WO2023190318A1 - Filter medium - Google Patents

Filter medium Download PDF

Info

Publication number
WO2023190318A1
WO2023190318A1 PCT/JP2023/012165 JP2023012165W WO2023190318A1 WO 2023190318 A1 WO2023190318 A1 WO 2023190318A1 JP 2023012165 W JP2023012165 W JP 2023012165W WO 2023190318 A1 WO2023190318 A1 WO 2023190318A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
filter medium
liquid
functional layer
repellent layer
Prior art date
Application number
PCT/JP2023/012165
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 浜田
拓也 片岡
康裕 浅田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2023190318A1 publication Critical patent/WO2023190318A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length

Definitions

  • the present invention relates to a filter medium used for air purification purposes.
  • the substances collected by the filter media of the above air purifier filters and automobile cabin filters include allergens derived from dust mites and pollen, mold spores, fungi, viruses, etc. Since it causes diseases, it is desired that it be deactivated on the filter medium where it is collected.
  • Patent Document 1 discloses an anti-allergenic filter containing a polyphenol compound and an alkaline earth metal salt.
  • Patent Document 2 discloses a filter that has antiviral function while having deodorizing performance. Although the filter itself has a function, in order to deactivate allergens and viruses in the air, it is necessary to capture them on the filter. It was insufficient.
  • Patent Document 3 discloses a filter medium including a collection layer made of a nonwoven fabric treated with electret, and a filter medium including an antibacterial agent. Although contact efficiency has been improved by adding an antibacterial agent to the collection layer, even higher functionality is required. In addition, there was a risk of functional deterioration due to the effects of collected substances and the ingress of water droplets and oil from the outside air.
  • Patent Document 4 discloses a filter material that has water repellency, antibacterial properties, and flame retardancy, and improves performance and shape stability when moisture enters. There was a problem that the efficiency of contact with
  • Patent No. 4920895 Japanese Patent Application Publication No. 2015-62851 Japanese Patent Application Publication No. 2014-50790 Japanese Patent Application Publication No. 2006-159133
  • the present invention solves these conventional problems, and provides a filter medium for air filters that exhibits various functions efficiently and is less likely to deteriorate in function.
  • the filter medium of the present invention has the following characteristics.
  • a filter medium for an air filter including at least a liquid repellent layer and a functional layer, wherein the functional layer contains one or more selected from the group consisting of an antibacterial agent, an antiviral agent, an antifungal agent, and an antiallergen agent.
  • Filter media containing inorganic chemicals.
  • the collection efficiency of the functional layer for particles with a particle size of 0.3 to 0.5 ⁇ m is higher than the collection efficiency of the liquid repellent layer for particles with a particle size of 0.3 to 0.5 ⁇ m (1) Filter media as described.
  • the liquid-repellent layer has a thickness of 0.10 mm or more and 1.00 mm or less, an air permeability of 100 cm 3 /cm 2 /sec or more and 500 cm 3 /cm 2 /sec or less, and a density of 0.01 g/cm 3 or more.
  • the filter medium according to any one of (1) to (4), which has a content of 0.50 g/cm 3 or less.
  • the inorganic drug contains one or more selected from the group consisting of silver nanoparticles, copper nanoparticles, silver carriers, copper carriers, and zinc oxide. filter medium.
  • the present invention it is possible to provide a filter medium for an air filter that efficiently exhibits various functions and is less likely to deteriorate in function.
  • FIG. 1 is a schematic diagram of a collection efficiency measuring device.
  • the filter medium of the present invention includes a functional layer and a liquid-repellent layer.
  • a functional layer and a liquid-repellent layer.
  • the functional layer in the present invention is a nonwoven fabric containing any one or more of antibacterial agents, antiviral agents, antifungal agents, and antiallergen agents.
  • Antibacterial properties refer to the ability to prevent and suppress the growth of bacteria by reducing or killing the number of bacteria, and the fact that the nonwoven fabric that makes up the functional layer has antibacterial properties means that it inhibits the growth of bacteria on the nonwoven fabric. Indicates that it has been processed. Antibacterial property can be imparted to a nonwoven fabric by applying an agent having an antibacterial function (hereinafter referred to as an antibacterial agent).
  • an antibacterial agent an agent having an antibacterial function
  • the antibacterial agent used in the present invention is not particularly limited, but examples of inorganic antibacterial agents include metal nanoparticles such as silver, copper, and zinc, zeolite, silica gel, glass, calcium phosphate, zirconium phosphate, calcium silicate, and aluminum metasilicate. Supports obtained by adding metals such as silver, copper, and zinc to supports such as magnesium oxide, potassium titanate, and zinc oxide, and metal oxides such as zinc oxide, copper oxide, and titanium dioxide can be suitably used.
  • organic antibacterial agents examples include thiazolines such as 2-n-octyl-4-isothiazolin-3-one and 1,2-benzisothiazolin-3-one, carboxylic acids such as sorbic acid, and 3-iodo-2-propynyl.
  • Carbamates such as butyl carbamate, benzalkonium chloride, didecyldimethylammonium chloride, dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride, dimethyltetradecyl[3-(trimethoxysilyl)propyl]ammonium chloride, hexa
  • quaternary ammonium salts such as decylpyridinium chloride, phenols such as 3-methyl-4-isopropylphenol, 4-chloro-3,5-dimethylphenol, 3-methyl-4-chlorophenol, etc. I can do it.
  • antibacterial agents derived from natural products such as catechins and tannins can also be used as appropriate.
  • inorganic antibacterial agents that are stable against heat are preferable, and silver is preferable because of its excellent antibacterial properties.
  • nanoparticles, copper nanoparticles, silver supports, copper supports, and zinc oxide are preferable.
  • a hybrid antibacterial agent in which an organic antibacterial agent is supported on an inorganic carrier can also be suitably used. By using a hybrid antibacterial agent, it has improved heat resistance compared to an organic antibacterial agent alone, and its sustained release function allows it to maintain its effects over a long period of time.
  • An antibacterial agent may be used alone, or a plurality of antibacterial agents may be used in combination.
  • the antibacterial property can be measured by the antibacterial property test for textile products according to JIS L 1902 (2015).
  • a suitable method for inoculating the test bacteria with the test piece is a bacterial liquid absorption method in which a test inoculated bacterial solution is directly inoculated onto the test piece.
  • the antibacterial activity value against Staphylococcus aureus and Klebsiella pneumoniae is 2.0 or more. More preferably it is 2.5 or more, still more preferably 3.0 or more.
  • Antiviral properties refer to the ability to denature or damage the structure of proteins on the surface of viruses, thereby eliminating compatibility with host cell receptors and reducing activity. Also includes degeneration of the envelope in enveloped viruses.
  • the nonwoven fabric constituting the functional layer has antiviral properties, it means that the nonwoven fabric has been processed to reduce the activity of viruses.
  • Antiviral properties can be imparted to the nonwoven fabric by applying a drug having an antiviral function (hereinafter referred to as an antiviral agent).
  • the antiviral agent used in the present invention is not particularly limited, but examples of inorganic antiviral agents include metal nanoparticles such as silver, copper, and zinc, metal oxides such as copper oxide, zinc oxide, and titanium oxide, zeolite, Supports such as silica gel, glass, calcium phosphate, zirconium phosphate, calcium silicate, magnesium aluminate metasilicate, potassium titanate, zinc oxide, etc., to which metals such as silver, copper, and zinc are added can be suitably used. can.
  • Organic virus agents include organic benzalkonium chloride, didecyldimethylammonium chloride, dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride, dimethyltetradecyl[3-(trimethoxysilyl)propyl]ammonium chloride, In addition to quaternary ammonium salts such as hexadecylpyridinium chloride, carbamates such as 3-iodo-2-propynylbutyl carbamate, antiviral agents derived from natural products such as catechins and tannins can be suitably used. .
  • an antiviral agent when pre-mixing an antiviral agent into the fibers that make up the nonwoven fabric, it is necessary to heat the resin to a high temperature to melt it, so an inorganic antiviral agent that is stable against heat is preferable.
  • Silver nanoparticles, copper nanoparticles, silver carriers, copper carriers, and zinc oxide are more preferred from the viewpoint of excellent viral properties.
  • the antiviral property can be measured by the antiviral property testing method for textile products of JIS L 1922 (2016).
  • the target virus species is not limited, it is preferable that the virus has an antiviral activity value of 2.0 or more against influenza virus (H1N1), for example. More preferably it is 2.5 or more, still more preferably 3.0 or more.
  • Mildew resistance refers to the ability to enter the inside of mold cells and inhibit the functions necessary for mold growth, thereby suppressing mold growth.
  • antifungal properties it means that the nonwoven fabric is processed to suppress the growth of mold.
  • Antifungal properties can be imparted to the nonwoven fabric by applying a chemical agent having an antifungal function (hereinafter referred to as an antifungal agent) to the nonwoven fabric.
  • the antifungal agent used in the present invention is not particularly limited, but silver nanoparticles, copper nanoparticles, silver supports, copper supports, and zinc oxide can be suitably used as inorganic antifungal agents.
  • organic fungicides include benzimidazole-based agents such as 2-(4-thiazolyl)-benzimidazole (thiabendazole) and methyl-2-benzimidazole carbamate (carbendazim), N-dichlorofluoromethylthio-N',N' - Sulfamides such as dimethyl-N-phenylsulfamide (dichlorofluanid), N-dichlorofluoromethylthio-N',N'-dimethyl-Np-tolylsulfamide (trifluanid), 2-bromo-2 -Nitropropane-1,3-diol, ortho-phenylphenol, etc.
  • antibacterial agents and antiviral agents have antifungal properties, and these can also be used as appropriate.
  • an inorganic moldproofing agent that is stable against heat is preferable.
  • Silver nanoparticles, copper nanoparticles, silver carriers, copper carriers, and zinc oxide are more preferred from the viewpoint of excellent viral properties.
  • the mold resistance can be measured by the mold resistance test method of JIS Z 2911 (2016).
  • the type of target mold is not limited, but for example, for Aspergius, Penicillium, Chaetomium, etc., the measured value is 1 (the part of mycelial growth observed in the inoculated part of the sample or test piece). preferably does not exceed 1/3 of the total area), and more preferably a measured value of 0 (no hyphal growth is observed in the inoculated part of the sample or test piece).
  • Anti-allergenicity refers to the effect of inactivating and rendering harmless allergens, which are the causative substances that cause allergic symptoms in humans, through methods such as adsorption, coating, and denaturation. Allergens include body hair and epithelium of dogs, cats, and birds, pollen from cedar, cypress, and ragweed, and animal and plant proteins such as mold, mites, and cockroach body or excrement. It is a substance that causes
  • the anti-allergen agent used in the present invention is not particularly limited, but polyphenols derived from natural extracts such as tannic acid and catechins can be suitably used.
  • Inorganic anti-allergen agents such as alkaline earth metal salts such as calcium salts and strontium salts, zirconium salts such as zirconyl chloride, zirconium hydroxide, and zirconium carbonate, and aluminum salts such as alum and aluminum sulfate can also be suitably used.
  • an anti-allergen agent is kneaded in advance into the fibers constituting the nonwoven fabric, it is necessary to raise the temperature to a high temperature to melt the resin, so an inorganic anti-allergen agent that is stable against heat can be suitably used.
  • Enzyme-linked immunosorbent assay can be suitably used to measure the number of antigens in a solution.
  • the ELISA method performs measurements using the antigen-antibody reaction, which is a reaction of antibodies that specifically bind to the allergen to be measured. Specifically, the antibody that binds to the allergen is labeled with an enzyme, and the antibody that binds to the allergen is labeled with an enzyme. This method is used to quantify the allergen concentration in a sample using a calibration curve that is calculated based on the color development (absorbance) of a standard allergen at a known concentration, after which the substrate is reacted with a color.
  • sandwich ELISA method uses two antibodies against the antigen, the first antibody captures the allergen, and after washing removes impurities other than the captured allergen, the second antibody is used for detection.
  • This method has high specificity of detection and high reproducibility of measurement, and can be performed in a simple process from sample treatment to measurement.
  • the type of target allergen is not limited, for example, an allergen reduction rate of 90% or more is preferable for cedar allergen (crij1) and mite allergen (derf1). More preferably it is 95% or more, still more preferably 99% or more.
  • each of the above antibacterial agents, antiviral agents, antifungal agents, and antiallergen agents may be used alone, or two or more types may be used in combination. However, depending on the combination, the functions of each drug may be impaired or the physical properties of the functional layer may deteriorate, so care must be taken.
  • two or more types of drugs together they may be added in the same process or in separate processes, but if they are added in the same process, poor compatibility between the drugs may cause drug aggregation. Because of this concern, it is preferable to add it in a separate process.
  • An example of the addition in a separate step is, for example, a step in which the antibacterial agent is kneaded into the resin in advance, and the antiallergen agent is later applied by spray after the nonwoven fabric is manufactured.
  • the agent used in the filter medium of the present invention includes one or more inorganic agents selected from the group consisting of antibacterial agents, antiviral agents, antifungal agents, and antiallergen agents.
  • an inorganic drug By using an inorganic drug, one or more of antibacterial, antiviral, antifungal, and antiallergenic functions can be enhanced. Further, it is preferable that the inorganic drug contains at least a transition metal. Examples of transition metals include silver and copper. Examples of inorganic agents include silver nanoparticles, copper nanoparticles, silver carriers, copper carriers, and zinc oxide.
  • the nonwoven fabric constituting the functional layer is not particularly limited, it is preferably a charged nonwoven fabric made of electret fibers due to its high air permeability and collection efficiency.
  • a nonwoven fabric containing thermoplastic resin fibers, a nonwoven fabric containing natural fibers, or the like is used as the nonwoven fabric.
  • nonwoven fabrics containing thermoplastic resin fibers are preferably used.
  • thermoplastic resin fibers examples include, but are not limited to, meltblown nonwoven fabric, spunbond nonwoven fabric, thermal bond nonwoven fabric, needle punched nonwoven fabric, airlaid nonwoven fabric, and the like.
  • melt-blown nonwoven fabrics examples include silicone oil such as dimethylpolysiloxane, mineral oil, and the like.
  • thermoplastic resin fibers those selected from polyester fibers, polylactic acid fibers, vinylon fibers, polyolefin fibers, and mixed fibers of two or more types of these fibers are used.
  • polyolefin fibers are preferred, and polypropylene fibers (hereinafter sometimes referred to as PP fibers) are more preferred, since the nonwoven fabric has excellent charging ability after being subjected to the above-mentioned electret processing.
  • the content of PP fibers in the nonwoven fabric is preferably 95% by mass or more, more preferably 97% by mass or more, and even more preferably 98% by mass or more, based on the total mass of the nonwoven fabric.
  • the average fiber diameter of the fibers contained in the nonwoven fabric constituting the functional layer is preferably 10.0 ⁇ m or less. More preferably, it is 9.0 ⁇ m or less, and still more preferably 8.0 ⁇ m or less.
  • the average fiber diameter is 10.0 ⁇ m or less, the pore size of the nonwoven fabric becomes fine and sufficient collection efficiency can be obtained. Further, if it is 10.0 ⁇ m or less, the surface area of the fiber becomes large and the functions of the present invention can be imparted over a wide range, thereby making it possible to sufficiently obtain the effects of the invention.
  • the lower limit of the average fiber diameter is not particularly limited, it is preferable that it is 0.1 ⁇ m or more because it can suppress the increase in pressure loss.
  • the ratio of the number of fibers with a fiber diameter of 0.1 ⁇ m to 10.0 ⁇ m (number of fibers with a fiber diameter of 0.1 ⁇ m to 10.0 ⁇ m/nonwoven fabric) It is preferable that the total number of fibers included (hereinafter sometimes referred to as the number ratio of fine fibers) is 0.7 or more. If the number ratio of fine fibers is 0.7 or more, the nonwoven fabric will contain many fine fibers, and the pore size of this nonwoven fabric will be extremely fine. Therefore, a filter medium using this nonwoven fabric has extremely excellent collection efficiency. From this viewpoint, the ratio of the number of fine fibers is preferably large, more preferably 0.75 or more, and even more preferably 0.80 or more.
  • fibers with a fiber diameter of 0.1 ⁇ m or more and 10.0 ⁇ m or less can be obtained by using a known method such as a melt blow method.
  • the number ratio of fine fibers is as follows: (a) is the number of all fibers shown in the photo, (b) is the number of fibers with a fiber diameter of 0.1 ⁇ m or more and 10.0 ⁇ m or less, and (b) /(a).
  • the method is not particularly limited, and can be arbitrarily selected from known charging methods such as corona discharge method, pure water charging method, and frictional charging method.
  • a pure water charging method in which water is applied to a nonwoven fabric and then dried is preferably used.
  • the fibers contained in the nonwoven fabric used in the functional layer may be fibers containing additives to improve the charging effect through charging processing.
  • additives known additives can be used as appropriate, but hindered amine additives or triazine additives are particularly preferred because they improve the durability of electrostatic force against water and the like.
  • the content of the additive is preferably in the range of 100 to 30,000 ppm, more preferably in the range of 7,000 to 15,000 ppm, based on the total mass of the nonwoven fabric constituting the functional layer. When the content is 100 ppm or more, it becomes easier to obtain the desired high level of electret performance. When the content is 30,000 ppm or less, the additive is easily distributed uniformly in the fiber, and does not affect yarn-spinning properties or film-forming properties.
  • hindered amine compounds include poly[(6-(1,1,3,3-tetramethylbutyl)imino-1,3,5-triazine-2,4-diyl)((2,2,6, 6-tetramethyl-4-piperidyl)imino)hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl)imino)] (manufactured by BASF Japan Co., Ltd., “Kimasorb” (registered trademark) 944LD ), dimethyl-1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate succinate (“Tinuvin” (registered trademark) 622LD, manufactured by BASF Japan Ltd.) , and 2-(3,5-di-t-butyl-4-hydroxybenzyl)-2-n-butylmalonate bis(1,2,2,6,6-pentamethyl-4-piperidyl) (BASF Japan ( Examples include “Tinuvin” (
  • triazine additives include poly[(6-(1,1,3,3-tetramethylbutyl)imino-1,3,5-triazine-2,4-diyl)((2,2 ,6,6-tetramethyl-4-piperidyl)imino)hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl)imino)] (manufactured by BASF Japan Ltd., "Kimasorb” (registered trademark) )944LD), and 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-((hexyl)oxy)-phenol (manufactured by BASF Japan Co., Ltd., "Tinuvin” (registered) Trademark) 1577FF).
  • the collection efficiency of the functional layer for particles with a particle size of 0.3 to 0.5 ⁇ m is preferably higher than the collection efficiency of the liquid-repellent layer described below for particles with a particle size of 0.3 to 0.5 ⁇ m.
  • the functional layer has a higher collection efficiency for particles with a particle size of 0.3 to 0.5 ⁇ m, so it can efficiently collect fungi, viruses, and allergens, and has antibacterial, antiviral, and antifungal properties. It is possible to efficiently express anti-allergenic and anti-allergenic properties.
  • the value of collection efficiency can be adjusted according to the purpose of air purifier use, cabin use, etc., and is not particularly limited, but it is effective for static removal of particles with a particle size of 0.3 to 0.5 ⁇ m at a wind speed of 4.5 m/min. It is preferable that the collection efficiency of the polystyrene particles is 60% or more. More preferably, it is 75% or more, 90% or more, or 95% or more. In places where a cleaner space is required, a functional layer with a collection efficiency of 99% or more can be suitably used.
  • the basis weight of the functional layer is preferably in the range of 3 to 100 g/m 2 .
  • the basis weight is preferably in the range of 3 to 100 g/m 2 .
  • the liquid repellent layer in the present invention is a layer of nonwoven fabric having liquid repellency.
  • the nonwoven fabric constituting the liquid-repellent layer is not particularly limited, but preferably contains glass fiber, organic fiber, pulp, and binder resin.
  • glass fiber, organic fiber, pulp, and binder resin By containing glass fiber, organic fiber, pulp, and binder resin, it becomes easier to reduce the thickness and adjust the air permeability while maintaining the strength of the liquid-repellent layer.
  • the glass fiber content in the liquid repellent layer is preferably 0 to 50% by mass. When the glass fiber content is 50% by mass or less, the scattering of glass fibers is further reduced when pleating the filter.
  • the organic fibers are not particularly limited, and polyester fibers, vinylon fibers, etc. can be used.
  • the amount of organic fiber in the liquid-repellent layer is preferably 20 to 85% by mass, and when glass fiber is composited with organic fiber, the amount of organic fiber is preferably 25% to 100% by mass based on the mass of the organic fiber.
  • the intertwining properties of the fibers are improved, and the above-mentioned scattering and fluffing of the glass fibers can be further reduced.
  • the inclusion of pulp closes the pores of the liquid-repellent layer, making it difficult for droplets and mist containing dust to migrate to the functional layer.
  • the content of pulp in the liquid repellent layer is preferably 5 to 20% by mass. When the content is 5% by mass or more, the liquid becomes more difficult to escape, and when the content is 20% by mass or less, pressure loss can be further reduced.
  • Binder resin has the function of bonding between fibers and giving strength to the sheet.
  • the binder is not particularly limited, and polyvinyl alcohol resin, vinyl acetate resin, acrylic resin, urethane resin, etc. can be used. In particular, it is preferable to use polyvinyl alcohol resin or acrylic resin because they cause less off-odor.
  • the amount of the binder in the liquid repellent layer is preferably 10 to 40% by mass. If it is 10% by mass or more, the strength of the nonwoven fabric will be more sufficient, and if it is 40% by mass or less, pressure loss can be further reduced.
  • Methods for producing the nonwoven fabric constituting the liquid-repellent layer are not particularly limited, but include melt blowing, spunbonding, thermal bonding, chemical bonding, needle punching, hydroentanglement, airlaid, wet papermaking, and the like. Can be mentioned.
  • the fiber diameter of the liquid-repellent layer is preferably larger than the fiber diameter of the functional layer in order to function as a pre-filter for large-sized dust particles. By making the pore diameter of the liquid-repellent layer larger than that of the functional layer, fine dust can pass through the liquid-repellent layer and be efficiently collected by the functional layer.
  • the average fiber diameter of the liquid-repellent layer is not particularly limited as long as it is larger than the average fiber diameter of the functional layer, but is preferably 10.0 ⁇ m or more, more preferably 12.0 ⁇ m or more.
  • the thickness of the liquid-repellent layer of the present invention is preferably 0.10 mm or more and 1.00 mm or less. By setting the thickness to 1.00 mm or less, when the filter medium is used in a pleated shape, the ventilation resistance due to the structure can be sufficiently reduced. More preferably, it is 0.50 mm or less. By setting the thickness to 0.10 mm or more, sufficient strength of the liquid-repellent layer can be obtained.
  • the air permeability of the liquid-repellent layer is preferably 100 cm 3 /cm 2 /second or more and 500 cm 3 /cm 2 /second or less.
  • the air permeability is preferably 100 cm 3 /cm 2 /second or more and 500 cm 3 /cm 2 /second or less.
  • the density of the liquid-repellent layer is preferably 0.01 g/cm 3 or more and 0.50 g/cm 3 or less.
  • the density is preferably 0.01 g/cm 3 or more and 0.50 g/cm 3 or less.
  • the liquid-repellent layer can obtain sufficient strength, and by setting the density to 0.50 g/cm 3 or less, breathability can be ensured.
  • it is 0.05 g/cm 3 or more and 0.40 g/cm 3 or less, more preferably 0.10 g/cm 3 or more and 0.30 g/cm 3 or less.
  • the Gurley bending resistance is 300 mg or more.
  • the liquid repellent layer of the present invention is characterized by having liquid repellency.
  • Having liquid repellency refers to the behavior of repelling droplets when a certain liquid is dropped on the surface of the nonwoven fabric.
  • the surface test liquid tension is more preferably 35 mN/m or less, and even more preferably 30 mN/m or less.
  • the liquid-repellent layer is liquid-repellent and has sufficient air permeability, which prevents the accumulation of viruses and virus-containing droplets on the liquid-repellent layer, as well as the accumulation and proliferation of bacteria. It is possible to suppress movement of particles collected in the layer to the liquid-repellent layer. Furthermore, it is possible to suppress the movement of large water droplets and oil droplets to the functional layer via the liquid-repellent layer, and the sustainability of the effect of the functional layer can be increased.
  • Methods for imparting liquid repellency to nonwoven fabrics include, but are not particularly limited to, a method in which a liquid repellent is mixed into the raw material for spinning the nonwoven fabric, a method in which the nonwoven fabric is brought into contact with a solution containing a liquid repellent, a spray method, and a vapor deposition method.
  • a method of directly applying a water repellent to a nonwoven fabric, such as a gravure method can be used as appropriate.
  • Imparting liquid repellency to the nonwoven fabric may be applied to the liquid repellent layer alone, before laminating the liquid repellent layer and the functional layer, or may be applied after laminating the liquid repellent layer and the functional layer.
  • it is a method of imparting liquid repellency before laminating the functional layer. If the liquid repellent layer is laminated after imparting liquid repellency to a single liquid repellent layer, the electret in the functional layer may be deactivated or the antibacterial, antiviral, antifungal, and antiallergenic properties may be reduced during the liquid repellent imparting process. can be prevented.
  • the electret in the functional layer may be deactivated and the antibacterial, antiviral, antifungal, and antiallergenic properties may occur. Therefore, it is necessary to select a method that imparts liquid repellency only to the surface layer of the liquid repellent layer, such as a spray method, vapor deposition method, or gravure method.
  • the type of water repellent is not particularly limited, but one containing a fluororesin is preferred. That is, it is preferable that the liquid repellent layer contains a fluororesin.
  • Types of fluororesin include tetrafluoroethylene resin, tetrafluoroethylene/perfluoropropyl vinyl ether copolymer, tetrafluoroethylene/hexafluoropropylene copolymer, chlorotrifluoroethylene resin, ethylene/tetrafluoroethylene copolymer, Vinylidene fluoride resin, vinyl fluoride resin, hexafluoropropylene/vinylidene fluoride copolymer, polyimide-based modified fluororesin, polyphenylene sulfide-based modified fluororesin, epoxy-based modified fluororesin, polyethersulfone-based modified fluororesin, phenol At least one selected from the group consisting of a system-modified fluororesin, an acrylate polymer having a perfluoroalkylethylene group, a methacrylate copolymer having a perfluoroalkylethylene group, etc. can be used.
  • the functional layer and the liquid-repellent layer are in contact with each other.
  • two layers are in contact with each other, it refers to a state in which the two layers are continuously laminated, but a hot melt resin for the purpose of adhesion may be interposed between the two layers.
  • the hot melt resin is not particularly limited, but polyethylene, EVA, etc. can be selected as appropriate. Because the functional layer and the liquid-repellent layer are in contact with each other, the liquid-repellent layer acts as a barrier and prevents the particles collected by the functional layer from moving outside, increasing the efficiency of the functional layer's contact with the fibers and achieving functionality. It becomes easier to do.
  • the liquid-repellent layer is arranged upstream of the functional layer.
  • the liquid-repellent layer By disposing the liquid-repellent layer on the upstream side of the functional layer, it is possible to suppress the intrusion of liquids such as moisture and oil from the suction part, and it is possible to suppress the functional deterioration of the functional layer.
  • the collection efficiency of the liquid-repellent layer for particles having a particle size of 0.3 to 0.5 ⁇ m is preferably lower than the particle size of the functional layer of 0.3 to 0.5 ⁇ m.
  • the collection efficiency of static-eliminating polystyrene particles having a particle size of 0.3 to 0.5 ⁇ m is 10% or less under the condition of a wind speed of 4.5 m/min. More preferably it is 5% or less.
  • Thickness evaluation Evaluation was performed using a thickness gauge SMD-55J (manufactured by Techlock). The nonwoven fabric was cut to 200 mm x 200 mm, measurements were taken at 16 locations at 40 mm intervals, and the average value was taken as the thickness.
  • Air permeability It was measured using an air permeability tester KES-F8 (manufactured by Kato Tech). Measurement was performed at 5 points on a nonwoven fabric size of 100 m x 100 mm, and the average value was taken as the air permeability.
  • the nonwoven fabric was cut into a size of 100 cm x 100 cm, the weight was measured, the basis weight (g/m 2 ) was calculated, and the density was calculated from the basis weight/thickness.
  • a measurement sample of 150 mm x 150 mm was taken, and the collection efficiency of each sample was measured using the collection efficiency measuring device shown in FIG.
  • a dust storage box 2 and a static eliminator 9 are connected to the upstream side of a sample holder 1 in which a measurement sample M is set, and a flow meter 3, a flow rate adjustment valve 4, and a static eliminator 9 are connected to the downstream side.
  • a blower 5 is connected.
  • the sample holder 1 is equipped with a pressure gauge 8, and the static pressure difference between the upstream and downstream sides of the measurement sample M can be read.
  • a 10% polystyrene 0.309U solution (manufacturer: Nacalai Tesque Co., Ltd.) is diluted up to 200 times with distilled water and filled into the dust storage box 2.
  • particle counter 6 K-01D, manufactured by Rion Co., Ltd.
  • the collection efficiency (%) of particles of 3 to 0.5 ⁇ m was determined. The average value of the three measurement samples was taken as the final collection efficiency.
  • ⁇ Collection efficiency (%) [1-(d/D)] x 100 (However, d represents the total number of downstream dust particles measured three times, and D represents the total number of upstream dust particles measured three times.)
  • the pressure loss was determined by reading the static pressure difference between upstream and downstream of the measurement sample M using a pressure gauge 8 when measuring the collection efficiency. The average value of the five measurement samples was taken as the final pressure drop.
  • the antibacterial property was measured based on the antibacterial property test for textile products of JIS L 1902 (2015).
  • the test bacteria and the test piece were inoculated using a bacterial liquid absorption method in which the test inoculum solution was directly inoculated onto the test piece. Specifically, six samples of 0.40 g ⁇ 0.05 g were prepared, each was placed in a vial and sterilized, and then 0.2 mL of the test bacterial solution was inoculated, three of them immediately after inoculation, and the remaining three. One is to wash out after culturing at 37°C for 24 hours.
  • the antibacterial activity value is calculated by calculating the growth value of the sample from the difference between the common logarithm of the arithmetic mean of the number of viable bacteria after culture and the common logarithm of the arithmetic mean of the number of viable bacteria immediately after inoculation, and the difference from the growth value of the standard fabric. do.
  • an antibacterial activity value of Staphylococcus aureus of 3.0 or more was rated A, 2.5 or more and less than 3.0 was rated B, 2.0 or more and less than 2.5 was rated C, and less than 2.0 was rated D.
  • Antiviral properties were measured based on JIS L 1922 (2016) antiviral testing method for textile products. Specifically, 0.40 g ⁇ 0.05 g of a sample cut into a size of 20 mm x 20 mm was placed in a vial and sterilized, then 0.2 mL of virus suspension was inoculated and left at 25°C for 2 hours. and let it work. After the action, 20 mL of SCDLP medium is added to the vial and stirred to wash out the virus, and the infectious titer is measured by the plaque method. The antiviral activity value is calculated from the difference between the virus infectivity of the standard fabric immediately after inoculation with the virus suspension and the infectivity of the evaluation sample after the action. Regarding the test results, antiviral activity value for influenza virus (H1N1) of 3.0 or more is A, 2.5 or more and less than 3.0 is B, 2.0 or more and less than 2.5 is C, and less than 2.0 is D. did.
  • the mold resistance was measured based on the mold resistance test method of JIS Z 2911 (2016). Specifically, the test sample is washed with tap water for 24 hours, then cut into pieces of 50 mm x 50 mm, and washed with purified water. After draining, place in the center of the culture medium, spray 1 mL of spore suspension evenly onto the test sample and culture surface, culture at 26°C for 2 weeks, and check the state of mold growth. Regarding the test results, for Aspergius (Aspergillus niger), a measured value of 0 was given as A, a measured value of 1 was given as B, and a measured value of 2 was given as C.
  • Antiallergenicity test Antiallergenicity was measured by sandwich ELISA method. Regarding the test results, for mite allergen (derf1), allergen reduction rate of 99% or more was rated A, 95% or more but less than 99% was rated B, 90% or more and less than 95% was rated C, and less than 90% was rated D.
  • the fiber aggregate After producing a fiber aggregate by an inclined wire wet papermaking method, the fiber aggregate is impregnated with a binder and subjected to dry heat treatment to produce a nonwoven fabric sheet B1 (thickness: 0.25 mm, air permeability 280 cm 3 /cm 2 /sec, The density was 0.18 g/cm 3 ).
  • the composition is 40% by mass of glass fiber (fineness 11dtex, fiber length 15mm), 5% by mass polyester fiber (fineness 6dtex, fiber length 10mm), 10% by mass vinylon fiber (fineness 15dtex, fiber length 12mm), and 15% by mass of fiber pulp.
  • the binder resin styrene acrylic polymer (glass transition temperature Tg 30°C, film forming temperature 45°C) was adjusted to be 30% by mass.
  • a polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Reference Example 6.
  • Reference example 7 A filter medium of Reference Example 7 was obtained in the same manner as in Reference Example 6 except that 15 g/m 2 of a 2% by mass aqueous solution of tannic acid was sprayed in place of benzalkonium chloride and then dried at 100°C for 15 minutes. Ta.
  • Reference example 8 Instead of benzalkonium chloride, a 5% by mass aqueous dispersion of Neosynthol M-30 (manufactured by Sumika Environmental Science Co., Ltd., active ingredient: thiabendazole) as a fungicidal agent was sprayed at 10 g/m 2 at 100°C. A filter medium of Reference Example 8 was obtained in the same manner as Reference Example 6 except that it was dried for 15 minutes.
  • Example 1 A nonwoven fabric sheet with an average fiber diameter of 2.0 ⁇ m and a basis weight of 30 g/m 2 was obtained by melt blowing using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb” (registered trademark) 944 (manufactured by BASF Japan Ltd.). . Next, a silver nanoparticle dispersion (containing 0.3% by mass of silver nanoparticles) was sprayed at 40 g/m 2 , and then dried at 100° C. for 15 minutes.
  • a polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A2 was laminated thereon, and the hot melt resin was melted by heating to obtain the filter medium of Example 1.
  • Example 2 Using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb” (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.5% by mass of silver nanoparticles, the average fiber diameter was 2.5 ⁇ m and the basis weight was 30 g by melt blowing. A nonwoven fabric sheet of /m 2 was obtained.
  • a polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Example 2.
  • Example 3 Using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb” (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.5% by mass of silver nanoparticles, the average fiber diameter was 2.5 ⁇ m and the basis weight was 30 g by melt blowing. A nonwoven fabric sheet of /m 2 was obtained. Next, pure water was sprayed at high pressure to spread the pure water over the entire nonwoven fabric sheet, and after draining, the nonwoven fabric was air-dried to obtain an electret melt-blown nonwoven fabric.
  • "Kimasorb” registered trademark 944
  • a polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A2 was laminated thereon, and the hot melt resin was melted by heating to obtain the filter medium of Example 3.
  • Example 4 A polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb” (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.3% by mass of zinc oxide was melt-blown with an average fiber diameter of 2.1 ⁇ m and a basis weight of 30 g/ A nonwoven fabric sheet of m 2 was obtained. Next, pure water was sprayed at high pressure to spread the pure water over the entire nonwoven fabric sheet, and after draining, the nonwoven fabric was air-dried to obtain an electret melt-blown nonwoven fabric.
  • "Kimasorb” registered trademark 944
  • a polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Example 4.
  • Example 5 A filter medium of Example 5 was obtained in the same manner as in Example 4 except that nonwoven fabric sheet A3 was laminated in place of nonwoven fabric sheet A2.
  • Example 6 Using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb” (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.3% by mass of zinc oxide, the average fiber diameter was 2.1 ⁇ m and the basis weight was 30 g by melt blowing. A nonwoven fabric sheet of /m 2 was obtained. Next, pure water was sprayed at high pressure to spread the pure water over the entire nonwoven fabric sheet, and after draining, the nonwoven fabric was air-dried to obtain an electret melt-blown nonwoven fabric.
  • "Kimasorb” registered trademark 944
  • Activated carbon with an average particle size of 250 ⁇ m and polyethylene hot melt resin were mixed on the obtained nonwoven fabric, and the activated carbon and hot melt resin were sprinkled at 100 g/m 2 and 30 g/m 2 , respectively, and a nonwoven fabric sheet A3 was laminated.
  • the hot melt resin was melted by heating to obtain the composite filter medium of Example 6.
  • activated carbon with an average particle size of 250 ⁇ m is mixed with the polyethylene hot melt resin, there is an intermediate layer.
  • Example 7 A filter medium of Example 7 was obtained in the same manner as in Example 4 except that nonwoven fabric sheet B2 was used in place of nonwoven fabric sheet A2.
  • Example 8 A filter medium of Example 8 was obtained in the same manner as in Example 7 except that a polypropylene resin containing 0.3% by mass of copper zeolite was used instead of zinc oxide.
  • Example 9 A filter medium of Example 9 was obtained in the same manner as in Example 7 except that a polypropylene resin containing 0.3% by mass of silver zeolite was used instead of zinc oxide.
  • a polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet B2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Reference Example 9.
  • Reference example 10 A filter medium of Reference Example 10 was obtained in the same manner as Reference Example 9 except that 15 g/m 2 of a 2% by mass aqueous solution of tannic acid was sprayed in place of benzalkonium chloride, and then dried at 100°C for 15 minutes. Ta.
  • Example 10 Using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb” (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.5% by mass of silver nanoparticles, the average fiber diameter was 2.5 ⁇ m and the basis weight was 30 g by melt blowing. A nonwoven fabric sheet of /m 2 was obtained. Next, a 2% by mass aqueous solution of tannic acid was sprayed at 15 g/m 2 and then dried at 100° C. for 15 minutes.
  • "Kimasorb” registered trademark 944
  • a polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet B2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Example 10.
  • Example 11 A polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb” (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.3% by mass of zinc oxide was melt-blown with an average fiber diameter of 2.1 ⁇ m and a basis weight of 30 g/ A nonwoven fabric sheet of m 2 was obtained. Next, a 5% by mass aqueous dispersion of Neosynthol M-30 (manufactured by Sumika Environmental Science Co., Ltd., active ingredient: thiabendazole) was sprayed at 10 g/m 2 and then dried at 100° C. for 15 minutes. Thereafter, an electret treatment was performed using a corona discharge method.
  • Neosynthol M-30 manufactured by Sumika Environmental Science Co., Ltd., active ingredient: thiabendazole
  • a polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet B2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Example 11.
  • a polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A1 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Comparative Example 1.
  • Comparative example 2 A filter medium of Comparative Example 2 was obtained in the same manner as in Reference Example 7 except that nonwoven fabric sheet A1 was used instead of nonwoven fabric sheet A2.
  • Comparative example 3 A filter medium of Comparative Example 3 was obtained in the same manner as in Reference Example 8 except that nonwoven fabric sheet A1 was used instead of nonwoven fabric sheet A2.
  • Comparative example 4 A filter medium of Comparative Example 4 was obtained in the same manner as in Example 4 except that nonwoven fabric sheet A1 was used instead of nonwoven fabric sheet A2.
  • Comparative example 5 A filter medium of Comparative Example 5 was obtained in the same manner as in Example 8 except that nonwoven fabric sheet A1 was used in place of nonwoven fabric sheet B2.
  • Comparative example 6 A filter medium of Comparative Example 6 was obtained in the same manner as Comparative Example 1 except that nonwoven fabric sheet B2 was used instead of nonwoven fabric sheet A1.
  • Table 1 shows the composition and physical properties of the functional layer and liquid-repellent layer prepared in Examples and Comparative Examples
  • Table 2 shows the collection efficiency, pressure loss, and initial performance of the filter medium, as well as antibacterial, antiviral, and antiallergen properties after deterioration tests. The results of anti-mold performance are shown.
  • Comparative Examples 1 and 6 do not have a drug in the functional layer, so various functions are not expressed. Comparative Examples 2 to 5 exhibit good initial performance, but the degree of functional decline after the deterioration test is large.
  • the filter medium of the present invention exhibits its functions efficiently and can suppress performance deterioration.
  • the filter medium of the present invention can be suitably used for air purifier filters, automobile cabin filters, and the like.

Abstract

The present invention is a filter medium for an air filter including at least a hydrophobic layer and a functional layer. The functional layer includes at least one inorganic chemical agent selected from the group consisting of antibacterial agents, antiviral agents, anti-mold agents, and anti-allergy agents. Provided is a filter medium which hardly experiences decreases in functionality while efficiently realizing various functions.

Description

濾材filter medium
 本発明は空気浄化用途に用いられる濾材に関する。 The present invention relates to a filter medium used for air purification purposes.
 近年、PM2.5等の大気汚染が問題となる中で、よりきれいな空気環境で生活を送りたいというニーズから、空気清浄機用フィルターや自動車用キャビンフィルター、マスク等の濾材の需要が高まっている。これらの用途に共通して用いられているのが、不織布等で構成される濾材によって空気中の微細塵を除去する技術である。そして、これらの濾材には、高い捕集効率と高い通気性が求められている。 In recent years, as air pollution such as PM2.5 has become a problem, demand for filter media such as air purifier filters, automobile cabin filters, and masks is increasing due to the need to live in a cleaner air environment. . Commonly used in these applications is a technology that removes fine dust from the air using a filter medium made of nonwoven fabric or the like. These filter media are required to have high collection efficiency and high air permeability.
 また、上記の空気清浄機用フィルターや自動車用キャビンフィルターの濾材が捕集する物質には、ダニや花粉由来のアレルゲンや、カビの胞子、菌類、ウイルス類等が含まれており、これらの物質は疾病の原因となるため、捕集した濾材上で失活することが望まれている。 In addition, the substances collected by the filter media of the above air purifier filters and automobile cabin filters include allergens derived from dust mites and pollen, mold spores, fungi, viruses, etc. Since it causes diseases, it is desired that it be deactivated on the filter medium where it is collected.
 例えば、特許文献1ではポリフェノール化合物とアルカリ土類金属塩を含有させた構成からなる抗アレルゲン性フィルターが開示されている。特許文献2では脱臭性能を有しながら抗ウイルス機能を有するフィルターが開示されている。上記フィルターは、フィルター自体が機能を有するものの、空気中のアレルゲン物質、ウイルス類等を失活させるためにはフィルター上に捕捉する必要があり、サイズの小さい物質に対しては接触効率の面で不十分であった。特許文献3ではエレクトレット処理が施された不織布からなる捕集層を含む濾材と、抗菌剤を含む濾材が開示されている。捕集層に抗菌剤を付与することで、接触効率は改善されているが、さらに高い機能の発現が求められている。また、捕集した物質による作用や外気からの水滴や油分が入り込むことで機能低下の恐れがあった。特許文献4では撥水性と抗菌性と難燃性を併せ持つ濾材が開示されており、水分流入時の性能および形状安定性を改善しているが、抗菌性と撥水性を併せ持つことで、抗菌剤との接触効率が低下する課題があった。 For example, Patent Document 1 discloses an anti-allergenic filter containing a polyphenol compound and an alkaline earth metal salt. Patent Document 2 discloses a filter that has antiviral function while having deodorizing performance. Although the filter itself has a function, in order to deactivate allergens and viruses in the air, it is necessary to capture them on the filter. It was insufficient. Patent Document 3 discloses a filter medium including a collection layer made of a nonwoven fabric treated with electret, and a filter medium including an antibacterial agent. Although contact efficiency has been improved by adding an antibacterial agent to the collection layer, even higher functionality is required. In addition, there was a risk of functional deterioration due to the effects of collected substances and the ingress of water droplets and oil from the outside air. Patent Document 4 discloses a filter material that has water repellency, antibacterial properties, and flame retardancy, and improves performance and shape stability when moisture enters. There was a problem that the efficiency of contact with
特許第4920895号公報Patent No. 4920895 特開2015-62851号公報Japanese Patent Application Publication No. 2015-62851 特開2014-50790号公報Japanese Patent Application Publication No. 2014-50790 特開2006-159133号公報Japanese Patent Application Publication No. 2006-159133
 本発明は、このような従来の課題を解決するものであり、各種機能を効率よく発現しつつ、機能低下しにくいエアフィルター用濾材を提供する。 The present invention solves these conventional problems, and provides a filter medium for air filters that exhibits various functions efficiently and is less likely to deteriorate in function.
 上記課題を解決するため、本発明の濾材は以下の特徴を有する。 In order to solve the above problems, the filter medium of the present invention has the following characteristics.
 (1)少なくとも撥液層と機能層を含むエアフィルター用の濾材であって、前記機能層は抗菌剤、抗ウイルス剤、防カビ剤および抗アレルゲン剤からなる群より選ばれた1つ以上の無機系薬剤を含む濾材。 (1) A filter medium for an air filter including at least a liquid repellent layer and a functional layer, wherein the functional layer contains one or more selected from the group consisting of an antibacterial agent, an antiviral agent, an antifungal agent, and an antiallergen agent. Filter media containing inorganic chemicals.
 (2)前記機能層の粒子径0.3~0.5μmの粒子に対する捕集効率が、前記撥液層の粒子径0.3~0.5μmの粒子に対する捕集効率よりも高い(1)記載の濾材。 (2) The collection efficiency of the functional layer for particles with a particle size of 0.3 to 0.5 μm is higher than the collection efficiency of the liquid repellent layer for particles with a particle size of 0.3 to 0.5 μm (1) Filter media as described.
 (3)前記機能層が帯電不織布である(1)または(2)に記載の濾材。 (3) The filter medium according to (1) or (2), wherein the functional layer is a charged nonwoven fabric.
 (4)前記撥液層がフッ素樹脂を含む(1)~(3)のいずれかに記載の濾材。 (4) The filter medium according to any one of (1) to (3), wherein the liquid-repellent layer contains a fluororesin.
 (5)前記撥液層が、厚み0.10mm以上1.00mm以下であり、通気度100cm/cm/秒以上500cm/cm/秒以下であり、密度0.01g/cm以上0.50g/cm以下である(1)~(4)のいずれかに記載の濾材。 (5) The liquid-repellent layer has a thickness of 0.10 mm or more and 1.00 mm or less, an air permeability of 100 cm 3 /cm 2 /sec or more and 500 cm 3 /cm 2 /sec or less, and a density of 0.01 g/cm 3 or more. The filter medium according to any one of (1) to (4), which has a content of 0.50 g/cm 3 or less.
 (6)前記撥液層と前記機能層が接している(1)~(5)のいずれかに記載の濾材。 (6) The filter medium according to any one of (1) to (5), wherein the liquid-repellent layer and the functional layer are in contact with each other.
 (7)前記無機系薬剤が少なくとも遷移金属を含む(1)~(6)のいずれかに記載の濾材。 (7) The filter medium according to any one of (1) to (6), wherein the inorganic drug contains at least a transition metal.
 (8)前記無機系薬剤が銀ナノ粒子、銅ナノ粒子、銀担持体、銅担持体および酸化亜鉛からなる群より選ばれた1つ以上を含む(1)~(7)のいずれかに記載の濾材。 (8) According to any one of (1) to (7), wherein the inorganic drug contains one or more selected from the group consisting of silver nanoparticles, copper nanoparticles, silver carriers, copper carriers, and zinc oxide. filter medium.
 本発明によれば、各種機能を効率よく発現しつつ、機能低下しにくいエアフィルター用濾材を提供できる。 According to the present invention, it is possible to provide a filter medium for an air filter that efficiently exhibits various functions and is less likely to deteriorate in function.
図1は捕集効率測定装置の概略図である。FIG. 1 is a schematic diagram of a collection efficiency measuring device.
 本発明の濾材は、機能層および撥液層を含む。以下、機能層、撥液層の特徴について詳細に説明する。 The filter medium of the present invention includes a functional layer and a liquid-repellent layer. Hereinafter, the characteristics of the functional layer and the liquid-repellent layer will be explained in detail.
 [機能層]
 本発明における機能層とは、抗菌剤、抗ウイルス剤、防カビ剤および抗アレルゲン剤のいずれか1つ以上の薬剤を含む不織布である。
[Functional layer]
The functional layer in the present invention is a nonwoven fabric containing any one or more of antibacterial agents, antiviral agents, antifungal agents, and antiallergen agents.
 抗菌性とは、細菌数の減少または死滅させることで細菌の増殖を阻止および抑制する機能を指し、機能層を構成する不織布が抗菌性を有するとは、不織布上での細菌の増殖を抑制する加工がなされていることを指す。抗菌性の付与は抗菌機能を有する薬剤(以下、抗菌剤)を不織布に付与することで得られる。 Antibacterial properties refer to the ability to prevent and suppress the growth of bacteria by reducing or killing the number of bacteria, and the fact that the nonwoven fabric that makes up the functional layer has antibacterial properties means that it inhibits the growth of bacteria on the nonwoven fabric. Indicates that it has been processed. Antibacterial property can be imparted to a nonwoven fabric by applying an agent having an antibacterial function (hereinafter referred to as an antibacterial agent).
 本発明に使用される抗菌剤は特に限定されないが、無機系抗菌剤としては銀、銅、亜鉛等の金属ナノ粒子、ゼオライト、シリカゲル、ガラス、リン酸カルシウム、リン酸ジルコニウム、ケイ酸カルシウム、メタケイ酸アルミン酸マグネシウム、チタン酸カリウム、酸化亜鉛等の担体に銀、銅、亜鉛等の金属を付与した担持体、酸化亜鉛、酸化銅、二酸化チタン等の金属酸化物を好適に用いることができる。有機系抗菌剤としては2-n-オクチル-4-イソチアゾリン-3-オンや1,2-ベンゾイソチアゾリン-3-オン等のチアゾリン系、ソルビン酸等のカルボン酸系、3-ヨード-2-プロピニルブチルカルバメート等のカルバメート系、塩化ベンザルコニウム、ジデシルジメチルアンモニウムクロライド、ジメチルオクタデシル[3-(トリメトキシシリル)プロピル]アンモニウムクロライド、ジメチルテトラデシル[3-(トリメトキシシリル)プロピル]アンモニウムクロライド、ヘキサデシルピリジニウムクロライド等の第四級アンモニウム塩系、3-メチル-4-イソプロピルフェノール、4-クロロ-3,5-ジメチルフェノール、3-メチル-4-クロロフェノール等のフェノール系等を好適に用いることができる。また、カテキン類やタンニン類等の天然物由来の抗菌剤も適宜使用できる。不織布を構成する繊維にあらかじめ抗菌剤を練り込んでおく場合、樹脂を溶融するために高温にする必要があるため、熱に対して安定な無機系抗菌剤が好ましく、抗菌性に優れる点から銀ナノ粒子、銅ナノ粒子、銀担持体、銅担持体、酸化亜鉛がより好ましい。また、有機系抗菌剤を無機系の担体に担持させたハイブリッド系抗菌剤も好適に用いることができる。ハイブリッド系抗菌剤とすることで、有機系抗菌剤単独に比べ耐熱性が向上し、徐放機能により長期間にわたり効果を持続させることができる。抗菌剤は単独で用いてもよく、複数の抗菌剤を併用してもよい。 The antibacterial agent used in the present invention is not particularly limited, but examples of inorganic antibacterial agents include metal nanoparticles such as silver, copper, and zinc, zeolite, silica gel, glass, calcium phosphate, zirconium phosphate, calcium silicate, and aluminum metasilicate. Supports obtained by adding metals such as silver, copper, and zinc to supports such as magnesium oxide, potassium titanate, and zinc oxide, and metal oxides such as zinc oxide, copper oxide, and titanium dioxide can be suitably used. Examples of organic antibacterial agents include thiazolines such as 2-n-octyl-4-isothiazolin-3-one and 1,2-benzisothiazolin-3-one, carboxylic acids such as sorbic acid, and 3-iodo-2-propynyl. Carbamates such as butyl carbamate, benzalkonium chloride, didecyldimethylammonium chloride, dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride, dimethyltetradecyl[3-(trimethoxysilyl)propyl]ammonium chloride, hexa Preferably use quaternary ammonium salts such as decylpyridinium chloride, phenols such as 3-methyl-4-isopropylphenol, 4-chloro-3,5-dimethylphenol, 3-methyl-4-chlorophenol, etc. I can do it. Furthermore, antibacterial agents derived from natural products such as catechins and tannins can also be used as appropriate. When pre-mixing an antibacterial agent into the fibers that make up the nonwoven fabric, it is necessary to heat the resin to a high temperature to melt it, so inorganic antibacterial agents that are stable against heat are preferable, and silver is preferable because of its excellent antibacterial properties. More preferred are nanoparticles, copper nanoparticles, silver supports, copper supports, and zinc oxide. Further, a hybrid antibacterial agent in which an organic antibacterial agent is supported on an inorganic carrier can also be suitably used. By using a hybrid antibacterial agent, it has improved heat resistance compared to an organic antibacterial agent alone, and its sustained release function allows it to maintain its effects over a long period of time. An antibacterial agent may be used alone, or a plurality of antibacterial agents may be used in combination.
 抗菌性の測定はJIS L 1902(2015)の繊維製品の抗菌性試験により測定することができる。濾材の測定にあたり、試験菌と試験片との接種方法は、試験接種菌液を直接試験片上に接種する菌液吸収法を好適に適用できる。黄色ブドウ球菌および肺炎桿菌に対し抗菌活性値2.0以上であることが好ましい。より好ましくは2.5以上、さらに好ましくは3.0以上である。 The antibacterial property can be measured by the antibacterial property test for textile products according to JIS L 1902 (2015). In measuring the filter medium, a suitable method for inoculating the test bacteria with the test piece is a bacterial liquid absorption method in which a test inoculated bacterial solution is directly inoculated onto the test piece. It is preferable that the antibacterial activity value against Staphylococcus aureus and Klebsiella pneumoniae is 2.0 or more. More preferably it is 2.5 or more, still more preferably 3.0 or more.
 抗ウイルス性とは、ウイルス表面のたんぱく質を変性させ得るまたは構造に損傷を与え、これにより宿主細胞のレセプターとの勘合性をなくし、活性を低下させる機能を指す。エンベロープウイルスにおけるエンベロープの変性も含む。機能層を構成する不織布が抗ウイルス性を有するとは、不織布上でウイルスの活性を低下させる加工がなされていることを指す。抗ウイルス性の付与は抗ウイルス機能を有する薬剤(以下、抗ウイルス剤)を不織布に付与することで得られる。 Antiviral properties refer to the ability to denature or damage the structure of proteins on the surface of viruses, thereby eliminating compatibility with host cell receptors and reducing activity. Also includes degeneration of the envelope in enveloped viruses. When the nonwoven fabric constituting the functional layer has antiviral properties, it means that the nonwoven fabric has been processed to reduce the activity of viruses. Antiviral properties can be imparted to the nonwoven fabric by applying a drug having an antiviral function (hereinafter referred to as an antiviral agent).
 本発明に使用される抗ウイルス剤は特に限定されないが、無機系抗ウイルス剤としては、銀、銅、亜鉛等の金属ナノ粒子、酸化銅、酸化亜鉛、酸化チタン等の金属酸化物、ゼオライト、シリカゲル、ガラス、リン酸カルシウム、リン酸ジルコニウム、ケイ酸カルシウム、メタケイ酸アルミン酸マグネシウム、チタン酸カリウム、酸化亜鉛等の担体に銀、銅、亜鉛等の金属を付与した担持体等を好適に用いることができる。有機系ウイルス剤としては、有機塩化ベンザルコニウム、ジデシルジメチルアンモニウムクロライド、ジメチルオクタデシル[3-(トリメトキシシリル)プロピル]アンモニウムクロライド、ジメチルテトラデシル[3-(トリメトキシシリル)プロピル]アンモニウムクロライド、ヘキサデシルピリジニウムクロライド等の第四級アンモニウム塩系、3-ヨード-2-プロピニルブチルカルバメート等のカルバメート系のほか、カテキン類やタンニン類等の天然物由来の抗ウイルス剤を好適に用いることができる。前述の通り、不織布を構成する繊維にあらかじめ抗ウイルス剤を練り込んでおく場合、樹脂を溶融するために高温にする必要があるため、熱に対して安定な無機系抗ウイルス剤が好ましく、抗ウイルス性に優れる点から銀ナノ粒子、銅ナノ粒子、銀担持体、銅担持体、酸化亜鉛がより好ましい。 The antiviral agent used in the present invention is not particularly limited, but examples of inorganic antiviral agents include metal nanoparticles such as silver, copper, and zinc, metal oxides such as copper oxide, zinc oxide, and titanium oxide, zeolite, Supports such as silica gel, glass, calcium phosphate, zirconium phosphate, calcium silicate, magnesium aluminate metasilicate, potassium titanate, zinc oxide, etc., to which metals such as silver, copper, and zinc are added can be suitably used. can. Organic virus agents include organic benzalkonium chloride, didecyldimethylammonium chloride, dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride, dimethyltetradecyl[3-(trimethoxysilyl)propyl]ammonium chloride, In addition to quaternary ammonium salts such as hexadecylpyridinium chloride, carbamates such as 3-iodo-2-propynylbutyl carbamate, antiviral agents derived from natural products such as catechins and tannins can be suitably used. . As mentioned above, when pre-mixing an antiviral agent into the fibers that make up the nonwoven fabric, it is necessary to heat the resin to a high temperature to melt it, so an inorganic antiviral agent that is stable against heat is preferable. Silver nanoparticles, copper nanoparticles, silver carriers, copper carriers, and zinc oxide are more preferred from the viewpoint of excellent viral properties.
 抗ウイルス性の測定は、JIS L 1922(2016)の繊維製品の抗ウイルス性試験方法により測定することができる。対象のウイルス種は限定されないが、例えば、インフルエンザウイルス(H1N1)に対し、抗ウイルス活性値2.0以上であることが好ましい。より好ましくは2.5以上、さらに好ましくは3.0以上である。 The antiviral property can be measured by the antiviral property testing method for textile products of JIS L 1922 (2016). Although the target virus species is not limited, it is preferable that the virus has an antiviral activity value of 2.0 or more against influenza virus (H1N1), for example. More preferably it is 2.5 or more, still more preferably 3.0 or more.
 防カビ性とは、カビの細胞内部に入り込んでカビの生育に必要な機能を阻害し、カビの繁殖を抑制する機能を指す。機能層を構成する不織布が防カビ性を有するとは、不織布上でカビの繁殖を抑制させる加工がなされていることを指す。防カビ性の付与は防カビ機能を有する薬剤(以下、防カビ剤)を不織布に付与することで得られる。 Mildew resistance refers to the ability to enter the inside of mold cells and inhibit the functions necessary for mold growth, thereby suppressing mold growth. When the nonwoven fabric constituting the functional layer has antifungal properties, it means that the nonwoven fabric is processed to suppress the growth of mold. Antifungal properties can be imparted to the nonwoven fabric by applying a chemical agent having an antifungal function (hereinafter referred to as an antifungal agent) to the nonwoven fabric.
 本発明に使用される防カビ剤は特に限定されないが、無機系防カビ剤としては、銀ナノ粒子、銅ナノ粒子、銀担持体、銅担持体、酸化亜鉛を好適に用いることができる。有機系防カビ剤としては、2-(4-チアゾリル)-ベンズイミダゾール(チアベンダゾール)、メチル-2-ベンズイミダゾールカルバメート(カルベンダジム)等のベンズイミダゾール系、N-ジクロロフルオロメチルチオ-N’,N’-ジメチル-N-フェニルスルファミド(ジクロフルアニド)、N-ジクロロフルオロメチルチオ-N’,N’-ジメチル-N-p-トリルスルファミド(トリフルアニド)等のスルファミド系、2-ブロモ-2-ニトロプロパン-1,3-ジオール、オルトフェニルフェノール等を好適に用いることができる。また、上述の抗菌剤、抗ウイルス剤の中に防カビ性を有するものがあり、それらも適宜使用することができる。前述の通り、不織布を構成する繊維にあらかじめ防カビ剤を練り込んでおく場合、樹脂を溶融するために高温にする必要があるため、熱に対して安定な無機系防カビ剤が好ましく、抗ウイルス性に優れる点から銀ナノ粒子、銅ナノ粒子、銀担持体、銅担持体、酸化亜鉛がより好ましい。 The antifungal agent used in the present invention is not particularly limited, but silver nanoparticles, copper nanoparticles, silver supports, copper supports, and zinc oxide can be suitably used as inorganic antifungal agents. Examples of organic fungicides include benzimidazole-based agents such as 2-(4-thiazolyl)-benzimidazole (thiabendazole) and methyl-2-benzimidazole carbamate (carbendazim), N-dichlorofluoromethylthio-N',N' - Sulfamides such as dimethyl-N-phenylsulfamide (dichlorofluanid), N-dichlorofluoromethylthio-N',N'-dimethyl-Np-tolylsulfamide (trifluanid), 2-bromo-2 -Nitropropane-1,3-diol, ortho-phenylphenol, etc. can be suitably used. Moreover, some of the above-mentioned antibacterial agents and antiviral agents have antifungal properties, and these can also be used as appropriate. As mentioned above, when pre-mixing a moldproofing agent into the fibers that make up the nonwoven fabric, it is necessary to raise the temperature to a high temperature to melt the resin, so an inorganic moldproofing agent that is stable against heat is preferable. Silver nanoparticles, copper nanoparticles, silver carriers, copper carriers, and zinc oxide are more preferred from the viewpoint of excellent viral properties.
 防カビ性の測定は、JIS Z 2911(2018)のカビ抵抗性試験方法により測定することができる。対象のカビの種類は限定されないが、例えば、アスペルギウス(クロコウジカビ)、ペニシリウム(アオカビ)、ケトミウム(ケタマカビ)等に対し、測定値1(試料又は試験片の接種した部分に認められる菌糸の発育部分は、全面積の1/3を超えない)であることが好ましく、測定値0(試料又は試験片の接種した部分に菌糸の発育は認められない)であることがより好ましい。 The mold resistance can be measured by the mold resistance test method of JIS Z 2911 (2018). The type of target mold is not limited, but for example, for Aspergius, Penicillium, Chaetomium, etc., the measured value is 1 (the part of mycelial growth observed in the inoculated part of the sample or test piece). preferably does not exceed 1/3 of the total area), and more preferably a measured value of 0 (no hyphal growth is observed in the inoculated part of the sample or test piece).
 抗アレルゲン性とはヒトに対してアレルギー症状を引き起こす原因物質であるアレルゲンを吸着や被覆、変性などの方法により不活性化し無害化する作用を指す。アレルゲンにはイヌやネコや鳥などの体毛や上皮、スギ、ヒノキ、ブタクサ等の花粉、カビやダニ、ゴキブリ本体もしくは排泄物などの動植物たんぱく質があり、皮膚接触あるいは粘膜接触することでアレルギー反応を引き起こす物質である。 Anti-allergenicity refers to the effect of inactivating and rendering harmless allergens, which are the causative substances that cause allergic symptoms in humans, through methods such as adsorption, coating, and denaturation. Allergens include body hair and epithelium of dogs, cats, and birds, pollen from cedar, cypress, and ragweed, and animal and plant proteins such as mold, mites, and cockroach body or excrement. It is a substance that causes
 本発明に使用される抗アレルゲン剤は特に限定されないが、タンニン酸、カテキン類等の天然抽出物由来のポリフェノール類を好適に用いることができる。カルシウム塩やストロンチウム塩等のアルカリ土類金属塩類、塩化ジルコニル、水酸化ジルコニウム、炭酸ジルコニウム等のジルコニウム塩類、ミョウバンや硫酸アルミニウム等のアルミニウム塩類といった無機系抗アレルゲン剤も好適に用いることができる。不織布を構成する繊維にあらかじめ抗アレルゲン剤を練り込んでおく場合、樹脂を溶融するために高温にする必要があるため、熱に対して安定な無機系抗アレルゲン剤を好適に用いることができる。 The anti-allergen agent used in the present invention is not particularly limited, but polyphenols derived from natural extracts such as tannic acid and catechins can be suitably used. Inorganic anti-allergen agents such as alkaline earth metal salts such as calcium salts and strontium salts, zirconium salts such as zirconyl chloride, zirconium hydroxide, and zirconium carbonate, and aluminum salts such as alum and aluminum sulfate can also be suitably used. When an anti-allergen agent is kneaded in advance into the fibers constituting the nonwoven fabric, it is necessary to raise the temperature to a high temperature to melt the resin, so an inorganic anti-allergen agent that is stable against heat can be suitably used.
 抗アレルゲン性の測定は、抗原を含む原液を不織布に接触させて静置し、回収した溶液の抗原の数の減少度合いから算出する。具体的には下記式により算出する。
アレルゲン低減率(%)=回収後の溶液の抗原数/原液中の抗原数×100。
Anti-allergenicity is measured by contacting a stock solution containing an antigen with a non-woven fabric and allowing it to stand, and calculating from the degree of decrease in the number of antigens in the collected solution. Specifically, it is calculated using the following formula.
Allergen reduction rate (%) = number of antigens in solution after collection/number of antigens in stock solution x 100.
 溶液中の抗原数の測定は酵素免疫測定法(ELISA法)を好適に用いることができる。ELISA法は測定対象とするアレルゲンと特異的に結合する抗体の反応である抗原抗体反応を利用して測定を行うもので、具体的にはアレルゲンと結合する抗体を酵素で標識し、アレルゲンと結合後に基質を反応させることで基質を発色させ、既知の濃度の標準アレルゲンによる発色(吸光度)をもとに算出した検量線より試料中のアレルゲン濃度を定量する方法である。特にELISA法の中でも抗原に対して2つの抗体を用い、第1の抗体がアレルゲンを捕捉し、洗浄により補足したアレルゲン以外の不純物を除去した後、第2の抗体を用いて検出するサンドイッチELISA法を好適に用いることができる。この方法では検出の特異性が高く、また測定の再現性も高いうえ、サンプルの処置から測定までを簡易なプロセスで行うことができる。対象のアレルゲンの種類は限定されないが、例えば、スギアレルゲン(crij1)、ダニアレルゲン(derf1)に対し、アレルゲン低減率90%以上が好ましい。より好ましくは95%以上、さらに好ましくは99%以上である。 Enzyme-linked immunosorbent assay (ELISA) can be suitably used to measure the number of antigens in a solution. The ELISA method performs measurements using the antigen-antibody reaction, which is a reaction of antibodies that specifically bind to the allergen to be measured. Specifically, the antibody that binds to the allergen is labeled with an enzyme, and the antibody that binds to the allergen is labeled with an enzyme. This method is used to quantify the allergen concentration in a sample using a calibration curve that is calculated based on the color development (absorbance) of a standard allergen at a known concentration, after which the substrate is reacted with a color. In particular, among ELISA methods, sandwich ELISA method uses two antibodies against the antigen, the first antibody captures the allergen, and after washing removes impurities other than the captured allergen, the second antibody is used for detection. can be suitably used. This method has high specificity of detection and high reproducibility of measurement, and can be performed in a simple process from sample treatment to measurement. Although the type of target allergen is not limited, for example, an allergen reduction rate of 90% or more is preferable for cedar allergen (crij1) and mite allergen (derf1). More preferably it is 95% or more, still more preferably 99% or more.
 上記抗菌剤、抗ウイルス剤、防カビ剤、抗アレルゲン剤はぞれぞれ単独で使用してもよく、2種類以上を併用してもよい。ただし、組み合わせによっては各薬剤の機能を損なったり、機能層の物性が低下する可能性があるため、注意が必要である。2種類以上の薬剤を併用する場合、同一工程内で添加してもよく、別工程で添加してもよいが、同一工程内で添加する場合、薬剤同士の相溶性が悪いと薬剤凝集などの懸念があることから、別工程で添加する方が好ましい。別工程での添加は、例えば、樹脂にあらかじめ抗菌剤を練り込んでおき、不織布の製布後、後からスプレーで抗アレルゲン剤を塗布するといった工程が例示される。 Each of the above antibacterial agents, antiviral agents, antifungal agents, and antiallergen agents may be used alone, or two or more types may be used in combination. However, depending on the combination, the functions of each drug may be impaired or the physical properties of the functional layer may deteriorate, so care must be taken. When using two or more types of drugs together, they may be added in the same process or in separate processes, but if they are added in the same process, poor compatibility between the drugs may cause drug aggregation. Because of this concern, it is preferable to add it in a separate process. An example of the addition in a separate step is, for example, a step in which the antibacterial agent is kneaded into the resin in advance, and the antiallergen agent is later applied by spray after the nonwoven fabric is manufactured.
 本発明の濾材に用いる薬剤は抗菌剤、抗ウイルス剤、防カビ剤および抗アレルゲン剤からなる群より選ばれた1つ以上の無機系薬剤を含む。無機系薬剤を用いることで抗菌性、抗ウイルス性、防カビ性、抗アレルゲン性のいずれか1つ以上の機能をより発揮させることができる。また無機系薬剤は、少なくとも遷移金属を含むことが好ましい。遷移金属としては、銀、銅などを挙げることができる。また無機系薬剤としては、例えば銀ナノ粒子、銅ナノ粒子、銀担持体、銅担持体および酸化亜鉛などを挙げることができる。 The agent used in the filter medium of the present invention includes one or more inorganic agents selected from the group consisting of antibacterial agents, antiviral agents, antifungal agents, and antiallergen agents. By using an inorganic drug, one or more of antibacterial, antiviral, antifungal, and antiallergenic functions can be enhanced. Further, it is preferable that the inorganic drug contains at least a transition metal. Examples of transition metals include silver and copper. Examples of inorganic agents include silver nanoparticles, copper nanoparticles, silver carriers, copper carriers, and zinc oxide.
 機能層を構成する不織布は特に限定されないが、高い通気性と捕集効率からエレクトレット繊維で構成された帯電不織布であることが好ましい。不織布としては、熱可塑性樹脂の繊維を含む不織布や天然繊維を含む不織布等が用いられる。これらの中でも、熱可塑性樹脂の繊維を含む不織布が好適に用いられる。 Although the nonwoven fabric constituting the functional layer is not particularly limited, it is preferably a charged nonwoven fabric made of electret fibers due to its high air permeability and collection efficiency. As the nonwoven fabric, a nonwoven fabric containing thermoplastic resin fibers, a nonwoven fabric containing natural fibers, or the like is used. Among these, nonwoven fabrics containing thermoplastic resin fibers are preferably used.
 熱可塑性樹脂の繊維を含む不織布の形態としては、特に限定はされないがメルトブロー不織布、スパンボンド不織布、サーマルボンド不織布、ニードルパンチ不織布、エアレイド不織布などが挙げられる。これらの中でも、不織布を構成する繊維の繊維径を小さくすることができ、不織布を構成する繊維の表面に油剤が存在しないか、不織布を構成する繊維の表面に油剤が存在したとしても極めて少量であるといった観点からメルトブロー不織布が好ましい。ここで、油剤とは、ジメチルポリシロキサン等のシリコーン系油や、鉱物油、などを例示できる。なお、濾材の捕集効率をさらに優れたものとすべく、不織布にエレクトレット加工を施す場合、油剤が不織布を構成する繊維の表面に存在すると、不織布に十分な帯電能が発現しない傾向にある。 Examples of the form of the nonwoven fabric containing thermoplastic resin fibers include, but are not limited to, meltblown nonwoven fabric, spunbond nonwoven fabric, thermal bond nonwoven fabric, needle punched nonwoven fabric, airlaid nonwoven fabric, and the like. Among these, it is possible to reduce the fiber diameter of the fibers that make up the nonwoven fabric, and there is no oil on the surface of the fibers that make up the nonwoven fabric, or even if there is oil on the surface of the fibers that make up the nonwoven fabric, it is very small. From this viewpoint, melt-blown nonwoven fabrics are preferred. Here, examples of the oil agent include silicone oil such as dimethylpolysiloxane, mineral oil, and the like. In addition, when applying electret processing to a nonwoven fabric in order to further improve the collection efficiency of the filter medium, if an oil agent is present on the surface of the fibers constituting the nonwoven fabric, the nonwoven fabric tends not to exhibit sufficient charging ability.
 熱可塑性樹脂の繊維としては、ポリエステル繊維、ポリ乳酸繊維、ビニロン繊維、ポリオレフィン繊維およびこれらの繊維から選ばれる2種以上の混合繊維などから選ばれるものが用いられる。そして、これらの中でも、上述したエレクトレット加工を施した後の不織布の帯電能が優れることから、ポリオレフィン繊維が好ましく、ポリプロピレン繊維(以下、PP繊維と称することがある)がより好ましい。 As the thermoplastic resin fibers, those selected from polyester fibers, polylactic acid fibers, vinylon fibers, polyolefin fibers, and mixed fibers of two or more types of these fibers are used. Among these, polyolefin fibers are preferred, and polypropylene fibers (hereinafter sometimes referred to as PP fibers) are more preferred, since the nonwoven fabric has excellent charging ability after being subjected to the above-mentioned electret processing.
 ここで、不織布におけるPP繊維の含有量は、不織布の全体質量に対し95質量%以上が好ましく、97質量%以上がより好ましく、98質量%以上がさらに好ましい。不織布におけるPP繊維の含有量が大きくなるほど、エレクトレット加工を施した後の不織布の帯電能が優れる傾向がある。 Here, the content of PP fibers in the nonwoven fabric is preferably 95% by mass or more, more preferably 97% by mass or more, and even more preferably 98% by mass or more, based on the total mass of the nonwoven fabric. The larger the content of PP fibers in a nonwoven fabric, the better the charging ability of the nonwoven fabric after electret processing tends to be.
 機能層を構成する不織布に含まれる繊維の平均繊維径は10.0μm以下が好ましい。より好ましくは9.0μm以下、さらに好ましくは8.0μm以下である。平均繊維径が10.0μm以下であると、不織布の孔径が微細になり、十分な捕集効率が得られる。また、10.0μm以下であると繊維の表面積が大きくなり本発明の機能を広範囲にわたって付与することで、発明の効果を十分に得ることができるため好ましい。平均繊維径の下限は特に限定されないが、0.1μm以上であると、圧損の上昇を抑制でき好ましい。 The average fiber diameter of the fibers contained in the nonwoven fabric constituting the functional layer is preferably 10.0 μm or less. More preferably, it is 9.0 μm or less, and still more preferably 8.0 μm or less. When the average fiber diameter is 10.0 μm or less, the pore size of the nonwoven fabric becomes fine and sufficient collection efficiency can be obtained. Further, if it is 10.0 μm or less, the surface area of the fiber becomes large and the functions of the present invention can be imparted over a wide range, thereby making it possible to sufficiently obtain the effects of the invention. Although the lower limit of the average fiber diameter is not particularly limited, it is preferable that it is 0.1 μm or more because it can suppress the increase in pressure loss.
 また、不織布に含まれる全ての繊維の本数のうち、繊維径が0.1μm以上10.0μm以下の繊維の本数の比(繊維径が0.1μm以上10.0μm以下の繊維の本数/不織布に含まれる全ての繊維の本数)(以下、細繊維の本数割合と称することがある)が0.7以上であることが好ましい。細繊維の本数割合が0.7以上であると、不織布中に細い繊維が多く含まれることとなり、この不織布のポアサイズが極めて微細になる。よって、この不織布を用いた濾材は捕集効率が極めて優れる。この観点から、細繊維の本数割合は大きい方が好ましく、0.75以上がより好ましく、0.80以上がさらに好ましい。 In addition, among all the fibers included in the nonwoven fabric, the ratio of the number of fibers with a fiber diameter of 0.1 μm to 10.0 μm (number of fibers with a fiber diameter of 0.1 μm to 10.0 μm/nonwoven fabric) It is preferable that the total number of fibers included (hereinafter sometimes referred to as the number ratio of fine fibers) is 0.7 or more. If the number ratio of fine fibers is 0.7 or more, the nonwoven fabric will contain many fine fibers, and the pore size of this nonwoven fabric will be extremely fine. Therefore, a filter medium using this nonwoven fabric has extremely excellent collection efficiency. From this viewpoint, the ratio of the number of fine fibers is preferably large, more preferably 0.75 or more, and even more preferably 0.80 or more.
 なお、繊維径が0.1μm以上10.0μm以下の繊維は、メルトブロー法など、公知の手法を用いることで得られる。 Note that fibers with a fiber diameter of 0.1 μm or more and 10.0 μm or less can be obtained by using a known method such as a melt blow method.
 本願における平均繊維径の算出方法は次のとおりである。1000mm×1000mmの不織布の面上から20個のサンプル取得箇所を無作為に選定する。各サンプル取得箇所1箇所あたり1個のタテ×ヨコ=3mm×3mmの測定サンプルを採取する。走査型電子顕微鏡(倍率:1000倍)により不織布の表面写真を各測定サンプル1枚あたり1枚ずつ、計20枚を撮影し、写真の中の全ての繊維について繊維径を測定する。各繊維径は、有効数字0.1μmの測定精度にて行い、相加平均から平均繊維径を算出する。 The method for calculating the average fiber diameter in this application is as follows. Twenty sample acquisition locations are randomly selected from the surface of a 1000 mm x 1000 mm nonwoven fabric. One measurement sample of length x width = 3 mm x 3 mm is collected from each sample acquisition location. A total of 20 photographs of the surface of the nonwoven fabric, one for each measurement sample, are taken using a scanning electron microscope (magnification: 1000 times), and the fiber diameters of all the fibers in the photographs are measured. Each fiber diameter is measured with a measurement accuracy of 0.1 μm, and the average fiber diameter is calculated from the arithmetic mean.
 細繊維の本数割合は、写真に写った全ての繊維の本数を(a)とし、写真に写った繊維径が0.1μm以上10.0μm以下の繊維の本数を(b)として、(b)/(a)の計算をして求める。 The number ratio of fine fibers is as follows: (a) is the number of all fibers shown in the photo, (b) is the number of fibers with a fiber diameter of 0.1 μm or more and 10.0 μm or less, and (b) /(a).
 不織布にエレクトレット加工を施す場合、その方法は特に限定されず、コロナ放電法、純水帯電法、摩擦帯電法といった公知の帯電を施す方法から任意に選択できる。これらの中でも、不織布に水を付与した後に乾燥させることによる純水帯電法が好ましく用いられる。 When applying electret processing to a nonwoven fabric, the method is not particularly limited, and can be arbitrarily selected from known charging methods such as corona discharge method, pure water charging method, and frictional charging method. Among these, a pure water charging method in which water is applied to a nonwoven fabric and then dried is preferably used.
 機能層に用いる不織布に含まれる繊維は、帯電加工による帯電効果を向上させるための添加剤を含む繊維であってもよい。このような添加剤としては公知のものを適宜使用できるが、なかでもヒンダードアミン系添加剤もしくはトリアジン系添加剤は、水などに対する静電気力の耐久性が向上するためより好ましい。添加剤の含有量としては、機能層を構成する不織布全体の質量に対して100~30000ppmの範囲が好ましく、より好ましくは7000~15000ppmの範囲である。含有量が100ppm以上であると、目的とする高いレベルのエレクトレット性能を得易くなる。含有量が30000ppm以下であると、繊維中に添加剤が均一に分布し易くなり、また製糸性や製膜性に影響を及ぼすことがない。 The fibers contained in the nonwoven fabric used in the functional layer may be fibers containing additives to improve the charging effect through charging processing. As such additives, known additives can be used as appropriate, but hindered amine additives or triazine additives are particularly preferred because they improve the durability of electrostatic force against water and the like. The content of the additive is preferably in the range of 100 to 30,000 ppm, more preferably in the range of 7,000 to 15,000 ppm, based on the total mass of the nonwoven fabric constituting the functional layer. When the content is 100 ppm or more, it becomes easier to obtain the desired high level of electret performance. When the content is 30,000 ppm or less, the additive is easily distributed uniformly in the fiber, and does not affect yarn-spinning properties or film-forming properties.
 ヒンダードアミン系化合物としては、例えば、ポリ[(6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル)((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)ヘキサメチレン((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)](BASF・ジャパン(株)製、“キマソーブ”(登録商標)944LD)、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物(BASFジャパン(株)製、“チヌビン”(登録商標)622LD)、および2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)(BASFジャパン(株)製、“チヌビン”(登録商標)144)などが挙げられる。 Examples of hindered amine compounds include poly[(6-(1,1,3,3-tetramethylbutyl)imino-1,3,5-triazine-2,4-diyl)((2,2,6, 6-tetramethyl-4-piperidyl)imino)hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl)imino)] (manufactured by BASF Japan Co., Ltd., “Kimasorb” (registered trademark) 944LD ), dimethyl-1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate succinate (“Tinuvin” (registered trademark) 622LD, manufactured by BASF Japan Ltd.) , and 2-(3,5-di-t-butyl-4-hydroxybenzyl)-2-n-butylmalonate bis(1,2,2,6,6-pentamethyl-4-piperidyl) (BASF Japan ( Examples include "Tinuvin" (registered trademark) 144) manufactured by Co., Ltd.
 また、トリアジン系添加剤としては、例えば、ポリ[(6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル)((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)ヘキサメチレン((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)](BASFジャパン(株)製、“キマソーブ”(登録商標)944LD)、および2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-((ヘキシル)オキシ)-フェノール(BASFジャパン(株)製、“チヌビン”(登録商標)1577FF)などを挙げることができる。 In addition, examples of triazine additives include poly[(6-(1,1,3,3-tetramethylbutyl)imino-1,3,5-triazine-2,4-diyl)((2,2 ,6,6-tetramethyl-4-piperidyl)imino)hexamethylene ((2,2,6,6-tetramethyl-4-piperidyl)imino)] (manufactured by BASF Japan Ltd., "Kimasorb" (registered trademark) )944LD), and 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-((hexyl)oxy)-phenol (manufactured by BASF Japan Co., Ltd., "Tinuvin" (registered) Trademark) 1577FF).
 機能層の粒子径0.3~0.5μmの粒子に対する捕集効率は、後述の撥液層の粒子径0.3~0.5μmの粒子に対する捕集効率よりも高いことが好ましい。機能層の粒子径0.3~0.5μmの粒子に対する捕集効率の方が高いことで、菌類やウイルス、アレルギー物質を機能層で効率よく捕集し、抗菌性や抗ウイルス性、防カビ性、抗アレルゲン性を効率よく発現することができる。捕集効率の値は空気清浄機用途やキャビン用途等の目的に応じて調整可能であり、特に限定されないが、風速4.5m/分の条件における、粒子径0.3~0.5μmの除電ポリスチレン粒子の捕集効率が60%以上であることが好ましい。より好ましくは75%以上、90%以上、95%以上である。より清潔な空間が求められる場所では99%以上の捕集効率の機能層を好適に用いることができる。 The collection efficiency of the functional layer for particles with a particle size of 0.3 to 0.5 μm is preferably higher than the collection efficiency of the liquid-repellent layer described below for particles with a particle size of 0.3 to 0.5 μm. The functional layer has a higher collection efficiency for particles with a particle size of 0.3 to 0.5 μm, so it can efficiently collect fungi, viruses, and allergens, and has antibacterial, antiviral, and antifungal properties. It is possible to efficiently express anti-allergenic and anti-allergenic properties. The value of collection efficiency can be adjusted according to the purpose of air purifier use, cabin use, etc., and is not particularly limited, but it is effective for static removal of particles with a particle size of 0.3 to 0.5 μm at a wind speed of 4.5 m/min. It is preferable that the collection efficiency of the polystyrene particles is 60% or more. More preferably, it is 75% or more, 90% or more, or 95% or more. In places where a cleaner space is required, a functional layer with a collection efficiency of 99% or more can be suitably used.
 機能層の目付は、3~100g/mの範囲であることが好ましい。目付を3~100g/m、好ましくは5~70g/m、より好ましくは10~50g/mとすることにより、通気性と塵埃捕集特性に優れた複合フィルターが得られやすくなる。 The basis weight of the functional layer is preferably in the range of 3 to 100 g/m 2 . By setting the basis weight to 3 to 100 g/m 2 , preferably 5 to 70 g/m 2 , more preferably 10 to 50 g/m 2 , it becomes easier to obtain a composite filter with excellent air permeability and dust collection properties.
 [撥液層]
 本発明における撥液層とは撥液性を有する不織布の層である。
[Liquid repellent layer]
The liquid repellent layer in the present invention is a layer of nonwoven fabric having liquid repellency.
 撥液層を構成する不織布は、特に限定されないが、ガラス繊維、有機繊維、パルプおよびバインダー樹脂を含むことが好ましい。ガラス繊維、有機繊維、パルプおよびバインダー樹脂を含むことで、撥液層の強度を保ちつつ、厚み低減、通気度の調整が行いやすくなる。 The nonwoven fabric constituting the liquid-repellent layer is not particularly limited, but preferably contains glass fiber, organic fiber, pulp, and binder resin. By containing glass fiber, organic fiber, pulp, and binder resin, it becomes easier to reduce the thickness and adjust the air permeability while maintaining the strength of the liquid-repellent layer.
 ガラス繊維は撥液層において0~50質量%であることが好ましい。ガラス繊維が50質量%以下であるとフィルターのプリーツ加工を行う際にガラス繊維の飛散がより減少する。 The glass fiber content in the liquid repellent layer is preferably 0 to 50% by mass. When the glass fiber content is 50% by mass or less, the scattering of glass fibers is further reduced when pleating the filter.
 有機繊維については特に限定されるものではなく、ポリエステル繊維、ビニロン繊維などを使用することができる。有機繊維は撥液層において20~85質量%であることが好ましく、またガラス繊維を有機繊維と複合する場合は、有機繊維の質量に対し25%~100質量%であると、ガラス繊維と有機繊維の交絡性がより良好となり、上述のガラス繊維の飛散や毛羽立ちをより少なくすることができる。 The organic fibers are not particularly limited, and polyester fibers, vinylon fibers, etc. can be used. The amount of organic fiber in the liquid-repellent layer is preferably 20 to 85% by mass, and when glass fiber is composited with organic fiber, the amount of organic fiber is preferably 25% to 100% by mass based on the mass of the organic fiber. The intertwining properties of the fibers are improved, and the above-mentioned scattering and fluffing of the glass fibers can be further reduced.
 またパルプを含むことで撥液層の目を詰め、ダストを含んだ液滴やミストが機能層へと移動しにくくなる。パルプは撥液層において5~20質量%であることが好ましい。5質量%以上であると液がより抜けにくくなり、20質量%以下であると圧力損失をより少なくすることができる。 In addition, the inclusion of pulp closes the pores of the liquid-repellent layer, making it difficult for droplets and mist containing dust to migrate to the functional layer. The content of pulp in the liquid repellent layer is preferably 5 to 20% by mass. When the content is 5% by mass or more, the liquid becomes more difficult to escape, and when the content is 20% by mass or less, pressure loss can be further reduced.
 バインダー樹脂は繊維間を接着し、シートに強度を持たせる機能を有する。バインダーについては特に限定されるものではなく、ポリビニルアルコール樹脂、酢酸ビニル樹脂、アクリル樹脂、ウレタン樹脂などを使用することができる。特に、ポリビニルアルコール樹脂やアクリル樹脂を使用すると異臭が少ないため好ましい。また、バインダーは撥液層において10~40質量%であることが好ましい。10質量%以上であると不織布の強度がより十分となり、40質量%以下であると圧力損失をより少なくすることができる。 Binder resin has the function of bonding between fibers and giving strength to the sheet. The binder is not particularly limited, and polyvinyl alcohol resin, vinyl acetate resin, acrylic resin, urethane resin, etc. can be used. In particular, it is preferable to use polyvinyl alcohol resin or acrylic resin because they cause less off-odor. Further, the amount of the binder in the liquid repellent layer is preferably 10 to 40% by mass. If it is 10% by mass or more, the strength of the nonwoven fabric will be more sufficient, and if it is 40% by mass or less, pressure loss can be further reduced.
 撥液層を構成する不織布の製造方法としては特に限定はされないが、メルトブロー法、スパンボンド法、サーマルボンド法、ケミカルボンド法、ニードルパンチ法、水流絡合法、エアレイド法、湿式抄紙法、などが挙げられる。 Methods for producing the nonwoven fabric constituting the liquid-repellent layer are not particularly limited, but include melt blowing, spunbonding, thermal bonding, chemical bonding, needle punching, hydroentanglement, airlaid, wet papermaking, and the like. Can be mentioned.
 撥液層の繊維径は、サイズの大きい粉塵のプレフィルターとしての機能を持たせる点から、機能層の繊維径よりも大きいことが好ましい。撥液層の孔径を機能層よりも大きくすることで、微細塵が撥液層を通過し、機能層で効率的に捕集することができる。撥液層の平均繊維径は機能層の平均繊維径より大きければ特に限定はされないが、10.0μm以上が好ましく、12.0μm以上がより好ましい。 The fiber diameter of the liquid-repellent layer is preferably larger than the fiber diameter of the functional layer in order to function as a pre-filter for large-sized dust particles. By making the pore diameter of the liquid-repellent layer larger than that of the functional layer, fine dust can pass through the liquid-repellent layer and be efficiently collected by the functional layer. The average fiber diameter of the liquid-repellent layer is not particularly limited as long as it is larger than the average fiber diameter of the functional layer, but is preferably 10.0 μm or more, more preferably 12.0 μm or more.
 本発明の撥液層の厚みは0.10mm以上1.00mm以下が好ましい。厚みを1.00mm以下とすることで、濾材をプリーツ形状で使用する際、構造由来の通気抵抗を十分に減少させることができる。より好ましくは0.50mm以下である。厚みが0.10mm以上とすることで撥液層の十分な強度を得ることができる。 The thickness of the liquid-repellent layer of the present invention is preferably 0.10 mm or more and 1.00 mm or less. By setting the thickness to 1.00 mm or less, when the filter medium is used in a pleated shape, the ventilation resistance due to the structure can be sufficiently reduced. More preferably, it is 0.50 mm or less. By setting the thickness to 0.10 mm or more, sufficient strength of the liquid-repellent layer can be obtained.
 撥液層の通気度は100cm/cm/秒以上、500cm/cm/秒以下が好ましい。通気度を500cm/cm/秒以下とすることで、機能層で捕集した微細塵が撥液層を通して移動することを抑制できる。より好ましくは400cm/cm/秒以下である。さらに好ましくは350cm/cm/秒以下である。通気度を100cm/cm/秒以上とすることで濾材の通気性を確保することができる。 The air permeability of the liquid-repellent layer is preferably 100 cm 3 /cm 2 /second or more and 500 cm 3 /cm 2 /second or less. By setting the air permeability to 500 cm 3 /cm 2 /second or less, it is possible to suppress fine dust collected by the functional layer from moving through the liquid-repellent layer. More preferably, it is 400 cm 3 /cm 2 /second or less. More preferably, it is 350 cm 3 /cm 2 /sec or less. By setting the air permeability to 100 cm 3 /cm 2 /second or more, the air permeability of the filter medium can be ensured.
 撥液層の密度は0.01g/cm以上0.50g/cm以下が好ましい。密度を0.01g/cm以上とすることで、撥液層が十分な強度を得ることができ、0.50g/cm以下とすることで、通気性を確保することができる。好ましくは0.05g/cm以上0.40g/cm以下、より好ましくは0.10g/cm以上0.30g/cm以下である。また、フィルター加工時のプリーツ形状の保持性を得るため、ガーレ剛軟度が300mg以上であることが好ましい。 The density of the liquid-repellent layer is preferably 0.01 g/cm 3 or more and 0.50 g/cm 3 or less. By setting the density to 0.01 g/cm 3 or more, the liquid-repellent layer can obtain sufficient strength, and by setting the density to 0.50 g/cm 3 or less, breathability can be ensured. Preferably it is 0.05 g/cm 3 or more and 0.40 g/cm 3 or less, more preferably 0.10 g/cm 3 or more and 0.30 g/cm 3 or less. Further, in order to maintain the pleat shape during filter processing, it is preferable that the Gurley bending resistance is 300 mg or more.
 本発明の撥液層は撥液性を有することを特徴とする。撥液性を有するとは、ある液体を不織布表面に滴下した際に液滴をはじく挙動を示す。本願においては、JIS K6768(1999)にて定義されるぬれ張力試験液において、浸透に必要な表面試験液張力が40mN/m以下を満たすことを意味する。表面試験液張力が35mN/m以下がより好ましく、30mN/m以下がさらに好ましい。これらの数値は防塵マスクや空調エレメントの評価試験に用いられる代表的オイルミストであるDOP(表面張力:31mN/m)やPAO(たとえばEmery3004・表面張力:29mN/m)および、実使用環境におけるオイルミストへの耐久性を考慮した値である。 The liquid repellent layer of the present invention is characterized by having liquid repellency. Having liquid repellency refers to the behavior of repelling droplets when a certain liquid is dropped on the surface of the nonwoven fabric. In this application, it means that the surface test liquid tension required for penetration satisfies 40 mN/m or less in the wetting tension test liquid defined in JIS K6768 (1999). The surface test liquid tension is more preferably 35 mN/m or less, and even more preferably 30 mN/m or less. These values are based on DOP (surface tension: 31 mN/m) and PAO (e.g. Emery 3004, surface tension: 29 mN/m), which are typical oil mist used in evaluation tests of dust masks and air conditioning elements, and oil mist in actual use environments. This value takes into consideration durability against mist.
 撥液層が撥液性を有し、かつ十分な通気性を有することで、撥液層上にウイルスやウイルスを含む飛沫が蓄積したり、菌が堆積し繁殖することを抑制しつつ、機能層で捕集された粒子の撥液層への移動を抑制することができる。さらに撥液層を介して機能層への大きな水滴や油滴の移動を抑制することができ、機能層の効果の持続性を高めることができる。 The liquid-repellent layer is liquid-repellent and has sufficient air permeability, which prevents the accumulation of viruses and virus-containing droplets on the liquid-repellent layer, as well as the accumulation and proliferation of bacteria. It is possible to suppress movement of particles collected in the layer to the liquid-repellent layer. Furthermore, it is possible to suppress the movement of large water droplets and oil droplets to the functional layer via the liquid-repellent layer, and the sustainability of the effect of the functional layer can be increased.
 不織布への撥液性の付与方法としては、特に限定されないが、不織布を紡糸する際の原料に撥液剤を混ぜておく方法、不織布を撥液剤を含む溶液に接触させる方法、スプレー法や蒸着法、グラビア法等の不織布に直接撥水剤を付与する方法などを適宜使用できる。 Methods for imparting liquid repellency to nonwoven fabrics include, but are not particularly limited to, a method in which a liquid repellent is mixed into the raw material for spinning the nonwoven fabric, a method in which the nonwoven fabric is brought into contact with a solution containing a liquid repellent, a spray method, and a vapor deposition method. , a method of directly applying a water repellent to a nonwoven fabric, such as a gravure method, can be used as appropriate.
 不織布への撥液性の付与は、撥液層と機能層に積層する前に、撥液層の単体に行ってもよく、機能層との積層後に行ってもよい。好ましくは機能層に積層する前に撥液性を付与する方法である。撥液層の単体に撥液性を付与した後に積層する方法であれば、撥液性付与工程において機能層のエレクトレットの失活や抗菌性、抗ウイルス性、防カビ性、抗アレルゲン性の低下を防ぐことができる。機能層との積層後に撥液性を付与する場合、例えば撥液剤を含む溶液に浸漬させる方法を行うと、機能層のエレクトレットの失活や抗菌性、抗ウイルス性、防カビ性、抗アレルゲン性が低下してしまう可能性があるため、スプレー法や、蒸着法、グラビア法等の撥液層の表層のみに撥液性を付与する方法を選定する必要がある。 Imparting liquid repellency to the nonwoven fabric may be applied to the liquid repellent layer alone, before laminating the liquid repellent layer and the functional layer, or may be applied after laminating the liquid repellent layer and the functional layer. Preferably, it is a method of imparting liquid repellency before laminating the functional layer. If the liquid repellent layer is laminated after imparting liquid repellency to a single liquid repellent layer, the electret in the functional layer may be deactivated or the antibacterial, antiviral, antifungal, and antiallergenic properties may be reduced during the liquid repellent imparting process. can be prevented. When imparting liquid repellency after lamination with a functional layer, for example, by immersing it in a solution containing a liquid repellent, the electret in the functional layer may be deactivated and the antibacterial, antiviral, antifungal, and antiallergenic properties may occur. Therefore, it is necessary to select a method that imparts liquid repellency only to the surface layer of the liquid repellent layer, such as a spray method, vapor deposition method, or gravure method.
 撥水剤の種類としては特に限定されないが、フッ素樹脂を含有するものが好ましい。すなわち撥液層がフッ素樹脂を含むことが好ましい。フッ素樹脂系撥水剤を用いることで、上記ぬれ張力試験液における浸透に必要な表面試験液張力を下げることができる。 The type of water repellent is not particularly limited, but one containing a fluororesin is preferred. That is, it is preferable that the liquid repellent layer contains a fluororesin. By using a fluororesin-based water repellent, it is possible to lower the surface test liquid tension necessary for penetration in the above-mentioned wetting tension test liquid.
 フッ素樹脂の種類としては、テトラフルオロエチレン樹脂、テトラフルオロエチレン・パーフルオロプロピルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、クロロトリフルオロエチレン樹脂、エチレン・テトラフルオロエチレン共重合体、フッ化ビニリデン樹脂、フッ化ビニル樹脂、ヘキサフルオロプロピレン・フッ化ビニリデン共重合体、ポリイミド系変性フッ素樹脂、ポリフェニレンサルファイド系変性フッ素樹脂、エポキシ系変性フッ素樹脂、ポリエーテルサルフォン系変性フッ素樹脂、フェノール系変性フッ素樹脂、パーフルオロアルキルエチレン基を有するアクリレート重合体、およびパーフルオロアルキルエチレン基を有するメタクリレート共重合体等からなる群より選ばれる少なくとも1種を用いることができる。 Types of fluororesin include tetrafluoroethylene resin, tetrafluoroethylene/perfluoropropyl vinyl ether copolymer, tetrafluoroethylene/hexafluoropropylene copolymer, chlorotrifluoroethylene resin, ethylene/tetrafluoroethylene copolymer, Vinylidene fluoride resin, vinyl fluoride resin, hexafluoropropylene/vinylidene fluoride copolymer, polyimide-based modified fluororesin, polyphenylene sulfide-based modified fluororesin, epoxy-based modified fluororesin, polyethersulfone-based modified fluororesin, phenol At least one selected from the group consisting of a system-modified fluororesin, an acrylate polymer having a perfluoroalkylethylene group, a methacrylate copolymer having a perfluoroalkylethylene group, etc. can be used.
 機能層と撥液層は接していることが好ましい。2つの層が接しているとは2つの層が連続して積層された状態を指すが、2つの層の間に接着を目的としたホットメルト樹脂が介在していてもよい。ホットメルト樹脂は特に限定されないが、ポリエチレン、EVA等を適宜選択することができる。機能層と撥液層が接していることで、撥液層が防壁となり機能層で捕集した粒子が外部へ移動するのを抑制でき、機能層の繊維との接触効率が上がり、機能を発現しやすくなる。 It is preferable that the functional layer and the liquid-repellent layer are in contact with each other. Although two layers are in contact with each other, it refers to a state in which the two layers are continuously laminated, but a hot melt resin for the purpose of adhesion may be interposed between the two layers. The hot melt resin is not particularly limited, but polyethylene, EVA, etc. can be selected as appropriate. Because the functional layer and the liquid-repellent layer are in contact with each other, the liquid-repellent layer acts as a barrier and prevents the particles collected by the functional layer from moving outside, increasing the efficiency of the functional layer's contact with the fibers and achieving functionality. It becomes easier to do.
 また、撥液層は機能層よりも上流側に配置される構成が好ましい。撥液層が機能層の上流側に配置されることにより、吸引部からの水分や油分などの液体の侵入を抑制でき、機能層の機能低下を抑制することができる。 Furthermore, it is preferable that the liquid-repellent layer is arranged upstream of the functional layer. By disposing the liquid-repellent layer on the upstream side of the functional layer, it is possible to suppress the intrusion of liquids such as moisture and oil from the suction part, and it is possible to suppress the functional deterioration of the functional layer.
 撥液層の粒子径0.3~0.5μmの粒子に対する捕集効率は、機能層の粒子径0.3~0.5μmよりも低いことが好ましい。特に限定されないが、風速4.5m/分の条件における、粒子径0.3~0.5μmの除電ポリスチレン粒子の捕集効率は10%以下であることが好ましい。より好ましくは5%以下である。上記範囲にあることで、粒径の大きい雨水や油分などの液体の侵入を抑制しつつ、ウイルスや菌類、またはそれらを含んだ細かな飛沫は撥液層で捕集されずに機能層で捕集され、効率的に機能を発現することができる。 The collection efficiency of the liquid-repellent layer for particles having a particle size of 0.3 to 0.5 μm is preferably lower than the particle size of the functional layer of 0.3 to 0.5 μm. Although not particularly limited, it is preferable that the collection efficiency of static-eliminating polystyrene particles having a particle size of 0.3 to 0.5 μm is 10% or less under the condition of a wind speed of 4.5 m/min. More preferably it is 5% or less. By being within the above range, while suppressing the intrusion of liquids such as rainwater and oil with large particle sizes, viruses and fungi, or small droplets containing them, are not collected by the liquid repellent layer but are captured by the functional layer. It is possible to efficiently express functions.
 以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に何ら限定されるものではない。 The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way.
 (厚み評価)
 シックネスゲージ SMD-55J(テクロック社製)を用いて評価を実施した。不織布を200mm×200mmにカットし、40mm間隔で16か所測定を行い、その平均値を厚みとした。
(Thickness evaluation)
Evaluation was performed using a thickness gauge SMD-55J (manufactured by Techlock). The nonwoven fabric was cut to 200 mm x 200 mm, measurements were taken at 16 locations at 40 mm intervals, and the average value was taken as the thickness.
 (通気度)
 通気性試験機 KES-F8(カトーテック製)を用いて測定した。不織布サイズ100m×100mmにて5点測定を行い、その平均値を通気度とした。
(Air permeability)
It was measured using an air permeability tester KES-F8 (manufactured by Kato Tech). Measurement was performed at 5 points on a nonwoven fabric size of 100 m x 100 mm, and the average value was taken as the air permeability.
 (密度)
 不織布を100cm×100cmにカットし、重量を測定して目付(g/m)を算出し、目付÷厚みから密度を算出した。
(density)
The nonwoven fabric was cut into a size of 100 cm x 100 cm, the weight was measured, the basis weight (g/m 2 ) was calculated, and the density was calculated from the basis weight/thickness.
 (撥液性評価)
 100mm×100mmの不織布の面上に、ぬれ張力試験用混合液 37mN/m、32mN/m、27.3mN/m、(富士フィルム和光純薬社製)を5mmの高さから50μL滴下し、滴下30秒後に濡れ広がるかどうかを目視で確認した。37mN/mで濡れ広がるものをD、37mN/mで濡れ広がらず32mN/mで濡れ広がるものをC、32mN/mで濡れ広がらず27.3mNで濡れ広がるものをB、27.3mNでも濡れ広がらないものをAとした。
(liquid repellency evaluation)
On the surface of a 100 mm x 100 mm nonwoven fabric, 50 μL of the wet tension test mixture 37 mN/m, 32 mN/m, 27.3 mN/m (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was dropped from a height of 5 mm. After 30 seconds, it was visually checked to see if it had spread. D is one that wets and spreads at 37 mN/m, C is one that does not wet and spread at 37 mN/m, but spreads at 32 mN/m, B is one that does not wet and spread at 32 mN/m, but spreads at 27.3 mN. Those without are marked as A.
 (捕集効率および圧力損失)
 150mm×150mmの測定用サンプルを採取し、それぞれのサンプルについて、図1に示す捕集効率測定装置を用いて捕集効率を測定した。この図1の捕集効率測定装置には、測定サンプルMをセットするサンプルホルダー1の上流側に、ダスト収納箱2および除電装置9を連結し、下流側に流量計3、流量調整バルブ4およびブロワ5が連結されている。また、サンプルホルダー1にパーティクルカウンター6を使用し、切替コック7を介して、測定サンプルMの上流側のダスト個数と下流側のダスト個数とをそれぞれ測定することができる。さらに、サンプルホルダー1は圧力計8を備え、測定サンプルMの上流と下流での静圧差を読み取ることができる。
(Catching efficiency and pressure loss)
A measurement sample of 150 mm x 150 mm was taken, and the collection efficiency of each sample was measured using the collection efficiency measuring device shown in FIG. In the collection efficiency measuring device shown in FIG. 1, a dust storage box 2 and a static eliminator 9 are connected to the upstream side of a sample holder 1 in which a measurement sample M is set, and a flow meter 3, a flow rate adjustment valve 4, and a static eliminator 9 are connected to the downstream side. A blower 5 is connected. Furthermore, by using a particle counter 6 in the sample holder 1 and using a switching cock 7, it is possible to measure the number of dust particles on the upstream side and the number of dust particles on the downstream side of the measurement sample M, respectively. Furthermore, the sample holder 1 is equipped with a pressure gauge 8, and the static pressure difference between the upstream and downstream sides of the measurement sample M can be read.
 捕集効率の測定にあたっては、ポリスチレン0.309U 10%溶液(メーカー:ナカライテスク(株))を蒸留水で200倍まで希釈し、ダスト収納箱2に充填する。次に、測定サンプルMを、サンプルホルダー1にセットし、風量をフィルター通過速度が4.5m/分になるように、流量調整バルブ4で調整し、ダスト濃度を1万~3万個/2.83×10-(0.01ft)の範囲で安定させ、測定サンプルMの上流のダスト個数Dおよび下流のダスト個数dをパーティクルカウンター6(リオン社製、KC-01D)で1個の測定サンプル当り3回測定し、JIS K 0901(1991)「気体中のダスト試料捕集用ろ過材の形状、寸法並びに性能試験方法」に基づいて、下記の計算式を用いて、0.3~0.5μm粒子の捕集効率(%)を求めた。3個の測定サンプルの平均値を、最終的な捕集効率とした。
・捕集効率(%)=〔1-(d/D)〕×100
(ただし、dは下流ダストの3回測定トータル個数を表し、Dは上流のダストの3回測定トータル個数を表す)。
In measuring the collection efficiency, a 10% polystyrene 0.309U solution (manufacturer: Nacalai Tesque Co., Ltd.) is diluted up to 200 times with distilled water and filled into the dust storage box 2. Next, set the measurement sample M in the sample holder 1, adjust the air volume with the flow rate adjustment valve 4 so that the filter passing speed is 4.5 m/min, and adjust the dust concentration from 10,000 to 30,000 pieces/2. .83 × 10-4 m 3 (0.01 ft 3 ), and the number D of dust upstream and the number d downstream of the measurement sample M were counted by particle counter 6 (KC-01D, manufactured by Rion Co., Ltd.). Each measurement sample was measured three times, and the following calculation formula was used to calculate the 0. The collection efficiency (%) of particles of 3 to 0.5 μm was determined. The average value of the three measurement samples was taken as the final collection efficiency.
・Collection efficiency (%) = [1-(d/D)] x 100
(However, d represents the total number of downstream dust particles measured three times, and D represents the total number of upstream dust particles measured three times.)
 高捕集の不織布ほど、下流ダスト個数が少なくなるため、捕集効率の値は高くなる。また、圧力損失は、捕集効率測定時の測定サンプルMの上流と下流の静圧差を圧力計8で読み取り求めた。5個の測定サンプルの平均値を最終的な圧力損失とした。 The higher the collection rate of a nonwoven fabric, the lower the number of downstream dust particles, and therefore the higher the value of collection efficiency. Moreover, the pressure loss was determined by reading the static pressure difference between upstream and downstream of the measurement sample M using a pressure gauge 8 when measuring the collection efficiency. The average value of the five measurement samples was taken as the final pressure drop.
 (抗菌性試験)
 抗菌性の測定は、JIS L 1902(2015)の繊維製品の抗菌性試験に基づき測定した。濾材の測定にあたり、試験菌と試験片との接種方法は、試験接種菌液を直接試験片上に接種する菌液吸収法を適用した。具体的には、サンプル0.40g±0.05gを6つ用意し、それぞれバイアル瓶に入れ滅菌処理を行った後、試験菌液を0.2mL接種させ、うち3つは接種直後、残り3つは37℃24時間培養後に洗い出しを行う。洗い出しの方法はバイアルにSCDLP培地20mL添加しボルテックスミキサにて5秒×5サイクル振とうする。抗菌活性値は培養後の生菌数の算術平均の常用対数と接種直後の生菌数の算術平均の常用対数の差からサンプルの増殖値を計算し、標準布帛の増殖値との差から算出する。試験結果について、黄色ブドウ球菌の抗菌活性値3.0以上をA、2.5以上3.0未満をB、2.0以上2.5未満をC、2.0未満をDとした。
(Antibacterial test)
The antibacterial property was measured based on the antibacterial property test for textile products of JIS L 1902 (2015). For the measurement of the filter medium, the test bacteria and the test piece were inoculated using a bacterial liquid absorption method in which the test inoculum solution was directly inoculated onto the test piece. Specifically, six samples of 0.40 g ± 0.05 g were prepared, each was placed in a vial and sterilized, and then 0.2 mL of the test bacterial solution was inoculated, three of them immediately after inoculation, and the remaining three. One is to wash out after culturing at 37°C for 24 hours. For washing, add 20 mL of SCDLP medium to a vial and shake for 5 seconds x 5 cycles using a vortex mixer. The antibacterial activity value is calculated by calculating the growth value of the sample from the difference between the common logarithm of the arithmetic mean of the number of viable bacteria after culture and the common logarithm of the arithmetic mean of the number of viable bacteria immediately after inoculation, and the difference from the growth value of the standard fabric. do. Regarding the test results, an antibacterial activity value of Staphylococcus aureus of 3.0 or more was rated A, 2.5 or more and less than 3.0 was rated B, 2.0 or more and less than 2.5 was rated C, and less than 2.0 was rated D.
 (抗ウイルス性試験)
 抗ウイルス性の測定は、JIS L 1922(2016)の繊維製品の抗ウイルス性試験方法に基づき測定した。具体的には、20mm×20mmサイズに裁断したサンプル0.40g±0.05gをバイアル瓶に入れ滅菌処理を行った後、ウイルス懸濁液0.2mLを接種させ、25℃で2時間静置して作用させる。作用後、バイアル瓶にSCDLP培地20mLを加えて攪拌してウイルスを洗い出し、プラーク法により感染価を測定する。抗ウイルス活性値は標準布帛のウイルス懸濁液接種直後のウイルス感染価と評価サンプルの作用後の感染価の差から算出する。試験結果について、インフルエンザウイルス(H1N1)の抗ウイルス活性値3.0以上をA、2.5以上3.0未満をB、2.0以上2.5未満をC、2.0未満をDとした。
(Antiviral test)
Antiviral properties were measured based on JIS L 1922 (2016) antiviral testing method for textile products. Specifically, 0.40 g ± 0.05 g of a sample cut into a size of 20 mm x 20 mm was placed in a vial and sterilized, then 0.2 mL of virus suspension was inoculated and left at 25°C for 2 hours. and let it work. After the action, 20 mL of SCDLP medium is added to the vial and stirred to wash out the virus, and the infectious titer is measured by the plaque method. The antiviral activity value is calculated from the difference between the virus infectivity of the standard fabric immediately after inoculation with the virus suspension and the infectivity of the evaluation sample after the action. Regarding the test results, antiviral activity value for influenza virus (H1N1) of 3.0 or more is A, 2.5 or more and less than 3.0 is B, 2.0 or more and less than 2.5 is C, and less than 2.0 is D. did.
 (防カビ性試験)
 防カビ性の測定は、JIS Z 2911(2018)のカビ抵抗性試験方法に基づき測定した。具体的には、試験サンプルを水道水で24時間洗浄した後、50mm×50mmに裁断し、精製水で洗浄する。水切り後培地中央に置き、胞子懸濁液1mLを試験サンプルと培養面に均等に吹き付け、26℃で2週間培養しカビの発育状態を確認する。試験結果について、アスペルギウス(クロコウジカビ)に対し、測定値0をA、測定値1をB、測定値2をCとした。
(Mold resistance test)
The mold resistance was measured based on the mold resistance test method of JIS Z 2911 (2018). Specifically, the test sample is washed with tap water for 24 hours, then cut into pieces of 50 mm x 50 mm, and washed with purified water. After draining, place in the center of the culture medium, spray 1 mL of spore suspension evenly onto the test sample and culture surface, culture at 26°C for 2 weeks, and check the state of mold growth. Regarding the test results, for Aspergius (Aspergillus niger), a measured value of 0 was given as A, a measured value of 1 was given as B, and a measured value of 2 was given as C.
 (抗アレルゲン性試験)
 抗アレルゲン性の測定はサンドイッチELISA法により測定した。試験結果について、ダニアレルゲン(derf1)に対し、アレルゲン低減率99%以上をA、95%以上99%未満をB、90%以上95%未満をC、90%未満をDとした。
(Anti-allergenicity test)
Antiallergenicity was measured by sandwich ELISA method. Regarding the test results, for mite allergen (derf1), allergen reduction rate of 99% or more was rated A, 95% or more but less than 99% was rated B, 90% or more and less than 95% was rated C, and less than 90% was rated D.
 (劣化試験)
 150mm×150mmにカットした濾材をホルダーにセットして、撥液層側からラウリル硫酸ナトリウム0.5%水溶液を15mL滴下し、1時間静置した後液をふき取り乾燥させた。
(Deterioration test)
A filter medium cut to 150 mm x 150 mm was set in a holder, and 15 mL of a 0.5% aqueous solution of sodium lauryl sulfate was dropped from the liquid-repellent layer side, left to stand for 1 hour, and then the liquid was wiped off and dried.
 (参考例1)
 基材繊維シート100質量部に対し、繊度16dtexのポリエステル短繊維(ポリエチレンテレフタレート・融点265℃)30質量部、繊度8dtexの熱融着ポリエステル短繊維(芯部:ポリエチレンテレフタレート・融点265℃、鞘部:変成ポリエステル・融点155℃)20質量部、繊度4.4dtexの熱融着ポリエステル短繊維(芯部:ポリエチレンテレフタレート・融点265℃、鞘部:変成ポリエステル・融点180℃)50質量部で混合し、開綿機とカーディング機を通過させることでウェブを紡出し、クロスラップで重ね合わせて目的の質量とし、搬送コンベアでエアスルー加熱炉内を通過させ、不織布シートA1を得た(厚み:0.51mm、通気度360cm/cm/秒、密度0.13g/cm)。
(Reference example 1)
100 parts by mass of the base fiber sheet, 30 parts by mass of short polyester fibers with a fineness of 16 dtex (polyethylene terephthalate, melting point 265°C), heat-sealable short polyester fibers with a fineness of 8 dtex (core: polyethylene terephthalate, melting point 265°C, sheath part) : Modified polyester, melting point 155°C) 20 parts by mass, mixed with 50 parts by mass of heat-fused polyester short fibers with a fineness of 4.4 dtex (core: polyethylene terephthalate, melting point 265°C, sheath part: modified polyester, melting point 180°C) The web was spun by passing through a cotton opening machine and a carding machine, overlapped with a cross wrap to obtain the desired mass, and passed through an air through heating furnace on a conveyor to obtain a nonwoven fabric sheet A1 (thickness: 0 .51 mm, air permeability 360 cm 3 /cm 2 /sec, density 0.13 g/cm 3 ).
 (参考例2)
 シリコーン系撥水剤「POLON-MK-206」(信越シリコーン社製)を3質量%濃度となるよう水で希釈し、参考例1で得た不織布A1を浸漬させた後、液切り後100℃で30分間乾燥させ不織布シートA2(厚み:0.52mm、通気度350cm/cm/秒、密度0.13g/cm)を得た。
(Reference example 2)
Silicone water repellent "POLON-MK-206" (manufactured by Shin-Etsu Silicone Co., Ltd.) was diluted with water to a concentration of 3% by mass, and the nonwoven fabric A1 obtained in Reference Example 1 was immersed at 100°C after draining. was dried for 30 minutes to obtain a nonwoven fabric sheet A2 (thickness: 0.52 mm, air permeability: 350 cm 3 /cm 2 /sec, density: 0.13 g/cm 3 ).
 (参考例3)
 フッ素系撥液剤「AG-E082」(旭硝子社製)をフッ素樹脂濃度を3質量%濃度となるように水で希釈し、参考例1で得た不織布A1を浸漬させた後、液切りした後150℃で5分間乾燥し、不織布シートA3(厚み:0.25mm、通気度250cm/cm/秒、密度0.19g/cm)を得た。
(Reference example 3)
Fluorine-based liquid repellent "AG-E082" (manufactured by Asahi Glass Co., Ltd.) was diluted with water so that the fluororesin concentration was 3% by mass, and the nonwoven fabric A1 obtained in Reference Example 1 was immersed, and then the liquid was drained. It was dried at 150° C. for 5 minutes to obtain a nonwoven fabric sheet A3 (thickness: 0.25 mm, air permeability 250 cm 3 /cm 2 /sec, density 0.19 g/cm 3 ).
 (参考例4)
 傾斜ワイヤー方式の湿式抄紙方法により繊維集積体を作製した後、該繊維集積体をバインダーに含浸させ、乾燥熱処理して不織布シートB1(厚み:0.25mm、通気度280cm/cm/秒、密度0.18g/cm)を作製した。構成としてはガラス繊維(繊度11dtex、繊維長15mm)40質量%、ポリエステル繊維(繊度6dtex、繊維長10mm)5質量%、ビニロン繊維(繊度15dtex、繊維長12mm)10質量%、繊維パルプ15質量%、バインダー樹脂(スチレンアクリル重合体(ガラス転移点温度Tg30℃、造膜温度45℃)30質量%となるよう調整した。
(Reference example 4)
After producing a fiber aggregate by an inclined wire wet papermaking method, the fiber aggregate is impregnated with a binder and subjected to dry heat treatment to produce a nonwoven fabric sheet B1 (thickness: 0.25 mm, air permeability 280 cm 3 /cm 2 /sec, The density was 0.18 g/cm 3 ). The composition is 40% by mass of glass fiber (fineness 11dtex, fiber length 15mm), 5% by mass polyester fiber (fineness 6dtex, fiber length 10mm), 10% by mass vinylon fiber (fineness 15dtex, fiber length 12mm), and 15% by mass of fiber pulp. , the binder resin (styrene acrylic polymer (glass transition temperature Tg 30°C, film forming temperature 45°C) was adjusted to be 30% by mass.
 (参考例5)
 フッ素系撥液剤「AG-E082」(旭硝子社製)をフッ素樹脂濃度を3質量%濃度となるように水で希釈し、参考例4で得た不織布B1を浸漬させた後、液切りした後150℃で5分間乾燥し、不織布シートB2(厚み:0.25mm、通気度250cm/cm/秒、密度0.19g/cm)を得た。
(Reference example 5)
Fluorine-based liquid repellent "AG-E082" (manufactured by Asahi Glass Co., Ltd.) was diluted with water so that the fluororesin concentration was 3% by mass, and the nonwoven fabric B1 obtained in Reference Example 4 was immersed, and then the liquid was drained. It was dried at 150° C. for 5 minutes to obtain a nonwoven fabric sheet B2 (thickness: 0.25 mm, air permeability 250 cm 3 /cm 2 /sec, density 0.19 g/cm 3 ).
 (参考例6)
 ヒンダードアミン系化合物“キマソーブ”(登録商標)944(BASFジャパン(株)製)を1質量%含むポリプロピレン樹脂を用い、メルトブロー法により平均繊維径2.0μm、目付30g/mの不織布シートを得た。次いで、塩化ベンザルコニウム3質量%水溶液をスプレーにて10g/m吹き付けた後、100℃で10分間乾燥させた。
(Reference example 6)
A nonwoven fabric sheet with an average fiber diameter of 2.0 μm and a basis weight of 30 g/m 2 was obtained by melt blowing using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944 (manufactured by BASF Japan Ltd.). . Next, a 3% by mass aqueous solution of benzalkonium chloride was sprayed at 10 g/m 2 and then dried at 100° C. for 10 minutes.
 得られた不織布に、ポリエチレン製ホットメルト樹脂を6g/mとなるよう散布し、不織布シートA2を積層して、加熱によりホットメルト樹脂を溶融させ、参考例6の濾材を得た。 A polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Reference Example 6.
 (参考例7)
 塩化ベンザルコニウムに代えてタンニン酸2質量%水溶液をスプレーにて15g/m吹き付けた後、100℃で15分間乾燥させた以外は参考例6と同様にして、参考例7の濾材を得た。
(Reference example 7)
A filter medium of Reference Example 7 was obtained in the same manner as in Reference Example 6 except that 15 g/m 2 of a 2% by mass aqueous solution of tannic acid was sprayed in place of benzalkonium chloride and then dried at 100°C for 15 minutes. Ta.
 (参考例8)
 塩化ベンザルコニウムに代えて防カビ剤としてネオシントールM-30(住化エンバイロメンタルサイエンス社製、有効成分:チアベンダゾール)を5質量%水分散液をスプレーにて10g/m吹き付けた後100℃で15分間乾燥させた以外は参考例6と同様にして、参考例8の濾材を得た。
(Reference example 8)
Instead of benzalkonium chloride, a 5% by mass aqueous dispersion of Neosynthol M-30 (manufactured by Sumika Environmental Science Co., Ltd., active ingredient: thiabendazole) as a fungicidal agent was sprayed at 10 g/m 2 at 100°C. A filter medium of Reference Example 8 was obtained in the same manner as Reference Example 6 except that it was dried for 15 minutes.
 (実施例1)
 ヒンダードアミン系化合物“キマソーブ”(登録商標)944(BASFジャパン(株)製)を1質量%含むポリプロピレン樹脂を用い、メルトブロー法により平均繊維径2.0μm、目付30g/mの不織布シートを得た。次いで、銀ナノ粒子分散液(銀ナノ粒子0.3質量%を含む)をスプレーにて40g/m吹き付けた後、100℃で15分間乾燥させた。
(Example 1)
A nonwoven fabric sheet with an average fiber diameter of 2.0 μm and a basis weight of 30 g/m 2 was obtained by melt blowing using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944 (manufactured by BASF Japan Ltd.). . Next, a silver nanoparticle dispersion (containing 0.3% by mass of silver nanoparticles) was sprayed at 40 g/m 2 , and then dried at 100° C. for 15 minutes.
 得られた不織布に、ポリエチレン製ホットメルト樹脂を6g/mとなるよう散布し、不織布シートA2を積層して、加熱によりホットメルト樹脂を溶融させ、実施例1の濾材を得た。 A polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A2 was laminated thereon, and the hot melt resin was melted by heating to obtain the filter medium of Example 1.
 (実施例2)
 ヒンダードアミン系化合物“キマソーブ”(登録商標)944(BASFジャパン(株)製)を1質量%および銀ナノ粒子0.5質量%含むポリプロピレン樹脂を用い、メルトブロー法により平均繊維径2.5μm、目付30g/mの不織布シートを得た。
(Example 2)
Using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.5% by mass of silver nanoparticles, the average fiber diameter was 2.5 μm and the basis weight was 30 g by melt blowing. A nonwoven fabric sheet of /m 2 was obtained.
 得られた不織布にポリエチレン製ホットメルト樹脂を6g/mとなるよう散布し、不織布シートA2を積層して、加熱によりホットメルト樹脂を溶融させ、実施例2の濾材を得た。 A polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Example 2.
 (実施例3)
 ヒンダードアミン系化合物“キマソーブ”(登録商標)944(BASFジャパン(株)製)を1質量%および銀ナノ粒子0.5質量%含むポリプロピレン樹脂を用い、メルトブロー法により平均繊維径2.5μm、目付30g/mの不織布シートを得た。次いで、純水を高圧で吹き付けて不織布シート全体に純水を行き渡らせ、水切り後に自然乾燥させることにより、エレクトレット化されたメルトブロー不織布を得た。
(Example 3)
Using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.5% by mass of silver nanoparticles, the average fiber diameter was 2.5 μm and the basis weight was 30 g by melt blowing. A nonwoven fabric sheet of /m 2 was obtained. Next, pure water was sprayed at high pressure to spread the pure water over the entire nonwoven fabric sheet, and after draining, the nonwoven fabric was air-dried to obtain an electret melt-blown nonwoven fabric.
 得られた不織布にポリエチレン製ホットメルト樹脂を6g/mとなるよう散布し、不織布シートA2を積層して、加熱によりホットメルト樹脂を溶融させ、実施例3の濾材を得た。 A polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A2 was laminated thereon, and the hot melt resin was melted by heating to obtain the filter medium of Example 3.
 (実施例4)
 ヒンダードアミン系化合物“キマソーブ”(登録商標)944(BASFジャパン(株)製)を1質量%および酸化亜鉛0.3質量%含むポリプロピレン樹脂を用い、メルトブロー法により平均繊維径2.1μm、目付30g/mの不織布シートを得た。次いで、純水を高圧で吹き付けて不織布シート全体に純水を行き渡らせ、水切り後に自然乾燥させることにより、エレクトレット化されたメルトブロー不織布を得た。
(Example 4)
A polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.3% by mass of zinc oxide was melt-blown with an average fiber diameter of 2.1 μm and a basis weight of 30 g/ A nonwoven fabric sheet of m 2 was obtained. Next, pure water was sprayed at high pressure to spread the pure water over the entire nonwoven fabric sheet, and after draining, the nonwoven fabric was air-dried to obtain an electret melt-blown nonwoven fabric.
 得られた不織布に、ポリエチレン製ホットメルト樹脂を6g/mとなるよう散布し、不織布シートA2を積層して、加熱によりホットメルト樹脂を溶融させ、実施例4の濾材を得た。 A polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Example 4.
 (実施例5)
 不織布シートA2に代えて不織布シートA3を積層した以外は実施例4と同様にして、実施例5の濾材を得た。
(Example 5)
A filter medium of Example 5 was obtained in the same manner as in Example 4 except that nonwoven fabric sheet A3 was laminated in place of nonwoven fabric sheet A2.
 (実施例6)
 ヒンダードアミン系化合物“キマソーブ”(登録商標)944(BASFジャパン(株)製)を1質量%および酸化亜鉛0.3質量%を含むポリプロピレン樹脂を用い、メルトブロー法により平均繊維径2.1μm、目付30g/mの不織布シートを得た。次いで、純水を高圧で吹き付けて不織布シート全体に純水を行き渡らせ、水切り後に自然乾燥させることにより、エレクトレット化されたメルトブロー不織布を得た。
(Example 6)
Using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.3% by mass of zinc oxide, the average fiber diameter was 2.1 μm and the basis weight was 30 g by melt blowing. A nonwoven fabric sheet of /m 2 was obtained. Next, pure water was sprayed at high pressure to spread the pure water over the entire nonwoven fabric sheet, and after draining, the nonwoven fabric was air-dried to obtain an electret melt-blown nonwoven fabric.
 得られた不織布に、平均粒径250μmの活性炭とポリエチレン製ホットメルト樹脂を混合し、それぞれ活性炭を100g/m、ホットメルト樹脂30g/mとなるよう散布し、不織布シートA3を積層して、加熱によりホットメルト樹脂を溶融させ、実施例6の複合濾材を得た。なお上記のとおり平均粒径250μmの活性炭をポリエチレン製ホットメルト樹脂に混合しているため、中間層ありとなる。 Activated carbon with an average particle size of 250 μm and polyethylene hot melt resin were mixed on the obtained nonwoven fabric, and the activated carbon and hot melt resin were sprinkled at 100 g/m 2 and 30 g/m 2 , respectively, and a nonwoven fabric sheet A3 was laminated. The hot melt resin was melted by heating to obtain the composite filter medium of Example 6. As mentioned above, since activated carbon with an average particle size of 250 μm is mixed with the polyethylene hot melt resin, there is an intermediate layer.
 (実施例7)
 不織布シートA2に代えて不織布シートB2を用いた以外は実施例4と同様にして、実施例7の濾材を得た。
(Example 7)
A filter medium of Example 7 was obtained in the same manner as in Example 4 except that nonwoven fabric sheet B2 was used in place of nonwoven fabric sheet A2.
 (実施例8)
 酸化亜鉛に代えて銅ゼオライトを0.3質量%含むポリプロピレン樹脂を用いた以外は実施例7と同様にして、実施例8の濾材を得た。
(Example 8)
A filter medium of Example 8 was obtained in the same manner as in Example 7 except that a polypropylene resin containing 0.3% by mass of copper zeolite was used instead of zinc oxide.
 (実施例9)
 酸化亜鉛に代えて銀ゼオライトを0.3質量%含むポリプロピレン樹脂を用いた他は実施例7と同様にして、実施例9の濾材を得た。
(Example 9)
A filter medium of Example 9 was obtained in the same manner as in Example 7 except that a polypropylene resin containing 0.3% by mass of silver zeolite was used instead of zinc oxide.
 (参考例9)
 ヒンダードアミン系化合物“キマソーブ”(登録商標)944(BASFジャパン(株)製)を1質量%を含むポリプロピレン樹脂を用い、メルトブロー法により平均繊維径2.0μm、目付30g/mの不織布シートを得た。次いで、塩化ベンザルコニウム3質量%水溶液をスプレーにて10g/m吹き付けた後、100℃で10分間乾燥させた。その後、コロナ放電法によりエレクトレット化処理を行った。
(Reference example 9)
Using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944 (manufactured by BASF Japan Ltd.), a nonwoven fabric sheet with an average fiber diameter of 2.0 μm and a basis weight of 30 g/m 2 was obtained by melt blowing. Ta. Next, a 3% by mass aqueous solution of benzalkonium chloride was sprayed at 10 g/m 2 and then dried at 100° C. for 10 minutes. Thereafter, an electret treatment was performed using a corona discharge method.
 得られた不織布にポリエチレン製ホットメルト樹脂を6g/mとなるよう散布し、不織布シートB2を積層して、加熱によりホットメルト樹脂を溶融させ、参考例9の濾材を得た。 A polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet B2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Reference Example 9.
 (参考例10)
 塩化ベンザルコニウムに代えてタンニン酸2質量%水溶液をスプレーにて15g/m吹き付けた後、100℃で15分間乾燥させた以外は参考例9と同様にして、参考例10の濾材を得た。
(Reference example 10)
A filter medium of Reference Example 10 was obtained in the same manner as Reference Example 9 except that 15 g/m 2 of a 2% by mass aqueous solution of tannic acid was sprayed in place of benzalkonium chloride, and then dried at 100°C for 15 minutes. Ta.
 (実施例10)
 ヒンダードアミン系化合物“キマソーブ”(登録商標)944(BASFジャパン(株)製)を1質量%および銀ナノ粒子0.5質量%含むポリプロピレン樹脂を用い、メルトブロー法により平均繊維径2.5μm、目付30g/mの不織布シートを得た。次いで、タンニン酸2質量%水溶液をスプレーにて15g/m吹き付けた後、100℃で15分間乾燥させた。
(Example 10)
Using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.5% by mass of silver nanoparticles, the average fiber diameter was 2.5 μm and the basis weight was 30 g by melt blowing. A nonwoven fabric sheet of /m 2 was obtained. Next, a 2% by mass aqueous solution of tannic acid was sprayed at 15 g/m 2 and then dried at 100° C. for 15 minutes.
 得られた不織布に、ポリエチレン製ホットメルト樹脂を6g/mとなるよう散布し、不織布シートB2を積層して、加熱によりホットメルト樹脂を溶融させ、実施例10の濾材を得た。 A polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet B2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Example 10.
 (実施例11)
 ヒンダードアミン系化合物“キマソーブ”(登録商標)944(BASFジャパン(株)製)を1質量%および酸化亜鉛0.3質量%含むポリプロピレン樹脂を用い、メルトブロー法により平均繊維径2.1μm、目付30g/mの不織布シートを得た。次いで、ネオシントールM-30(住化エンバイロメンタルサイエンス社製、有効成分:チアベンダゾール)を5質量%水分散液をスプレーにて10g/m吹き付けた後100℃で15分間乾燥させた。その後、コロナ放電法によりエレクトレット化処理を行った。
(Example 11)
A polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944 (manufactured by BASF Japan Ltd.) and 0.3% by mass of zinc oxide was melt-blown with an average fiber diameter of 2.1 μm and a basis weight of 30 g/ A nonwoven fabric sheet of m 2 was obtained. Next, a 5% by mass aqueous dispersion of Neosynthol M-30 (manufactured by Sumika Environmental Science Co., Ltd., active ingredient: thiabendazole) was sprayed at 10 g/m 2 and then dried at 100° C. for 15 minutes. Thereafter, an electret treatment was performed using a corona discharge method.
 得られた不織布に、ポリエチレン製ホットメルト樹脂を6g/mとなるよう散布し、不織布シートB2を積層して、加熱によりホットメルト樹脂を溶融させ、実施例11の濾材を得た。 A polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet B2 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Example 11.
 (比較例1)
 ヒンダードアミン系化合物“キマソーブ”(登録商標)944(BASFジャパン(株)製)を1質量%含むポリプロピレン樹脂を用い、メルトブロー法により平均繊維径2.0μm、目付30g/mの不織布シートを得た。
(Comparative example 1)
A nonwoven fabric sheet with an average fiber diameter of 2.0 μm and a basis weight of 30 g/m 2 was obtained by melt blowing using a polypropylene resin containing 1% by mass of the hindered amine compound "Kimasorb" (registered trademark) 944 (manufactured by BASF Japan Ltd.). .
 得られた不織布に、ポリエチレン製ホットメルト樹脂を6g/mとなるよう散布し、不織布シートA1を積層して、加熱によりホットメルト樹脂を溶融させ、比較例1の濾材を得た。 A polyethylene hot melt resin was sprinkled on the obtained nonwoven fabric at a concentration of 6 g/m 2 , a nonwoven fabric sheet A1 was laminated thereon, and the hot melt resin was melted by heating to obtain a filter medium of Comparative Example 1.
 (比較例2)
 不織布シートA2に代えて不織布シートA1を用いた以外は参考例7と同様にして、比較例2の濾材を得た。
(Comparative example 2)
A filter medium of Comparative Example 2 was obtained in the same manner as in Reference Example 7 except that nonwoven fabric sheet A1 was used instead of nonwoven fabric sheet A2.
 (比較例3)
 不織布シートA2に代えて不織布シートA1を用いた以外は参考例8と同様にして、比較例3の濾材を得た。
(Comparative example 3)
A filter medium of Comparative Example 3 was obtained in the same manner as in Reference Example 8 except that nonwoven fabric sheet A1 was used instead of nonwoven fabric sheet A2.
 (比較例4)
 不織布シートA2に代えて不織布シートA1を用いた以外は実施例4と同様にして、比較例4の濾材を得た。
(Comparative example 4)
A filter medium of Comparative Example 4 was obtained in the same manner as in Example 4 except that nonwoven fabric sheet A1 was used instead of nonwoven fabric sheet A2.
 (比較例5)
 不織布シートB2に代えて不織布シートA1を用いた以外は実施例8と同様にして、比較例5の濾材を得た。
(Comparative example 5)
A filter medium of Comparative Example 5 was obtained in the same manner as in Example 8 except that nonwoven fabric sheet A1 was used in place of nonwoven fabric sheet B2.
 (比較例6)
 不織布シートA1に代えて不織布シートB2を用いた以外は比較例1と同様にして、比較例6の濾材を得た。
(Comparative example 6)
A filter medium of Comparative Example 6 was obtained in the same manner as Comparative Example 1 except that nonwoven fabric sheet B2 was used instead of nonwoven fabric sheet A1.
 表1に実施例、比較例で作製した機能層、撥液層の構成および物理特性、表2に濾材の捕集効率、圧力損失および初期性能と劣化試験後の抗菌、抗ウイルス、抗アレルゲン、防カビ性能の結果を示す。 Table 1 shows the composition and physical properties of the functional layer and liquid-repellent layer prepared in Examples and Comparative Examples, and Table 2 shows the collection efficiency, pressure loss, and initial performance of the filter medium, as well as antibacterial, antiviral, and antiallergen properties after deterioration tests. The results of anti-mold performance are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例1、6は機能層に薬剤を有さないため、各種機能は発現していない。比較例2~5は、初期性能は発現しているが、劣化試験後の機能低下度合いが大きい。 Comparative Examples 1 and 6 do not have a drug in the functional layer, so various functions are not expressed. Comparative Examples 2 to 5 exhibit good initial performance, but the degree of functional decline after the deterioration test is large.
 実施例1~11はいずれも劣化試験後の機能低下度合いが小さく、効率よく機能が発現できているといえる。 In all Examples 1 to 11, the degree of functional decline after the deterioration test was small, and it can be said that the functionality was efficiently expressed.
 以上のように、本発明の濾材は効率よく機能発現されており、かつ性能低下を抑制できる。 As described above, the filter medium of the present invention exhibits its functions efficiently and can suppress performance deterioration.
 本発明の濾材は、空気清浄機用フィルターや自動車用キャビンフィルター等に好適に用いることができる。 The filter medium of the present invention can be suitably used for air purifier filters, automobile cabin filters, and the like.
1:サンプルホルダー
2:ダスト収納箱
3:流量計
4:流量調整バルブ
5:ブロワ
6:パーティクルカウンター
7:切替コック
8:圧力計
9:除電装置
M:測定サンプル
 
1: Sample holder 2: Dust storage box 3: Flowmeter 4: Flow rate adjustment valve 5: Blower 6: Particle counter 7: Switching cock 8: Pressure gauge 9: Static eliminator M: Measurement sample

Claims (8)

  1.  少なくとも撥液層と機能層を含むエアフィルター用の濾材であって、前記機能層は抗菌剤、抗ウイルス剤、防カビ剤および抗アレルゲン剤からなる群より選ばれた1つ以上の無機系薬剤を含む濾材。 A filter medium for an air filter comprising at least a liquid repellent layer and a functional layer, the functional layer containing one or more inorganic agents selected from the group consisting of antibacterial agents, antiviral agents, antifungal agents, and antiallergen agents. filter media containing.
  2.  前記機能層の粒子径0.3~0.5μmの粒子に対する捕集効率が、前記撥液層の粒子径0.3~0.5μmの粒子に対する捕集効率よりも高い請求項1に記載の濾材。 The functional layer has a higher collection efficiency for particles having a particle size of 0.3 to 0.5 μm than the liquid repellent layer has a collection efficiency for particles having a particle size of 0.3 to 0.5 μm. filter medium.
  3.  前記機能層が帯電不織布である請求項1または2に記載の濾材。 The filter medium according to claim 1 or 2, wherein the functional layer is a charged nonwoven fabric.
  4.  前記撥液層がフッ素樹脂を含む請求項1~3のいずれかに記載の濾材。 The filter medium according to any one of claims 1 to 3, wherein the liquid repellent layer contains a fluororesin.
  5.  前記撥液層が、厚み0.10mm以上1.00mm以下であり、通気度100cm/cm/秒以上500cm/cm/秒以下であり、密度0.01g/cm以上0.50g/cm以下である請求項1~4のいずれかに記載の濾材。 The liquid-repellent layer has a thickness of 0.10 mm or more and 1.00 mm or less, an air permeability of 100 cm 3 /cm 2 /sec or more and 500 cm 3 /cm 2 /sec or less, and a density of 0.01 g/cm 3 or more and 0.50 g. The filter medium according to any one of claims 1 to 4, wherein the filter medium has a particle diameter of less than /cm 3 .
  6.  前記撥液層と前記機能層が接している請求項1~5のいずれかに記載の濾材。 The filter medium according to any one of claims 1 to 5, wherein the liquid repellent layer and the functional layer are in contact with each other.
  7.  前記無機系薬剤が少なくとも遷移金属を含む請求項1~6のいずれかに記載の濾材。 The filter medium according to any one of claims 1 to 6, wherein the inorganic drug contains at least a transition metal.
  8.  前記無機系薬剤が銀ナノ粒子、銅ナノ粒子、銀担持体、銅担持体および酸化亜鉛からなる群より選ばれた1つ以上を含む請求項1~7のいずれかに記載の濾材。
     
    The filter medium according to any one of claims 1 to 7, wherein the inorganic drug contains one or more selected from the group consisting of silver nanoparticles, copper nanoparticles, silver carriers, copper carriers, and zinc oxide.
PCT/JP2023/012165 2022-03-30 2023-03-27 Filter medium WO2023190318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022055760 2022-03-30
JP2022-055760 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190318A1 true WO2023190318A1 (en) 2023-10-05

Family

ID=88202258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012165 WO2023190318A1 (en) 2022-03-30 2023-03-27 Filter medium

Country Status (1)

Country Link
WO (1) WO2023190318A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121556A (en) * 2011-12-09 2013-06-20 Toray Ind Inc Filter medium
JP2017144427A (en) * 2016-02-16 2017-08-24 王子ホールディングス株式会社 Water treatment equipment, water treatment method, production method of waste solid fuel, and manufacturing method of treatment water
JP2021013896A (en) * 2019-07-12 2021-02-12 三菱電機株式会社 Air filter unit
KR20210025382A (en) * 2019-08-27 2021-03-09 (주)피노스토리 Wettype-modifiable Multilayer Filtration System and Filter Unit Comprising Thereof
JP2022044879A (en) * 2020-09-08 2022-03-18 東レ株式会社 Composite filter and air cleaner including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121556A (en) * 2011-12-09 2013-06-20 Toray Ind Inc Filter medium
JP2017144427A (en) * 2016-02-16 2017-08-24 王子ホールディングス株式会社 Water treatment equipment, water treatment method, production method of waste solid fuel, and manufacturing method of treatment water
JP2021013896A (en) * 2019-07-12 2021-02-12 三菱電機株式会社 Air filter unit
KR20210025382A (en) * 2019-08-27 2021-03-09 (주)피노스토리 Wettype-modifiable Multilayer Filtration System and Filter Unit Comprising Thereof
JP2022044879A (en) * 2020-09-08 2022-03-18 東レ株式会社 Composite filter and air cleaner including the same

Similar Documents

Publication Publication Date Title
KR20140024403A (en) Antimicrobial filter medium and filter module
US20110232653A1 (en) Antimicrobial, dustproof fabric and mask
KR20150134425A (en) Filter material for air filter, method for manufacturing same, and air filter provided with same
WO2015125942A1 (en) Air-filtering filter medium and air filter unit
KR20140048204A (en) Multilayered nonwoven fabric with anti-allergic effect
JP2000070646A (en) Air purifying filter member
JP2013121556A (en) Filter medium
JP2008161756A (en) Toxic substance scavenger, process for removing toxic substance and nonwoven fabric
JP7242807B2 (en) Air filter media and air filters
JP6076077B2 (en) air filter
KR101317166B1 (en) Antivirus non-woven fabrics, hybrid cabin air filter containing the same and manufacturing method thereof
WO2023190318A1 (en) Filter medium
JP2013210162A (en) Air cleaner
JP2017039290A (en) Tufted carpet base fabric and tufted carpet
JP6076006B2 (en) Antibacterial deodorant filter material, method for producing antibacterial deodorant filter material, antibacterial deodorant filter, and method for producing antibacterial deodorant filter
JP2022044879A (en) Composite filter and air cleaner including the same
JP2023147964A (en) High-functionality filter medium
Bansal et al. Novel composite multilayer face masks for protection against airborne microorganisms
JP2019166513A (en) Dust collection deodorizing filter material and dust collection deodorizing filter
JP4920895B2 (en) Anti-allergen processed air filter media
Dey et al. A review on surface modification of textile fibre by High Efficiency Particulate Air (HEPA) Filtration process
JP2006159133A (en) Filter medium
WO2023188864A1 (en) Filtration member for antiviral air filter
JP2016174997A (en) Air filter medium and air filter
FI129695B (en) Active filter layers, filter constructs and methods for improving a filter's capacity of capturing particles and neutralizing pathogenic particles

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023521529

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780328

Country of ref document: EP

Kind code of ref document: A1