is copied to the opposite side to generate the calculation data D9.
  • the calculation area extraction unit 73 can calculate the external shape (outline of the dairy cow 51) indicated by the calculation data D9 in the same way as described above.
  • One of both ends is set as the starting point Ps, and the other end is extracted as the ending point Pe, and output to the approximate curve calculating section 74.
  • the approximate curve calculation unit 74 uses the starting point Ps and the ending point Pe extracted by the calculation area extraction unit 73 to calculate an approximate curve Ac (see FIGS. 23 and 24) that matches the calculation data D9. As shown in FIG. 23, in order to appropriately approximate each calculation data D9 with a sixth-order Bezier curve, the present applicant has determined that both ends of the external shape (outline of the dairy cow 51) indicated by the calculation data D9
  • the starting point Ps and the ending point Pe are set as fixed control points C, and five control points C are set between the starting point Ps and the ending point Pe.
  • control points C will be set including the starting point Ps and the ending point Pe, and when indicated individually, numbers 1 to 7 will be added to the beginning starting from the starting point Ps, and numbers 1 to 7 will be added to the end. A number will be attached. That is, when shown individually, the starting point Ps becomes the first control point C1, the next one becomes the second control point C2, the third control point C3 to the sixth control point C6 start from the next one, and the end point Pe becomes the second control point C2. 7 control point C7.
  • the present applicant provides the second control point C2 next to the first control point C1 fixed at the starting point Ps on the upper side when viewed in the vertical direction Dh with respect to the calculation data D9, and sequentially from the next point
  • the third control point C3 is provided on the lower side
  • the fourth control point C4 is provided on the upper side
  • the fifth control point C5 is provided on the lower side
  • the sixth control point C6 is provided on the upper side.
  • the remaining five second control points C2 to sixth control point C6 are moved as appropriate on the cutting surface. By doing so, an approximate curve Ac that fits the calculation data D9 is calculated.
  • the approximate curve calculation unit 74 sets the starting point Ps and the ending point Pe in the calculation data D9 as the fixed first control point C1 and the seventh control point C7, and also sets five control points (the first control point C7) between them.
  • the second control point C2 to the sixth control point C6) are set.
  • the approximate curve calculation unit 74 calculates the five curves so that the curve from the starting point Ps (first control point C1) to the ending point Pe (seventh control point C7) overlaps with the calculation data D9 (the external shape indicated by it).
  • An approximate curve Ac is calculated by adjusting the positions of the control points (second control point C2 to sixth control point C6).
  • the calculation data D9 is generated by selecting one of the cutting plane directions in the cross-sectional data D8 and reversing it. Therefore, in the calculation data D9, regarding the line segment (hereinafter referred to as center line Lc) extending in the vertical direction Dh passing through the intermediate position on the cutting plane, the starting point Ps (first control point C1) and the ending point Pe (first control point C1) The seventh control point C7), the second control point C2 and the sixth control point C6, and the third control point C3 and the fifth control point C5 have a line-symmetrical positional relationship. In the calculation data D9, the fourth control point C4 is provided on the center line Lc on the cut plane.
  • the approximate curve calculation unit 74 of the first embodiment calculates the position of either the second control point C2 or the sixth control point C6, the third control point C3, or the fifth control point on the cutting plane. The position of the fifth control point C5 on the center line Lc is adjusted. Then, the approximate curve calculation unit 74 of the first embodiment calculates the other position of the second control point C2 and the sixth control point C6 from one position, and also calculates the position of the other of the second control point C2 and the sixth control point C6. Find the other position from one position.
  • the approximate curve calculation unit 74 of the first embodiment substantially adjusts the positions of the three control points C so that the starting point Ps( The approximate curve Ac is calculated by adjusting the way the Bezier curve curves from the first control point C1) to the end point Pe (seventh control point C7).
  • the approximate curve calculation unit 74 standardizes the method of obtaining the approximate curve Ac. That is, the calculation area extraction unit 73 extracts the starting point Ps and the ending point Pe in the calculation data D9, and the approximate curve calculating unit 74 sets a total of seven control points C including the starting point Ps and the ending point Pe. Then, the approximate curve calculation unit 74 fixes the starting point Ps (first control point C1) and the ending point Pe (seventh control point C7), and adjusts the remaining five control points C to move from the starting point Ps. An approximated curve Ac is obtained as a sixth-order Bezier curve leading to the end point Pe.
  • the approximate curve calculation unit 74 adjusts the positions of the seven control points C based on the common characteristics as described above, thereby adjusting the individual differences in the calculation data D9 (dairy cow 51). Regardless, the external shape can be represented by an approximate curve Ac. As a result, the approximate curve calculation unit 74 calculates the calculation data D9, that is, the original cross section (cross section data D8 ), and the coefficients in each approximate curve Ac and the position of each control point C can be changed according to individual differences among dairy cows 51.
  • FIG. 24 An example of the approximate curve Ac obtained in this way is shown in FIG. In FIG. 24, three different calculation data D9 and an approximate curve Ac corresponding thereto are shown side by side. FIG. 24 also shows the positions of seven control points C including the starting point Ps and the ending point Pe for each approximate curve Ac.
  • the approximate curve calculating section 74 outputs an approximate curve Ac (its data) based on a sixth-order Bezier curve including seven control points C to the evaluation value calculating section 75 in association with the individual identification data D2.
  • the evaluation value calculation unit 75 calculates an evaluation value Ev indicating the evaluation of the breeding status of each dairy cow 51 in the drinking fountain 52 based on each approximate curve Ac from the approximate curve calculation unit 74.
  • the evaluation value calculation unit 75 calculates the evaluation value Ev using the positional relationship of each control point C on the approximate curve Ac.
  • the positional relationship between point C3 (fifth control point C5) and fourth control point C4 is used. This will be explained using FIG. 23.
  • the interval (its size) between the second control point C2 and the third control point C3 is defined as a first interval a
  • the interval between the third control point C3 and the fourth control point C4 The distance between the second control point C2 and the fourth control point C4 is defined as a third distance c.
  • the interval (its size) between the sixth control point C6 and the fifth control point C5 is a fourth interval d
  • the interval (the size) between the fifth control point C5 and the fourth control point C4 The distance between the sixth control point C6 and the fourth control point C4 is defined as a sixth distance f.
  • the dairy cow 51 the more fleshy the various bones such as the backbone 51d and the hook bone become less noticeable, that is, the unevenness becomes rounded as a whole, and if the dairy cow 51 is not fleshy, the various bones appear angular. It becomes like this. Further, the beefier the dairy cow 51 is, the more the cow 51 has a shape that swells outward.
  • the difference in the vertical direction Dh between the second control point C2 (sixth control point C6) and the fourth control point C4 increases, that is, the third interval c (sixth interval As f) becomes larger, the corners of the unevenness become tighter, and there is a tendency for the shape to become less fleshy.
  • the evaluation value Ev becomes less solid, that is, the evaluation becomes lower, as the third interval c (sixth interval f) becomes larger.
  • the second control point C2 (sixth control point C6) and the third control point C3 (fifth control point C5) are separated, that is, the first interval a (fourth interval d)
  • the evaluation value Ev becomes thicker and higher as the first interval a (fourth interval d) becomes larger.
  • the second control point C2 (sixth control point C6) and the fourth control point C4 will be separated, and the second interval b (fifth interval e) will become larger.
  • the calculation data D9 of Example 1 is based on the starting point Ps (first control point C1), the end point Pe (seventh control point C7), and the second control point C2 with respect to the center line Lc on the cutting plane.
  • the sixth control point C6, the third control point C3, and the fifth control point C5 have a line-symmetrical positional relationship.
  • the first interval a and the fourth interval d become equal
  • the second interval b and the fifth interval e become equal
  • the third interval c and the sixth interval f become equal. Therefore, in the first embodiment, the evaluation value Ev calculated using the first interval a, the second interval b, and the third interval c, and the fourth interval d, the fifth interval e, and the sixth interval f are used. Since the evaluation value Ev and the calculated evaluation value Ev are equal to each other, it is sufficient to calculate either one of them.
  • the evaluation value calculation unit 75 of the present disclosure calculates the approximate curve Ac, that is, the second control point C2 (sixth control point C6), the third control point C3 (fifth control point C5), and the fourth control point. Based on the position (coordinate data) with C4, calculate the above-described first interval a (fourth interval d), second interval b (fifth interval e), and third interval c (sixth interval f). . Then, the evaluation value calculation unit 75 applies the above calculation formula (third interval c/(first interval a+second interval b)) or (sixth interval f/(fourth interval d+fifth interval e)). By fitting, an evaluation value Ev is calculated. The evaluation value calculation unit 75 associates the evaluation value Ev of the dairy cow 51 with the individual identification data D2 and stores it in the storage unit 18 as appropriate.
  • the control mechanism 11 causes the evaluation value Ev stored in the storage unit 18 to be displayed on the display unit 16 or output to an external device via the communication unit 17 as appropriate.
  • the evaluation value Ev is associated with the individual identification data D2, it is possible to easily understand which dairy cow 51 the breeding status indicates. Thereby, the control mechanism 11 can notify the evaluation value Ev of the dairy cow 51.
  • FIG. 25 a growing situation evaluation process (a growing situation evaluation control method) as an example of evaluating the growing situation of the dairy cow 51 using the growing situation evaluation system 10 will be described using FIG. 25.
  • This growth status evaluation process is executed by the control mechanism 11 based on a program stored in the storage unit 18 or the internal memory 11a.
  • Each step (each process) of the flowchart of FIG. 25 will be explained below.
  • the flowchart of FIG. 25 is started when the growth condition evaluation system 10 is activated, the browser or application is launched, the camera 12 is driven, and both laser measuring devices 13 are placed in a standby state.
  • step S1 it is determined whether or not the dairy cow 51 exists in the drinking fountain 52 (data acquisition area 14). If YES, proceed to step S2; if NO, step S1 is repeated.
  • the animal detection unit 61 analyzes the image I acquired by the camera 12 to determine whether or not there is a dairy cow 51 at the drinking fountain 52, and if there is a dairy cow 51, it sends a signal to that effect as data. It is output to the acquisition unit 62.
  • step S1 of the first embodiment when a dairy cow 51 is detected, individual identification data D2 that identifies each dairy cow 51 is generated, and the individual identification data D2 is output to the data acquisition unit 62.
  • step S2 point cloud data D1 of the drinking fountain 52 is acquired, and the process proceeds to step S3.
  • step S2 when the data acquisition unit 62 receives a signal indicating that the dairy cow 51 has been detected from the animal detection unit 61, the data acquisition unit 62 drives the two laser measurement devices 13 to scan the drinking fountain 52 (data acquisition area 14). , the point cloud data D1 of the drinking fountain 52 is acquired. Then, in step S2, upon receiving the point cloud data D1 from both laser measuring devices 13, the data acquisition section 62 associates the individual identification data D2 with each point cloud data D1 and outputs the data to the data synthesis section 63.
  • step S3 composite point group data D3 is generated, and the process proceeds to step S4.
  • step S3 the data synthesis unit 63 synthesizes the point cloud data D1 acquired by both laser measuring devices 13, generates composite point cloud data D3, and adds individual identification data D2 to the generated composite point cloud data D3. The data is associated and output to the animal extraction unit 64.
  • step S4 animal point cloud data D4 is generated, and the process proceeds to step S5.
  • the animal extraction unit 64 extracts only the three-dimensional coordinate position (coordinate data) corresponding to the dairy cow 51 from the composite point cloud data D3 generated by the data synthesis unit 63 to generate animal point cloud data D4,
  • the generated animal point cloud data D4 is associated with the individual identification data D2 and outputted to the specific part cutting section 65.
  • step S5 specific part data D5 is generated, and the process proceeds to step S6.
  • step S6 the specific part cutting unit 65 generates specific part data D5 by removing the vicinity of the head 51b and the tail 51c of the dairy cow 51 from the animal point cloud data D4 generated by the animal extraction unit 64.
  • the specific part data D5 is associated with the individual identification data D2 and outputted to the reference part detection section 67.
  • step S6 the specific part data D5 is arranged, and the process proceeds to step S7.
  • the specific part alignment unit 66 extracts the first principal component in the specific part data D5 generated by the specific part cutting unit 65 as the spine 51d of the dairy cow 51, and extracts the first principal component (in the direction in which the spine 51d extends). ) on the horizontal plane so as to match the reference axis direction Db.
  • the specific part alignment unit 66 outputs to the reference part detection unit 67 the specific part data D5 in which the spine 51d is aligned so that the direction in which it extends coincides with the reference axis direction Db.
  • step S7 the position of the reference point Pr in the specific part data D5 is detected, and the process proceeds to step S8.
  • the reference point detection unit 67 extracts the hook bone positions from the specific part data D5 aligned by the specific part alignment unit 66, and generates a reference point Pr that connects the extracted hook bone positions. Then, the reference point Pr (that data) is output to the data alignment section 68.
  • step S8 specific part alignment data D6 is generated, and the process proceeds to step S9.
  • the specific part alignment data D6 is generated by finely adjusting the inclination of the specific part data D5 on the horizontal plane so that the reference part Pr detected by the reference part detection section 67 is orthogonal to the reference axis direction Db.
  • the data alignment unit 68 outputs the generated specific part alignment data D6 to the normalization unit 69.
  • step S9 normalized data D7 is generated, and the process proceeds to step S10.
  • step S9 the normalization unit 69 enlarges or reduces each specific part alignment data D6 so that the reference points Pr in each specific part alignment data D6 generated by the data alignment unit 68 have a uniform size. generated data D7. Then, in step S9, the normalization unit 69 outputs the generated normalized data D7 to the cut plane extraction unit 71.
  • step S10 cross-sectional data D8 is generated, and the process proceeds to step S11.
  • the cut plane extraction unit 71 cuts the normalized data D7 generated by the normalization unit 69 along the slice position Sp set at an arbitrary position to generate cross-section data D8. Then, in step S10, the cut plane extraction section 71 outputs each generated section data D8 to the calculation data generation section 72 in association with the individual identification data D2.
  • step S11 calculation data D9 is generated, and the process proceeds to step S12.
  • the calculation data generation unit 72 generates thinned-out cross-sectional data D8' by thinning out the number of points in the cross-sectional data D8 generated by the cross-sectional plane extraction unit 71, and generates thinned-out cross-sectional data D8' in which there is less space in the distribution in the direction of the cut plane.
  • One side is selected and copied to the other side to generate calculation data D9.
  • step S11 the calculation data generation section 72 outputs the generated calculation data D9 to the calculation area extraction section 73.
  • step S12 the starting point Ps and ending point Pe in the calculation data D9 are extracted, and the process proceeds to step S13.
  • the calculation area extraction unit 73 extracts the starting point Ps and the ending point Pe for calculating the approximate curve Ac from the calculation data D9, and approximates the positions (the data) of the starting point Ps and the ending point Pe. It is output to the curve calculation section 74.
  • step S13 an approximate curve Ac is calculated, and the process proceeds to step S14.
  • the approximate curve calculation unit 74 sets the starting point Ps and the ending point Pe as fixed control points C for the calculation data D9, and also sets five control points C between them.
  • the approximate curve Ac is calculated by adjusting the positions of the five control points C.
  • step S13 of the first embodiment the approximate curve calculation unit 74 calculates the position of one of the second control point C2 and the sixth control point C6, the third control point C3 and the fifth control point on the cutting plane.
  • the approximate curve calculation section 74 outputs the calculated approximate curve Ac to the evaluation value calculation section 75 in association with the individual identification data D2 together with each control point C (its data).
  • step S14 an evaluation value Ev is calculated, and the process proceeds to step S15.
  • the evaluation value calculation unit 75 calculates an evaluation value Ev indicating the evaluation of the breeding status of the dairy cow 51 that was in the drinking fountain 52 based on each approximate curve Ac from the approximate curve calculation unit 74, and The individual identification data D2 is associated with Ev and stored in the storage unit 18 as appropriate.
  • step S15 it is determined whether or not the growing situation evaluation process has been completed. If YES, this growing situation evaluation process is ended, and if NO, the process returns to step S1. In step S15, when the growth situation evaluation system 10 is stopped or an operation to end the growth situation evaluation process is performed on the operation unit 15, it is determined that the growth situation evaluation process is ended.
  • the growth status evaluation system 10 detects that the dairy cow 51 is present at the drinking fountain 52 via the camera 12, it acquires point cloud data D1 of the drinking fountain 52 using both laser measuring devices 13 (steps S1 and S2). Thereafter, the growth situation evaluation system 10 generates each specific part data D5 based on each point cloud data D1 (steps S3 to S5), and arranges each of the specific part data D5 to generate specific part alignment data D6 ( Steps S6 to S8).
  • the growth condition evaluation system 10 generates each normalized data D7 based on the reference point Pr from each specific part alignment data D6 (step S9), thereby evaluating the state of fatness of the dairy cow 51 regardless of its size.
  • Each section data D8 is generated from each normalized data D7 (step S10).
  • the growth situation evaluation system 10 interpolates the point group of each cross-section data D8 using the average value to generate thinned-out cross-section data D8', selects the side with fewer gaps in the distribution in the direction of the cross-section, and copies it to the other side. (copy) to generate calculation data D9 (step S11).
  • the growth condition evaluation system 10 can appropriately judge the state of fleshiness even when one of the point clouds in the direction of the cut plane is largely missing, and can suppress the amount of data.
  • the growth condition evaluation system 10 applies a sixth-order Bezier curve in order to calculate a smooth approximate curve Ac that fits the calculation data D9.
  • the growth situation evaluation system 10 determines the starting point Ps and the ending point Pe, which are both ends of the external shape (outline of the dairy cow 51) that becomes the convex part, concave part, convex part, concave part, and convex part indicated by each calculation data D9. is set as a fixed control point C, and five control points C are set between the starting point Ps and the ending point Pe (steps S12, S13).
  • the growth situation evaluation system 10 determines the position of one of the second control point C2 and the sixth control point C6, and the position of one of the third control point C3 and the fifth control point C5. At the same time, the position of the fifth control point C5 on the center line Lc is adjusted to calculate an approximate curve Ac that matches the calculation data D9 (outer shape) (step S13). That is, the growth situation evaluation system 10 calculates the approximate curve Ac that fits the calculation data D9 by adjusting the positions of the five control points C between the starting point Ps and the ending point Pe.
  • the growth situation evaluation system 10 determines the position of the second control point C2 (sixth control point C6), the position of the third control point C3 and (fifth control point C5), and the position of the fifth control point C5.
  • An evaluation value Ev is calculated based on , (step S14) and stored in the storage unit 18 as appropriate.
  • the growth status evaluation system 10 can notify the evaluation value Ev by appropriately displaying the evaluation value Ev on the display unit 16 or outputting the evaluation value Ev to an external device via the communication unit 17 as appropriate.
  • FIG. 26 shows a table summarizing the relationship between the theoretical cross section Dt and each value obtained by the growth condition evaluation system 10.
  • FIG. 26 shows a table summarizing the relationship between the theoretical cross section Dt and each value obtained by the growth condition evaluation system 10.
  • FIG. 26 shows two cross-sections whose shape is close to the theoretical cross-section Dt exemplified in the above-mentioned literature from the acquired data of many dairy cows 51. One of them is close to the definite depression example in the literature, and the other is close to the slight depression example in the literature. For this reason, in FIG. 26, the left column is an example with less flesh, and the right column is an example with good flesh. In FIG. 26, the two theoretical cross sections Dt described above are shown in the top row. In the following, each data of an example that is not fleshy is indicated with a suffix a, and each data of a fleshy example is indicated with a suffix b.
  • an example with a poor thickness on the left side is defined as a theoretical cross section Dta
  • an example with a good thickness on the right side is defined as a theoretical cross section Dtb. This also applies to each data in the row below the theoretical cross section Dt.
  • actual cross-sectional data Da of the dairy cow 51 is shown in the row below the theoretical cross-section Dt as data of the dairy cow 51 that was actually obtained.
  • This actual cross-section data Da is created as data indicating a cross-section from the above-mentioned animal point group data D4 (specific part data D5).
  • the animal point cloud data D4 (specific site data D5) indicates a three-dimensional coordinate position (coordinate data) corresponding to the dairy cow 51 in the acquired composite point cloud data D3. Therefore, it is considered that the actual cross-sectional data Da depicts the external shape of the cross-section of the actual dairy cow 51 extremely accurately. Therefore, in FIG.
  • the actual cross-section data Da is used as the data of the dairy cow 51, and the left side shows the actual cross-section data Daa of the dairy cow 51 with a shape close to the theoretical cross-section Dta, and the right side shows the actual cross-section data Daa of the dairy cow 51 with a shape close to the theoretical cross-section Dtb.
  • Actual cross-sectional data Dab of a dairy cow 51 is shown. As shown in FIG. 26, each actual section data Da is extremely close to the corresponding theoretical section Dt.
  • the calculation data D9, the approximate curve Ac, and the evaluation value Ev are shown in order from the top as the values obtained from the dairy cow 51, which is the source of the actual cross-section data Daa and the actual cross-section data Dab, by the growth condition evaluation system 10. It is listed.
  • the calculation data D9, the approximate curve Ac, and the evaluation value Ev obtained for the actual cross-section data Da are substantially the same as the actual cross-section data Da. It is approximately equal to the calculation data D9, the approximate curve Ac, and the evaluation value Ev obtained for the theoretical cross section Dt. Therefore, if both calculation data D9, both approximate curves Ac, and both evaluation values Ev are appropriate for both theoretical cross sections Dt, the growth situation evaluation system 10 can appropriately evaluate the growth situation of the dairy cow 51. It can be considered that the evaluation is successful.
  • the calculation data D9a has a shape extremely similar to the actual cross-sectional data Daa that is the source thereof. Furthermore, it can be seen that the calculation data D9b also has a shape extremely similar to the actual cross-sectional data Dab that is the source thereof. From this, it can be seen that the growth status evaluation system 10 is able to appropriately represent the external shape of the actual cross section of the dairy cow 51, which is the source, of each calculation data D9 used for calculation.
  • the approximate curve Aca has a shape extremely close to the calculation data D9a that is the source thereof.
  • the approximate curve Acb has a shape extremely close to the calculation data D9b that is the source thereof.
  • the growth situation evaluation system 10 appropriately reflects the calculation data D9a, that is, the actual cross-sectional data Da that is the basis of the evaluation value EV obtained from the approximate curve Ac. Based on each approximate curve Ac, the growth status evaluation system 10 calculated 0.211 as the evaluation value EV of the example with poor fleshiness, and calculated 0.186 as the evaluation value EV of the example with good fleshiness.
  • the growth situation evaluation system 10 calculated 0.211 as the evaluation value EV for the theoretical cross section Dta of the example with poor fleshiness, and calculated 0.186 as the evaluation value EV for the theoretical cross section Dta of the example with good fleshiness. It can be thought of as a thing.
  • the evaluation value EV indicates that the smaller the value, the better the meatiness. Therefore, the growth situation evaluation system 10 can evaluate the growth situation of the dairy cow 51 in the same way as the visual indicators for evaluation of the growth situation shown in the above-mentioned literature. It can be seen that it represents properly.
  • FIGS. 27 to 30 four approximate curves Ac based on the cross-sectional data D8 obtained at each of the four slice positions Sp (see FIG. 18) are shown by numerical value in the conventional BCS.
  • 27 shows each approximate curve Ac at slice position Sp1
  • FIG. 28 shows each approximate curve Ac at slice position Sp2
  • FIG. 29 shows each approximate curve Ac at slice position Sp3
  • FIG. 30 indicates each approximate curve Ac at the slice position Sp4.
  • four approximate curves Ac are sample Sa with BCS of 2.50, sample Sb with BCS of 2.75, sample Sc with BCS of 3.00, and sample Sa with BCS of 2.75.
  • the specimen Sd is 3.25.
  • the slice position Sp4 is a plane perpendicular to the width direction Dw, and a group of points exists only in one side of the cutting plane direction (reference axis direction Db). Therefore, as described above, by copying (copying) one data in which a point group exists to the other, the above calculation data D9 can be obtained by copying (copying) one data in which a point group exists to the other slice position Sp. , a concave portion, and a convex portion.
  • the cross section obtained at the slice position Sp4 is only one as described above, so in FIG. It is a curved line that depicts a convex portion. Therefore, in FIG.
  • the approximate curve Ac for each specimen S is a curve connecting the first control point C1, which is the starting point Ps, and the vertex Cv.
  • the first control point C1 which is the starting point Ps
  • the apex It is assumed that Cv and Cv are approximately the same.
  • FIG. 30 similar to FIGS. 27 to 29, other control points C are omitted to avoid complicating the diagram and making it difficult to understand each one.
  • the approximate curve Ac of the specimen Sd is located at the outermost side, the approximate curve Ac of the specimen Sc is located inside it, and the approximate curve Ac of the specimen Sb is located inside it.
  • a curve Ac is located, and an approximate curve Ac of the sample Sa is located inside the curve Ac. Therefore, for each approximate curve Ac, that is, for the dairy cow 51 that is the source of the approximate curve Ac, the sample Sd with a BCS of 3.25 is the most fleshy, the sample Sc with a BCS of 3.00 is the next most fleshy, and the sample Sd with a BCS of 2. It can be seen that the sample Sb with a BCS of 75 is the next most fleshy, and the sample Sa with a BCS of 2.50 is the least fleshy.
  • the applicant calculates an evaluation value EV using the growth condition evaluation system 10 for each approximate curve Ac shown in FIGS. 27 to 30, that is, for each cross section at each slice position Sp of the dairy cow 51 that is the source did.
  • the evaluation value EV is such that the approximate curve Ac of the sample Sa is 0.403, the approximate curve Ac of the sample Sb is 0.395, and the approximate curve Ac of the sample Sc is was 0.374, and the approximate curve Ac of the sample Sd was 0.354.
  • the evaluation value Ev becomes smaller as the thickness becomes better, that is, the BCS becomes larger.
  • the approximate curve Ac for the sample Sa is 0.233
  • the approximate curve Ac for the sample Sb is 0.231
  • the approximate curve Ac for the sample Sc is 0.233.
  • the curve Ac was 0.221
  • the approximate curve Ac of the sample Sd was 0.207.
  • the approximate curve Ac of the sample Sa is 0.411
  • the approximate curve Ac of the sample Sb is 0.396
  • the approximate curve Ac of the sample Sc is Ac was 0.370
  • the approximate curve Ac of the sample Sd was 0.340.
  • the growth status evaluation system 10 appropriately represents the evaluation value Ev calculated from the approximate curve Ac based on each calculation data D9, appropriately representing the actual growth status of the dairy cow 51. Then, the growth situation evaluation system 10 calculates an approximate curve Ac for each calculation data D9 using a sixth-order Bezier curve, and calculates an evaluation value Ev from the approximate curve Ac. Even if the three-dimensional shapes are different, the evaluation value Ev can be easily and appropriately calculated, and the evaluation of a large number of animals can be automated.
  • the growth status evaluation system 10 can represent the growth status of the dairy cow 51 by indicating the numerical value calculated as the evaluation value Ev as described above.
  • the numerical range of the evaluation value Ev changes depending on the slice position Sp. Therefore, the growth status evaluation system 10 can represent the growth status of the dairy cow 51 by indicating the evaluation value Ev together with the reference value at the evaluated slice position Sp.
  • the growth status evaluation system 10 may convert the numerical range of each evaluation value Ev according to the evaluated slice position Sp into a unified value regardless of the difference in the slice position Sp.
  • each evaluation value Ev may be normalized by the maximum value at each slice position Sp, and each normalized evaluation value Ev at a plurality of different slice positions Sp may be calculated.
  • the growth situation evaluation system 10 may convert each evaluation value Ev corresponding to the evaluated slice position Sp into a value corresponding to the BCS by multiplying it by a conversion coefficient for converting into the BCS.
  • the conversion coefficient is determined by determining both the BCS and the evaluation value Ev (the range in which each changes) for the same approximate curve Ac. be able to.
  • the growth status evaluation system 10 only normalizes the calculated evaluation value Ev using a predetermined method or converts it into a value corresponding to the BCS using a predetermined conversion coefficient. Therefore, evaluation of a large number of animals can be automated.
  • the growth status evaluation system 10 can also be used to express the growth status of the dairy cow 51 as a graded rank. good. For example, using the above numerical values, at each slice position Sp, the evaluation value Ev for which the BCS is 3.25 or more is ranked A with the highest fleshiness, and the evaluation value Ev for which the BCS is less than 3.25 and is 3.00 or more is ranked A. The evaluation value Ev that becomes the next most fleshy rank is B, and the evaluation value Ev that is 2.75 or more when the BCS is less than 3.00 is the next most fleshy rank C, and the BCS is less than 2.75 and is 2.50.
  • the evaluation value Ev that is above can be set as a rank D that is not very fleshy, and the evaluation value Ev that is less than 2.50 can be set as a rank E that is not very fleshy.
  • the growth status evaluation system 10 only allocates the evaluation value Ev calculated as described above to predetermined ranks, so that evaluation of a large number of animals can be automated. Note that the number of ranks described above, the numerical value of each evaluation value Ev applied to each rank, the evaluation comment of each rank, etc. may be set as appropriate, and are not limited to the above example.
  • the growth status evaluation system of the prior art uses a distance image sensor to obtain a group of three-dimensional coordinates of the animal. Since the distance image sensor has a limit in increasing the accuracy and resolution of the three-dimensional coordinate group to be obtained, it is difficult for the three-dimensional coordinate group to appropriately represent the outline of the actual animal. For this reason, in the conventional health condition estimating device, it is difficult to obtain an appropriate evaluation by BCS even if a three-dimensional coordinate group is used.
  • the breeding status is evaluated from the feature amount indicating the degree of concavity of the lumen, based on the three-dimensional shape of the animal reproduced from the animal's three-dimensional coordinate group.
  • animals such as cows and pigs
  • it is required to be able to judge the state of fleshiness (good or bad) as a growth condition, but even animals of the same type have different skeletal sizes.
  • conventional health condition estimating devices use feature quantities that simply indicate the degree of concavity of the lumen, regardless of differences in skeletal size, making it difficult to appropriately judge the state of fleshiness. This is because animals with large skeletons and animals with small skeletons may naturally have different fleshiness even if they have the same concavity (size).
  • conventional health state estimation devices reproduce the three-dimensional shape of the animal by appropriately connecting the three-dimensional coordinates of the animal, and based on that three-dimensional shape, characteristics that indicate the degree of concavity of the lumen are calculated.
  • the cultivation status is evaluated based on the quantity.
  • animals such as cows and pigs have different three-dimensional shapes depending on their skeletons, fleshiness, etc. even if they are of the same type.
  • it is necessary to determine the feature amount that indicates the degree of concavity of the lumen for various three-dimensional shapes.
  • the growth status evaluation system 10 uses a laser measuring device 13 to obtain a group of three-dimensional coordinates of an animal (dairy cow 51 in Example 1).
  • the laser measuring device 13 is capable of acquiring a three-dimensional coordinate group (point cloud data D1) with an accuracy level used for precise surveying, and has an extremely high resolution (in Example 1, the distance is 12.5 mm). ), the point cloud data D1 can represent the outline of the actual dairy cow 51 with extreme fidelity.
  • the laser measuring device 13 of the first embodiment can, for example, make the accuracy of the reachable distance of the pulsed laser beam an error of 3.5 mm or less, and make the accuracy of the scanning plane an error of 2.0 mm or less.
  • the laser measuring device 13 of the first embodiment can be set to a low output mode, but even in that case, the accuracy of the reachable distance of the pulsed laser beam must be kept within an error of 4.0 mm. , and others can have the above-mentioned accuracy.
  • the growth status evaluation system 10 can obtain a three-dimensional coordinate group with extremely high accuracy and can also achieve extremely high resolution. Therefore, the growth situation evaluation system 10 can appropriately obtain an evaluation of the growth situation by using the point cloud data D1 from the laser measuring device 13.
  • the external shape of the point cloud data D1 indicating the dairy cow 51 can represent the outline of the actual dairy cow 51 extremely faithfully. Approximation can be performed using a smooth curve, and an approximated curve Ac that appropriately represents the outline of the actual dairy cow 51 can be obtained. Therefore, in the growth status evaluation system 10, the outline of the dairy cow 51 can be represented by an approximate curve Ac, which is a standardized mathematical formula, and it is possible to obtain a uniform evaluation of the growth status. That is, the growth status evaluation system 10 can express the body shape of the dairy cow 51 using a mathematical formula by approximating the external shape based on the point cloud data D1 to obtain an approximate curve Ac, and can evaluate the growth status. Since it can be calculated by calculation, the evaluation can be made objective and appropriate.
  • the growth situation evaluation system 10 detects a reference point Pr from each specific part alignment data D6 generated based on each point cloud data D1, and arranges each specific part alignment data so that the reference point Pr has a uniform size.
  • Each normalized data D7 is generated by enlarging or reducing D6.
  • the growth situation evaluation system 10 also generates each cross-sectional data D8 from each of the normalized data D7, generates calculation data D9 from each cross-section data D8, and generates an approximate curve Ac adapted to the calculation data D9.
  • the evaluation value Ev is calculated from.
  • the growth status evaluation system 10 can express the state of fleshiness with respect to the skeleton as an approximate curve Ac, and calculates the evaluation value Ev from the approximate curve Ac, thereby greatly suppressing the influence of differences in the size of the skeleton. It is possible to obtain the evaluation value Ev, and to appropriately judge the appearance of fleshiness.
  • the growth status evaluation system 10 can calculate the evaluation value Ev based on the cross-sectional data D8 of the common slice position Sp determined based on the characteristic parts using bones etc., so that the growth status can be easily compared between animals. be able to appropriately evaluate
  • the growth condition evaluation system 10 draws convex, concave, convex, concave, convex parts as an overall tendency, and draws the convex part in the middle. The focus is on the curved line in which the spine 51d is located.
  • the growth situation evaluation system 10 applies a sixth-order Bezier curve in order to calculate a smooth approximate curve Ac that fits the calculation data D9 based on each point group data D1. For this reason, the growth situation evaluation system 10 sets the starting point Ps and the ending point Pe, which are both ends of the external shape indicated by the calculation data D9, as a fixed control point C, and also sets the starting point Ps and the ending point Pe as fixed control points C.
  • the growth situation evaluation system 10 calculates an approximate curve Ac adapted to the calculation data D9 by adjusting the positions of the five control points C, and calculates an evaluation value Ev from the approximate curve Ac. Therefore, the growth status evaluation system 10 can express the calculation data D9 by an approximate curve Ac using a sixth-order Bezier curve, even if the three-dimensional shape of each individual is different depending on the skeleton, fleshiness, etc.
  • the evaluation value Ev can be calculated from the approximate curve Ac. Thereby, the growth situation evaluation system 10 can standardize the calculation of the approximate curve Ac and the evaluation value Ev, and can easily automate the evaluation of a large number of animals.
  • the growth condition evaluation system 10 sets the thinned cross-sectional data D84' in the cutting plane direction so that the right end of the thinned cross-sectional data D84' is located at the origin in the cutting plane direction.
  • the calculation data D9 is generated by displacing it to the opposite side and copying it to the opposite side. For this reason, the growth condition evaluation system 10 calculates the calculation data D9 in which the plane orthogonal to the reference axis direction Db is the slice position Sp, in the same manner as in the case where the plane orthogonal to the width direction Dw is the slice position Sp. , it is possible to generate calculation data D9 that can be represented by an approximate curve Ac using a sixth-order Bezier curve.
  • the growth status evaluation system 10 can indicate individual differences in the outline of the dairy cow 51 by the position of each control point C on the approximate curve Ac. Therefore, the growth situation evaluation system 10 can generate evaluation values Ev based on changes in the position of each control point C, etc., making it possible to judge the growth situation with more uniformity.
  • the growth situation evaluation system 10 Since the growth situation evaluation system 10 generates the evaluation value Ev using the approximate curve Ac obtained from the point cloud data D1 acquired by the laser measuring device 13, the evaluation value Ev can be notified as an evaluation of the growth situation. For this reason, the growth status evaluation system 10 can prevent individual differences and fluctuations in judgment by those seeking the growth from being reflected in the evaluation of the growth status, and can also eliminate differences due to differences in location, facility, time, etc. can. Thereby, the growth status evaluation system 10 can generate the evaluation value Ev based on a unified standard, and can evaluate the dairy cow 51 (animal) as a quantitative value.
  • the growth condition evaluation system 10 acquires point cloud data D1 of the drinking fountain 52 using both laser measuring devices 13, and calculates an evaluation value based on the point cloud data D1 of the drinking fountain 52. Ev can be generated. Therefore, the growth status evaluation system 10 can obtain the evaluation value Ev without touching the dairy cow 51 while taking advantage of the fact that the dairy cow 51 comes to the drinking fountain 52 of its own will. Therefore, in order to generate the evaluation value Ev, the growth status evaluation system 10 makes it possible to appropriately judge the growth status of the dairy cow 51 without causing stress such as touching it or leading it to a place against its will. do.
  • the growth status evaluation system 10 automatically obtains the evaluation value Ev using the natural behavior of the dairy cow 51, it can eliminate time restrictions and can be managed all day long (24 hours). Furthermore, since the growth condition evaluation system 10 does not acquire the point cloud data D1 using both laser measuring devices 13 when the dairy cow 51 is not present at the drinking fountain 52, it is possible to prevent the acquisition and accumulation of unnecessary data. and can be operated efficiently. In addition, since the growth status evaluation system 10 is provided with laser measuring devices 13 arranged in pairs across the data acquisition area 14, the evaluation value can be obtained regardless of the animal's position, posture, facing direction, etc. The possibility of acquiring the point cloud data D1 necessary for generating Ev can be greatly increased.
  • the growth situation evaluation system 10 of Example 1 of the growth situation evaluation system according to the present disclosure can obtain the following effects.
  • the growth status evaluation system 10 is a laser measuring device that receives reflected light from an animal (dairy cow 51) of an emitted laser beam (pulsed laser beam) to obtain point cloud data D1 indicating the external shape of the animal in three-dimensional coordinates. 13.
  • the growth situation evaluation system 10 also includes a reference point detection unit 67 that detects the reference point Pr in the point cloud data D1, and a standard point detection unit 67 that adjusts the size of the point cloud data D1 so that the reference point Pr has a uniform size.
  • a normalization unit 69 that generates normalized data D7 is provided.
  • the growth condition evaluation system 10 includes an approximate curve calculation unit 74 that calculates an approximate curve Ac that fits the normalized data D7, and an evaluation value Ev that indicates the evaluation of the animal (dairy cow 51) based on the approximate curve Ac. and an evaluation value calculation unit 75. For this reason, the growth status evaluation system 10 can represent the state of fleshiness with respect to the skeleton as an approximate curve Ac, and calculates the evaluation value Ev from the approximate curve Ac, thereby significantly suppressing the influence of differences in the size of the skeleton. This allows you to appropriately judge the appearance of flesh.
  • the growth condition evaluation system 10 also generates alignment data (specific part alignment data D6) by aligning the orientation of the point cloud data D1 so that the reference point Pr faces in a predetermined direction with respect to the set reference axis direction Db.
  • a normalizing unit 69 adjusts the size of the aligned data so that the reference portion Pr has a uniform size, and generates normalized data D7. For this reason, the growth condition evaluation system 10 makes the reference point Pr a uniform size for the aligned data that is arranged using the reference point Pr as a reference, so that the normalized data D7 can be generated easily and appropriately. can.
  • the growth condition evaluation system 10 performs specific region cutting to generate specific region data D5 in which the vicinity of the head 51b and the tail 51c of the animal (dairy cow 51) are removed from the point cloud data D1 acquired by the laser measuring device 13.
  • a reference point detection section 67 detects a reference point Pr from the specific part data D5. For this reason, the growth situation evaluation system 10 detects the reference point Pr from the specific part data D5, which is extracted from the point cloud data D1, only the points necessary for the evaluation of the growth situation. The number of man-hours required for data processing can be reduced, and the reference point Pr can be detected more appropriately and in a shorter time.
  • the growth situation evaluation system 10 includes a specific part alignment unit 66 that aligns the specific part data D5 so that the spine 51d in the specific part data D5 matches the reference axis direction Db, and a reference part detection unit 67 that The reference location Pr is detected from the specific location data D5 arranged by the specific location alignment section 66. For this reason, the growth situation evaluation system 10 detects the reference point Pr for the specific part data D5 aligned so that the spine 51d coincides with the reference axis direction Db, so the data processing required to detect the reference point Pr is performed. The number of man-hours can be further reduced, and the reference point Pr can be detected more appropriately and in a shorter time.
  • the approximate curve calculation unit 74 fits a single Bezier curve having a plurality of control points C to the contour of a cut surface obtained by cutting the normalized data D7 along a predetermined slice position Sp. Then, the approximate curve Ac is calculated, and the evaluation value calculation unit 75 calculates the evaluation value Ev using the positional relationship of the control point C on the approximate curve Ac. Therefore, the growth condition evaluation system 10 can calculate the evaluation value Ev using only the positional relationship of the control point C in the approximate curve Ac, which is a single Bezier curve, so the calculation of the evaluation value Ev is simplified. can.
  • the evaluation value calculation unit 75 calculates the evaluation value Ev using the ratio of the intervals between the control points C in the approximate curve Ac. Therefore, the growth situation evaluation system 10 can calculate the evaluation value Ev by simply finding the interval between each control point C on the approximate curve Ac, and can further simplify the calculation of the evaluation value Ev.
  • the growth situation evaluation system 10 as an example of the growth situation evaluation system according to the present disclosure, it is possible to appropriately obtain an evaluation of the growth situation of the animal (dairy cow 51).
  • Example 1 Although the growth status evaluation system of the present disclosure has been described above based on Example 1, the specific configuration is not limited to Example 1, and the gist of the invention according to each claim is described below. Changes and additions to the design are permitted as long as they do not deviate.
  • the drinking fountain 52 is set as the data acquisition area 14.
  • the data acquisition area 14 may be set as appropriate and is not limited to the configuration of the first embodiment.
  • the data acquisition area 14 is set as a place, such as a feeding area, that animals regularly visit on their own will, similar to the drinking fountain 52, so that the breeding situation can be monitored without causing stress for the animals. Appropriate evaluation can be obtained.
  • the data acquisition area 14 is set in a place where the animals can stop of their own accord for the time necessary to complete scanning by each laser measurement device 13, thereby further reducing stress on the animals and monitoring the breeding status. can be evaluated appropriately.
  • the above-mentioned required time depends on the scanning speed of each laser measuring device 13, and can be shortened by increasing the number of pulsed laser beams emitted at once, and the time required for stopping is, for example, Even if the length is shortened, the point cloud data D1 can be appropriately acquired.
  • Example 1 an evaluation value Ev indicating the evaluation of the breeding status of the dairy cow 51 is generated as an example of the animal.
  • the object for which the evaluation value Ev is generated target for evaluating the breeding situation
  • Example 1 the approximate curve Ac and the evaluation value Ev are calculated from the calculation data D9 corresponding to a single slice position Sp. However, for each animal (dairy cow 51), the approximate curve Ac and the evaluation value Ev are calculated from the calculation data D9 corresponding to a plurality of slice positions Sp, and the average value of the evaluation values Ev for each approximate curve Ac is calculated. It may be calculated.
  • the growth status evaluation system 10 weights each evaluation value Ev appropriately, since the degree to which the growth status of the dairy cow 51 is reflected may change depending on the difference in the slice position Sp, and then calculates the average value. It may also be something to seek.
  • the growth condition evaluation system 10 can obtain the average value of the evaluation value Ev indicating the fleshiness at a plurality of slice positions Sp, and even if the fleshiness is uneven depending on the location, the growth condition evaluation system 10 can obtain the average value of the evaluation value Ev indicating the fleshiness at a plurality of slice positions Sp. You can get evaluation.
  • the growth condition evaluation system 10 changes the numerical range of the evaluation value Ev depending on the slice position Sp.
  • Each slice position Sp may be standardized by the maximum value of a plurality of evaluation values Ev, and the average value of the normalized evaluation values Ev of the plurality of different slice positions Sp may be calculated for each animal (dairy cow 51).
  • the average value may be calculated after converting into a value corresponding to the BCS.
  • the approximate curve calculation unit 74 calculates the approximate curve Ac using a sixth-order Bezier curve. However, if the approximate curve calculation unit 74 uses a single Bezier curve to calculate an approximate curve that matches the calculation data D9 based on the point cloud data D1, the order (number of control points C) of the approximate curve may be set appropriately, and is not limited to the configuration of the first embodiment.
  • the reference point detection section 67 detects the reference point Pr in the point cloud data D1, and the normalization section 69 adjusts the size of the point cloud data D1 so that the reference point Pr has a uniform size.
  • Normalized data D7 is generated, and an approximate curve Ac and an evaluation value Ev are calculated from calculation data D9 based on the normalized data D7.
  • the evaluation value Ev is calculated using the ratio of the interval between the control points C in the approximate curve Ac, the point group data D1 whose size is not adjusted so that the reference point Pr has a uniform size
  • the approximate curve Ac and the evaluation value Ev may be calculated from the calculation data D9 based on the calculation data D9, and the configuration is not limited to the first embodiment.
  • the animal detection unit 61 functions as an animal detection mechanism that detects the presence of an animal in the data acquisition area 14 based on the image from the camera 12.
  • the animal detection mechanism is not limited to the configuration of the first embodiment as long as it detects the presence of an animal in the data acquisition area 14.
  • the camera 12 instead of the camera 12, it is possible to use something that uses infrared rays, such as an infrared scanner or an infrared thermograph. In this case, animals can be detected more reliably even in dark conditions.
  • a pressure sensor may be provided at the faucet of the drinking fountain 52
  • a device for detecting weight may be provided at the data acquisition area 14, or a sensor may be provided at the entrance/exit of the data acquisition area 14. can.
  • the laser measuring devices 13 are provided in pairs with the data acquisition area 14 in between.
  • the laser measuring device 13 may be provided as a single device or three or more as long as it obtains the point cloud data D1 of the animal existing in the data acquisition area 14, and is limited to the configuration of the first embodiment. Not done.
  • animals such as cows and pigs have different three-dimensional shapes depending on their skeletons, fleshiness, etc., even if they are the same type of animal. Then, with conventional health condition estimation devices, it is necessary to find the feature quantity that indicates the degree of concavity of the lumen for various three-dimensional shapes. etc., and it is difficult to automate the evaluation of a large number of animals. (Problem to be solved by the invention)
  • the present disclosure has been made in view of the above circumstances, and aims to provide a growth condition evaluation system that can automate and appropriately obtain evaluations of animal growth conditions. (Problem to be solved by the invention)
  • the growth condition evaluation system of the present disclosure uses a laser beam that receives reflected light from the animal of the emitted laser beam to obtain point cloud data indicating the external shape of the animal in three-dimensional coordinates.
  • a measuring device an approximate curve calculation unit that calculates an approximate curve by fitting a single sixth-order Bezier curve having seven control points to the point group data;
  • An evaluation value calculation unit that calculates an evaluation value indicating .
  • a laser measuring device that obtains point cloud data indicating the external shape of the animal in three-dimensional coordinates by receiving reflected light from the animal of the emitted laser beam; an approximate curve calculation unit that calculates an approximate curve by fitting a single sixth-order Bezier curve having seven control points to the point cloud data;
  • a growth situation evaluation system comprising: an evaluation value calculation unit that calculates an evaluation value indicating evaluation of the animal based on the approximate curve.
  • a cutting plane extraction unit that generates cross-sectional data that is a cross-section obtained by cutting the point cloud data acquired by the laser measuring device along a predetermined slice position; In the cross-sectional data, compare the number of point clouds located on both sides from the center position in the direction of the cutting plane, select the side with the largest number of point clouds, and copy the data on the selected side to the opposite side to obtain calculation data.
  • a calculation data generation unit that generates; The growth situation evaluation system according to [1], wherein the approximate curve calculation unit calculates the approximate curve by adapting it to the calculation data based on the point group data.
  • the seven control points are, in order from one end, a first control point, a second control point, a third control point, a fourth control point, a fifth control point, a sixth control point, and a seventh control point,
  • the interval between the second control point and the third control point is a first interval
  • the interval between the third control point and the fourth control point is a second interval
  • the interval between the second control point and the fourth control point is a second interval.
  • the interval between the points is a third interval
  • the interval between the sixth control point and the fifth control point is a fourth interval
  • the interval between the fifth control point and the fourth control point is a fifth interval
  • the interval between the sixth control point and the fourth control point is a sixth interval
  • the evaluation value calculation unit calculates the evaluation value by dividing the third interval by the sum of the first interval and the second interval, or divides the sixth interval by the sum of the fourth interval and the second interval.
  • the cutting plane extraction unit generates a plurality of cross-sectional data that are cross-sections obtained by cutting the point cloud data acquired by the laser measuring device along a plurality of mutually different slice positions
  • the calculation data generation unit generates the calculation data for each of the plurality of cross-sectional data
  • the approximate curve calculation unit calculates the approximate curve for each of the plurality of calculation data
  • the growth situation evaluation system according to [5], wherein the evaluation value calculation unit calculates an average value of the evaluation values for each of the approximate curves.
  • the evaluation value calculation unit calculates the evaluation values of the approximate curves for the plurality of animals for each of the plurality of different slice positions, and normalizes the evaluation values by the maximum value of the plurality of evaluation values for each of the plurality of different slice positions. , the growth status evaluation system according to [6], characterized in that the average value of the normalized evaluation values of the plurality of slice positions different for each animal is calculated.
  • the growth status evaluation system 10 is a laser measuring device that receives reflected light from an animal (dairy cow 51) of an emitted laser beam (pulsed laser beam) to obtain point cloud data D1 indicating the external shape of the animal in three-dimensional coordinates. 13.
  • the growth condition evaluation system 10 also includes an approximate curve calculation unit 74 that calculates an approximate curve Ac by adapting a single sixth-order Bezier curve having seven control points C to the point cloud data D1; and an evaluation value calculation unit 75 that calculates an evaluation value Ev indicating the evaluation of the animal (dairy cow 51) based on the evaluation value Ev of the animal (dairy cow 51).
  • the growth condition evaluation system 10 can generate an approximate curve adapted to the point cloud data D1 by adjusting the positions of the seven control points C. Ac can be calculated. Thereby, the growth status evaluation system 10 can standardize the calculation of the approximate curve Ac and the evaluation value Ev, and can easily automate the evaluation of the growth status of a large number of animals (dairy cows 51).
  • the growth condition evaluation system 10 also includes a cutting plane extraction unit 71 that generates cross-sectional data D8, which is a cross-section obtained by cutting the point cloud data D1 acquired by the laser measuring instrument 13 along a predetermined slice position Sp; , compare the number of point clouds located on both sides from the center position (center line Lc) in the cutting plane direction, select the side with the largest number of point clouds, and copy the data on the selected side to the opposite side. and a calculation data generation unit 72 that generates calculation data D9. Then, in the growth situation evaluation system 10, the approximate curve calculation unit 74 calculates the approximate curve Ac by adapting it to the calculation data D9 based on the point cloud data D1.
  • the growth situation evaluation system 10 can generate calculation data D9 in which the number of missing data points in the width direction Dw is reduced while suppressing an increase in the amount of data.
  • the growth situation evaluation system 10 substantially adjusts the positions of the three control points C so that the starting point Ps (the first control point C1 ) to the end point Pe (seventh control point C7), the approximate curve Ac can be calculated, and the approximate curve Ac and the evaluation value Ev can be more easily calculated.
  • the evaluation value calculation unit 75 calculates the evaluation value Ev using the positional relationship of the control point C on the approximate curve Ac. Therefore, the growth condition evaluation system 10 can calculate the evaluation value Ev using only the positional relationship of the control point C in the approximate curve Ac, which is a single Bezier curve, so the calculation of the evaluation value Ev is simplified. can.
  • the evaluation value calculation unit 75 calculates the evaluation value Ev using the ratio of the intervals between the control points C in the approximate curve Ac. Therefore, the growth situation evaluation system 10 can calculate the evaluation value Ev by simply finding the interval between each control point C on the approximate curve Ac, and can further simplify the calculation of the evaluation value Ev.
  • the growth situation evaluation system 10 sets the seven control points C as, in order from one end, a first control point C1, a second control point C2, a third control point C3, a fourth control point C4, and a fifth control point C5. , a sixth control point C6, and a seventh control point C7.
  • the growth condition evaluation system 10 sets the interval between the second control point C2 and the third control point C3 as a first interval a, and the interval between the third control point C3 and the fourth control point C4 as a second interval b.
  • the interval between the second control point C2 and the fourth control point C4 is the third interval c
  • the interval between the sixth control point C6 and the fifth control point C5 is the fourth interval d
  • the interval between the fifth control point C5 and the fifth control point C5 is the third interval c.
  • the interval between the fourth control point C4 be a fifth interval e
  • the interval between the sixth control point C6 and the fourth control point C4 be a sixth interval f.
  • the evaluation value calculation unit 75 calculates the evaluation value Ev by dividing the third interval c by the sum of the first interval a and the second interval b, or calculates the evaluation value Ev by dividing the third interval c by the sum of the first interval a and the second interval b.
  • the evaluation value Ev is calculated by dividing f by the sum of the fourth interval d and the fifth interval e. Therefore, the growth situation evaluation system 10 can more easily calculate the evaluation value Ev.
  • the growth situation evaluation system 10 as an example of the growth situation evaluation system according to the present disclosure, it is possible to automate and appropriately obtain evaluation of the growth situation of the animal (dairy cow 51).

Abstract

Provided is a growing condition evaluation system capable of suitably evaluating a development condition of an animal. This growing condition evaluation system 10 comprises: a laser measurement apparatus 13 for receiving laser light that has been emitted toward and reflected from an animal (cow 51), thereby acquiring point group data D1 indicating the appearance of the animal (cow 51) in three-dimensional coordinates; a reference location detection unit 67 for detecting a reference location Pr in the point group data D1; a normalization unit 69 for adjusting the size of the point group data D1 such that the reference location Pr has a uniform size, and generating normalized data D7; an approximation curve calculation unit 74 for calculating an approximation curve Ac that is suitable for the normalized data D7; and an evaluation value calculation unit 75 for calculating, on the basis of the approximation curve Ac, an evaluation value Ev indicating an evaluation of the animal (cow 51).

Description

生育状況評価システムGrowth status evaluation system
 本開示は、生育状況評価システムに関する。 The present disclosure relates to a growth status evaluation system.
 従来から、牛や豚等の動物の生育状況の判断のために、BCS(ボディーコンディションスコア)等を用いることが知られている。 It has been known to use BCS (body condition score) and the like to judge the growth status of animals such as cows and pigs.
 そのBCSは、動物に触れることなく自動で求めることのできる健康状態推定装置が考えられている(例えば、特許文献1参照)。その健康状態推定装置は、距離画像センサを用いることで動物の三次元形状を示す三次元座標群を取得し、その三次元座標群に基づいて動物の体躯の幅を示す特徴値や、動物の背骨の位置を示す特徴値を求めて、それらに基づいてBCSを算出する。このため、従来の健康状態推定装置は、動物への負担を軽減しつつ、バラツキの抑制されたBCSによる評価を得ることができる。 As for the BCS, a health condition estimation device is being considered that can automatically determine the BCS without touching the animal (see, for example, Patent Document 1). The health state estimation device uses a distance image sensor to acquire a group of three-dimensional coordinates that indicate the three-dimensional shape of the animal, and based on the group of three-dimensional coordinates, it calculates feature values that indicate the width of the animal's body and the animal's Feature values indicating the position of the spine are obtained, and the BCS is calculated based on them. Therefore, the conventional health state estimation device can obtain an evaluation based on the BCS with suppressed variations while reducing the burden on the animal.
特許6777948号公報Patent No. 6777948
 ところで、従来の健康状態推定装置では、動物の三次元座標群から再現した動物の三次元形状に基づいて、ルーメンの凹み具合を示す特徴量から育成状況の評価を得ている。 By the way, in the conventional health condition estimation device, the evaluation of the breeding status is obtained from the feature amount indicating the degree of concavity of the lumen, based on the three-dimensional shape of the animal reproduced from the three-dimensional coordinate group of the animal.
 ここで、牛や豚等の動物では、生育状況として、肉付きの様子(良し悪し)を判断できることが求められる。ところが、動物では、同じ種類の動物であっても、骨格の大きさが異なることから、従来の健康状態推定装置のように単にルーメンの凹み具合を示す特徴量を用いても、肉付きの様子を適切に判断することが困難である。 Here, for animals such as cows and pigs, it is required to be able to judge the state of meat (good or bad) as a growth condition. However, since animals of the same species have different skeletal sizes, it is not possible to determine the state of fleshiness even if the feature quantity that simply indicates the degree of concavity of the lumen is used in conventional health condition estimation devices. It is difficult to make appropriate judgments.
 本開示は、上記の事情に鑑みて為されたもので、動物の育成状況の評価を適切に得ることのできる生育状況評価システムを提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and aims to provide a growth status evaluation system that can appropriately evaluate the growth status of animals.
 上記した課題を解決するために、本開示の生育状況評価システムは、出射したレーザ光の動物からの反射光を受光することで前記動物の外形を三次元座標で示す点群データを取得するレーザ測定器と、前記点群データにおける基準箇所を検出する基準箇所検出部と、前記基準箇所が均一の大きさとなるように前記点群データの大きさを調整して正規化データを生成する正規化部と、前記正規化データに適合する近似曲線を算出する近似曲線算出部と、前記近似曲線に基づいて、前記動物の評価を示す評価値を算出する評価値算出部と、を備えることを特徴とする。 In order to solve the above-mentioned problems, the growth condition evaluation system of the present disclosure uses a laser beam that receives reflected light from the animal of the emitted laser beam to obtain point cloud data indicating the external shape of the animal in three-dimensional coordinates. a measuring device, a reference point detection unit that detects a reference point in the point cloud data, and a normalization unit that adjusts the size of the point cloud data so that the reference point has a uniform size to generate normalized data. an approximate curve calculation unit that calculates an approximate curve that matches the normalized data, and an evaluation value calculation unit that calculates an evaluation value indicating the evaluation of the animal based on the approximate curve. shall be.
 本開示の生育状況評価システムによれば、動物の育成状況の評価を適切に得ることができる。 According to the growth status evaluation system of the present disclosure, it is possible to appropriately obtain an evaluation of the growth status of an animal.
本開示に係る生育状況評価システムの一例としての実施例1の生育状況評価システムの全体構成を示す説明図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing the overall configuration of a growth situation evaluation system of Example 1 as an example of a growth situation evaluation system according to the present disclosure. 生育状況評価システムにおける制御系の構成を示すブロック図である。It is a block diagram showing composition of a control system in a growth situation evaluation system. 生育状況評価システムにおける撮像装置が取り付けられている様子を示す説明図である。FIG. 2 is an explanatory diagram showing how an imaging device is attached to the growth status evaluation system. 撮像装置により乳牛が撮像された画像を示す説明図である。FIG. 2 is an explanatory diagram showing an image of a dairy cow taken by an imaging device. 生育状況評価システムにおけるレーザ測定器を示す説明図である。It is an explanatory view showing a laser measuring instrument in a growth situation evaluation system. レーザ測定器における制御系の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a control system in a laser measuring instrument. 一方のレーザ測定器(第1)により取得された点群データを示す説明図である。It is an explanatory view showing point group data acquired by one laser measuring instrument (the 1st). 他方のレーザ測定器(第2)により取得された点群データを示す説明図である。FIG. 7 is an explanatory diagram showing point cloud data acquired by the other laser measuring device (second). 両点群データを合成した合成点群データを示す説明図である。FIG. 3 is an explanatory diagram showing composite point cloud data obtained by combining both point cloud data. 仮動物点群データを示す説明図である。It is an explanatory view showing virtual animal point cloud data. 動物点群データを示す説明図である。It is an explanatory view showing animal point group data. 動物点群データの他の例を示す説明図である。It is an explanatory view showing other examples of animal point group data. 図12の動物点群データに対応した特定部位データを示す説明図である。13 is an explanatory diagram showing specific part data corresponding to the animal point cloud data of FIG. 12. FIG. 特定部位データにおける背骨方向を基準軸方向に一致させる様子を示す説明図である。FIG. 3 is an explanatory diagram showing how the spine direction in specific part data is made to coincide with the reference axis direction. 特定部位データにおける基準箇所(一対のhook bone)を検出する様子を示す説明図である。FIG. 3 is an explanatory diagram showing how a reference point (a pair of hook bones) is detected in specific part data. 図15の特定部位データに対応した特定部位整列データを示す説明図である。16 is an explanatory diagram showing specific part alignment data corresponding to the specific part data of FIG. 15. FIG. 大きさの異なる特定部位整列データを示す説明図であり、左側の(a)が基準軸方向で尻尾側から見た様子を示し、右側の(b)が鉛直方向で上側から見た様子を示す。It is an explanatory diagram showing specific part alignment data of different sizes, where (a) on the left side shows the appearance seen from the tail side in the reference axis direction, and (b) on the right side shows the appearance seen from above in the vertical direction. . 正規化データ上に4つのスライス位置を設定した様子を示す説明図である。FIG. 3 is an explanatory diagram showing how four slice positions are set on normalized data. 断面データを示す説明図であり、図18の各スライス位置に対応するものを左から順に並べて示している。19 is an explanatory diagram showing cross-sectional data, in which data corresponding to each slice position in FIG. 18 are arranged in order from the left. FIG. 断面データから生成した間引き断面データと算出用データとを示す説明図であり、図19の左から2番目の断面データに対応させている。19 is an explanatory diagram showing thinned cross-sectional data and calculation data generated from cross-sectional data, and corresponds to the second cross-sectional data from the left in FIG. 19. FIG. 断面データから生成した間引き断面データと算出用データとを示す説明図であり、図19の右端の断面データに対応させている。20 is an explanatory diagram showing thinned-out cross-sectional data and calculation data generated from cross-sectional data, and corresponds to the cross-sectional data at the right end of FIG. 19. FIG. 算出用データを示す説明図であり、図19の断面データに対応させて左から順に並べて示している。20 is an explanatory diagram showing calculation data, and is shown arranged in order from the left in correspondence with the cross-sectional data of FIG. 19. FIG. 算出用データの近似曲線を求める様子を示す説明図である。FIG. 3 is an explanatory diagram showing how an approximate curve of calculation data is obtained. 様々な形状の算出用データと近似曲線との関係を示す説明図である。It is an explanatory view showing the relationship between calculation data of various shapes and approximate curves. 生育状況評価システムの制御機構で実行される育成状況評価処理(育成状況評価処理方法)を示すフローチャートである。It is a flowchart which shows the growth situation evaluation process (growth situation evaluation processing method) performed by the control mechanism of a growth situation evaluation system. 理論断面と、生育状況評価システムで求めた各値と、の関係を纏めて示す表である。This is a table summarizing the relationship between the theoretical cross section and each value obtained using the growth situation evaluation system. 図18に示す1つめのスライス位置におけるBCSの数値別の近似曲線を示す説明図である。FIG. 19 is an explanatory diagram showing approximate curves for each BCS value at the first slice position shown in FIG. 18; 図18に示す2つめのスライス位置におけるBCSの数値別の近似曲線を示す説明図である。FIG. 19 is an explanatory diagram showing approximate curves for each BCS value at the second slice position shown in FIG. 18; 図18に示す3つめのスライス位置におけるBCSの数値別の近似曲線を示す説明図である。FIG. 19 is an explanatory diagram showing approximate curves for each BCS value at the third slice position shown in FIG. 18; 図18に示す4つめのスライス位置におけるBCSの数値別の近似曲線を示す説明図である。FIG. 19 is an explanatory diagram showing approximate curves for each BCS value at the fourth slice position shown in FIG. 18;
 以下に、本開示に係る生育状況評価システムの一実施形態としての生育状況評価システム10の実施例1について図1から図30を参照しつつ説明する。なお、図1、図3では、牛舎50における水飲み場52(データ取得領域14)の周辺を模式的に示しており、必ずしも実際の牛舎50の様子と一致するものではない。 Example 1 of a growth situation evaluation system 10 as an embodiment of the growth situation evaluation system according to the present disclosure will be described below with reference to FIGS. 1 to 30. Note that FIGS. 1 and 3 schematically show the area around the drinking fountain 52 (data acquisition area 14) in the cowshed 50, and do not necessarily match the actual appearance of the cowshed 50.
 本開示に係る生育状況評価システム10は、動物の育成状況を自動で評価するものである。実施例1の生育状況評価システム10は、動物の一例としてホルスタイン種の牛(以下では乳牛51とする)の育成状況を評価する。この生育状況評価システム10は、図1から図3に示すように、牛舎50に設けられており、制御機構11とカメラ12と2つのレーザ測定器13とを備える。 The growth status evaluation system 10 according to the present disclosure automatically evaluates the growth status of animals. The growth status evaluation system 10 of Example 1 evaluates the growth status of a Holstein cow (hereinafter referred to as dairy cow 51) as an example of an animal. As shown in FIGS. 1 to 3, this growth status evaluation system 10 is installed in a cowshed 50 and includes a control mechanism 11, a camera 12, and two laser measuring instruments 13.
 牛舎50は、複数の乳牛51が飼われており、各乳牛51の移動が可能とされている。牛舎50では、乳牛51のための水飲み場52が設けられている。水飲み場52は、複数の乳牛51が入ることのできる空間(スペース)に水桶53が置かれて構成されている。水桶53は、長尺とされており、水飲み場52の片隅に配置されている。この水飲み場52では、乳牛51が自らの意思で定期的に訪れて、水桶53の前で立ち止まることとなる。このため、生育状況評価システム10では、水飲み場52をデータ取得領域14として設定している。 A plurality of dairy cows 51 are kept in the cowshed 50, and each dairy cow 51 can be moved. In the cowshed 50, a drinking fountain 52 for the dairy cows 51 is provided. The drinking fountain 52 is configured by placing a water pail 53 in a space in which a plurality of dairy cows 51 can enter. The water pail 53 is long and arranged at one corner of the drinking fountain 52. At this drinking fountain 52, the dairy cow 51 periodically visits the water trough 53 of its own will and stops in front of the water trough 53. For this reason, in the growth status evaluation system 10, the drinking fountain 52 is set as the data acquisition area 14.
 制御機構11は、図2に示すように、記憶部18または内蔵する内部メモリ11aに記憶したプログラムを例えばRAM(Random Access Memory)上に展開することにより、生育状況評価システム10の動作を統括的に制御する。実施例1では、内部メモリ11aは、RAM等で構成され、記憶部18は、ROM(Read Only Memory)やEEPROM(Electrically Erasable Programmable ROM)等で構成される。生育状況評価システム10では、上記した構成の他に、測定完了信号や測定者からの指示に応じて測定結果を印字するプリンタや、測定結果を外部メモリやサーバーに出力する出力部や、動作の状況等を報知する音声出力部が適宜設けられる。 As shown in FIG. 2, the control mechanism 11 comprehensively controls the operation of the growth condition evaluation system 10 by deploying a program stored in the storage unit 18 or built-in internal memory 11a on, for example, RAM (Random Access Memory). to control. In the first embodiment, the internal memory 11a is composed of a RAM or the like, and the storage section 18 is composed of a ROM (Read Only Memory), an EEPROM (Electrically Erasable Programmable ROM), or the like. In addition to the above-described configuration, the growth status evaluation system 10 includes a printer that prints measurement results in response to measurement completion signals and instructions from the measurer, an output unit that outputs measurement results to an external memory or server, and an operation controller. An audio output section for notifying the situation etc. is provided as appropriate.
 制御機構11は、カメラ12と2つのレーザ測定器13(図2では、一方を第1、他方を第2としている)とが接続されて適宜それらを制御するとともに、それらからの信号(データ)を受け取ることが可能とされている。この接続は、カメラ12および各レーザ測定器13との信号の遣り取りを可能とするものであれば、有線でもよく無線でもよい。この制御機構11は、牛舎50とは異なる位置に設けてもよく、牛舎50内に設けてもよい。制御機構11には、操作部15と表示部16と通信部17と記憶部18とが接続されている。 The control mechanism 11 is connected to a camera 12 and two laser measuring instruments 13 (in FIG. 2, one is designated as the first and the other as the second), and controls them as appropriate, and also receives signals (data) from them. It is possible to receive. This connection may be wired or wireless as long as it allows the exchange of signals with the camera 12 and each laser measuring device 13. This control mechanism 11 may be provided at a location different from the cowshed 50, or may be provided within the cowshed 50. An operation section 15 , a display section 16 , a communication section 17 , and a storage section 18 are connected to the control mechanism 11 .
 その操作部15は、生育状況の評価のための各種の設定や、カメラ12や各レーザ測定器13の動作や設定等を操作するものである。操作部15は、例えばキーボード、マウス等の入力装置で構成されていてもよく、表示部16の表示画面をタッチパネル式としてそこに表示されたソフトウェアキー等で構成されてもよい。 The operation unit 15 is used to operate various settings for evaluating the growth situation, operations and settings of the camera 12 and each laser measuring device 13, and the like. The operation unit 15 may be configured with an input device such as a keyboard and a mouse, or may be configured with software keys displayed on the display screen of the display unit 16 as a touch panel.
 表示部16は、カメラ12で取得した画像I(静止画でもよく動画でもよい(図4参照))、各レーザ測定器13で取得した点群データD1(図7、図8参照)、それらに基づく各種のデータ(図9から図22等参照)、動物(乳牛51)の評価を示す評価値Ev等を表示する。表示部16は、一例として液晶表示装置(LCDモニタ)で構成しており、操作部15とともに制御機構11に設けられている。なお、操作部15と表示部16とは、スマートフォンやタブレット等の携帯端末で構成してもよく、実施例1の構成に限定されない。 The display unit 16 displays the image I (which may be a still image or a moving image (see FIG. 4)) acquired by the camera 12, the point cloud data D1 (see FIGS. 7 and 8) acquired by each laser measuring device 13, and the like. Various data based on the information (see FIGS. 9 to 22, etc.), an evaluation value Ev indicating the evaluation of the animal (dairy cow 51), etc. are displayed. The display section 16 is configured by, for example, a liquid crystal display device (LCD monitor), and is provided in the control mechanism 11 together with the operation section 15. Note that the operation unit 15 and the display unit 16 may be configured by a mobile terminal such as a smartphone or a tablet, and are not limited to the configuration of the first embodiment.
 通信部17は、カメラ12や各レーザ測定器13(その通信部45)や外部機器との通信を行うもので、カメラ12や各レーザ測定器13の駆動や、カメラ12からの画像Iや各レーザ測定器13からの点群データD1の受信を可能とする。なお、制御機構11は、タブレット端末で構成することができ、その場合には操作部15や表示部16を制御機構11と一体的な構成とすることができる。 The communication unit 17 communicates with the camera 12, each laser measurement device 13 (its communication unit 45), and external equipment, and drives the camera 12 and each laser measurement device 13, and transmits the image I from the camera 12 and each other. The point cloud data D1 from the laser measuring device 13 can be received. Note that the control mechanism 11 can be configured as a tablet terminal, and in that case, the operation section 15 and the display section 16 can be configured integrally with the control mechanism 11.
 カメラ12は、データ取得領域14の全域を撮影可能とされており、実施例1では4Kカメラ(3840×2160画素の解像度を有する)を用いている。カメラ12は、図1、図3に示すように、データ取得領域14とされた水飲み場52の上方の設置板54に取り付けられており、乳牛51を邪魔することなく水飲み場52の撮影を可能としている。その設置板54は、カメラ12の設置のために牛舎50の支柱55に設けられている。カメラ12は、生育状況評価システム10が動作状態とされている間、水飲み場52を常時撮影しており、その撮影した画像I(そのデータ(図4参照))を制御機構11に出力する。 The camera 12 is capable of photographing the entire area of the data acquisition area 14, and in the first embodiment, a 4K camera (having a resolution of 3840×2160 pixels) is used. As shown in FIGS. 1 and 3, the camera 12 is attached to an installation plate 54 above the drinking fountain 52, which is the data acquisition area 14, and can photograph the drinking fountain 52 without disturbing the dairy cows 51. It is said that The installation plate 54 is provided on a support 55 of the cowshed 50 for installing the camera 12. The camera 12 constantly photographs the drinking fountain 52 while the growth condition evaluation system 10 is in the operating state, and outputs the photographed image I (its data (see FIG. 4)) to the control mechanism 11.
 2つのレーザ測定器13は、既知点に設置されて測定点へ向けてパルスレーザ光線を投射し、その測定点からのパルスレーザ光線の反射光(パルス反射光)を受光して、パルス毎に測距を行い、測距結果を平均化して高精度の距離測定を行う。そして、各レーザ測定器13は、設定された測定範囲内を走査(スキャン)して測定範囲全体に亘って満遍なく測定点を設定することにより、測定範囲の全域に存在する物体の表面形状を三次元座標で示す三次元位置データの集まり(以下では、点群データD1とする)を取得できる。これにより、各レーザ測定器13は、設定された測定範囲内に存在するものの表面形状を示す点群データD1を取得できる。 The two laser measuring instruments 13 are installed at known points, project a pulsed laser beam toward the measurement point, receive the reflected light (pulsed reflected light) of the pulsed laser beam from the measurement point, and measure the pulsed laser beam for each pulse. Performs distance measurement and averages the distance measurement results to perform highly accurate distance measurement. Then, each laser measuring device 13 scans within the set measurement range and sets measurement points evenly over the entire measurement range, thereby determining the surface shape of the object existing in the entire measurement range in three dimensions. A collection of three-dimensional position data (hereinafter referred to as point group data D1) indicated by original coordinates can be obtained. Thereby, each laser measuring device 13 can acquire point cloud data D1 indicating the surface shape of objects existing within the set measurement range.
 この2つのレーザ測定器13は、図1に示すように、データ取得領域14とされた水飲み場52を挟んで対を為す位置であって、乳牛51の移動の邪魔となることのない高さ位置に配置されている。両レーザ測定器13は、水飲み場52(データ取得領域14)にいる乳牛51の姿勢に拘らず、その乳牛51の胴体51aの少なくとも半身(左右のいずれか一方)の点群データD1を取得可能とするように、水飲み場52に対する位置関係が設定されている。この2つのレーザ測定器13は、設けられている位置が異なることを除くと、互いに等しい構成とされている。なお、レーザ測定器13は、所定の周波数で変調された光ビームを用いる位相差測定方式を採用してもよく、他の方式を採用してもよく、実施例1に限定されない。このレーザ測定器13は、図5、図6に示すように、台座31と本体部32と鉛直回転部33とを備える。 As shown in FIG. 1, these two laser measuring instruments 13 are located at paired positions across the drinking fountain 52, which is the data acquisition area 14, and at a height that does not interfere with the movement of the dairy cow 51. placed in position. Both laser measuring devices 13 are capable of acquiring point cloud data D1 of at least half of the torso 51a (either the left or right) of the dairy cow 51, regardless of the posture of the dairy cow 51 in the drinking fountain 52 (data acquisition area 14). The positional relationship with respect to the drinking fountain 52 is set as follows. These two laser measuring devices 13 have the same configuration except that they are provided at different positions. Note that the laser measuring device 13 may employ a phase difference measurement method using a light beam modulated at a predetermined frequency, or may employ other methods, and is not limited to the first embodiment. As shown in FIGS. 5 and 6, this laser measuring instrument 13 includes a pedestal 31, a main body part 32, and a vertical rotating part 33.
 台座31は、設置台34に取り付けられる箇所である。その設置台34は、レーザ測定器13の設置のために牛舎50の支柱55に取り付けられる。本体部32は、台座31に対して鉛直軸心を中心に回転可能に当該台座31に設けられる。本体部32は、全体にU字形状とされており、その間の部分に鉛直回転部33が設けられている。この本体部32には、測定器表示部35と測定器操作部36とが設けられる。測定器表示部35は、後述する測定器制御部43の制御下で、測定のための各種の操作アイコンや設定等を表示する箇所である。この測定器操作部36は、レーザ測定器13における各種機能の利用や設定のための操作が為される箇所であり、入力操作された情報を測定器制御部43へと出力する。実施例1の本体部32では、測定器表示部35に表示された各種の操作アイコンが測定器操作部36として機能するものとされている。なお、測定器表示部35と測定器操作部36とは、その上記した機能を生育状況評価システム10における操作部15と表示部16とに持たせることで、支柱55の設置台34上に設けられた状態のままでの遠隔の操作が可能となる。なお、レーザ測定器13は、後述するようにデータ取得領域14(そこにいる乳牛51等の動物)の走査(スキャン)を可能とするものであれば、設ける場所や設置方法は適宜設定すればよく、実施例1の構成に限定されない。 The pedestal 31 is a part that is attached to the installation base 34. The installation stand 34 is attached to a support 55 of the cowshed 50 for installing the laser measuring device 13. The main body portion 32 is provided on the pedestal 31 so as to be rotatable about a vertical axis relative to the pedestal 31 . The main body portion 32 has a U-shape as a whole, and a vertical rotation portion 33 is provided in the portion between the two. This main body portion 32 is provided with a measuring instrument display section 35 and a measuring instrument operating section 36. The measuring instrument display section 35 is a section that displays various operation icons, settings, etc. for measurement under the control of a measuring instrument control section 43, which will be described later. The measuring device operation section 36 is a place where operations for using and setting various functions in the laser measuring device 13 are performed, and outputs inputted information to the measuring device control section 43. In the main body 32 of the first embodiment, various operation icons displayed on the measuring instrument display section 35 function as a measuring instrument operating section 36. Note that the measuring instrument display section 35 and the measuring instrument operating section 36 can be installed on the installation base 34 of the support column 55 by providing the above-mentioned functions to the operating section 15 and display section 16 in the growth condition evaluation system 10. Remote operation is possible while the device is in the same state. As will be described later, the location and method of installing the laser measuring device 13 can be set as appropriate, as long as it is capable of scanning the data acquisition area 14 (animals such as the dairy cow 51 located there). However, the present invention is not limited to the configuration of the first embodiment.
 鉛直回転部33は、水平方向に伸びる回転軸を中心に回転可能に本体部32に設けられる。この鉛直回転部33には、測距光学部37が内蔵される。この測距光学部37は、測距光としてのパルスレーザ光線を投射するとともに測定点からの反射光(パルス反射光)を受光して測定点までの光波距離測定を行う。 The vertical rotation section 33 is provided in the main body section 32 so as to be rotatable about a rotation axis extending in the horizontal direction. This vertical rotation section 33 has a distance measuring optical section 37 built therein. The distance measuring optical section 37 projects a pulsed laser beam as distance measuring light and receives reflected light (pulsed reflected light) from a measurement point to measure the optical distance to the measurement point.
 その鉛直回転部33を水平軸心回りに回転可能とする本体部32には、水平回転駆動部38と水平角検出部39とが設けられる。その水平回転駆動部38は、台座31に対して本体部32を鉛直軸心回りにすなわち水平方向に回転させる。水平角検出部39は、その本体部32の台座31に対する水平回転角を検出することで、視準方向の水平角を検出(測角)する。これらは、例えば、水平回転駆動部38をモータで構成することができ、水平角検出部39をエンコーダで構成することができる。 A horizontal rotation drive section 38 and a horizontal angle detection section 39 are provided in the main body section 32 that allows the vertical rotation section 33 to rotate around the horizontal axis. The horizontal rotation drive section 38 rotates the main body section 32 relative to the pedestal 31 around the vertical axis, that is, in the horizontal direction. The horizontal angle detection section 39 detects (angle measurement) the horizontal angle of the collimation direction by detecting the horizontal rotation angle of the main body section 32 with respect to the pedestal 31. For example, the horizontal rotation drive section 38 can be configured with a motor, and the horizontal angle detection section 39 can be configured with an encoder.
 また、本体部32には、鉛直回転駆動部41と鉛直角検出部42とが設けられる。その鉛直回転駆動部41は、本体部32に対して鉛直回転部33を水平軸心回りにすなわち鉛直方向に回転させる。鉛直角検出部42は、その鉛直回転部33の本体部32に対する鉛直角を検出することで、視準方向の鉛直角を検出(測角)する。これらは、例えば、鉛直回転駆動部41をモータで構成することができ、鉛直角検出部42をエンコーダで構成することができる。 Further, the main body portion 32 is provided with a vertical rotation drive portion 41 and a vertical angle detection portion 42. The vertical rotation driving section 41 rotates the vertical rotation section 33 relative to the main body section 32 around the horizontal axis, that is, in the vertical direction. The vertical angle detection section 42 detects (angle measurement) the vertical angle of the collimation direction by detecting the vertical angle of the vertical rotation section 33 with respect to the main body section 32 . For example, the vertical rotation drive section 41 can be configured with a motor, and the vertical angle detection section 42 can be configured with an encoder.
 さらに、本体部32には、測定器制御部43が内蔵される。その測定器制御部43は、接続された記憶部44に格納されたプログラムにより、レーザ測定器13の動作を統括的に制御する。その記憶部44は、半導体メモリや各種の記憶媒体により構成され、測定に必要な計算プログラムや、送信する情報を生成して送信するデータ送信プログラム等のプログラムが格納されるとともに、設定データや点群データD1が適宜格納される。その情報やデータは、後述する通信部45と上記した通信部17(図2参照)とを介して制御機構11に適宜送信される。その測定器制御部43には、測定器表示部35、測定器操作部36、測距光学部37、水平回転駆動部38、水平角検出部39、鉛直回転駆動部41、鉛直角検出部42、記憶部44および通信部45が接続される。 Furthermore, a measuring instrument control section 43 is built into the main body section 32. The measuring instrument control section 43 controls the operation of the laser measuring instrument 13 in an integrated manner using a program stored in a connected storage section 44 . The storage unit 44 is composed of a semiconductor memory and various storage media, and stores programs such as a calculation program necessary for measurement and a data transmission program that generates and transmits information, as well as setting data and points. Group data D1 is stored as appropriate. The information and data are appropriately transmitted to the control mechanism 11 via the communication section 45 described later and the communication section 17 described above (see FIG. 2). The measuring instrument control section 43 includes a measuring instrument display section 35, a measuring instrument operating section 36, a distance measuring optical section 37, a horizontal rotation drive section 38, a horizontal angle detection section 39, a vertical rotation drive section 41, and a vertical angle detection section 42. , a storage section 44 and a communication section 45 are connected.
 通信部45は、通信部17を介してその制御機構11(図2参照)と測定器制御部43との通信を可能とし、測定器制御部43の制御下において記憶部44に格納された各情報を適宜送信する。この通信部45は、制御機構11(通信部17)とデータ等の遣り取りを可能とする。通信部45は、敷設したLANケーブルを介して通信部17と有線通信するものとしてもよく、通信部17と無線通信するものとしてもよい。 The communication unit 45 enables communication between the control mechanism 11 (see FIG. 2) and the measuring instrument control unit 43 via the communication unit 17, and allows communication between each unit stored in the storage unit 44 under the control of the measuring instrument control unit 43. Send information accordingly. This communication section 45 enables exchange of data and the like with the control mechanism 11 (communication section 17). The communication unit 45 may communicate with the communication unit 17 by wire via an installed LAN cable, or may communicate with the communication unit 17 wirelessly.
 その測定器制御部43には、測距光学部37、水平角検出部39および鉛直角検出部42からの測定のための出力値が入力される。測定器制御部43は、それらの出力値に基づき、本体部32内に設けられた基準光路を伝搬してきた基準光と測距光学部37を介して取得した反射光との到達時間差または位相差から測定点(反射点)までの距離を算出する。また、測定器制御部43は、その算出した距離測定時の高低角、水平角の測定(算出)を行う。そして、測定器制御部43は、それらの測定結果を記憶部44に格納するとともに、通信部45を介して、制御機構11(通信部17)に適宜送信する。 The measurement device control section 43 receives output values for measurement from the distance measuring optical section 37, the horizontal angle detection section 39, and the vertical angle detection section 42. Based on these output values, the measuring device control section 43 determines the arrival time difference or phase difference between the reference light propagating through the reference optical path provided in the main body section 32 and the reflected light acquired via the distance measuring optical section 37. Calculate the distance from to the measurement point (reflection point). Further, the measuring device control unit 43 measures (calculates) the elevation angle and horizontal angle during the calculated distance measurement. Then, the measuring instrument control unit 43 stores the measurement results in the storage unit 44 and transmits them to the control mechanism 11 (communication unit 17) via the communication unit 45 as appropriate.
 その測定器制御部43は、水平回転駆動部38および鉛直回転駆動部41の駆動を制御して本体部32および鉛直回転部33(図1参照)を適宜回転させることにより、当該鉛直回転部33を所定の方向に向けることができ、所定の範囲を走査することができる。実施例1の測定器制御部43は、データ取得領域14である水飲み場52を走査するものとしており、そこにいる乳牛51を含む水飲み場52の各位置を測定点とする。両レーザ測定器13は、水飲み場52との位置関係が予め解っているとともに一定な(変化することはない)ので、走査する範囲を水飲み場52の全域に適切に合わせることができる。実施例1の測定器制御部43は、水飲み場52を走査する際、その走査面上において12.5mmの間隔で測定点を設定する。その走査面は、水飲み場52内で適宜設定することができ、実施例1では乳牛51の胴体51aが位置することが想定される位置に設定している。 The measuring instrument control section 43 controls the driving of the horizontal rotation drive section 38 and the vertical rotation drive section 41 to appropriately rotate the main body section 32 and the vertical rotation section 33 (see FIG. 1). can be directed in a predetermined direction and can scan a predetermined range. The measuring instrument control unit 43 of the first embodiment scans the drinking fountain 52, which is the data acquisition area 14, and sets each position of the drinking fountain 52 including the dairy cow 51 there as a measurement point. Since the positional relationship between both laser measuring instruments 13 and the drinking fountain 52 is known in advance and is constant (does not change), the scanning range can be appropriately adjusted to cover the entire area of the drinking fountain 52. When scanning the drinking fountain 52, the measuring device control unit 43 of the first embodiment sets measurement points at intervals of 12.5 mm on the scanning surface. The scanning plane can be appropriately set within the drinking fountain 52, and in the first embodiment, it is set at a position where the body 51a of the dairy cow 51 is assumed to be located.
 測定器制御部43は、測距光学部37を制御して水飲み場52を走査しつつ設定した各測定点の測距(距離測定)を行う。このとき、測定器制御部43は、視準方向の高低角および水平角を測定(算出)することで、水飲み場52の各測定点の三次元座標位置を測定する。そして、測定器制御部43は、測定した水飲み場52の各測定点の三次元座標位置(座標データ)の集まりである点群データD1(一方の例を図7に示し、他方の例を図8に示す)を生成し、適宜通信部45、通信部17を介して制御機構11へと送信する。その点群データD1は、水飲み場52の表面形状を示すこととなり、水飲み場52に乳牛51が存在する場合にはその乳牛51の表面形状も含まれることとなる。 The measuring device control section 43 controls the distance measuring optical section 37 to scan the drinking fountain 52 and perform distance measurement (distance measurement) at each set measurement point. At this time, the measuring device control unit 43 measures the three-dimensional coordinate position of each measurement point of the drinking fountain 52 by measuring (calculating) the elevation angle and horizontal angle in the collimation direction. Then, the measuring device control unit 43 generates point cloud data D1, which is a collection of three-dimensional coordinate positions (coordinate data) of each measured point of the drinking fountain 52 (one example is shown in FIG. 7, the other example is shown in FIG. 8) is generated and transmitted to the control mechanism 11 via the communication unit 45 and the communication unit 17 as appropriate. The point group data D1 indicates the surface shape of the drinking fountain 52, and if a dairy cow 51 is present in the drinking fountain 52, the surface shape of the dairy cow 51 is also included.
 制御機構11は、乳牛51の生育状況の評価のために、図2に示すように、動物検出部61とデータ取得部62とデータ合成部63と動物抽出部64と特定部位切出部65と特定部位整列部66と基準箇所検出部67とデータ整列部68と正規化部69と切断面抽出部71と算出用データ生成部72と算出領域抽出部73と近似曲線算出部74と評価値算出部75とを備える。 The control mechanism 11 includes an animal detection section 61, a data acquisition section 62, a data synthesis section 63, an animal extraction section 64, and a specific part cutting section 65, as shown in FIG. Specific part alignment section 66, reference point detection section 67, data alignment section 68, normalization section 69, cut plane extraction section 71, calculation data generation section 72, calculation area extraction section 73, approximate curve calculation section 74, and evaluation value calculation 75.
 動物検出部61は、カメラ12が取得した画像Iから、データ取得領域14とされた水飲み場52に動物(実施例1では乳牛51(図4参照))が存在することを検出する。動物検出部61は、画像Iにおいて、コントラスト等に基づいて各種の形状を認識し、その認識した形状等に基づいて水飲み場52における水桶53等の設備と乳牛51との判別を行う。ここで、動物検出部61は、カメラ12が所定の位置に配置されていることから、水飲み場52における水桶53等の設備の画像が予め解っているので、それを利用することで乳牛51の判別が容易となるとともに、乳牛51が映し出された領域を示すデータの取得も容易にできる。動物検出部61は、画像Iに乳牛51が映し出されている場合には、水飲み場52に乳牛51を検出した旨の信号をデータ取得部62に出力する。このため、動物検出部61は、カメラ12と協働して、データ取得領域14に動物がいることを検出する動物検出機構として機能する。 The animal detection unit 61 detects from the image I acquired by the camera 12 that an animal (in Example 1, the dairy cow 51 (see FIG. 4)) is present at the drinking fountain 52, which is the data acquisition area 14. The animal detection unit 61 recognizes various shapes in the image I based on contrast and the like, and discriminates between equipment such as the water trough 53 in the drinking fountain 52 and the dairy cow 51 based on the recognized shapes and the like. Here, since the camera 12 is disposed at a predetermined position, the animal detection unit 61 knows in advance the image of the equipment such as the water trough 53 in the drinking fountain 52. Not only is it easy to distinguish, it is also easy to obtain data indicating the area in which the dairy cow 51 is displayed. When the dairy cow 51 is shown in the image I, the animal detection unit 61 outputs a signal indicating that the dairy cow 51 has been detected at the drinking fountain 52 to the data acquisition unit 62. Therefore, the animal detection unit 61 functions as an animal detection mechanism that detects the presence of an animal in the data acquisition area 14 in cooperation with the camera 12.
 加えて、実施例1の動物検出部61は、検出した動物(乳牛51)を個体別に識別し、その識別した情報を示す個体識別データD2を生成する。先ず、動物検出部61は、乳牛51が映し出された画像Iに基づいて、牛舎50で飼われている乳牛のうちのどの乳牛51が映し出されたものであるのかを特定する。例えば、動物検出部61は、画像Iの乳牛51が映し出された領域から、コントラスト等に基づいて乳牛51における白黒模様の形状や位置を認識し、その認識した白黒模様を予め登録してある各乳牛の白黒模様と比較することで、乳牛51を特定する。そして、動物検出部61は、その特定に従って、乳牛51を個体別に識別した個体識別データD2を生成し、その個体識別データD2をデータ取得部62に出力する。なお、動物検出部61は、画像Iに映し出された乳牛51、すなわちその時点で水飲み場52にいる乳牛51が、牛舎50で飼われている乳牛のうちのいずれであるのかを特定し、それに基づき乳牛51を個体別に識別した個体識別データD2を生成するものであれば、例えばタグを利用する等のように他の方法を用いてもよく、実施例1の構成に限定されない。 In addition, the animal detection unit 61 of Example 1 identifies the detected animals (dairy cows 51) individually, and generates individual identification data D2 indicating the identified information. First, the animal detection unit 61 identifies which dairy cow 51 among the dairy cows kept in the cow shed 50 is shown based on the image I showing the dairy cow 51 . For example, the animal detection unit 61 recognizes the shape and position of the black and white pattern on the dairy cow 51 based on the contrast etc. from the area where the dairy cow 51 in image I is shown, and the recognized black and white pattern is used in each of the pre-registered areas. The dairy cow 51 is identified by comparing it with the black and white pattern of the dairy cow. Then, the animal detection unit 61 generates individual identification data D2 that identifies each dairy cow 51 according to the identification, and outputs the individual identification data D2 to the data acquisition unit 62. The animal detection unit 61 identifies which of the dairy cows kept in the cowshed 50 the dairy cow 51 shown in the image I, that is, the dairy cow 51 currently in the drinking fountain 52 is, and Any other method may be used, such as using tags, as long as it generates individual identification data D2 that individually identifies each dairy cow 51 based on the method, and is not limited to the configuration of the first embodiment.
 データ取得部62は、動物検出部61から乳牛51を検出した信号を受け取ると、2つのレーザ測定器13をそれぞれ駆動させて水飲み場52(データ取得領域14)の走査を行わせる。各レーザ測定器13は、それぞれが水飲み場52の点群データD1(図7、図8参照)を取得し、その点群データD1に個体識別データD2を関連付けてデータ合成部63に出力する。ここで、上記のようにデータ取得部62が駆動される際には水飲み場52に乳牛51がいることから、点群データD1には個体識別データD2が示す乳牛51が含まれていることとなる。 When the data acquisition unit 62 receives a signal indicating that the dairy cow 51 has been detected from the animal detection unit 61, the data acquisition unit 62 drives each of the two laser measurement devices 13 to scan the drinking fountain 52 (data acquisition area 14). Each laser measuring device 13 acquires point cloud data D1 (see FIGS. 7 and 8) of the drinking fountain 52, associates individual identification data D2 with the point cloud data D1, and outputs the data to the data synthesis section 63. Here, since there is a dairy cow 51 at the drinking fountain 52 when the data acquisition unit 62 is driven as described above, it is assumed that the point cloud data D1 includes the dairy cow 51 indicated by the individual identification data D2. Become.
 データ合成部63は、2つのレーザ測定器13が取得した点群データD1を合成して、合成点群データD3(図9参照)を生成する。ここで、2つのレーザ測定器13は、上記のように水飲み場52を挟んで対を為す位置に設けられているので、同じ水飲み場52を互いに異なる方向から測定していることとなる。このため、それぞれの点群データD1を合成(所謂点群合成)することで、水飲み場52の異なる面(例えば、そこにいる乳牛51に対して、一方が右側面、他方が左側面等)の表面形状を含む三次元位置データの集まりとすることができる。データ合成部63は、点群が重なり合う(オーバーラップする)部分を繋げること(所謂点群マッチング)や、目印となるターゲットを使用すること(所謂タイポイント法)やその他の公知の技術を用いて、点群データD1を合成して合成点群データD3を生成する。ここで、生育状況評価システム10では、データ取得領域14として水飲み場52を設定しているとともに、その水飲み場52に対するレーザ測定器13の位置関係が予め解っている。このため、それぞれのレーザ測定器13が取得した2つの点群データD1における点群が重なり合う部分の判別が容易であるので、データ合成部63は、合成点群データD3を適切に生成できる。データ合成部63は、生成した合成点群データD3に個体識別データD2を関連付けて動物抽出部64に出力する。 The data synthesis unit 63 synthesizes the point cloud data D1 acquired by the two laser measuring instruments 13 to generate combined point cloud data D3 (see FIG. 9). Here, since the two laser measurement devices 13 are provided at paired positions with the drinking fountain 52 in between as described above, they measure the same drinking fountain 52 from different directions. Therefore, by combining the respective point cloud data D1 (so-called point cloud composition), different sides of the drinking fountain 52 (for example, one is the right side and the other is the left side of the dairy cow 51 there). It can be a collection of three-dimensional position data including the surface shape of. The data synthesis unit 63 connects overlapping parts of point clouds (so-called point cloud matching), uses targets as landmarks (so-called tie point method), and uses other known techniques. , the point group data D1 are combined to generate combined point group data D3. Here, in the growth condition evaluation system 10, the drinking fountain 52 is set as the data acquisition area 14, and the positional relationship of the laser measuring device 13 with respect to the drinking fountain 52 is known in advance. For this reason, it is easy to determine the portion where the point clouds in the two point cloud data D1 acquired by the respective laser measuring devices 13 overlap, so that the data synthesis unit 63 can appropriately generate the composite point cloud data D3. The data synthesis unit 63 associates the generated composite point group data D3 with the individual identification data D2 and outputs the data to the animal extraction unit 64.
 動物抽出部64は、データ合成部63が生成した合成点群データD3の中から、乳牛51に相当する三次元座標位置(座標データ)のみを抽出することで、乳牛51の表面形状を示す動物点群データD4(図11、図12参照)を生成する。ここで、生育状況評価システム10では、データ取得領域14として水飲み場52を設定しているとともに、その水飲み場52に対するレーザ測定器13の位置関係が予め解っているので、各レーザ測定器13が取得する水飲み場52の点群データも予め解っている。このため、動物抽出部64は、合成点群データD3と、乳牛51がいない状態の水飲み場52を示す点群データと、の差分を取ることで、仮動物点群データD4´(図10参照)を生成する。この仮動物点群データD4´は、両レーザ測定器13が上記のように配置されているので、水飲み場52にいる乳牛51の姿勢に拘らず、その胴体51aの少なくとも半身が必ず含まれている。ところが、仮動物点群データD4´は、乳牛51以外の物、例えば、乳牛51が水桶53の水を飲んでいる最中である場合の水桶53やその中の水等の一部のように、乳牛51に極めて近接している物が含まれている場合がある。一例として図10に仮動物点群データD4´では、乳牛51を示す点群Aと、水桶53の一部を示す点群Bと、を含んでいる。このため、動物抽出部64は、仮動物点群データD4´に対してクラスタリング処理を行って動物点群データD4を生成する。このクラスタリング処理は、傾向や位置や特徴等が似たもの同士をグループ化するもので、乳牛51と他の物とを別のクループとすることができ、図10の例では乳牛51を示す点群Aと、水桶53の一部を示す点群Bと、の2つのグループを生成する。実施例1の動物抽出部64は、仮動物点群データD4´をクラスタリング処理により近い点群データの塊を複数のグループに分け、その中の最も大きな塊(図10の例では点群A)を乳牛51であるとして抽出して動物点群データD4(図11、図12参照)を生成する。これにより、動物点群データD4は、胴体51aの少なくとも半身が必ず含まれるとともに、乳牛51以外の物を取り除かれている。動物抽出部64は、生成した動物点群データD4に個体識別データD2を関連付けて特定部位切出部65に出力する。 The animal extraction unit 64 extracts only the three-dimensional coordinate position (coordinate data) corresponding to the dairy cow 51 from the composite point cloud data D3 generated by the data synthesis unit 63, thereby extracting an animal that shows the surface shape of the dairy cow 51. Point cloud data D4 (see FIGS. 11 and 12) is generated. Here, in the growth situation evaluation system 10, the drinking fountain 52 is set as the data acquisition area 14, and the positional relationship of the laser measuring device 13 with respect to the drinking fountain 52 is known in advance. The point cloud data of the drinking fountain 52 to be acquired is also known in advance. Therefore, the animal extraction unit 64 calculates the difference between the composite point cloud data D3 and the point cloud data indicating the drinking fountain 52 without the dairy cow 51, thereby obtaining the temporary animal point cloud data D4' (see FIG. 10). ) is generated. Since both laser measurement devices 13 are arranged as described above, this virtual animal point cloud data D4' always includes at least half of the body 51a, regardless of the posture of the dairy cow 51 in the drinking fountain 52. There is. However, the virtual animal point cloud data D4' includes objects other than the dairy cow 51, such as the water trough 53 and a part of the water therein when the dairy cow 51 is drinking water from the water trough 53. , objects that are very close to the dairy cow 51 may be included. As an example, the virtual animal point group data D4' shown in FIG. 10 includes a point group A indicating a dairy cow 51 and a point group B indicating a part of a water pail 53. Therefore, the animal extraction unit 64 performs clustering processing on the temporary animal point group data D4' to generate animal point group data D4. This clustering process groups items that have similar tendencies, positions, characteristics, etc., and the dairy cow 51 and other items can be grouped into separate groups. In the example of FIG. 10, the point indicating the dairy cow 51 is Two groups are generated: group A and point group B showing a part of the water pail 53. The animal extraction unit 64 of the first embodiment divides the pseudo-animal point cloud data D4' into a plurality of groups by clustering the clusters of point cloud data that are close to each other, and extracts the largest cluster among them (point cloud A in the example of FIG. 10). is extracted as the dairy cow 51, and animal point cloud data D4 (see FIGS. 11 and 12) is generated. As a result, the animal point cloud data D4 always includes at least half of the torso 51a, and objects other than the dairy cow 51 are removed. The animal extraction unit 64 associates the generated animal point cloud data D4 with the individual identification data D2 and outputs the data to the specific region extraction unit 65.
 なお、動物抽出部64は、動物点群データD4を生成するものであれば、他の構成でもよく、実施例1の構成に限定されない。例えば、動物抽出部64は、対象とする動物(乳牛51)以外のものを含む可能性が低い場合等には、上記のように生成した仮動物点群データD4´に対してクラスタリング処理を行うことなく、仮動物点群データD4´をそのまま動物点群データD4としてもよい。また、動物抽出部64は、様々な角度や大きさや種類の乳牛51を示す三次元座標位置(座標データ)を予め登録しておき、それらとの比較により動物点群データD4を抽出してもよい。さらに、動物抽出部64は、水飲み場52における床面や壁等の綺麗な平面を合成点群データD3から抽出し、その平面を基準として乳牛51がいそうな場所を閾値処理することにより、乳牛51がいる可能性の高い場所を抽出して仮動物点群データD4´や動物点群データD4を生成してもよい。 Note that the animal extraction unit 64 may have any other configuration as long as it generates the animal point cloud data D4, and is not limited to the configuration of the first embodiment. For example, the animal extraction unit 64 performs a clustering process on the pseudo animal point cloud data D4' generated as described above, when there is a low possibility that it contains animals other than the target animal (dairy cow 51). Alternatively, the temporary animal point group data D4' may be used as the animal point group data D4. In addition, the animal extraction unit 64 registers in advance three-dimensional coordinate positions (coordinate data) indicating the dairy cows 51 at various angles, sizes, and types, and extracts the animal point group data D4 by comparing them. good. Furthermore, the animal extraction unit 64 extracts a clean plane such as the floor or wall of the drinking fountain 52 from the composite point cloud data D3, and performs threshold processing on a place where the dairy cow 51 is likely to be found using the plane as a reference. The temporary animal point group data D4' and the animal point group data D4 may be generated by extracting locations where there is a high possibility that the animal 51 is present.
 特定部位切出部65は、乳牛51を示す動物点群データD4(図12参照)から、頭部近傍51bと尻尾51cとを取り除いて特定部位データD5(図13参照)を生成する。本開示では、乳牛51における胴体51a特にhook bone(図13の符号Bh参照)の近傍が、その乳牛51の育成状況を評価する上で重要であると考えているので、動物点群データD4から頭部近傍51bと尻尾51cとを取り除いた特定部位データD5を生成する。実施例1の特定部位切出部65は、動物点群データD4における鉛直方向の上側から所定の数の点群(実施例1では一例として1万点)を抽出し、その抽出した点群における第1主成分を背骨51dが伸びる方向(以下では背骨方向Ds(図14参照))とする。この第1主成分は、分散が最も大きくなる方向に軸をとったものであり、抽出した上側の点群が伸びる方向を示すこととなる。なお、特定部位切出部65は、例えば、様々な角度や大きさや種類の背骨51dを示す三次元座標位置(座標データ)を予め登録しておき、それらとの比較により背骨方向Dsを抽出してもよく、他の方法を用いても良い。そして、特定部位切出部65は、その背骨方向Dsの一方の端部において細くなっている箇所を頭部近傍51b(首を含む)と判断するとともに、長尺な方向の他方の端部の極めて細い長尺な箇所を尻尾51cと判断する。なお、特定部位切出部65は、動物点群データD4における頭部近傍51bや尻尾51cを判断するものであれば、例えば、予め登録してある形状や位置と比較することで頭部近傍51bや尻尾51cを判断してもよく、他の方法でもよく、実施例1の方法に限定されない。特定部位切出部65は、生成した特定部位データD5に個体識別データD2を関連付けて特定部位整列部66に出力する。 The specific region cutting unit 65 removes the vicinity of the head 51b and the tail 51c from the animal point group data D4 (see FIG. 12) representing the dairy cow 51 to generate specific region data D5 (see FIG. 13). In the present disclosure, since it is considered that the vicinity of the body 51a of the dairy cow 51, particularly the vicinity of the hook bone (see reference numeral Bh in FIG. 13), is important in evaluating the breeding status of the dairy cow 51, the animal point cloud data D4 is Specific part data D5 is generated from which the vicinity of the head 51b and the tail 51c are removed. The specific part extraction unit 65 of the first embodiment extracts a predetermined number of points (10,000 points as an example in the first embodiment) from the upper side of the animal point cloud data D4 in the vertical direction, and The first principal component is the direction in which the spine 51d extends (hereinafter referred to as the spine direction Ds (see FIG. 14)). This first principal component has its axis in the direction where the variance is greatest, and indicates the direction in which the extracted upper point group extends. Note that the specific part cutting unit 65 registers in advance three-dimensional coordinate positions (coordinate data) indicating various angles, sizes, and types of the spine 51d, and extracts the spine direction Ds by comparing with these. or other methods may be used. Then, the specific part cutting unit 65 determines that the thinner part at one end in the spinal direction Ds is near the head 51b (including the neck), and also determines that the narrower part at one end in the spinal direction Ds is near the head 51b (including the neck), and the other end in the longitudinal direction. The extremely thin and long part is determined to be the tail 51c. In addition, if the specific part cutting unit 65 is used to determine the head vicinity 51b and the tail 51c in the animal point cloud data D4, for example, the head vicinity 51b can be determined by comparing with the shape and position registered in advance. or the tail 51c, or other methods may be used, and the method is not limited to the method of the first embodiment. The specific part cutting unit 65 associates the generated specific part data D5 with the individual identification data D2 and outputs the data to the specific part aligning unit 66.
 特定部位整列部66は、特定部位切出部65が生成した特定部位データD5において、背骨方向Dsを基準軸方向Dbに一致させるように整列させる(図14参照)。その基準軸方向Dbは、水平面に沿って伸びるものとしており、水平面に沿う方向において基準軸方向Dbに直交する方向を幅方向Dwとし、水平面に直交する方向を鉛直方向Dhとする。実施例1の特定部位整列部66は、背骨方向Dsを基準軸方向Dbに一致させるように、特定部位データD5を水平面上で移動させる(矢印A1参照)。なお、特定部位整列部66は、特定部位データD5における背骨方向Dsを基準軸方向Dbに一致させるように整列させるものであればよく、実施例1の構成に限定されない。特定部位整列部66は、背骨方向Dsを基準軸方向Dbに一致させた状態の特定部位データD5を基準箇所検出部67に出力する。 The specific region alignment unit 66 aligns the specific region data D5 generated by the specific region cutting unit 65 so that the spine direction Ds coincides with the reference axis direction Db (see FIG. 14). The reference axis direction Db is assumed to extend along the horizontal plane, and the direction along the horizontal plane that is orthogonal to the reference axis direction Db is defined as the width direction Dw, and the direction orthogonal to the horizontal plane is defined as the vertical direction Dh. The specific region alignment unit 66 of the first embodiment moves the specific region data D5 on the horizontal plane so that the spine direction Ds coincides with the reference axis direction Db (see arrow A1). Note that the specific part alignment unit 66 is not limited to the configuration of the first embodiment as long as it aligns the spine direction Ds in the specific part data D5 to match the reference axis direction Db. The specific part alignment unit 66 outputs specific part data D5 with the spine direction Ds aligned with the reference axis direction Db to the reference part detection unit 67.
 基準箇所検出部67は、背骨方向Dsが基準軸方向Dbに一致された特定部位データD5における基準箇所Pr(図15参照)を検出する。この基準箇所Prは、データ整列部68による整列の基準とするとともに、正規化部69による正規化の基準とするもので、個体差に拘らず検出が容易であるとともに共通した特徴を有する箇所に設定する。実施例1では、図15に示すように、基準軸方向Db(背骨51d)を挟んで対を為す2つのhook bone(Bh)を結ぶ直線を基準箇所Prとする。基準箇所検出部67は、先ず、一対のhook boneの位置を検出する。実施例1の基準箇所検出部67は、様々な角度や大きさや種類の乳牛51におけるhook bone(Bh)の近傍を示す三次元座標位置(座標データ)を予め登録しておき、それらとの比較によりhook bone(Bh)の位置を抽出する。なお、基準箇所検出部67は、整列された特定部位データD5におけるhook bone(Bh)の位置を抽出するものであれば、他の方法を用いても良く、実施例1の構成に限定されない。その後、基準箇所検出部67は、検出した一対のhook bone(Bh)(その位置)を結んで基準箇所Pr(そのデータ)を生成する。そして、基準箇所検出部67は、背骨51dが伸びる方向が基準軸方向Dbに一致された特定部位データD5において検出した基準箇所Pr(そのデータ)をデータ整列部68に出力する。なお、基準箇所Prは、育成状況を評価する対象としての動物において、個体差に拘らず検出が容易であるとともに共通した特徴を有する箇所であれば、適宜設定すればよく実施例1の構成に限定されない。 The reference location detection unit 67 detects a reference location Pr (see FIG. 15) in the specific region data D5 in which the spine direction Ds is matched with the reference axial direction Db. This reference point Pr is used as a reference for alignment by the data alignment unit 68 and a reference for normalization by the normalization unit 69, and is a point that is easy to detect regardless of individual differences and has common characteristics. Set. In the first embodiment, as shown in FIG. 15, a straight line connecting two hook bones (Bh) that form a pair across the reference axis direction Db (backbone 51d) is defined as the reference point Pr. The reference point detection unit 67 first detects the positions of a pair of hook bones. The reference point detection unit 67 of the first embodiment registers in advance three-dimensional coordinate positions (coordinate data) indicating the vicinity of the hook bone (Bh) in the dairy cows 51 of various angles, sizes, and types, and compares them with the three-dimensional coordinate positions (coordinate data). Extract the position of hook bone (Bh) by Note that the reference point detection unit 67 may use any other method as long as it extracts the position of the hook bone (Bh) in the aligned specific part data D5, and is not limited to the configuration of the first embodiment. Thereafter, the reference point detection unit 67 connects the detected pair of hook bones (Bh) (their positions) to generate a reference point Pr (their data). Then, the reference location detecting section 67 outputs the reference location Pr (the data) detected in the specific region data D5 in which the direction in which the spine 51d extends coincides with the reference axis direction Db to the data alignment section 68. Note that the reference point Pr may be set as appropriate as long as it is a point that is easy to detect and has common characteristics regardless of individual differences in the animals whose breeding status is to be evaluated. Not limited.
 データ整列部68は、検出された基準箇所Prを基準として、基準軸方向Dbに対する特定部位データD5の位置を調整して特定部位整列データD6(図16参照)を生成する。データ整列部68は、基準箇所Prが基準軸方向Dbに直交するように、水平面上での特定部位データD5の傾きを微調整させて特定部位整列データD6(図16参照)を生成する。また、実施例1のデータ整列部68は、切り取った尻尾51c側の端部51eを基準軸方向Dbにおける原点に位置させることにより、特定部位データD5の向きを揃えて、特定部位整列データD6を生成する。このとき、データ整列部68は、基準軸方向Dbにおける基準箇所Prの位置が、基準軸方向Dbにおける特定部位データD5の最大値の半分の値を超えている場合、乳牛51の頭部近傍51b側が原点側に向けられていると判断して、特定部位データD5を180度回転させて尻尾51c側の端部51eを基準軸方向Dbにおける原点に位置させる。なお、データ整列部68は、切り取った頭部近傍51b側の端部を基準軸方向Dbにおける原点に位置させてもよく、実施例1の構成に限定されない。データ整列部68は、特定部位整列データD6を正規化部69に出力する。 The data alignment unit 68 generates specific part alignment data D6 (see FIG. 16) by adjusting the position of the specific part data D5 with respect to the reference axis direction Db using the detected reference point Pr as a reference. The data alignment unit 68 generates specific part alignment data D6 (see FIG. 16) by finely adjusting the inclination of the specific part data D5 on the horizontal plane so that the reference part Pr is perpendicular to the reference axis direction Db. Furthermore, the data alignment unit 68 of the first embodiment aligns the direction of the specific part data D5 by positioning the cut end 51e on the side of the tail 51c at the origin in the reference axis direction Db, thereby aligning the specific part data D6. generate. At this time, if the position of the reference point Pr in the reference axis direction Db exceeds half of the maximum value of the specific part data D5 in the reference axis direction Db, the data alignment unit 68 It is determined that the side is directed toward the origin, and the specific part data D5 is rotated 180 degrees to position the end 51e on the tail 51c side at the origin in the reference axis direction Db. Note that the data alignment unit 68 may position the cut end on the side near the head 51b at the origin in the reference axis direction Db, and is not limited to the configuration of the first embodiment. The data alignment section 68 outputs the specific part alignment data D6 to the normalization section 69.
 正規化部69は、上記した基準位置を基準として特定部位整列データD6を正規化することにより、正規化データD7(図18参照)を生成する。これは、動物(乳牛51)は、骨格や肉付きが個々に異なるので、特定部位整列データD6では、図17に示すように、上記のように整列されてはいても鉛直方向Dhでの位置が異なるとともに、その鉛直方向Dhの大きさが異なることとなる。実施例1の正規化部69は、正規化の基準として基準箇所Pr(両hook boneの位置)を用いており、各特定部位整列データD6における上記した基準箇所Prが均一の大きさとなるように、各特定部位整列データD6を拡大または縮小して調整することにより、各正規化データD7(図18参照)を生成する。これは、本開示では、hook bone(Bh)を含む骨格の大きさではなく、肉付きにより各乳牛の生育状況を判断することによる。なお、正規化部69は、正規化の基準とする箇所を適宜設定すればよく、実施例1の構成に限定されない。正規化部69は、正規化データD7を切断面抽出部71に出力する。 The normalization unit 69 generates normalized data D7 (see FIG. 18) by normalizing the specific part alignment data D6 using the above-described reference position as a reference. This is because animals (dairy cows 51) have different skeletons and fleshiness, so in the specific part alignment data D6, as shown in FIG. 17, even if they are aligned as described above, the position in the vertical direction Dh is In addition to being different, the size of the vertical direction Dh is also different. The normalization unit 69 of the first embodiment uses the reference point Pr (positions of both hook bones) as a standard for normalization, and makes sure that the above-mentioned reference point Pr in each specific part alignment data D6 has a uniform size. , each normalized data D7 (see FIG. 18) is generated by expanding or contracting and adjusting each specific part alignment data D6. This is because, in the present disclosure, the growth status of each dairy cow is determined not by the size of the skeleton including the hook bone (Bh) but by the amount of meat. Note that the normalization unit 69 may appropriately set a location to be used as a standard for normalization, and is not limited to the configuration of the first embodiment. The normalization section 69 outputs the normalized data D7 to the cut plane extraction section 71.
 切断面抽出部71は、正規化データD7から、乳牛51(その胴体)を所定の平面に沿って切断した断面となる断面データD8(図19参照)を生成する。実施例1の切断面抽出部71は、所定の平面を乳牛51の前後方向に直交するものとし、その前後方向における任意の位置に設定されたスライス位置Spに沿って正規化データD7を切断することにより、断面データD8を生成する。このスライス位置Spは、適宜設定すればよいが、実施例1では図18に示す4箇所に設定しており、個別に示す際には頭側から順に末尾に1から4の数字を付している。そのスライス位置Sp1からSp3は、基準軸方向Dbに直交する面としている。また、スライス位置Sp4は、幅方向Dwに直交する面としている。 The cutting plane extraction unit 71 generates cross-sectional data D8 (see FIG. 19), which is a cross-section of the dairy cow 51 (its body) cut along a predetermined plane, from the normalized data D7. The cut plane extraction unit 71 of the first embodiment assumes that a predetermined plane is orthogonal to the front-back direction of the dairy cow 51, and cuts the normalized data D7 along a slice position Sp set at an arbitrary position in the front-back direction. By doing so, cross-sectional data D8 is generated. This slice position Sp may be set as appropriate, but in Example 1, it is set at four locations shown in FIG. There is. The slice positions Sp1 to Sp3 are planes perpendicular to the reference axis direction Db. Further, the slice position Sp4 is a plane perpendicular to the width direction Dw.
 スライス位置Sp1は、基準軸方向Dbにおいて、hook boneの位置(基準箇所Pr)と、尻尾51c側の端部51e(基準軸方向Dbにおける原点)と、の中間位置としている。スライス位置Sp2は、基準軸方向Dbにおける基準箇所Pr(hook bone)の位置としている。スライス位置Sp3は、基準軸方向Dbにおいて、端部51e(基準軸方向Dbの原点)からスライス位置Sp2までの間隔の1.5倍の位置としている。スライス位置Sp4は、幅方向Dwにおいて、一方のhook boneの位置と、基準軸方向Dbと、の中間位置としている。 The slice position Sp1 is an intermediate position in the reference axis direction Db between the hook bone position (reference point Pr) and the end 51e on the tail 51c side (the origin in the reference axis direction Db). The slice position Sp2 is the position of a reference point Pr (hook bone) in the reference axis direction Db. The slice position Sp3 is set to be 1.5 times the distance from the end 51e (origin of the reference axis direction Db) to the slice position Sp2 in the reference axis direction Db. The slice position Sp4 is an intermediate position between the position of one hook bone and the reference axis direction Db in the width direction Dw.
 その断面データD8の一例を図19に示す。その図19では、各スライス位置Spの末尾の数字に対応させて正面視して左側から順に並べており、末尾に1から4の数字を付している。すなわち、断面データD81がスライス位置Sp1に、断面データD82がスライス位置Sp2に、断面データD83がスライス位置Sp3に、断面データD84がスライス位置Sp4に、それぞれ対応している。切断面抽出部71は、生成した断面データD8に個体識別データD2を関連付けて算出用データ生成部72に出力する。なお、切断面抽出部71は、それぞれの正規化データD7に対して生成する断面データD8の数や位置は適宜設定すればよく、実施例1の構成に限定されない。 An example of the cross-sectional data D8 is shown in FIG. 19. In FIG. 19, the slice positions Sp are arranged in order from the left side when viewed from the front, corresponding to the numbers at the end of each slice position Sp, and numbers 1 to 4 are attached to the ends. That is, the cross-section data D81 corresponds to the slice position Sp1, the cross-section data D82 corresponds to the slice position Sp2, the cross-section data D83 corresponds to the slice position Sp3, and the cross-section data D84 corresponds to the slice position Sp4. The cut plane extracting unit 71 associates the generated cross-sectional data D8 with the individual identification data D2 and outputs it to the calculation data generating unit 72. Note that the cut plane extraction unit 71 may appropriately set the number and position of the cross section data D8 to be generated for each normalized data D7, and is not limited to the configuration of the first embodiment.
 算出用データ生成部72は、断面データD8から算出に用いるための算出用データD9(図20参照)を生成する。この一例について、図19のスライス位置Sp2に対応する断面データD82(以下では、単に断面データD8とする)を用いて説明する。先ず、算出用データ生成部72は、断面データD8(図19参照)の点群を平均値で補間することにより、点群の数を間引きする間引き断面データD8´(図20参照の左側)を生成する。また、算出用データ生成部72は、間引き断面データD8´における背骨51dを示す位置が切断面方向(図20に示す例では幅方向Dw)の原点(中心位置)に位置するように、間引き断面データD8´を切断面方向(幅方向Dw)に変位させる(矢印A2参照)。そして、算出用データ生成部72は、間引き断面データD8´において、切断面方向(幅方向Dw)における原点(中心位置)の両側に位置する点群の数および分布の態様を比較して、点群の数が多い側または切断面方向(幅方向Dw)で分布の空きが少ない側を選択し、選択した側のデータ(点群)を反対側にコピー(複写)して、算出用データD9(図20参照の右側)を生成する。これにより、算出用データD9は、データ量の増大を抑えつつ、幅方向Dwにおけるデータが欠落した箇所を少なくできるとともに、幅方向Dwで対象な形状(分布)とされている。 The calculation data generation unit 72 generates calculation data D9 (see FIG. 20) for use in calculation from the cross-sectional data D8. An example of this will be explained using cross-sectional data D82 (hereinafter simply referred to as cross-sectional data D8) corresponding to slice position Sp2 in FIG. 19. First, the calculation data generation unit 72 interpolates the point group of the cross-sectional data D8 (see FIG. 19) using the average value, thereby generating thinned-out cross-sectional data D8' (left side in FIG. 20) for thinning out the number of point groups. generate. In addition, the calculation data generation unit 72 generates a thinned cross section so that the position indicating the spine 51d in the thinned cross section data D8' is located at the origin (center position) in the cutting plane direction (width direction Dw in the example shown in FIG. 20). The data D8' is displaced in the direction of the cutting surface (width direction Dw) (see arrow A2). Then, the calculation data generation unit 72 compares the number and distribution of point groups located on both sides of the origin (center position) in the cross-section direction (width direction Dw) in the thinned-out cross-section data D8'. Select the side with more groups or the side with fewer gaps in the distribution in the cross-section direction (width direction Dw), copy the data (point group) on the selected side to the opposite side, and create calculation data D9. (See right side of FIG. 20). Thereby, the calculation data D9 can reduce the number of missing data points in the width direction Dw while suppressing an increase in the amount of data, and has a symmetrical shape (distribution) in the width direction Dw.
 ここで、断面データD8では、元となる動物点群データD4が乳牛51の表面形状を極めて精彩な点群として表したものではあるものの、所定の位置の断面上では必ずしも全体に亘っては点群が分散していない虞がある。そして、断面データD8では、切断面方向の両側が揃って点群が大きく欠落している可能性は低い。このことから、算出用データD9は、育成状況の評価のための近似曲線を求めるために必要な点群を有しつつ、データ量の増大を抑えることができる。 Here, in the cross-sectional data D8, although the original animal point cloud data D4 represents the surface shape of the dairy cow 51 as a very vivid point cloud, the points do not necessarily cover the entire cross section at a predetermined position. There is a possibility that the group is not dispersed. In the cross-sectional data D8, it is unlikely that the point group is largely missing on both sides in the cross-sectional direction. For this reason, the calculation data D9 can suppress an increase in the amount of data while having a point group necessary for obtaining an approximate curve for evaluating the growth status.
 また、算出用データ生成部72は、幅方向Dwに直交する面をスライス位置Spとした場合、次のように算出用データD9を生成する。この一例について、図19のスライス位置Sp4に対応する断面データD84を用いて説明する。先ず、算出用データ生成部72は、断面データD84(図19参照)の点群を平均値で補間することにより、点群の数を間引きする間引き断面データD84´(図21参照の左側)を生成する。また、算出用データ生成部72は、間引き断面データD84´における右端(図21の例では最も高い位置)が切断面方向(図21に示す例では基準軸方向Db)の原点(中心位置)に位置するように、間引き断面データD84´を切断面方向(基準軸方向Db)に変位させる(矢印A3参照)。すると、間引き断面データD84´は、幅方向Dwに直交する面をスライス位置Spとしているので、切断面方向(基準軸方向Db)の一方のみに点群が存在することとなり、他方が分布の空きが少ない側となる。このため、算出用データ生成部72は、間引き断面データD84´において、一方に存在する点群(そのデータ)を反対側にコピー(複写)して、算出用データD9(図21参照の右側)を生成する。なお、算出用データD9は、切断面方向(基準軸方向Db)で間引き断面データD84´の2倍の大きさとなるが、図21では切断面方向(基準軸方向Db)での縮尺を変化させて示している。 Furthermore, when the plane perpendicular to the width direction Dw is set as the slice position Sp, the calculation data generation unit 72 generates the calculation data D9 as follows. An example of this will be explained using cross-sectional data D84 corresponding to slice position Sp4 in FIG. 19. First, the calculation data generation unit 72 interpolates the point group of the cross-sectional data D84 (see FIG. 19) using the average value, thereby generating thinned-out cross-sectional data D84' (left side in FIG. 21) for thinning out the number of point groups. generate. In addition, the calculation data generation unit 72 determines that the right end (the highest position in the example shown in FIG. 21) of the thinned cross-section data D84' is the origin (center position) in the cutting plane direction (the reference axis direction Db in the example shown in FIG. 21). The thinned cross-section data D84' is displaced in the cutting plane direction (reference axis direction Db) so that the thinned-out cross-section data D84' is located at the same position (see arrow A3). Then, since the thinned cross-section data D84' has a plane perpendicular to the width direction Dw as the slice position Sp, a point group exists only on one side of the cut plane direction (reference axis direction Db), and the other side is the empty part of the distribution. is on the smaller side. Therefore, the calculation data generation unit 72 copies the point group (the data) existing on one side in the thinned cross-section data D84' to the opposite side, and calculates the calculation data D9 (the right side in FIG. 21). generate. Note that the calculation data D9 is twice the size of the thinned cross-section data D84' in the direction of the cut plane (reference axis direction Db), but in FIG. 21, the scale in the direction of the cut plane (reference axis direction Db) is changed. It shows.
 このように生成した算出用データD9の一例を図22に示す。その図22では、各スライス位置Spの末尾の数字に対応させて正面視して左側から順に並べており、末尾に1から4の数字を付している。すなわち、算出用データD91が断面データD81に、算出用データD92が断面データD82に、算出用データD93が断面データD83に、算出用データD94が断面データD84に、それぞれ対応している。算出用データ生成部72は、生成した算出用データD9に個体識別データD2を関連付けて算出領域抽出部73に出力する。このとき、算出用データ生成部72は、単一の個体識別データD2に対して、複数の算出用データD9を生成した場合には、スライス位置Spを合わせて関連付けて算出領域抽出部73に出力する。 An example of the calculation data D9 generated in this way is shown in FIG. 22. In FIG. 22, the slice positions Sp are arranged in order from the left side when viewed from the front, corresponding to the numbers at the end of each slice position Sp, and numbers 1 to 4 are attached to the ends. That is, the calculation data D91 corresponds to the cross-section data D81, the calculation data D92 corresponds to the cross-section data D82, the calculation data D93 corresponds to the cross-section data D83, and the calculation data D94 corresponds to the cross-section data D84. The calculation data generation unit 72 associates the generated calculation data D9 with the individual identification data D2 and outputs the generated calculation data D9 to the calculation area extraction unit 73. At this time, when the calculation data generation unit 72 generates a plurality of calculation data D9 for the single individual identification data D2, the calculation data generation unit 72 outputs them to the calculation area extraction unit 73 in association with the slice position Sp. do.
 算出領域抽出部73は、算出用データD9において、点群の並びが示す曲線において後述する近似曲線Acを算出するための始点Psと終点Peとを抽出する。ここで、本出願人は、乳牛51のhook boneの近傍を基準軸方向Dbに直交する断面で見ると、基準軸方向Dbでの位置に拘らず、大まかに端から凸部、凹部、凸部、凹部、凸部を描きつつ真ん中の凸部に背骨51dが位置する曲線となる傾向があることに着眼した。このため、本出願人は、7つの制御点を用いる6次のベジェ曲線を適用することにより、算出用データD9に適合する滑らかな近似曲線Acを算出できると考えた。このため、算出領域抽出部73は、算出用データD9を6次のベジェ曲線で適切に近似させるために、その算出用データD9が示す外形形状(乳牛51の輪郭)の両端、すなわち中心の凸部からその両側の凹部を経てその外側の凸部の終点(変曲点)の一方を始点Psとし、他方を終点Peとして抽出する(図22参照)。そして、算出領域抽出部73は、算出用データD9における始点Psと終点Peとを近似曲線算出部74に出力する。 The calculation area extraction unit 73 extracts a starting point Ps and an ending point Pe for calculating an approximate curve Ac, which will be described later, in the curve indicated by the arrangement of points in the calculation data D9. Here, the present applicant has found that when looking at the vicinity of the hook bone of the dairy cow 51 in a cross section orthogonal to the reference axis direction Db, there are roughly convex portions, concave portions, and convex portions from the end, regardless of the position in the reference axis direction Db. , we focused on the fact that there is a tendency to form a curved line that has concave parts and convex parts, with the spine 51d located in the central convex part. Therefore, the applicant thought that by applying a sixth-order Bezier curve using seven control points, a smooth approximated curve Ac that matches the calculation data D9 can be calculated. Therefore, in order to appropriately approximate the calculation data D9 with a sixth-order Bezier curve, the calculation area extraction unit 73 extracts a convex shape at both ends of the external shape (outline of the dairy cow 51) indicated by the calculation data D9, that is, at the center. One of the end points (points of inflection) of the convex part on the outside of the part is extracted as the starting point Ps, and the other as the ending point Pe (see FIG. 22). Then, the calculation area extraction unit 73 outputs the starting point Ps and the ending point Pe in the calculation data D9 to the approximate curve calculation unit 74.
 また、本出願人は、乳牛51のhook boneの近傍を幅方向Dwに直交する面をスライス位置Spとした場合には、hook boneの近傍を頂点として尻尾51cへ向けて凸部、凹部、凸部を描く曲線となる傾向があることにも着眼した。このため、算出用データ生成部72は、上記したように、幅方向Dwに直交する面をスライス位置Spとした場合、間引き断面データD84´における右端が切断面方向の原点に位置するように、間引き断面データD84´を切断面方向に変位させるとともに、それを反対側にコピー(複写)して、算出用データD9を生成している。これにより、幅方向Dwに直交する面をスライス位置Spとした算出用データD9であっても、端から凸部、凹部、凸部、凹部、凸部を描く曲線とすることができる。このため、算出領域抽出部73は、幅方向Dwに直交する面をスライス位置Spとした算出用データD9であっても、上記と同様に算出用データD9が示す外形形状(乳牛51の輪郭)の両端の一方を始点Psとし、他方を終点Peとして抽出して、近似曲線算出部74に出力する。 In addition, the present applicant has proposed that when the slice position Sp is a plane orthogonal to the width direction Dw in the vicinity of the hook bone of the dairy cow 51, convex portions, concave portions, convex portions, etc. We also focused on the fact that there is a tendency for the shape to be a curved line. For this reason, as described above, when the plane perpendicular to the width direction Dw is set as the slice position Sp, the calculation data generation unit 72 creates a The thinned cross-sectional data D84' is displaced in the direction of the cut plane and is copied to the opposite side to generate the calculation data D9. As a result, even if the calculation data D9 has the plane perpendicular to the width direction Dw as the slice position Sp, it can be made into a curve that draws a convex portion, a concave portion, a convex portion, a concave portion, and a convex portion from the end. Therefore, even if the calculation data D9 has the plane orthogonal to the width direction Dw as the slice position Sp, the calculation area extraction unit 73 can calculate the external shape (outline of the dairy cow 51) indicated by the calculation data D9 in the same way as described above. One of both ends is set as the starting point Ps, and the other end is extracted as the ending point Pe, and output to the approximate curve calculating section 74.
 近似曲線算出部74は、算出領域抽出部73が抽出した始点Psと終点Peとを用いて、算出用データD9に適合する近似曲線Ac(図23、図24参照)を算出する。本出願人は、図23に示すように、各算出用データD9を6次のベジェ曲線で適切に近似させるために、その算出用データD9が示す外形形状(乳牛51の輪郭)の両端となる始点Psと終点Peとを固定の制御点Cとして設定するとともに、その始点Psと終点Peとの間に5つの制御点Cを設定することとした。以下では、始点Psと終点Peとを含めて7つの制御点Cを設定することとなり、個別に示す際には始点Psから順に頭に第1から7の数字を付すとともに末尾に1から7の数字を付すこととする。すなわち、個別に示す際には、始点Psが第1制御点C1となり、その隣が第2制御点C2となり、その隣から順に第3制御点C3から第6制御点C6となり、終点Peが第7制御点C7となる。そして、本出願人は、算出用データD9に対して鉛直方向Dhで見て、始点Psに固定した第1制御点C1の隣の第2制御点C2を上側に設け、その隣から順に、第3制御点C3を下側に、第4制御点C4を上側に、第5制御点C5を下側に、第6制御点C6を上側に、それぞれ設ける。そして、固定した第1制御点C1(始点Ps)と第7制御点C7(終点Pe)とを除く、残りの5つの第2制御点C2から第6制御点C6を切断面上で適宜移動させることにより、算出用データD9に適合する近似曲線Acを算出する。 The approximate curve calculation unit 74 uses the starting point Ps and the ending point Pe extracted by the calculation area extraction unit 73 to calculate an approximate curve Ac (see FIGS. 23 and 24) that matches the calculation data D9. As shown in FIG. 23, in order to appropriately approximate each calculation data D9 with a sixth-order Bezier curve, the present applicant has determined that both ends of the external shape (outline of the dairy cow 51) indicated by the calculation data D9 The starting point Ps and the ending point Pe are set as fixed control points C, and five control points C are set between the starting point Ps and the ending point Pe. In the following, seven control points C will be set including the starting point Ps and the ending point Pe, and when indicated individually, numbers 1 to 7 will be added to the beginning starting from the starting point Ps, and numbers 1 to 7 will be added to the end. A number will be attached. That is, when shown individually, the starting point Ps becomes the first control point C1, the next one becomes the second control point C2, the third control point C3 to the sixth control point C6 start from the next one, and the end point Pe becomes the second control point C2. 7 control point C7. Then, the present applicant provides the second control point C2 next to the first control point C1 fixed at the starting point Ps on the upper side when viewed in the vertical direction Dh with respect to the calculation data D9, and sequentially from the next point The third control point C3 is provided on the lower side, the fourth control point C4 is provided on the upper side, the fifth control point C5 is provided on the lower side, and the sixth control point C6 is provided on the upper side. Then, excluding the fixed first control point C1 (start point Ps) and seventh control point C7 (end point Pe), the remaining five second control points C2 to sixth control point C6 are moved as appropriate on the cutting surface. By doing so, an approximate curve Ac that fits the calculation data D9 is calculated.
 このため、近似曲線算出部74は、算出用データD9における始点Psと終点Peとを固定の第1制御点C1と第7制御点C7として設定するとともに、それらの間に5つの制御点(第2制御点C2から第6制御点C6)を設定する。そして、近似曲線算出部74は、始点Ps(第1制御点C1)から終点Pe(第7制御点C7)に至る曲線が算出用データD9(それが示す外形形状)と重なるように、5つの制御点(第2制御点C2から第6制御点C6)の位置を調整することにより、近似曲線Acを算出する。 Therefore, the approximate curve calculation unit 74 sets the starting point Ps and the ending point Pe in the calculation data D9 as the fixed first control point C1 and the seventh control point C7, and also sets five control points (the first control point C7) between them. The second control point C2 to the sixth control point C6) are set. Then, the approximate curve calculation unit 74 calculates the five curves so that the curve from the starting point Ps (first control point C1) to the ending point Pe (seventh control point C7) overlaps with the calculation data D9 (the external shape indicated by it). An approximate curve Ac is calculated by adjusting the positions of the control points (second control point C2 to sixth control point C6).
 ここで、実施例1では、算出用データD9が、断面データD8における切断面方向の一方を選択するとともにそれを反転させて生成されている。このため、算出用データD9では、切断面上において、中間位置を通る鉛直方向Dhに伸びる線分(以下では中心線Lcとする)に関して、始点Ps(第1制御点C1)と終点Pe(第7制御点C7)と、第2制御点C2と第6制御点C6と、第3制御点C3と第5制御点C5と、が線対称な位置関係とされている。そして、算出用データD9では、切断面上において、第4制御点C4が中心線Lc上に設けられている。これらのことから、実施例1の近似曲線算出部74は、切断面上において、第2制御点C2と第6制御点C6とのいずれか一方の位置と、第3制御点C3と第5制御点C5とのいずれか一方の位置と、を調整するとともに、中心線Lc上での第5制御点C5の位置を調整する。そして、実施例1の近似曲線算出部74は、第2制御点C2と第6制御点C6との他方の位置を一方の位置から求めるとともに、第3制御点C3と第5制御点C5との他方の位置を一方の位置から求める。このため、実施例1の近似曲線算出部74は、実質的に、3つの制御点Cの位置を調整することにより、算出用データD9の各凸部および各凹部に適合するように始点Ps(第1制御点C1)から終点Pe(第7制御点C7)に至るベジェ曲線の曲がり方を調整して、近似曲線Acを算出する。 Here, in Example 1, the calculation data D9 is generated by selecting one of the cutting plane directions in the cross-sectional data D8 and reversing it. Therefore, in the calculation data D9, regarding the line segment (hereinafter referred to as center line Lc) extending in the vertical direction Dh passing through the intermediate position on the cutting plane, the starting point Ps (first control point C1) and the ending point Pe (first control point C1) The seventh control point C7), the second control point C2 and the sixth control point C6, and the third control point C3 and the fifth control point C5 have a line-symmetrical positional relationship. In the calculation data D9, the fourth control point C4 is provided on the center line Lc on the cut plane. From these facts, the approximate curve calculation unit 74 of the first embodiment calculates the position of either the second control point C2 or the sixth control point C6, the third control point C3, or the fifth control point on the cutting plane. The position of the fifth control point C5 on the center line Lc is adjusted. Then, the approximate curve calculation unit 74 of the first embodiment calculates the other position of the second control point C2 and the sixth control point C6 from one position, and also calculates the position of the other of the second control point C2 and the sixth control point C6. Find the other position from one position. Therefore, the approximate curve calculation unit 74 of the first embodiment substantially adjusts the positions of the three control points C so that the starting point Ps( The approximate curve Ac is calculated by adjusting the way the Bezier curve curves from the first control point C1) to the end point Pe (seventh control point C7).
 このように、近似曲線算出部74は、近似曲線Acの求め方を規格化している。すなわち、算出領域抽出部73が算出用データD9における始点Psと終点Peとを抽出し、近似曲線算出部74が始点Psと終点Peとを含めた合計7つの制御点Cを設定している。そして、近似曲線算出部74は、始点Ps(第1制御点C1)と終点Pe(第7制御点C7)とを固定しつつ、残りの5つの制御点Cを調整することにより、始点Psから終点Peに至る6次のベジェ曲線として近似曲線Acを求めている。このように、近似曲線算出部74は、上記のように共通の特徴に基づいて7つの制御点Cの位置を調整することにより、個々の算出用データD9(乳牛51)に対して個体差に拘らず外形形状を近似曲線Acで表すことができる。これにより、近似曲線算出部74は、乳牛51の個体差に拘らず7つの制御点Cを用いた6次のベジェ曲線による近似曲線Acで算出用データD9すなわちその元となる断面(断面データD8)の輪郭を表すことができるとともに、乳牛51の個体差に応じてそれぞれの近似曲線Acにおける係数や各制御点Cの位置を変化させることができる。 In this way, the approximate curve calculation unit 74 standardizes the method of obtaining the approximate curve Ac. That is, the calculation area extraction unit 73 extracts the starting point Ps and the ending point Pe in the calculation data D9, and the approximate curve calculating unit 74 sets a total of seven control points C including the starting point Ps and the ending point Pe. Then, the approximate curve calculation unit 74 fixes the starting point Ps (first control point C1) and the ending point Pe (seventh control point C7), and adjusts the remaining five control points C to move from the starting point Ps. An approximated curve Ac is obtained as a sixth-order Bezier curve leading to the end point Pe. In this way, the approximate curve calculation unit 74 adjusts the positions of the seven control points C based on the common characteristics as described above, thereby adjusting the individual differences in the calculation data D9 (dairy cow 51). Regardless, the external shape can be represented by an approximate curve Ac. As a result, the approximate curve calculation unit 74 calculates the calculation data D9, that is, the original cross section (cross section data D8 ), and the coefficients in each approximate curve Ac and the position of each control point C can be changed according to individual differences among dairy cows 51.
 このように求めた近似曲線Acの一例を図24に示す。その図24では、3つの異なる算出用データD9と、それに合わせた近似曲線Acと、を並べて示している。そして、図24では、各近似曲線Acとした際の始点Psと終点Peとを含む7つの制御点Cの位置も併せて示している。近似曲線算出部74は、7つの制御点Cを含む6次のベジェ曲線による近似曲線Ac(そのデータ)を、そこに個体識別データD2を関連付けて評価値算出部75に出力する。 An example of the approximate curve Ac obtained in this way is shown in FIG. In FIG. 24, three different calculation data D9 and an approximate curve Ac corresponding thereto are shown side by side. FIG. 24 also shows the positions of seven control points C including the starting point Ps and the ending point Pe for each approximate curve Ac. The approximate curve calculating section 74 outputs an approximate curve Ac (its data) based on a sixth-order Bezier curve including seven control points C to the evaluation value calculating section 75 in association with the individual identification data D2.
 評価値算出部75は、近似曲線算出部74からの各近似曲線Acに基づいて、水飲み場52にいた各乳牛51の育成状況の評価を示す評価値Evを算出する。評価値算出部75は、近似曲線Acにおける各制御点Cの位置関係を用いて評価値Evを算出するもので、実施例1では第2制御点C2(第6制御点C6)と第3制御点C3(第5制御点C5)と第4制御点C4との位置関係を用いる。これについて、図23を用いて説明する。先ず、図23に示すように、第2制御点C2と第3制御点C3との間隔(その大きさ)を第1間隔aとし、第3制御点C3と第4制御点C4との間隔(その大きさ)を第2間隔bとし、第2制御点C2と第4制御点C4との間隔(その大きさ)を第3間隔cとする。また、図23に示すように、第6制御点C6と第5制御点C5との間隔(その大きさ)を第4間隔dとし、第5制御点C5と第4制御点C4との間隔(その大きさ)を第5間隔eとし、第6制御点C6と第4制御点C4との間隔(その大きさ)を第6間隔fとする。 The evaluation value calculation unit 75 calculates an evaluation value Ev indicating the evaluation of the breeding status of each dairy cow 51 in the drinking fountain 52 based on each approximate curve Ac from the approximate curve calculation unit 74. The evaluation value calculation unit 75 calculates the evaluation value Ev using the positional relationship of each control point C on the approximate curve Ac. The positional relationship between point C3 (fifth control point C5) and fourth control point C4 is used. This will be explained using FIG. 23. First, as shown in FIG. 23, the interval (its size) between the second control point C2 and the third control point C3 is defined as a first interval a, and the interval between the third control point C3 and the fourth control point C4 ( The distance between the second control point C2 and the fourth control point C4 is defined as a third distance c. Further, as shown in FIG. 23, the interval (its size) between the sixth control point C6 and the fifth control point C5 is a fourth interval d, and the interval (the size) between the fifth control point C5 and the fourth control point C4 ( The distance between the sixth control point C6 and the fourth control point C4 is defined as a sixth distance f.
 ここで、乳牛51は、肉付きが良いほど背骨51dやhook bone等の各種の骨が目立たなくなる、すなわち全体として凹凸が丸みの帯びた形状となり、肉付きが悪い場合には各種の骨が角張って見えるようになる。また、乳牛51は、肉付きが良いほど、外側に膨らむような形状となる。このことは、算出用データD9に当て嵌めると、第2制御点C2(第6制御点C6)と第4制御点C4との鉛直方向Dhの差分が大きくなるすなわち第3間隔c(第6間隔f)が大きくなるほど、凹凸の角がきつくなり、肉付きを悪い形状となる傾向が見受けられる。このため、評価値Evは、第3間隔c(第6間隔f)が大きくなるほど、肉付きが悪くなる、すなわち低い評価となることが望ましい。また、算出用データD9に当て嵌めると、第2制御点C2(第6制御点C6)と第3制御点C3(第5制御点C5)とが離れるすなわち第1間隔a(第4間隔d)が大きくなるほど、全体として外側に膨らんで、肉付きの良い形状となる傾向が見受けられる。このため、評価値Evは、第1間隔a(第4間隔d)が大きくなるほど、肉付きが良くなり、高い評価となることが望ましい。そして、上記した2つの条件を満たすためには、第2制御点C2(第6制御点C6)と第4制御点C4とが離れることとなり、第2間隔b(第5間隔e)が大きくなる傾向が見受けられる。これらのことから、本開示の評価値Evは、第3間隔cを第1間隔aと第2間隔bとを加算した値で割る(評価値Ev=第3間隔c/(第1間隔a+第2間隔b))こととし、大きくなるほど低い評価(肉付きが悪い)とし、小さくなるほど高い評価(肉付きが良い)とするものとした。 Here, in the dairy cow 51, the more fleshy the various bones such as the backbone 51d and the hook bone become less noticeable, that is, the unevenness becomes rounded as a whole, and if the dairy cow 51 is not fleshy, the various bones appear angular. It becomes like this. Further, the beefier the dairy cow 51 is, the more the cow 51 has a shape that swells outward. When this is applied to the calculation data D9, the difference in the vertical direction Dh between the second control point C2 (sixth control point C6) and the fourth control point C4 increases, that is, the third interval c (sixth interval As f) becomes larger, the corners of the unevenness become tighter, and there is a tendency for the shape to become less fleshy. For this reason, it is desirable that the evaluation value Ev becomes less solid, that is, the evaluation becomes lower, as the third interval c (sixth interval f) becomes larger. Also, when applied to the calculation data D9, the second control point C2 (sixth control point C6) and the third control point C3 (fifth control point C5) are separated, that is, the first interval a (fourth interval d) As the size increases, the overall shape tends to swell outward and become more fleshy. Therefore, it is desirable that the evaluation value Ev becomes thicker and higher as the first interval a (fourth interval d) becomes larger. In order to satisfy the above two conditions, the second control point C2 (sixth control point C6) and the fourth control point C4 will be separated, and the second interval b (fifth interval e) will become larger. A trend can be seen. From these facts, the evaluation value Ev of the present disclosure is calculated by dividing the third interval c by the sum of the first interval a and the second interval b (evaluation value Ev = third interval c/(first interval a + second interval b). 2 intervals b)), and the larger the distance, the lower the evaluation (poor fleshiness), and the smaller the difference, the higher the evaluation (good fleshiness).
 同様に、本開示の評価値Evは、第6間隔fを第4間隔dと第5間隔eとを加算した値で割る(評価値Ev=第6間隔f/(第4間隔d+第5間隔e))こととする。ここで、実施例1の算出用データD9は、切断面上において、中心線Lcに関して、始点Ps(第1制御点C1)と終点Pe(第7制御点C7)と、第2制御点C2と第6制御点C6と、第3制御点C3と第5制御点C5と、が線対称な位置関係とされている。このため、第1間隔aと第4間隔dとが等しくなり、第2間隔bと第5間隔eとが等しくなり、第3間隔cと第6間隔fとが等しくなる。このため、実施例1では、第1間隔aと第2間隔bと第3間隔cとを用いて算出した評価値Evと、第4間隔dと第5間隔eと第6間隔fとを用いて算出した評価値Evと、が互いに等しくなるので、いずれか一方を算出すればよい。 Similarly, the evaluation value Ev of the present disclosure is calculated by dividing the sixth interval f by the sum of the fourth interval d and the fifth interval e (evaluation value Ev=sixth interval f/(fourth interval d+fifth interval e)). Here, the calculation data D9 of Example 1 is based on the starting point Ps (first control point C1), the end point Pe (seventh control point C7), and the second control point C2 with respect to the center line Lc on the cutting plane. The sixth control point C6, the third control point C3, and the fifth control point C5 have a line-symmetrical positional relationship. Therefore, the first interval a and the fourth interval d become equal, the second interval b and the fifth interval e become equal, and the third interval c and the sixth interval f become equal. Therefore, in the first embodiment, the evaluation value Ev calculated using the first interval a, the second interval b, and the third interval c, and the fourth interval d, the fifth interval e, and the sixth interval f are used. Since the evaluation value Ev and the calculated evaluation value Ev are equal to each other, it is sufficient to calculate either one of them.
 このことから、本開示の評価値算出部75は、近似曲線Acすなわちそのための第2制御点C2(第6制御点C6)と第3制御点C3(第5制御点C5)と第4制御点C4との位置(座標データ)に基づいて、上記した第1間隔a(第4間隔d)と第2間隔b(第5間隔e)と第3間隔c(第6間隔f)とを算出する。そして、評価値算出部75は、上記した算出式(第3間隔c/(第1間隔a+第2間隔b))または(第6間隔f/(第4間隔d+第5間隔e))に当て嵌めることにより、評価値Evを算出する。評価値算出部75は、乳牛51の評価値Evに個体識別データD2を関連付けて、適宜記憶部18に格納する。 From this, the evaluation value calculation unit 75 of the present disclosure calculates the approximate curve Ac, that is, the second control point C2 (sixth control point C6), the third control point C3 (fifth control point C5), and the fourth control point. Based on the position (coordinate data) with C4, calculate the above-described first interval a (fourth interval d), second interval b (fifth interval e), and third interval c (sixth interval f). . Then, the evaluation value calculation unit 75 applies the above calculation formula (third interval c/(first interval a+second interval b)) or (sixth interval f/(fourth interval d+fifth interval e)). By fitting, an evaluation value Ev is calculated. The evaluation value calculation unit 75 associates the evaluation value Ev of the dairy cow 51 with the individual identification data D2 and stores it in the storage unit 18 as appropriate.
 制御機構11は、記憶部18に格納された評価値Evを、表示部16に適宜表示させたり、通信部17を介して外部の機器に適宜出力させたりする。ここで、評価値Evには、個体識別データD2が関連付けられているので、いずれの乳牛51の育成状況を示すものであるのかを容易に把握できる。これにより、制御機構11は、乳牛51の評価値Evを報知することができる。 The control mechanism 11 causes the evaluation value Ev stored in the storage unit 18 to be displayed on the display unit 16 or output to an external device via the communication unit 17 as appropriate. Here, since the evaluation value Ev is associated with the individual identification data D2, it is possible to easily understand which dairy cow 51 the breeding status indicates. Thereby, the control mechanism 11 can notify the evaluation value Ev of the dairy cow 51.
 次に、生育状況評価システム10を用いて、乳牛51の育成状況の評価を行う一例としての育成状況評価処理(育成状況評価制御方法)について、図25を用いて説明する。この育成状況評価処理は、記憶部18または内部メモリ11aに記憶されたプログラムに基づいて、制御機構11が実行する。以下では、この図25のフローチャートの各ステップ(各工程)について説明する。この図25のフローチャートは、生育状況評価システム10が起動されてブラウザまたはアプリが立ち上がってカメラ12が駆動されるとともに、両レーザ測定器13が待機状態とされることにより開始される。 Next, a growing situation evaluation process (a growing situation evaluation control method) as an example of evaluating the growing situation of the dairy cow 51 using the growing situation evaluation system 10 will be described using FIG. 25. This growth status evaluation process is executed by the control mechanism 11 based on a program stored in the storage unit 18 or the internal memory 11a. Each step (each process) of the flowchart of FIG. 25 will be explained below. The flowchart of FIG. 25 is started when the growth condition evaluation system 10 is activated, the browser or application is launched, the camera 12 is driven, and both laser measuring devices 13 are placed in a standby state.
 ステップS1では、水飲み場52(データ取得領域14)に乳牛51が存在するか否かを判断し、YESの場合はステップS2へ進み、NOの場合はステップS1を繰り返す。ステップS1では、動物検出部61が、カメラ12が取得した画像Iを解析することで、水飲み場52に乳牛51がいるか否かを判断し、乳牛51がいる場合にはその旨の信号をデータ取得部62に出力する。加えて、実施例1のステップS1は、乳牛51を検出した場合、その乳牛51を個体別に識別した個体識別データD2を生成し、その個体識別データD2をデータ取得部62に出力する。 In step S1, it is determined whether or not the dairy cow 51 exists in the drinking fountain 52 (data acquisition area 14). If YES, proceed to step S2; if NO, step S1 is repeated. In step S1, the animal detection unit 61 analyzes the image I acquired by the camera 12 to determine whether or not there is a dairy cow 51 at the drinking fountain 52, and if there is a dairy cow 51, it sends a signal to that effect as data. It is output to the acquisition unit 62. In addition, in step S1 of the first embodiment, when a dairy cow 51 is detected, individual identification data D2 that identifies each dairy cow 51 is generated, and the individual identification data D2 is output to the data acquisition unit 62.
 ステップS2では、水飲み場52の点群データD1を取得して、ステップS3へ進む。ステップS2では、データ取得部62が、動物検出部61から乳牛51を検出した信号を受け取ると、2つのレーザ測定器13を駆動させて水飲み場52(データ取得領域14)の走査を行わせて、水飲み場52の点群データD1を取得させる。そして、ステップS2では、データ取得部62が、両レーザ測定器13からの点群データD1を受け取ると、それぞれの点群データD1に個体識別データD2を関連付けてデータ合成部63に出力する。 In step S2, point cloud data D1 of the drinking fountain 52 is acquired, and the process proceeds to step S3. In step S2, when the data acquisition unit 62 receives a signal indicating that the dairy cow 51 has been detected from the animal detection unit 61, the data acquisition unit 62 drives the two laser measurement devices 13 to scan the drinking fountain 52 (data acquisition area 14). , the point cloud data D1 of the drinking fountain 52 is acquired. Then, in step S2, upon receiving the point cloud data D1 from both laser measuring devices 13, the data acquisition section 62 associates the individual identification data D2 with each point cloud data D1 and outputs the data to the data synthesis section 63.
 ステップS3では、合成点群データD3を生成して、ステップS4へ進む。ステップS3では、データ合成部63が、両レーザ測定器13が取得した点群データD1を合成して、合成点群データD3を生成し、その生成した合成点群データD3に個体識別データD2を関連付けて動物抽出部64に出力する。 In step S3, composite point group data D3 is generated, and the process proceeds to step S4. In step S3, the data synthesis unit 63 synthesizes the point cloud data D1 acquired by both laser measuring devices 13, generates composite point cloud data D3, and adds individual identification data D2 to the generated composite point cloud data D3. The data is associated and output to the animal extraction unit 64.
 ステップS4では、動物点群データD4を生成して、ステップS5へ進む。ステップS4では、動物抽出部64が、データ合成部63が生成した合成点群データD3から乳牛51に相当する三次元座標位置(座標データ)のみを抽出して動物点群データD4を生成し、その生成した動物点群データD4に個体識別データD2を関連付けて特定部位切出部65に出力する。 In step S4, animal point cloud data D4 is generated, and the process proceeds to step S5. In step S4, the animal extraction unit 64 extracts only the three-dimensional coordinate position (coordinate data) corresponding to the dairy cow 51 from the composite point cloud data D3 generated by the data synthesis unit 63 to generate animal point cloud data D4, The generated animal point cloud data D4 is associated with the individual identification data D2 and outputted to the specific part cutting section 65.
 ステップS5では、特定部位データD5を生成して、ステップS6へ進む。ステップS6では、特定部位切出部65が、動物抽出部64が生成した動物点群データD4から乳牛51の頭部近傍51bと尻尾51cとを取り除いた特定部位データD5を生成し、その生成した特定部位データD5に個体識別データD2を関連付けて基準箇所検出部67に出力する。 In step S5, specific part data D5 is generated, and the process proceeds to step S6. In step S6, the specific part cutting unit 65 generates specific part data D5 by removing the vicinity of the head 51b and the tail 51c of the dairy cow 51 from the animal point cloud data D4 generated by the animal extraction unit 64. The specific part data D5 is associated with the individual identification data D2 and outputted to the reference part detection section 67.
 ステップS6では、特定部位データD5を整列させて、ステップS7へ進む。ステップS6では、特定部位整列部66が、特定部位切出部65が生成した特定部位データD5における第1主成分を乳牛51の背骨51dとして抽出し、その第1主成分(背骨51dが伸びる方向)を基準軸方向Dbに一致させるように、特定部位データD5を水平面上で移動させる。そして、ステップS6では、特定部位整列部66が、背骨51dが伸びる方向を基準軸方向Dbに一致させて整列させた状態の特定部位データD5を基準箇所検出部67に出力する。 In step S6, the specific part data D5 is arranged, and the process proceeds to step S7. In step S6, the specific part alignment unit 66 extracts the first principal component in the specific part data D5 generated by the specific part cutting unit 65 as the spine 51d of the dairy cow 51, and extracts the first principal component (in the direction in which the spine 51d extends). ) on the horizontal plane so as to match the reference axis direction Db. Then, in step S6, the specific part alignment unit 66 outputs to the reference part detection unit 67 the specific part data D5 in which the spine 51d is aligned so that the direction in which it extends coincides with the reference axis direction Db.
 ステップS7では、特定部位データD5における基準箇所Prの位置を検出して、ステップS8へ進む。ステップS7では、基準箇所検出部67が、特定部位整列部66により整列された状態の特定部位データD5からhook boneの位置を抽出し、その抽出したhook boneの位置を結ぶ基準箇所Prを生成して、その基準箇所Pr(そのデータ)をデータ整列部68に出力する。 In step S7, the position of the reference point Pr in the specific part data D5 is detected, and the process proceeds to step S8. In step S7, the reference point detection unit 67 extracts the hook bone positions from the specific part data D5 aligned by the specific part alignment unit 66, and generates a reference point Pr that connects the extracted hook bone positions. Then, the reference point Pr (that data) is output to the data alignment section 68.
 ステップS8では、特定部位整列データD6を生成して、ステップS9へ進む。ステップS8では、基準箇所検出部67が検出した基準箇所Prが基準軸方向Dbに直交するように水平面上での特定部位データD5の傾きを微調整させて特定部位整列データD6を生成する。そして、ステップS8では、データ整列部68が、生成した特定部位整列データD6を正規化部69に出力する。 In step S8, specific part alignment data D6 is generated, and the process proceeds to step S9. In step S8, the specific part alignment data D6 is generated by finely adjusting the inclination of the specific part data D5 on the horizontal plane so that the reference part Pr detected by the reference part detection section 67 is orthogonal to the reference axis direction Db. Then, in step S8, the data alignment unit 68 outputs the generated specific part alignment data D6 to the normalization unit 69.
 ステップS9では、正規化データD7を生成して、ステップS10へ進む。ステップS9では、正規化部69が、データ整列部68が生成した各特定部位整列データD6における基準箇所Prが均一の大きさとなるように、各特定部位整列データD6を拡大または縮小して各正規化データD7を生成する。そして、ステップS9では、正規化部69が、生成した正規化データD7を切断面抽出部71に出力する。 In step S9, normalized data D7 is generated, and the process proceeds to step S10. In step S9, the normalization unit 69 enlarges or reduces each specific part alignment data D6 so that the reference points Pr in each specific part alignment data D6 generated by the data alignment unit 68 have a uniform size. generated data D7. Then, in step S9, the normalization unit 69 outputs the generated normalized data D7 to the cut plane extraction unit 71.
 ステップS10では、断面データD8を生成して、ステップS11へ進む。ステップS10では、切断面抽出部71が、正規化部69が生成した正規化データD7を、任意の位置に設定されたスライス位置Spに沿って切断して断面データD8を生成する。そして、ステップS10では、切断面抽出部71が、生成した各断面データD8を個体識別データD2に関連付けて算出用データ生成部72に出力する。 In step S10, cross-sectional data D8 is generated, and the process proceeds to step S11. In step S10, the cut plane extraction unit 71 cuts the normalized data D7 generated by the normalization unit 69 along the slice position Sp set at an arbitrary position to generate cross-section data D8. Then, in step S10, the cut plane extraction section 71 outputs each generated section data D8 to the calculation data generation section 72 in association with the individual identification data D2.
 ステップS11では、算出用データD9を生成して、ステップS12へ進む。ステップS11では、算出用データ生成部72が、切断面抽出部71が生成した断面データD8の点群の数を間引きした間引き断面データD8´を生成し、その切断面方向で分布の空きが少ない側を選択して他方にコピー(複写)して算出用データD9を生成する。そして、ステップS11では、算出用データ生成部72が、生成した算出用データD9を算出領域抽出部73に出力する。 In step S11, calculation data D9 is generated, and the process proceeds to step S12. In step S11, the calculation data generation unit 72 generates thinned-out cross-sectional data D8' by thinning out the number of points in the cross-sectional data D8 generated by the cross-sectional plane extraction unit 71, and generates thinned-out cross-sectional data D8' in which there is less space in the distribution in the direction of the cut plane. One side is selected and copied to the other side to generate calculation data D9. Then, in step S11, the calculation data generation section 72 outputs the generated calculation data D9 to the calculation area extraction section 73.
 ステップS12では、算出用データD9における始点Psと終点Peとを抽出して、ステップS13へ進む。ステップS12では、算出領域抽出部73が、算出用データD9において、近似曲線Acを算出するための始点Psと終点Peとを抽出し、その始点Psと終点Peとの位置(そのデータ)を近似曲線算出部74に出力する。 In step S12, the starting point Ps and ending point Pe in the calculation data D9 are extracted, and the process proceeds to step S13. In step S12, the calculation area extraction unit 73 extracts the starting point Ps and the ending point Pe for calculating the approximate curve Ac from the calculation data D9, and approximates the positions (the data) of the starting point Ps and the ending point Pe. It is output to the curve calculation section 74.
 ステップS13では、近似曲線Acを算出して、ステップS14へ進む。ステップS13では、近似曲線算出部74が、算出用データD9に対して、始点Psと終点Peとを固定の制御点Cとして設定するとともに、その間に5つの制御点Cを設定し、その後者の5つの制御点Cの位置を調整して近似曲線Acを算出する。なお、実施例1のステップS13では、近似曲線算出部74が、切断面上において、第2制御点C2と第6制御点C6とのいずれか一方の位置と、第3制御点C3と第5制御点C5とのいずれか一方の位置と、を調整するとともに、中心線Lc上での第5制御点C5の位置を調整して算出用データD9(外表面側の輪郭)に適合する近似曲線Acを算出する。そして、ステップS13では、近似曲線算出部74が、算出した近似曲線Acをその各制御点C(そのデータ)とともに個体識別データD2を関連付けて評価値算出部75に出力する。 In step S13, an approximate curve Ac is calculated, and the process proceeds to step S14. In step S13, the approximate curve calculation unit 74 sets the starting point Ps and the ending point Pe as fixed control points C for the calculation data D9, and also sets five control points C between them. The approximate curve Ac is calculated by adjusting the positions of the five control points C. In step S13 of the first embodiment, the approximate curve calculation unit 74 calculates the position of one of the second control point C2 and the sixth control point C6, the third control point C3 and the fifth control point on the cutting plane. An approximate curve that matches the calculation data D9 (contour on the outer surface side) by adjusting the position of either one of the control points C5 and the position of the fifth control point C5 on the center line Lc. Calculate Ac. Then, in step S13, the approximate curve calculation section 74 outputs the calculated approximate curve Ac to the evaluation value calculation section 75 in association with the individual identification data D2 together with each control point C (its data).
 ステップS14では、評価値Evを算出して、ステップS15へ進む。ステップS14では、評価値算出部75が、近似曲線算出部74からの各近似曲線Acに基づいて、水飲み場52にいた乳牛51の育成状況の評価を示す評価値Evを算出し、その評価値Evに個体識別データD2を関連付けて適宜記憶部18に格納する。 In step S14, an evaluation value Ev is calculated, and the process proceeds to step S15. In step S14, the evaluation value calculation unit 75 calculates an evaluation value Ev indicating the evaluation of the breeding status of the dairy cow 51 that was in the drinking fountain 52 based on each approximate curve Ac from the approximate curve calculation unit 74, and The individual identification data D2 is associated with Ev and stored in the storage unit 18 as appropriate.
 ステップS15では、育成状況評価処理が終了されたか否かを判断し、YESの場合はこの育成状況評価処理を終了し、NOの場合はステップS1に戻る。ステップS15は、生育状況評価システム10が停止される、もしくは操作部15に育成状況評価処理を終了する旨の操作が為されると、育成状況評価処理が終了されたと判断する。 In step S15, it is determined whether or not the growing situation evaluation process has been completed. If YES, this growing situation evaluation process is ended, and if NO, the process returns to step S1. In step S15, when the growth situation evaluation system 10 is stopped or an operation to end the growth situation evaluation process is performed on the operation unit 15, it is determined that the growth situation evaluation process is ended.
 次に、生育状況評価システム10を用いて、育成状況評価を行う様子について説明する。
 生育状況評価システム10は、カメラ12を介して水飲み場52に乳牛51がいることを検出すると、両レーザ測定器13により水飲み場52の点群データD1を取得する(ステップS1、S2)。その後、生育状況評価システム10は、各点群データD1に基づいて各特定部位データD5を生成(ステップS3からS5)し、その各特定部位データD5を整列させて特定部位整列データD6を生成(ステップS6からS8)する。そして、生育状況評価システム10は、各特定部位整列データD6から基準箇所Prを基準とした各正規化データD7を生成(ステップS9)することにより、乳牛51の大きさに拘らず肉付きの様子を判断できるものとし、その各正規化データD7から各断面データD8を生成(ステップS10)する。
Next, a description will be given of how the growth situation is evaluated using the growth situation evaluation system 10.
When the growth status evaluation system 10 detects that the dairy cow 51 is present at the drinking fountain 52 via the camera 12, it acquires point cloud data D1 of the drinking fountain 52 using both laser measuring devices 13 (steps S1 and S2). Thereafter, the growth situation evaluation system 10 generates each specific part data D5 based on each point cloud data D1 (steps S3 to S5), and arranges each of the specific part data D5 to generate specific part alignment data D6 ( Steps S6 to S8). Then, the growth condition evaluation system 10 generates each normalized data D7 based on the reference point Pr from each specific part alignment data D6 (step S9), thereby evaluating the state of fatness of the dairy cow 51 regardless of its size. Each section data D8 is generated from each normalized data D7 (step S10).
 その後、生育状況評価システム10は、各断面データD8の点群を平均値で補間して間引き断面データD8´を生成し、その切断面方向で分布の空きが少ない側を選択して他方にコピー(複写)して算出用データD9を生成する(ステップS11)。これにより、生育状況評価システム10は、切断面方向のいずれか一方の点群が大きく欠落している場合であっても肉付きの様子を適切に判断できるものとしつつ、データ量を抑制できる。 After that, the growth situation evaluation system 10 interpolates the point group of each cross-section data D8 using the average value to generate thinned-out cross-section data D8', selects the side with fewer gaps in the distribution in the direction of the cross-section, and copies it to the other side. (copy) to generate calculation data D9 (step S11). Thereby, the growth condition evaluation system 10 can appropriately judge the state of fleshiness even when one of the point clouds in the direction of the cut plane is largely missing, and can suppress the amount of data.
 その後、生育状況評価システム10は、算出用データD9に適合する滑らかな近似曲線Acを算出するために、6次のベジェ曲線を適用することとする。このために、生育状況評価システム10は、各算出用データD9が示す凸部、凹部、凸部、凹部、凸部となる外形形状(乳牛51の輪郭)の両端となる始点Psと終点Peとを固定の制御点Cとして設定するとともに、その始点Psと終点Peとの間に5つの制御点Cを設定する(ステップS12、S13)。そして、生育状況評価システム10は、第2制御点C2と第6制御点C6とのいずれか一方の位置と、第3制御点C3と第5制御点C5とのいずれか一方の位置と、を調整するとともに、中心線Lc上での第5制御点C5の位置を調整して算出用データD9(外形形状)に適合する近似曲線Acを算出する(ステップS13)。すなわち、生育状況評価システム10は、始点Psと終点Peとの間に5つの制御点Cの位置を調整することにより、算出用データD9に適合する近似曲線Acを算出する。その後、生育状況評価システム10は、第2制御点C2(第6制御点C6)の位置と、第3制御点C3と(第5制御点C5)の位置と、第5制御点C5の位置と、に基づいて評価値Evを算出(ステップS14)し、適宜記憶部18に格納する。生育状況評価システム10は、表示部16に評価値Evを適宜表示させたり、通信部17を介して外部の機器に評価値Evを適宜出力させたりすることで、評価値Evを報知できる。 Thereafter, the growth condition evaluation system 10 applies a sixth-order Bezier curve in order to calculate a smooth approximate curve Ac that fits the calculation data D9. For this purpose, the growth situation evaluation system 10 determines the starting point Ps and the ending point Pe, which are both ends of the external shape (outline of the dairy cow 51) that becomes the convex part, concave part, convex part, concave part, and convex part indicated by each calculation data D9. is set as a fixed control point C, and five control points C are set between the starting point Ps and the ending point Pe (steps S12, S13). The growth situation evaluation system 10 then determines the position of one of the second control point C2 and the sixth control point C6, and the position of one of the third control point C3 and the fifth control point C5. At the same time, the position of the fifth control point C5 on the center line Lc is adjusted to calculate an approximate curve Ac that matches the calculation data D9 (outer shape) (step S13). That is, the growth situation evaluation system 10 calculates the approximate curve Ac that fits the calculation data D9 by adjusting the positions of the five control points C between the starting point Ps and the ending point Pe. Thereafter, the growth situation evaluation system 10 determines the position of the second control point C2 (sixth control point C6), the position of the third control point C3 and (fifth control point C5), and the position of the fifth control point C5. An evaluation value Ev is calculated based on , (step S14) and stored in the storage unit 18 as appropriate. The growth status evaluation system 10 can notify the evaluation value Ev by appropriately displaying the evaluation value Ev on the display unit 16 or outputting the evaluation value Ev to an external device via the communication unit 17 as appropriate.
 ここで、実際の乳牛51に対して、生育状況評価システム10を用いて上記のように求めた評価値Evがどのような値となったのかについて、図26を参照しつつ説明する。先ず、生育状況の評価の視標としては、文献(Journal of Dairy Science Vol.72,No.1,1989)において断面(以下では、理論断面Dtとする)とともに例示されている。図26は、理論断面Dtと、生育状況評価システム10で求めた各値と、の関係を表に纏めて示したものである。ここで、実際の乳牛51の中から理論断面Dtに合致する個体を見付けるのは容易ではない。このため、図26では、取得した沢山の乳牛51のデータから、上記の文献に例示の理論断面Dtに近い形状の断面が得られた2つを示している。その一つが、文献に例示の中の肉付きの良くない例(definite depression)に近いものであり、もう一つが文献に例示の中の肉付きの良い例(slight depression)に近いものである。このため、図26では、左の列を肉付きの良くない例とし、右の列を肉付きの良い例とする。そして、図26では、一番上の行に、上記した2つの理論断面Dtを示している。以下では、肉付きの良くない例の各データに対しては、末尾にaを付し、肉付きの良い例の各データに対しては、末尾にbを付して示す。すなわち、左側の肉付きの良くない例を理論断面Dtaとし、右側に肉付きの良い例を理論断面Dtbとする。このことは、理論断面Dtよりも下の行の各データでも同様とする。 Here, the evaluation value Ev obtained as described above using the growth condition evaluation system 10 for the actual dairy cow 51 will be explained with reference to FIG. 26. First, as a visual indicator for evaluating growth conditions, a cross-section (hereinafter referred to as a theoretical cross-section Dt) is exemplified in the literature (Journal of Dairy Science Vol. 72, No. 1, 1989). FIG. 26 shows a table summarizing the relationship between the theoretical cross section Dt and each value obtained by the growth condition evaluation system 10. Here, it is not easy to find an individual that matches the theoretical cross section Dt from among the actual dairy cows 51. For this reason, FIG. 26 shows two cross-sections whose shape is close to the theoretical cross-section Dt exemplified in the above-mentioned literature from the acquired data of many dairy cows 51. One of them is close to the definite depression example in the literature, and the other is close to the slight depression example in the literature. For this reason, in FIG. 26, the left column is an example with less flesh, and the right column is an example with good flesh. In FIG. 26, the two theoretical cross sections Dt described above are shown in the top row. In the following, each data of an example that is not fleshy is indicated with a suffix a, and each data of a fleshy example is indicated with a suffix b. That is, an example with a poor thickness on the left side is defined as a theoretical cross section Dta, and an example with a good thickness on the right side is defined as a theoretical cross section Dtb. This also applies to each data in the row below the theoretical cross section Dt.
 また、図26では、実際に取得した乳牛51のデータとして、理論断面Dtの下の行に、乳牛51の実断面データDaを示している。この実断面データDaは、上記した動物点群データD4(特定部位データD5)から断面を示すデータとして作成したものである。これは、実際の乳牛51の断面を得るのは困難であることによる。ここで、動物点群データD4(特定部位データD5)は、取得した合成点群データD3のうちの乳牛51に相当する三次元座標位置(座標データ)を示すものである。このため、実断面データDaは、実際の乳牛51の断面の外形形状を極めて正確に描きだしているものと考えられる。このことから、図26では、乳牛51のデータとして実断面データDaを用いており、左側に理論断面Dtaに近い形状の乳牛51の実断面データDaaを示し、右側に理論断面Dtbに近い形状の乳牛51の実断面データDabを示している。図26に示すように、各実断面データDaは、対応する理論断面Dtとそれぞれ極めて近いものとなっている。 Furthermore, in FIG. 26, actual cross-sectional data Da of the dairy cow 51 is shown in the row below the theoretical cross-section Dt as data of the dairy cow 51 that was actually obtained. This actual cross-section data Da is created as data indicating a cross-section from the above-mentioned animal point group data D4 (specific part data D5). This is because it is difficult to obtain a cross section of the actual dairy cow 51. Here, the animal point cloud data D4 (specific site data D5) indicates a three-dimensional coordinate position (coordinate data) corresponding to the dairy cow 51 in the acquired composite point cloud data D3. Therefore, it is considered that the actual cross-sectional data Da depicts the external shape of the cross-section of the actual dairy cow 51 extremely accurately. Therefore, in FIG. 26, the actual cross-section data Da is used as the data of the dairy cow 51, and the left side shows the actual cross-section data Daa of the dairy cow 51 with a shape close to the theoretical cross-section Dta, and the right side shows the actual cross-section data Daa of the dairy cow 51 with a shape close to the theoretical cross-section Dtb. Actual cross-sectional data Dab of a dairy cow 51 is shown. As shown in FIG. 26, each actual section data Da is extremely close to the corresponding theoretical section Dt.
 そして、図26では、実断面データDaaおよび実断面データDabの元となる乳牛51から生育状況評価システム10で求めた各値として、上から順に算出用データD9、近似曲線Ac、評価値Evを記載している。ここで、両理論断面Dtと両実断面データDaとが極めて近いものであるので、両実断面データDaに対して求めた算出用データD9、近似曲線Ac、評価値Evは、実質的に両理論断面Dtに対して求めた算出用データD9、近似曲線Ac、評価値Evと略等しいものとなる。このため、両理論断面Dtに対して、両算出用データD9、両近似曲線Acおよび両評価値Evが適切なものとされていれば、生育状況評価システム10が乳牛51の生育状況を適切に評価できていると考えることができる。 In FIG. 26, the calculation data D9, the approximate curve Ac, and the evaluation value Ev are shown in order from the top as the values obtained from the dairy cow 51, which is the source of the actual cross-section data Daa and the actual cross-section data Dab, by the growth condition evaluation system 10. It is listed. Here, since the theoretical cross-section Dt and the actual cross-section data Da are extremely close, the calculation data D9, the approximate curve Ac, and the evaluation value Ev obtained for the actual cross-section data Da are substantially the same as the actual cross-section data Da. It is approximately equal to the calculation data D9, the approximate curve Ac, and the evaluation value Ev obtained for the theoretical cross section Dt. Therefore, if both calculation data D9, both approximate curves Ac, and both evaluation values Ev are appropriate for both theoretical cross sections Dt, the growth situation evaluation system 10 can appropriately evaluate the growth situation of the dairy cow 51. It can be considered that the evaluation is successful.
 先ず、図26からは、算出用データD9aは、その元となる実断面データDaaと極めて近い形状とされていることがわかる。また、算出用データD9bも、その元となる実断面データDabと極めて近い形状とされていることがわかる。このことから、生育状況評価システム10は、算出に用いる各算出用データD9を、元となる乳牛51の実際の断面の外形形状を適切に表すことができていることがわかる。 First, it can be seen from FIG. 26 that the calculation data D9a has a shape extremely similar to the actual cross-sectional data Daa that is the source thereof. Furthermore, it can be seen that the calculation data D9b also has a shape extremely similar to the actual cross-sectional data Dab that is the source thereof. From this, it can be seen that the growth status evaluation system 10 is able to appropriately represent the external shape of the actual cross section of the dairy cow 51, which is the source, of each calculation data D9 used for calculation.
 次に、図26からは、近似曲線Acaは、その元となる算出用データD9aに極めて近い形状とされていることがわかる。また、近似曲線Acbは、その元となる算出用データD9bに極めて近い形状とされていることがわかる。このことから、生育状況評価システム10は、近似曲線Acから求めた評価値EVを、算出用データD9aすなわちその元となる実断面データDaを適切に反映させていることがわかる。そして、生育状況評価システム10は、各近似曲線Acに基づいて、肉付きの良くない例の評価値EVとして0.211を算出し、肉付きの良い例の評価値EVとして0.186を算出した。このため、生育状況評価システム10は、肉付きの良くない例の理論断面Dtaに対する評価値EVとして0.211を算出し、肉付きの良い例の理論断面Dtaに対する評価値EVとして0.186を算出したものと考えることができる。ここで、評価値EVは、小さな数値となるほど肉付きが良いことを示しているので、生育状況評価システム10は、上記した文献が示す生育状況の評価の視標と同様に、乳牛51の育成状況を適切に表していることがわかる。 Next, from FIG. 26, it can be seen that the approximate curve Aca has a shape extremely close to the calculation data D9a that is the source thereof. Furthermore, it can be seen that the approximate curve Acb has a shape extremely close to the calculation data D9b that is the source thereof. From this, it can be seen that the growth situation evaluation system 10 appropriately reflects the calculation data D9a, that is, the actual cross-sectional data Da that is the basis of the evaluation value EV obtained from the approximate curve Ac. Based on each approximate curve Ac, the growth status evaluation system 10 calculated 0.211 as the evaluation value EV of the example with poor fleshiness, and calculated 0.186 as the evaluation value EV of the example with good fleshiness. Therefore, the growth situation evaluation system 10 calculated 0.211 as the evaluation value EV for the theoretical cross section Dta of the example with poor fleshiness, and calculated 0.186 as the evaluation value EV for the theoretical cross section Dta of the example with good fleshiness. It can be thought of as a thing. Here, the evaluation value EV indicates that the smaller the value, the better the meatiness. Therefore, the growth situation evaluation system 10 can evaluate the growth situation of the dairy cow 51 in the same way as the visual indicators for evaluation of the growth situation shown in the above-mentioned literature. It can be seen that it represents properly.
 次に、近似曲線Acに対するBCSと評価値Evとの関係について、図27から図30を用いて説明する。この図27から図30では、上記した4つのスライス位置Sp(図18参照)のそれぞれで得られた断面データD8に基づく4つの近似曲線Acを、従来のBCSにおける数値別に示している。この図27は、スライス位置Sp1での各近似曲線Acを示し、図28は、スライス位置Sp2での各近似曲線Acを示し、図29は、スライス位置Sp3での各近似曲線Acを示し、図30は、スライス位置Sp4での各近似曲線Acを示す。この図27から図30では、4つの近似曲線Acとして、BCSが2.50となる検体Saと、BCSが2.75となる検体Sbと、BCSが3.00となる検体Scと、BCSが3.25となる検体Sdと、を示している。ここで、図27から図29では、各検体Sの近似曲線Acすなわち算出用データD9の形状の差異の把握を容易とするために、各検体Sの近似曲線Acにおいて、始点Psとなる第1制御点C1と、終点Peとなる第7制御点C7と、その間に位置する頂点Cvと、を略一致するものとしている。また、図27から図29では、図が煩雑となってそれぞれの把握が困難となることを避けるために、その他の制御点Cについては省略している。 Next, the relationship between the BCS and the evaluation value Ev for the approximate curve Ac will be explained using FIGS. 27 to 30. 27 to 30, four approximate curves Ac based on the cross-sectional data D8 obtained at each of the four slice positions Sp (see FIG. 18) are shown by numerical value in the conventional BCS. 27 shows each approximate curve Ac at slice position Sp1, FIG. 28 shows each approximate curve Ac at slice position Sp2, FIG. 29 shows each approximate curve Ac at slice position Sp3, and FIG. 30 indicates each approximate curve Ac at the slice position Sp4. In FIGS. 27 to 30, four approximate curves Ac are sample Sa with BCS of 2.50, sample Sb with BCS of 2.75, sample Sc with BCS of 3.00, and sample Sa with BCS of 2.75. The specimen Sd is 3.25. Here, in FIGS. 27 to 29, in order to easily understand the difference in shape of the approximate curve Ac of each sample S, that is, the calculation data D9, in the approximate curve Ac of each sample S, the first It is assumed that the control point C1, the seventh control point C7 serving as the end point Pe, and the vertex Cv located therebetween are substantially coincident. Further, in FIGS. 27 to 29, other control points C are omitted to avoid complicating the diagrams and making it difficult to understand each one.
 ここで、スライス位置Sp4は、上述したように、幅方向Dwに直交する面であり、切断面方向(基準軸方向Db)の一方のみに点群が存在することとなる。このため、上記した算出用データD9は、上記したように、点群が存在する一方のデータを他方にコピー(複写)することにより、他のスライス位置Spと同様の凸部、凹部、凸部、凹部、凸部を描く曲線としている。しかしながら、実際の乳牛51では、スライス位置Sp4で得られた断面が上記のように一方のみとなるので、図30では、各検体Sの近似曲線Acとして、一方のみのデータすなわち凸部、凹部、凸部を描く曲線としている。このため、図30では、各検体Sの近似曲線Acを、始点Psとなる第1制御点C1と、頂点Cvと、を結ぶ曲線としている。図30では、各検体Sの近似曲線Acすなわち算出用データD9の形状の差異の把握を容易とするために、各検体Sの近似曲線Acにおいて、始点Psとなる第1制御点C1と、頂点Cvと、を略一致するものとしている。そして、図30では、図27から図29と同様に、図が煩雑となってそれぞれの把握が困難となることを避けるために、その他の制御点Cについては省略している。 Here, as described above, the slice position Sp4 is a plane perpendicular to the width direction Dw, and a group of points exists only in one side of the cutting plane direction (reference axis direction Db). Therefore, as described above, by copying (copying) one data in which a point group exists to the other, the above calculation data D9 can be obtained by copying (copying) one data in which a point group exists to the other slice position Sp. , a concave portion, and a convex portion. However, in the actual dairy cow 51, the cross section obtained at the slice position Sp4 is only one as described above, so in FIG. It is a curved line that depicts a convex portion. Therefore, in FIG. 30, the approximate curve Ac for each specimen S is a curve connecting the first control point C1, which is the starting point Ps, and the vertex Cv. In FIG. 30, in order to easily understand the difference in shape of the approximate curve Ac of each sample S, that is, the calculation data D9, in the approximate curve Ac of each sample S, the first control point C1, which is the starting point Ps, and the apex It is assumed that Cv and Cv are approximately the same. In FIG. 30, similar to FIGS. 27 to 29, other control points C are omitted to avoid complicating the diagram and making it difficult to understand each one.
 図27から図30に示すように、スライス位置Spに拘らず、最も外側に検体Sdの近似曲線Acが位置し、その内側に検体Scの近似曲線Acが位置し、その内側に検体Sbの近似曲線Acが位置し、その内側に検体Saの近似曲線Acが位置している。このため、各近似曲線Acすなわちその元となる乳牛51では、BCSが3.25の検体Sdが最も肉付きが良く、BCSが3.00の検体Scがその次に肉付きが良く、BCSが2.75の検体Sbがその次に肉付きが良く、BCSが2.50の検体Saが最も肉付きが良くないことがわかる。 As shown in FIGS. 27 to 30, regardless of the slice position Sp, the approximate curve Ac of the specimen Sd is located at the outermost side, the approximate curve Ac of the specimen Sc is located inside it, and the approximate curve Ac of the specimen Sb is located inside it. A curve Ac is located, and an approximate curve Ac of the sample Sa is located inside the curve Ac. Therefore, for each approximate curve Ac, that is, for the dairy cow 51 that is the source of the approximate curve Ac, the sample Sd with a BCS of 3.25 is the most fleshy, the sample Sc with a BCS of 3.00 is the next most fleshy, and the sample Sd with a BCS of 2. It can be seen that the sample Sb with a BCS of 75 is the next most fleshy, and the sample Sa with a BCS of 2.50 is the least fleshy.
 そして、本出願人は、図27から図30に示す各近似曲線Acすなわちその元となる乳牛51のそれぞれのスライス位置Spでの各断面に対して、生育状況評価システム10により評価値EVを算出した。その評価値EVは、スライス位置Sp1での断面となる図27の例では、検体Saの近似曲線Acが0.403となり、検体Sbの近似曲線Acが0.395となり、検体Scの近似曲線Acが0.374となり、検体Sdの近似曲線Acが0.354となった。このように、肉付きが良くなるほど、すなわちBCSが大きくなるほど、評価値Evが順に小さくなっていることがわかる。 The applicant calculates an evaluation value EV using the growth condition evaluation system 10 for each approximate curve Ac shown in FIGS. 27 to 30, that is, for each cross section at each slice position Sp of the dairy cow 51 that is the source did. In the example of FIG. 27, which is a cross section at the slice position Sp1, the evaluation value EV is such that the approximate curve Ac of the sample Sa is 0.403, the approximate curve Ac of the sample Sb is 0.395, and the approximate curve Ac of the sample Sc is was 0.374, and the approximate curve Ac of the sample Sd was 0.354. In this way, it can be seen that the evaluation value Ev becomes smaller as the thickness becomes better, that is, the BCS becomes larger.
 同様に、評価値EVは、スライス位置Sp2での断面となる図28の例では、検体Saの近似曲線Acが0.233となり、検体Sbの近似曲線Acが0.231となり、検体Scの近似曲線Acが0.221となり、検体Sdの近似曲線Acが0.207となった。また、評価値EVは、スライス位置Sp3での断面となる図29の例では、検体Saの近似曲線Acが0.411となり、検体Sbの近似曲線Acが0.396となり、検体Scの近似曲線Acが0.370となり、検体Sdの近似曲線Acが0.340となった。さらに、評価値EVは、スライス位置Sp4での断面となる図30の例では、検体Saの近似曲線Acが0.543となり、検体Sbの近似曲線Acが0.511となり、検体Scの近似曲線Acが0.468となり、検体Sdの近似曲線Acが0.413となった。これらのことから、スライス位置Spに拘らず、肉付きが良くなるほど、すなわちBCSが大きくなるほど、評価値Evが順に小さくなっていることがわかる。 Similarly, in the example of FIG. 28 where the evaluation value EV is a cross section at the slice position Sp2, the approximate curve Ac for the sample Sa is 0.233, the approximate curve Ac for the sample Sb is 0.231, and the approximate curve Ac for the sample Sc is 0.233. The curve Ac was 0.221, and the approximate curve Ac of the sample Sd was 0.207. In addition, in the example of FIG. 29 where the evaluation value EV is a cross section at the slice position Sp3, the approximate curve Ac of the sample Sa is 0.411, the approximate curve Ac of the sample Sb is 0.396, and the approximate curve Ac of the sample Sc is Ac was 0.370, and the approximate curve Ac of the sample Sd was 0.340. Furthermore, in the example of FIG. 30 which is a cross section at slice position Sp4, the approximate curve Ac of the sample Sa is 0.543, the approximate curve Ac of the sample Sb is 0.511, and the approximate curve Ac of the sample Sc is Ac was 0.468, and the approximate curve Ac of the sample Sd was 0.413. From these results, it can be seen that the evaluation value Ev becomes smaller as the meat becomes thicker, that is, the BCS becomes larger, regardless of the slice position Sp.
 このため、評価値Evは、スライス位置Spに応じて数値範囲が変化するものの、BCSと同様に、肉付きの良し悪しを適切に示していることがわかる。このことから、生育状況評価システム10は、各算出用データD9に基づく近似曲線Acから算出した評価値Evが実際の乳牛51の育成状況を適切に表していることがわかる。そして、生育状況評価システム10は、各算出用データD9を6次のベジェ曲線を用いて近似曲線Acを求め、その近似曲線Acから評価値Evを算出するので、骨格や肉付き等によって個体毎に三次元形状が異なる場合であっても、簡易にかつ適切に評価値Evを算出でき、多頭数の評価を自動化することができる。 Therefore, although the numerical range of the evaluation value Ev changes depending on the slice position Sp, it can be seen that, like the BCS, it appropriately indicates the quality of the fleshiness. From this, it can be seen that the growth status evaluation system 10 appropriately represents the evaluation value Ev calculated from the approximate curve Ac based on each calculation data D9, appropriately representing the actual growth status of the dairy cow 51. Then, the growth situation evaluation system 10 calculates an approximate curve Ac for each calculation data D9 using a sixth-order Bezier curve, and calculates an evaluation value Ev from the approximate curve Ac. Even if the three-dimensional shapes are different, the evaluation value Ev can be easily and appropriately calculated, and the evaluation of a large number of animals can be automated.
 生育状況評価システム10は、上記したように評価値Evとして算出した数値を示すことで、乳牛51の育成状況を表すことができる。ところで、生育状況評価システム10は、上記したように、スライス位置Spに応じて評価値Evの数値範囲が変化する。このため、生育状況評価システム10は、評価したスライス位置Spにおける基準の値とともに評価値Evを示すことで、乳牛51の育成状況を表すことができる。また、生育状況評価システム10は、評価したスライス位置Spに応じたそれぞれの評価値Evの数値範囲を、スライス位置Spの差異に拘らず統一した値に変換して示すものとしてもよい。この場合、例えば、それぞれのスライス位置Spにおいて、各評価値Evを最大値で規格化し、異なる複数のスライス位置Spのそれぞれの規格化した評価値Evを算出することがあげられる。さらに、生育状況評価システム10は、評価したスライス位置Spに応じたそれぞれの評価値Evを、BCSに変換する変換係数を乗算することにより、BCSに対応する値に変換するものとしてもよい。この場合、例えば、上記した図27から図30に示す近似曲線Acのように、同じ近似曲線Acに対するBCSと評価値Evとの双方(それぞれが変化する範囲)を求めることにより、変換係数を求めることができる。これらの場合であっても、生育状況評価システム10は、算出した評価値Evを予め決められた方法で規格化したり予め決められた変換係数を用いてBCSに対応する値に変換したりするのみであるので、多頭数の評価を自動化することができる。 The growth status evaluation system 10 can represent the growth status of the dairy cow 51 by indicating the numerical value calculated as the evaluation value Ev as described above. By the way, in the growth situation evaluation system 10, as described above, the numerical range of the evaluation value Ev changes depending on the slice position Sp. Therefore, the growth status evaluation system 10 can represent the growth status of the dairy cow 51 by indicating the evaluation value Ev together with the reference value at the evaluated slice position Sp. Furthermore, the growth status evaluation system 10 may convert the numerical range of each evaluation value Ev according to the evaluated slice position Sp into a unified value regardless of the difference in the slice position Sp. In this case, for example, each evaluation value Ev may be normalized by the maximum value at each slice position Sp, and each normalized evaluation value Ev at a plurality of different slice positions Sp may be calculated. Furthermore, the growth situation evaluation system 10 may convert each evaluation value Ev corresponding to the evaluated slice position Sp into a value corresponding to the BCS by multiplying it by a conversion coefficient for converting into the BCS. In this case, for example, as in the approximate curve Ac shown in FIGS. 27 to 30, the conversion coefficient is determined by determining both the BCS and the evaluation value Ev (the range in which each changes) for the same approximate curve Ac. be able to. Even in these cases, the growth status evaluation system 10 only normalizes the calculated evaluation value Ev using a predetermined method or converts it into a value corresponding to the BCS using a predetermined conversion coefficient. Therefore, evaluation of a large number of animals can be automated.
 加えて、上記したように、評価値Evの数値と肉付きの良し悪しとが比例する関係であることから、生育状況評価システム10は、段階的なランクとして乳牛51の育成状況を表すものとしてもよい。これは、例えば、上記した数値を用いると、各スライス位置Spにおいて、BCSが3.25以上となる評価値Evを肉付きが最も良いランクAとし、BCSが3.25未満で3.00以上となる評価値Evを次に肉付きが良いランクBとし、BCSが3.00未満で2.75以上となる評価値Evを次に肉付きが良いランクCとし、BCSが2.75未満で2.50以上となる評価値Evを肉付きがあまり良くないランクDとし、BCSが2.50未満となる評価値Evを肉付きが良くないランクEとすることができる。このように段階的なランクで示すと、スライス位置Spの差異に拘らず統一した評価として肉付きの良し悪しの判断ができるとともに、評価値Evとしての数値で示すよりも直感的に肉付きの良し悪しを把握させることができる。この場合であっても、生育状況評価システム10は、上記したように算出した評価値Evを予め決められたランクに振り分けるのみであるので、多頭数の評価を自動化することができる。なお、上記したランクの数や、各ランクに対して当て嵌める各評価値Evの数値や、各ランクの評価コメント等は適宜設定すればよく、上記した例に限定されない。 In addition, as described above, since there is a proportional relationship between the numerical value of the evaluation value Ev and the quality of meat, the growth status evaluation system 10 can also be used to express the growth status of the dairy cow 51 as a graded rank. good. For example, using the above numerical values, at each slice position Sp, the evaluation value Ev for which the BCS is 3.25 or more is ranked A with the highest fleshiness, and the evaluation value Ev for which the BCS is less than 3.25 and is 3.00 or more is ranked A. The evaluation value Ev that becomes the next most fleshy rank is B, and the evaluation value Ev that is 2.75 or more when the BCS is less than 3.00 is the next most fleshy rank C, and the BCS is less than 2.75 and is 2.50. The evaluation value Ev that is above can be set as a rank D that is not very fleshy, and the evaluation value Ev that is less than 2.50 can be set as a rank E that is not very fleshy. By indicating the graded ranks in this way, it is possible to judge whether the fleshiness is good or bad as a uniform evaluation regardless of the difference in the slice position Sp, and it is also possible to judge whether the fleshiness is good or bad intuitively rather than showing it numerically as the evaluation value Ev. can be made to understand. Even in this case, the growth status evaluation system 10 only allocates the evaluation value Ev calculated as described above to predetermined ranks, so that evaluation of a large number of animals can be automated. Note that the number of ranks described above, the numerical value of each evaluation value Ev applied to each rank, the evaluation comment of each rank, etc. may be set as appropriate, and are not limited to the above example.
 ここで、従来技術の生育状況評価システムは、距離画像センサを用いて動物の三次元座標群を取得している。その距離画像センサは、取得する三次元座標群の精度や解像度を高めることに限界があるので、その三次元座標群が実際の動物の輪郭を適切に表すことが困難である。このため、従来技術の健康状態推定装置では、三次元座標群を用いても、BCSにより適切な評価を得ることが困難となる。 Here, the growth status evaluation system of the prior art uses a distance image sensor to obtain a group of three-dimensional coordinates of the animal. Since the distance image sensor has a limit in increasing the accuracy and resolution of the three-dimensional coordinate group to be obtained, it is difficult for the three-dimensional coordinate group to appropriately represent the outline of the actual animal. For this reason, in the conventional health condition estimating device, it is difficult to obtain an appropriate evaluation by BCS even if a three-dimensional coordinate group is used.
 また、従来の健康状態推定装置では、距離画像センサを用いているので、三次元座標群が示す動物の輪郭がギザギザな凹凸となる等のように実際の動物とは異なり、適切な輪郭形状を数式(近似曲線)で表すことが困難となる。このため、従来の健康状態推定装置では、輪郭形状を適切に表す数式を得ることが困難となり、輪郭を用いて育成状況を適切に評価することが困難である。 In addition, since conventional health state estimation devices use distance image sensors, the outline of the animal indicated by the three-dimensional coordinate group differs from the actual animal, such as with jagged irregularities, so it is difficult to determine the appropriate outline shape. It becomes difficult to express it with a mathematical formula (approximate curve). For this reason, in the conventional health condition estimating device, it is difficult to obtain a mathematical formula that appropriately represents the contour shape, and it is difficult to appropriately evaluate the growth status using the contour.
 そして、従来、獣医等は、手触り等で乳牛の形状を把握することで、BCSを求めることが一般的である。すると、BCSでは、それを求める者(獣医等)が、自身の見え方に応じて、骨や肉付き等に基づく形状がどこに当て嵌まるのかを判断するので、求める者によってバラツキが生じてしまい、適切な評価を得ることが困難である。すなわち、従来のBCSは、求める者による個人差や、同じ者が求めた場合であっても判断の揺らぎが生じることにより、評価の精度を高めることが困難である。加えて、BCSでは、乳牛の形状を把握のために触れられたりすることが、乳牛にとってストレスとなってしまう。 Conventionally, veterinarians and the like have generally determined the BCS by grasping the shape of a dairy cow by feel, etc. Then, in BCS, the person seeking it (veterinarian, etc.) determines where the shape based on bones and fleshiness fits depending on their own appearance, so there is variation depending on the person seeking it, and the appropriate It is difficult to obtain a good evaluation. That is, in the conventional BCS, it is difficult to improve the accuracy of evaluation due to individual differences among the requesters and fluctuations in judgment even when requested by the same person. In addition, in BCS, being touched to understand the shape of the cow causes stress to the cow.
 さらに、従来の健康状態推定装置では、動物の三次元座標群から再現した動物の三次元形状に基づいて、ルーメンの凹み具合を示す特徴量から育成状況の評価を得ている。ここで、牛や豚等の動物では、生育状況として、肉付きの様子(良し悪し)を判断できることが求められるが、同じ種類の動物であっても、骨格の大きさが異なる。このため、従来の健康状態推定装置では、骨格の大きさの差異に拘わらず単にルーメンの凹み具合を示す特徴量を用いていることから、肉付きの様子を適切に判断することが困難である。これは、同じ凹み具合(大きさ)であっても、大きな骨格の動物と小さな骨格の動物とでは、当然に肉付きが異なることが考えられることによる。 Furthermore, in the conventional health state estimation device, the breeding status is evaluated from the feature amount indicating the degree of concavity of the lumen, based on the three-dimensional shape of the animal reproduced from the animal's three-dimensional coordinate group. Here, in animals such as cows and pigs, it is required to be able to judge the state of fleshiness (good or bad) as a growth condition, but even animals of the same type have different skeletal sizes. For this reason, conventional health condition estimating devices use feature quantities that simply indicate the degree of concavity of the lumen, regardless of differences in skeletal size, making it difficult to appropriately judge the state of fleshiness. This is because animals with large skeletons and animals with small skeletons may naturally have different fleshiness even if they have the same concavity (size).
 加えて、従来の健康状態推定装置では、動物の三次元座標群を適宜繋ぎ合わせることにより、動物の三次元形状を再現しており、その三次元形状に基づいて、ルーメンの凹み具合を示す特徴量から育成状況の評価を得ている。ここで、牛や豚等の動物は、同じ種類の動物であっても、骨格や肉付き等によって個体毎に三次元形状が異なる。このため、従来の健康状態推定装置では、様々な三次元形状に対してルーメンの凹み具合を示す特徴量を求める必要があるので、ルーメンの位置や範囲の特定やその凹み具合の特徴量の求め方等が多岐に亘ってしまい、多頭数の評価を自動化することが困難である。 In addition, conventional health state estimation devices reproduce the three-dimensional shape of the animal by appropriately connecting the three-dimensional coordinates of the animal, and based on that three-dimensional shape, characteristics that indicate the degree of concavity of the lumen are calculated. The cultivation status is evaluated based on the quantity. Here, animals such as cows and pigs have different three-dimensional shapes depending on their skeletons, fleshiness, etc. even if they are of the same type. For this reason, with conventional health condition estimation devices, it is necessary to determine the feature amount that indicates the degree of concavity of the lumen for various three-dimensional shapes. There are a wide variety of methods, etc., making it difficult to automate the evaluation of a large number of animals.
 これらに対して、生育状況評価システム10は、レーザ測定器13を用いて動物(実施例1では乳牛51)の三次元座標群を取得している。そのレーザ測定器13は、精密な測量に用いられる水準での精度の三次元座標群(点群データD1)を取得可能であるとともに、解像度も極めて高くする(実施例1では12.5mmの間隔)ことができるので、その点群データD1が実際の乳牛51の輪郭を極めて忠実に表すことができる。ここで、実施例1のレーザ測定器13は、一例として、パルスレーザ光線の到達距離の精度を3.5mm以下の誤差とすることができ、走査面の精度を2.0mm以下の誤差とすることができ、測角の精度を鉛直、水平ともに6秒(角度)以下の誤差とすることができる。また、実施例1のレーザ測定器13は、低出力のモードとすることもできるが、その場合であってもパルスレーザ光線の到達距離の精度を4.0mm以下の誤差となることを除くと、その他に関しては上記した精度とすることができる。このように、生育状況評価システム10は、レーザ測定器13を用いることにより、極めて高い精度で三次元座標群を取得できるとともに解像度も極めて高くできる。このため、生育状況評価システム10は、レーザ測定器13からの点群データD1を用いることで、育成状況の評価を適切に得ることができる。 In contrast, the growth status evaluation system 10 uses a laser measuring device 13 to obtain a group of three-dimensional coordinates of an animal (dairy cow 51 in Example 1). The laser measuring device 13 is capable of acquiring a three-dimensional coordinate group (point cloud data D1) with an accuracy level used for precise surveying, and has an extremely high resolution (in Example 1, the distance is 12.5 mm). ), the point cloud data D1 can represent the outline of the actual dairy cow 51 with extreme fidelity. Here, the laser measuring device 13 of the first embodiment can, for example, make the accuracy of the reachable distance of the pulsed laser beam an error of 3.5 mm or less, and make the accuracy of the scanning plane an error of 2.0 mm or less. This allows the accuracy of angle measurement to be less than 6 seconds (angle) both vertically and horizontally. Further, the laser measuring device 13 of the first embodiment can be set to a low output mode, but even in that case, the accuracy of the reachable distance of the pulsed laser beam must be kept within an error of 4.0 mm. , and others can have the above-mentioned accuracy. In this way, by using the laser measuring device 13, the growth status evaluation system 10 can obtain a three-dimensional coordinate group with extremely high accuracy and can also achieve extremely high resolution. Therefore, the growth situation evaluation system 10 can appropriately obtain an evaluation of the growth situation by using the point cloud data D1 from the laser measuring device 13.
 また、生育状況評価システム10は、レーザ測定器13を用いているため、乳牛51を示す点群データD1の外形形状が実際の乳牛51の輪郭を極めて忠実に表すことができるので、その輪郭を滑らかな曲線で近似することができ、実際の乳牛51の輪郭に適切に表す近似曲線Acを求めることができる。このため、生育状況評価システム10では、乳牛51の輪郭を標準化した数式である近似曲線Acで示すことができ、バラツキのない育成状況の評価を得ることができる。すなわち、生育状況評価システム10は、点群データD1に基づく外形形状に近似して近似曲線Acを求めることにより、乳牛51の体形を数式で表すことができるようになって、育成状況の評価を計算により算出できるようになるので、その評価を客観的かつ適切なものにできる。 In addition, since the growth condition evaluation system 10 uses the laser measuring device 13, the external shape of the point cloud data D1 indicating the dairy cow 51 can represent the outline of the actual dairy cow 51 extremely faithfully. Approximation can be performed using a smooth curve, and an approximated curve Ac that appropriately represents the outline of the actual dairy cow 51 can be obtained. Therefore, in the growth status evaluation system 10, the outline of the dairy cow 51 can be represented by an approximate curve Ac, which is a standardized mathematical formula, and it is possible to obtain a uniform evaluation of the growth status. That is, the growth status evaluation system 10 can express the body shape of the dairy cow 51 using a mathematical formula by approximating the external shape based on the point cloud data D1 to obtain an approximate curve Ac, and can evaluate the growth status. Since it can be calculated by calculation, the evaluation can be made objective and appropriate.
 さらに、生育状況評価システム10は、各点群データD1に基づいて生成した各特定部位整列データD6から基準箇所Prを検出し、その基準箇所Prが均一の大きさとなるように各特定部位整列データD6を拡大または縮小して各正規化データD7を生成する。また、生育状況評価システム10は、その各正規化データD7から各断面データD8を生成し、その各断面データD8から算出用データD9を生成し、その算出用データD9に適合させた近似曲線Acから評価値Evを算出している。このため、生育状況評価システム10は、骨格に対する肉付きの様子を近似曲線Acとして表すことができ、その近似曲線Acから評価値Evを算出するので、骨格の大きさの差異の影響を大幅に抑えた評価値Evを得ることができ、肉付きの様子を適切に判断できる。また、生育状況評価システム10は、骨等を利用した特徴部分に基づいて定めた共通のスライス位置Spの断面データD8に基づいて評価値Evを算出できるので、動物同士の比較を容易として育成状況を適切に評価できる。 Furthermore, the growth situation evaluation system 10 detects a reference point Pr from each specific part alignment data D6 generated based on each point cloud data D1, and arranges each specific part alignment data so that the reference point Pr has a uniform size. Each normalized data D7 is generated by enlarging or reducing D6. The growth situation evaluation system 10 also generates each cross-sectional data D8 from each of the normalized data D7, generates calculation data D9 from each cross-section data D8, and generates an approximate curve Ac adapted to the calculation data D9. The evaluation value Ev is calculated from. For this reason, the growth status evaluation system 10 can express the state of fleshiness with respect to the skeleton as an approximate curve Ac, and calculates the evaluation value Ev from the approximate curve Ac, thereby greatly suppressing the influence of differences in the size of the skeleton. It is possible to obtain the evaluation value Ev, and to appropriately judge the appearance of fleshiness. In addition, the growth status evaluation system 10 can calculate the evaluation value Ev based on the cross-sectional data D8 of the common slice position Sp determined based on the characteristic parts using bones etc., so that the growth status can be easily compared between animals. be able to appropriately evaluate
 生育状況評価システム10は、骨格や肉付き等によって個体毎に三次元形状が異なるものであっても、全体の傾向として、凸部、凹部、凸部、凹部、凸部を描きつつ真ん中の凸部に背骨51dが位置する曲線となっていることに着目している。そして、生育状況評価システム10は、各点群データD1に基づく算出用データD9に適合する滑らかな近似曲線Acを算出するために、6次のベジェ曲線を適用することとする。このため、生育状況評価システム10は、算出用データD9が示す外形形状の両端となる始点Psと終点Peとを固定の制御点Cとして設定するとともに、その始点Psと終点Peとの間に5つの制御点Cを設定する。そして、生育状況評価システム10は、その5つの制御点Cの位置を調整することにより、算出用データD9に適合させた近似曲線Acを算出し、その近似曲線Acから評価値Evを算出する。このため、生育状況評価システム10は、骨格や肉付き等によって個体毎に三次元形状が異なっていても、算出用データD9を6次のベジェ曲線を用いた近似曲線Acで表すことができ、その近似曲線Acから評価値Evを算出できる。これにより、生育状況評価システム10は、近似曲線Acや評価値Evの算出を規格化することができ、多頭数の評価の自動化を容易なものにできる。 Even if the three-dimensional shape of each individual is different depending on the skeleton, fleshiness, etc., the growth condition evaluation system 10 draws convex, concave, convex, concave, convex parts as an overall tendency, and draws the convex part in the middle. The focus is on the curved line in which the spine 51d is located. The growth situation evaluation system 10 applies a sixth-order Bezier curve in order to calculate a smooth approximate curve Ac that fits the calculation data D9 based on each point group data D1. For this reason, the growth situation evaluation system 10 sets the starting point Ps and the ending point Pe, which are both ends of the external shape indicated by the calculation data D9, as a fixed control point C, and also sets the starting point Ps and the ending point Pe as fixed control points C. Set one control point C. Then, the growth situation evaluation system 10 calculates an approximate curve Ac adapted to the calculation data D9 by adjusting the positions of the five control points C, and calculates an evaluation value Ev from the approximate curve Ac. Therefore, the growth status evaluation system 10 can express the calculation data D9 by an approximate curve Ac using a sixth-order Bezier curve, even if the three-dimensional shape of each individual is different depending on the skeleton, fleshiness, etc. The evaluation value Ev can be calculated from the approximate curve Ac. Thereby, the growth situation evaluation system 10 can standardize the calculation of the approximate curve Ac and the evaluation value Ev, and can easily automate the evaluation of a large number of animals.
 生育状況評価システム10は、幅方向Dwに直交する面をスライス位置Spとした場合、間引き断面データD84´における右端が切断面方向の原点に位置するように、間引き断面データD84´を切断面方向に変位させるとともに、それを反対側にコピー(複写)して、算出用データD9を生成する。このため、生育状況評価システム10は、基準軸方向Dbに直交する面をスライス位置Spとした算出用データD9であっても、幅方向Dwに直交する面をスライス位置Spとした場合と同様に、6次のベジェ曲線を用いた近似曲線Acで表すことのできる算出用データD9を生成できる。 When the slice position Sp is a plane orthogonal to the width direction Dw, the growth condition evaluation system 10 sets the thinned cross-sectional data D84' in the cutting plane direction so that the right end of the thinned cross-sectional data D84' is located at the origin in the cutting plane direction. The calculation data D9 is generated by displacing it to the opposite side and copying it to the opposite side. For this reason, the growth condition evaluation system 10 calculates the calculation data D9 in which the plane orthogonal to the reference axis direction Db is the slice position Sp, in the same manner as in the case where the plane orthogonal to the width direction Dw is the slice position Sp. , it is possible to generate calculation data D9 that can be represented by an approximate curve Ac using a sixth-order Bezier curve.
 生育状況評価システム10は、その近似曲線Acの求め方を規格化することで、乳牛51の輪郭の個体差を、近似曲線Acにおける各制御点Cの位置で示すことができる。このため、生育状況評価システム10は、各制御点Cの位置等の変化等で評価値Evを生成することができ、よりバラツキのない育成状況の判断を可能とする。 By standardizing the method of determining the approximate curve Ac, the growth status evaluation system 10 can indicate individual differences in the outline of the dairy cow 51 by the position of each control point C on the approximate curve Ac. Therefore, the growth situation evaluation system 10 can generate evaluation values Ev based on changes in the position of each control point C, etc., making it possible to judge the growth situation with more uniformity.
 生育状況評価システム10は、レーザ測定器13で取得した点群データD1から求めた近似曲線Acを用いて評価値Evを生成するので、その評価値Evを育成状況の評価として知らせることができる。このため、生育状況評価システム10は、求める者による個人差や判断の揺らぎが育成状況の評価に反映することを防止できるとともに、場所や施設や時間等が異なることに起因する差異をなくすことができる。これにより、生育状況評価システム10は、統一した基準で評価値Evを生成することができ、定量的な数値として乳牛51(動物)を評価できる。 Since the growth situation evaluation system 10 generates the evaluation value Ev using the approximate curve Ac obtained from the point cloud data D1 acquired by the laser measuring device 13, the evaluation value Ev can be notified as an evaluation of the growth situation. For this reason, the growth status evaluation system 10 can prevent individual differences and fluctuations in judgment by those seeking the growth from being reflected in the evaluation of the growth status, and can also eliminate differences due to differences in location, facility, time, etc. can. Thereby, the growth status evaluation system 10 can generate the evaluation value Ev based on a unified standard, and can evaluate the dairy cow 51 (animal) as a quantitative value.
 生育状況評価システム10は、カメラ12を介して水飲み場52に乳牛51がいることを検出したときだけ、両レーザ測定器13により水飲み場52の点群データD1を取得し、それに基づいて評価値Evを生成できる。このため、生育状況評価システム10は、乳牛51が自らの意思で水飲み場52にくることを利用しつつ、その乳牛51に触れることなく評価値Evを得られる。よって、生育状況評価システム10は、評価値Evの生成のために、触れたり意思に反した場所等へ導いたりする等のストレスを乳牛51に与えることなく、適切な育成状況の判断を可能とする。また、生育状況評価システム10は、乳牛51の自然な行動を利用して自動で評価値Evを得るものなので、時刻の制限をなくすことができ、一日中(24時間)管理できる。さらに、生育状況評価システム10は、水飲み場52に乳牛51がいない場合には、両レーザ測定器13により点群データD1を取得することはないので、不要なデータの取得や蓄積を防止することができ、効率良く運用できる。加えて、生育状況評価システム10は、データ取得領域14を挟んで対を為して設けレーザ測定器13を設けているので、動物の位置や姿勢や向いている方向等に拘らず、評価値Evの生成に必要な点群データD1の取得の可能性を極めて高めることができる。 Only when the presence of the dairy cow 51 in the drinking fountain 52 is detected via the camera 12, the growth condition evaluation system 10 acquires point cloud data D1 of the drinking fountain 52 using both laser measuring devices 13, and calculates an evaluation value based on the point cloud data D1 of the drinking fountain 52. Ev can be generated. Therefore, the growth status evaluation system 10 can obtain the evaluation value Ev without touching the dairy cow 51 while taking advantage of the fact that the dairy cow 51 comes to the drinking fountain 52 of its own will. Therefore, in order to generate the evaluation value Ev, the growth status evaluation system 10 makes it possible to appropriately judge the growth status of the dairy cow 51 without causing stress such as touching it or leading it to a place against its will. do. Furthermore, since the growth status evaluation system 10 automatically obtains the evaluation value Ev using the natural behavior of the dairy cow 51, it can eliminate time restrictions and can be managed all day long (24 hours). Furthermore, since the growth condition evaluation system 10 does not acquire the point cloud data D1 using both laser measuring devices 13 when the dairy cow 51 is not present at the drinking fountain 52, it is possible to prevent the acquisition and accumulation of unnecessary data. and can be operated efficiently. In addition, since the growth status evaluation system 10 is provided with laser measuring devices 13 arranged in pairs across the data acquisition area 14, the evaluation value can be obtained regardless of the animal's position, posture, facing direction, etc. The possibility of acquiring the point cloud data D1 necessary for generating Ev can be greatly increased.
 本開示に係る生育状況評価システムの実施例1の生育状況評価システム10は、以下の各作用効果を得ることができる。
  生育状況評価システム10は、出射したレーザ光(パルスレーザ光線)の動物(乳牛51)からの反射光を受光することで動物の外形を三次元座標で示す点群データD1を取得するレーザ測定器13を備える。また、生育状況評価システム10は、点群データD1における基準箇所Prを検出する基準箇所検出部67と、基準箇所Prが均一の大きさとなるように点群データD1の大きさを調整して正規化データD7を生成する正規化部69と、を備える。そして、生育状況評価システム10は、正規化データD7に適合する近似曲線Acを算出する近似曲線算出部74と、近似曲線Acに基づいて、動物(乳牛51)の評価を示す評価値Evを算出する評価値算出部75と、を備える。このため、生育状況評価システム10は、骨格に対する肉付きの様子を近似曲線Acとして表すことができ、その近似曲線Acから評価値Evを算出するので、骨格の大きさの差異の影響を大幅に抑えることができ、肉付きの様子を適切に判断できる。
The growth situation evaluation system 10 of Example 1 of the growth situation evaluation system according to the present disclosure can obtain the following effects.
The growth status evaluation system 10 is a laser measuring device that receives reflected light from an animal (dairy cow 51) of an emitted laser beam (pulsed laser beam) to obtain point cloud data D1 indicating the external shape of the animal in three-dimensional coordinates. 13. The growth situation evaluation system 10 also includes a reference point detection unit 67 that detects the reference point Pr in the point cloud data D1, and a standard point detection unit 67 that adjusts the size of the point cloud data D1 so that the reference point Pr has a uniform size. A normalization unit 69 that generates normalized data D7 is provided. The growth condition evaluation system 10 includes an approximate curve calculation unit 74 that calculates an approximate curve Ac that fits the normalized data D7, and an evaluation value Ev that indicates the evaluation of the animal (dairy cow 51) based on the approximate curve Ac. and an evaluation value calculation unit 75. For this reason, the growth status evaluation system 10 can represent the state of fleshiness with respect to the skeleton as an approximate curve Ac, and calculates the evaluation value Ev from the approximate curve Ac, thereby significantly suppressing the influence of differences in the size of the skeleton. This allows you to appropriately judge the appearance of flesh.
 また、生育状況評価システム10は、設定された基準軸方向Dbに対して基準箇所Prが所定の方向に向くように点群データD1の向きを揃えて整列データ(特定部位整列データD6)を生成するデータ整列部68を備え、正規化部69が、基準箇所Prが均一の大きさとなるように整列データの大きさを調整して正規化データD7を生成する。このため、生育状況評価システム10は、基準箇所Prを基準として整列された整列データに対して、その基準箇所Prを均一の大きさとするので、正規化データD7の生成を容易で適切なものにできる。 The growth condition evaluation system 10 also generates alignment data (specific part alignment data D6) by aligning the orientation of the point cloud data D1 so that the reference point Pr faces in a predetermined direction with respect to the set reference axis direction Db. A normalizing unit 69 adjusts the size of the aligned data so that the reference portion Pr has a uniform size, and generates normalized data D7. For this reason, the growth condition evaluation system 10 makes the reference point Pr a uniform size for the aligned data that is arranged using the reference point Pr as a reference, so that the normalized data D7 can be generated easily and appropriately. can.
 さらに、生育状況評価システム10は、レーザ測定器13が取得した点群データD1において、動物(乳牛51)における頭部近傍51bと尻尾51cとを取り除いた特定部位データD5を生成する特定部位切出部65を備え、基準箇所検出部67が、特定部位データD5から基準箇所Prを検出する。このため、生育状況評価システム10は、点群データD1の中から生育状況の評価に必要な箇所だけを抜き出した特定部位データD5に対して基準箇所Prの検出を行うので、基準箇所Prの検出に要するデータ処理の工数を低減でき、より適切にかつ短時間で基準箇所Prを検出できる。 Furthermore, the growth condition evaluation system 10 performs specific region cutting to generate specific region data D5 in which the vicinity of the head 51b and the tail 51c of the animal (dairy cow 51) are removed from the point cloud data D1 acquired by the laser measuring device 13. A reference point detection section 67 detects a reference point Pr from the specific part data D5. For this reason, the growth situation evaluation system 10 detects the reference point Pr from the specific part data D5, which is extracted from the point cloud data D1, only the points necessary for the evaluation of the growth situation. The number of man-hours required for data processing can be reduced, and the reference point Pr can be detected more appropriately and in a shorter time.
 生育状況評価システム10は、特定部位データD5における背骨51dを基準軸方向Dbに一致させるように特定部位データD5の向きを揃えて整列させる特定部位整列部66を備え、基準箇所検出部67が、特定部位整列部66により整列された特定部位データD5から基準箇所Prを検出する。このため、生育状況評価システム10は、背骨51dを基準軸方向Dbに一致させるように整列された特定部位データD5に対して基準箇所Prの検出を行うので、基準箇所Prの検出に要するデータ処理の工数をより低減でき、基準箇所Prの検出をより適切でかつより短時間なものにできる。 The growth situation evaluation system 10 includes a specific part alignment unit 66 that aligns the specific part data D5 so that the spine 51d in the specific part data D5 matches the reference axis direction Db, and a reference part detection unit 67 that The reference location Pr is detected from the specific location data D5 arranged by the specific location alignment section 66. For this reason, the growth situation evaluation system 10 detects the reference point Pr for the specific part data D5 aligned so that the spine 51d coincides with the reference axis direction Db, so the data processing required to detect the reference point Pr is performed. The number of man-hours can be further reduced, and the reference point Pr can be detected more appropriately and in a shorter time.
 生育状況評価システム10は、近似曲線算出部74が、複数の制御点Cを有する単一のベジェ曲線を、正規化データD7を所定のスライス位置Spに沿って切断した切断面の輪郭に適合させて、近似曲線Acを算出し、評価値算出部75が、近似曲線Acにおける制御点Cの位置関係を用いて評価値Evを算出する。このため、生育状況評価システム10は、単一のベジェ曲線とされた近似曲線Acにおける制御点Cの位置関係だけを用いて評価値Evを算出できるので、評価値Evの算出を簡易なものにできる。 In the growth situation evaluation system 10, the approximate curve calculation unit 74 fits a single Bezier curve having a plurality of control points C to the contour of a cut surface obtained by cutting the normalized data D7 along a predetermined slice position Sp. Then, the approximate curve Ac is calculated, and the evaluation value calculation unit 75 calculates the evaluation value Ev using the positional relationship of the control point C on the approximate curve Ac. Therefore, the growth condition evaluation system 10 can calculate the evaluation value Ev using only the positional relationship of the control point C in the approximate curve Ac, which is a single Bezier curve, so the calculation of the evaluation value Ev is simplified. can.
 生育状況評価システム10は、評価値算出部75が、近似曲線Acにおける制御点Cの間隔の比を用いて評価値Evを算出する。このため、生育状況評価システム10は、近似曲線Acにおける各制御点Cの間隔を求めるだけで評価値Evを算出でき、評価値Evの算出をより簡易なものにできる。 In the growth situation evaluation system 10, the evaluation value calculation unit 75 calculates the evaluation value Ev using the ratio of the intervals between the control points C in the approximate curve Ac. Therefore, the growth situation evaluation system 10 can calculate the evaluation value Ev by simply finding the interval between each control point C on the approximate curve Ac, and can further simplify the calculation of the evaluation value Ev.
 したがって、本開示に係る生育状況評価システムの一実施例としての生育状況評価システム10では、動物(乳牛51)の育成状況の評価を適切に得ることができる。 Therefore, in the growth situation evaluation system 10 as an example of the growth situation evaluation system according to the present disclosure, it is possible to appropriately obtain an evaluation of the growth situation of the animal (dairy cow 51).
 以上、本開示の生育状況評価システムを実施例1に基づき説明してきたが、具体的な構成については実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 Although the growth status evaluation system of the present disclosure has been described above based on Example 1, the specific configuration is not limited to Example 1, and the gist of the invention according to each claim is described below. Changes and additions to the design are permitted as long as they do not deviate.
 例えば、実施例1では、水飲み場52をデータ取得領域14として設定している。しかしながら、データ取得領域14は、適宜設定すればよく、実施例1の構成に限定されない。ここで、データ取得領域14は、餌場等のように、水飲み場52と同様に動物が自らの意思で定期的に訪れる場所を設定することで、動物にとってのストレスとなることなく育成状況の評価を適切に得ることができる。加えて、データ取得領域14は、各レーザ測定器13による走査を完了するために必要な時間だけ、動物が自らの意思で立ち止まる場所に設定することで、動物のストレスをより低減しつつ育成状況の評価を適切に得ることができる。ここで、上記の必要な時間は、各レーザ測定器13における走査の速度に左右されるもので、例えば、一度に放射するパルスレーザ光線の本数を増やすことで短くすることができ、立ち止まる時間を短くしても点群データD1を適切に取得できる。 For example, in the first embodiment, the drinking fountain 52 is set as the data acquisition area 14. However, the data acquisition area 14 may be set as appropriate and is not limited to the configuration of the first embodiment. Here, the data acquisition area 14 is set as a place, such as a feeding area, that animals regularly visit on their own will, similar to the drinking fountain 52, so that the breeding situation can be monitored without causing stress for the animals. Appropriate evaluation can be obtained. In addition, the data acquisition area 14 is set in a place where the animals can stop of their own accord for the time necessary to complete scanning by each laser measurement device 13, thereby further reducing stress on the animals and monitoring the breeding status. can be evaluated appropriately. Here, the above-mentioned required time depends on the scanning speed of each laser measuring device 13, and can be shortened by increasing the number of pulsed laser beams emitted at once, and the time required for stopping is, for example, Even if the length is shortened, the point cloud data D1 can be appropriately acquired.
 また、実施例1では、動物の一例として乳牛51を対象として、その育成状況の評価を示す評価値Evを生成している。しかしながら、評価値Evを生成(育成状況を評価する対象と)するものは、育成状況の評価が求められる動物であればよく、実施例1の構成に限定されない。 Furthermore, in Example 1, an evaluation value Ev indicating the evaluation of the breeding status of the dairy cow 51 is generated as an example of the animal. However, the object for which the evaluation value Ev is generated (target for evaluating the breeding situation) may be any animal whose breeding situation is required to be evaluated, and is not limited to the configuration of the first embodiment.
 さらに、実施例1では、単一のスライス位置Spに対応する算出用データD9から近似曲線Acおよび評価値Evを算出している。しかしながら、各動物(乳牛51)に対して、複数のスライス位置Spに対応する算出用データD9から近似曲線Acおよび評価値Evを算出するとともに、それぞれの近似曲線Acにおける評価値Evの平均値を算出するものとしてもよい。ここで、生育状況評価システム10は、スライス位置Spの差異によって乳牛51の育成状況が反映される度合いが変わることも考えられるので、各評価値Evに対して適宜重みづけをしてから平均値を求めるものとしてもよい。このようにすると、生育状況評価システム10は、複数のスライス位置Spにおける肉付きを示す評価値Evの平均値を得ることができ、場所によって肉付きに偏りがある場合であっても適切な生育状況の評価を得ることができる。 Furthermore, in Example 1, the approximate curve Ac and the evaluation value Ev are calculated from the calculation data D9 corresponding to a single slice position Sp. However, for each animal (dairy cow 51), the approximate curve Ac and the evaluation value Ev are calculated from the calculation data D9 corresponding to a plurality of slice positions Sp, and the average value of the evaluation values Ev for each approximate curve Ac is calculated. It may be calculated. Here, the growth status evaluation system 10 weights each evaluation value Ev appropriately, since the degree to which the growth status of the dairy cow 51 is reflected may change depending on the difference in the slice position Sp, and then calculates the average value. It may also be something to seek. In this way, the growth condition evaluation system 10 can obtain the average value of the evaluation value Ev indicating the fleshiness at a plurality of slice positions Sp, and even if the fleshiness is uneven depending on the location, the growth condition evaluation system 10 can obtain the average value of the evaluation value Ev indicating the fleshiness at a plurality of slice positions Sp. You can get evaluation.
 そして、生育状況評価システム10は、上記したように、スライス位置Spに応じて評価値Evの数値範囲が変化するので、上記のように複数の評価値Evの平均値を求める場合、異なる複数のスライス位置Sp毎に複数の評価値Evの最大値で規格化し、動物(乳牛51)毎に異なる複数のスライス位置Spのそれぞれの規格化した評価値Evの平均値を算出するものとしてもよい。また、上述したように、BCSに対応する値に変換してから平均値を算出するものとしてもよい。これらのようにすると、生育状況評価システム10は、スライス位置Spの差異による肉付きの評価への影響の差異を抑制でき、より適切な生育状況の評価を得ることができる。 As described above, the growth condition evaluation system 10 changes the numerical range of the evaluation value Ev depending on the slice position Sp. Each slice position Sp may be standardized by the maximum value of a plurality of evaluation values Ev, and the average value of the normalized evaluation values Ev of the plurality of different slice positions Sp may be calculated for each animal (dairy cow 51). Furthermore, as described above, the average value may be calculated after converting into a value corresponding to the BCS. By doing so, the growth condition evaluation system 10 can suppress the difference in influence on the evaluation of fleshiness due to the difference in the slice position Sp, and can obtain a more appropriate evaluation of the growth condition.
 実施例1では、近似曲線算出部74が、6次のベジェ曲線を用いて近似曲線Acを算出している。しかしながら、近似曲線算出部74は、単一のベジェ曲線を用いて、点群データD1に基づく算出用データD9に適合する近似曲線を算出するものであれば、その次数(制御点Cの数)は適宜設定すればよく、実施例1の構成に限定されない。 In Example 1, the approximate curve calculation unit 74 calculates the approximate curve Ac using a sixth-order Bezier curve. However, if the approximate curve calculation unit 74 uses a single Bezier curve to calculate an approximate curve that matches the calculation data D9 based on the point cloud data D1, the order (number of control points C) of the approximate curve may be set appropriately, and is not limited to the configuration of the first embodiment.
 実施例1では、基準箇所検出部67が、点群データD1における基準箇所Prを検出し、正規化部69が、基準箇所Prが均一の大きさとなるように点群データD1の大きさを調整して正規化データD7を生成し、その正規化データD7に基づく算出用データD9から近似曲線Acおよび評価値Evを算出している。しかしながら、評価値Evは、近似曲線Acにおける制御点Cの間隔の比を用いて算出されているので、基準箇所Prが均一の大きさとなるように大きさを調整することのない点群データD1に基づく算出用データD9から近似曲線Acおよび評価値Evを算出してもよく、実施例1の構成に限定されない。 In the first embodiment, the reference point detection section 67 detects the reference point Pr in the point cloud data D1, and the normalization section 69 adjusts the size of the point cloud data D1 so that the reference point Pr has a uniform size. Normalized data D7 is generated, and an approximate curve Ac and an evaluation value Ev are calculated from calculation data D9 based on the normalized data D7. However, since the evaluation value Ev is calculated using the ratio of the interval between the control points C in the approximate curve Ac, the point group data D1 whose size is not adjusted so that the reference point Pr has a uniform size The approximate curve Ac and the evaluation value Ev may be calculated from the calculation data D9 based on the calculation data D9, and the configuration is not limited to the first embodiment.
 実施例1では、動物検出部61が、カメラ12からの画像に基づいて、データ取得領域14に動物がいることを検出する動物検出機構として機能している。しかしながら、動物検出機構は、データ取得領域14に動物がいることを検出するものであればよく、実施例1の構成に限定されない。この一例として、例えば、カメラ12に替えて赤外線スキャナや赤外線サーモグラフィのように赤外線を利用したものを用いることができる。この場合には、暗い状況であっても動物の検出をより確実なものにできる。また、他の例として、例えば、水飲み場52の蛇口に圧力センサを設けたり、データ取得領域14に重さを検知する装置を設けたり、データ取得領域14の出入り口にセンサを設けたりすることができる。 In the first embodiment, the animal detection unit 61 functions as an animal detection mechanism that detects the presence of an animal in the data acquisition area 14 based on the image from the camera 12. However, the animal detection mechanism is not limited to the configuration of the first embodiment as long as it detects the presence of an animal in the data acquisition area 14. As an example of this, for example, instead of the camera 12, it is possible to use something that uses infrared rays, such as an infrared scanner or an infrared thermograph. In this case, animals can be detected more reliably even in dark conditions. Further, as other examples, for example, a pressure sensor may be provided at the faucet of the drinking fountain 52, a device for detecting weight may be provided at the data acquisition area 14, or a sensor may be provided at the entrance/exit of the data acquisition area 14. can.
 実施例1では、レーザ測定器13を、データ取得領域14を挟んで対を為して設けている。しかしながら、レーザ測定器13は、データ取得領域14に存在する動物の点群データD1を取得するものであれば、単一としてもよく、3つ以上設けてもよく、実施例1の構成に限定されない。 In the first embodiment, the laser measuring devices 13 are provided in pairs with the data acquisition area 14 in between. However, the laser measuring device 13 may be provided as a single device or three or more as long as it obtains the point cloud data D1 of the animal existing in the data acquisition area 14, and is limited to the configuration of the first embodiment. Not done.
 ところで、従来の健康状態推定装置では、動物の三次元座標群を適宜繋ぎ合わせることにより、動物の三次元形状を再現しており、その三次元形状に基づいて、ルーメンの凹み具合を示す特徴量から育成状況の評価を得ている。(発明が解決しようとする課題) By the way, conventional health state estimation devices reproduce the three-dimensional shape of the animal by appropriately connecting the three-dimensional coordinates of the animal, and based on the three-dimensional shape, feature quantities indicating the degree of concavity of the lumen are calculated. The training status has been evaluated by (Problem to be solved by the invention)
 ここで、牛や豚等の動物は、同じ種類の動物であっても、骨格や肉付き等によって個体毎に三次元形状が異なる。すると、従来の健康状態推定装置では、様々な三次元形状に対してルーメンの凹み具合を示す特徴量を求める必要があるので、ルーメンの位置や範囲の特定やその凹み具合の特徴量の求め方等が多岐に亘ってしまい、多頭数の評価を自動化することが困難である。(発明が解決しようとする課題) Here, animals such as cows and pigs have different three-dimensional shapes depending on their skeletons, fleshiness, etc., even if they are the same type of animal. Then, with conventional health condition estimation devices, it is necessary to find the feature quantity that indicates the degree of concavity of the lumen for various three-dimensional shapes. etc., and it is difficult to automate the evaluation of a large number of animals. (Problem to be solved by the invention)
 本開示は、上記の事情に鑑みて為されたもので、動物の育成状況の評価を自動化しつつ適切に得ることのできる生育状況評価システムを提供することを目的とする。(発明が解決しようとする課題) The present disclosure has been made in view of the above circumstances, and aims to provide a growth condition evaluation system that can automate and appropriately obtain evaluations of animal growth conditions. (Problem to be solved by the invention)
 上記した課題を解決するために、本開示の生育状況評価システムは、出射したレーザ光の動物からの反射光を受光することで前記動物の外形を三次元座標で示す点群データを取得するレーザ測定器と、7つの制御点を有する単一の6次のベジェ曲線を、前記点群データに適合させて近似曲線を算出する近似曲線算出部と、前記近似曲線に基づいて、前記動物の評価を示す評価値を算出する評価値算出部と、を備えることを特徴とする。(課題を解決するための手段) In order to solve the above-mentioned problems, the growth condition evaluation system of the present disclosure uses a laser beam that receives reflected light from the animal of the emitted laser beam to obtain point cloud data indicating the external shape of the animal in three-dimensional coordinates. a measuring device; an approximate curve calculation unit that calculates an approximate curve by fitting a single sixth-order Bezier curve having seven control points to the point group data; An evaluation value calculation unit that calculates an evaluation value indicating . (Means for solving problems)
 本開示の生育状況評価システムによれば、動物の育成状況の評価を自動化しつつ適切に得ることができる。(発明の効果) According to the growth status evaluation system of the present disclosure, it is possible to automate and appropriately obtain an evaluation of the growth status of an animal. (Effect of the invention)
 [1]
 出射したレーザ光の動物からの反射光を受光することで前記動物の外形を三次元座標で示す点群データを取得するレーザ測定器と、
 7つの制御点を有する単一の6次のベジェ曲線を、前記点群データに適合させて近似曲線を算出する近似曲線算出部と、
 前記近似曲線に基づいて、前記動物の評価を示す評価値を算出する評価値算出部と、を備えることを特徴とする生育状況評価システム。
[1]
a laser measuring device that obtains point cloud data indicating the external shape of the animal in three-dimensional coordinates by receiving reflected light from the animal of the emitted laser beam;
an approximate curve calculation unit that calculates an approximate curve by fitting a single sixth-order Bezier curve having seven control points to the point cloud data;
A growth situation evaluation system comprising: an evaluation value calculation unit that calculates an evaluation value indicating evaluation of the animal based on the approximate curve.
 [2]
 前記レーザ測定器が取得した前記点群データを所定のスライス位置に沿って切断した断面となる断面データを生成する切断面抽出部と、
 前記断面データにおいて、切断面方向における中心位置から両側に位置する点群の数を比較して点群の数が多い側を選択し、選択した側のデータを反対側に複写して算出用データを生成する算出用データ生成部と、を備え、
 前記近似曲線算出部は、前記点群データに基づく前記算出用データに適合させて前記近似曲線を算出することを特徴とする[1]に記載の生育状況評価システム。
[2]
a cutting plane extraction unit that generates cross-sectional data that is a cross-section obtained by cutting the point cloud data acquired by the laser measuring device along a predetermined slice position;
In the cross-sectional data, compare the number of point clouds located on both sides from the center position in the direction of the cutting plane, select the side with the largest number of point clouds, and copy the data on the selected side to the opposite side to obtain calculation data. a calculation data generation unit that generates;
The growth situation evaluation system according to [1], wherein the approximate curve calculation unit calculates the approximate curve by adapting it to the calculation data based on the point group data.
 [3]
 前記評価値算出部は、前記近似曲線における前記制御点の位置関係を用いて前記評価値を算出することを特徴とする[2]に記載の生育状況評価システム。
[3]
The growth situation evaluation system according to [2], wherein the evaluation value calculation unit calculates the evaluation value using a positional relationship of the control points in the approximate curve.
 [4]
 前記評価値算出部は、前記近似曲線における前記制御点の間隔の比を用いて前記評価値を算出することを特徴とする[3]に記載の生育状況評価システム。
[4]
The growth situation evaluation system according to [3], wherein the evaluation value calculation unit calculates the evaluation value using a ratio of intervals between the control points in the approximate curve.
 [5]
 7つの前記制御点を、一方の端部から順に、第1制御点、第2制御点、第3制御点、第4制御点、第5制御点、第6制御点、第7制御点とし、
 前記第2制御点と前記第3制御点との間隔を第1間隔とし、前記第3制御点と前記第4制御点との間隔を第2間隔とし、前記第2制御点と前記第4制御点との間隔を第3間隔とし、前記第6制御点と前記第5制御点との間隔を第4間隔とし、前記第5制御点と前記第4制御点との間隔を第5間隔とし、前記第6制御点と前記第4制御点との間隔を第6間隔とし、
 前記評価値算出部は、前記第3間隔を前記第1間隔と前記第2間隔とを加算した値で除算して前記評価値を算出する、または前記第6間隔を前記第4間隔と前記第5間隔とを加算した値で除算して前記評価値を算出することを特徴とする[3]または[4]に記載の生育状況評価システム。
[5]
The seven control points are, in order from one end, a first control point, a second control point, a third control point, a fourth control point, a fifth control point, a sixth control point, and a seventh control point,
The interval between the second control point and the third control point is a first interval, the interval between the third control point and the fourth control point is a second interval, and the interval between the second control point and the fourth control point is a second interval. The interval between the points is a third interval, the interval between the sixth control point and the fifth control point is a fourth interval, the interval between the fifth control point and the fourth control point is a fifth interval, The interval between the sixth control point and the fourth control point is a sixth interval,
The evaluation value calculation unit calculates the evaluation value by dividing the third interval by the sum of the first interval and the second interval, or divides the sixth interval by the sum of the fourth interval and the second interval. The growth situation evaluation system according to [3] or [4], wherein the evaluation value is calculated by dividing by a value obtained by adding 5 intervals.
 [6]
 前記切断面抽出部は、前記レーザ測定器が取得した前記点群データを互いに異なる複数の前記スライス位置に沿って切断した断面となる複数の前記断面データを生成し、
 前記算出用データ生成部は、複数の前記断面データに対して、それぞれ前記算出用データを生成し、
 前記近似曲線算出部は、複数の前記算出用データに対して、それぞれ前記近似曲線を算出し、
 前記評価値算出部は、それぞれの前記近似曲線における前記評価値の平均値を算出することを特徴とする[5]に記載の生育状況評価システム。
[6]
The cutting plane extraction unit generates a plurality of cross-sectional data that are cross-sections obtained by cutting the point cloud data acquired by the laser measuring device along a plurality of mutually different slice positions,
The calculation data generation unit generates the calculation data for each of the plurality of cross-sectional data,
The approximate curve calculation unit calculates the approximate curve for each of the plurality of calculation data,
The growth situation evaluation system according to [5], wherein the evaluation value calculation unit calculates an average value of the evaluation values for each of the approximate curves.
 [7]
 前記評価値算出部は、異なる複数の前記スライス位置毎に複数の前記動物に対する前記近似曲線における前記評価値を算出し、異なる複数の前記スライス位置毎に複数の前記評価値の最大値で規格化し、前記動物毎に異なる複数の前記スライス位置のそれぞれの規格化した前記評価値の平均値を算出することを特徴とする[6]に記載の生育状況評価システム。
[7]
The evaluation value calculation unit calculates the evaluation values of the approximate curves for the plurality of animals for each of the plurality of different slice positions, and normalizes the evaluation values by the maximum value of the plurality of evaluation values for each of the plurality of different slice positions. , the growth status evaluation system according to [6], characterized in that the average value of the normalized evaluation values of the plurality of slice positions different for each animal is calculated.
 生育状況評価システム10は、出射したレーザ光(パルスレーザ光線)の動物(乳牛51)からの反射光を受光することで動物の外形を三次元座標で示す点群データD1を取得するレーザ測定器13を備える。また、生育状況評価システム10は、7つの制御点Cを有する単一の6次のベジェ曲線を、点群データD1に適合させて近似曲線Acを算出する近似曲線算出部74と、近似曲線Acに基づいて、動物(乳牛51)の評価を示す評価値Evを算出する評価値算出部75と、を備える。このため、生育状況評価システム10は、骨格や肉付き等によって個体毎に三次元形状が異なっていても、7つの制御点Cの位置を調整することにより、点群データD1に適合させた近似曲線Acを算出することができる。これにより、生育状況評価システム10は、近似曲線Acや評価値Evの算出を規格化することができ、多頭数の動物(乳牛51)の育成状況の評価の自動化を容易なものにできる。 The growth status evaluation system 10 is a laser measuring device that receives reflected light from an animal (dairy cow 51) of an emitted laser beam (pulsed laser beam) to obtain point cloud data D1 indicating the external shape of the animal in three-dimensional coordinates. 13. The growth condition evaluation system 10 also includes an approximate curve calculation unit 74 that calculates an approximate curve Ac by adapting a single sixth-order Bezier curve having seven control points C to the point cloud data D1; and an evaluation value calculation unit 75 that calculates an evaluation value Ev indicating the evaluation of the animal (dairy cow 51) based on the evaluation value Ev of the animal (dairy cow 51). For this reason, even if the three-dimensional shape of each individual is different depending on the skeleton, fleshiness, etc., the growth condition evaluation system 10 can generate an approximate curve adapted to the point cloud data D1 by adjusting the positions of the seven control points C. Ac can be calculated. Thereby, the growth status evaluation system 10 can standardize the calculation of the approximate curve Ac and the evaluation value Ev, and can easily automate the evaluation of the growth status of a large number of animals (dairy cows 51).
 また、生育状況評価システム10は、レーザ測定器13が取得した点群データD1を所定のスライス位置Spに沿って切断した断面となる断面データD8を生成する切断面抽出部71と、断面データD8において、切断面方向における中心位置(中心線Lc)から両側に位置する点群の数を比較して点群の数が多い側を選択し、選択した側のデータを反対側に複写して算出用データD9を生成する算出用データ生成部72と、を備える。そして、生育状況評価システム10は、近似曲線算出部74が、点群データD1に基づく算出用データD9に適合させて近似曲線Acを算出する。このため、生育状況評価システム10は、データ量の増大を抑えつつ、幅方向Dwにおけるデータが欠落した箇所を少なくした算出用データD9を生成することができる。また、生育状況評価システム10は、実質的に、3つの制御点Cの位置を調整することにより、算出用データD9の各凸部および各凹部に適合するように始点Ps(第1制御点C1)から終点Pe(第7制御点C7)に至るベジェ曲線の曲がり方を調整して、近似曲線Acを算出でき、近似曲線Acや評価値Evの算出をより容易なものにできる。 The growth condition evaluation system 10 also includes a cutting plane extraction unit 71 that generates cross-sectional data D8, which is a cross-section obtained by cutting the point cloud data D1 acquired by the laser measuring instrument 13 along a predetermined slice position Sp; , compare the number of point clouds located on both sides from the center position (center line Lc) in the cutting plane direction, select the side with the largest number of point clouds, and copy the data on the selected side to the opposite side. and a calculation data generation unit 72 that generates calculation data D9. Then, in the growth situation evaluation system 10, the approximate curve calculation unit 74 calculates the approximate curve Ac by adapting it to the calculation data D9 based on the point cloud data D1. For this reason, the growth situation evaluation system 10 can generate calculation data D9 in which the number of missing data points in the width direction Dw is reduced while suppressing an increase in the amount of data. In addition, the growth situation evaluation system 10 substantially adjusts the positions of the three control points C so that the starting point Ps (the first control point C1 ) to the end point Pe (seventh control point C7), the approximate curve Ac can be calculated, and the approximate curve Ac and the evaluation value Ev can be more easily calculated.
 さらに、生育状況評価システム10は、評価値算出部75が、近似曲線Acにおける制御点Cの位置関係を用いて評価値Evを算出する。このため、生育状況評価システム10は、単一のベジェ曲線とされた近似曲線Acにおける制御点Cの位置関係だけを用いて評価値Evを算出できるので、評価値Evの算出を簡易なものにできる。 Further, in the growth situation evaluation system 10, the evaluation value calculation unit 75 calculates the evaluation value Ev using the positional relationship of the control point C on the approximate curve Ac. Therefore, the growth condition evaluation system 10 can calculate the evaluation value Ev using only the positional relationship of the control point C in the approximate curve Ac, which is a single Bezier curve, so the calculation of the evaluation value Ev is simplified. can.
 生育状況評価システム10は、評価値算出部75が、近似曲線Acにおける制御点Cの間隔の比を用いて評価値Evを算出する。このため、生育状況評価システム10は、近似曲線Acにおける各制御点Cの間隔を求めるだけで評価値Evを算出でき、評価値Evの算出をより簡易なものにできる。 In the growth situation evaluation system 10, the evaluation value calculation unit 75 calculates the evaluation value Ev using the ratio of the intervals between the control points C in the approximate curve Ac. Therefore, the growth situation evaluation system 10 can calculate the evaluation value Ev by simply finding the interval between each control point C on the approximate curve Ac, and can further simplify the calculation of the evaluation value Ev.
 生育状況評価システム10は、7つの制御点Cを、一方の端部から順に、第1制御点C1、第2制御点C2、第3制御点C3、第4制御点C4、第5制御点C5、第6制御点C6、第7制御点C7とする。また、生育状況評価システム10は、第2制御点C2と第3制御点C3との間隔を第1間隔aとし、第3制御点C3と第4制御点C4との間隔を第2間隔bとし、第2制御点C2と第4制御点C4との間隔を第3間隔cとし、第6制御点C6と第5制御点C5との間隔を第4間隔dとし、第5制御点C5と第4制御点C4との間隔を第5間隔eとし、第6制御点C6と第4制御点C4との間隔を第6間隔fとする。そして、生育状況評価システム10は、評価値算出部75が、第3間隔cを第1間隔aと第2間隔bとを加算した値で除算して評価値Evを算出する、または第6間隔fを第4間隔dと第5間隔eとを加算した値で除算して評価値Evを算出する。このため、生育状況評価システム10は、評価値Evの算出をより簡易なものにできる。 The growth situation evaluation system 10 sets the seven control points C as, in order from one end, a first control point C1, a second control point C2, a third control point C3, a fourth control point C4, and a fifth control point C5. , a sixth control point C6, and a seventh control point C7. In addition, the growth condition evaluation system 10 sets the interval between the second control point C2 and the third control point C3 as a first interval a, and the interval between the third control point C3 and the fourth control point C4 as a second interval b. , the interval between the second control point C2 and the fourth control point C4 is the third interval c, the interval between the sixth control point C6 and the fifth control point C5 is the fourth interval d, and the interval between the fifth control point C5 and the fifth control point C5 is the third interval c. Let the interval between the fourth control point C4 be a fifth interval e, and the interval between the sixth control point C6 and the fourth control point C4 be a sixth interval f. Then, in the growth situation evaluation system 10, the evaluation value calculation unit 75 calculates the evaluation value Ev by dividing the third interval c by the sum of the first interval a and the second interval b, or calculates the evaluation value Ev by dividing the third interval c by the sum of the first interval a and the second interval b. The evaluation value Ev is calculated by dividing f by the sum of the fourth interval d and the fifth interval e. Therefore, the growth situation evaluation system 10 can more easily calculate the evaluation value Ev.
 したがって、本開示に係る生育状況評価システムの一実施例としての生育状況評価システム10では、動物(乳牛51)の育成状況の評価を自動化しつつ適切に得ることができる。 Therefore, in the growth situation evaluation system 10 as an example of the growth situation evaluation system according to the present disclosure, it is possible to automate and appropriately obtain evaluation of the growth situation of the animal (dairy cow 51).
[関連出願への相互参照]
 本出願は、2022年3月29日に日本国特許庁に出願された特願2022-054130、2022年3月29日に日本国特許庁に出願された特願2022-054131に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。
[Cross reference to related applications]
This application has priority based on patent application No. 2022-054130 filed with the Japan Patent Office on March 29, 2022 and patent application No. 2022-054131 filed with the Japan Patent Office on March 29, 2022. , the entire disclosure of which is hereby incorporated by reference in its entirety.

Claims (6)

  1.  出射したレーザ光の動物からの反射光を受光することで前記動物の外形を三次元座標で示す点群データを取得するレーザ測定器と、
     前記点群データにおける基準箇所を検出する基準箇所検出部と、
     前記基準箇所が均一の大きさとなるように前記点群データの大きさを調整して正規化データを生成する正規化部と、
     前記正規化データに適合する近似曲線を算出する近似曲線算出部と、
     前記近似曲線に基づいて、前記動物の評価を示す評価値を算出する評価値算出部と、を備えることを特徴とする生育状況評価システム。
    a laser measuring device that obtains point cloud data indicating the external shape of the animal in three-dimensional coordinates by receiving reflected light from the animal of the emitted laser beam;
    a reference point detection unit that detects a reference point in the point cloud data;
    a normalization unit that generates normalized data by adjusting the size of the point cloud data so that the reference location has a uniform size;
    an approximate curve calculation unit that calculates an approximate curve that matches the normalized data;
    A growth situation evaluation system comprising: an evaluation value calculation unit that calculates an evaluation value indicating evaluation of the animal based on the approximate curve.
  2.  設定された基準軸方向に対して前記基準箇所が所定の方向に向くように前記点群データの向きを揃えて整列データを生成するデータ整列部を備え、
     前記正規化部は、前記基準箇所が均一の大きさとなるように前記点群データに基づく前記整列データの大きさを調整して前記正規化データを生成することを特徴とする請求項1に記載の生育状況評価システム。
    comprising a data alignment unit that generates alignment data by aligning the orientation of the point cloud data so that the reference location faces in a predetermined direction with respect to a set reference axis direction;
    2. The normalization unit generates the normalized data by adjusting the size of the alignment data based on the point cloud data so that the reference location has a uniform size. growth status evaluation system.
  3.  前記レーザ測定器が取得した前記点群データにおいて、前記動物における頭部近傍と尻尾とを取り除いた特定部位データを生成する特定部位切出部を備え、
     前記基準箇所検出部は、前記点群データに基づく前記特定部位データから前記基準箇所を検出することを特徴とする請求項2に記載の生育状況評価システム。
    comprising a specific part cutting unit that generates specific part data by removing the vicinity of the head and the tail of the animal from the point cloud data acquired by the laser measuring device;
    The growth situation evaluation system according to claim 2, wherein the reference point detection unit detects the reference point from the specific part data based on the point cloud data.
  4.  前記特定部位データにおける背骨を前記基準軸方向に一致させるように前記特定部位データの向きを揃えて整列させる特定部位整列部を備え、
     前記基準箇所検出部は、前記特定部位整列部により整列された前記特定部位データから前記基準箇所を検出することを特徴とする請求項3に記載の生育状況評価システム。
    a specific part alignment unit that aligns the specific part data so that the spine in the specific part data coincides with the reference axis direction;
    4. The growth situation evaluation system according to claim 3, wherein the reference point detection section detects the reference point from the specific section data arranged by the specific section alignment section.
  5.  前記近似曲線算出部は、複数の制御点を有する単一のベジェ曲線を、前記正規化データを所定のスライス位置に沿って切断した切断面の輪郭に適合させて、前記近似曲線を算出し、
     前記評価値算出部は、前記近似曲線における前記制御点の位置関係を用いて前記評価値を算出することを特徴とする請求項4に記載の生育状況評価システム。
    The approximate curve calculation unit calculates the approximate curve by fitting a single Bezier curve having a plurality of control points to a contour of a cut plane obtained by cutting the normalized data along a predetermined slice position,
    The growth situation evaluation system according to claim 4, wherein the evaluation value calculation unit calculates the evaluation value using a positional relationship of the control points in the approximate curve.
  6.  前記評価値算出部は、前記近似曲線における前記制御点の間隔の比を用いて前記評価値を算出することを特徴とする請求項5に記載の生育状況評価システム。
     
    The growth situation evaluation system according to claim 5, wherein the evaluation value calculation unit calculates the evaluation value using a ratio of intervals between the control points in the approximate curve.
PCT/JP2023/012220 2022-03-29 2023-03-27 Growing condition evaluation system WO2023190352A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022054131A JP2023146765A (en) 2022-03-29 2022-03-29 Growth state evaluation system
JP2022054130A JP2023146764A (en) 2022-03-29 2022-03-29 Growth state evaluation system
JP2022-054131 2022-03-29
JP2022-054130 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190352A1 true WO2023190352A1 (en) 2023-10-05

Family

ID=88202234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012220 WO2023190352A1 (en) 2022-03-29 2023-03-27 Growing condition evaluation system

Country Status (1)

Country Link
WO (1) WO2023190352A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10500207A (en) * 1994-04-14 1998-01-06 フェノ・イメージング、インク Animal three-dimensional phenotype measurement device
US20080273760A1 (en) * 2007-05-04 2008-11-06 Leonard Metcalfe Method and apparatus for livestock assessment
JP2012510278A (en) * 2008-12-03 2012-05-10 デラヴァル ホルディング アーベー Apparatus and method for determining a score of an animal's physical condition
US20180042584A1 (en) * 2015-02-27 2018-02-15 Ingenera Sa Improved method and relevant apparatus for the determination of the body condition score, body weight and state of fertility
JP2019187277A (en) * 2018-04-24 2019-10-31 国立大学法人 宮崎大学 Evaluation device, evaluation method and evaluation program of body condition score of cow
WO2021166894A1 (en) * 2020-02-18 2021-08-26 国立大学法人宮崎大学 Weight estimation device and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10500207A (en) * 1994-04-14 1998-01-06 フェノ・イメージング、インク Animal three-dimensional phenotype measurement device
US20080273760A1 (en) * 2007-05-04 2008-11-06 Leonard Metcalfe Method and apparatus for livestock assessment
JP2012510278A (en) * 2008-12-03 2012-05-10 デラヴァル ホルディング アーベー Apparatus and method for determining a score of an animal's physical condition
US20180042584A1 (en) * 2015-02-27 2018-02-15 Ingenera Sa Improved method and relevant apparatus for the determination of the body condition score, body weight and state of fertility
JP2019187277A (en) * 2018-04-24 2019-10-31 国立大学法人 宮崎大学 Evaluation device, evaluation method and evaluation program of body condition score of cow
WO2021166894A1 (en) * 2020-02-18 2021-08-26 国立大学法人宮崎大学 Weight estimation device and program

Similar Documents

Publication Publication Date Title
US9053547B2 (en) Three-dimensional point cloud position data processing device, three-dimensional point cloud position data processing system, and three-dimensional point cloud position data processing method and program
EP1609424B1 (en) Apparatus for medical ultrasound navigation user interface
JP5849048B2 (en) Three-dimensional (3D) ultrasound imaging system for scoliosis evaluation
CN107833248B (en) Medical image scanning method and medical imaging equipment
CN101542532B (en) A method, an apparatus and a computer program for data processing
US9730675B2 (en) Ultrasound imaging system and an ultrasound imaging method
CN1989527A (en) Automatic determination of parameters of an imaging geometry
US9881125B2 (en) Ultrasound measurement of biometrics of fetus
US8620056B2 (en) Method, an apparatus, a system and a computer program for transferring scan geometry between subsequent scans
CN1964676A (en) Operation supporting device, method, and program
KR102580984B1 (en) Image processing method, program and recording medium
JP6981531B2 (en) Object identification device, object identification system, object identification method and computer program
EP3794556B1 (en) Dental 3d scanner with angular-based shade matching
JPWO2020158307A1 (en) Barn monitoring method and barn monitoring system
CN1961340B (en) A method, a computer program, an apparatus and an imaging system for image processing
CN112767309A (en) Ultrasonic scanning method, ultrasonic equipment and system
Coorens et al. The automatic quantification of morphological features of pectus excavatum based on three-dimensional images
CN110418610A (en) Determine guidance signal and for providing the system of guidance for ultrasonic hand-held energy converter
US11344279B2 (en) Imaging method for obtaining human skeleton
WO2023190352A1 (en) Growing condition evaluation system
JP2023146764A (en) Growth state evaluation system
JP2023146765A (en) Growth state evaluation system
JP6803940B2 (en) Remote meter reading computer, its method and program
WO2022202793A1 (en) Growing condition evaluation system
CN107106106A (en) For the adaptivenon-uniform sampling of the rotation C-arm computer tomography of the angular region with reduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780362

Country of ref document: EP

Kind code of ref document: A1