WO2023190273A1 - Nonaqueous electrolytic solution and electrochemical device - Google Patents

Nonaqueous electrolytic solution and electrochemical device Download PDF

Info

Publication number
WO2023190273A1
WO2023190273A1 PCT/JP2023/012070 JP2023012070W WO2023190273A1 WO 2023190273 A1 WO2023190273 A1 WO 2023190273A1 JP 2023012070 W JP2023012070 W JP 2023012070W WO 2023190273 A1 WO2023190273 A1 WO 2023190273A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
aqueous electrolyte
containing organic
organic solvent
solvent substance
Prior art date
Application number
PCT/JP2023/012070
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 米丸
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2023190273A1 publication Critical patent/WO2023190273A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte that can be used in nonaqueous electrochemical devices such as lithium ion primary batteries, lithium ion secondary batteries, and capacitors, and to electrochemical devices that include the nonaqueous electrolyte.
  • electrochemical devices such as primary batteries, secondary batteries, and capacitors include an exterior body and contents sealed therein, such as electrolyte, electrodes, and separators, for realizing the functions of the device.
  • an electrolytic solution includes an ionic component that functions as a so-called electrolyte and a nonionic solvent component that primarily functions as a solvent.
  • a non-aqueous electrolytic solution containing a non-aqueous solvent as a solvent is often used.
  • Patent Document 1 It is known to use a so-called high-concentration electrolyte solution, which has an extremely high electrolyte concentration, as a non-aqueous electrolyte solution (for example, Patent Document 1).
  • Highly concentrated electrolytes have high chemical stability, electrochemical stability, and low volatility, but they also have disadvantages such as easy salt precipitation, low ionic conductivity at low temperatures, and low capacity retention. It may be disadvantageous. Highly concentrated electrolytes may also have low impregnability into other components such as separators and electrodes due to physical properties such as high viscosity.
  • an object of the present invention to provide a highly concentrated non-aqueous electrolyte that has high chemical and electrochemical stability and low volatility due to the high electrolyte concentration, while suppressing salt precipitation.
  • the object of the present invention is to provide a non-aqueous electrolyte having high ionic conductivity at low temperatures, high capacity retention, and high impregnating property; and an electrochemical device that enjoys such advantages.
  • the present inventor conducted studies to solve the above problems. As a result, the inventors discovered that the above-mentioned problems could be solved by employing specific components constituting a high-concentration non-aqueous electrolyte and blending them in specific proportions, thereby completing the present invention. That is, the present invention is as follows.
  • a non-aqueous electrolyte containing an ionic component and a non-ionic solvent component is a hetero element-containing organic solvent substance (A) which is an organic compound with a fluorination rate of less than 40%; and a fluorine-containing organic solvent substance (B), which is an organic compound with a fluorination rate of 40% or more,
  • the fluorine-containing organic solvent substance (B) contains a fluorine-containing organic solvent substance (Bx) which is a compound containing a ring structure composed of carbon atoms, a carbon-carbon unsaturated bond, or both of these in the molecule.
  • the proportion of the fluorine-containing organic solvent substance (Bx) in 100 volume% of the non-aqueous electrolyte is 10 volume% or more,
  • the molar amount of the hetero element-containing organic solvent substance (A) is within 5 times the cation amount of the ionic component, Non-aqueous electrolyte.
  • the nonionic solvent component contains the hetero element-containing organic solvent substance (A), the fluorine-containing organic solvent substance (B), or an additive (P) as another nonionic solvent component.
  • the ionic component contains a fluorine-containing sulfonylimide anion
  • the fluorine-containing sulfonylimide anion is a bisfluorosulfonylimide anion.
  • the ionic component contains a boron anion
  • the ionic component includes an ionic liquid.
  • the nonionic solvent component contains acetonitrile as the hetero element-containing organic solvent substance (A).
  • the nonionic solvent component contains one or more types selected from the group consisting of ethylene carbonate, fluorinated ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, and sulfolane as the hetero element-containing organic solvent substance (A).
  • the nonionic solvent component contains a flame retardant solvent substance (AR) as the hetero element-containing organic solvent substance (A),
  • the flame retardant solvent substance (AR) is a compound (R1) which is a phosphoric acid ester or a phosphite ester and has 1 to 6 carbon atoms per molecule, and the hydrogen of the compound (R1) is partially removed.
  • the non-aqueous electrolyte according to any one of (1) to (9), which is one or more selected from the group consisting of a fluorinated compound (R2) and a compound having a phosphazene ring (R3).
  • the nonionic solvent component contains a fluorine-containing organic solvent substance (C) other than the fluorine-containing organic solvent substance (Bx) as the fluorine-containing organic solvent substance (B), (1) to (12) )
  • An electrochemical device comprising the non-aqueous electrolyte according to any one of (1) to (14).
  • a highly concentrated non-aqueous electrolyte has high chemical stability, electrochemical stability and low volatility due to the high electrolyte concentration, while salt precipitation is suppressed and low temperature is achieved.
  • nonaqueous electrolytes that have high ionic conductivity, high capacity retention, and high impregnating properties; and electrochemical devices that enjoy such advantages.
  • FIG. 1 is a graph showing the results of Example 3.
  • FIG. 2 is a graph showing the results of Example 4.
  • the "anion amount” of an anion is the molar equivalent of the ion, for example, the anion amount for 1 mole of monovalent anions is 1 mole, and the anion amount for 1 mole of divalent anions is also 1 mole.
  • “Amount of cation” is also a molar equivalent.
  • the volume of a substance for determining the volume ratio and specific gravity is the volume at the temperature and pressure during the preparation and use of the non-aqueous electrolyte, specifically, the volume ratio at 25° C. and 1 atmosphere. Moreover, the boiling point is the temperature at 1 atmosphere.
  • solvent refers to not only a medium in a solution (i.e., a mixture of a liquid medium substance and a solute substance dissolved therein) but also a dispersion liquid (i.e., a liquid medium substance and a solute substance dissolved therein). (a mixture of a substance in a medium and a substance that is a dispersion present dispersed therein as solid particles or emulsion particles) and a medium in a mixture containing both a solute and a dispersion. Also includes.
  • Non-aqueous electrolyte The nonaqueous electrolyte of the present invention includes an ionic component and a nonionic solvent component.
  • the ionic component is a component that functions as an electrolyte in the electrolytic solution.
  • the ionic component is composed of one or more types of ionic substances. Ionic substances are commonly represented as anionic and cationic salts. Examples of anions and cations include various types known as constituents of electrolytes.
  • anions include F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , PF 6 ⁇ , AsF 6 ⁇ , BF 4 ⁇ , B(C 2 O 4 )F 2 ⁇ , B(C 2 O 4 ) 2 - , SbF 6 - , AlCl 4 - , ClO 4 - , CF 3 SO 3 - , C 4 F 9 SO 3 - , CF 3 COO - , (CF 3 CO) 2 N - , (CF 3 SO 2 ) 3 C - , (FSO 2 ) 2 N - (FSI, bisfluorosulfonylimide), (CF 3 SO 2 ) 2 N - (TFSI, bistrifluoromethanesulfonylimide), and (C 2 F 5 SO 2 ) N - are mentioned.
  • imide anions and boron-containing anions are particularly preferred from the viewpoint of obtaining a non-aqueous electrolyte having both heat resistance and oxidation resistance.
  • imide anion fluorine-containing sulfonylimide anions such as bisfluorosulfonylimide anion and bistrifluoromethanesulfonylimide anion are preferred from the viewpoint of ionic conductivity, and bisfluorosulfonylimide anion is particularly preferred.
  • the proportion of imide anions, especially fluorine-containing sulfonylimide anions, to the anions constituting the ionic component is 50 mol% or more. It is preferable that the proportion of boron anions to the anions constituting the ionic component is 50 mol % or more.
  • cations include Li + , Na + , Mg 2+ , TEA (triethylammonium cation), TBA (tributylammonium cation), and EMI (ethylmethylimidazolium cation).
  • the ionic component may include an ionic liquid as an ionic substance that constitutes the ionic component.
  • the ionic liquid is a salt composed of cations and anions, and is liquid at 25° C. and 1 atm, for example.
  • An example of an ionic liquid is EMI-TFSI.
  • the proportion of the ionic component and the solvent substance (A) in the non-aqueous electrolyte of the present invention is not particularly limited, but it should be a high proportion from the perspective of enjoying the advantages of a so-called high-concentration non-aqueous electrolyte. is preferred.
  • the proportion of the ionic component and the solvent substance (A) in the entire non-aqueous electrolyte is preferably 30% by volume or more, more preferably 40% by volume or more.
  • the nonionic solvent component is a component that functions as a solvent to maintain an appropriate concentration of ionic components in the electrolytic solution.
  • the nonionic solvent component includes one or more types of hetero element-containing organic solvent substances (A) and one or more types of fluorine-containing organic solvent substances (B). Below, these may be simply referred to as “solvent substance (A)” and “solvent substance (B).”
  • the solvent substance (A) is a substance containing a hetero element, and its fluorination rate is less than 40%.
  • the solvent substance (A) is a substance that is liquid and can function as a solvent in the environment in which the non-aqueous electrolyte is used.
  • heteroelements that the solvent substance (A) may contain include O, S, N, P and B.
  • the solvent substance (A) may contain O, N, or both as heteroelements.
  • One molecule of the solvent substance (A) may contain one or more hetero elements, and when it contains two or more hetero elements, they may be the same or different.
  • the nonionic solvent component may contain only one type of compound as the solvent substance (A), or may contain two or more types of compounds. When the nonionic solvent component contains two or more types of compounds as the solvent substance (A), desired physical properties of the nonaqueous electrolyte can be easily obtained by adjusting their types and proportions.
  • the solvent substance (A) may be a substance that has a cyclic molecular structure, or may be a substance that does not include a cyclic molecular structure and only has a chain-like molecular structure.
  • the solvent substance (A) may be a substance having a carbon-carbon unsaturated bond, or the solvent substance (A) may be a substance having no carbon-carbon unsaturated bond.
  • the solvent substance (A) is a substance whose fluorination rate is less than 40%.
  • the solvent substance (A) preferably has an oxidation-resistant polar group in its molecular structure.
  • R 1 and R 2 are independently a hydrogen atom or an organic substituent.
  • the organic substituent preferably has a bond extending from its carbon atom to the N atom.
  • Specific examples of R 1 and R 2 include a methyl group, an ethyl group, and a propyl group.
  • the solvent substance (A) include esters; acid anhydrides such as succinic anhydride, glutaric anhydride, itaconic anhydride, maleic anhydride, and diglycolic anhydride; acetone, ethyl Ketones such as methyl ketone, cyclopentanone, and cyclohexanone; Nitriles such as acetonitrile, propionitrile, valeronitrile, malononitrile, succinonitrile, glutaronitrile, adiponitrile, and various trinitrile compounds; Sulfoxides such as dimethyl sulfoxide Sulfones such as dimethylsulfone, ethylmethylsulfone, and diethylsulfone; Sultones such as propane sultone and butane sultone; Oxazoles such as oxazole; Isoxazoles such as isoxazole; Oxazolines such as methyloxazoline; Fura
  • esters include organic acid esters such as formate, acetate, propionate, ⁇ -butyrolactone, valerolactone, glycolide, lactide, dimethyl oxalate, diethyl oxalate, and dimethyl succinate; dimethyl carbonate, carbonic acid Carbonic esters such as diethyl, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, and fluorinated ethylene carbonate; Sulfuric esters such as dimethyl sulfate; Phosphite esters such as trimethyl phosphite and triethyl phosphite; Trimethyl phosphate, phosphorus Examples include phosphoric acid esters such as triethyl acid and tributyl phosphate; and boric acid esters such as trimethyl borate and triethyl borate.
  • organic acid esters such as formate, acetate, propionate, ⁇ -butyrolactone, valerolactone, glyco
  • a compound having two or more of the above characteristics can also be used as the solvent substance (A).
  • examples of such compounds include methyl cyanoacetate, ethyl cyanoacetate, methyl methanesulfonylacetate, methylsulfonylacetonitrile, methoxypropionitrile, and 3,3'-oxydipropionitrile.
  • the nonionic solvent component preferably contains acetonitrile as the solvent substance (A).
  • acetonitrile By using acetonitrile, the effect of excellent ionic conductivity at low temperatures can be obtained.
  • the nonaqueous electrolyte of the present invention in an electrochemical device containing a carbonaceous material as a negative electrode active material by using acetonitrile and an acid anhydride together, the current when using a carbonaceous material for the electrode can be increased. The effect of superior efficiency can be obtained.
  • the nonionic solvent component may contain, as the solvent substance (A), one or more selected from the group consisting of ethylene carbonate, fluorinated ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, and sulfolane. preferable.
  • solvent substance (A) one or more selected from the group consisting of ethylene carbonate, fluorinated ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, and sulfolane. preferable.
  • the nonionic solvent component includes a flame retardant solvent substance (AR) as the solvent substance (A).
  • the flame-retardant solvent substance (AR) is a compound (R1) that is a phosphoric acid ester or a phosphite ester and has 1 to 6 carbon atoms per molecule, and the hydrogen of the compound (R1) is partially fluorinated.
  • the compound is one or more selected from the group consisting of a compound (R2) having a phosphazene ring, and a compound (R3) having a phosphazene ring.
  • the compound (R1) include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trisbutoxyethyl phosphate, and phosphorous esters corresponding to these.
  • the compound (R3) include Nippon Kagaku Kogyo Co., Ltd., trade names "Hishicolin-E”, “Hishicolin-O”, and "Hishicolin-D”.
  • the proportion of the flame retardant solvent substance (AR) in 100% by volume of the nonionic solvent component is preferably 5% by volume or more, more preferably 10% by volume or more, while preferably 25% by volume or less, more Preferably it is 20% by volume or less.
  • the proportion of the flame-retardant solvent substance (AR) By setting the proportion of the flame-retardant solvent substance (AR) to the above-mentioned lower limit or more, the flame retardancy of the non-aqueous electrolyte can be improved, and the safety of the electrochemical device can be improved.
  • the proportion of the flame-retardant solvent substance (AR) below the above-mentioned upper limit, an increase in the resistance of the device can be avoided.
  • the upper limit of the molar amount of the solvent substance (A) relative to the cation amount of the ionic component is within 5 times, preferably within 4 times, and more preferably within 3 times.
  • the effect of the solvent substance (B) can be favorably obtained.
  • the flammability of the non-aqueous electrolyte can be effectively reduced.
  • the lower limit of the molar amount of the solvent substance (A) relative to the cation amount of the ionic component can be 0.75 times or more, preferably 1.5 times or more, and more preferably 2.2 times or more.
  • the molar amount of the solvent substance (A) is at least this lower limit, the desired effect as an electrolytic solution can be satisfactorily expressed.
  • solvent substance (B) The solvent substance (B), like the solvent substance (A), can be a substance that is liquid and functions as a solvent in the environment in which the non-aqueous electrolyte is used.
  • the nonionic solvent component may contain only one type of substance or two or more types of substances as the solvent substance (B).
  • the solvent substance (B) has a fluorination rate of 40% or more.
  • the fluorination rate of the solvent substance is less than 100% (that is, it has one or more hydrogen atoms in the molecule).
  • the charge within the molecule becomes non-homogeneous, and the polarity becomes high, making it easier to create a highly concentrated electrolyte and a uniform solution.
  • the non-aqueous electrolyte of the present invention contains a solvent substance (Bx) as part or all of the solvent substance (B).
  • the solvent substance (Bx) contains a ring structure composed of carbon atoms, a carbon-carbon unsaturated bond, or both of these in its molecule. By having a ring structure, it is possible to obtain a higher boiling point than chain molecules with similar molecular size and atomic composition, and the molecule can have fewer hydrogen substitution sites, making it easy to achieve a high fluorination rate. Obtainable.
  • the solvent substance (Bx) has a carbon-carbon unsaturated bond, it can also be a molecule with fewer hydrogen substitution sites, making it easy to obtain a high fluorination rate.
  • the solvent substance (Bx) has a carbon-carbon unsaturated bond
  • the solvent substance (Bx) has a ring structure consisting of carbon atoms and contains a carbon-carbon unsaturated bond in the ring.
  • the ability of the non-aqueous electrolyte to protect the negative electrode can be enhanced, and as a result, for example, the effect of increasing the capacity retention rate of an electrochemical device containing the non-aqueous electrolyte can be obtained.
  • the solvent substance (Bx) contains a ring structure composed of carbon atoms, a carbon-carbon unsaturated bond, or both of these, and has a fluorination rate of 40% or more, ions are generated in the non-aqueous electrolyte. Precipitation of salts of chemical components can be suppressed. The reason for this is unknown, but one possible reason is that the solvent substance (Bx) is interposed between the anion and cation that constitute the salt and suppresses aggregation.
  • the solvent substance (Bx) has one or more structures selected from the group consisting of -CFH-, -CF 2 H, -CH 2 -CF 2 -, -CH 2 CF 3 and -O-, It is preferable that the molecule contains one or more, and more preferably two or more. By having these structures, the polarity of the solvent substance (B) molecules becomes high, and as a result, the above-mentioned effects can be better obtained.
  • the molecules of the solvent substance (Bx) may be molecules consisting only of carbon atoms, hydrogen atoms, oxygen atoms, and fluorine atoms, or may be molecules containing other atoms as well.
  • the solvent substance (Bx) may contain nitrogen atoms, phosphorus atoms, and sulfur atoms.
  • the solvent substance (Bx) may also contain halogen atoms other than fluorine atoms.
  • the solvent substance (Bx) preferably does not contain nitrogen atoms, phosphorus atoms, and sulfur atoms.
  • the molecules of the solvent substance (Bx) are carbon atoms, hydrogen atoms, etc. , a molecule consisting only of oxygen atoms and fluorine atoms is preferable.
  • the solvent substance (Bx) include compounds having a structure in which one or more hydrogen atoms in a hydrocarbon ring or a ring containing an oxygen atom are substituted with a fluorine atom or an organic substituent containing a fluorine atom.
  • the solvent substance and other substances are not limited by the manufacturing process thereof.
  • Preferred examples of the hydrocarbon ring include cyclopentane, cyclohexane, and cyclopentene.
  • the ring containing an oxygen atom is a ring composed of a carbon atom, a hydrogen atom, and an oxygen atom, and preferable examples thereof include tetrahydrofuran and tetrahydropyran.
  • substituents include halogen atoms such as fluorine atoms, alkyl groups, fluorinated alkyl groups, ether groups, ester groups, and hydroxyl groups.
  • solvent substances (Bx) preferable examples of those having a ring structure and those having both a ring structure and a carbon-carbon unsaturated bond include 1,1,2,2,3,3,4-heptafluorocyclo Pentane (fluorination rate: 70%), 3,3,4,4,5,5-hexafluorocyclopentene (fluorination rate: 75%), and 1-methoxy-2,3,3,4,4,5 , 5-heptafluorocyclopentene (fluorination rate: 70%).
  • the boiling point of the solvent substance (Bx) is preferably within a desired temperature range in order to adjust physical properties such as favorable handling properties and generation of internal pressure.
  • the boiling point of the solvent substance (Bx) is preferably 60°C or higher, more preferably 70°C or higher, even more preferably 80°C or higher, even more preferably 90°C or higher, while preferably 170°C or higher.
  • the temperature is preferably 150°C or lower, more preferably 150°C or lower.
  • the solvent substance (Bx) has no flash point. If the solvent substance (Bx) does not have a flash point, the entire non-aqueous electrolyte can easily also have no flash point. As a result, it is possible to reduce the risk of a fire occurring when the electrochemical device overheats for some reason and the non-aqueous electrolyte is released outside the device. "Having no flash point” means that it does not show a flash point at least in the flash point measurement method based on the tag sealing method (JIS K2265-1 (2007)), and more preferably the Cleveland open method (JIS K2265 -4 (2007)), it is evaluated that there is no flash point.
  • the solvent substance (Bx) has low reactivity with gases in the atmosphere. Specifically, it is preferable that the reactivity with gases (including water vapor) constituting the atmosphere is low. Since the solvent substance (Bx) has low reactivity with gases in the atmosphere, it is possible to reduce the danger when the non-aqueous electrolyte is released outside the device. Specifically, the proportion of molecules that are oxidized within 10 minutes after being released into the atmosphere at 25°C is 1% or less, or the proportion of molecules that are hydrolyzed is 1% or less, and more preferably both. preferable.
  • the solvent substance (Bx) has high solubility in water.
  • the lower limit of solubility in water is preferably 10 ppm or more, more preferably 100 ppm or more. When it has such high water solubility, it can easily dissolve ionic components at high concentrations.
  • the upper limit of solubility in water is not particularly limited, but may be, for example, 10,000 ppm or less.
  • the dielectric constant of the solvent substance (Bx) is preferably a large value.
  • the relative permittivity (measurement frequency: 1 kHz) is preferably 2.0 or more, more preferably 5 or more, even more preferably 8 or more, even more preferably 10 or more.
  • the upper limit of the dielectric constant is not particularly limited, but may be, for example, 50 or less.
  • the proportion of the solvent substance (Bx) in 100 volume% of the non-aqueous electrolyte is 10 volume% or more, preferably 20 volume% or more.
  • the solvent substance (Bx) has either a ring structure consisting of carbon atoms or a carbon-carbon unsaturated bond, has the above-mentioned specific fluorination rate, and is a solvent substance in the nonionic solvent component.
  • a non-aqueous electrolyte with high ion conductivity can be obtained, and in particular, the ion conductivity at low temperatures can be improved. Further, the viscosity of the non-aqueous electrolyte can be set within a desired low range. Furthermore, by increasing the proportion of the solvent substance (Bx) in the nonionic solvent component, the impregnation of the nonaqueous electrolyte into porous device components such as the electrode mixture layer and/or the separator is enhanced. be able to.
  • the proportion of the solvent substance (Bx) in 100 volume % of the non-aqueous electrolyte it is more preferable to set the proportion of the solvent substance (Bx) in 100 volume % of the non-aqueous electrolyte to a high value such as 50 volume % or more, since this can improve the safety of an electrochemical device containing the non-aqueous electrolyte. Specifically, since the volatility of the solvent in a highly concentrated electrolytic solution is generally suppressed, the internal pressure is unlikely to increase even if a device containing the electrolytic solution reaches a high temperature. Therefore, when an abnormality occurs inside the device, it is difficult for a user to detect the abnormality from the outside.
  • the non-aqueous electrolyte contains the solvent substance (Bx)
  • internal pressure can be generated at a temperature higher than a certain level, and the temperature at which the internal pressure is generated depends on the type and composition ratio of the solvent substance (Bx). Can be adjusted by selection.
  • the solvent substance (Bx) can be easily released outside the device. In this case, most of the electrolyte is lost, which makes it difficult for the ions to move, and the operation of the device slows down or stops, thereby ensuring high safety.
  • the non-aqueous electrolyte of the present invention contains, as a part of the solvent substance (B), a fluorine-containing solvent substance (C) which is a substance other than the solvent substance (Bx) (hereinafter also simply referred to as "solvent substance (C)"). ) may be included.
  • the solvent substance (C) is a compound having a fluorination rate of 40% or more and containing neither a ring structure composed of carbon atoms nor a carbon-carbon unsaturated bond in the molecule. By including the solvent substance (C), it is possible to easily adjust the viscosity of the nonaqueous electrolyte to a desired range.
  • solvent substances (C) include various fluorinated alkanes and fluorinated ethers.
  • fluorinated alkanes include the trade name "Vertrell XF” (manufactured by Mitsui Chemours Fluoro Products Co., Ltd., 2H,3H-decafluoropentane); 6000'' (CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3 ) (manufactured by AGC).
  • fluorinated ethers examples include the trade name "Opteon SF-10" (manufactured by Mitsui Chemours Fluoro Products Co., Ltd.); Fluoroethyl 2,2,2-trifluoroethyl ether); trade name “NOVEC7100” (CF 3 CF 2 CF 2 CF 2 OCH 3 ), "NOVEC 7200” (CF 3 (CF 2 ) 3 0CH 2 CH 3 and CF 3 C(-CF 3 )(-F)CF 2 OCH 2 CH 3 mixture), “NOVEC7300”(CF 3 CF 2 C(-OCH 3 )(-F)C(-CF 3 ) 2 (-F)) , "NOVEC7500” and “NOVEC7600” (manufactured by 3M); and “Galden” (manufactured by Solvay, perfluoropolyether).
  • Opteon SF-10 manufactured by Mitsui Chemours Fluoro Products
  • fluorinated ethers include CF3CHFCF2OCH2CF2CHF2 , CHF2CF2CH2OCF2CHF2 , CF3CHFCF2CH2OCHF2 , CF3CHCF2OCH2CF2 CF 3 _ _ _ _ , CF3CHFCF2OCH2CF3 , CHF2CF2OCH2CF3 , CF3CHFCF2OCH3 , CF3CF2CH2OCHF2 , and CF3CH2OCH2CF3 .
  • the proportion of the solvent substance (A) in 100 volume % of the non-aqueous electrolyte may be 25 to 85 volume %.
  • the nonionic solvent component can include an additive (P) as a solvent material (A), a solvent material (B), or another nonionic solvent component.
  • the additive (P) is one selected from the group consisting of a cyclic sulfate compound (PA), a vinyl ethylene carbonate compound (PB), and a cyclic fluorine compound having an unsaturated bond (PC). It can be more than that.
  • cyclic sulfate compound (PA) examples include 1,3,2-dioxathiolane 2,2-dioxide (ethylene sulfate), 4-methyl-1,3,2-dioxathiolane 2,2-dioxide, and 1,3,2-dioxathiane 2,2-dioxide is mentioned.
  • Examples of the vinyl ethylene carbonate compound (PB) include compounds having a vinyl ethylene carbonate skeleton, such as 3-vinyl ethylene carbonate, 3,4-divinyl ethylene carbonate, and 3-ethynyl ethylene carbonate.
  • cyclic fluorine compounds having unsaturated bonds and ether bonds
  • PC cyclic fluorine compounds having unsaturated bonds and ether bonds
  • examples of cyclic fluorine compounds (PC) having unsaturated bonds and ether bonds include 3,3,4,4,5,5-hexafluorocyclopentene and 1-methoxy-2,3,3,4,4 , 5,5-heptafluorocyclopentene.
  • the nonionic solvent component contains the additive (P)
  • the current efficiency of the device is improved, for example, in the case of a lithium ion battery, the coulombic efficiency during charging and discharging is improved.
  • the amount of additive (P) added is preferably 0.01% by weight or more, more preferably 0.05% by weight or more based on 100% by weight of the nonionic solvent component, On the other hand, it is preferably 10% by weight or less, more preferably 7% by weight or less.
  • the proportion of the nonionic solvent component in 100% by weight of the non-aqueous electrolyte is preferably 30% by weight or more, more preferably 40% by weight or more, while preferably 95% by weight or less, more preferably 90% by weight or less. be.
  • the non-aqueous electrolyte of the present invention may contain arbitrary components in addition to the above-mentioned ionic components and non-ionic solvent components.
  • it may contain a polymer compound with a molecular weight of more than 1000. That is, while the solvent component usually has a molecular weight of 1000 or less, a polymer compound with a weight average molecular weight of more than 1000, preferably more than 10,000, which can be dissolved in the solvent component, is dissolved in the non-aqueous electrolyte. may exist.
  • the ionic conductivity and viscosity of the nonaqueous electrolyte may be adjusted to an appropriate range.
  • the proportion of the polymer compound in 100% by weight of the non-aqueous electrolyte is preferably 50% by weight or less.
  • polymer compounds include polyethylene oxide, polyethylene oxide-propylene oxide copolymers, and polyoxazoline polymers.
  • the non-aqueous electrolyte of the present invention preferably has no flash point. By not having a flash point, the safety of electrochemical devices containing non-aqueous electrolytes can be improved.
  • a non-aqueous electrolyte having no flash point can be obtained by appropriately selecting non-flammable or low combustible solvent substances from the above-exemplified components as the solvent substance (A) and the solvent substance (B).
  • the method for producing a non-aqueous electrolyte of the present invention is not particularly limited, and can be produced by mixing the components described above in an appropriate environment suitable for producing an electrolyte.
  • each component is not particularly limited, it is preferable that the ionic component and the solvent substance (A) are mixed first, and then the solvent substance (B) is further mixed into the resulting mixture.
  • the ionic component can be quickly dissolved and precipitation of the ionic component can be suppressed.
  • some of the components may be mixed in an amount larger than the target ratio, and then the components may be reduced by distilling off or the like.
  • each component is encapsulated inside the device in a state in which a portion of each component is solid, and then the solids are dissolved and mixed inside the device, so that each component is mixed at the target ratio.
  • a non-aqueous electrolyte can also be obtained.
  • part of the solvent substance (B) in a solid state is sealed inside a device along with other components in a liquid state, and then the solvent substance (B) is dissolved, and each component is mixed in a target ratio.
  • a water electrolyte can be obtained.
  • the electrochemical device of the present invention includes the non-aqueous electrolyte of the present invention described above. That is, the nonaqueous electrolyte of the present invention can be used as a component of an electrochemical device. Since the electrochemical device of the present invention contains the non-aqueous electrolyte of the present invention as an electrolyte, it can enjoy advantages such as high capacity retention, high operating performance at low temperatures, and high safety.
  • the electrochemical device of the present invention may include a device exterior and contents such as an electrode, a separator, and the nonaqueous electrolyte of the present invention, which are enclosed in a sealed space inside the device exterior.
  • the electrodes and separators are not particularly limited, and known electrodes and separators that are suitable for the use of the device can be appropriately employed.
  • the non-aqueous electrolyte of the present invention can be of low risk in the event that it leaks out of the device for some reason. It is possible to have a mechanism that releases the seal by the exterior when the temperature rises above a threshold value, so that the operation can be stopped when an abnormality occurs.
  • a threshold may be between 2 atmospheres and 10 atmospheres.
  • electrochemical devices of the present invention include various non-aqueous primary batteries, secondary batteries, electric double layer capacitors, electric double layer transistors, electrochromic display materials, electrochemical luminescent elements, electrochemical actuators, and dye-sensitized solar cells.
  • batteries include lithium primary batteries, lithium ion secondary batteries, lithium metal secondary batteries, sodium ion batteries, potassium ion batteries, magnesium ion batteries, aluminum ion batteries, fluoride ion batteries, and air batteries.
  • the battery is particularly preferably a lithium ion primary battery or a lithium ion secondary battery.
  • Impregnation evaluation A test was conducted to see if electrolytes (01) to (20) could be impregnated into a lithium ion battery separator.
  • a polyolefin separator manufactured by Polypore, product name "Celguard 2325"
  • the 1 cm tip was immersed in an electrolytic solution for 1 second to soak the separator. If the electrolyte penetrated into the site, it was evaluated as "impregnation”, and if it did not, it was evaluated as "not impregnated”. As a result, all cases were evaluated as not being impregnated.
  • LiFSI Lithium bisfluorosulfonylimide (Li + (FSO 2 ) 2 N ⁇ )
  • LiTFSI Lithium bistrifluoromethanesulfonylimide (Li + (CF 3 SO 2 ) 2 N ⁇ )
  • LiBF4 Lithium tetrafluoroborate
  • LiBr Lithium bromide
  • MgTFSI Magnesium bistrifluoromethanesulfonylimide (Mg 2+ ((CF 3 SO 2 ) 2 N ⁇ ) 2 )
  • EMI-TFSI 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide
  • the obtained electrolyte solution was observed to evaluate whether it was uniformly dissolved.
  • the results are shown in Table 2. In the examples, all electrolytic solutions were mixed uniformly, and no salt precipitation was observed. On the other hand, in some of the comparative examples, the electrolytic solution was separated into two layers.
  • a fluorine solvent substance (C) that does not have a cyclic structure or unsaturated bond instead of the solvent substance (B)
  • Solvent substance (Bx) addition amount Addition ratio of solvent substance to the total volume % of the entire non-aqueous electrolyte (unit: volume %)
  • Other solvent substances Types of solvent substances other than the solvent substance (Bx) added here.Other addition amount: Addition amount of other solvent substances.
  • B-1 1,1,2,2,3,3,4-heptafluorocyclopentane (trade name "Zeolora H", manufactured by Nippon Zeon Co., Ltd.)
  • B-2 3,3,4,4,5,5-hexafluorocyclopentene
  • B-3 1-methoxy-2,3,3,4,4,5,5-heptafluorocyclopentene
  • C-1 2H, 3H-decafluoropentane (trade name: "Vertrell XF” manufactured by Mitsui Chemours Fluoro Products Co., Ltd.)
  • C-2 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (trade name "Asahikulin AE-3000", manufactured by AGC)
  • C-3 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether
  • C-4 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetra
  • Example 2 The viscosity of the electrolytic solution, which is a mixture of the electrolytic solution (08) prepared in Production Example 1 and the solvent substance (B-1) added at the concentration shown in Table 3, was measured.
  • the measurement was carried out using an EMS viscometer (manufactured by Kyoto Electronics Industry Co., Ltd., EMS-1000S) in an environment of 25°C, keeping the electrolyte composition unchanged under sealed conditions and no moisture in the air mixed in.
  • the measurement was made at a rotation speed of 1000 rpm.
  • the viscosity measured by this measurement method is basically the same value as the value measured in accordance with JIS Z8803.
  • the measurement results are shown in Table 3.
  • the electrolytic solution (08) without the addition of solvent substance (B-1) exhibited a viscosity of 60 cP at 25°C, and it was confirmed that the viscosity tended to decrease significantly as the amount of solvent substance (B-1) added increased. Ta. By lowering the viscosity, it is expected that the liquid will move more smoothly inside the electrochemical device.
  • (B-1) ratio volume % of (B-1) in the volume % of the entire non-aqueous electrolyte.
  • Example 3 About the electrolytic solution (11) prepared in Production Example 1 and the electrolytic solution (111) of Example 1, which is an electrolytic solution prepared by adding 40% by volume of the solvent substance (B-1) to the electrolytic solution (11). Ionic conductivity was measured. The measurement was carried out in the temperature range of -20 to 80°C, and the measurement was carried out in the frequency range of 1M to 0.1Hz by the AC impedance method using an impedance analyzer manufactured by Solartron. The results are shown in Figure 1.
  • Example 4 Electrolyte solution (01) prepared in Production Example 1, and electrolyte solution in which 60% by volume of solvent substance (B-1), (B-2) or (C-3) was added to electrolyte solution (01). The ionic conductivity of the electrolytes (101-1), (101-4), and (201-2) of Example 1 was measured. The measurement was performed according to the same procedure as in Example 3, except that the temperature range was -20 to 10°C. The results are shown in Figure 2.
  • the ionic conductivity decreased significantly as the temperature decreased.
  • the electrolytic solutions (101-1) and (101-3) which are electrolytic solutions to which the solvent substance (B) was added, the ionic conductivity at low temperatures could be greatly improved.
  • the degree of improvement was relatively greater in electrolyte solution (101-4) than in electrolyte solution (101-1).
  • the electrolytic solution (201-2) which is an electrolytic solution to which the solvent substance (C-3) was added, an improvement effect was observed at temperatures below 0°C, but it tended to get worse at temperatures above 0°C.
  • An activated carbon electrode consisting of a base material and a composite material layer was prepared by pressing the layer.
  • the area weight and density of the composite material layer were 6.1 mg/cm 2 and 0.48 g/cm 3 .
  • the activated carbon electrode was cut out to form a 4 ⁇ 4 cm rectangular test electrode.
  • 15 ⁇ l of the electrolytic solution was dropped onto the surface of the test electrode on the composite material layer side, and the manner in which the electrolytic solution permeated into the composite material layer was observed.
  • the electrolytic solution gradually permeated into the composite material layer, and the time when the surface of the composite material layer lost its luster was defined as the end of impregnation, and the time taken from dropping to the end of impregnation was recorded.
  • the dropping was performed in a glass petri dish with a lid, and the lid was placed immediately after the dropping.
  • the times required for impregnation with electrolyte solution (17), electrolyte solution (117-1), and electrolyte solution (117-2) were 489 seconds, 182 seconds, and 75 seconds, respectively. From this, it was found that the impregnation rate into the electrode composite material layer was improved by adding the solvent substance (B).
  • Example 6 (6-1. Positive electrode) Aluminum foil with a thickness of 20 ⁇ m was prepared as a current collector for the positive electrode. A layer containing 94%, 3%, and 3% by weight of lithium cobalt oxide (positive electrode active material), acetylene black, and PVDF (polyvinylidene fluoride) binder, respectively, is provided on the positive electrode current collector, and the layer is pressed. By doing so, a positive electrode composite material layer was formed, and a lithium ion positive electrode consisting of a positive electrode current collector and a positive electrode composite material layer was prepared. The fabric weight and density of the positive electrode composite material layer were 20 mg/cm 2 and 3.0 g/cm 3 .
  • a copper foil with a thickness of 10 ⁇ m was prepared as a current collector for the negative electrode.
  • a negative electrode composite material layer was formed by pressing the layer, and a lithium ion negative electrode consisting of a negative electrode current collector and a negative electrode composite material layer was prepared.
  • the area weight and density of the negative electrode composite material layer were 10 mg/cm 2 and 1.4 g/cm 3 .
  • An aluminum laminate bag with a polyethylene sealant was prepared.
  • the solvent substance (B-1) volume ratio: 40 vol%) was injected, and the aluminum laminate bag was sealed. As a result, a lithium-ion secondary battery was completed.
  • (6-4. Charge/discharge test of lithium ion secondary battery) The battery obtained in (6-3) was charged and discharged at a rate of 0.5C relative to the designed capacity in an environment of 25°C. As a result, in the voltage range of 4.2 to 3.0 V, the discharge capacity was 145 mAh/g per weight of the positive electrode active material, and repeated charging and discharging was possible. The capacity retention rate after 50 cycles with respect to the initial discharge capacity was as high as 94%.
  • Example 5 (C2-3. Manufacture and evaluation of lithium ion secondary battery) A lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 5 except for the following changes. -In place of electrolyte (118), electrolyte (212) prepared in (C2-2) was used. As a result, the discharge capacity was 144 mAh/g per weight of the positive electrode active material, and repeated charging and discharging was possible. The capacity retention rate after 50 cycles with respect to the initial discharge capacity was 91%, which was lower than in Example 5.
  • Example 3 A lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 5 except for the following changes. - In place of the electrolytic solution (118), the preliminary electrolytic solution (21) prepared in (C2-1) of Comparative Example 2 was used as it was. As a result, the discharge capacity was 143 mAh/g per weight of the positive electrode active material, and repeated charging and discharging was possible. The capacity retention rate after 50 cycles with respect to the initial discharge capacity was 94%, which was lower than in Example 5.
  • Example 7 (7-1. Capacitor) Two pieces of the activated carbon electrode obtained in Example 5 were cut out to a size of 3 x 4 cm to obtain test electrodes. An aluminum tab was attached to the end of each test electrode by ultrasonic welding. A sheet of paper with a thickness of 35 ⁇ m (manufactured by Nippon Kokoshi Kogyo, TF4535) was placed as a separator between the pair of test electrodes with tabs. A laminate having a layer structure of layer)/(base material) was obtained.
  • An aluminum laminate bag with a polyethylene sealant was prepared.
  • the resistance value (unit: ⁇ ) of the capacitor obtained in (8-1) was measured by an AC impedance method (using an impedance analyzer manufactured by Solartron, measurement frequency 1 MHz to 0.01 Hz). The ambient temperature of the cell was raised from 25° C., and the relationship between temperature and resistance value was determined. Table 4 shows the relative measured values of the resistance value at each temperature, with the resistance value at 25° C. being 1.
  • Example 9 The electrolytic solution (107-2) prepared in Example 1 was determined by the flash point measurement method in accordance with the tag sealing method (JIS K2265-1 (2007)) and the Cleveland open method (JIS K2265-4 (2007)). , the flash point was measured. No flash point was confirmed when measuring the flash point using the closed tag method, and when measuring the flash point using the Cleveland open method, the prescribed test could not be continued due to boiling of the solvent substance (B), resulting in an evaluation of no flash point. . It has been found that low flammability can be imparted to the electrolyte if the solvent substance (B) is non-flammable.
  • Combustibility was evaluated by taking 100 mg of the electrolytic solution (03) prepared in Production Example 1, placing it in a stainless steel dish with a diameter of 2 cm, applying a burner flame, and observing the state. As a result, it was observed that ignition occurred 5 seconds after the burner was applied, and combustion continued for 8 seconds.
  • Example 10 Combustibility was evaluated by taking 100 mg of the electrolytic solution (103) prepared in Example 1, placing it in a stainless steel dish with a diameter of 2 cm, applying a burner flame, and observing the state. As a result, it was observed that ignition occurred 7 seconds after the burner was applied, and combustion continued for 5 seconds. By comparing Comparative Example 4 and Example 9, it was found that the ignitability and combustion time of the electrolytic solution can be reduced by adding the solvent substance (B-2) that does not have a flash point.
  • Example 11 (11-1. Positive electrode sheet)
  • the experiment was conducted by changing the temperature of the experimental environment to 18°C so that the melting point of the solvent substance (B-1) was below 20.5°C.
  • a poly(ethylene oxide-propylene oxide) copolymer (ethylene oxide unit:propylene oxide unit in molar ratio of 90:10) having a weight average molecular weight of 500,000 was added to the electrolytic solution (08) prepared in Production Example 1 at a concentration of 5% by weight. % and mixed to prepare an electrolytic solution (08-P).
  • the electrolyte of the present invention may be completed inside the device and may include a polymer.

Abstract

Disclosed are: a nonaqueous electrolytic solution; and an electrochemical device. The nonaqueous electrolytic solution includes an ionic component and a non-ionic solvent component. The non-ionic solvent component contains a heteroelement-containing organic solvent substance (A) and a fluorine-containing organic solvent substance (B). The fluorine-containing organic solvent substance (B) includes, in the molecule, a ring structure using carbon atoms as constituents and/or a carbon-carbon unsaturated bond, and has a fluorination rate of 40% or more. The proportion of the fluorine-containing organic solvent substance (B) relative to 100 vol% of the non-ionic solvent component is 10 vol% or more. The molar amount of the heteroelement-containing organic solvent substance (A) is at most 5 times the cation amount of the ionic component.

Description

非水電解液、及び電気化学デバイスNon-aqueous electrolytes and electrochemical devices
 本発明は、リチウムイオン一次電池、リチウムイオン二次電池及びキャパシタ等の、非水系の電気化学デバイスに用いうる非水電解液、並びに当該非水電解液を含む電気化学デバイスに関する。 The present invention relates to a nonaqueous electrolyte that can be used in nonaqueous electrochemical devices such as lithium ion primary batteries, lithium ion secondary batteries, and capacitors, and to electrochemical devices that include the nonaqueous electrolyte.
 一般的に、一次電池、二次電池、及びキャパシタ等の電気化学デバイスは、外装体と、その内部に封入される電解液、電極及びセパレーター等の、デバイスの機能を発現するための内容物とを備える。
 一般的に電解液は、所謂電解質として機能するイオン性成分と、主に溶媒として機能する非イオン性溶媒成分とを含む。電解液としては、溶媒として非水溶媒を含む非水電解液が多く用いられる。
In general, electrochemical devices such as primary batteries, secondary batteries, and capacitors include an exterior body and contents sealed therein, such as electrolyte, electrodes, and separators, for realizing the functions of the device. Equipped with
Generally, an electrolytic solution includes an ionic component that functions as a so-called electrolyte and a nonionic solvent component that primarily functions as a solvent. As the electrolytic solution, a non-aqueous electrolytic solution containing a non-aqueous solvent as a solvent is often used.
 非水電解液として、電解質濃度を極端に高めた、所謂高濃度電解液を用いることが知られている(例えば特許文献1)。 It is known to use a so-called high-concentration electrolyte solution, which has an extremely high electrolyte concentration, as a non-aqueous electrolyte solution (for example, Patent Document 1).
特開2014-241198号公報Japanese Patent Application Publication No. 2014-241198
 高濃度電解液は、高い化学的安定性及び電気化学的安定性、並びに低い揮発性が得られる一方、塩が析出しやすい、低温でのイオン伝導度が低い、容量維持率が低いといった点で不利である場合がある。高濃度電解液はまた、高い粘度等の物性に起因して、セパレーター及び電極等の他の構成要素に対する含浸のしやすさが低い場合がある。 Highly concentrated electrolytes have high chemical stability, electrochemical stability, and low volatility, but they also have disadvantages such as easy salt precipitation, low ionic conductivity at low temperatures, and low capacity retention. It may be disadvantageous. Highly concentrated electrolytes may also have low impregnability into other components such as separators and electrodes due to physical properties such as high viscosity.
 したがって、本発明の目的は、高濃度の非水電解液であって、高い電解質濃度に起因する高い化学的安定性及び電気化学的安定性並びに低い揮発性を有する一方、塩の析出が抑制され、低温でのイオン伝導度が高く、容量維持率が高く、含浸性も高い非水電解液;並びにそのような利点を享受する電気化学デバイスを提供することにある。 Therefore, it is an object of the present invention to provide a highly concentrated non-aqueous electrolyte that has high chemical and electrochemical stability and low volatility due to the high electrolyte concentration, while suppressing salt precipitation. The object of the present invention is to provide a non-aqueous electrolyte having high ionic conductivity at low temperatures, high capacity retention, and high impregnating property; and an electrochemical device that enjoys such advantages.
 本発明者は、上記課題を解決すべく検討を行った。その結果、高濃度非水電解液を構成する成分として特定のものを採用し、それらを特定割合で配合することにより、前記課題を解決しうることを見出し、本発明を完成した。
 すなわち、本発明は、以下の通りである。
The present inventor conducted studies to solve the above problems. As a result, the inventors discovered that the above-mentioned problems could be solved by employing specific components constituting a high-concentration non-aqueous electrolyte and blending them in specific proportions, thereby completing the present invention.
That is, the present invention is as follows.
 (1) イオン性成分と、非イオン性溶媒成分とを含む非水電解液であって、
 前記非イオン性溶媒成分が、
 フッ素化率が40%未満の有機化合物である、ヘテロ元素含有有機溶媒物質(A)と、
 フッ素化率が40%以上の有機化合物である、含フッ素有機溶媒物質(B)とを含み、
 前記含フッ素有機溶媒物質(B)は、分子内に、炭素原子を構成要素とする環構造、炭素-炭素不飽和結合、又はこれらの両方を含む化合物である含フッ素有機溶媒物質(Bx)を含み、
 前記非水電解液100体積%に占める前記含フッ素有機溶媒物質(Bx)の割合が10体積%以上であり、
 前記イオン性成分のカチオン量に対する、前記ヘテロ元素含有有機溶媒物質(A)のモル量が5倍以内である、
 非水電解液。
 (2) 前記非イオン性溶媒成分が、前記ヘテロ元素含有有機溶媒物質(A)、前記含フッ素有機溶媒物質(B)、又はそれ以外の非イオン性溶媒成分としての、添加剤(P)を含み、
 前記添加剤(P)は、環状硫酸エステル化合物、ビニルエチレンカーボネート化合物、及び不飽和結合を有する環状フッ素化合物からなる群より選択される一種以上である、(1)に記載の非水電解液。
 (3) 前記イオン性成分が、フッ素含有スルホニルイミドアニオンを含み、
 前記イオン性成分を構成するアニオンに占める前記イミドアニオンのアニオン量の割合が50モル%以上である、(1)又は(2)に記載の非水電解液。
 (4) 前記フッ素含有スルホニルイミドアニオンがビスフルオロスルホニルイミドアニオンである、(3)に記載の非水電解液。
 (5) 前記イオン性成分が、ホウ素アニオンを含み、
 前記イオン性成分を構成するアニオンに占める前記ホウ素アニオンのアニオン量の割合が50モル%以上である、(1)又は(2)に記載の非水電解液。
 (6) 前記イオン性成分が、イオン液体を含む、(1)~(5)のいずれか1項に記載の非水電解液。
 (7) 前記非イオン性溶媒成分が、前記ヘテロ元素含有有機溶媒物質(A)として、アセトニトリルを含む、(1)~(6)のいずれか1項に記載の非水電解液。
 (8) 前記非イオン性溶媒成分が、前記ヘテロ元素含有有機溶媒物質(A)として、炭酸エチレン、フッ化炭酸エチレン、炭酸プロピレン、γ-ブチロラクトン、及びスルホランからなる群より選択される一種以上を含む、(1)~(7)のいずれか1項に記載の非水電解液。
 (9) 前記非イオン性溶媒成分が、前記ヘテロ元素含有有機溶媒物質(A)として、2種以上の化合物を含む、(1)~(8)のいずれか1項に記載の非水電解液。
 (10) 前記非イオン性溶媒成分が、前記ヘテロ元素含有有機溶媒物質(A)として、難燃性溶媒物質(A-R)を含み、
 前記難燃性溶媒物質(A-R)は、リン酸エステル又は亜リン酸エステルであって一分子当たり炭素数が1以上6以下の化合物(R1)、前記化合物(R1)の水素を部分的にフッ素化した化合物(R2)、及びホスファゼン環を持つ化合物(R3)からなる群より選択される一種以上である、(1)~(9)のいずれか1項に記載の非水電解液。
 (11) 前記非イオン性溶媒成分が、前記含フッ素有機溶媒物質(Bx)として、炭素-炭素不飽和結合を有する物質を含む、(1)~(10)のいずれか1項に記載の非水電解液。
 (12) 前記非イオン性溶媒成分が、前記含フッ素有機溶媒物質(Bx)として、エーテル結合を有する物質を含む、(1)~(11)のいずれか1項に記載の非水電解液。
 (13) 前記非イオン性溶媒成分が、前記含フッ素有機溶媒物質(B)として、前記含フッ素有機溶媒物質(Bx)以外の含フッ素有機溶媒物質(C)を含む、(1)~(12)のいずれか1項に記載の非水電解液。
 (14) 引火点を有しない、(1)~(13)のいずれか1項に記載の非水電解液。
 (15) (1)~(14)のいずれか1項に記載の非水電解液を含む、電気化学デバイス。
 (16) 前記非水電解液が外装内の密閉された空間内に封入された構造を有し、前記空間内の圧力が閾値以上となった際に前記空間が開放される機構を有し、前記閾値が2気圧~10気圧である、(15)に記載の電気化学デバイス。
(1) A non-aqueous electrolyte containing an ionic component and a non-ionic solvent component,
The nonionic solvent component is
a hetero element-containing organic solvent substance (A) which is an organic compound with a fluorination rate of less than 40%;
and a fluorine-containing organic solvent substance (B), which is an organic compound with a fluorination rate of 40% or more,
The fluorine-containing organic solvent substance (B) contains a fluorine-containing organic solvent substance (Bx) which is a compound containing a ring structure composed of carbon atoms, a carbon-carbon unsaturated bond, or both of these in the molecule. including,
The proportion of the fluorine-containing organic solvent substance (Bx) in 100 volume% of the non-aqueous electrolyte is 10 volume% or more,
The molar amount of the hetero element-containing organic solvent substance (A) is within 5 times the cation amount of the ionic component,
Non-aqueous electrolyte.
(2) The nonionic solvent component contains the hetero element-containing organic solvent substance (A), the fluorine-containing organic solvent substance (B), or an additive (P) as another nonionic solvent component. including,
The non-aqueous electrolyte according to (1), wherein the additive (P) is one or more selected from the group consisting of a cyclic sulfate compound, a vinyl ethylene carbonate compound, and a cyclic fluorine compound having an unsaturated bond.
(3) the ionic component contains a fluorine-containing sulfonylimide anion,
The non-aqueous electrolyte according to (1) or (2), wherein the proportion of the imide anion to the anions constituting the ionic component is 50 mol% or more.
(4) The non-aqueous electrolyte according to (3), wherein the fluorine-containing sulfonylimide anion is a bisfluorosulfonylimide anion.
(5) the ionic component contains a boron anion,
The non-aqueous electrolyte according to (1) or (2), wherein the proportion of the boron anion to the anions constituting the ionic component is 50 mol% or more.
(6) The non-aqueous electrolyte according to any one of (1) to (5), wherein the ionic component includes an ionic liquid.
(7) The nonaqueous electrolyte according to any one of (1) to (6), wherein the nonionic solvent component contains acetonitrile as the hetero element-containing organic solvent substance (A).
(8) The nonionic solvent component contains one or more types selected from the group consisting of ethylene carbonate, fluorinated ethylene carbonate, propylene carbonate, γ-butyrolactone, and sulfolane as the hetero element-containing organic solvent substance (A). The non-aqueous electrolyte according to any one of (1) to (7).
(9) The nonaqueous electrolyte according to any one of (1) to (8), wherein the nonionic solvent component contains two or more types of compounds as the hetero element-containing organic solvent substance (A). .
(10) the nonionic solvent component contains a flame retardant solvent substance (AR) as the hetero element-containing organic solvent substance (A),
The flame retardant solvent substance (AR) is a compound (R1) which is a phosphoric acid ester or a phosphite ester and has 1 to 6 carbon atoms per molecule, and the hydrogen of the compound (R1) is partially removed. The non-aqueous electrolyte according to any one of (1) to (9), which is one or more selected from the group consisting of a fluorinated compound (R2) and a compound having a phosphazene ring (R3).
(11) The nonionic solvent according to any one of (1) to (10), wherein the nonionic solvent component contains a substance having a carbon-carbon unsaturated bond as the fluorine-containing organic solvent substance (Bx). Water electrolyte.
(12) The nonaqueous electrolyte according to any one of (1) to (11), wherein the nonionic solvent component contains a substance having an ether bond as the fluorine-containing organic solvent substance (Bx).
(13) The nonionic solvent component contains a fluorine-containing organic solvent substance (C) other than the fluorine-containing organic solvent substance (Bx) as the fluorine-containing organic solvent substance (B), (1) to (12) ) The non-aqueous electrolyte according to any one of the above.
(14) The non-aqueous electrolyte according to any one of (1) to (13), which does not have a flash point.
(15) An electrochemical device comprising the non-aqueous electrolyte according to any one of (1) to (14).
(16) having a structure in which the non-aqueous electrolyte is sealed in a sealed space inside the exterior, and having a mechanism in which the space is opened when the pressure in the space becomes equal to or higher than a threshold; The electrochemical device according to (15), wherein the threshold value is 2 atm to 10 atm.
 本発明によれば、高濃度の非水電解液であって、高い電解質濃度に起因する高い化学的安定性及び電気化学的安定性並びに低い揮発性を有する一方、塩の析出が抑制され、低温でのイオン伝導度が高く、容量維持率が高く、含浸性も高い非水電解液;並びにそのような利点を享受する電気化学デバイスが提供される。 According to the present invention, a highly concentrated non-aqueous electrolyte has high chemical stability, electrochemical stability and low volatility due to the high electrolyte concentration, while salt precipitation is suppressed and low temperature is achieved. Provided are nonaqueous electrolytes that have high ionic conductivity, high capacity retention, and high impregnating properties; and electrochemical devices that enjoy such advantages.
図1は、実施例3の結果を示すグラフである。FIG. 1 is a graph showing the results of Example 3. 図2は、実施例4の結果を示すグラフである。FIG. 2 is a graph showing the results of Example 4.
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に説明する実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the embodiments and examples described below, and may be implemented with arbitrary changes within the scope of the claims of the present invention and equivalents thereof.
 本願において、アニオンの「アニオン量」とは、イオンのモル等量であり、例えば一価のアニオン1モルのアニオン量は1モル、二価のアニオン1モルのアニオン量も1モルである。「カチオン量」もモル等量である。 In the present application, the "anion amount" of an anion is the molar equivalent of the ion, for example, the anion amount for 1 mole of monovalent anions is 1 mole, and the anion amount for 1 mole of divalent anions is also 1 mole. "Amount of cation" is also a molar equivalent.
 本願において体積比及び比重を求めるための、物質の体積は、非水電解液の調製及び使用に際しての温度及び圧力における体積であり、具体的には25℃、1気圧における体積の比である。また、沸点は、1気圧における温度である。 In the present application, the volume of a substance for determining the volume ratio and specific gravity is the volume at the temperature and pressure during the preparation and use of the non-aqueous electrolyte, specifically, the volume ratio at 25° C. and 1 atmosphere. Moreover, the boiling point is the temperature at 1 atmosphere.
 以下の説明において、「溶媒」の文言は広義に解され、分散媒の意味をも包含する。即ち、「溶媒」は、溶液(即ち、液体である媒体の物質と、その中に溶解して存在している溶質である物質との混合物)における媒体のみならず、分散液(即ち、液体である媒体の物質と、その中に固形の粒子又はエマルションの粒子として分散して存在している分散物である物質との混合物)における媒体、及び溶質及び分散物の両方を含んだ混合物における媒体をも包含する。 In the following description, the term "solvent" is interpreted in a broad sense and includes the meaning of dispersion medium. In other words, "solvent" refers to not only a medium in a solution (i.e., a mixture of a liquid medium substance and a solute substance dissolved therein) but also a dispersion liquid (i.e., a liquid medium substance and a solute substance dissolved therein). (a mixture of a substance in a medium and a substance that is a dispersion present dispersed therein as solid particles or emulsion particles) and a medium in a mixture containing both a solute and a dispersion. Also includes.
 (非水電解液)
 本発明の非水電解液は、イオン性成分と、非イオン性溶媒成分とを含む。
(Non-aqueous electrolyte)
The nonaqueous electrolyte of the present invention includes an ionic component and a nonionic solvent component.
 (イオン性成分)
 イオン性成分は、電解液において電解質として機能する成分である。イオン性成分は、1種類以上のイオン性物質により構成される。イオン性物質は、一般的に、アニオン及びカチオンの塩として表される。アニオンの例及びカチオンの例としては、電解質を構成するものとして既知の各種のものが挙げられる。
(ionic component)
The ionic component is a component that functions as an electrolyte in the electrolytic solution. The ionic component is composed of one or more types of ionic substances. Ionic substances are commonly represented as anionic and cationic salts. Examples of anions and cations include various types known as constituents of electrolytes.
 アニオンの具体例としては、F、Cl、Br、I、PF 、AsF 、BF 、B(C)F 、B(C 、SbF 、AlCl 、ClO 、CFSO 、CSO 、CFCOO、(CFCO)、(CFSO、(FSO(FSI、ビスフルオロスルホニルイミド)、(CFSO(TFSI、ビストリフルオロメタンスルホニルイミド)、及び(CSO)Nが挙げられる。アニオンとしては、イミドアニオン及びホウ素含有アニオンが、耐熱性と耐酸化性を兼ね備える非水電解液を得る観点から特に好ましい。さらに、イミドアニオンとしては、ビスフルオロスルホニルイミドアニオン、ビストリフルオロメタンスルホニルイミドアニオン等のフッ素含有スルホニルイミドアニオンがイオン伝導度の観点から好ましく、ビスフルオロスルホニルイミドアニオンが特に好ましい。当該好ましい特性を発現する観点から、イオン性成分が複数種類のアニオンを含む場合は、イオン性成分を構成するアニオンに占めるイミドアニオン、特にフッ素含有スルホニルイミドのアニオン量の割合が50モル%以上であるか、イオン性成分を構成するアニオンに占めるホウ素アニオンのアニオン量の割合が50モル%以上であることが好ましい。 Specific examples of anions include F , Cl , Br , I , PF 6 , AsF 6 , BF 4 , B(C 2 O 4 )F 2 , B(C 2 O 4 ) 2 - , SbF 6 - , AlCl 4 - , ClO 4 - , CF 3 SO 3 - , C 4 F 9 SO 3 - , CF 3 COO - , (CF 3 CO) 2 N - , (CF 3 SO 2 ) 3 C - , (FSO 2 ) 2 N - (FSI, bisfluorosulfonylimide), (CF 3 SO 2 ) 2 N - (TFSI, bistrifluoromethanesulfonylimide), and (C 2 F 5 SO 2 ) N - are mentioned. It will be done. As the anion, imide anions and boron-containing anions are particularly preferred from the viewpoint of obtaining a non-aqueous electrolyte having both heat resistance and oxidation resistance. Further, as the imide anion, fluorine-containing sulfonylimide anions such as bisfluorosulfonylimide anion and bistrifluoromethanesulfonylimide anion are preferred from the viewpoint of ionic conductivity, and bisfluorosulfonylimide anion is particularly preferred. From the viewpoint of expressing the preferable properties, when the ionic component contains multiple types of anions, the proportion of imide anions, especially fluorine-containing sulfonylimide anions, to the anions constituting the ionic component is 50 mol% or more. It is preferable that the proportion of boron anions to the anions constituting the ionic component is 50 mol % or more.
 カチオンの具体例としては、Li、Na、Mg2+、TEA(トリエチルアンモニウムカチオン)、TBA(トリブチルアンモニウムカチオン)、及びEMI(エチルメチルイミダゾリウムカチオン)が挙げられる。 Specific examples of cations include Li + , Na + , Mg 2+ , TEA (triethylammonium cation), TBA (tributylammonium cation), and EMI (ethylmethylimidazolium cation).
 イオン性成分は、それを構成するイオン性物質として、イオン液体を含みうる。ここでイオン液体とは、カチオンとアニオンから構成された塩であるが、例えば25℃1気圧において液体であるものである。イオン液体の例としては、EMI-TFSIが挙げられる。 The ionic component may include an ionic liquid as an ionic substance that constitutes the ionic component. Here, the ionic liquid is a salt composed of cations and anions, and is liquid at 25° C. and 1 atm, for example. An example of an ionic liquid is EMI-TFSI.
 本発明の非水電解液におけるイオン性成分と溶媒物質(A)からなる部分の割合は、特に限定されないが、所謂高濃度非水電解液としての利点を享受する観点から、高い割合であることが好ましい。具体的には、非水電解液全体におけるイオン性成分と溶媒物質(A)からなる部分の割合は、好ましくは30体積%以上、より好ましくは40体積%以上である。 The proportion of the ionic component and the solvent substance (A) in the non-aqueous electrolyte of the present invention is not particularly limited, but it should be a high proportion from the perspective of enjoying the advantages of a so-called high-concentration non-aqueous electrolyte. is preferred. Specifically, the proportion of the ionic component and the solvent substance (A) in the entire non-aqueous electrolyte is preferably 30% by volume or more, more preferably 40% by volume or more.
 (非イオン性溶媒成分)
 非イオン性溶媒成分は、電解液において、イオン性成分を適度な濃度に保つ溶媒として機能する成分である。本発明の非水電解液において非イオン性溶媒成分は、一種類以上のヘテロ元素含有有機溶媒物質(A)と、一種類以上の含フッ素有機溶媒物質(B)とを含む。以下において、これらを単に「溶媒物質(A)」「溶媒物質(B)」と呼ぶ場合がある。
(Nonionic solvent component)
The nonionic solvent component is a component that functions as a solvent to maintain an appropriate concentration of ionic components in the electrolytic solution. In the nonaqueous electrolyte of the present invention, the nonionic solvent component includes one or more types of hetero element-containing organic solvent substances (A) and one or more types of fluorine-containing organic solvent substances (B). Below, these may be simply referred to as "solvent substance (A)" and "solvent substance (B)."
 (溶媒物質(A))
 溶媒物質(A)は、ヘテロ元素を含有する物質であり、そのフッ素化率が40%未満である。溶媒物質(A)は、非水電解液の使用環境において液体であり溶媒として機能しうる物質である。溶媒物質(A)が含有しうるヘテロ元素の例としては、O、S、N、P及びBが挙げられる。好ましくは、溶媒物質(A)は、ヘテロ元素として、O、N、又はこれらの両方を含有しうる。溶媒物質(A)の一分子が含有するヘテロ元素は1個でも複数個でもよく、2個以上のヘテロ元素を含有する場合それらは同一であってもよく異なっていてもよい。
(Solvent substance (A))
The solvent substance (A) is a substance containing a hetero element, and its fluorination rate is less than 40%. The solvent substance (A) is a substance that is liquid and can function as a solvent in the environment in which the non-aqueous electrolyte is used. Examples of heteroelements that the solvent substance (A) may contain include O, S, N, P and B. Preferably, the solvent substance (A) may contain O, N, or both as heteroelements. One molecule of the solvent substance (A) may contain one or more hetero elements, and when it contains two or more hetero elements, they may be the same or different.
 溶媒物質(A)としては、電解液用の溶媒として用いられている既知の物質のうち、溶媒物質(B)以外の物質に該当するものを適宜選択して使用しうる。非イオン性溶媒成分は、溶媒物質(A)として、1種類のみの化合物を含んでもよく、2種類以上の化合物を含んでもよい。非イオン性溶媒成分が溶媒物質(A)として2種類以上の化合物を含む場合、それらの種類及び割合を調整し、所望の非水電解液の物性を容易に得ることができる。 As the solvent substance (A), among known substances used as solvents for electrolyte solutions, those applicable to substances other than the solvent substance (B) can be appropriately selected and used. The nonionic solvent component may contain only one type of compound as the solvent substance (A), or may contain two or more types of compounds. When the nonionic solvent component contains two or more types of compounds as the solvent substance (A), desired physical properties of the nonaqueous electrolyte can be easily obtained by adjusting their types and proportions.
 溶媒物質(A)は、環状の分子構造を有する物質であってもよく、環状の分子構造を含まず鎖状の分子構造のみを有する物質であってもよい。溶媒物質(A)は、炭素-炭素不飽和結合を有する物質であってもよく、溶媒物質(A)は、炭素-炭素不飽和結合を有しない物質であってもよい。但し、溶媒物質(A)は、フッ素化率が40%未満である物質である。 The solvent substance (A) may be a substance that has a cyclic molecular structure, or may be a substance that does not include a cyclic molecular structure and only has a chain-like molecular structure. The solvent substance (A) may be a substance having a carbon-carbon unsaturated bond, or the solvent substance (A) may be a substance having no carbon-carbon unsaturated bond. However, the solvent substance (A) is a substance whose fluorination rate is less than 40%.
 溶媒物質(A)は、その分子構造内に、耐酸化性の極性基を有するものが好ましい。耐酸化性の極性基の例としては、-F及びその他のハロゲン原子、-CN、-CH=N-、-SO-、-SO-、-SO-、-SO-、-C(=O)-、-C(=O)-O-、-O-C(=O)-O-、-P(=O)-、-P(-O-)-,-P(-O-)、-P(=O)(-O-)、-B=O、B(-O-)、-C(=O)NR-、-NR-C(=O)NR-、-NO、及び-NOが挙げられる。ここでR及びRは独立に水素原子、または有機置換基である。有機置換基は、その炭素原子から、N原子への結合手が伸びているものであることが好ましい。R及びRの具体例としては、メチル基、エチル基及びプロピル基が挙げられる。 The solvent substance (A) preferably has an oxidation-resistant polar group in its molecular structure. Examples of oxidation-resistant polar groups include -F and other halogen atoms, -CN, -CH=N-, -SO 4 -, -SO 3 -, -SO 2 -, -SO-, -C( =O)-, -C(=O)-O-, -O-C(=O)-O-, -P(=O)-, -P(-O-) 2 -, -P(-O -) 3 , -P(=O)(-O-) 3 , -B=O, B(-O-) 3 , -C(=O)NR 1 -, -NR 1 -C(=O)NR 2- , -NO, and -NO2 . Here, R 1 and R 2 are independently a hydrogen atom or an organic substituent. The organic substituent preferably has a bond extending from its carbon atom to the N atom. Specific examples of R 1 and R 2 include a methyl group, an ethyl group, and a propyl group.
 溶媒物質(A)の具体例としては、エステル類;コハク酸無水物、グルタル酸無水物、イタコン酸無水物、マレイン酸無水物、及びジグリコール酸無水物等の酸無水物類;アセトン、エチルメチルケトン、シクロペンタノン、及びシクロヘキサノン等のケトン類;アセトニトリル、プロピオニトリル、バレロニトリル、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル及び各種のトリニトリル化合物等のニトリル類;ジメチルスルホキシド等のスルホキシド類;ジメチルスルホン、エチルメチルスルホン、及びジエチルスルホン等のスルホン類;プロパンスルトン及びブタンスルトン等のスルトン類;オキサゾール等のオキサゾール類;イソオキサゾール等のイソオキサゾール類;メチルオキサゾリン等のオキサゾリン類;フラザン等のフラザン類;1,2-ジオキソラン等のジオキソラン類;1,3-ジオキサン及び1,4-ジオキサン等のジオキサン類;トリオキサン等のトリオキサン類;N-メチルオキサゾリドン等のオキサゾリドン類;並びにN,N-ジメチルイミダゾリジノン等のイミダゾリジノン類が挙げられる。 Specific examples of the solvent substance (A) include esters; acid anhydrides such as succinic anhydride, glutaric anhydride, itaconic anhydride, maleic anhydride, and diglycolic anhydride; acetone, ethyl Ketones such as methyl ketone, cyclopentanone, and cyclohexanone; Nitriles such as acetonitrile, propionitrile, valeronitrile, malononitrile, succinonitrile, glutaronitrile, adiponitrile, and various trinitrile compounds; Sulfoxides such as dimethyl sulfoxide Sulfones such as dimethylsulfone, ethylmethylsulfone, and diethylsulfone; Sultones such as propane sultone and butane sultone; Oxazoles such as oxazole; Isoxazoles such as isoxazole; Oxazolines such as methyloxazoline; Furazane such as furazane dioxolanes such as 1,2-dioxolane; dioxanes such as 1,3-dioxane and 1,4-dioxane; trioxanes such as trioxane; oxazolidones such as N-methyloxazolidone; and N,N-dimethylimidazo Examples include imidazolidinones such as lysinone.
 エステル類の例としては、ギ酸エステル、酢酸エステル、プロピオン酸エステル、γ-ブチロラクトン、バレロラクトン、グリコリド、ラクチド、シュウ酸ジメチル、シュウ酸ジエチル、及びコハク酸ジメチル等の有機酸エステル;炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸エチレン、炭酸プロピレン、及びフッ化炭酸エチレン等の炭酸エステル;硫酸ジメチル等の硫酸エステル;亜リン酸トリメチル及び亜リン酸トリエチル等の亜リン酸エステル;リン酸トリメチル、リン酸トリエチル及びリン酸トリブチル等のリン酸エステル;並びにホウ酸トリメチル及びホウ酸トリエチル等のホウ酸エステルが挙げられる。 Examples of esters include organic acid esters such as formate, acetate, propionate, γ-butyrolactone, valerolactone, glycolide, lactide, dimethyl oxalate, diethyl oxalate, and dimethyl succinate; dimethyl carbonate, carbonic acid Carbonic esters such as diethyl, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, and fluorinated ethylene carbonate; Sulfuric esters such as dimethyl sulfate; Phosphite esters such as trimethyl phosphite and triethyl phosphite; Trimethyl phosphate, phosphorus Examples include phosphoric acid esters such as triethyl acid and tributyl phosphate; and boric acid esters such as trimethyl borate and triethyl borate.
 加えて、溶媒物質(A)としては、上記特徴の2以上を備える化合物をも用いうる。そのような化合物の例としては、シアノ酢酸メチル、シアノ酢酸エチル、メタンスルホニル酢酸メチル、メチルスルホニルアセトニトリル、メトキシプロピオニトリル、及び3,3’-オキシジプロピオニトリルが挙げられる。 In addition, a compound having two or more of the above characteristics can also be used as the solvent substance (A). Examples of such compounds include methyl cyanoacetate, ethyl cyanoacetate, methyl methanesulfonylacetate, methylsulfonylacetonitrile, methoxypropionitrile, and 3,3'-oxydipropionitrile.
 ある態様において、非イオン性溶媒成分は、溶媒物質(A)としてアセトニトリルを含むことが好ましい。アセトニトリルを使用することにより、低温でのイオン伝導度に優れるという効果が得られる。また、負極活物質として炭素質の材料を含む電気化学デバイスにおいて、本発明の非水電解液を用いる場合、アセトニトリルと酸無水物とを併用することにより、電極に炭素材料を使用した場合の電流効率に優れるという効果が得られる。 In one embodiment, the nonionic solvent component preferably contains acetonitrile as the solvent substance (A). By using acetonitrile, the effect of excellent ionic conductivity at low temperatures can be obtained. In addition, when using the nonaqueous electrolyte of the present invention in an electrochemical device containing a carbonaceous material as a negative electrode active material, by using acetonitrile and an acid anhydride together, the current when using a carbonaceous material for the electrode can be increased. The effect of superior efficiency can be obtained.
 別のある態様において、非イオン性溶媒成分は、溶媒物質(A)として、炭酸エチレン、フッ化炭酸エチレン、炭酸プロピレン、γ-ブチロラクトン、及びスルホランからなる群より選択される一種以上を含むことが好ましい。これらの溶媒物質(A)を使用することにより、得られる非水電解液の沸点が200℃を超える高い沸点となることから、何らかの異常過熱時に、溶媒物質(B)が醸す内圧により電気化学デバイスが開裂した際にも、周囲に可燃性溶媒を拡散しがたいという効果が得られる。 In another embodiment, the nonionic solvent component may contain, as the solvent substance (A), one or more selected from the group consisting of ethylene carbonate, fluorinated ethylene carbonate, propylene carbonate, γ-butyrolactone, and sulfolane. preferable. By using these solvent substances (A), the boiling point of the obtained non-aqueous electrolyte becomes a high boiling point exceeding 200°C. Therefore, in the event of some kind of abnormal heating, the internal pressure created by the solvent substance (B) will cause the electrochemical device to fail. Even when cleaved, the effect of making it difficult for the flammable solvent to diffuse into the surrounding area can be obtained.
 他に、非イオン性溶媒成分は、溶媒物質(A)として、難燃性溶媒物質(A-R)を含むことが好ましい。難燃性溶媒物質(A-R)は、リン酸エステル又は亜リン酸エステルであって一分子当たり炭素数が1以上6以下の化合物(R1)、化合物(R1)の水素を部分的にフッ素化した化合物(R2)、及びホスファゼン環を持つ化合物(R3)からなる群より選択される一種以上である。 In addition, it is preferable that the nonionic solvent component includes a flame retardant solvent substance (AR) as the solvent substance (A). The flame-retardant solvent substance (AR) is a compound (R1) that is a phosphoric acid ester or a phosphite ester and has 1 to 6 carbon atoms per molecule, and the hydrogen of the compound (R1) is partially fluorinated. The compound is one or more selected from the group consisting of a compound (R2) having a phosphazene ring, and a compound (R3) having a phosphazene ring.
 化合物(R1)の具体例としては、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、及びリン酸トリスブトキシエチル、並びにこれらに対応する亜リン酸エステルが挙げられる。化合物(R3)の例としては、日本化学工業製、商品名「ヒシコーリン-E」、「ヒシコーリン-O」、及び「ヒシコーリン-D」が挙げられる。非イオン性溶媒成分100体積%中の難燃性溶媒物質(A-R)の割合は、好ましくは5体積%以上、より好ましくは10体積%以上であり、一方好ましくは25体積%以下、より好ましくは20体積%以下である。難燃性溶媒物質(A-R)の割合を前記下限以上とすることにより、非水電解液の難燃性を高め、電気化学デバイスの安全性を高めることができる。一方、難燃性溶媒物質(A-R)の割合を前記上限以下とすることにより、デバイスの抵抗の増大を避けることができる。 Specific examples of the compound (R1) include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trisbutoxyethyl phosphate, and phosphorous esters corresponding to these. Examples of the compound (R3) include Nippon Kagaku Kogyo Co., Ltd., trade names "Hishicolin-E", "Hishicolin-O", and "Hishicolin-D". The proportion of the flame retardant solvent substance (AR) in 100% by volume of the nonionic solvent component is preferably 5% by volume or more, more preferably 10% by volume or more, while preferably 25% by volume or less, more Preferably it is 20% by volume or less. By setting the proportion of the flame-retardant solvent substance (AR) to the above-mentioned lower limit or more, the flame retardancy of the non-aqueous electrolyte can be improved, and the safety of the electrochemical device can be improved. On the other hand, by setting the proportion of the flame-retardant solvent substance (AR) below the above-mentioned upper limit, an increase in the resistance of the device can be avoided.
 本発明の非水電解液において、イオン性成分のカチオン量に対する溶媒物質(A)のモル量の上限は、5倍以内、好ましくは4倍以内、さらに好ましくは3倍以内である。溶媒物質(A)のモル量がかかる上限以下であることにより、溶媒物質(B)による効果を良好に得ることができる。また、非水電解液の引火のしやすさを効果的に低減することができる。 In the nonaqueous electrolyte of the present invention, the upper limit of the molar amount of the solvent substance (A) relative to the cation amount of the ionic component is within 5 times, preferably within 4 times, and more preferably within 3 times. When the molar amount of the solvent substance (A) is below this upper limit, the effect of the solvent substance (B) can be favorably obtained. Furthermore, the flammability of the non-aqueous electrolyte can be effectively reduced.
 一方、イオン性成分のカチオン量に対する溶媒物質(A)のモル量の下限は、0.75倍以上、好ましくは1.5倍以上、さらに好ましくは2.2倍以上としうる。溶媒物質(A)のモル量がかかる下限以上であることにより、電解液としての所望の効果を良好に発現しうる。 On the other hand, the lower limit of the molar amount of the solvent substance (A) relative to the cation amount of the ionic component can be 0.75 times or more, preferably 1.5 times or more, and more preferably 2.2 times or more. When the molar amount of the solvent substance (A) is at least this lower limit, the desired effect as an electrolytic solution can be satisfactorily expressed.
 (溶媒物質(B))
 溶媒物質(B)は、溶媒物質(A)と同様、非水電解液の使用環境において液体であり溶媒として機能する物質としうる。非イオン性溶媒成分は、溶媒物質(B)として、1種類のみの物質を含んでもよく、2種類以上の物質を含んでもよい。
(Solvent substance (B))
The solvent substance (B), like the solvent substance (A), can be a substance that is liquid and functions as a solvent in the environment in which the non-aqueous electrolyte is used. The nonionic solvent component may contain only one type of substance or two or more types of substances as the solvent substance (B).
 溶媒物質(B)は、そのフッ素化率が40%以上である。本願において、溶媒物質(A)及び(B)等の物質の、分子のフッ素化率は、分子中の炭素に結合する水素原子の数n及び分子中の炭素に結合するフッ素原子の数nから、フッ素化率(%)=(n/(n+n))×100の式から求められる。フッ素化率が40%以上であることにより、非水電解液の酸化安定性が増し、燃焼性が低下する。但し、溶媒物質のフッ素化率は100%未満である(即ち分子内に1つ以上の水素原子を有する)ことが好ましい。分子内に1つ以上の水素原子を有することにより、分子内の電荷が不均質化して、極性が高くなり、高濃度電解液と均一な溶液を作りやすくなる。 The solvent substance (B) has a fluorination rate of 40% or more. In this application, the fluorination rate of molecules of substances such as solvent substances (A) and (B) is determined by the number n of hydrogen atoms bonded to carbon in the molecule, n H , and the number n of fluorine atoms bonded to carbon in the molecule. From F , it is determined from the formula: fluorination rate (%)=(n F /(n F +n H ))×100. When the fluorination rate is 40% or more, the oxidation stability of the nonaqueous electrolyte increases and the flammability decreases. However, it is preferable that the fluorination rate of the solvent substance is less than 100% (that is, it has one or more hydrogen atoms in the molecule). By having one or more hydrogen atoms in the molecule, the charge within the molecule becomes non-homogeneous, and the polarity becomes high, making it easier to create a highly concentrated electrolyte and a uniform solution.
 本発明の非水電解液は、溶媒物質(B)の一部または全部として、溶媒物質(Bx)を含む。溶媒物質(Bx)は、その分子内に、炭素原子を構成要素とする環構造、炭素-炭素不飽和結合、又はこれらの両方を含む。環構造を有することで、同程度の分子サイズ及び原子組成を有する鎖状の分子に比べて高い沸点を得ることができ、且つ水素の置換サイトが少ない分子としうるので高いフッ素化率を容易に得ることができる。溶媒物質(Bx)が炭素-炭素不飽和結合を有することでも、同様に水素の置換サイトが少ない分子としうるので高いフッ素化率を容易に得ることができる。加えて、溶媒物質(Bx)が炭素-炭素不飽和結合を有する場合、特に溶媒物質(Bx)が炭素原子を構成要素とする環構造であって且つ炭素-炭素不飽和結合を環において含むものを有する場合、非水電解液が負極を保護する能力を高めることができ、その結果、例えば、非水電解液を含む電気化学デバイスの容量維持率を高める効果を得ることができる。 The non-aqueous electrolyte of the present invention contains a solvent substance (Bx) as part or all of the solvent substance (B). The solvent substance (Bx) contains a ring structure composed of carbon atoms, a carbon-carbon unsaturated bond, or both of these in its molecule. By having a ring structure, it is possible to obtain a higher boiling point than chain molecules with similar molecular size and atomic composition, and the molecule can have fewer hydrogen substitution sites, making it easy to achieve a high fluorination rate. Obtainable. When the solvent substance (Bx) has a carbon-carbon unsaturated bond, it can also be a molecule with fewer hydrogen substitution sites, making it easy to obtain a high fluorination rate. In addition, when the solvent substance (Bx) has a carbon-carbon unsaturated bond, especially when the solvent substance (Bx) has a ring structure consisting of carbon atoms and contains a carbon-carbon unsaturated bond in the ring. When it has, the ability of the non-aqueous electrolyte to protect the negative electrode can be enhanced, and as a result, for example, the effect of increasing the capacity retention rate of an electrochemical device containing the non-aqueous electrolyte can be obtained.
 溶媒物質(Bx)が、炭素原子を構成要素とする環構造、炭素-炭素不飽和結合、又はこれらの両方を含み、且つフッ素化率が40%以上であることにより、非水電解液においてイオン性成分の塩の析出を抑制することができる。その理由は不明であるが、理由の一つとして、溶媒物質(Bx)が塩を構成するアニオン及びカチオンの間に介在し凝集を抑制することが考えられる。 When the solvent substance (Bx) contains a ring structure composed of carbon atoms, a carbon-carbon unsaturated bond, or both of these, and has a fluorination rate of 40% or more, ions are generated in the non-aqueous electrolyte. Precipitation of salts of chemical components can be suppressed. The reason for this is unknown, but one possible reason is that the solvent substance (Bx) is interposed between the anion and cation that constitute the salt and suppresses aggregation.
 溶媒物質(Bx)は、-CFH-、-CFH、-CH-CF-、-CHCF、及び-O-からなる群より選択される構造の1つ以上を、1つの分子内に1つ以上有することが好ましく、2つ以上有することがより好ましい。これらの構造を有することにより、溶媒物質(B)分子の極性が高くなり、その結果、上に述べた効果をより良好に得ることができる。 The solvent substance (Bx) has one or more structures selected from the group consisting of -CFH-, -CF 2 H, -CH 2 -CF 2 -, -CH 2 CF 3 and -O-, It is preferable that the molecule contains one or more, and more preferably two or more. By having these structures, the polarity of the solvent substance (B) molecules becomes high, and as a result, the above-mentioned effects can be better obtained.
 溶媒物質(Bx)の分子は、炭素原子、水素原子、酸素原子及びフッ素原子のみからなる分子であってもよく、それ以外の原子をも含む分子であってもよい。例えば、溶媒物質(Bx)は窒素原子、リン原子、及び硫黄原子を含みうる。溶媒物質(Bx)はまた、フッ素原子以外のハロゲン原子を含みうる。但し、酸化安定性を向上させる観点から、溶媒物質(Bx)は窒素原子、リン原子、及び硫黄原子を含まないことが好ましい。また、非水電解液を含むデバイスが異常昇温し非水電解液が分解しガスが発生した際の有毒ガス種を低減させる観点から、溶媒物質(Bx)の分子は、炭素原子、水素原子、酸素原子及びフッ素原子のみからなる分子であることが好ましい。 The molecules of the solvent substance (Bx) may be molecules consisting only of carbon atoms, hydrogen atoms, oxygen atoms, and fluorine atoms, or may be molecules containing other atoms as well. For example, the solvent substance (Bx) may contain nitrogen atoms, phosphorus atoms, and sulfur atoms. The solvent substance (Bx) may also contain halogen atoms other than fluorine atoms. However, from the viewpoint of improving oxidation stability, the solvent substance (Bx) preferably does not contain nitrogen atoms, phosphorus atoms, and sulfur atoms. In addition, from the perspective of reducing toxic gas species when a device containing a non-aqueous electrolyte rises abnormally and the non-aqueous electrolyte decomposes and gas is generated, the molecules of the solvent substance (Bx) are carbon atoms, hydrogen atoms, etc. , a molecule consisting only of oxygen atoms and fluorine atoms is preferable.
 溶媒物質(Bx)の具体例としては、炭化水素環又は酸素原子を含む環の水素原子の1以上をフッ素原子、もしくは、フッ素原子を含む有機置換基により置換した構造を有する化合物が挙げられる。但し、本願において、溶媒物質及びその他の物質は、その製造の工程によっては限定されない。 Specific examples of the solvent substance (Bx) include compounds having a structure in which one or more hydrogen atoms in a hydrocarbon ring or a ring containing an oxygen atom are substituted with a fluorine atom or an organic substituent containing a fluorine atom. However, in this application, the solvent substance and other substances are not limited by the manufacturing process thereof.
 炭化水素環の好ましい例としては、シクロペンタン、シクロヘキサン、及びシクロペンテンが挙げられる。酸素原子を含む環とは、炭素原子、水素原子及び酸素原子により構成される環であり、その好ましい例としては、テトラヒドロフラン及びテトラヒドロピランが挙げられる。置換基の例としては、フッ素原子等のハロゲン原子、アルキル基、フッ化アルキル基、エーテル基、エステル基、及び水酸基が挙げられる。 Preferred examples of the hydrocarbon ring include cyclopentane, cyclohexane, and cyclopentene. The ring containing an oxygen atom is a ring composed of a carbon atom, a hydrogen atom, and an oxygen atom, and preferable examples thereof include tetrahydrofuran and tetrahydropyran. Examples of substituents include halogen atoms such as fluorine atoms, alkyl groups, fluorinated alkyl groups, ether groups, ester groups, and hydroxyl groups.
 溶媒物質(Bx)のうち環構造を有するもの、及び環構造及び炭素-炭素不飽和結合の両方を有するものの好ましい例としては、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン(フッ素化率:70%)、3,3,4,4,5,5-ヘキサフルオロシクロペンテン(フッ素化率:75%)、及び1-メトキシ-2,3,3,4,4,5,5-ヘプタフルオロシクロペンテン(フッ素化率:70%)が挙げられる。溶媒物質(Bx)のうち炭素-炭素不飽和結合を有するものの他の例としては、CHFCF=CHCl(商品名「AMOLEA(登録商標)AS-300」、AGC社製、フッ素化率:60%)、及びCFCH=CHCl(商品名「セレフィン1233Z」、セントラル硝子社製、フッ素化率:60%)が挙げられる。 Among the solvent substances (Bx), preferable examples of those having a ring structure and those having both a ring structure and a carbon-carbon unsaturated bond include 1,1,2,2,3,3,4-heptafluorocyclo Pentane (fluorination rate: 70%), 3,3,4,4,5,5-hexafluorocyclopentene (fluorination rate: 75%), and 1-methoxy-2,3,3,4,4,5 , 5-heptafluorocyclopentene (fluorination rate: 70%). Other examples of solvent substances (Bx) having carbon-carbon unsaturated bonds include CHF 2 CF=CHCl (trade name "AMOLEA (registered trademark) AS-300", manufactured by AGC Corporation, fluorination rate: 60 %), and CF 3 CH=CHCl (trade name "Serefin 1233Z", manufactured by Central Glass Co., Ltd., fluorination rate: 60%).
 好ましい取り扱い性及び内圧の発生等の物性の調整のため、溶媒物質(Bx)の沸点は、所望の温度範囲内とすることが好ましい。具体的には、溶媒物質(Bx)の沸点は、好ましくは60℃以上、より好ましくは70℃以上、さらにより好ましくは80℃以上、それよりさらに好ましくは90℃以上であり、一方好ましくは170℃以下、より好ましくは150℃以下である。 The boiling point of the solvent substance (Bx) is preferably within a desired temperature range in order to adjust physical properties such as favorable handling properties and generation of internal pressure. Specifically, the boiling point of the solvent substance (Bx) is preferably 60°C or higher, more preferably 70°C or higher, even more preferably 80°C or higher, even more preferably 90°C or higher, while preferably 170°C or higher. The temperature is preferably 150°C or lower, more preferably 150°C or lower.
 溶媒物質(Bx)は、引火点を有しないものであることが好ましい。溶媒物質(Bx)が引火点を有しないものであると、容易に、非水電解液全体も、引火点を有しないものとしうる。その結果、何らかの原因で電気化学デバイスが過熱して非水電解液がデバイス外に放出された場合における、火災の発生等の危険性を低減することができる。「引火点を有しない」とは、少なくともタグ密閉法(JIS K2265-1(2007))に準拠した引火点測定法おいて引火点を示さないことを言い、さらに望ましくはクリーブランド開放法(JIS K2265-4(2007))に準拠した引火点測定法においても、引火点が無いと評価されることをいう。 It is preferable that the solvent substance (Bx) has no flash point. If the solvent substance (Bx) does not have a flash point, the entire non-aqueous electrolyte can easily also have no flash point. As a result, it is possible to reduce the risk of a fire occurring when the electrochemical device overheats for some reason and the non-aqueous electrolyte is released outside the device. "Having no flash point" means that it does not show a flash point at least in the flash point measurement method based on the tag sealing method (JIS K2265-1 (2007)), and more preferably the Cleveland open method (JIS K2265 -4 (2007)), it is evaluated that there is no flash point.
 溶媒物質(Bx)は、大気中の気体との反応性が低いことが好ましい。具体的には、大気を構成する気体(水蒸気を含む)との反応性が低いことが好ましい。溶媒物質(Bx)は、大気中の気体との反応性が低いことにより、非水電解液がデバイス外に放出された場合における危険性を低減することができる。具体的には、25℃の大気中に放出されて10分間以内に酸化する分子の割合が1%以下、又は加水分解する分子の割合が1%以下、さらに好ましくはその両方、であることが好ましい。 It is preferable that the solvent substance (Bx) has low reactivity with gases in the atmosphere. Specifically, it is preferable that the reactivity with gases (including water vapor) constituting the atmosphere is low. Since the solvent substance (Bx) has low reactivity with gases in the atmosphere, it is possible to reduce the danger when the non-aqueous electrolyte is released outside the device. Specifically, the proportion of molecules that are oxidized within 10 minutes after being released into the atmosphere at 25°C is 1% or less, or the proportion of molecules that are hydrolyzed is 1% or less, and more preferably both. preferable.
 溶媒物質(Bx)は、水への溶解度が高いものであることが好ましい。水への溶解度の下限は、好ましくは10ppm以上、より好ましくは100ppm以上である。かかる高い水への溶解度を有する場合、高濃度のイオン性成分を容易に溶解しうる。水への溶解度の上限は、特に限定されないが例えば10000ppm以下としうる。 It is preferable that the solvent substance (Bx) has high solubility in water. The lower limit of solubility in water is preferably 10 ppm or more, more preferably 100 ppm or more. When it has such high water solubility, it can easily dissolve ionic components at high concentrations. The upper limit of solubility in water is not particularly limited, but may be, for example, 10,000 ppm or less.
 溶媒物質(Bx)の比誘電率は、大きい値であることが好ましい。比誘電率(測定周波数1kHz)は、好ましくは2.0以上、より好ましくは5以上、さらにより好ましくは8以上、それよりさらに好ましくは10以上である。比誘電率が高い溶媒物質(B)を採用することにより、電解液が相溶状態を保てる範囲が広くなる。かかる比誘電率の上限は、特に限定されないが、例えば50以下としうる。 The dielectric constant of the solvent substance (Bx) is preferably a large value. The relative permittivity (measurement frequency: 1 kHz) is preferably 2.0 or more, more preferably 5 or more, even more preferably 8 or more, even more preferably 10 or more. By employing the solvent substance (B) having a high dielectric constant, the range in which the electrolyte can maintain a compatible state becomes wider. The upper limit of the dielectric constant is not particularly limited, but may be, for example, 50 or less.
 非水電解液100体積%に占める溶媒物質(Bx)の割合は、10体積%以上であり、好ましくは20体積%以上である。溶媒物質(Bx)が、炭素原子を構成要素とする環構造又は炭素-炭素不飽和結合のいずれかを有し、上記特定のフッ素化率を有し、且つ非イオン性溶媒成分中の溶媒物質(Bx)の割合が上記特定の範囲であることにより、所望の各種の効果を得ることができる。具体的には、溶媒物質(Bx)が低分子量であっても高い沸点を得ることができる。また、イオン伝導性能の高い非水電解液を得ることができ、特に、低温でのイオン伝導性能を高めることができる。また、非水電解液の粘度を所望の低い範囲とすることができる。さらに、非イオン性溶媒成分中の溶媒物質(Bx)の割合を高めることにより、非水電解液の、電極合材層及び/又はセパレーター等の、多孔質のデバイス構成要素への含浸性を高めることができる。 The proportion of the solvent substance (Bx) in 100 volume% of the non-aqueous electrolyte is 10 volume% or more, preferably 20 volume% or more. The solvent substance (Bx) has either a ring structure consisting of carbon atoms or a carbon-carbon unsaturated bond, has the above-mentioned specific fluorination rate, and is a solvent substance in the nonionic solvent component. By setting the ratio of (Bx) within the above-mentioned specific range, various desired effects can be obtained. Specifically, a high boiling point can be obtained even if the solvent substance (Bx) has a low molecular weight. Moreover, a non-aqueous electrolyte with high ion conductivity can be obtained, and in particular, the ion conductivity at low temperatures can be improved. Further, the viscosity of the non-aqueous electrolyte can be set within a desired low range. Furthermore, by increasing the proportion of the solvent substance (Bx) in the nonionic solvent component, the impregnation of the nonaqueous electrolyte into porous device components such as the electrode mixture layer and/or the separator is enhanced. be able to.
 非水電解液100体積%に占める溶媒物質(Bx)の割合を、50体積%以上といった高い値とすると、非水電解液を含む電気化学デバイスの安全性を高めることができるので、さらに好ましい。具体的には、一般的に高濃度電解液は溶媒の揮発性が抑制されるために、電解液を含むデバイスが高温になっても内圧が上昇しにくい。このため、デバイスの内部で異常が発生した際に、かかる異常を使用者が外観から検知することが困難である。ここで、非水電解液が溶媒物質(Bx)を含有することにより、ある程度以上高い温度において内圧を発生させることができ、且つ、内圧が発生する温度は溶媒物質(Bx)種類及び組成比の選択により調整することができる。そのような内圧の発生が調整された非水電解液を使用することにより、何らかの原因で電気化学デバイスが過熱し、外装が破壊された場合に、溶媒物質(Bx)がデバイス外に容易に放出され電解液の過半が失われ、それによりイオンの移動が難しくなり、デバイスの動作が緩慢となるか若しくは停止し、それにより高い安全性を確保することができる。 It is more preferable to set the proportion of the solvent substance (Bx) in 100 volume % of the non-aqueous electrolyte to a high value such as 50 volume % or more, since this can improve the safety of an electrochemical device containing the non-aqueous electrolyte. Specifically, since the volatility of the solvent in a highly concentrated electrolytic solution is generally suppressed, the internal pressure is unlikely to increase even if a device containing the electrolytic solution reaches a high temperature. Therefore, when an abnormality occurs inside the device, it is difficult for a user to detect the abnormality from the outside. Here, since the non-aqueous electrolyte contains the solvent substance (Bx), internal pressure can be generated at a temperature higher than a certain level, and the temperature at which the internal pressure is generated depends on the type and composition ratio of the solvent substance (Bx). Can be adjusted by selection. By using a non-aqueous electrolyte that has been adjusted to generate such internal pressure, if the electrochemical device overheats for some reason and the exterior is destroyed, the solvent substance (Bx) can be easily released outside the device. In this case, most of the electrolyte is lost, which makes it difficult for the ions to move, and the operation of the device slows down or stops, thereby ensuring high safety.
 本発明の非水電解液は、溶媒物質(B)の一部として、溶媒物質(Bx)以外の物質である含フッ素溶媒物質(C)(以下において、単に「溶媒物質(C)」ともいう)を含みうる。溶媒物質(C)は、フッ素化率が40%以上であり、且つ、分子内に、炭素原子を構成要素とする環構造及び炭素-炭素不飽和結合のいずれも含まない化合物である。溶媒物質(C)を含むことにより、非水電解液の粘度を容易に所望の範囲としうるという効果が得られる。 The non-aqueous electrolyte of the present invention contains, as a part of the solvent substance (B), a fluorine-containing solvent substance (C) which is a substance other than the solvent substance (Bx) (hereinafter also simply referred to as "solvent substance (C)"). ) may be included. The solvent substance (C) is a compound having a fluorination rate of 40% or more and containing neither a ring structure composed of carbon atoms nor a carbon-carbon unsaturated bond in the molecule. By including the solvent substance (C), it is possible to easily adjust the viscosity of the nonaqueous electrolyte to a desired range.
 溶媒物質(C)の例としては、各種のフッ素化アルカン及びフッ素化エーテルが挙げられる。フッ素化アルカンの例としては、商品名「バートレルXF」(三井・ケマーズフロロプロダクツ株式会社製、2H,3H-デカフルオロペンタン);並びに商品名「アサヒクリンAC-2000」及び「アサヒクリンAC-6000」(CFCFCFCFCFCFCHCH)(AGC社製)が挙げられる。フッ素化エーテルの例としては、商品名「オプテオンSF-10」(三井・ケマーズフロロプロダクツ社製);商品名「アサヒクリンAE-3000」(AGC社製、1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル);商品名「NOVEC7100」(CFCFCFCFOCH)、「NOVEC7200」(CF(CF0CHCH及びCFC(-CF)(-F)CFOCHCHの混合物)、「NOVEC7300」(CFCFC(-OCH)(-F)C(-CF(-F))、「NOVEC7500」及び「NOVEC7600」(3M社製);並びに「ガルデン」(ソルベイ社製、パーフルオロポリエーテル)が挙げられる。フッ素化エーテルのさらなる例としては、CFCHFCFOCHCFCHF、CHFCFCHOCFCHF、CFCHFCFCHOCHF、CFCHCFOCHCFCF、CFCHFCFOCHCF、CHFCFOCHCF、CFCHFCFOCH、CFCFCHOCHF、及びCFCHOCHCFが挙げられる。 Examples of solvent substances (C) include various fluorinated alkanes and fluorinated ethers. Examples of fluorinated alkanes include the trade name "Vertrell XF" (manufactured by Mitsui Chemours Fluoro Products Co., Ltd., 2H,3H-decafluoropentane); 6000'' (CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3 ) (manufactured by AGC). Examples of fluorinated ethers include the trade name "Opteon SF-10" (manufactured by Mitsui Chemours Fluoro Products Co., Ltd.); Fluoroethyl 2,2,2-trifluoroethyl ether); trade name "NOVEC7100" (CF 3 CF 2 CF 2 CF 2 OCH 3 ), "NOVEC 7200" (CF 3 (CF 2 ) 3 0CH 2 CH 3 and CF 3 C(-CF 3 )(-F)CF 2 OCH 2 CH 3 mixture), "NOVEC7300"(CF 3 CF 2 C(-OCH 3 )(-F)C(-CF 3 ) 2 (-F)) , "NOVEC7500" and "NOVEC7600" (manufactured by 3M); and "Galden" (manufactured by Solvay, perfluoropolyether). Further examples of fluorinated ethers include CF3CHFCF2OCH2CF2CHF2 , CHF2CF2CH2OCF2CHF2 , CF3CHFCF2CH2OCHF2 , CF3CHCF2OCH2CF2 CF 3 _ _ _ _ , CF3CHFCF2OCH2CF3 , CHF2CF2OCH2CF3 , CF3CHFCF2OCH3 , CF3CF2CH2OCHF2 , and CF3CH2OCH2CF3 . _ _ _ _ _ _ _
 非水電解液100体積%に占める溶媒物質(A)の割合は、25~85体積%としうる。 The proportion of the solvent substance (A) in 100 volume % of the non-aqueous electrolyte may be 25 to 85 volume %.
 (添加剤(P))
 ある態様において、非イオン性溶媒成分は、溶媒物質(A)、溶媒物質(B)、又はそれ以外の非イオン性溶媒成分としての、添加剤(P)を含みうる。前記添加剤(P)は、環状硫酸エステル化合物(P-A)、ビニルエチレンカーボネート化合物(P-B)、及び不飽和結合を有する環状フッ素化合物(P-C)からなる群より選択される一種以上としうる。
(Additive (P))
In some embodiments, the nonionic solvent component can include an additive (P) as a solvent material (A), a solvent material (B), or another nonionic solvent component. The additive (P) is one selected from the group consisting of a cyclic sulfate compound (PA), a vinyl ethylene carbonate compound (PB), and a cyclic fluorine compound having an unsaturated bond (PC). It can be more than that.
 環状硫酸エステル化合物(P-A)の例としては、1,3,2-ジオキサチオラン2,2-ジオキシド(エチレンスルファート)、4-メチル-1,3,2-ジオキサチオラン2,2-ジオキシド、及び1,3,2-ジオキサチアン2,2-ジオキシドが挙げられる。 Examples of the cyclic sulfate compound (PA) include 1,3,2-dioxathiolane 2,2-dioxide (ethylene sulfate), 4-methyl-1,3,2-dioxathiolane 2,2-dioxide, and 1,3,2-dioxathiane 2,2-dioxide is mentioned.
 ビニルエチレンカーボネート化合物(P-B)の例としては、3-ビニルエチレンカーボネート、及び3,4-ジビニルエチレンカーボネート、3-エチニルエチレンカーボネート等の、ビニルエチレンカーボネートの骨格を有する化合物が挙げられる。 Examples of the vinyl ethylene carbonate compound (PB) include compounds having a vinyl ethylene carbonate skeleton, such as 3-vinyl ethylene carbonate, 3,4-divinyl ethylene carbonate, and 3-ethynyl ethylene carbonate.
 不飽和結合及びエーテル結合を有する環状フッ素化合物(P-C)の例としては、3,3,4,4,5,5-ヘキサフルオロシクロペンテン及び1-メトキシ-2,3,3,4,4,5,5-ヘプタフルオロシクロペンテンが挙げられる。 Examples of cyclic fluorine compounds (PC) having unsaturated bonds and ether bonds include 3,3,4,4,5,5-hexafluorocyclopentene and 1-methoxy-2,3,3,4,4 , 5,5-heptafluorocyclopentene.
 非イオン性溶媒成分が添加剤(P)を含むことにより、デバイスの電流効率が向上する、例えばリチウムイオン電池においては充放電におけるクーロン効率が良化するという効果が得られる。かかる効果を有効に得る観点から、添加剤(P)の添加量は、非イオン性溶媒成分100重量%中、好ましくは0.01重量%以上、より好ましくは0.05重量%以上であり、一方好ましくは10重量%以下、より好ましくは7重量%以下である。 When the nonionic solvent component contains the additive (P), the current efficiency of the device is improved, for example, in the case of a lithium ion battery, the coulombic efficiency during charging and discharging is improved. From the viewpoint of effectively obtaining such effects, the amount of additive (P) added is preferably 0.01% by weight or more, more preferably 0.05% by weight or more based on 100% by weight of the nonionic solvent component, On the other hand, it is preferably 10% by weight or less, more preferably 7% by weight or less.
 (非イオン性溶媒成分の割合)
 非水電解液100重量%における非イオン性溶媒成分の割合は、好ましくは30重量%以上、より好ましくは40重量%以上であり、一方好ましくは95重量%以下、より好ましくは90重量%以下である。
(Ratio of nonionic solvent components)
The proportion of the nonionic solvent component in 100% by weight of the non-aqueous electrolyte is preferably 30% by weight or more, more preferably 40% by weight or more, while preferably 95% by weight or less, more preferably 90% by weight or less. be.
 (その他の任意成分)
 本発明の非水電解液は、上に述べたイオン性成分及び非イオン性溶媒成分に加えて、任意の成分を含みうる。例えば、分子量が1000超の高分子化合物を含みうる。即ち、溶媒成分は通常分子量が1000以下である一方、重量平均分子量が1000超、好ましくは1万超の高分子化合物であって溶媒成分に溶解しうるものが、非水電解液に溶解した状態で存在していてもよい。高分子化合物を含むことにより、非水電解液のイオン伝導度及び粘度を適切な範囲に調整しうる場合がある。イオン伝導度及び粘度を適切な範囲に調整する観点からは、非水電解液100重量%における高分子化合物の割合は、好ましくは50重量%以下である。高分子化合物の例としては、ポリエチレンオキシド、及びポリエチレンオキシド-プロピレンオキシド共重合体、ポリオキサゾリン系重合体が挙げられる。
(Other optional ingredients)
The non-aqueous electrolyte of the present invention may contain arbitrary components in addition to the above-mentioned ionic components and non-ionic solvent components. For example, it may contain a polymer compound with a molecular weight of more than 1000. That is, while the solvent component usually has a molecular weight of 1000 or less, a polymer compound with a weight average molecular weight of more than 1000, preferably more than 10,000, which can be dissolved in the solvent component, is dissolved in the non-aqueous electrolyte. may exist. By including a polymer compound, the ionic conductivity and viscosity of the nonaqueous electrolyte may be adjusted to an appropriate range. From the viewpoint of adjusting the ionic conductivity and viscosity within appropriate ranges, the proportion of the polymer compound in 100% by weight of the non-aqueous electrolyte is preferably 50% by weight or less. Examples of polymer compounds include polyethylene oxide, polyethylene oxide-propylene oxide copolymers, and polyoxazoline polymers.
 (非水電解液の性質)
 本発明の非水電解液は、引火点を有しないものであることが好ましい。引火点を有しないことにより、非水電解液を含む電気化学デバイスの安全性を高めることができる。引火点を有しない非水電解液は、溶媒物質(A)及び溶媒物質(B)として、上に例示した成分から非引火性又は燃焼性が低いものを適宜選択することにより得うる。
(Properties of non-aqueous electrolyte)
The non-aqueous electrolyte of the present invention preferably has no flash point. By not having a flash point, the safety of electrochemical devices containing non-aqueous electrolytes can be improved. A non-aqueous electrolyte having no flash point can be obtained by appropriately selecting non-flammable or low combustible solvent substances from the above-exemplified components as the solvent substance (A) and the solvent substance (B).
 (非水電解液の製造方法)
 本発明の非水電解液の製造方法は、特に限定されず、上に述べた成分を、電解液の製造に適した適切な環境下で混合することにより、製造を行うことができる。
(Method for producing non-aqueous electrolyte)
The method for producing a non-aqueous electrolyte of the present invention is not particularly limited, and can be produced by mixing the components described above in an appropriate environment suitable for producing an electrolyte.
 各成分の混合の順序は、特に限定されないが、イオン性成分及び溶媒物質(A)を先に混合し、得られた混合物に、さらに溶媒物質(B)を混合することが好ましい。かかる順序で混合を行うことにより、速やかにイオン性成分を溶解させることができ、且つ、イオン性成分が析出することを抑制することができる。また、成分の一部を、目標とする割合よりも多い量で混合し、その後当該成分を留去するなどして減少させることを行ってもよい。加えて、デバイスの内部に、各成分の一部が固体である状態で各成分を封入し、その後デバイスの内部で当該固体を溶解させ混合させることにより、目標とする割合で各成分が混合した非水電解液を得ることもできる。例えば、溶媒物質(B)の一部を固体状態で、液体状態の他の成分とともにデバイスの内部に封入し、その後溶媒物質(B)を溶解し、目標とする割合で各成分が混合した非水電解液を得ることができる。 Although the order of mixing each component is not particularly limited, it is preferable that the ionic component and the solvent substance (A) are mixed first, and then the solvent substance (B) is further mixed into the resulting mixture. By mixing in this order, the ionic component can be quickly dissolved and precipitation of the ionic component can be suppressed. Alternatively, some of the components may be mixed in an amount larger than the target ratio, and then the components may be reduced by distilling off or the like. In addition, each component is encapsulated inside the device in a state in which a portion of each component is solid, and then the solids are dissolved and mixed inside the device, so that each component is mixed at the target ratio. A non-aqueous electrolyte can also be obtained. For example, part of the solvent substance (B) in a solid state is sealed inside a device along with other components in a liquid state, and then the solvent substance (B) is dissolved, and each component is mixed in a target ratio. A water electrolyte can be obtained.
 (非水電解液の用途:電気化学デバイス)
 本発明の電気化学デバイスは、上に述べた本発明の非水電解液を含む。即ち、本発明の非水電解液は、電気化学デバイスの構成要素として用いうる。本発明の電気化学デバイスは、電解液として本発明の非水電解液を含むので、高い容量維持率及び低温での高い動作性能、並びに高い安全性等の利点を享受することができる。
(Applications of non-aqueous electrolyte: Electrochemical devices)
The electrochemical device of the present invention includes the non-aqueous electrolyte of the present invention described above. That is, the nonaqueous electrolyte of the present invention can be used as a component of an electrochemical device. Since the electrochemical device of the present invention contains the non-aqueous electrolyte of the present invention as an electrolyte, it can enjoy advantages such as high capacity retention, high operating performance at low temperatures, and high safety.
 本発明の電気化学デバイスは、デバイス外装と、その内部の密閉された空間内に封入されて存在する、電極、セパレーター及び本発明の非水電解液等の内容物を含みうる。電極及びセパレーターとしては、特に限定されず、デバイスの用途に適合した既知のものを適宜採用しうる。 The electrochemical device of the present invention may include a device exterior and contents such as an electrode, a separator, and the nonaqueous electrolyte of the present invention, which are enclosed in a sealed space inside the device exterior. The electrodes and separators are not particularly limited, and known electrodes and separators that are suitable for the use of the device can be appropriately employed.
 本発明の非水電解液は、何らかの原因でデバイス外に漏出した場合における危険性が低いものとしうるので、本発明の電気化学デバイスは、動作中に異常が発生し外装内部の圧力が特定の閾値以上に上昇した際に、外装による密封を開放する機構を有するものとし、それにより、異常発生時に動作を停止しうるものとしうる。かかる閾値は、2気圧~10気圧としうる。 The non-aqueous electrolyte of the present invention can be of low risk in the event that it leaks out of the device for some reason. It is possible to have a mechanism that releases the seal by the exterior when the temperature rises above a threshold value, so that the operation can be stopped when an abnormality occurs. Such a threshold may be between 2 atmospheres and 10 atmospheres.
 本発明の電気化学デバイスの具体的な種類の例としては、各種の非水系の一次電池、二次電池、電気二重層キャパシタ、電気二重層トランジスタ、エレクトロクロミック表示材、電気化学発光素子、電気化学アクチュエータ、及び色素増感太陽電池が挙げられる。電池の例としては、リチウム一次電池、リチウムイオン二次電池、リチウム金属二次電池、ナトリウムイオン電池、カリウムイオン電池、マグネシウムイオン電池、アルミニウムイオン電池、フッ化物イオン電池、及び空気電池が挙げられる。電池は、特に好ましくは、リチウムイオン一次電池又はリチウムイオン二次電池である。 Specific examples of the electrochemical devices of the present invention include various non-aqueous primary batteries, secondary batteries, electric double layer capacitors, electric double layer transistors, electrochromic display materials, electrochemical luminescent elements, electrochemical actuators, and dye-sensitized solar cells. Examples of batteries include lithium primary batteries, lithium ion secondary batteries, lithium metal secondary batteries, sodium ion batteries, potassium ion batteries, magnesium ion batteries, aluminum ion batteries, fluoride ion batteries, and air batteries. The battery is particularly preferably a lithium ion primary battery or a lithium ion secondary battery.
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the embodiments shown below, and may be implemented with arbitrary changes within the scope of the claims of the present invention and equivalents thereof.
 以下の説明において、量を表す「%」及び「部」は、別に断らない限り質量基準である。また、以下に説明する操作は、別に断らない限り、室温及び常圧の条件において行った。特に、電解液の調製から電池に密封するまでの工程は、別に断らない限り、温度25℃、露点-40℃以下のドライルームで実施した。 In the following description, "%" and "part" representing amounts are based on mass unless otherwise specified. Further, the operations described below were performed at room temperature and normal pressure unless otherwise specified. In particular, the steps from preparing the electrolyte to sealing it into the battery were carried out in a dry room with a temperature of 25° C. and a dew point of −40° C. or lower, unless otherwise specified.
 (製造例1)
 (P1-1.予備的な高濃度電解液の調製)
 予備的な調製として、表1に示すイオン性物質と溶媒物質(A)を、表1に示す割合で混合して、溶媒物質(B)を含まない電解液(01)~(20)を調製した。ドライルーム内の温度25℃では溶解速度が遅い場合は加温を行った。
(Manufacturing example 1)
(P1-1. Preparation of preliminary high concentration electrolyte)
As a preliminary preparation, the ionic substances and solvent substances (A) shown in Table 1 are mixed in the proportions shown in Table 1 to prepare electrolytes (01) to (20) that do not contain the solvent substance (B). did. If the dissolution rate was slow at the temperature of 25° C. in the dry room, heating was performed.
 (P1-2.析出の有無評価)
 電解液(01)~(20)を20℃の環境で3日間放置した後、固体の析出の有無を評価した。結果を表1に示す。いくつかの電解液では固体の析出が見られた。
(P1-2. Evaluation of presence or absence of precipitation)
After the electrolytes (01) to (20) were left in a 20°C environment for 3 days, the presence or absence of solid precipitation was evaluated. The results are shown in Table 1. Solid precipitation was observed in some electrolytes.
 (P1-3.含浸性評価)
 電解液(01)~(20)を、リチウムイオン電池セパレーターに含浸させうるか否かを試験した。リチウムイオン電池セパレーターとして一般的なポリオレフィンセパレータ(ポリポア製、製品名「セルガード2325」)を幅1cm、長さ5cmの短冊状に切り出し、先端1cmを電解液に1秒間浸漬して、セパレーターの浸漬した部位に電解液が浸み込んだ場合は、含浸「する」、浸み込まない場合は、含浸「しない」と評価した。その結果、全例において、含浸しないと評価された。
(P1-3. Impregnation evaluation)
A test was conducted to see if electrolytes (01) to (20) could be impregnated into a lithium ion battery separator. A polyolefin separator (manufactured by Polypore, product name "Celguard 2325"), which is commonly used as a lithium ion battery separator, was cut into strips with a width of 1 cm and a length of 5 cm, and the 1 cm tip was immersed in an electrolytic solution for 1 second to soak the separator. If the electrolyte penetrated into the site, it was evaluated as "impregnation", and if it did not, it was evaluated as "not impregnated". As a result, all cases were evaluated as not being impregnated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 LiFSI:リチウムビスフルオロスルホニルイミド(Li(FSO
 LiTFSI:リチウムビストリフルオロメタンスルホニルイミド(Li(CFSO
 LiBF4:テトラフルオロホウ酸リチウム
 LiBr:臭化リチウム
 MgTFSI:マグネシウムビストリフルオロメタンスルホニルイミド(Mg2+((CFSO
 EMI-TFSI:1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド
LiFSI: Lithium bisfluorosulfonylimide (Li + (FSO 2 ) 2 N )
LiTFSI: Lithium bistrifluoromethanesulfonylimide (Li + (CF 3 SO 2 ) 2 N )
LiBF4: Lithium tetrafluoroborate LiBr: Lithium bromide MgTFSI: Magnesium bistrifluoromethanesulfonylimide (Mg 2+ ((CF 3 SO 2 ) 2 N ) 2 )
EMI-TFSI: 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide
 (実施例1及び比較例1)
 製造例1で予備的に調製した電解液(01)~(20)と、表2に示す溶媒物質(B)と、その他の溶媒物質(C)とを、表2に示す割合で混合し、実施例の電解液(101-1)~(120)及び比較例の電解液(201-1)~(211)を調製した。得られた電解液を観察し、均一に溶解したか否かを評価した。結果を表2に示す。実施例においては、電解液はいずれも均一に混合し、塩の析出が見られなくなった。一方、比較例の一部では、電解液が2層に分離した。
(Example 1 and Comparative Example 1)
Electrolytes (01) to (20) preliminarily prepared in Production Example 1, solvent substances (B) shown in Table 2, and other solvent substances (C) are mixed in the proportions shown in Table 2, Electrolytes (101-1) to (120) of Examples and electrolytes (201-1) to (211) of Comparative Examples were prepared. The obtained electrolyte solution was observed to evaluate whether it was uniformly dissolved. The results are shown in Table 2. In the examples, all electrolytic solutions were mixed uniformly, and no salt precipitation was observed. On the other hand, in some of the comparative examples, the electrolytic solution was separated into two layers.
 得られた実施例及び比較例の電解液について、製造例1の(P1-2)と同じ手順にて、固体の析出の有無を評価した。結果を表2に示す。電解液(10)~(12)及び(14)では固体の析出が見られたが、それを用いて調製したものを含めて、実施例の電解液では、固体の析出は確認されず、電解液の安定性が高いことが分かった。 The electrolytes of the obtained Examples and Comparative Examples were evaluated for the presence or absence of solid precipitation using the same procedure as in Production Example 1 (P1-2). The results are shown in Table 2. Although solid precipitation was observed in electrolytic solutions (10) to (12) and (14), no solid precipitation was observed in the electrolytic solutions of Examples, including those prepared using the electrolytic solutions (10) to (12) and (14). It was found that the liquid had high stability.
 実施例の電解液(102)、(107-1)~(107-4)と、比較例の電解液(202-1)~(202-3)及び(207-1)~(207-3)との対比により、溶媒物質(B)ではなく環状構造も不飽和結合も有しないフッ素溶媒物質(C)を添加した場合は、高濃度電解液と相溶しないか、あるいは相溶する場合でも相溶する組成の範囲が狭いことが分かる。 Electrolytes (102), (107-1) to (107-4) of Examples and electrolytes (202-1) to (202-3) and (207-1) to (207-3) of Comparative Examples In contrast, when adding a fluorine solvent substance (C) that does not have a cyclic structure or unsaturated bond instead of the solvent substance (B), it is either not compatible with the high concentration electrolyte, or even if it is compatible, it is not compatible with the high concentration electrolyte. It can be seen that the range of soluble composition is narrow.
 得られた実施例及び比較例の電解液のうち、溶解性の評価において2層に分離しなかったものについて、製造例1の(P1-3)と同じ手順にて、含浸性を評価した。電解液(101-1)~(101-3)及び比較電解液(201-1)についての含浸性の評価の対比から、溶媒物質(B)の添加が5体積%である場合はセパレーターへの含浸が起こらず、10体積%以上であれば問題なく含浸することが分かった。 Among the obtained electrolytes of Examples and Comparative Examples, those that did not separate into two layers in the solubility evaluation were evaluated for impregnation in the same procedure as in Production Example 1 (P1-3). From the comparison of the impregnating evaluations of electrolytes (101-1) to (101-3) and comparative electrolyte (201-1), when the addition of solvent substance (B) is 5% by volume, It was found that impregnation did not occur and impregnation occurred without problems if the amount was 10% by volume or more.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 溶媒物質(Bx)添加量:非水電解液全体の合計体積%に対する、溶媒物質の添加割合(単位:体積%)
 その他の溶媒物質:ここで添加した、溶媒物質(Bx)以外の溶媒物質の種類
 その他添加量:その他の溶媒物質の添加量。非水電解液全体の合計体積%に対する、当該溶媒物質の添加割合(単位:体積%)
 B-1:1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン(商品名「ゼオローラH」、日本ゼオン株式会社製)
 B-2:3,3,4,4,5,5-ヘキサフルオロシクロペンテン
 B-3:1-メトキシ-2,3,3,4,4,5,5-ヘプタフルオロシクロペンテン
 C-1:2H,3H-デカフルオロペンタン(商品名「バートレルXF」三井・ケマーズフロロプロダクツ株式会社製)
 C-2:1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル(商品名「アサヒクリンAE-3000」、AGC社製)
 C-3: 1,1,2,2-テトラフルオロエチル 2,2,3,3-テトラフルオロプロピルエーテル
 C-4:商品名「NOVEC7100」(3M社製)
 C-5:商品名「NOVEC7200」(3M社製)
 C-6:商品名「NOVEC7300」(3M社製)
Solvent substance (Bx) addition amount: Addition ratio of solvent substance to the total volume % of the entire non-aqueous electrolyte (unit: volume %)
Other solvent substances: Types of solvent substances other than the solvent substance (Bx) added here.Other addition amount: Addition amount of other solvent substances. Addition ratio of the solvent substance to the total volume% of the entire non-aqueous electrolyte (unit: volume%)
B-1: 1,1,2,2,3,3,4-heptafluorocyclopentane (trade name "Zeolora H", manufactured by Nippon Zeon Co., Ltd.)
B-2: 3,3,4,4,5,5-hexafluorocyclopentene B-3: 1-methoxy-2,3,3,4,4,5,5-heptafluorocyclopentene C-1: 2H, 3H-decafluoropentane (trade name: "Vertrell XF" manufactured by Mitsui Chemours Fluoro Products Co., Ltd.)
C-2: 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (trade name "Asahikulin AE-3000", manufactured by AGC)
C-3: 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether C-4: Product name "NOVEC7100" (manufactured by 3M)
C-5: Product name "NOVEC7200" (manufactured by 3M)
C-6: Product name “NOVEC7300” (manufactured by 3M)
 (実施例2)
 製造例1で調製した電解液(08)に、溶媒物質(B-1)を、表3に示す濃度で添加した混合物である電解液について粘度を測定した。測定は、EMS粘度計(京都電子工業製、EMS-1000S)を用いて、密閉条件で電解液の組成が変化せず、空気中の水分が混入しない状態を維持して、25℃の環境下で回転数1000rpmで測定した。この測定方法で測定した粘度は、基本的には、JIS Z8803に準拠して測定した値と同じ値となる。
(Example 2)
The viscosity of the electrolytic solution, which is a mixture of the electrolytic solution (08) prepared in Production Example 1 and the solvent substance (B-1) added at the concentration shown in Table 3, was measured. The measurement was carried out using an EMS viscometer (manufactured by Kyoto Electronics Industry Co., Ltd., EMS-1000S) in an environment of 25°C, keeping the electrolyte composition unchanged under sealed conditions and no moisture in the air mixed in. The measurement was made at a rotation speed of 1000 rpm. The viscosity measured by this measurement method is basically the same value as the value measured in accordance with JIS Z8803.
 測定結果を表3に示す。溶媒物質(B-1)を添加しない状態での電解液(08)は25℃で60cPの粘度を示し、溶媒物質(B-1)の添加量が増えるに従って粘度が大きく低下する傾向が確認された。粘度が低下することで、電気化学デバイス内部での液の移動がスムーズになることが期待できる。 The measurement results are shown in Table 3. The electrolytic solution (08) without the addition of solvent substance (B-1) exhibited a viscosity of 60 cP at 25°C, and it was confirmed that the viscosity tended to decrease significantly as the amount of solvent substance (B-1) added increased. Ta. By lowering the viscosity, it is expected that the liquid will move more smoothly inside the electrochemical device.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (B-1)割合:非水電解液全体の体積%における(B-1)の体積%。 (B-1) ratio: volume % of (B-1) in the volume % of the entire non-aqueous electrolyte.
 (実施例3)
 製造例1で調製した電解液(11)、及び電解液(11)に溶媒物質(B-1)を40体積%添加して調製した電解液である、実施例1の電解液(111)についてイオン伝導度を測定した。測定は、-20~80℃の温度範囲で、測定は、ソーラトロン社製インピーダンスアナライザを用い、交流インピーダンス法にて1M~0.1Hzの周波数範囲で行った。結果を図1に示す。
(Example 3)
About the electrolytic solution (11) prepared in Production Example 1 and the electrolytic solution (111) of Example 1, which is an electrolytic solution prepared by adding 40% by volume of the solvent substance (B-1) to the electrolytic solution (11). Ionic conductivity was measured. The measurement was carried out in the temperature range of -20 to 80°C, and the measurement was carried out in the frequency range of 1M to 0.1Hz by the AC impedance method using an impedance analyzer manufactured by Solartron. The results are shown in Figure 1.
 電解液(11)の測定では40℃以下でイオン伝導度が顕著に低下し、それ以下の温度ではイオン伝導性を計測することはできなかった。一方電解液(111)の測定では、低温でも良好なイオン伝導性が示され、電解液の固化を溶媒物質(B)が抑制していることが示された。 In the measurement of electrolytic solution (11), the ionic conductivity decreased significantly at temperatures below 40°C, and it was not possible to measure the ionic conductivity at temperatures below that. On the other hand, measurements of the electrolytic solution (111) showed good ionic conductivity even at low temperatures, indicating that the solvent substance (B) suppressed solidification of the electrolytic solution.
 (実施例4)
 製造例1で調製した電解液(01)、並びに電解液(01)に溶媒物質(B-1)、(B-2)又は(C-3)を60体積%添加した電解液である、実施例1の電解液(101-1)、(101-4)、及び(201-2)についてイオン伝導度を測定した。測定は、温度範囲を-20~10℃とした以外は、実施例3と同じ手順により行った。結果を図2に示す。
(Example 4)
Electrolyte solution (01) prepared in Production Example 1, and electrolyte solution in which 60% by volume of solvent substance (B-1), (B-2) or (C-3) was added to electrolyte solution (01). The ionic conductivity of the electrolytes (101-1), (101-4), and (201-2) of Example 1 was measured. The measurement was performed according to the same procedure as in Example 3, except that the temperature range was -20 to 10°C. The results are shown in Figure 2.
 電解液(01)では、温度が下がるほど、イオン伝導度が顕著に低下した。溶媒物質(B)を添加した電解液である電解液(101-1)及び(101-3)では、低温でのイオン伝導性を大きく改善することができた。改善度合いは電解液(101-1)よりも電解液(101-4)の方が比較的大きかった。溶媒物質(C-3)を添加した電解液である電解液(201-2)では、0℃以下の温度では改善の効果が認められたが、0℃以上ではむしろ悪化する傾向となった。 In the electrolytic solution (01), the ionic conductivity decreased significantly as the temperature decreased. In the electrolytic solutions (101-1) and (101-3), which are electrolytic solutions to which the solvent substance (B) was added, the ionic conductivity at low temperatures could be greatly improved. The degree of improvement was relatively greater in electrolyte solution (101-4) than in electrolyte solution (101-1). In the electrolytic solution (201-2), which is an electrolytic solution to which the solvent substance (C-3) was added, an improvement effect was observed at temperatures below 0°C, but it tended to get worse at temperatures above 0°C.
 (実施例5)
 製造例1で調製した電解液(17)と、これに溶媒物質(B-1)を10体積%又は30体積%の割合で添加した電解液である実施例1の電解液(117-1)及び(117-2)について、電極への含浸性を評価した。
 基材として、厚み30μmのエッチドアルミ箔を用意した。基材の上に、活性炭、アセチレンブラック、SBR(スチレン-ブタジエンゴム)バインダ、及び増粘剤としてのCMC(カルボキシメチルセルロース)をそれぞれ重量比で、90%、5%、3%及び2%含む層を設け、当該層をプレスすることにより、基材及び合材層からなる活性炭電極を準備した。合材層の目付及び密度は、6.1mg/cm及び0.48g/cmであった。
 活性炭電極を切り出し、4×4cmの矩形の試験電極とした。試験電極の合材層側の表面に、電解液を15μl滴下して、合材層へ電解液が浸み込む様子を観察した。電解液が徐々に合材層中へ浸み込んでいき、合材層表面に液体の光沢が無くなった時点を含浸終了とし、滴下から含浸終了までにかかる時間を記録した。
 試験中の電解液の揮散を防ぐために、滴下は蓋つきのガラス製のシャーレの中で行い、滴下直後に蓋をした。電解液(17)、電解液(117-1)及び電解液(117-2)について含浸に要した時間はそれぞれ、489秒、182秒及び75秒であった。このことから、溶媒物質(B)の添加により、電極合材層への含浸速度が向上することが分かった。
(Example 5)
Electrolyte solution (117-1) of Example 1, which is an electrolyte solution prepared in Production Example 1 and to which solvent substance (B-1) is added at a ratio of 10% by volume or 30% by volume. and (117-2) were evaluated for impregnation into electrodes.
Etched aluminum foil with a thickness of 30 μm was prepared as a base material. On the base material, a layer containing activated carbon, acetylene black, SBR (styrene-butadiene rubber) binder, and CMC (carboxymethylcellulose) as a thickener in a weight ratio of 90%, 5%, 3%, and 2%, respectively. An activated carbon electrode consisting of a base material and a composite material layer was prepared by pressing the layer. The area weight and density of the composite material layer were 6.1 mg/cm 2 and 0.48 g/cm 3 .
The activated carbon electrode was cut out to form a 4×4 cm rectangular test electrode. 15 μl of the electrolytic solution was dropped onto the surface of the test electrode on the composite material layer side, and the manner in which the electrolytic solution permeated into the composite material layer was observed. The electrolytic solution gradually permeated into the composite material layer, and the time when the surface of the composite material layer lost its luster was defined as the end of impregnation, and the time taken from dropping to the end of impregnation was recorded.
In order to prevent volatilization of the electrolytic solution during the test, the dropping was performed in a glass petri dish with a lid, and the lid was placed immediately after the dropping. The times required for impregnation with electrolyte solution (17), electrolyte solution (117-1), and electrolyte solution (117-2) were 489 seconds, 182 seconds, and 75 seconds, respectively. From this, it was found that the impregnation rate into the electrode composite material layer was improved by adding the solvent substance (B).
 (実施例6)
 (6-1.正極)
 正極用集電体として、厚み20μmのアルミ箔を用意した。正極用集電体の上に、コバルト酸リチウム(正極活物質)、アセチレンブラック及びPVDF(ポリフッ化ビニリデン)バインダをそれぞれ重量比で94%、3%及び3%含む層を設け、当該層をプレスすることにより、正極用合材層を形成し、正極用集電体及び正極用合材層からなるリチウムイオン正極を調製した。正極用合材層の目付及び密度は、20mg/cm及び3.0g/cmであった。
(Example 6)
(6-1. Positive electrode)
Aluminum foil with a thickness of 20 μm was prepared as a current collector for the positive electrode. A layer containing 94%, 3%, and 3% by weight of lithium cobalt oxide (positive electrode active material), acetylene black, and PVDF (polyvinylidene fluoride) binder, respectively, is provided on the positive electrode current collector, and the layer is pressed. By doing so, a positive electrode composite material layer was formed, and a lithium ion positive electrode consisting of a positive electrode current collector and a positive electrode composite material layer was prepared. The fabric weight and density of the positive electrode composite material layer were 20 mg/cm 2 and 3.0 g/cm 3 .
 (6-2.負極)
 負極用集電体として、厚み10μmの銅箔を用意した。負極用集電体の上に、黒鉛(日立化成社製 MAG-E)、アセチレンブラック、SBRバインダ及びCMCをそれぞれ重量比で97%、0.5%、1%及び1.5%含む層を設け、当該層をプレスすることにより、負極用合材層を形成し、負極用集電体及び負極用合材層からなるリチウムイオン負極を調製した。負極用合材層の目付及び密度は、10mg/cm及び1.4g/cmであった。
(6-2. Negative electrode)
A copper foil with a thickness of 10 μm was prepared as a current collector for the negative electrode. On the negative electrode current collector, a layer containing graphite (MAG-E manufactured by Hitachi Chemical Co., Ltd.), acetylene black, SBR binder, and CMC in a weight ratio of 97%, 0.5%, 1%, and 1.5%, respectively. A negative electrode composite material layer was formed by pressing the layer, and a lithium ion negative electrode consisting of a negative electrode current collector and a negative electrode composite material layer was prepared. The area weight and density of the negative electrode composite material layer were 10 mg/cm 2 and 1.4 g/cm 3 .
 (6-3.リチウムイオン二次電池)
 (6-1)で得た正極の集電体に、アルミニウム製のタブを超音波溶接により取り付けた。(6-2)で得た負極の集電体に、ニッケル製のタブを超音波溶接により取り付けた。タブ付きの正極及び負極、並びにセパレーター(厚み25μmのポリオレフィンセパレータ、商品名「セルガード#2325」)を重ねて、(正極用集電体)/(正極用合材層)/(セパレーター)/(負極用合材層)/(負極用集電体)の層構成を有する積層物を得た。
(6-3. Lithium ion secondary battery)
An aluminum tab was attached to the positive electrode current collector obtained in (6-1) by ultrasonic welding. A nickel tab was attached to the negative electrode current collector obtained in (6-2) by ultrasonic welding. A positive electrode and a negative electrode with tabs, and a separator (polyolefin separator with a thickness of 25 μm, trade name "Celguard #2325") are stacked to form (current collector for positive electrode) / (mixture material layer for positive electrode) / (separator) / (negative electrode). A laminate having a layer structure of (mixture material layer for negative electrode)/(current collector for negative electrode) was obtained.
 ポリエチレンのシーラントを有するアルミラミネート袋を用意した。アルミラミネート袋に積層物を配置し、実施例1で調製した電解液(118)(LiFSI:プロピレンカーボネート:ビニルエチレンカーボネート=1:4:1(モル比)、非水電解液全体の総体積に対する溶媒物質(B-1)の体積比40vol%)を注液し、アルミラミネート袋を密閉した。これにより、リチウムイオン二次電池を完成させた。 An aluminum laminate bag with a polyethylene sealant was prepared. The laminate was placed in an aluminum laminate bag, and the electrolytic solution (118) prepared in Example 1 (LiFSI: propylene carbonate: vinyl ethylene carbonate = 1:4:1 (molar ratio), based on the total volume of the entire non-aqueous electrolyte The solvent substance (B-1) (volume ratio: 40 vol%) was injected, and the aluminum laminate bag was sealed. As a result, a lithium-ion secondary battery was completed.
 (6-4.リチウムイオン二次電池の充放電試験)
 (6-3)で得た電池を、25℃の環境下で、設計容量に対して0.5Cの速度で充放電した。その結果、4.2~3.0Vの電圧範囲において、正極活物質重量当たり145mAh/gの放電容量を示し、繰り返しの充放電が可能であった。初回放電容量に対する、50サイクル経過後の容量維持率は94%と高かった。
(6-4. Charge/discharge test of lithium ion secondary battery)
The battery obtained in (6-3) was charged and discharged at a rate of 0.5C relative to the designed capacity in an environment of 25°C. As a result, in the voltage range of 4.2 to 3.0 V, the discharge capacity was 145 mAh/g per weight of the positive electrode active material, and repeated charging and discharging was possible. The capacity retention rate after 50 cycles with respect to the initial discharge capacity was as high as 94%.
 (比較例2)
 (C2-1.予備的な高濃度電解液の調製)
 下記の変更点以外は、製造例1の電解液(18)の調製と同じ操作により、予備電解液(21)を調製した。
 ・溶媒物質(A)の内訳のモル比を、プロピレンカーボネート4+ビニルエチレンカーボネート1(モル比)から、プロピレンカーボネート6+ビニルエチレンカーボネート1(モル比)に変更した。
 ・イオン性物質1モルに対する溶媒物質(A)のモル比を、5モルから7モルに変更した。
(Comparative example 2)
(C2-1. Preparation of preliminary high concentration electrolyte)
A preliminary electrolyte solution (21) was prepared in the same manner as in the preparation of the electrolyte solution (18) in Production Example 1, except for the following changes.
- The molar ratio of the solvent substance (A) was changed from 4 propylene carbonate + 1 vinyl ethylene carbonate (molar ratio) to 6 propylene carbonate + 1 vinyl ethylene carbonate (molar ratio).
- The molar ratio of the solvent substance (A) to 1 mol of the ionic substance was changed from 5 mol to 7 mol.
 (C2-2.電解液の調製)
 下記の変更点以外は、実施例1の電解液(118)の調製と同じ操作により、電解液(212)を調製した。
 ・予備電解液(18)に代えて、(C2-1)で調製した予備電解液(21)を用いた。
 得られた電解液(212)においては、LiFSI:プロピレンカーボネート:ビニルエチレンカーボネート=1:6:1(モル比)であり、非水電解液全体の総体積に対する溶媒物質(B-1)の体積比40vol%であった。
(C2-2. Preparation of electrolyte solution)
Electrolyte solution (212) was prepared by the same operation as for preparing electrolyte solution (118) in Example 1, except for the following changes.
- Instead of the preliminary electrolyte (18), the preliminary electrolyte (21) prepared in (C2-1) was used.
In the obtained electrolytic solution (212), LiFSI: propylene carbonate: vinyl ethylene carbonate = 1:6:1 (molar ratio), and the volume of the solvent substance (B-1) with respect to the total volume of the entire non-aqueous electrolyte The ratio was 40 vol%.
 (C2-3.リチウムイオン二次電池の製造及び評価)
 下記の変更点以外は、実施例5と同じ操作により、リチウムイオン二次電池を製造し評価した。
 ・電解液(118)に代えて、(C2-2)で調製した電解液(212)を用いた。
 その結果、正極活物質重量当たり144mAh/gの放電容量を示し、繰り返しの充放電が可能であった。初回放電容量に対する、50サイクル経過後の容量維持率は91%であり、実施例5よりも低いものであった。
(C2-3. Manufacture and evaluation of lithium ion secondary battery)
A lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 5 except for the following changes.
-In place of electrolyte (118), electrolyte (212) prepared in (C2-2) was used.
As a result, the discharge capacity was 144 mAh/g per weight of the positive electrode active material, and repeated charging and discharging was possible. The capacity retention rate after 50 cycles with respect to the initial discharge capacity was 91%, which was lower than in Example 5.
 (比較例3)
 下記の変更点以外は、実施例5と同じ操作により、リチウムイオン二次電池を製造し評価した。
 ・電解液(118)に代えて、比較例2の(C2-1)で調製した予備電解液(21)をそのまま用いた。
 その結果、正極活物質重量当たり143mAh/gの放電容量を示し、繰り返しの充放電が可能であった。初回放電容量に対する、50サイクル経過後の容量維持率は94%であり、実施例5よりも低いものであった。
(Comparative example 3)
A lithium ion secondary battery was manufactured and evaluated in the same manner as in Example 5 except for the following changes.
- In place of the electrolytic solution (118), the preliminary electrolytic solution (21) prepared in (C2-1) of Comparative Example 2 was used as it was.
As a result, the discharge capacity was 143 mAh/g per weight of the positive electrode active material, and repeated charging and discharging was possible. The capacity retention rate after 50 cycles with respect to the initial discharge capacity was 94%, which was lower than in Example 5.
 (実施例7)
 (7-1.キャパシタ)
 実施例5で得た活性炭電極を3×4cmのサイズに2枚切り出して、試験極を得た。それぞれの試験極の端部にアルミニウム製のタブを超音波溶接により取り付けた。タブ付きの試験極の対の間に、セパレーターとして厚み35μmの紙(ニッポン高度紙工業製、TF4535)を1枚配置し、(基材)/(合材層)/(セパレーター)/(合材層)/(基材)の層構成を有する積層物を得た。
(Example 7)
(7-1. Capacitor)
Two pieces of the activated carbon electrode obtained in Example 5 were cut out to a size of 3 x 4 cm to obtain test electrodes. An aluminum tab was attached to the end of each test electrode by ultrasonic welding. A sheet of paper with a thickness of 35 μm (manufactured by Nippon Kokoshi Kogyo, TF4535) was placed as a separator between the pair of test electrodes with tabs. A laminate having a layer structure of layer)/(base material) was obtained.
 ポリエチレンのシーラントを有するアルミラミネート袋を用意した。アルミラミネート袋に積層物を配置し、実施例1で調製した電解液(117-2)(EMI-TFSI:プロピレンカーボネート=1:1(モル比)、非水電解液全体の体積比30vol%)をマイクロピペットで600μl注入し、アルミラミネート袋をヒートシールすることにより封止し、キャパシタのセルを得た。 An aluminum laminate bag with a polyethylene sealant was prepared. The laminate was placed in an aluminum laminate bag, and the electrolytic solution (117-2) prepared in Example 1 (EMI-TFSI: propylene carbonate = 1:1 (mole ratio), volume ratio of the entire non-aqueous electrolyte 30 vol%) 600 μl of the solution was injected using a micropipette, and an aluminum laminate bag was sealed by heat-sealing to obtain a capacitor cell.
 (7-3.キャパシタの評価)
 スポンジ材を表面に有する一対のプラスチック板を用意し、スポンジ材を有する側の面を内側にしてこれらを対向させ、その間に、得られたキャパシタのセルを配置した。プラスチック板の外側から、これらをクリップで挟んで加圧機構を構成した。この状態で、セルに対し、2.5V~0Vの間で1A/gの電流値(正極活物質である活性炭単位重量当たり電流値)で充放電を行い、充放電が可能であるか否かを評価し、その際の放電容量を測定した。その結果、充放電は可能であった。また、このキャパシタの電解液のみを、製造例1で製造した予備電解液(17)に変更した場合に発現する容量は、本実施例のキャパシタに対して90%の容量であり、溶媒物質(B)の有無によって活性炭重量当たりの容量が増える効果が確認された。容量が増えたメカニズムは定かではないが、フッ素溶媒の浸透性が高いことにより、比較例の電解液では侵入できない活物質表面があり、そこが利用されるようになったのではないかと考えられる。
(7-3. Evaluation of capacitor)
A pair of plastic plates having sponge material on their surfaces were prepared, and these plates were placed facing each other with the sides having the sponge material facing inside, and the cells of the obtained capacitor were placed between them. A pressure mechanism was constructed by sandwiching these with clips from the outside of the plastic plate. In this state, charge and discharge the cell at a current value of 1A/g (current value per unit weight of activated carbon, which is the positive electrode active material) between 2.5V and 0V, and check whether charging and discharging is possible. was evaluated, and the discharge capacity at that time was measured. As a result, charging and discharging were possible. Furthermore, when only the electrolyte of this capacitor is changed to the preliminary electrolyte (17) produced in Production Example 1, the capacity developed is 90% of that of the capacitor of this example, and the solvent substance ( It was confirmed that the capacity per weight of activated carbon increased depending on the presence or absence of B). Although the mechanism by which the capacity increased is not clear, it is thought that due to the high permeability of the fluorinated solvent, there is a surface of the active material that cannot be penetrated by the electrolyte of the comparative example, and this is why it is used. .
 (実施例8)
 (8-1.キャパシタ)
 下記の変更点以外は、実施例7の(7-1)~(7-2)と同じ操作により、キャパシタを得た。
 ・電解液として、実施例1で調製した電解液(117-1)に代えて、実施例1で調製した電解液(117-3)(EMI-TFSI:プロピレンカーボネート=1:1(モル比)、非水電解液全体の総体積に対する溶媒物質(B-1)の体積比80vol%)を用いた。
(Example 8)
(8-1. Capacitor)
A capacitor was obtained by the same operations as in Example 7 (7-1) and (7-2) except for the following changes.
・As the electrolyte, instead of the electrolyte (117-1) prepared in Example 1, the electrolyte (117-3) prepared in Example 1 (EMI-TFSI: propylene carbonate = 1:1 (molar ratio) , the volume ratio of the solvent substance (B-1) to the total volume of the entire non-aqueous electrolyte was 80 vol%).
 (8-2.キャパシタのシャットダウン性能)
 (8-1)で得られたキャパシタの抵抗値(単位:Ω)を交流インピーダンス法にて計測した(ソーラトロン社製インピーダンスアナライザを使用、測定周波数1MHz~0.01Hz)。セルの周囲温度を25℃から上昇させ、温度と抵抗値との関係を求めた。25℃における抵抗値を1とした、各温度における抵抗値の相対的な測定値を表4に示す。
(8-2. Shutdown performance of capacitor)
The resistance value (unit: Ω) of the capacitor obtained in (8-1) was measured by an AC impedance method (using an impedance analyzer manufactured by Solartron, measurement frequency 1 MHz to 0.01 Hz). The ambient temperature of the cell was raised from 25° C., and the relationship between temperature and resistance value was determined. Table 4 shows the relative measured values of the resistance value at each temperature, with the resistance value at 25° C. being 1.
 70℃までは、温度上昇に伴って抵抗が下がることが確認された。これは温度上昇に伴って電解液の粘度が下がり、イオン伝導度が上昇したためと理解される。
 80℃以降では抵抗の上昇が確認された。これは溶媒物質(B)の蒸発が多くなり、電解液の液量が十分でなくなったためと考えられる。100℃においては25℃における抵抗値の10倍以上となり、デバイスの動作が困難になったことが分かる。本試験においては、大きいラミネートセルを用いたため、蒸発した溶媒物質(B)の圧力で外装が破けることは無かった。しかしながら、異常な高温が生じた場合にあえて溶媒物質(B)の圧力で外装を破るよう設計することも有り得る。
It was confirmed that the resistance decreased as the temperature increased up to 70°C. This is understood to be because the viscosity of the electrolytic solution decreased as the temperature rose, and the ionic conductivity increased.
An increase in resistance was confirmed after 80°C. This is thought to be because the solvent substance (B) evaporated to a large extent and the amount of electrolyte solution was insufficient. It can be seen that the resistance value at 100° C. was more than 10 times the resistance value at 25° C., making it difficult to operate the device. In this test, since a large laminate cell was used, the outer packaging was not torn by the pressure of the evaporated solvent substance (B). However, it is also possible to design the sheath so that the pressure of the solvent substance (B) can rupture it if an abnormally high temperature occurs.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施例9)
 実施例1で調製した電解液(107-2)について、タグ密閉法(JIS K2265-1(2007))及びクリーブランド開放法(JIS K2265-4(2007))のそれぞれに準拠した引火点測定法により、引火点を測定した。タグ密閉法による引火点測定においては引火点は確認されず、クリーブランド開放法による引火点測定においては、溶媒物質(B)の沸騰により規定の試験が継続できず、引火点無しの評価となった。溶媒物質(B)が非引火性であれば、電解液に低い燃焼性を与えることができることが分かった。
(Example 9)
The electrolytic solution (107-2) prepared in Example 1 was determined by the flash point measurement method in accordance with the tag sealing method (JIS K2265-1 (2007)) and the Cleveland open method (JIS K2265-4 (2007)). , the flash point was measured. No flash point was confirmed when measuring the flash point using the closed tag method, and when measuring the flash point using the Cleveland open method, the prescribed test could not be continued due to boiling of the solvent substance (B), resulting in an evaluation of no flash point. . It has been found that low flammability can be imparted to the electrolyte if the solvent substance (B) is non-flammable.
 (比較例4)
 製造例1で調製した電解液(03)を100mgとり、直径2cmのステンレス製の皿に入れ、バーナーの炎を当てて、状態を観察することにより燃焼性を評価した。その結果、バーナーの火を当て始めてから5秒後に着火し、燃焼が8秒間継続することが観察された。
(Comparative example 4)
Combustibility was evaluated by taking 100 mg of the electrolytic solution (03) prepared in Production Example 1, placing it in a stainless steel dish with a diameter of 2 cm, applying a burner flame, and observing the state. As a result, it was observed that ignition occurred 5 seconds after the burner was applied, and combustion continued for 8 seconds.
 (実施例10)
 実施例1で調製した電解液(103)を100mgとり、直径2cmのステンレス製の皿に入れ、バーナーの炎を当てて、状態を観察することにより燃焼性を評価した。その結果、バーナーの火を当て始めてから7秒後に着火し、燃焼が5秒間継続することが観察された。
 比較例4と実施例9との対比により、引火点を持たない溶媒物質(B-2)の添加により、電解液の着火性と燃焼時間が低減できることが分かった。
(Example 10)
Combustibility was evaluated by taking 100 mg of the electrolytic solution (103) prepared in Example 1, placing it in a stainless steel dish with a diameter of 2 cm, applying a burner flame, and observing the state. As a result, it was observed that ignition occurred 7 seconds after the burner was applied, and combustion continued for 5 seconds.
By comparing Comparative Example 4 and Example 9, it was found that the ignitability and combustion time of the electrolytic solution can be reduced by adding the solvent substance (B-2) that does not have a flash point.
 (実施例11)
 (11-1.正極シート)
 以下の正極シート及びリチウムイオン二次電池の製造は、溶媒物質(B-1)の融点20.5℃を下回るように、実験環境の温度を18℃に変更して実験を行った。
 製造例1で調製した電解液(08)に、重量平均分子量50万のポリ(エチレンオキシド-プロピレンオキシド)共重合体(エチレンオキシド単位:プロピレンオキシド単位はモル比で90:10)を、濃度が5重量%となるよう添加してこれらを混合し、電解液(08-P)を調製した。電解液(08-P)を10、PTFE(ポリテトラフルオロエチレン)を1、コバルト酸リチウムを100、アセチレンブラックを5となるように量り取り(重量比)、乳鉢でよく混錬したところ、ひとまとまりの粘土状の組成物が得られた。この組成物を薄く延ばして厚み100μmの正極シートを得た。
(Example 11)
(11-1. Positive electrode sheet)
In the production of the following positive electrode sheet and lithium ion secondary battery, the experiment was conducted by changing the temperature of the experimental environment to 18°C so that the melting point of the solvent substance (B-1) was below 20.5°C.
A poly(ethylene oxide-propylene oxide) copolymer (ethylene oxide unit:propylene oxide unit in molar ratio of 90:10) having a weight average molecular weight of 500,000 was added to the electrolytic solution (08) prepared in Production Example 1 at a concentration of 5% by weight. % and mixed to prepare an electrolytic solution (08-P). Weighed the electrolyte (08-P) to 10, PTFE (polytetrafluoroethylene) to 1, lithium cobalt oxide to 100, and acetylene black to 5 (weight ratio), and kneaded them well in a mortar. A cohesive clay-like composition was obtained. This composition was stretched thin to obtain a positive electrode sheet with a thickness of 100 μm.
 (11-2.リチウムイオン二次電池の製造)
 厚さ25μmのアルミ箔と、(11-1)で得た本実施例の正極シートと、厚み25μmのセパレーター(ポリポア製、製品名「セルガード2325」)と、負極としての厚み100μmのLi金属箔と、厚み25μmの銅箔とをこの順に重ね合わせ、リチウムイオン二次電池用の電極複層物を得た。電極複層物を、電池用のアルミラミネート外装中に挿入した。この時点で電池内部に導入された電解液は、ポリ(エチレンオキシド-プロピレンオキシド)共重合体成分を除いて、200mgであった。固体状態の溶媒物質(B-1)(融点20.5℃)の塊を50mg量り取り、ラミネート外装内の電極と接触しない場所に静かに置いた。1分間0.15気圧に減圧して脱気したのちに、脱気状態を維持したまま外装の端部の開口を熱でシールして、リチウムイオン電池を製造した。真空シールの前後で重量減少は認められなかった。
(11-2. Manufacture of lithium ion secondary battery)
Aluminum foil with a thickness of 25 μm, the positive electrode sheet of this example obtained in (11-1), a separator with a thickness of 25 μm (manufactured by Polypore, product name “Celguard 2325”), and a Li metal foil with a thickness of 100 μm as a negative electrode. and a 25 μm thick copper foil were stacked in this order to obtain an electrode composite for a lithium ion secondary battery. The electrode composite was inserted into an aluminum laminate housing for the battery. At this point, the amount of electrolyte introduced into the battery was 200 mg, excluding the poly(ethylene oxide-propylene oxide) copolymer component. 50 mg of a solid mass of solvent substance (B-1) (melting point: 20.5° C.) was weighed out and gently placed in a location within the laminate housing that did not come into contact with the electrodes. After degassing by reducing the pressure to 0.15 atm for 1 minute, the opening at the end of the exterior was sealed with heat while maintaining the deaerated state to produce a lithium ion battery. No weight loss was observed before and after vacuum sealing.
 (11-3.リチウムイオン二次電池の評価)
 (11-2)で製造したリチウムイオン二次電池を、製造後直ちに、18℃、0.1Cレートで充電することを試みたが、電流が流れずに充電することができなかった。セパレーターに電解液が含浸していないために、電池として動作しないと考えられた。
 その後、このリチウムイオン二次電池を25℃に加温した後、25℃、0.1Cレートで充電を試みたところ、充電可能であったので、4.2Vまで充電した。さらに充放電を行ったところ、4.2~3.0Vの電圧範囲において、140mAh/g(正極活物質であるコバルト酸リチウム単位重量当たりAh値)の放電容量を示し、繰り返しの充放電が可能であった。
(11-3. Evaluation of lithium ion secondary battery)
Immediately after manufacturing, an attempt was made to charge the lithium ion secondary battery manufactured in (11-2) at a rate of 0.1C at 18°C, but no current flowed and charging was not possible. It was thought that it would not work as a battery because the separator was not impregnated with electrolyte.
Thereafter, this lithium ion secondary battery was heated to 25° C., and then charging was attempted at 25° C. at a rate of 0.1 C. Since charging was possible, the battery was charged to 4.2 V. Further charging and discharging showed a discharge capacity of 140mAh/g (Ah value per unit weight of lithium cobalt oxide, which is the positive electrode active material) in the voltage range of 4.2 to 3.0V, allowing repeated charging and discharging. Met.
 充放電の試験を行った後に、リチウムイオン二次電池を解体して内部を観察したところ、固体の状態で配置した溶媒物質(B-1)は溶けて均一な電解液となっており、セパレーターは電解液で濡れていた。セパレーターを正極シートから剥がす際には、貼り付くような感触と糸を引くような様子があり、ポリエチレンオキシド-プロピレンオキシド共重合体が溶解していることが示唆された。正極シートは溶解することなく初期の形状を保っていた。このように、本発明の電解液はデバイス内部で完成されてもよく、ポリマーを含んでいても良い。 After conducting the charge/discharge test, we disassembled the lithium ion secondary battery and observed the inside. We found that the solvent material (B-1) placed in a solid state had melted and become a uniform electrolyte, and the separator was wet with electrolyte. When the separator was peeled off from the positive electrode sheet, there was a feeling of sticking and a stringy appearance, suggesting that the polyethylene oxide-propylene oxide copolymer was dissolved. The positive electrode sheet maintained its initial shape without dissolving. Thus, the electrolyte of the present invention may be completed inside the device and may include a polymer.

Claims (16)

  1.  イオン性成分と、非イオン性溶媒成分とを含む非水電解液であって、
     前記非イオン性溶媒成分が、
     フッ素化率が40%未満の有機化合物である、ヘテロ元素含有有機溶媒物質(A)と、
     フッ素化率が40%以上の有機化合物である、含フッ素有機溶媒物質(B)とを含み、
     前記含フッ素有機溶媒物質(B)は、分子内に、炭素原子を構成要素とする環構造、炭素-炭素不飽和結合、又はこれらの両方を含む化合物である含フッ素有機溶媒物質(Bx)を含み、
     前記非水電解液100体積%に占める前記含フッ素有機溶媒物質(Bx)の割合が10体積%以上であり、
     前記イオン性成分のカチオン量に対する、前記ヘテロ元素含有有機溶媒物質(A)のモル量が5倍以内である、
     非水電解液。
    A non-aqueous electrolyte containing an ionic component and a non-ionic solvent component,
    The nonionic solvent component is
    a hetero element-containing organic solvent substance (A) which is an organic compound with a fluorination rate of less than 40%;
    and a fluorine-containing organic solvent substance (B), which is an organic compound with a fluorination rate of 40% or more,
    The fluorine-containing organic solvent substance (B) contains a fluorine-containing organic solvent substance (Bx) which is a compound containing a ring structure composed of carbon atoms, a carbon-carbon unsaturated bond, or both of these in the molecule. including,
    The proportion of the fluorine-containing organic solvent substance (Bx) in 100 volume% of the non-aqueous electrolyte is 10 volume% or more,
    The molar amount of the hetero element-containing organic solvent substance (A) is within 5 times the cation amount of the ionic component,
    Non-aqueous electrolyte.
  2.  前記非イオン性溶媒成分が、前記ヘテロ元素含有有機溶媒物質(A)、前記含フッ素有機溶媒物質(B)、又はそれ以外の非イオン性溶媒成分としての、添加剤(P)を含み、
     前記添加剤(P)は、環状硫酸エステル化合物、ビニルエチレンカーボネート化合物、及び不飽和結合を有する環状フッ素化合物からなる群より選択される一種以上である、請求項1に記載の非水電解液。
    The nonionic solvent component contains the hetero element-containing organic solvent substance (A), the fluorine-containing organic solvent substance (B), or an additive (P) as another nonionic solvent component,
    The non-aqueous electrolyte according to claim 1, wherein the additive (P) is one or more selected from the group consisting of a cyclic sulfate compound, a vinyl ethylene carbonate compound, and a cyclic fluorine compound having an unsaturated bond.
  3.  前記イオン性成分が、フッ素含有スルホニルイミドアニオンを含み、
     前記イオン性成分を構成するアニオンに占める前記イミドアニオンのアニオン量の割合が50モル%以上である、請求項1に記載の非水電解液。
    the ionic component includes a fluorine-containing sulfonylimide anion,
    The non-aqueous electrolyte according to claim 1, wherein the proportion of the imide anion to the anions constituting the ionic component is 50 mol% or more.
  4.  前記フッ素含有スルホニルイミドアニオンがビスフルオロスルホニルイミドアニオンである、請求項3に記載の非水電解液。 The non-aqueous electrolyte according to claim 3, wherein the fluorine-containing sulfonylimide anion is a bisfluorosulfonylimide anion.
  5.  前記イオン性成分が、ホウ素アニオンを含み、
     前記イオン性成分を構成するアニオンに占める前記ホウ素アニオンのアニオン量の割合が50モル%以上である、請求項1に記載の非水電解液。
    the ionic component includes a boron anion,
    The non-aqueous electrolyte according to claim 1, wherein the proportion of the boron anion to the anions constituting the ionic component is 50 mol% or more.
  6.  前記イオン性成分が、イオン液体を含む、請求項1に記載の非水電解液。 The non-aqueous electrolyte according to claim 1, wherein the ionic component includes an ionic liquid.
  7.  前記非イオン性溶媒成分が、前記ヘテロ元素含有有機溶媒物質(A)として、アセトニトリルを含む、請求項1に記載の非水電解液。 The nonaqueous electrolyte according to claim 1, wherein the nonionic solvent component contains acetonitrile as the hetero element-containing organic solvent substance (A).
  8.  前記非イオン性溶媒成分が、前記ヘテロ元素含有有機溶媒物質(A)として、炭酸エチレン、フッ化炭酸エチレン、炭酸プロピレン、γ-ブチロラクトン、及びスルホランからなる群より選択される一種以上を含む、請求項1に記載の非水電解液。 A claim in which the nonionic solvent component contains, as the hetero element-containing organic solvent substance (A), one or more selected from the group consisting of ethylene carbonate, fluorinated ethylene carbonate, propylene carbonate, γ-butyrolactone, and sulfolane. Item 1. The non-aqueous electrolyte according to item 1.
  9.  前記非イオン性溶媒成分が、前記ヘテロ元素含有有機溶媒物質(A)として、2種以上の化合物を含む、請求項1に記載の非水電解液。 The nonaqueous electrolyte according to claim 1, wherein the nonionic solvent component contains two or more kinds of compounds as the hetero element-containing organic solvent substance (A).
  10.  前記非イオン性溶媒成分が、前記ヘテロ元素含有有機溶媒物質(A)として、難燃性溶媒物質(A-R)を含み、
     前記難燃性溶媒物質(A-R)は、リン酸エステル又は亜リン酸エステルであって一分子当たり炭素数が1以上6以下の化合物(R1)、前記化合物(R1)の水素を部分的にフッ素化した化合物(R2)、及びホスファゼン環を持つ化合物(R3)からなる群より選択される一種以上である、請求項1に記載の非水電解液。
    The nonionic solvent component includes a flame retardant solvent substance (AR) as the hetero element-containing organic solvent substance (A),
    The flame retardant solvent substance (AR) is a compound (R1) which is a phosphoric acid ester or a phosphite ester and has 1 to 6 carbon atoms per molecule, and the hydrogen of the compound (R1) is partially removed. The non-aqueous electrolyte according to claim 1, which is one or more selected from the group consisting of a fluorinated compound (R2) and a compound having a phosphazene ring (R3).
  11.  前記非イオン性溶媒成分が、前記含フッ素有機溶媒物質(Bx)として、炭素-炭素不飽和結合を有する物質を含む、請求項1に記載の非水電解液。 The nonaqueous electrolyte according to claim 1, wherein the nonionic solvent component contains a substance having a carbon-carbon unsaturated bond as the fluorine-containing organic solvent substance (Bx).
  12.  前記非イオン性溶媒成分が、前記含フッ素有機溶媒物質(Bx)として、エーテル結合を有する物質を含む、請求項1に記載の非水電解液。 The nonaqueous electrolyte according to claim 1, wherein the nonionic solvent component includes a substance having an ether bond as the fluorine-containing organic solvent substance (Bx).
  13.  前記非イオン性溶媒成分が、前記含フッ素有機溶媒物質(B)として、前記含フッ素有機溶媒物質(Bx)以外の含フッ素有機溶媒物質(C)を含む、請求項1に記載の非水電解液。 The non-aqueous electrolyte according to claim 1, wherein the nonionic solvent component contains a fluorine-containing organic solvent substance (C) other than the fluorine-containing organic solvent substance (Bx) as the fluorine-containing organic solvent substance (B). liquid.
  14.  引火点を有しない、請求項1に記載の非水電解液。 The non-aqueous electrolyte according to claim 1, which has no flash point.
  15.  請求項1~14のいずれか1項に記載の非水電解液を含む、電気化学デバイス。 An electrochemical device comprising the nonaqueous electrolyte according to any one of claims 1 to 14.
  16.  前記非水電解液が外装内の密閉された空間内に封入された構造を有し、前記空間内の圧力が閾値以上となった際に前記空間が開放される機構を有し、前記閾値が2気圧~10気圧である、請求項15に記載の電気化学デバイス。 The non-aqueous electrolyte has a structure in which the non-aqueous electrolyte is sealed in a sealed space in the exterior, and the space is opened when the pressure in the space exceeds a threshold, and the threshold is 16. The electrochemical device according to claim 15, wherein the pressure is between 2 atmospheres and 10 atmospheres.
PCT/JP2023/012070 2022-03-30 2023-03-27 Nonaqueous electrolytic solution and electrochemical device WO2023190273A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-057408 2022-03-30
JP2022057408 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190273A1 true WO2023190273A1 (en) 2023-10-05

Family

ID=88201688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012070 WO2023190273A1 (en) 2022-03-30 2023-03-27 Nonaqueous electrolytic solution and electrochemical device

Country Status (1)

Country Link
WO (1) WO2023190273A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284036A (en) * 1997-04-07 1998-10-23 Japan Storage Battery Co Ltd Battery
JP2000348762A (en) * 1999-06-04 2000-12-15 Hitachi Ltd Incombustible electrolyte and lithium secondary battery using it
JP2006092815A (en) * 2004-09-22 2006-04-06 Hitachi Ltd Energy device
JP2007234339A (en) * 2006-02-28 2007-09-13 Three M Innovative Properties Co Solvent composition and electrochemical device
WO2012066770A1 (en) * 2010-11-16 2012-05-24 パナソニック株式会社 Nonaqueous solvent for electricity storage device
WO2015025882A1 (en) * 2013-08-21 2015-02-26 積水化学工業株式会社 Electrolyte and lithium ion secondary battery
WO2022254717A1 (en) * 2021-06-04 2022-12-08 TeraWatt Technology株式会社 Lithium secondary battery
WO2023042262A1 (en) * 2021-09-14 2023-03-23 TeraWatt Technology株式会社 Lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284036A (en) * 1997-04-07 1998-10-23 Japan Storage Battery Co Ltd Battery
JP2000348762A (en) * 1999-06-04 2000-12-15 Hitachi Ltd Incombustible electrolyte and lithium secondary battery using it
JP2006092815A (en) * 2004-09-22 2006-04-06 Hitachi Ltd Energy device
JP2007234339A (en) * 2006-02-28 2007-09-13 Three M Innovative Properties Co Solvent composition and electrochemical device
WO2012066770A1 (en) * 2010-11-16 2012-05-24 パナソニック株式会社 Nonaqueous solvent for electricity storage device
WO2015025882A1 (en) * 2013-08-21 2015-02-26 積水化学工業株式会社 Electrolyte and lithium ion secondary battery
WO2022254717A1 (en) * 2021-06-04 2022-12-08 TeraWatt Technology株式会社 Lithium secondary battery
WO2023042262A1 (en) * 2021-09-14 2023-03-23 TeraWatt Technology株式会社 Lithium secondary battery

Similar Documents

Publication Publication Date Title
Luo et al. Electrolyte design for lithium metal anode‐based batteries toward extreme temperature application
CA2422106C (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
KR100767741B1 (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
Jiang et al. A bifunctional fluorophosphate electrolyte for safer sodium-ion batteries
JP5001508B2 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte electric double layer capacitor
Long et al. Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery
Zheng et al. Progress in gel polymer electrolytes for sodium‐ion batteries
JP5001507B2 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
JP4257725B2 (en) Non-aqueous electrolyte secondary battery
Aravindan et al. Polyvinylidene fluoride–hexafluoropropylene (PVdF–HFP)-based composite polymer electrolyte containing LiPF3 (CF3CF2) 3
Swiderska-Mocek et al. Preparation and electrochemical properties of polymer electrolyte containing lithium difluoro (oxalato) borate or lithium bis (oxalate) borate for Li-ion polymer batteries
Quan et al. All-climate outstanding-performances lithium-ion batteries enabled by in-situ constructed gel polymer electrolytes
JP4671693B2 (en) Non-aqueous electrolyte additive for secondary battery and non-aqueous electrolyte secondary battery
WO2021172456A1 (en) Electrolyte solution for electrochemical devices, themoplastic composition, use and production method
Lalia et al. Electrochemical performance of nonflammable polymeric gel electrolyte containing triethylphosphate
JP2004006301A (en) Positive electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery having the same
WO2023190273A1 (en) Nonaqueous electrolytic solution and electrochemical device
JPWO2019021522A1 (en) Semi-solid electrolyte, semi-solid electrolyte, semi-solid electrolyte layer and secondary battery
JP2010015717A (en) Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it
JPWO2003005478A1 (en) Polymer battery and polymer electrolyte
WO2023190482A1 (en) Non-aqueous electrolytic solution and electrochemical device
WO2019225078A1 (en) Insulating layer, battery cell sheet, and secondary battery
TW202120587A (en) Composition
WO2020203871A1 (en) Electrolyte composition for electrochemical devices, and electrochemical device
TWI589052B (en) Electrolyte membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780283

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024512420

Country of ref document: JP