WO2023190189A1 - Winding electrolytic capacitor - Google Patents

Winding electrolytic capacitor Download PDF

Info

Publication number
WO2023190189A1
WO2023190189A1 PCT/JP2023/011884 JP2023011884W WO2023190189A1 WO 2023190189 A1 WO2023190189 A1 WO 2023190189A1 JP 2023011884 W JP2023011884 W JP 2023011884W WO 2023190189 A1 WO2023190189 A1 WO 2023190189A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
anode foil
cathode
capacitance
anode
Prior art date
Application number
PCT/JP2023/011884
Other languages
French (fr)
Japanese (ja)
Inventor
太一 梅原
光軌 相良
貴大 長谷川
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2023190189A1 publication Critical patent/WO2023190189A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Definitions

  • Electrolytic capacitor is a passive element that stores and discharges charge using capacitance.
  • Electrolytic capacitors include valve metals such as tantalum or aluminum as anode and cathode foils.
  • the anode foil and the cathode foil are valve metal foils.
  • a dielectric oxide film is formed on the surface of the anode foil.
  • An electrolytic solution is interposed between the anode foil and the cathode foil.
  • the electrolyte comes into close contact with the dielectric oxide film of the anode foil and functions as a true cathode.
  • the degree of contact between the electrolyte and the dielectric oxide film of the anode foil affects the rate of capacitance appearance of the electrolytic capacitor.
  • the capacitance appearance rate is the ratio of the measured capacitance to the theoretical capacitance of the electrolytic capacitor (actual capacitance/theoretical capacitance ⁇ 100).
  • Electrolytic capacitors are also increasingly required to have higher capacitance.
  • the surface of the anode foil is expanded by forming the valve metal into a sintered body or etched foil, and a dielectric oxide film is formed on the expanded surface. This enabled the electrolytic capacitor to have a high capacity.
  • POEG is preferably in a liquid state at room temperature.
  • the molecular weight of POEG is, for example, about 1000
  • POEG is in a liquid state at room temperature.
  • POEG is in a solid state at room temperature, it can be added to the electrolytic solution by dissolving it in the solution by heating.
  • POEG which is in a liquid state at room temperature, is difficult to precipitate even if the solvent evaporates over time, and maintains a good electrostatic capacitance of the electrolytic capacitor.
  • borodimalic acid boroditartaric acid, borodiccitric acid, borodiphthalic acid, borodi(2-hydroxy)isobutyric acid, borodiresorcinic acid, borodimethylsalicylic acid, borodinaphthoic acid, borodimandelic acid, and borodi(3-hydroxy)propionic acid.
  • Polyamide resins such as vinylidene resins, vinylon resins, aliphatic polyamides, semi-aromatic polyamides, and fully aromatic polyamides, polyimide resins, polyethylene resins, polypropylene resins, trimethylpentene resins, polyphenylene sulfide resins, acrylic resins, etc. These resins can be used alone or in combination, and can be used in combination with cellulose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Provided is an electrolytic capacitor having a good capacitance appearance rate. This electrolytic capacitor comprises: an anode foil having a dielectric oxidizing coat; a cathode foil facing the anode foil; a separator interposed between the anode foil and the cathode foil; a capacitor element that winds around the anode foil and the cathode foil via the separator; and an electrolyte impregnated into the capacitor element. The electrolyte contains polyoxyethylene glycerin. The anode foil has a band width of more than 37mm along the winding shaft of the capacitor element .

Description

巻回形電解コンデンサWound electrolytic capacitor
 本発明は、陽極箔と陰極箔とを巻回した巻回形電解コンデンサに関する。 The present invention relates to a wound electrolytic capacitor in which an anode foil and a cathode foil are wound.
 電解コンデンサは、静電容量により電荷の蓄電及び放電を行う受動素子である。電解コンデンサは、タンタルあるいはアルミニウム等のような弁作用金属を陽極箔及び陰極箔として備えている。陽極箔及び陰極箔は、弁作用金属の箔体である。陽極箔の箔表面には誘電体酸化皮膜が形成されている。陽極箔と陰極箔の間には電解液が介在している。 An electrolytic capacitor is a passive element that stores and discharges charge using capacitance. Electrolytic capacitors include valve metals such as tantalum or aluminum as anode and cathode foils. The anode foil and the cathode foil are valve metal foils. A dielectric oxide film is formed on the surface of the anode foil. An electrolytic solution is interposed between the anode foil and the cathode foil.
 電解液は、陽極箔の誘電体酸化皮膜と密接し、真の陰極として機能する。電解液と陽極箔の誘電体酸化皮膜との接触度合いは、電解コンデンサの容量出現率に影響を及ぼす。容量出現率は、電解コンデンサの理論静電容量に対する実測静電容量の割合(実測静電容量/理論静電容量×100)である。 The electrolyte comes into close contact with the dielectric oxide film of the anode foil and functions as a true cathode. The degree of contact between the electrolyte and the dielectric oxide film of the anode foil affects the rate of capacitance appearance of the electrolytic capacitor. The capacitance appearance rate is the ratio of the measured capacitance to the theoretical capacitance of the electrolytic capacitor (actual capacitance/theoretical capacitance×100).
 理論静電容量は、電解コンデンサを陽極側と陰極側とが直列したコンデンサと見做した合成静電容量であり、陽極側静電容量と陰極側静電容量の乗算結果を、陽極側静電容量と陰極側静電容量の和で除算した算出式((陽極側静電容量×陰極側静電容量)/(陽極側静電容量+陰極側静電容量))で得られる。 Theoretical capacitance is a composite capacitance that assumes that an electrolytic capacitor is a capacitor with an anode and a cathode connected in series, and the result of multiplying the anode capacitance by the cathode capacitance is It is obtained by the calculation formula ((anode side capacitance x cathode side capacitance)/(anode side capacitance + cathode side capacitance)) divided by the sum of the capacitance and the cathode side capacitance.
 陽極側静電容量と陰極側静電容量は、箔から規定面積の試験片を切り出し、陽極側静電容量では白金板を対向電極とし、陰極側静電容量では試験片を2枚用いてお互いに対向電極とし、ガラス製の測定槽内の静電容量測定液に浸漬し、静電容量計を用い、JEITA規格RC-2364Aに従い計測する。 For the anode side capacitance and the cathode side capacitance, cut out a test piece with a specified area from the foil.For the anode side capacitance, use a platinum plate as the opposing electrode, and for the cathode side capacitance, use two test pieces to connect them to each other. as a counter electrode, immerse it in a capacitance measurement liquid in a glass measurement tank, and measure it using a capacitance meter according to JEITA standard RC-2364A.
 近年、ビックデータの活用等に伴ったサーバ電源の大出力化や電波基地局の大出力化が急進している。電解コンデンサも高容量化が求められる場面が多くなっている。陽極箔は、弁作用金属を焼結体あるいはエッチング箔等の形状にすることで拡面化され、拡面化された表面に誘電体酸化皮膜が形成される。これにより、電解コンデンサは、高容量化が可能であった。 In recent years, there has been a rapid increase in the power output of server power supplies and radio base stations due to the use of big data. Electrolytic capacitors are also increasingly required to have higher capacitance. The surface of the anode foil is expanded by forming the valve metal into a sintered body or etched foil, and a dielectric oxide film is formed on the expanded surface. This enabled the electrolytic capacitor to have a high capacity.
 また、機器の大出力化に伴い、電解コンデンサに要求される耐電圧も高くなっている。電解液の火花電圧を高めるため、電解液には耐圧向上剤が添加される。耐圧向上剤としては、ポリビニルアルコールやポリエチレングリコール等のポリマー系化合物、又はシリカやアルミナ等の無機微粒子等が挙げられる(例えば特許文献1参照)。 Additionally, with the increase in the output of devices, the withstand voltage required of electrolytic capacitors is also increasing. In order to increase the spark voltage of the electrolyte, a pressure-resistant improver is added to the electrolyte. Examples of the pressure resistance improver include polymer compounds such as polyvinyl alcohol and polyethylene glycol, and inorganic fine particles such as silica and alumina (see, for example, Patent Document 1).
特開2011-176102号公報Japanese Patent Application Publication No. 2011-176102
 このように電解コンデンサには高容量化が求められるようになっており、本発明は、より高容量化できるように、良好な容量出現率を有する電解コンデンサを提供することにある。 As described above, electrolytic capacitors are required to have higher capacitance, and the object of the present invention is to provide an electrolytic capacitor that has a good capacity appearance rate so that the capacitance can be increased.
 上記課題を解決すべく、本実施形態の電解コンデンサは、誘電体酸化皮膜を有する陽極箔と、前記陽極箔と対向する陰極箔と、前記陽極箔と前記陰極箔との間に介在するセパレータと、前記セパレータと前記陽極箔と前記陰極箔を巻回したコンデンサ素子と、前記コンデンサ素子に含浸した電解液と、を備え、前記電解液には、ポリオキシエチレングリセリンが含まれ、前記陽極箔は、前記コンデンサ素子の巻軸に沿った帯幅が37mm超である。 In order to solve the above problems, the electrolytic capacitor of the present embodiment includes an anode foil having a dielectric oxide film, a cathode foil facing the anode foil, and a separator interposed between the anode foil and the cathode foil. , comprising a capacitor element in which the separator, the anode foil, and the cathode foil are wound, and an electrolyte impregnated in the capacitor element, the electrolyte containing polyoxyethylene glycerin, and the anode foil comprising: , the band width along the winding axis of the capacitor element is more than 37 mm.
 前記陽極箔は、前記コンデンサ素子の巻軸に沿った帯幅が150mm以下であるようにしてもよい。 The anode foil may have a band width of 150 mm or less along the winding axis of the capacitor element.
 前記セパレータは、平均密度が0.85g/cm以上であるようにしてもよい。 The separator may have an average density of 0.85 g/cm 3 or more.
 前記陰極箔は、当該陰極箔上に積層されるカーボン層を備えるようにしてもよい。 The cathode foil may include a carbon layer laminated on the cathode foil.
 本発明によれば、電解コンデンサの容量出現率が良好に維持され、大容量化し易くなる。 According to the present invention, the capacitance appearance rate of the electrolytic capacitor is maintained well, making it easier to increase the capacitance.
横軸を陽極箔の帯幅、縦軸を容量出現率とするPOEG系列とPO&EO付加グリセリン系列のグラフである。It is a graph of the POEG series and the PO&EO-added glycerin series, with the horizontal axis representing the band width of the anode foil and the vertical axis representing the capacity appearance rate. PO&EO付加グリセリン系列の各容量出現率を基準としたPOEG系列の陽極箔の帯幅と容量出現率との関係を示すグラフである。It is a graph showing the relationship between the band width of the anode foil of the POEG series and the capacity appearance rate based on each capacity appearance rate of the PO&EO-added glycerin series. PO&EO付加グリセリン系列とPOEG系列の近似直線を示すグラフである。It is a graph showing approximate straight lines of the PO&EO-added glycerin series and the POEG series. (a)は実施例4の陽極箔の写真であり、(b)は比較例4の陽極箔の写真である。(a) is a photograph of the anode foil of Example 4, and (b) is a photograph of the anode foil of Comparative Example 4.
 電解コンデンサは、静電容量により電荷の蓄電及び放電を行う受動素子である。電解コンデンサは、セパレータを介して陽極箔と陰極箔とを対向させたコンデンサ素子を備えている。陽極箔の箔表面には誘電体酸化皮膜が形成されている。このコンデンサ素子は電解液を含んでいる。電解液は、陽極箔と陰極箔の間に介在し、陽極箔の誘電体酸化皮膜に密接し、真の陰極となっている。 An electrolytic capacitor is a passive element that stores and discharges charge using capacitance. An electrolytic capacitor includes a capacitor element in which an anode foil and a cathode foil are opposed to each other with a separator in between. A dielectric oxide film is formed on the surface of the anode foil. This capacitor element contains an electrolyte. The electrolytic solution is interposed between the anode foil and the cathode foil, and is in close contact with the dielectric oxide film of the anode foil, forming a true cathode.
 この電解コンデンサは巻回形である。コンデンサ素子は、陽極箔と陰極箔を渦巻き状に巻き込んで構成されている。陽極箔と陰極箔は、弁作用金属を材料とする長尺の箔体である。コンデンサ素子の巻軸は、陽極箔と陰極箔の短辺の延び方向、即ち帯幅方向と一致している。陽極箔と陰極箔は、短辺に沿って延びる巻軸を有し、長辺が丸められるように、長辺方向に沿って巻き込まれていき、コンデンサ素子を形成している。 This electrolytic capacitor is a wound type. The capacitor element is constructed by winding an anode foil and a cathode foil into a spiral shape. The anode foil and the cathode foil are long foil bodies made of valve metal. The winding axis of the capacitor element coincides with the extending direction of the short sides of the anode foil and the cathode foil, that is, the band width direction. The anode foil and the cathode foil have a winding axis extending along the short side, and are wound along the long side so that the long side is rounded to form a capacitor element.
 陽極箔の短辺、即ちコンデンサ素子の巻軸に沿った帯幅は37mm超である。陰極箔の短辺は、陽極箔に陰極箔と非対向の領域ができないように、陽極箔の短辺と同長もしくは同長以上が好ましい。陰極箔の長辺についても、陽極箔に陰極箔と非対向の領域ができないように、陽極箔の長辺と同長もしくは同長以上が好ましい。セパレータは、先んじて巻かれて巻軸を形成できるように、陽極箔及び陰極箔の長辺よりも長いことが好ましい。 The band width along the short side of the anode foil, that is, along the winding axis of the capacitor element, is more than 37 mm. The short side of the cathode foil is preferably the same length or longer than the short side of the anode foil so that there is no area in the anode foil that does not face the cathode foil. The long sides of the cathode foil are also preferably the same length or longer than the long sides of the anode foil so that there is no area on the anode foil that does not face the cathode foil. The separator is preferably longer than the long sides of the anode foil and the cathode foil so that it can be wound in advance to form a winding shaft.
 コンデンサ素子に電解液を含浸させるとき、電解液は、コンデンサ素子の周面と直交して平坦な端面からコンデンサ素子の中心方向に向けて浸透させていく。電解液の含浸工程では、必要に応じて減圧処理や加圧処理を加える。コンデンサ素子に含浸させる電解液には、ポリオキシエチレングリセリン(以下、POEGという)を含有させる。POEGは、ポリビニルアルコールやポリエチレングリコールと同じように、元来は耐圧向上剤として機能する。 When impregnating the capacitor element with an electrolytic solution, the electrolytic solution permeates toward the center of the capacitor element from the flat end face perpendicular to the circumferential surface of the capacitor element. In the electrolytic solution impregnation process, reduced pressure treatment or pressure treatment is added as necessary. The electrolytic solution with which the capacitor element is impregnated contains polyoxyethylene glycerin (hereinafter referred to as POEG). POEG, like polyvinyl alcohol and polyethylene glycol, originally functions as a pressure enhancer.
 コンデンサ素子が巻回形であること、陽極箔の巻軸方向の長さが37mm超であること、及び電解液にPOEGが含まれていること、この電解コンデンサは、これら3条件を満たしている。これらの構成が組み合わさると、電解コンデンサの容量出現率が他構成と比べて相対的に良好になり、電解コンデンサを大容量化し易くなる。尚、他構成として、巻回形であるが、陽極箔の巻軸方向の長さが27mm以上80mmの範囲であり、電解液にPOEG以外の耐圧向上剤を含有させた電解コンデンサを比較対象としている。 This electrolytic capacitor satisfies these three conditions: the capacitor element is of a wound type, the length of the anode foil in the direction of the winding axis is over 37 mm, and the electrolyte contains POEG. . When these configurations are combined, the capacitance appearance rate of the electrolytic capacitor becomes relatively good compared to other configurations, and it becomes easier to increase the capacity of the electrolytic capacitor. In addition, as another configuration, although it is a wound type, the length of the anode foil in the winding axis direction is in the range of 27 mm or more and 80 mm, and the electrolytic capacitor whose electrolyte solution contains a voltage resistance improver other than POEG was compared. There is.
 陽極箔の巻軸に沿った帯幅は70mm以下が好ましい。70mmまでは、巻回形であること、陽極箔の巻軸方向の長さを37mm超であること、及び電解液にPOEGが含まれていることの3条件を満たすことで、電解コンデンサの容量出現率は、他構成と比べても高い95%超を維持する。 The band width along the winding axis of the anode foil is preferably 70 mm or less. Up to 70 mm, the capacitance of the electrolytic capacitor can be increased by satisfying three conditions: it is a wound type, the length of the anode foil in the direction of the winding axis is over 37 mm, and the electrolyte contains POEG. The appearance rate remains at over 95%, which is high compared to other configurations.
 また、陽極箔の巻軸に沿った帯幅は70mm超が好ましい。巻回形であるが、陽極箔の巻軸方向の長さが70mm超の範囲であり、電解液にPOEG以外の耐圧向上剤を含有させた電解コンデンサは、容量出現率が顕著に低下してしまう。しかしながら、陽極箔の巻軸方向の長さが70mm超であること、巻回形であること、及び電解液にPOEGが含まれていることの3条件を満たすことで、電解コンデンサの容量出現率の低下は抑制され、電解液にPOEG以外の耐圧向上剤を含有させた電解コンデンサと比べて容量出現率が優位となる。 Furthermore, the band width along the winding axis of the anode foil is preferably more than 70 mm. Although it is a wound type electrolytic capacitor, the length of the anode foil in the direction of the winding axis is in the range of more than 70 mm, and the electrolytic solution contains a voltage resistance improver other than POEG, and the capacitance appearance rate is significantly reduced. Put it away. However, by satisfying three conditions: the length of the anode foil in the winding axis direction is over 70 mm, the shape is wound, and the electrolyte contains POEG, the capacitance appearance rate of the electrolytic capacitor is The decrease in the capacitance is suppressed, and the capacitance appearance rate is superior to that of an electrolytic capacitor in which the electrolyte contains a voltage resistance improver other than POEG.
 ここで、JIS規格(JIS C 5101-4-1)では、静電容量の許容差は±20%が好ましいと規定されている。この規定に沿う場合、陽極箔の巻軸に沿った帯幅の上限については150mm以下が好ましい。陽極箔の巻軸方向の長さが150mm以下の電解コンデンサは、更に巻回形であり、電解液にPOEGが含まれていれば、80%の容量維持率を簡便に達成できる。 Here, the JIS standard (JIS C 5101-4-1) stipulates that the tolerance of capacitance is preferably ±20%. When this regulation is met, the upper limit of the band width along the winding axis of the anode foil is preferably 150 mm or less. An electrolytic capacitor in which the length of the anode foil in the direction of the winding axis is 150 mm or less is of a wound type, and if the electrolyte contains POEG, a capacity retention rate of 80% can be easily achieved.
 電解液は、コンデンサ素子の周面と直交する平坦な端面からコンデンサ素子の中心方向に向けて浸透しつつ、セパレータに染み込んで保持される。セパレータの平均密度は0.85g/cm以上が好ましい。巻回形であること、陽極箔の巻軸方向の長さを37mm超であること、及び電解液にPOEGが含まれていること、電解コンデンサは、これら3条件を満たすと、セパレータの密度を上げても容量出現率は高く保たれる。 The electrolytic solution permeates toward the center of the capacitor element from the flat end face perpendicular to the circumferential surface of the capacitor element, and is retained in the separator. The average density of the separator is preferably 0.85 g/cm 3 or more. If the electrolytic capacitor satisfies these three conditions: the length of the anode foil in the direction of the winding axis is over 37 mm, and the electrolyte contains POEG, the separator density can be Even if it is increased, the capacity appearance rate remains high.
 セパレータを薄肉化できれば、一定外径のコンデンサ素子に巻回可能な陽極箔及び陰極箔の帯長さを延長できる。陽極箔及び陰極箔の帯長さを延長できれば、電極面積が大きくなる。3条件を満たすことで達成される高い容量出現率と、セパレータの薄肉化で達成される大きな電極面積とが相俟って、この電解コンデンサの静電容量は更に大きくなる。 If the separator can be made thinner, the length of the anode foil and cathode foil bands that can be wound around a capacitor element with a constant outer diameter can be extended. If the lengths of the anode foil and cathode foil can be extended, the electrode area will become larger. The high capacitance appearance rate achieved by satisfying the three conditions and the large electrode area achieved by thinning the separator combine to further increase the capacitance of this electrolytic capacitor.
 尚、POEGは、常温で液体状態が好ましい。POEGの分子量が例えば1000程度であると、POEGは常温で液体状態である。POEGを常温で固体状態とする場合、加熱によりPOEGを溶液中に溶解させることで、電解液に添加できる。但し、常温で液体状態のPOEGは、経時的に溶媒が揮発しても析出し難く、電解コンデンサの静電容量を良好に保つ。 Note that POEG is preferably in a liquid state at room temperature. When the molecular weight of POEG is, for example, about 1000, POEG is in a liquid state at room temperature. When POEG is in a solid state at room temperature, it can be added to the electrolytic solution by dissolving it in the solution by heating. However, POEG, which is in a liquid state at room temperature, is difficult to precipitate even if the solvent evaporates over time, and maintains a good electrostatic capacitance of the electrolytic capacitor.
 このような電解コンデンサにおいて、陽極箔、陰極箔、電解液及びセパレータは公知のものを適用でき、特に限定されない。 In such an electrolytic capacitor, known anode foils, cathode foils, electrolytes, and separators can be used and are not particularly limited.
 例えば、陽極箔及び陰極箔に用いられる弁作用金属は、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス及びアンチモン等である。純度が高いほうがは望ましいが、ケイ素、鉄、銅、マグネシウム、亜鉛等の不純物が含まれていてもよい。 For example, valve metals used for anode foils and cathode foils include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony. Although it is desirable that the purity be high, it may contain impurities such as silicon, iron, copper, magnesium, and zinc.
 陽極箔及び陰極箔に形成される拡面層は、弁作用金属の粉体を焼結した焼結体、又は延伸された箔にエッチング処理を施したエッチング層であり、トンネル状のピット、海綿状のピット、又は密集した粉体間の空隙により成る。トンネル状のピットは箔に貫設されてもよい。誘電体酸化皮膜は、典型的には、陽極箔の表層に形成される酸化皮膜であり、陽極箔がアルミニウム製であれば拡面層の表面を酸化させた酸化アルミニウム層である。陰極箔は自然酸化皮膜を有していてもよいし、化成処理により薄い誘電体酸化皮膜(1~10V程度)が形成されていてもよい。 The surface-expanding layer formed on the anode foil and the cathode foil is a sintered body made by sintering valve metal powder, or an etched layer made by etching a stretched foil. It consists of shaped pits or voids between densely packed particles. Tunnel-like pits may be provided through the foil. The dielectric oxide film is typically an oxide film formed on the surface layer of the anode foil, and if the anode foil is made of aluminum, it is an aluminum oxide layer obtained by oxidizing the surface of the surface expanding layer. The cathode foil may have a natural oxide film, or a thin dielectric oxide film (approximately 1 to 10 V) may be formed by chemical conversion treatment.
 陰極箔の表面には、主材として炭素材を含むカーボン層が形成されてもよい。即ち、陰極側は、当該陰極箔とカーボン層が積層した陰極箔であってもよい。陰極箔にカーボン層が積層されていると、陰極側が陰極体であると、本電解コンデンサの3条件と相俟って、次のように電解コンデンサの大容量化が達成される。 A carbon layer containing a carbon material as a main material may be formed on the surface of the cathode foil. That is, the cathode side may be a cathode foil in which the cathode foil and a carbon layer are laminated. When a carbon layer is laminated on the cathode foil and the cathode body is on the cathode side, in combination with the three conditions of the present electrolytic capacitor, a large capacity of the electrolytic capacitor is achieved as follows.
 即ち、カーボン層が陰極箔上に積層されると、電解コンデンサ内の水素ガス発生総量が抑制される。水素ガス発生総量が抑制される理由は、陰極で水素イオンの還元反応よりも溶存酸素の還元反応が優位になるためと推測される。水素ガス発生総量を陰極側の措置で抑制できるならば、水素ガス発生メカニズムの発端となる誘電体酸化皮膜修復の際の漏れ電流の増加の多少は許容される。 That is, when the carbon layer is laminated on the cathode foil, the total amount of hydrogen gas generated within the electrolytic capacitor is suppressed. The reason why the total amount of hydrogen gas generated is suppressed is presumed to be that the reduction reaction of dissolved oxygen becomes more dominant than the reduction reaction of hydrogen ions at the cathode. If the total amount of hydrogen gas generated can be suppressed by measures on the cathode side, some increase in leakage current during repair of the dielectric oxide film, which is the origin of the hydrogen gas generation mechanism, can be tolerated.
 漏れ電流の増加が許容されるならば、陽極箔の耐電圧を下げることになる誘電体酸化皮膜の薄肉化が可能となる。誘電体酸化皮膜が薄肉化されると、極間距離が狭まり、電解コンデンサの容量が底上げされる。そのため、陰極箔にカーボン層を積層すると、容量出現率の増加と容量の底上げが相俟って、電解コンデンサの大容量化が達成される。 If the increase in leakage current is allowed, it becomes possible to reduce the thickness of the dielectric oxide film, which lowers the withstand voltage of the anode foil. When the dielectric oxide film becomes thinner, the distance between the electrodes becomes narrower, and the capacitance of the electrolytic capacitor increases. Therefore, when a carbon layer is laminated on the cathode foil, the rate of appearance of the capacitance increases and the level of the capacitance increases, thereby increasing the capacitance of the electrolytic capacitor.
 カーボン層に含有させる炭素材は、黒鉛、カーボンブラック、活性炭、カーボンナノホーン、繊維状炭素、又はこれらの混合である。黒鉛としては、天然黒鉛、人造黒鉛、黒鉛化ケッチェンブラック等が挙げられる。カーボンブラックとしては、ケッチェンブラック、アセチレンブラック、チャネルブラック及びサーマルブラック等が挙げられる。活性炭は、やしがら等の天然植物組織、フェノール等の合成樹脂、石炭、コークス、ピッチ等の化石燃料由来のものを原料とする。繊維状炭素としては、カーボンナノチューブ(以下、CNT)、カーボンナノファイバ(以下、CNF)等が挙げられる。 The carbon material contained in the carbon layer is graphite, carbon black, activated carbon, carbon nanohorn, fibrous carbon, or a mixture thereof. Examples of graphite include natural graphite, artificial graphite, and graphitized Ketjenblack. Examples of carbon black include Ketjen black, acetylene black, channel black, and thermal black. Activated carbon is made from natural plant tissues such as coconut shells, synthetic resins such as phenol, and materials derived from fossil fuels such as coal, coke, and pitch. Examples of fibrous carbon include carbon nanotubes (hereinafter referred to as CNTs), carbon nanofibers (hereinafter referred to as CNFs), and the like.
 活性炭や繊維状炭素は、パイ電子が非局在化し、比表面積が大きいため、カーボン層に含有させる炭素材として好ましい。炭素材には、賦活処理や開口処理などの多孔質化処理を施すようにしてもよい。 Activated carbon and fibrous carbon are preferable as carbon materials to be included in the carbon layer because pi electrons are delocalized and the specific surface area is large. The carbon material may be subjected to porous treatment such as activation treatment or opening treatment.
 カーボン層と陰極箔との密着性向上のため、陰極箔の表面に拡面層を形成し、拡面層上にカーボン層を形成してもよい。また、カーボン層と陰極箔との密着性向上のため、カーボン層を形成した陰極箔をプレス加工することが好ましい。プレス加工では、例えばカーボン層と陰極箔をプレスローラで挟んで、プレス線圧を加える。プレス圧力は0.01~100t/cm程度が望ましい。カーボン層と陰極箔とが圧接させると、炭素材が拡面層の細孔に入り込み、また炭素材が拡面層の凹凸面に沿って変形し、カーボン層と陰極箔との密着性及び定着性は更に向上する。 In order to improve the adhesion between the carbon layer and the cathode foil, a surface-expanding layer may be formed on the surface of the cathode foil, and a carbon layer may be formed on the surface-expanding layer. Further, in order to improve the adhesion between the carbon layer and the cathode foil, it is preferable to press the cathode foil on which the carbon layer is formed. In press processing, for example, the carbon layer and cathode foil are sandwiched between press rollers and press linear pressure is applied. The press pressure is preferably about 0.01 to 100 t/cm. When the carbon layer and the cathode foil are brought into pressure contact, the carbon material enters the pores of the surface-expanding layer, and the carbon material deforms along the uneven surface of the surface-expanding layer, improving the adhesion and fixation between the carbon layer and the cathode foil. The quality will further improve.
 カーボン層に含有する炭素材は、特に限定されないが、球状炭素であるカーボンブラックも好ましい。陰極箔の表面に形成した拡面層がエッチングピットである場合、エッチングピットの開口径よりも小さな粒子径のカーボンブラックを用いると、エッチングピットのより深部に入り込みやすく、カーボン層は陰極箔と密着する。 The carbon material contained in the carbon layer is not particularly limited, but carbon black, which is spherical carbon, is also preferred. If the surface-expanding layer formed on the surface of the cathode foil is an etching pit, using carbon black with a particle size smaller than the opening diameter of the etching pit will allow the carbon black to penetrate deeper into the etching pit, and the carbon layer will come into close contact with the cathode foil. do.
 また、カーボン層に含有する炭素材は、鱗片状又は鱗状の黒鉛と球状炭素であるカーボンブラックであってもよい。鱗片状又は鱗状の黒鉛は、短径と長径とのアスペクト比が1:5~1:100の範囲であることが好ましい。球状炭素であるカーボンブラックは、好ましくは一次粒子径が平均100nm以下である。この組み合わせの炭素材を含有するカーボン層を陰極箔に積層した場合、カーボンブラックは、黒鉛によって拡面層の細孔に擦り込まれ易い。黒鉛は、拡面層の凹凸面に沿って変形し易く、凹凸面上に積み重なり易い。そして、黒鉛は、押圧蓋になって細孔に擦り込まれた球状炭素を押し留める。そのため、カーボン層と陰極箔との密着性及び定着性がより高まる。 Further, the carbon material contained in the carbon layer may be flaky or scaly graphite and carbon black, which is spherical carbon. The scale-like or scaly graphite preferably has an aspect ratio of a short axis to a long axis in the range of 1:5 to 1:100. Carbon black, which is spherical carbon, preferably has a primary particle diameter of 100 nm or less on average. When a carbon layer containing this combination of carbon materials is laminated on a cathode foil, carbon black is easily rubbed into the pores of the surface-expanding layer by graphite. Graphite is easily deformed along the uneven surface of the surface-expanding layer and easily piled up on the uneven surface. The graphite then acts as a pressure cap and holds down the spherical carbon that has been rubbed into the pores. Therefore, the adhesion and fixing properties between the carbon layer and the cathode foil are further improved.
 電解液は、POEGに加え、アニオン成分とカチオン成分を含有する。電解液の溶媒としては、プロトン性の有機極性溶媒又は非プロトン性の有機極性溶媒が挙げられ、単独又は2種類以上が組み合わせられる。プロトン性の有機極性溶媒は、一価アルコール類、多価アルコール類及びオキシアルコール化合物類などが挙げられ、例えばエチレングリコール、プロピレングリコール又はグリセリン等である。非プロトン性の有機極性溶媒は、スルホン系、アミド系、ラクトン類、環状アミド系、ニトリル系、スルホキシド系などが代表として挙げられ、例えばγ-ブチロラクトン、エチレンカーボネート、プロピレンカーボネート、アセトニトリル等である。 The electrolytic solution contains an anion component and a cation component in addition to POEG. Examples of the solvent for the electrolytic solution include protic organic polar solvents and aprotic organic polar solvents, which may be used alone or in combination of two or more. Examples of the protic organic polar solvent include monohydric alcohols, polyhydric alcohols, and oxyalcohol compounds, such as ethylene glycol, propylene glycol, and glycerin. Representative examples of aprotic organic polar solvents include sulfonic, amide, lactone, cyclic amide, nitrile, and sulfoxide solvents, such as γ-butyrolactone, ethylene carbonate, propylene carbonate, and acetonitrile.
 アニオン成分となる有機酸としては、シュウ酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、アジピン酸、安息香酸、トルイル酸、エナント酸、マロン酸、1,6-デカンジカルボン酸、1,7-オクタンジカルボン酸、アゼライン酸、レゾルシン酸、フロログルシン酸、没食子酸、ゲンチシン酸、プロトカテク酸、ピロカテク酸、トリメリット酸、ピロメリット酸等のカルボン酸や、フェノール類、スルホン酸が挙げられる。また、アニオン成分となる無機酸としては、ホウ酸、リン酸、亜リン酸、次亜リン酸、炭酸、ケイ酸等が挙げられる。アニオン成分となる有機酸と無機酸の複合化合物としては、ボロジサリチル酸、ボロジ蓚酸、ボロジグリコール酸、ボロジマロン酸、ボロジコハク酸、ボロジアジピン酸、ボロジアゼライン酸、ボロジ安息香酸、ボロジマレイン酸、ボロジ乳酸、ボロジリンゴ酸、ボロジ酒石酸、ボロジクエン酸、ボロジフタル酸、ボロジ(2-ヒドロキシ)イソ酪酸、ボロジレゾルシン酸、ボロジメチルサリチル酸、ボロジナフトエ酸、ボロジマンデル酸及びボロジ(3-ヒドロキシ)プロピオン酸等が挙げられる。 Organic acids that serve as anionic components include oxalic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, adipic acid, benzoic acid, toluic acid, and enanthic acid. , malonic acid, 1,6-decanedicarboxylic acid, 1,7-octanedicarboxylic acid, azelaic acid, resorcinic acid, phloroglucic acid, gallic acid, gentisic acid, protocatechuic acid, pyrocatechuic acid, trimellitic acid, pyromellitic acid, etc. Examples include carboxylic acids, phenols, and sulfonic acids. In addition, examples of inorganic acids serving as anionic components include boric acid, phosphoric acid, phosphorous acid, hypophosphorous acid, carbonic acid, and silicic acid. Examples of composite compounds of organic acids and inorganic acids that serve as anionic components include borodisalicylic acid, borodisoxalic acid, borodiglycolic acid, borodismalonic acid, borodisuccinic acid, borodiadipic acid, borodiazelaic acid, borodisbenzoic acid, borodismaleic acid, and borodisilactic acid. , borodimalic acid, boroditartaric acid, borodiccitric acid, borodiphthalic acid, borodi(2-hydroxy)isobutyric acid, borodiresorcinic acid, borodimethylsalicylic acid, borodinaphthoic acid, borodimandelic acid, and borodi(3-hydroxy)propionic acid.
 また、有機酸、無機酸、ならびに有機酸と無機酸の複合化合物の少なくとも1種の塩としては、例えばアンモニウム塩、四級アンモニウム塩、四級化アミジニウム塩、アミン塩、ナトリウム塩、カリウム塩等が挙げられる。四級アンモニウム塩の四級アンモニウムイオンとしては、テトラメチルアンモニウム、トリエチルメチルアンモニウム、テトラエチルアンモニウム等が挙げられる。四級化アミジニウム塩としては、エチルジメチルイミダゾリニウム、テトラメチルイミダゾリニウム等が挙げられる。アミン塩としては、一級アミン、二級アミン、三級アミンの塩が挙げられる。一級アミンとしては、メチルアミン、エチルアミン、プロピルアミン等、二級アミンとしては、ジメチルアミン、ジエチルアミン、エチルメチルアミン、ジブチルアミン等、三級アミンとしては、トリメチルアミン、トリエチルアミン、トリブチルアミン、エチルジメチルアミン、エチルジイソプロピルアミン等が挙げられる。 Examples of at least one salt of an organic acid, an inorganic acid, or a composite compound of an organic acid and an inorganic acid include ammonium salts, quaternary ammonium salts, quaternized amidinium salts, amine salts, sodium salts, potassium salts, etc. can be mentioned. Examples of the quaternary ammonium ion of the quaternary ammonium salt include tetramethylammonium, triethylmethylammonium, and tetraethylammonium. Examples of quaternized amidinium salts include ethyldimethylimidazolinium and tetramethylimidazolinium. Examples of amine salts include salts of primary amines, secondary amines, and tertiary amines. Primary amines include methylamine, ethylamine, propylamine, etc. Secondary amines include dimethylamine, diethylamine, ethylmethylamine, dibutylamine, etc. Tertiary amines include trimethylamine, triethylamine, tributylamine, ethyldimethylamine, Examples include ethyldiisopropylamine.
 電解液には他の添加剤を添加することもできる。添加剤としては、リン酸を含むリン酸化合物、ホウ酸を含むホウ酸化合物、ホウ酸とマンニットやソルビット等の糖アルコールとの錯化合物、コロイダルシリカ及びシリコーンオイル等が挙げられる。 Other additives can also be added to the electrolyte. Examples of additives include phosphoric acid compounds containing phosphoric acid, boric acid compounds containing boric acid, complex compounds of boric acid and sugar alcohols such as mannitol and sorbitol, colloidal silica, and silicone oil.
 電解質として、電解液に加えて固体電解質を併用してもよい。固体電解質は、例えば導電性高分子である。導電性高分子は、分子内のドーパント分子によりドーピングされた自己ドープ型又は外部ドーパント分子によりドーピングされた共役系高分子である。共役系高分子は、π共役二重結合を有するモノマー又はその誘導体を化学酸化重合または電解酸化重合することによって得られる。共役系高分子やドーパントは、公知のものを特に限定なく使用することができる。 As the electrolyte, a solid electrolyte may be used in addition to the electrolytic solution. The solid electrolyte is, for example, a conductive polymer. The conductive polymer is a self-doped type doped with an intramolecular dopant molecule or a conjugated polymer doped with an external dopant molecule. Conjugated polymers are obtained by chemical oxidative polymerization or electrolytic oxidative polymerization of monomers having π-conjugated double bonds or derivatives thereof. Any known conjugated polymer or dopant can be used without particular limitation.
 導電性高分子としては、PSSと称されるポリスチレンスルホン酸がドープされたPEDOTと呼称されるポリ(3,4-エチレンジオキシチオフェン)が特に好ましい。固体電解質は、固体電解質が溶媒中に分散して成る分散液にコンデンサ素子を浸漬して乾燥させることにより形成される。陽極箔、陰極箔及びセパレータを組立て前に別々に分散液に浸漬させてもよいし、滴下塗布したり、スプレー塗布等してもよい。電解液は、固体電解質の層がコンデンサ素子に形成されてから、コンデンサ素子に含浸させればよい。 As the conductive polymer, poly(3,4-ethylenedioxythiophene) called PEDOT doped with polystyrene sulfonic acid called PSS is particularly preferred. A solid electrolyte is formed by immersing a capacitor element in a dispersion liquid in which a solid electrolyte is dispersed in a solvent and then drying it. The anode foil, cathode foil, and separator may be separately dipped in the dispersion before assembly, or may be applied dropwise or sprayed. The electrolytic solution may be impregnated into the capacitor element after the solid electrolyte layer is formed on the capacitor element.
 セパレータは、陽極箔と陰極箔又は陰極体のショートを防止すべく、陽極箔と陰極箔との間に介在し、また電解液を保持する。セパレータは、クラフト、マニラ麻、エスパルト、ヘンプ、レーヨン等のセルロースおよびこれらの混合紙、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、それらの誘導体などのポリエステル系樹脂、ポリテトラフルオロエチレン系樹脂、ポリフッ化ビニリデン系樹脂、ビニロン系樹脂、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミド等のポリアミド系樹脂、ポリイミド系樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、トリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、アクリル樹脂等が挙げられ、これらの樹脂を単独で又は混合して用いることができ、またセルロースと混合して用いることができる。 The separator is interposed between the anode foil and the cathode foil to prevent short circuits between the anode foil and the cathode foil or the cathode body, and also holds the electrolyte. Separators can be made of cellulose such as kraft, Manila hemp, esparto, hemp, rayon, and mixed papers thereof, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and their derivatives, polytetrafluoroethylene resins, and polyfluoride. Polyamide resins such as vinylidene resins, vinylon resins, aliphatic polyamides, semi-aromatic polyamides, and fully aromatic polyamides, polyimide resins, polyethylene resins, polypropylene resins, trimethylpentene resins, polyphenylene sulfide resins, acrylic resins, etc. These resins can be used alone or in combination, and can be used in combination with cellulose.
 ここで、電解コンデンサには、高耐電圧に加え、高容量化が求められている。高容量化の実現のためには、陽極箔の拡面化に加え、陽極箔を大きくする必要がある。そのため、電解コンデンサは、コンデンサ素子の巻軸に沿った帯幅が大きくなる傾向にある。サーバ電源において、電解コンデンサが配置される筐体は、小型化しており、それに伴い、筐体に搭載される電解コンデンサも低背化や基板における専有面積の低減が求められる。そのため、低背化を目的に電解コンデンサを横に配置することが主流になりつつあり、この電解コンデンサを高容量化するには製品を長くすることが必然となっている。また、長さが短い電解コンデンサを複数個並列して用いるより、電解コンデンサの長さを長くして静電容量を確保して、搭載する電解コンデンサの個数を低減させることが求められている。 Here, electrolytic capacitors are required to have high capacity as well as high withstand voltage. In order to achieve high capacity, it is necessary to increase the size of the anode foil in addition to expanding the area of the anode foil. Therefore, electrolytic capacitors tend to have a larger band width along the winding axis of the capacitor element. In server power supplies, the casing in which electrolytic capacitors are placed is becoming smaller, and as a result, the electrolytic capacitors mounted in the casing are required to be lower in height and occupy less space on the board. For this reason, it is becoming mainstream to place electrolytic capacitors horizontally in order to reduce their height, and in order to increase the capacitance of electrolytic capacitors, it is necessary to make them longer. Furthermore, rather than using a plurality of short electrolytic capacitors in parallel, there is a need to increase the length of the electrolytic capacitor to ensure capacitance and reduce the number of electrolytic capacitors to be mounted.
 これに対し、本実施形態の電解コンデンサは、コンデンサ素子の巻軸方向が延長されていっても、容量出現率が高く保たれる。そこで、外径に対して巻軸方向が長い細長のコンデンサ素子を有し、実装基板の拡がりに対して垂直方向の低背化を進めることができ、横置き用途として好適となる。また、電解コンデンサの大容量化が可能となるので、搭載する電解コンデンサの個数を低減させることができる。 In contrast, in the electrolytic capacitor of this embodiment, the capacitance appearance rate is maintained high even if the winding axis direction of the capacitor element is extended. Therefore, by having an elongated capacitor element whose winding axis direction is longer than the outer diameter, it is possible to reduce the height in the direction perpendicular to the spread of the mounting board, making it suitable for horizontal use. Furthermore, since it is possible to increase the capacity of the electrolytic capacitor, the number of electrolytic capacitors to be mounted can be reduced.
 以下、実施例に基づいて、この電解コンデンサをさらに詳細に説明する。なお、本発明は下記実施例に限定されるものではない。 Hereinafter, this electrolytic capacitor will be explained in more detail based on Examples. Note that the present invention is not limited to the following examples.
 各参考例、各実施例及び各比較例の電解コンデンサを次のように作製した。陽極箔として帯状のアルミニウム箔を用いた。陰極側は、陰極箔とカーボン層を積層した陰極体とし、陰極箔は、陽極箔と同じく帯状のアルミニウム箔を用いた。 Electrolytic capacitors of each Reference Example, each Example, and each Comparative Example were manufactured as follows. A strip-shaped aluminum foil was used as the anode foil. On the cathode side, a cathode body was made by laminating a cathode foil and a carbon layer, and the cathode foil was a strip-shaped aluminum foil like the anode foil.
 陽極側のアルミニウム箔には直流エッチング処理を施し、トンネル状のエッチングピットにより成る拡面層を形成した。直流エッチング処理では、ピットを形成する第1の工程とピットを拡大する第2の工程を用い、第1の工程は塩素イオンを含む水溶液中で直流電流にて電気化学的にアルミニウム箔にエッチング処理を行った。 The aluminum foil on the anode side was subjected to direct current etching to form a surface-expanding layer consisting of tunnel-shaped etching pits. The DC etching process uses a first step to form pits and a second step to enlarge the pits.The first step is to electrochemically etch the aluminum foil using a direct current in an aqueous solution containing chlorine ions. I did it.
 拡面層を形成した後、陽極箔に対して、誘電体酸化皮膜を拡面層表面に形成する化成処理を行った。具体的には、液温85℃、4wt%のホウ酸の化成溶液中で650Vの電圧を印加した。 After forming the surface-expanding layer, the anode foil was subjected to a chemical conversion treatment to form a dielectric oxide film on the surface of the surface-expanding layer. Specifically, a voltage of 650 V was applied in a chemical solution of 4 wt% boric acid at a liquid temperature of 85°C.
 陰極側のアルミニウム箔には交流エッチング処理を施し、海綿状のエッチングピットにより成る拡面層を箔両面に形成した。次いで、アルミニウム箔に化成処理を施し、拡面層の表面に酸化皮膜を形成した。化成処理では、リン酸水溶液で交流エッチング処理の際に付着した塩素を除去した後、リン酸二水素アンモニウムの水溶液内で電圧を印加した。 The aluminum foil on the cathode side was subjected to AC etching treatment, and a surface-expanding layer consisting of spongy etching pits was formed on both sides of the foil. Next, the aluminum foil was subjected to a chemical conversion treatment to form an oxide film on the surface of the surface expanding layer. In the chemical conversion treatment, after removing chlorine deposited during AC etching with a phosphoric acid aqueous solution, a voltage was applied in an aqueous solution of ammonium dihydrogen phosphate.
 陰極箔に積層するカーボン層には、炭素材としてカーボンブラックを含有させた。まず、カーボンブラックの粉末、バインダーであるスチレンブタジエンゴム(SBR)、及び分散剤含有水溶液としてカルボキシメチルセルロースアンモニウム(CMC-NH)水溶液を混合して混練することでスラリーを作製した。 The carbon layer laminated on the cathode foil contained carbon black as a carbon material. First, a slurry was prepared by mixing and kneading carbon black powder, styrene butadiene rubber (SBR) as a binder, and an aqueous solution of carboxymethyl cellulose ammonium (CMC-NH 3 ) as an aqueous solution containing a dispersant.
 このスラリーを陰極箔に均一に塗布した。スラリーを加熱乾燥させて溶媒を揮発させた後、陰極箔にプレス加工を施した。プレス加工では、陰極箔をプレスローラで挟み込み、5.38kN/cmのプレス線圧をかけ、カーボン層を陰極箔上に定着させた。 This slurry was uniformly applied to the cathode foil. After the slurry was heated and dried to volatilize the solvent, the cathode foil was pressed. In the press processing, the cathode foil was sandwiched between press rollers and a press linear pressure of 5.38 kN/cm was applied to fix the carbon layer on the cathode foil.
 セパレータとして密度の異なるセパレータを重ねて用いた。具体的には、密度0.85g/cmで、厚さ15μmのクラフト紙からなるセパレータと、密度0.95g/cmで、厚さ25μmのクラフト紙からなるセパレータとを重ねて用いた。電解液は、耐圧向上剤とともに、溶媒としてエチレングリコールが含まれ、溶質としてアゼライン酸エチルアミンが含まれる。陽極箔と陰極箔との間にセパレータを挟んで巻回することでコンデンサ素子を作製し、コンデンサ素子を電解液中に浸漬させ、コンデンサ素子の両端面方向から電解液を含浸させた。 Separators with different densities were stacked and used as separators. Specifically, a separator made of kraft paper with a density of 0.85 g/cm 3 and a thickness of 15 μm and a separator made of kraft paper with a density of 0.95 g/cm 3 and a thickness of 25 μm were used in layers. The electrolytic solution contains ethylene glycol as a solvent, and ethylamine azelaate as a solute, along with a pressure improver. A capacitor element was produced by sandwiching and winding a separator between an anode foil and a cathode foil, and the capacitor element was immersed in an electrolytic solution, so that the electrolytic solution was impregnated from both end surfaces of the capacitor element.
 陽極箔と陰極箔には、アルミニウム製の箔状の引出端子が冷間圧接法により接続されている。電解液を含浸させた後、コンデンサ素子から導出した引出端子を、フェノール積層板からなる封口体に取り付けた外部端子に接続する。その後、コンデンサ素子をアルミニウム製のケースに収容し、ケースの開口を封口体で封止した。封口体で封止した後は、電解コンデンサに対してエージング処理を施した。エージング処理は、常温(30℃)にて90分間、490Vの電圧を印加した。 An aluminum foil-shaped lead terminal is connected to the anode foil and the cathode foil by cold pressure welding. After being impregnated with the electrolytic solution, the lead-out terminal led out from the capacitor element is connected to an external terminal attached to a sealing body made of a phenol laminate. Thereafter, the capacitor element was housed in an aluminum case, and the opening of the case was sealed with a sealant. After being sealed with the sealing body, the electrolytic capacitor was subjected to an aging treatment. In the aging treatment, a voltage of 490 V was applied for 90 minutes at room temperature (30° C.).
 各参考例、各実施例及び各比較例は、電解液に含ませる耐圧向上剤の種類と陽極箔の帯幅が異なる。各参考例、各実施例及び比較例の相違を以下表1に示す。尚、陽極箔と陰極箔は同長であり、代表して陽極箔のみを掲載してある。 Each Reference Example, each Example, and each Comparative Example differs in the type of pressure resistance improver included in the electrolytic solution and the band width of the anode foil. Differences among each reference example, each example, and comparative example are shown in Table 1 below. Note that the anode foil and the cathode foil are of the same length, and only the anode foil is shown as a representative.
 (表1)
Figure JPOXMLDOC01-appb-I000001
(Table 1)
Figure JPOXMLDOC01-appb-I000001
 表1に示すように、参考例1及び3並びに実施例1乃至6では、耐圧向上剤としてPOEGが電解液に含まれている。表1中、PO&EO付加グリセリンは、グリセリンの2つのヒドロキシ基位置にプロピレンオキシドの重合体(PO)とエチレンオキサイドの重合体(EO)が付加されたグリセリン誘導体である。参考例2及び4並びに比較例1乃至6では、耐圧向上剤としてPO&EO付加グリセリンが電解液に含まれている。電解液に添加した耐電圧向上剤の濃度は、各参考例、各実施例及び各比較例で同じである。 As shown in Table 1, in Reference Examples 1 and 3 and Examples 1 to 6, POEG was contained in the electrolytic solution as a pressure resistance improver. In Table 1, PO&EO-added glycerin is a glycerin derivative in which a propylene oxide polymer (PO) and an ethylene oxide polymer (EO) are added to two hydroxy group positions of glycerin. In Reference Examples 2 and 4 and Comparative Examples 1 to 6, PO&EO-added glycerin is contained in the electrolyte as a pressure-resistant improver. The concentration of the withstand voltage improver added to the electrolytic solution was the same in each Reference Example, each Example, and each Comparative Example.
 上表1に示す各参考例、各実施例した及び比較例の電解コンデンサの容量出現率を測定した。電解コンデンサの理論静電容量に対する実測静電容量の割合(実測静電容量/理論静電容量×100)を計算し、計算結果を容量出現率とした。理論静電容量は、算出式((陽極側静電容量×陰極側静電容量)/(陽極側静電容量+陰極側静電容量))を用いて計算した。 The capacitance appearance rates of the electrolytic capacitors of each reference example, each example, and comparative example shown in Table 1 above were measured. The ratio of the measured capacitance to the theoretical capacitance of the electrolytic capacitor (actual capacitance/theoretical capacitance x 100) was calculated, and the calculation result was taken as the capacity appearance rate. The theoretical capacitance was calculated using the formula ((anode side capacitance×cathode side capacitance)/(anode side capacitance+cathode side capacitance)).
 陽極側静電容量と陰極側静電容量は、エージング処理後の電解コンデンサを分解し、陽極箔と陰極箔を取り出し、箔から試験片を切り出し、白金板を対向電極とし、陰極側静電容量では試験片を2枚用いてお互いに対向電極とし、ガラス製の測定槽内の静電容量測定液に浸漬し、静電容量計を用い、JEITA規格RC-2364Aに従い計測した。 To measure the anode side capacitance and cathode side capacitance, disassemble the electrolytic capacitor after aging treatment, take out the anode foil and cathode foil, cut out a test piece from the foil, use a platinum plate as the counter electrode, and measure the cathode side capacitance. Here, two test pieces were used as electrodes facing each other, immersed in a capacitance measurement liquid in a glass measurement tank, and measured using a capacitance meter according to JEITA standard RC-2364A.
 各参考例、実施例及び比較例の電解コンデンサの容量出現率を下表2に示す。
 (表2)
Figure JPOXMLDOC01-appb-I000002
Table 2 below shows the capacitance appearance rates of the electrolytic capacitors of each Reference Example, Example, and Comparative Example.
(Table 2)
Figure JPOXMLDOC01-appb-I000002
 また、表2に基づき、図1のグラフを作成した。ここで、ポリオキシエチレングリセリンを用いた参考例1及び3並びに実施例1乃至6をPOEG系列とする。PO&EO付加グリセリンを用いた参考例2及び4並びに比較例1乃至6をPO&EO付加グリセリン系列とする。そして、横軸を陽極箔の帯幅、縦軸を容量出現率とし、同じ系列を同一のグラフに含めた。実施例を含むPOEG系列は丸印のプロットのグラフで表され、比較例を含むPO&EO付加グリセリン系列はx印のプロットのグラフで表されている。 Also, based on Table 2, the graph in FIG. 1 was created. Here, Reference Examples 1 and 3 and Examples 1 to 6 using polyoxyethylene glycerin are referred to as POEG series. Reference Examples 2 and 4 and Comparative Examples 1 to 6 using PO&EO-added glycerin are referred to as the PO&EO-added glycerin series. Then, the horizontal axis is the band width of the anode foil, the vertical axis is the capacity appearance rate, and the same series are included in the same graph. The POEG series including Examples is represented by a graph plotted with circles, and the PO&EO-added glycerin series including Comparative Examples is represented by a graph plotted with x marks.
 更に、表2に基づき、図2のグラフを作成した。図2では、PO&EO付加グリセリン系列内の各容量出現率を基準(100%)とし、POEG系列の各容量出現率の割合をプロットした。実施例を含むPOEG系列は丸印のプロットのグラフで表され、比較例を含むPO&EO付加グリセリン系列はx印のプロットのグラフで表されている。 Furthermore, based on Table 2, the graph in FIG. 2 was created. In FIG. 2, each capacity appearance rate in the PO&EO-added glycerin series is used as a reference (100%), and the ratio of each capacity appearance rate in the POEG series is plotted. The POEG series including Examples is represented by a graph plotted with circles, and the PO&EO-added glycerin series including Comparative Examples is represented by a graph plotted with x marks.
 表1、図1及び図2に示すように、POEG系列は、全ての陽極箔の帯幅において、容量出現率がPO&EO付加グリセリン系列より高い。そして、PO&EO付加グリセリン系列は、陽極箔の帯幅が37mm超になると容量出現率が一段大きく下落し、62mmになると容量出現率が急減し、更に70mm超になると容量出現率の低下が著しい。これに対し、POEG系列は、62mm以下の全ての陽極箔の帯幅で容量出現率が維持されており、陽極箔の帯幅が70mm超まで拡大しても容量出現率の低下は抑えられている。 As shown in Table 1, FIGS. 1 and 2, the POEG series has a higher capacity appearance rate than the PO&EO-added glycerin series in all anode foil band widths. In the PO&EO-added glycerin series, the capacity appearance rate drops significantly when the band width of the anode foil exceeds 37 mm, the capacity appearance rate sharply decreases when the band width becomes 62 mm, and the capacity appearance rate decreases significantly when the band width exceeds 70 mm. On the other hand, in the POEG series, the capacity appearance rate is maintained for all anode foil band widths of 62 mm or less, and even when the anode foil band width is increased to more than 70 mm, the decrease in capacity appearance rate is suppressed. There is.
 そのため、陽極箔の帯幅が37mm超になると、POEG系列はPO&EO付加グリセリン系列との容量出現率の差を拡げ、PO&EO付加グリセリン系列と比べて容量出現率が相対的に良化している。しかも、陽極箔の帯幅が例えば32mmの場合、POEG系列とPO&EO付加グリセリン系列との容量出現率の差が1.9%であったのが、陽極箔の帯幅が62mmになると、4.9%に拡大してPOEG系列が目立って優位になり、更に陽極箔の帯幅が70mm超になると、8.7%に拡大してPOEG系列が極めて優位になっている。 Therefore, when the band width of the anode foil exceeds 37 mm, the difference in capacity appearance rate between the POEG series and the PO&EO-added glycerin series widens, and the capacity appearance rate is relatively improved compared to the PO&EO-added glycerin series. Furthermore, when the band width of the anode foil is, for example, 32 mm, the difference in capacity appearance rate between the POEG series and the PO&EO-added glycerin series was 1.9%, but when the band width of the anode foil becomes 62 mm, the difference in capacity appearance rate is 4. When the rate increases to 9%, the POEG series becomes noticeably superior, and when the band width of the anode foil exceeds 70 mm, the rate increases to 8.7%, making the POEG series extremely superior.
 これにより、コンデンサ素子を巻回形とし、陽極箔の巻軸に沿った帯幅を37mm超にし、電解液にPOEGを含有させると、電解コンデンサの容量出現率が良好に維持され、大容量化し易くなることが確認された。 As a result, if the capacitor element is made into a wound type, the band width along the winding axis of the anode foil is made to exceed 37 mm, and the electrolyte contains POEG, the capacitance appearance rate of the electrolytic capacitor can be maintained well and the capacity can be increased. It was confirmed that it would be easier.
 続いて、図1のグラフのうち、陽極箔の帯幅長さが52mm以上の4点を用い、近似直線を設定した。この近似直線のグラフを図3に示す。図3においても、実施例を含むPOEG系列は丸印のプロットで表され、比較例を含むPO&EO付加グリセリン系列はx印のプロットで表されている。図3に示すように、POEG系列の近似直線は、陽極箔の帯幅長さが150mmのときに容量出現率が80%になることを示した。即ち、コンデンサ素子を巻回形とし、電解液にPOEGを含有させると、陽極箔の巻軸に沿った帯幅が150mm以下では、静電容量許容差が±20%であることを規定するJIS規格を満たすことが確認された。 Subsequently, an approximate straight line was set using four points in the graph of FIG. 1 where the band width length of the anode foil was 52 mm or more. A graph of this approximate straight line is shown in FIG. Also in FIG. 3, the POEG series including Examples is represented by a plot of circles, and the PO&EO-added glycerin series including Comparative Examples is represented by a plot of x marks. As shown in FIG. 3, the approximate straight line of the POEG series showed that the capacity appearance rate was 80% when the band width length of the anode foil was 150 mm. In other words, when the capacitor element is of a wound type and the electrolyte contains POEG, the JIS stipulates that the capacitance tolerance is ±20% when the band width along the winding axis of the anode foil is 150 mm or less. It was confirmed that the standards were met.
 次に、陽極箔の巻軸に沿った長さが62mmでPOEGを電解液に含む実施例4と、陽極箔の巻軸に沿った長さが62mmでPO&EP付加グリセリンを電解液に含む比較例4について、ケースからコンデンサ素子を取り出し、取り出したコンデンサ素子を分解した。分解後の陽極箔の表面の写真を図3に示す。図3の(a)は、実施例4の陽極箔の写真であり、図3の(b)は比較例4の陽極箔の写真である。 Next, Example 4 in which the length along the winding axis of the anode foil is 62 mm and POEG is included in the electrolyte, and a comparative example in which the length along the winding axis of the anode foil is 62 mm and PO&EP-added glycerin is included in the electrolyte. Regarding No. 4, the capacitor element was taken out from the case, and the taken out capacitor element was disassembled. Figure 3 shows a photograph of the surface of the anode foil after decomposition. 3(a) is a photograph of the anode foil of Example 4, and FIG. 3(b) is a photograph of the anode foil of Comparative Example 4.
 図3の(a)及び(b)に示されるように、実施例4及び比較例4の陽極箔には、巻軸方向中心域に、帯長さ方向に沿ったラインLe及びLcが付いている。実施例4のラインLeと比較例4のラインLcを構成する成分を分析した。その結果、ラインLeもラインLcも耐圧向上剤を含んでいた。 As shown in FIGS. 3(a) and (b), the anode foils of Example 4 and Comparative Example 4 have lines Le and Lc along the belt length direction in the central region in the winding axis direction. There is. The components constituting line Le of Example 4 and line Lc of Comparative Example 4 were analyzed. As a result, both line Le and line Lc contained the pressure resistance improver.
 もっとも、図3の(a)と(b)を見比べると分かるように、実施例4のラインLeは細くて薄い。一方、比較例4のラインLcは、実施例4に比べて太くて濃い。即ち、実施例4と比較例4との比較において、比較例4では、陽極箔の巻軸方向中心域にPO&EP付加グリセリンが偏在している。一方、実施例4と比較例4との比較において、実施例4では、陽極箔の巻軸方向中心域に偏在するPOEGが少ない。 However, as can be seen by comparing FIGS. 3A and 3B, the line Le in Example 4 is thin and thin. On the other hand, the line Lc of Comparative Example 4 is thicker and darker than that of Example 4. That is, in the comparison between Example 4 and Comparative Example 4, in Comparative Example 4, PO&EP-added glycerin is unevenly distributed in the central region of the anode foil in the winding axis direction. On the other hand, in a comparison between Example 4 and Comparative Example 4, in Example 4, there is less POEG unevenly distributed in the central region of the anode foil in the winding axis direction.
 なお、陽極箔のラインLe及びLcが付いた部分は、湿潤しており、電解液が含浸され、陽極箔に電解液が密接していたことは確認できている。このことから、比較例4においては、コンデンサ素子の巻軸方向中心域においても、電解液が陽極箔と密接しているが、耐圧向上剤の偏在により、電解液と陽極箔が密着して得られる密着面積に従った静電容量の理論値に近い値は得られず、容量出現率が著しく低下したと推測される。 It has been confirmed that the parts of the anode foil marked with the lines Le and Lc were wet and impregnated with the electrolyte, and that the electrolyte was in close contact with the anode foil. From this, in Comparative Example 4, the electrolyte is in close contact with the anode foil even in the central region of the capacitor element in the winding axis direction, but due to the uneven distribution of the pressure improver, the electrolyte and the anode foil are in close contact with each other. A value close to the theoretical value of capacitance according to the adhesion area could not be obtained, and it is presumed that the capacitance appearance rate decreased significantly.
 つまり、耐電圧向上剤の高濃度領域は、静電容量の出現率が落ち込む。耐電圧向上剤が偏在した領域が太くて濃いと、静電容量の出現率が落ち込む領域が広くなり、静電容量の出現率の落ち込み方が大きくなる。そのため、電解コンデンサ全体としての容量出現率も低くなる。実施例1乃至4は、比較例1乃至4と比べて、耐圧向上剤が陽極箔全体に比較的均一に分散し、静電容量の出現率が落ち込む領域が少なく、静電容量の出現率の落ち込み方が小さく、容量出現率が良好を維持したと推測される。また、このような現象は、セパレータの密度が0.85g/cm以上の場合に顕著に生じる。 In other words, in a high concentration region of the withstand voltage improver, the appearance rate of capacitance decreases. If the region where the withstand voltage improver is unevenly distributed is thick and dense, the region where the appearance rate of capacitance decreases becomes wider, and the degree of decrease in the appearance rate of capacitance increases. Therefore, the capacitance appearance rate of the electrolytic capacitor as a whole also decreases. In Examples 1 to 4, compared to Comparative Examples 1 to 4, the pressure resistance improver was dispersed relatively uniformly throughout the anode foil, and there were fewer areas where the appearance rate of capacitance decreased, and the appearance rate of capacitance decreased. It is assumed that the decline was small and the capacity appearance rate remained good. Moreover, such a phenomenon occurs significantly when the density of the separator is 0.85 g/cm 3 or more.

Claims (4)

  1.  誘電体酸化皮膜を有する陽極箔と、
     前記陽極箔と対向する陰極箔と、
     前記陽極箔と前記陰極箔との間に介在するセパレータと、
     前記セパレータと前記陽極箔と前記陰極箔を巻回したコンデンサ素子と、
     前記コンデンサ素子に含浸した電解液と、
     を備え、
     前記電解液には、ポリオキシエチレングリセリンが含まれ、
     前記陽極箔は、前記コンデンサ素子の巻軸に沿った帯幅が37mm超であること、
     を特徴とする巻回形電解コンデンサ。
    an anode foil having a dielectric oxide film;
    a cathode foil facing the anode foil;
    a separator interposed between the anode foil and the cathode foil;
    a capacitor element in which the separator, the anode foil, and the cathode foil are wound;
    an electrolytic solution impregnated in the capacitor element;
    Equipped with
    The electrolytic solution contains polyoxyethylene glycerin,
    The anode foil has a band width of more than 37 mm along the winding axis of the capacitor element;
    A wound type electrolytic capacitor featuring:
  2.  前記陽極箔は、前記コンデンサ素子の巻軸に沿った帯幅が150mm以下であること、
     を特徴とする請求項1記載の巻回形電解コンデンサ。
    The anode foil has a band width of 150 mm or less along the winding axis of the capacitor element;
    The wound type electrolytic capacitor according to claim 1, characterized in that:
  3.  前記セパレータは、平均密度が0.85g/cm以上であること、
     を特徴とする請求項1記載の巻回形電解コンデンサ。
    The separator has an average density of 0.85 g/cm 3 or more;
    The wound type electrolytic capacitor according to claim 1, characterized in that:
  4.  前記陰極箔は、当該陰極箔上に積層されるカーボン層を備えること、
     を特徴とする請求項1乃至3の何れかに記載の巻回形電解コンデンサ。
    The cathode foil includes a carbon layer laminated on the cathode foil;
    The wound type electrolytic capacitor according to any one of claims 1 to 3, characterized in that:
PCT/JP2023/011884 2022-03-30 2023-03-24 Winding electrolytic capacitor WO2023190189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-055604 2022-03-30
JP2022055604 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023190189A1 true WO2023190189A1 (en) 2023-10-05

Family

ID=88201486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011884 WO2023190189A1 (en) 2022-03-30 2023-03-24 Winding electrolytic capacitor

Country Status (1)

Country Link
WO (1) WO2023190189A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315629A (en) * 1999-04-30 2000-11-14 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JP2001076974A (en) * 1999-09-06 2001-03-23 Nippon Chemicon Corp Electrolytic solution for electrolytic capacitor
JP2005123115A (en) * 2003-10-20 2005-05-12 Tomoegawa Paper Co Ltd Separator for electronic component
JP2012064601A (en) * 2010-09-14 2012-03-29 Hitachi Aic Inc Aluminum electrolytic capacitor
WO2021125220A1 (en) * 2019-12-18 2021-06-24 日本ケミコン株式会社 Electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315629A (en) * 1999-04-30 2000-11-14 Nippon Chemicon Corp Electrolyte for electrolytic capacitor
JP2001076974A (en) * 1999-09-06 2001-03-23 Nippon Chemicon Corp Electrolytic solution for electrolytic capacitor
JP2005123115A (en) * 2003-10-20 2005-05-12 Tomoegawa Paper Co Ltd Separator for electronic component
JP2012064601A (en) * 2010-09-14 2012-03-29 Hitachi Aic Inc Aluminum electrolytic capacitor
WO2021125220A1 (en) * 2019-12-18 2021-06-24 日本ケミコン株式会社 Electrolytic capacitor

Similar Documents

Publication Publication Date Title
TWI821403B (en) Electrode body, electrolytic capacitor provided with electrode body, and method of manufacturing electrode body
TWI810503B (en) electrolytic capacitor
US11948755B2 (en) Electrode body, electrolytic capacitor provided with electrode body, and method for producing electrode body
WO2021166927A1 (en) Electrolytic capacitor and method for producing same
WO2023190189A1 (en) Winding electrolytic capacitor
JP7496518B2 (en) Electrolytic capacitor and its manufacturing method
TW202215463A (en) Cathode body and electrolytic capacitor
TW202215462A (en) Cathode and electrolytic capacitor
CN116235265A (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
TW202416307A (en) Wound Electrolytic Capacitors
EP4336527A1 (en) Electrolytic capacitor, negative electrode body, and method for manufacturing electrolytic capacitor
EP4333004A1 (en) Electrolytic capacitor, negative electrode body and method for producing electrolytic capacitor
EP4310874A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
WO2023013675A1 (en) Electrolytic capacitor
TWI838940B (en) Electrode, electrolytic capacitor having the same, and method for manufacturing the same
WO2024014270A1 (en) Electrolytic capacitor
EP4383296A1 (en) Solid electrolytic capacitor and manufacturing method
TW202309951A (en) Electrode body, electrolytic capacitor provided with electrode body, and method for manufacturing electrode body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780199

Country of ref document: EP

Kind code of ref document: A1