WO2023190163A1 - Lubricating oil composition - Google Patents

Lubricating oil composition Download PDF

Info

Publication number
WO2023190163A1
WO2023190163A1 PCT/JP2023/011836 JP2023011836W WO2023190163A1 WO 2023190163 A1 WO2023190163 A1 WO 2023190163A1 JP 2023011836 W JP2023011836 W JP 2023011836W WO 2023190163 A1 WO2023190163 A1 WO 2023190163A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
acid
component
less
Prior art date
Application number
PCT/JP2023/011836
Other languages
French (fr)
Japanese (ja)
Inventor
紀子 菖蒲
千晴 田村
暁 野中
直史 置塩
Original Assignee
Eneos株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneos株式会社 filed Critical Eneos株式会社
Publication of WO2023190163A1 publication Critical patent/WO2023190163A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/06Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/28Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M129/38Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms
    • C10M129/40Carboxylic acids; Salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having 8 or more carbon atoms monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives

Definitions

  • Lubricating oil is generally used for lubrication between mechanical elements, and is used in many mechanical devices.
  • Lubricating oils are classified into hydraulic oils, turbine oils, loom lubricating oils, metal working oils (specifically, rolling oils, cutting oils, punching oils, plastic working oils such as press oils, etc.) depending on their purpose.
  • Ru for example, hydraulic fluid is a fluid used as a power transmission medium in hydraulic equipment. Hydraulic fluid also serves as a lubricant for the sliding parts of hydraulic equipment.
  • metal working oil is an oil agent used for the purposes of suppressing wear and seizure during processing, improving productivity by increasing processing speed, cooling, and the like.
  • biomass-derived raw materials are a renewable organic resource derived from living organisms, excluding fossil resources. Since biomass-derived raw materials do not affect the carbon dioxide concentration in the atmosphere, carbon neutrality can be achieved by using biomass-derived raw materials.
  • Patent Document 1 discloses a hydraulic oil containing a biomass-derived base oil and an antioxidant.
  • lubricating oil compositions such as those described in Patent Document 1 have been studied to reduce their environmental impact, but the lubricating oil properties are comparable to those of lubricating oil compositions using fossil resources such as mineral oil. Or, it is inferior, and there is room for improvement. Therefore, there is a need for a lubricating oil composition that has improved lubricating oil properties while reducing environmental impact.
  • the lubricating oil is a hydraulic oil
  • the lubricating oil properties include low friction, wear resistance, oxidation stability, thermal stability, rust prevention, antifoaming properties, water separation properties, and organic materials. Compatibility (does not swell seals, packing, etc.), high flash point, etc. are required.
  • the lubricating oil properties include processability, seizure resistance, low friction, thermal degreasing (easily evaporates when heated), wear resistance, copper , discoloration prevention effect against aluminum, rust prevention against iron-based materials, oxidation stability, etc. are required.
  • the present invention was made in view of the above circumstances, and an object of the present invention is to provide a lubricating oil composition that preserves the natural environment and has further improved thermal stability and low friction properties.
  • Lubricating oil composition [2] The lubricating oil composition according to [1], wherein the content of biomass-derived carbon measured by ASTM D6866 is 40% or more based on the total carbon in the lubricating oil composition.
  • R 1 to R 3 are each independently an aryl group that may have a substituent or an alkyl group that may have a substituent.
  • R 1 to R 3 are each independently an aryl group that may have a substituent or an alkyl group that may have a substituent.
  • a lubricating oil composition that preserves the natural environment and has further improved thermal stability and low friction properties.
  • the lubricating oil composition of this embodiment contains a base oil (A) and a phosphoric acid ester (B).
  • the lubricating oil composition of this embodiment has a biomass-derived carbon content of 20% or more based on the total carbon in the lubricating oil composition, as measured by ASTM D6866, and 40% or more. It is preferably at least 60%, more preferably at least 80%, even more preferably at least 80%. There is no upper limit to the content of biomass-derived carbon measured by ASTM D6866, but it may be 100% or less, or 95% or less.
  • the content of biomass-derived carbon measured by ASTM D6866 is preferably 20% or more and 100% or less based on the total carbon in the lubricating oil composition, and % or more and 100% or less, further preferably 60% or more and 95% or less, particularly preferably 80% or more and 95% or less.
  • ASTM D6866 biobased concentration test standard is a standard established for determining the biobased content of solids, liquids, and gases using radiocarbon (C14) analysis techniques. Since biomass contains a certain amount of radioactive carbon (C14), biomass-derived raw materials also contain radioactive carbon (C14). On the other hand, raw materials derived from fossil resources do not contain radioactive carbon (C14). Therefore, the content of biomass-derived carbon can be calculated by measuring the radioactive carbon (C14) concentration contained in the lubricating oil composition.
  • the content of the biomass-derived carbon in the lubricating oil composition of the present embodiment can be controlled, for example, by adjusting the content of the base oil (A1) containing biomass-derived carbon, which will be described later.
  • the kinematic viscosity at 40° C. is preferably 10 mm 2 /s or more, more preferably 15 mm 2 /s or more, and 20 mm 2 It is more preferable that it is at least /s.
  • the kinematic viscosity at 40° C. of the lubricating oil composition of this embodiment is preferably 100 mm 2 /s or less, more preferably 80 mm 2 /s or less, and even more preferably 70 mm 2 /s or less. .
  • the kinematic viscosity at 40°C of the lubricating oil composition of the present embodiment is preferably 10 mm 2 /s or more and 100 mm 2 /s or less, more preferably 15 mm 2 /s or more and 80 mm 2 /s or less. , more preferably 20 mm 2 /s or more and 70 mm 2 /s or less.
  • the kinematic viscosity at 40°C is preferably 1.0 mm 2 /s or more, more preferably 1.5 mm 2 /s or more.
  • the speed is preferably 2.0 mm 2 /s or more, and more preferably 2.0 mm 2 /s or more.
  • the kinematic viscosity at 40° C. of the lubricating oil composition of the present embodiment is preferably 50 mm 2 /s or less, more preferably 40 mm 2 /s or less, and even more preferably 45 mm 2 /s or less. .
  • the kinematic viscosity at 40°C of the lubricating oil composition of the present embodiment is preferably 1.0 mm 2 /s or more and 50 mm 2 /s or less, and 1.5 mm 2 /s or more and 45 mm 2 /s or less. More preferably, the speed is 2.0 mm 2 /s or more and 40 mm 2 /s or less.
  • lubricating oil properties such as low friction, wear resistance, seizure resistance, compatibility with organic materials, and high flash point are improved. Improve more.
  • lubricating oil properties such as thermal degreasing properties and fuel efficiency improve. In addition, productivity is improved by increasing the processing speed.
  • the kinematic viscosity at 40°C in this specification means the kinematic viscosity at 40°C measured in accordance with JIS K2283:2000, unless otherwise specified.
  • the lubricating oil composition of this embodiment contains base oil (A).
  • the kinematic viscosity of the base oil (A) at 40°C is preferably 10 mm 2 /s or more, and 15 mm 2 /s or more. is more preferable, and even more preferably 20 mm 2 /s or more.
  • the kinematic viscosity of the base oil (A) at 40° C. is preferably 100 mm 2 /s or less, more preferably 80 mm 2 /s or less, and even more preferably 70 mm 2 /s or less.
  • the kinematic viscosity of the base oil (A) at 40° C. is preferably 10 mm 2 /s or more and 100 mm 2 /s or less, more preferably 15 mm 2 /s or more and 80 mm 2 /s or less, and 20 mm 2 /s or more. It is more preferable that the speed is 70 mm 2 /s or more and 70 mm 2 /s or less.
  • the kinematic viscosity at 40°C of the base oil (A) is preferably 1.0 mm 2 /s or more, and 1.5 mm 2 /s. It is more preferable that it is above, and even more preferably that it is 2.0 mm 2 /s or more.
  • the kinematic viscosity of the base oil (A) at 40° C. is preferably 50 mm 2 /s or less, more preferably 40 mm 2 /s or less, even more preferably 45 mm 2 /s or less.
  • the kinematic viscosity of the base oil (A) at 40°C is preferably 1.0 mm 2 /s or more and 50 mm 2 /s or less, more preferably 1.5 mm 2 / s or more and 45 mm 2 /s or less. It is preferably 2.0 mm 2 /s or more and 40 mm 2 /s or less.
  • the kinematic viscosity at 40° C. of the base oil (A) of the lubricating oil composition of the present embodiment is below the above-mentioned preferred upper limit, low friction, wear resistance, seizure resistance, organic material compatibility, and high flash point The properties of the lubricating oil are further improved.
  • lubricating oil properties such as thermal degreasing properties and fuel efficiency improve. In addition, productivity is improved by increasing the processing speed.
  • the base oil (A) includes a base oil (A1) having carbon derived from biomass.
  • the base oil (A1) is a synthetic oil obtained from biomass raw material through Fischer-Tropsch reaction, that is, CO and H2 obtained by gasifying biomass raw material through Fischer-Tropsch reaction using a catalyst. Synthetic oils made into hydrocarbons are not included.
  • Base oil containing biomass-derived carbon (A1) Specifically, the base oil (A1) having carbon derived from biomass (hereinafter also referred to as “component (A1)") is derived from vegetable oils such as coconut oil, coconut oil, soybean oil, rapeseed oil, and mixtures thereof. Examples include synthetic base oils.
  • Examples of commercial products of the component (A1) include SynNova 4 Base Oil (manufactured by Novvi), SynNova 9 Base Oil (manufactured by Novvi), and NovaSolv 160 (manufactured by Novvi).
  • the base oil (A) of the lubricating oil composition of the present embodiment one component (A1) may be used alone, or a plurality of components (A1) may be used as a mixture.
  • the content of biomass-derived carbon in component (A1) as measured by ASTM D6866 is preferably 20% by mass or more, more preferably 60% by mass or more, and preferably 80% by mass or more. More preferably, it is particularly preferably 100% by mass.
  • the kinematic viscosity of component (A1) at 40°C is preferably 10 mm 2 /s or more, and preferably 15 mm 2 /s or more. More preferably, it is 20 mm 2 /s or more.
  • the kinematic viscosity of component (A1) at 40° C. is preferably 100 mm 2 /s or less, more preferably 80 mm 2 /s or less, and even more preferably 70 mm 2 /s or less.
  • the speed is not less than s and not more than 70 mm 2 /s.
  • the kinematic viscosity of component (A1) at 40°C is preferably 1.0 mm 2 /s or more, and 1.5 mm 2 /s or more. It is more preferable that it is, and it is still more preferable that it is 2.0 mm 2 /s or more.
  • the kinematic viscosity of component (A1) at 40° C. is preferably 50 mm 2 /s or less, more preferably 40 mm 2 /s or less, even more preferably 45 mm 2 /s or less.
  • the kinematic viscosity of component (A1) at 40°C is preferably 1.0 mm 2 /s or more and 50 mm 2 /s or less, more preferably 1.5 mm 2 /s or more and 45 mm 2 /s or less. , more preferably 2.0 mm 2 /s or more and 40 mm 2 /s or less.
  • lubricating oil composition of the present embodiment When the kinematic viscosity at 40° C. of the component (A1) of the lubricating oil composition of the present embodiment is below the above-mentioned preferred upper limit, low friction, wear resistance, seizure resistance, compatibility with organic materials, high flash point, etc. lubricating oil properties are further improved. When it is at least the above preferable lower limit, lubricating oil properties such as thermal degreasing properties and fuel efficiency improve. In addition, productivity is improved by increasing the processing speed.
  • the base oil (A) may contain a base oil (A2) other than the above-mentioned component (A1).
  • Base oil (A2) other than component (A1) Specific examples of the base oil (A2) other than the above-mentioned component (A1) (hereinafter also referred to as “component (A2)”) include synthetic oils and mineral oils.
  • Synthetic oil examples include polyolefins such as poly- ⁇ -olefin, alkylbenzenes, and alkylnaphthalenes.
  • mineral oil As the mineral oil, distillate oil obtained by atmospheric distillation of crude oil can be used. Lubricating oil fractions obtained by further distilling this distillate under reduced pressure and refining the distillate obtained through various refining processes can also be used. As the purification process, hydrorefining, solvent extraction, solvent dewaxing, hydrodewaxing, sulfuric acid washing, clay treatment, and the like can be appropriately combined. Mineral oil can be obtained by combining these refining processes in an appropriate order. A mixture of a plurality of refined oils with different properties obtained by subjecting different crude oils or distillate oils to a combination of different refining processes may be used.
  • one of the above synthetic oils or mineral oils may be used alone, or a plurality of synthetic oils or mineral oils may be used as a mixture.
  • the proportion of the component (A1) in the base oil (A) of the lubricating oil composition of the present embodiment is preferably 30% by mass or more, more preferably 40% by mass or more, and 45% by mass or more, based on the total amount of the base oil (A). It is more preferable that the amount is greater than or equal to the mass.
  • the content of the base oil (A) in the lubricating oil composition of this embodiment is preferably 85% by mass or more, more preferably 90% by mass or more, even more preferably 92% by mass or more, based on the total amount of the lubricating oil composition. , 95% by mass or more is particularly preferred.
  • the content of the base oil (A) in the lubricating oil composition of this embodiment is preferably 99.8% by mass or less, more preferably 99.5% by mass or less, based on the total amount of the lubricating oil composition.
  • the content of the base oil (A) in the lubricating oil composition of the present embodiment is preferably 85% by mass or more and 99.8% by mass or less, and 90% by mass or more and 99.8% by mass, based on the total amount of the lubricating oil composition. It is more preferably 92% by mass or more and 99.8% by mass or less, particularly preferably 95% by mass or more and 99.5% by mass or less.
  • the content of the base oil (A) in the lubricating oil composition of this embodiment is within the above preferred range, thermal stability and low friction properties will be further improved.
  • the phosphate ester (B) (hereinafter also referred to as "component (B)") in the lubricating oil composition of the present embodiment includes phosphoric acid monoester, phosphoric diester, phosphoric triester, and their phosphoric acid esters. Examples include amine salts of esters.
  • the component (B) is preferably a phosphoric acid triester, from the viewpoint of further improving thermal stability and low friction properties, and is preferably a phosphoric acid triester represented by the following general formula (P-1). More preferably, it is an ester.
  • R 1 to R 3 are each independently an aryl group that may have a substituent or an alkyl group that may have a substituent. ]
  • Examples of the aryl group for R 1 to R 3 in the above general formula (P-1) include a phenyl group and a naphthyl group.
  • the aryl group may have a substituent, and examples of the substituent include an alkyl group, an alkoxy group, and a hydroxy group.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group, ethyl group, propyl group, n-butyl group, or tert-butyl group.
  • the alkoxy group is preferably an alkoxy group having 1 to 5 carbon atoms, and more preferably a methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, or tert-butoxy group.
  • the alkyl group in R 1 to R 3 in the above general formula (P-1) is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, such as a methyl group, ethyl group, propyl group, n -butyl group and tert-butyl group are preferred.
  • the alkyl group may have a substituent, and examples of the substituent include an alkoxy group and a hydroxy group.
  • the alkoxy group is preferably an alkoxy group having 1 to 5 carbon atoms, and more preferably a methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, or tert-butoxy group.
  • R 1 to R 3 in the above general formula (P-1) may be different from each other, it is preferable that they are all the same.
  • R 1 to R 3 in the general formula (P-1) are preferably all aryl groups which may have a substituent, and even if they all have the same substituent, More preferably, it is a good aryl group.
  • Component (B) specifically includes triphenyl phosphate, tricresyl phosphate, tricylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, tris(isopropylphenyl) phosphate, tris(t-butylphenyl) phosphate, linear or branched tributyl phosphate, linear or branched tripentyl phosphate, linear or branched trihexyl phosphate, linear or branched triheptyl phosphate, linear Linear or branched trioctyl phosphate, linear or branched trinonyl phosphate, linear or branched tridecyl phosphate, linear or branched triundecyl phosphate, linear linear or branched tridodecyl phosphate, linear or branched tritritridecyl phosphate, linear or branched tritetradecyl
  • component (B) of the lubricating oil composition of the present embodiment tricresyl phosphate and triphenyl phosphate are preferred as component (B) of the lubricating oil composition of the present embodiment, and tricresyl phosphate is more preferred.
  • Component (B) of the lubricating oil composition of this embodiment may be used alone or in combination of two or more.
  • the content of component (B) in the lubricating oil composition of this embodiment is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and 0.3% by mass based on the total amount of the lubricating oil composition. % or more is more preferable.
  • the content of component (B) in the lubricating oil composition of the present embodiment is preferably 2% by mass or less, more preferably 1.5% by mass or less, and further preferably 1% by mass or less, based on the total amount of the lubricating oil composition. preferable.
  • the content of component (B) in the lubricating oil composition of the present embodiment is preferably 0.05% by mass or more and 2% by mass or less, and 0.1% by mass or more and 1.0% by mass or less, based on the total amount of the lubricating oil composition. It is more preferably 5% by mass or less, and even more preferably 0.3% by mass or more and 1% by mass or less.
  • component (B) with respect to the total amount of the lubricating oil composition is within the above-mentioned preferred range, thermal stability and low friction properties will be further improved.
  • the lubricating oil composition of this embodiment may contain arbitrary components other than the above-mentioned base oil (A) and (B) components.
  • the optional components include an oily agent (C), an antioxidant, a rust preventive agent, a corrosion inhibitor, a rust inhibitor, an antifoaming agent, a metal detergent, an antiwear agent, a viscosity index improver, and a pour point depressant. , mist inhibitors, demulsifiers, and the like.
  • the oily agent (C) (hereinafter also referred to as “component (C)”) of the lubricating oil composition of the present embodiment contains one or more oily agents selected from esters and alcohols other than the component (B) mentioned above. May include.
  • esters other than the above-mentioned (B) component include esters (C1) having 7 to 26 carbon atoms obtained from a monohydric alcohol and a monobasic acid (hereinafter also referred to as “component (C1)”) can be mentioned.
  • the alcohol includes monohydric alcohol (C2) (hereinafter also referred to as "component (C2)").
  • Component (C1) An ester having 7 to 26 carbon atoms obtained from a monohydric alcohol and a monobasic acid.
  • Component (C1) is an ester having 7 to 26 carbon atoms obtained from a monohydric alcohol and a monobasic acid. It is.
  • Monohydric alcohols used as raw materials for the (C1) component include monohydric alcohols having 1 to 25 carbon atoms, and even if the monohydric alcohol is linear, it may be branched. It may be chain-like and may be saturated or unsaturated.
  • monohydric alcohols include methanol, ethanol, propanol, butanol, octanol (caprylic alcohol), nonanol, decanol (capric alcohol), undecanol, dodecanol (lauryl alcohol), tridecanol, tetradecanol (myristyl alcohol), Pentadecanol, hexadecanol (cetyl alcohol), heptadecanol, octadecanol (stearyl alcohol), nonadecanol, eicosanol (arachidyl alcohol), heneicosanol, docosanol (behenyl alcohol), tricosanol, tetracosa Linear saturated alcohols such as alcohol and pentacosanol; Branched saturated alcohols such as 2-ethylhexanol, isostearyl alcohol, and 2-n-octyl-1-dodecano
  • Monobasic acid examples of the monobasic acid used as a raw material for the component (C1) include fatty acids, specifically fatty acids having 1 to 25 carbon atoms, and the fatty acids are straight-chain or may be branched, and may be saturated or unsaturated. Among the fatty acids mentioned above, fatty acids having 6 to 24 carbon atoms are preferred.
  • Preferred specific examples include n-hexanoic acid, n-heptanoic acid, n-octanoic acid (caprylic acid), n-nonanoic acid, n-decanoic acid (capric acid), n-undecanoic acid, n-dodecanoic acid ( lauric acid), n-tridecanoic acid, n-tetradecanoic acid (myristic acid), n-pentadecanoic acid, n-hexadecanoic acid (palmitic acid), n-heptadecanoic acid, n-octadecanoic acid (stearic acid), n-icosanoic acid Linear saturated fatty acids such as (arachidic acid), docosanoic acid (behenic acid), and tetracosanoic acid (lignoceric acid); isoheptanoic acid, isooctanoic acid, isononanoic
  • component (C1) is an ester (C11) having 13 to 22 carbon atoms obtained from a monohydric alcohol and a monobasic acid (hereinafter also referred to as component (C11)).
  • component (C11) esters having 13 to 22 carbon atoms obtained from a monovalent linear saturated alcohol and a linear saturated fatty acid are more preferable, such as methyl laurate and ethyl laurate.
  • the (C2) component is monohydric alcohol.
  • the component (C2) include monohydric alcohols similar to the monohydric alcohol used as the raw material for the component (C1) described above.
  • component (C2) a monohydric alcohol (C21) having 12 to 14 carbon atoms (hereinafter also referred to as component (C21)) is preferable, and a monohydric alcohol having 12 or 14 carbon atoms is more preferable. More preferred are dodecanol (lauryl alcohol) or tetradecanol (myristyl alcohol).
  • the (C) component in the lubricating oil composition of the present embodiment from the viewpoint of further improving the lubricating oil properties, one or more oil-based components selected from the group consisting of the (C11) component and the (C21) component are selected from among the above.
  • one or more oily agents selected from the group consisting of butyl stearate and dodecanol (lauryl alcohol) are preferred.
  • Component (C) in the lubricating oil composition of this embodiment may be used alone or in a mixture of two or more.
  • the content of component (C) in the lubricating oil composition of this embodiment is 1% by mass or more based on the total amount of the lubricating oil composition. It is preferably 2% by mass or more, more preferably 3% by mass or more.
  • the content of component (C) is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, based on the total amount of the lubricating oil composition.
  • the content of component (C) is preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, based on the total amount of the lubricating oil composition. It is more preferably less than % by mass.
  • component (C) with respect to the total amount of the lubricating oil composition is within the above-mentioned preferred range, the lubricating oil properties will be further improved.
  • antioxidants include phenolic compounds such as 2,6-di-t-butylphenol and 2,6-di-t-butyl-p-cresol; diphenylamine, dialkyldiphenylamine, phenyl- ⁇ -naphthylamine, p- Examples include amine compounds such as alkylphenyl- ⁇ -naphthylamine.
  • the lubricating oil composition contains an antioxidant, the content thereof is, for example, 0.5 to 10% by mass based on the total amount of the lubricating oil composition.
  • One type of antioxidant may be used alone, or a plurality of antioxidants may be used in combination.
  • the corrosion inhibitor for example, known corrosion inhibitors such as benzotriazole compounds, tolyltriazole compounds, thiadiazole compounds, and imidazole compounds can be used.
  • the content thereof is, for example, 0.01 to 10% by mass based on the total amount of the lubricating oil composition.
  • One type of corrosion inhibitor may be used alone, or a plurality of corrosion inhibitors may be used in combination.
  • rust inhibitors include salts of fatty acids such as oleic acid, sulfonates such as dinonylnaphthalene sulfonate, and partial esters of polyhydric alcohols such as sorbitan monooleate (corresponding to oily agents (C)). ), amines and derivatives thereof, etc.
  • antifoaming agents examples include silicone antifoaming agents.
  • metal-based detergents include normal salts or basic salts of alkali metal or alkaline earth metal sulfonates, phenates, salicylates, and the like.
  • the metal detergent is preferably a basic salt such as an alkali metal or alkaline earth metal sulfonate, phenate, or salicylate from the viewpoint of neutralizing lower fatty acids and suppressing evaporation of lower fatty acids.
  • Preferred examples of the alkali metal include sodium and potassium.
  • Preferred alkaline earth metals include magnesium, calcium, barium, and the like. Among these metals, magnesium or calcium is preferred, and calcium is more preferred.
  • anti-wear agents include dithiocarbamates, zinc dithiocarbamates, molybdenum dithiocarbamates, disulfides, polysulfides, sulfurized olefins, sulfurized oils and fats, and the like.
  • viscosity index improver examples include non-dispersed or dispersed poly(meth)acrylate-based viscosity index improvers, non-dispersed or dispersed olefin-(meth)acrylate copolymer-based viscosity index improvers, and styrene-maleic anhydride.
  • examples include acid ester copolymer-based viscosity index improvers, mixtures thereof, and the like.
  • pour point depressants examples include polymethacrylate polymers that are compatible with the base oil (A).
  • mist preventive agent examples include ethylene-propylene copolymer, polymethacrylate, polyisobutylene, and polybutene.
  • the average molecular weight of these compounds as mist inhibitors is usually 10,000 to 8,000,000.
  • demulsifier examples include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether.
  • the lubricating oil composition of the present embodiment described above includes component (A1) and component (B), and the content of biomass-derived carbon measured by ASTM D6866 is based on the total carbon of the lubricating oil composition. It is 20% or more. Since the lubricating oil composition of this embodiment has a biomass-derived carbon content of 20% or more, the load on the environment is reduced. Furthermore, the lubricating oil composition of this embodiment has the following effects due to the synergistic effect of the combination of component (A1) and component (B).
  • the lubricating oil composition of this embodiment When the lubricating oil composition of this embodiment is used as a hydraulic oil, it has low friction, wear resistance, oxidation stability, thermal stability, rust prevention, antifoaming properties, water separation properties, organic material compatibility (sealing (does not swell the packing, etc.), has a high flash point, and has particularly good low friction and thermal stability.
  • the lubricating oil composition of this embodiment is used as a metal working oil, it has properties such as processability, seizure resistance, low friction, thermal degreasing properties (easily evaporated by heating), wear resistance, and discoloration prevention against copper and aluminum. It has good effects and oxidation stability, and particularly good processability.
  • the lubricating oil composition of this embodiment has the above-mentioned effects, it can be used in hydraulic oil, turbine oil, lubricating oil for looms, lubricating oil for compressors, metal processing oil (specifically, rolling oil, cutting oil, press oil, etc.). It is particularly useful as a hydraulic fluid and a metal working fluid, and is more useful as a hydraulic fluid.
  • ⁇ Hydraulic fluid composition The hydraulic fluids of Examples 1 and 2 and the hydraulic fluids of Comparative Examples 1 to 3 were prepared by blending base oil (A) and (B) components at the blending ratios shown in Table 1.
  • the numerical values in Table 1 are the content ratios (% by mass) of each component relative to the total amount of the lubricating oil composition.
  • the following evaluations were performed on the obtained hydraulic fluids of each example. The evaluation results are shown in Table 1.
  • (A2)-1 Mineral oil (Group I base oil, kinematic viscosity at 40°C: 57.3 mm 2 /s, kinematic viscosity at 100°C: 7.8 mm 2 /s).
  • the biobased degree of the hydraulic fluid in each example was calculated in accordance with ASTM D6866. First, the content of biomass-derived carbon was calculated by measuring the radioactive carbon (C14) concentration contained in the hydraulic fluid of each example. Next, the biobased degree of the hydraulic fluid of each example was calculated from the content of carbon derived from the biomass. The higher the degree of bio-based content, the lower the burden on the environment. The results are shown in Table 1.
  • thermal stability of the hydraulic fluid in each example was evaluated in accordance with the "lubricating oil thermal stability method" specified in JIS K2540:2000. 50 mL of the hydraulic oil of each example was collected in a beaker with a capacity of 50 mL, a coiled catalyst of iron and copper was added, and the acid value of the hydraulic oil of each example was increased by standing in a constant temperature air bath at 140°C for 20 days. The value was measured. The lower the acid value increase value, the higher the thermal stability. The results are shown in Table 1.
  • the hydraulic fluids of Examples had low acid value increase values and low friction coefficients. That is, the hydraulic fluid of the example had good thermal stability and low friction.
  • Comparative Example 1 which does not contain component (A1), has a low biobased content
  • Comparative Example 2 which does not contain component (B)
  • Comparative Example 3 which was used in place of component (B)
  • the lubricating oil composition of this embodiment was used as a metal working oil and evaluated.
  • the metalworking oils of Test Examples 1 to 4 were prepared by blending each component at the blending ratios shown in Table 2.
  • the numerical values in Table 2 are the content ratios (% by mass) of each component relative to the total amount of the lubricating oil composition.
  • the following evaluations were performed on the obtained metal working oils of each example. The evaluation results are shown in Table 2.
  • Base oil (A) (A1)-2: 100% vegetable-derived lubricating base oil (product name “NovaSolv 160", manufactured by Novvi, 40°C kinematic viscosity: 2.8 mm 2 /s (kinematic viscosity is a measured value based on ASTM D445)) .
  • FIG. 1 is an explanatory diagram showing an outline of a flat plate sliding test.
  • test piece 1 is made of aluminum alloy, and was applied to the metal working oil of each example by dipping and then subjected to the test.
  • This test piece 1 is held between a pair of flat blocks 2a and 2b, and a predetermined load (hereinafter referred to as "tightening load") is applied from the top side of the flat block 2a (arrow A in Fig. 1) in a horizontal direction. (arrow B in Figure 1).
  • test piece JIS A1050 material Flat block 2a, 2b: SKD-11, 450 mm (width) x 250 mm (length) x 400 mm (thickness), contact area with test piece 1: 10 mm x 250 mm Tightening load: 15kN Pulling speed: 300mm/min Temperature of metal working oil in each example during dip application: 40°C ⁇ 3°C Temperature of test piece 1 during test: 25°C ⁇ 3°C Flat block temperature: 25°C ⁇ 3°C Number of test pieces 1 per type of metal working oil: 30 pieces
  • the metal working oil of the test example had good workability. Therefore, it can be seen that the lubricating oil composition of the test example used as a metal working oil has good workability and has a reduced burden on the environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

A lubricating oil composition containing a base oil (A) and a phosphate ester (B), wherein the base oil (A) includes a base oil (A1) (excluding a synthetic oil obtained from biomass feedstock via a Fischer-Tropsch reaction) having biomass-derived carbon, and the content of the biomass-derived carbon measured in accordance with ASTM D6866 is 20% or more with respect to all the carbon in the lubricating oil composition.

Description

潤滑油組成物lubricating oil composition
 本発明は、潤滑油組成物に関する。
 本願は、2022年3月31日に日本に出願された、特願2022-059838号に基づき優先権主張し、その内容をここに援用する。
TECHNICAL FIELD This invention relates to lubricating oil compositions.
This application claims priority based on Japanese Patent Application No. 2022-059838, filed in Japan on March 31, 2022, the contents of which are incorporated herein.
 潤滑油は、一般的には、機械要素間の潤滑のために用いられる油であり、多くの機械装置に用いられている。
 潤滑油は、用途によって、油圧作動油、タービン油、織機用潤滑油、金属加工油(具体的には、圧延油、切削油、打抜き油、プレス油等の塑性加工油等)などに分類される。
 例えば、油圧作動油は、油圧装置の中で動力伝達媒体として使用されている油剤である。油圧作動油は、油圧装置の摺動部の潤滑剤としての役割も担っている。
 また、金属加工油は、加工の際の摩耗抑制や焼き付き防止、加工の高速度化による生産性の向上、冷却等を目的として使用される油剤である。
Lubricating oil is generally used for lubrication between mechanical elements, and is used in many mechanical devices.
Lubricating oils are classified into hydraulic oils, turbine oils, loom lubricating oils, metal working oils (specifically, rolling oils, cutting oils, punching oils, plastic working oils such as press oils, etc.) depending on their purpose. Ru.
For example, hydraulic fluid is a fluid used as a power transmission medium in hydraulic equipment. Hydraulic fluid also serves as a lubricant for the sliding parts of hydraulic equipment.
Further, metal working oil is an oil agent used for the purposes of suppressing wear and seizure during processing, improving productivity by increasing processing speed, cooling, and the like.
 近年、自然環境を保全する観点から、循環型社会の構築を求める声が高まっており、化石資源からの脱却、いわゆるカーボンニュートラル化が望まれている。そのため、バイオマス由来の原料の利用が注目されている。バイオマスは、再生可能な、生物由来の有機性資源で化石資源を除いたものである。
 バイオマス由来の原料は、大気中の二酸化炭素濃度に影響を与えないため、バイオマス由来の原料を用いることでカーボンニュートラルが実現可能となる。
In recent years, from the perspective of preserving the natural environment, calls for building a recycling-oriented society have been increasing, and there is a desire to move away from fossil resources, so-called carbon neutrality. Therefore, the use of raw materials derived from biomass is attracting attention. Biomass is a renewable organic resource derived from living organisms, excluding fossil resources.
Since biomass-derived raw materials do not affect the carbon dioxide concentration in the atmosphere, carbon neutrality can be achieved by using biomass-derived raw materials.
 バイオマス由来の基油を含有した潤滑油組成物としては、例えば、特許文献1には、バイオマス由来の基油と、酸化防止剤とを含有する油圧作動油が開示されている。 As a lubricating oil composition containing a biomass-derived base oil, for example, Patent Document 1 discloses a hydraulic oil containing a biomass-derived base oil and an antioxidant.
国際公開第2015/192072号International Publication No. 2015/192072
 特許文献1に記載されているような従来の潤滑油組成物は、環境負荷を低減させる検討は行われているが、潤滑油特性が鉱油等の化石資源を用いた潤滑油組成物と同程度か又は劣っており、改善の余地がある。
 したがって、環境負荷を低減させつつ、潤滑油特性がより向上した潤滑油組成物が求められている。
 潤滑油が油圧作動油の場合は、潤滑油特性として、具体的には、低摩擦性、耐摩耗性、酸化安定性、熱安定性、防錆性、消泡性、水分離性、有機材料相性(シールやパッキンなどを膨潤させたりしない)、高引火点等が求められる。
 また、潤滑油が金属加工油の場合は、潤滑油特性として、具体的には、加工性、耐焼き付き性、低摩擦性、熱脱脂性(加熱により蒸発しやすいこと)、耐摩耗性、銅、アルミニウムに対する変色防止効果、鉄を主成分とする材料に対する防錆性、酸化安定性等が求められる。
Conventional lubricating oil compositions such as those described in Patent Document 1 have been studied to reduce their environmental impact, but the lubricating oil properties are comparable to those of lubricating oil compositions using fossil resources such as mineral oil. Or, it is inferior, and there is room for improvement.
Therefore, there is a need for a lubricating oil composition that has improved lubricating oil properties while reducing environmental impact.
If the lubricating oil is a hydraulic oil, the lubricating oil properties include low friction, wear resistance, oxidation stability, thermal stability, rust prevention, antifoaming properties, water separation properties, and organic materials. Compatibility (does not swell seals, packing, etc.), high flash point, etc. are required.
In addition, if the lubricating oil is a metal working oil, the lubricating oil properties include processability, seizure resistance, low friction, thermal degreasing (easily evaporates when heated), wear resistance, copper , discoloration prevention effect against aluminum, rust prevention against iron-based materials, oxidation stability, etc. are required.
 本発明は、上記事情を鑑みてなされたものであり、自然環境を保全すると共に、熱安定性及び低摩擦性がより向上した潤滑油組成物を提供することを課題とする。 The present invention was made in view of the above circumstances, and an object of the present invention is to provide a lubricating oil composition that preserves the natural environment and has further improved thermal stability and low friction properties.
 上記の課題を解決するために、本発明は以下の構成を採用した。
 [1]基油(A)と、リン酸エステル(B)とを含有する潤滑油組成物であって、前記基油(A)は、バイオマス由来の炭素を有する基油(A1)(但し、バイオマス原料からフィッシャー・トロプシュ反応で得られた合成油を除く)を含み、ASTM D6866で測定されるバイオマス由来の炭素の含有量が、潤滑油組成物中の全炭素基準で20%以上である、潤滑油組成物。
 [2]ASTM D6866で測定されるバイオマス由来の炭素の含有量が、潤滑油組成物中の全炭素基準で40%以上である、[1]に記載の潤滑油組成物。
 [3]前記リン酸エステル(B)は、下記一般式(P-1)で表されるリン酸トリエステルである、[1]又は[2]に記載の潤滑油組成物。
In order to solve the above problems, the present invention employs the following configuration.
[1] A lubricating oil composition containing a base oil (A) and a phosphate ester (B), wherein the base oil (A) is a base oil (A1) having carbon derived from biomass (however, (excluding synthetic oil obtained by Fischer-Tropsch reaction from biomass raw materials), and the content of biomass-derived carbon measured by ASTM D6866 is 20% or more based on the total carbon in the lubricating oil composition. Lubricating oil composition.
[2] The lubricating oil composition according to [1], wherein the content of biomass-derived carbon measured by ASTM D6866 is 40% or more based on the total carbon in the lubricating oil composition.
[3] The lubricating oil composition according to [1] or [2], wherein the phosphoric acid ester (B) is a phosphoric triester represented by the following general formula (P-1).
Figure JPOXMLDOC01-appb-C000002
[式中、R~Rは、それぞれ独立に、置換基を有してもよいアリール基、又は置換基を有してもよいアルキル基である。]
 [4]前記リン酸エステル(B)は、トリクレジルホスフェートである、[1]~[3]のいずれか一項に記載の潤滑油組成物。
Figure JPOXMLDOC01-appb-C000002
[In the formula, R 1 to R 3 are each independently an aryl group that may have a substituent or an alkyl group that may have a substituent. ]
[4] The lubricating oil composition according to any one of [1] to [3], wherein the phosphoric acid ester (B) is tricresyl phosphate.
 本発明によれば、自然環境を保全すると共に、熱安定性及び低摩擦性がより向上した潤滑油組成物を提供することができる。 According to the present invention, it is possible to provide a lubricating oil composition that preserves the natural environment and has further improved thermal stability and low friction properties.
平板摺動試験の概略を示す説明図である。It is an explanatory view showing an outline of a flat plate sliding test.
 (潤滑油組成物)
 本実施形態の潤滑油組成物は、基油(A)と、リン酸エステル(B)とを含有する。
(Lubricating oil composition)
The lubricating oil composition of this embodiment contains a base oil (A) and a phosphoric acid ester (B).
 本実施形態の潤滑油組成物は、自然環境保全の観点から、ASTM D6866で測定されるバイオマス由来の炭素の含有量が、潤滑油組成物中の全炭素基準で20%以上であり、40%以上であることが好ましく、60%以上であることがより好ましく、80%以上であることがさらに好ましい。
 ASTM D6866で測定されるバイオマス由来の炭素の含有量の上限は制約がないが、100%以下であってよく、95%以下であってもよい。
From the perspective of preserving the natural environment, the lubricating oil composition of this embodiment has a biomass-derived carbon content of 20% or more based on the total carbon in the lubricating oil composition, as measured by ASTM D6866, and 40% or more. It is preferably at least 60%, more preferably at least 80%, even more preferably at least 80%.
There is no upper limit to the content of biomass-derived carbon measured by ASTM D6866, but it may be 100% or less, or 95% or less.
 例えば、本実施形態の潤滑油組成物は、ASTM D6866で測定されるバイオマス由来の炭素の含有量が、潤滑油組成物中の全炭素基準で20%以上100%以下であることが好ましく、40%以上100%以下であることがより好ましく、60%以上95%以下であることがさらに好ましく、80%以上95%以下であることが特に好ましい。 For example, in the lubricating oil composition of the present embodiment, the content of biomass-derived carbon measured by ASTM D6866 is preferably 20% or more and 100% or less based on the total carbon in the lubricating oil composition, and % or more and 100% or less, further preferably 60% or more and 95% or less, particularly preferably 80% or more and 95% or less.
 ASTM D6866(バイオベース濃度試験規格)は、放射性炭素(C14)分析の手法を用いて固体・液体・気体のバイオベース度を決定するために定められた規格である。バイオマスには一定量の放射性炭素(C14)が含まれるため、バイオマス由来の原料にも放射性炭素(C14)が含まれる。一方で、化石資源由来の原料には放射性炭素(C14)が含まれない。したがって、潤滑油組成物に含まれる放射性炭素(C14)濃度を測定することによってバイオマス由来の炭素の含有量を算出することができる。 ASTM D6866 (biobased concentration test standard) is a standard established for determining the biobased content of solids, liquids, and gases using radiocarbon (C14) analysis techniques. Since biomass contains a certain amount of radioactive carbon (C14), biomass-derived raw materials also contain radioactive carbon (C14). On the other hand, raw materials derived from fossil resources do not contain radioactive carbon (C14). Therefore, the content of biomass-derived carbon can be calculated by measuring the radioactive carbon (C14) concentration contained in the lubricating oil composition.
 本実施形態の潤滑油組成物における上記バイオマス由来の炭素の含有量は、例えば、後述するバイオマス由来の炭素を有する基油(A1)の含有量を調整することで、制御することができる。 The content of the biomass-derived carbon in the lubricating oil composition of the present embodiment can be controlled, for example, by adjusting the content of the base oil (A1) containing biomass-derived carbon, which will be described later.
 本実施形態の潤滑油組成物が油圧作動油として用いられる場合は、40℃における動粘度は、10mm/s以上であることが好ましく、15mm/s以上であることがより好ましく、20mm/s以上であることがさらに好ましい。
 本実施形態の潤滑油組成物の40℃における動粘度は、100mm/s以下であることが好ましく、80mm/s以下であることがより好ましく、70mm/s以下であることがさらに好ましい。
 例えば、本実施形態の潤滑油組成物の40℃における動粘度は、10mm/s以上100mm/s以下であることが好ましく、15mm/s以上80mm/s以下であることがより好ましく、20mm/s以上70mm/s以下であることがさらに好ましい。
When the lubricating oil composition of this embodiment is used as a hydraulic oil, the kinematic viscosity at 40° C. is preferably 10 mm 2 /s or more, more preferably 15 mm 2 /s or more, and 20 mm 2 It is more preferable that it is at least /s.
The kinematic viscosity at 40° C. of the lubricating oil composition of this embodiment is preferably 100 mm 2 /s or less, more preferably 80 mm 2 /s or less, and even more preferably 70 mm 2 /s or less. .
For example, the kinematic viscosity at 40°C of the lubricating oil composition of the present embodiment is preferably 10 mm 2 /s or more and 100 mm 2 /s or less, more preferably 15 mm 2 /s or more and 80 mm 2 /s or less. , more preferably 20 mm 2 /s or more and 70 mm 2 /s or less.
 本実施形態の潤滑油組成物が金属加工油として用いられる場合は、40℃における動粘度は、1.0mm/s以上であることが好ましく、1.5mm/s以上であることがより好ましく、2.0mm/s以上であることがさらに好ましい。
 本実施形態の潤滑油組成物の40℃における動粘度は、50mm/s以下であることが好ましく、40mm/s以下であることがより好ましく、45mm/s以下であることがさらに好ましい。
 例えば、本実施形態の潤滑油組成物の40℃における動粘度は、1.0mm/s以上50mm/s以下であることが好ましく、1.5mm/s以上45mm/s以下であることがより好ましく、2.0mm/s以上40mm/s以下であることがさらに好ましい。
When the lubricating oil composition of this embodiment is used as a metalworking oil, the kinematic viscosity at 40°C is preferably 1.0 mm 2 /s or more, more preferably 1.5 mm 2 /s or more. The speed is preferably 2.0 mm 2 /s or more, and more preferably 2.0 mm 2 /s or more.
The kinematic viscosity at 40° C. of the lubricating oil composition of the present embodiment is preferably 50 mm 2 /s or less, more preferably 40 mm 2 /s or less, and even more preferably 45 mm 2 /s or less. .
For example, the kinematic viscosity at 40°C of the lubricating oil composition of the present embodiment is preferably 1.0 mm 2 /s or more and 50 mm 2 /s or less, and 1.5 mm 2 /s or more and 45 mm 2 /s or less. More preferably, the speed is 2.0 mm 2 /s or more and 40 mm 2 /s or less.
 本実施形態の潤滑油組成物の40℃における動粘度が上記の好ましい上限値以下であると、低摩擦性、耐摩耗性、耐焼き付き性、有機材料相性、高引火点等の潤滑油特性がより向上する。
 上記好ましい下限値以上であると、熱脱脂性等の潤滑油特性及び省燃費性が向上する。また、加工の高速度化が図られることにより生産性が向上する。
When the kinematic viscosity at 40°C of the lubricating oil composition of this embodiment is below the above-mentioned preferred upper limit, lubricating oil properties such as low friction, wear resistance, seizure resistance, compatibility with organic materials, and high flash point are improved. Improve more.
When it is at least the above preferable lower limit, lubricating oil properties such as thermal degreasing properties and fuel efficiency improve. In addition, productivity is improved by increasing the processing speed.
 本明細書における40℃における動粘度は、特に記載のない限り、JIS K2283:2000に準拠して測定された40℃における動粘度を意味する。 The kinematic viscosity at 40°C in this specification means the kinematic viscosity at 40°C measured in accordance with JIS K2283:2000, unless otherwise specified.
 <基油(A)>
 本実施形態の潤滑油組成物は、基油(A)を含有する。
 本実施形態の潤滑油組成物が油圧作動油として用いられる場合は、基油(A)の40℃における動粘度は、10mm/s以上であることが好ましく、15mm/s以上であることがより好ましく、20mm/s以上であることがさらに好ましい。
 基油(A)の40℃における動粘度は、100mm/s以下であることが好ましく、80mm/s以下であることがより好ましく、70mm/s以下であることがさらに好ましい。
 例えば、基油(A)の40℃における動粘度は、10mm/s以上100mm/s以下であることが好ましく、15mm/s以上80mm/s以下であることがより好ましく、20mm/s以上70mm/s以下であることがさらに好ましい。
<Base oil (A)>
The lubricating oil composition of this embodiment contains base oil (A).
When the lubricating oil composition of this embodiment is used as a hydraulic oil, the kinematic viscosity of the base oil (A) at 40°C is preferably 10 mm 2 /s or more, and 15 mm 2 /s or more. is more preferable, and even more preferably 20 mm 2 /s or more.
The kinematic viscosity of the base oil (A) at 40° C. is preferably 100 mm 2 /s or less, more preferably 80 mm 2 /s or less, and even more preferably 70 mm 2 /s or less.
For example, the kinematic viscosity of the base oil (A) at 40° C. is preferably 10 mm 2 /s or more and 100 mm 2 /s or less, more preferably 15 mm 2 /s or more and 80 mm 2 /s or less, and 20 mm 2 /s or more. It is more preferable that the speed is 70 mm 2 /s or more and 70 mm 2 /s or less.
 本実施形態の潤滑油組成物が金属加工油として用いられる場合は、基油(A)の40℃における動粘度は、1.0mm/s以上であることが好ましく、1.5mm/s以上であることがより好ましく、2.0mm/s以上であることがさらに好ましい。
 基油(A)の40℃における動粘度は、50mm/s以下であることが好ましく、40mm/s以下であることがより好ましく、45mm/s以下であることがさらに好ましい。
 例えば、基油(A)の40℃における動粘度は、1.0mm/s以上50mm/s以下であることが好ましく、1.5mm/s以上45mm/s以下であることがより好ましく、2.0mm/s以上40mm/s以下であることがさらに好ましい。
When the lubricating oil composition of this embodiment is used as a metal working oil, the kinematic viscosity at 40°C of the base oil (A) is preferably 1.0 mm 2 /s or more, and 1.5 mm 2 /s. It is more preferable that it is above, and even more preferably that it is 2.0 mm 2 /s or more.
The kinematic viscosity of the base oil (A) at 40° C. is preferably 50 mm 2 /s or less, more preferably 40 mm 2 /s or less, even more preferably 45 mm 2 /s or less.
For example, the kinematic viscosity of the base oil (A) at 40°C is preferably 1.0 mm 2 /s or more and 50 mm 2 /s or less, more preferably 1.5 mm 2 / s or more and 45 mm 2 /s or less. It is preferably 2.0 mm 2 /s or more and 40 mm 2 /s or less.
 本実施形態の潤滑油組成物の基油(A)の40℃における動粘度が上記の好ましい上限値以下であると、低摩擦性、耐摩耗性、耐焼き付き性、有機材料相性、高引火点等の潤滑油特性がより向上する。
 上記好ましい下限値以上であると、熱脱脂性等の潤滑油特性及び省燃費性が向上する。また、加工の高速度化が図られることにより生産性が向上する。
When the kinematic viscosity at 40° C. of the base oil (A) of the lubricating oil composition of the present embodiment is below the above-mentioned preferred upper limit, low friction, wear resistance, seizure resistance, organic material compatibility, and high flash point The properties of the lubricating oil are further improved.
When it is at least the above preferable lower limit, lubricating oil properties such as thermal degreasing properties and fuel efficiency improve. In addition, productivity is improved by increasing the processing speed.
 基油(A)は、バイオマス由来の炭素を有する基油(A1)を含む。但し、基油(A1)には、バイオマス原料からフィッシャー・トロプシュ反応で得られた合成油、すなわち、バイオマス原料をガス化して得られたCOとHを、触媒を用いたフィッシャー・トロプシュ反応で炭化水素にした合成油は含まれない。 The base oil (A) includes a base oil (A1) having carbon derived from biomass. However, the base oil (A1) is a synthetic oil obtained from biomass raw material through Fischer-Tropsch reaction, that is, CO and H2 obtained by gasifying biomass raw material through Fischer-Tropsch reaction using a catalyst. Synthetic oils made into hydrocarbons are not included.
 ≪バイオマス由来の炭素を有する基油(A1)≫
 バイオマス由来の炭素を有する基油(A1)(以下、「(A1)成分」ともいう)として、具体的には、ヤシ油、ココナッツ油、大豆油、菜種油、及び、それらの混合物等の植物油から合成された基油が挙げられる。
≪Base oil containing biomass-derived carbon (A1)≫
Specifically, the base oil (A1) having carbon derived from biomass (hereinafter also referred to as "component (A1)") is derived from vegetable oils such as coconut oil, coconut oil, soybean oil, rapeseed oil, and mixtures thereof. Examples include synthetic base oils.
 (A1)成分の市販品例としては、SynNova 4 Base Oil(Novvi社製)、及び、SynNova 9 Base Oil(Novvi社製)、NovaSolv 160(Novvi社製)等が挙げられる。
 本実施形態の潤滑油組成物の基油(A)としては、(A1)成分を1種単独で用いてもよく、複数の(A1)成分を混合して用いてもよい。
Examples of commercial products of the component (A1) include SynNova 4 Base Oil (manufactured by Novvi), SynNova 9 Base Oil (manufactured by Novvi), and NovaSolv 160 (manufactured by Novvi).
As the base oil (A) of the lubricating oil composition of the present embodiment, one component (A1) may be used alone, or a plurality of components (A1) may be used as a mixture.
 (A1)成分は、ASTM D6866で測定されるバイオマス由来の炭素の含有量が、20質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、100質量%あることが特に好ましい。 The content of biomass-derived carbon in component (A1) as measured by ASTM D6866 is preferably 20% by mass or more, more preferably 60% by mass or more, and preferably 80% by mass or more. More preferably, it is particularly preferably 100% by mass.
 本実施形態の潤滑油組成物が油圧作動油として用いられる場合は、(A1)成分の40℃における動粘度は、10mm/s以上であることが好ましく、15mm/s以上であることがより好ましく、20mm/s以上であることがさらに好ましい。
 (A1)成分の40℃における動粘度は、100mm/s以下であることが好ましく、80mm/s以下であることがより好ましく、70mm/s以下であることがさらに好ましい。
 例えば、(A1)成分の40℃における動粘度は、10mm/s以上100mm/s以下であることが好ましく、15mm/s以上80mm/s以下であることがより好ましく、20mm/s以上70mm/s以下であることがさらに好ましい。
When the lubricating oil composition of this embodiment is used as a hydraulic oil, the kinematic viscosity of component (A1) at 40°C is preferably 10 mm 2 /s or more, and preferably 15 mm 2 /s or more. More preferably, it is 20 mm 2 /s or more.
The kinematic viscosity of component (A1) at 40° C. is preferably 100 mm 2 /s or less, more preferably 80 mm 2 /s or less, and even more preferably 70 mm 2 /s or less.
For example, the kinematic viscosity of component (A1) at 40° C. is preferably 10 mm 2 /s or more and 100 mm 2 /s or less, more preferably 15 mm 2 /s or more and 80 mm 2 /s or less, and 20 mm 2 / s or more. It is more preferable that the speed is not less than s and not more than 70 mm 2 /s.
 本実施形態の潤滑油組成物が金属加工油として用いられる場合は、(A1)成分の40℃における動粘度は、1.0mm/s以上であることが好ましく、1.5mm/s以上であることがより好ましく、2.0mm/s以上であることがさらに好ましい。
 (A1)成分の40℃における動粘度は、50mm/s以下であることが好ましく、40mm/s以下であることがより好ましく、45mm/s以下であることがさらに好ましい。
 例えば、(A1)成分の40℃における動粘度は、1.0mm/s以上50mm/s以下であることが好ましく、1.5mm/s以上45mm/s以下であることがより好ましく、2.0mm/s以上40mm/s以下であることがさらに好ましい。
When the lubricating oil composition of this embodiment is used as a metal working oil, the kinematic viscosity of component (A1) at 40°C is preferably 1.0 mm 2 /s or more, and 1.5 mm 2 /s or more. It is more preferable that it is, and it is still more preferable that it is 2.0 mm 2 /s or more.
The kinematic viscosity of component (A1) at 40° C. is preferably 50 mm 2 /s or less, more preferably 40 mm 2 /s or less, even more preferably 45 mm 2 /s or less.
For example, the kinematic viscosity of component (A1) at 40°C is preferably 1.0 mm 2 /s or more and 50 mm 2 /s or less, more preferably 1.5 mm 2 /s or more and 45 mm 2 /s or less. , more preferably 2.0 mm 2 /s or more and 40 mm 2 /s or less.
 本実施形態の潤滑油組成物の(A1)成分の40℃における動粘度が上記の好ましい上限値以下であると、低摩擦性、耐摩耗性、耐焼き付き性、有機材料相性、高引火点等の潤滑油特性がより向上する。
 上記好ましい下限値以上であると、熱脱脂性等の潤滑油特性及び省燃費性が向上する。また、加工の高速度化が図られることにより生産性が向上する。
When the kinematic viscosity at 40° C. of the component (A1) of the lubricating oil composition of the present embodiment is below the above-mentioned preferred upper limit, low friction, wear resistance, seizure resistance, compatibility with organic materials, high flash point, etc. lubricating oil properties are further improved.
When it is at least the above preferable lower limit, lubricating oil properties such as thermal degreasing properties and fuel efficiency improve. In addition, productivity is improved by increasing the processing speed.
 基油(A)は、上述した(A1)成分以外の基油(A2)を含んでいてもよい。 The base oil (A) may contain a base oil (A2) other than the above-mentioned component (A1).
 ≪(A1)成分以外の基油(A2)≫
 上述した(A1)成分以外の基油(A2)(以下、「(A2)成分」ともいう)として、具体的には、合成油、鉱油が挙げられる。
≪Base oil (A2) other than component (A1)≫
Specific examples of the base oil (A2) other than the above-mentioned component (A1) (hereinafter also referred to as "component (A2)") include synthetic oils and mineral oils.
 ・合成油
 合成油としては、例えば、ポリ-α-オレフィン等のポリオレフィン、アルキルベンゼン、及びアルキルナフタレン等が挙げられる。
-Synthetic oil Examples of synthetic oil include polyolefins such as poly-α-olefin, alkylbenzenes, and alkylnaphthalenes.
 ・鉱油
 鉱油としては、原油を常圧蒸留して得られる留出油を使用することができる。この留出油をさらに減圧蒸留して得られる留出油を、各種の精製プロセスで精製した潤滑油留分も使用することができる。
 精製プロセスとしては、水素化精製、溶剤抽出、溶剤脱ろう、水素化脱ろう、硫酸洗浄、及び白土処理等を、適宜組み合わせることができる。これらの精製プロセスを適宜の順序で組み合わせて処理することにより、鉱油を得ることができる。
 異なる原油又は留出油を異なる精製プロセスの組合せに供することにより得られた、性状の異なる複数の精製油の混合物を用いてもよい。
- Mineral oil As the mineral oil, distillate oil obtained by atmospheric distillation of crude oil can be used. Lubricating oil fractions obtained by further distilling this distillate under reduced pressure and refining the distillate obtained through various refining processes can also be used.
As the purification process, hydrorefining, solvent extraction, solvent dewaxing, hydrodewaxing, sulfuric acid washing, clay treatment, and the like can be appropriately combined. Mineral oil can be obtained by combining these refining processes in an appropriate order.
A mixture of a plurality of refined oils with different properties obtained by subjecting different crude oils or distillate oils to a combination of different refining processes may be used.
 (A2)成分としては、前記合成油又は鉱油を1種単独で用いてもよく、複数の合成油又は鉱油を混合して用いてもよい。 As component (A2), one of the above synthetic oils or mineral oils may be used alone, or a plurality of synthetic oils or mineral oils may be used as a mixture.
 本実施形態の潤滑油組成物の基油(A)中の(A1)成分の割合は、基油(A)全量に対して、30質量%以上が好ましく、40質量%以上がより好ましく、45質量以上がさらに好ましい。 The proportion of the component (A1) in the base oil (A) of the lubricating oil composition of the present embodiment is preferably 30% by mass or more, more preferably 40% by mass or more, and 45% by mass or more, based on the total amount of the base oil (A). It is more preferable that the amount is greater than or equal to the mass.
 本実施形態の潤滑油組成物の基油(A)の含有量は、潤滑油組成物全量に対して、85質量%以上が好ましく、90質量%以上がより好ましく、92質量%以上がさらに好ましく、95質量%以上が特に好ましい。
 本実施形態の潤滑油組成物の基油(A)の含有量は、潤滑油組成物全量に対して、99.8質量%以下が好ましく、99.5質量%以下がより好ましい。
 例えば、本実施形態の潤滑油組成物の基油(A)の含有量は、潤滑油組成物全量に対して、85質量%以上99.8質量%以下が好ましく、90質量%以上99.8質量%以下がより好ましく、92質量%以上99.8質量%以下がさらに好ましく、95質量%以上99.5質量%以下が特に好ましい。
The content of the base oil (A) in the lubricating oil composition of this embodiment is preferably 85% by mass or more, more preferably 90% by mass or more, even more preferably 92% by mass or more, based on the total amount of the lubricating oil composition. , 95% by mass or more is particularly preferred.
The content of the base oil (A) in the lubricating oil composition of this embodiment is preferably 99.8% by mass or less, more preferably 99.5% by mass or less, based on the total amount of the lubricating oil composition.
For example, the content of the base oil (A) in the lubricating oil composition of the present embodiment is preferably 85% by mass or more and 99.8% by mass or less, and 90% by mass or more and 99.8% by mass, based on the total amount of the lubricating oil composition. It is more preferably 92% by mass or more and 99.8% by mass or less, particularly preferably 95% by mass or more and 99.5% by mass or less.
 本実施形態の潤滑油組成物の基油(A)の含有量が上記の好ましい範囲内であれば、熱安定性及び低摩擦性がより向上する。 If the content of the base oil (A) in the lubricating oil composition of this embodiment is within the above preferred range, thermal stability and low friction properties will be further improved.
 <リン酸エステル(B)>
 本実施形態の潤滑油組成物におけるリン酸エステル(B)(以下、「(B)成分」ともいう)としては、リン酸モノエステル、リン酸ジエステル、リン酸トリエステル、及び、それらのリン酸エステルのアミン塩等が挙げられる。
<Phosphoric acid ester (B)>
The phosphate ester (B) (hereinafter also referred to as "component (B)") in the lubricating oil composition of the present embodiment includes phosphoric acid monoester, phosphoric diester, phosphoric triester, and their phosphoric acid esters. Examples include amine salts of esters.
 (B)成分としては、上記の中でも、熱安定性及び低摩擦性をより向上させる観点から、リン酸トリエステルであることが好ましく、下記一般式(P-1)で表されるリン酸トリエステルであることがより好ましい。 Among the above components, the component (B) is preferably a phosphoric acid triester, from the viewpoint of further improving thermal stability and low friction properties, and is preferably a phosphoric acid triester represented by the following general formula (P-1). More preferably, it is an ester.
Figure JPOXMLDOC01-appb-C000003
[式中、R~Rは、それぞれ独立に、置換基を有してもよいアリール基、又は置換基を有してもよいアルキル基である。]
Figure JPOXMLDOC01-appb-C000003
[In the formula, R 1 to R 3 are each independently an aryl group that may have a substituent or an alkyl group that may have a substituent. ]
 上記一般式(P-1)中のR~Rにおけるアリール基としては、フェニル基、ナフチル基等が挙げられる。 Examples of the aryl group for R 1 to R 3 in the above general formula (P-1) include a phenyl group and a naphthyl group.
 該アリール基は、置換基を有してもよく、該置換基としては、アルキル基、アルコキシ基、ヒドロキシ基等が挙げられる。
 該アルキル基としては、炭素数1~5の直鎖状又は分岐鎖状のアルキル基が好ましく、メチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基がより好ましい。
 該アルコキシ基としては、炭素数1~5のアルコキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、tert-ブトキシ基がより好ましい。
The aryl group may have a substituent, and examples of the substituent include an alkyl group, an alkoxy group, and a hydroxy group.
The alkyl group is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, and more preferably a methyl group, ethyl group, propyl group, n-butyl group, or tert-butyl group.
The alkoxy group is preferably an alkoxy group having 1 to 5 carbon atoms, and more preferably a methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, or tert-butoxy group.
 上記一般式(P-1)中のR~Rにおけるアルキル基としては、炭素数1~5の直鎖状又は分岐鎖状のアルキル基が好ましく、メチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基が好ましい。 The alkyl group in R 1 to R 3 in the above general formula (P-1) is preferably a linear or branched alkyl group having 1 to 5 carbon atoms, such as a methyl group, ethyl group, propyl group, n -butyl group and tert-butyl group are preferred.
 該アルキル基は、置換基を有してもよく、該置換基としては、アルコキシ基、ヒドロキシ基等が挙げられる。
 該アルコキシ基としては、炭素数1~5のアルコキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、tert-ブトキシ基がより好ましい。
The alkyl group may have a substituent, and examples of the substituent include an alkoxy group and a hydroxy group.
The alkoxy group is preferably an alkoxy group having 1 to 5 carbon atoms, and more preferably a methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, or tert-butoxy group.
 上記一般式(P-1)中のR~Rは、それぞれ異なっていてもよいが、全て同一であることが好ましい。 Although R 1 to R 3 in the above general formula (P-1) may be different from each other, it is preferable that they are all the same.
 上記一般式(P-1)中のR~Rは、上記の中でも、いずれも置換基を有してもよいアリール基であることが好ましく、いずれも同一の置換基を有してもよいアリール基であることがより好ましい。 Among the above, R 1 to R 3 in the general formula (P-1) are preferably all aryl groups which may have a substituent, and even if they all have the same substituent, More preferably, it is a good aryl group.
 (B)成分として、具体的には、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(t-ブチルフェニル)ホスフェート、直鎖状又は分岐鎖状のトリブチルホスフェート、直鎖状又は分岐鎖状のトリペンチルホスフェート、直鎖状又は分岐鎖状のトリヘキシルホスフェート、直鎖状又は分岐鎖状のトリヘプチルホスフェート、直鎖状又は分岐鎖状のトリオクチルホスフェート、直鎖状又は分岐鎖状のトリノニルホスフェート、直鎖状又は分岐鎖状のトリデシルホスフェート、直鎖状又は分岐鎖状のトリウンデシルホスフェート、直鎖状又は分岐鎖状のトリドデシルホスフェート、直鎖状又は分岐鎖状のトリトリデシルホスフェート、直鎖状又は分岐鎖状のトリテトラデシルホスフェート、直鎖状又は分岐鎖状のトリペンタデシルホスフェート、直鎖状又は分岐鎖状のトリヘキサデシルホスフェート、直鎖状又は分岐鎖状のトリヘプタデシルホスフェート、直鎖状又は分岐鎖状のトリオクタデシルホスフェート、直鎖状又は分岐鎖状のトリオレイルホスフェートが挙げられる。 Component (B) specifically includes triphenyl phosphate, tricresyl phosphate, tricylenyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, tris(isopropylphenyl) phosphate, tris(t-butylphenyl) phosphate, linear or branched tributyl phosphate, linear or branched tripentyl phosphate, linear or branched trihexyl phosphate, linear or branched triheptyl phosphate, linear Linear or branched trioctyl phosphate, linear or branched trinonyl phosphate, linear or branched tridecyl phosphate, linear or branched triundecyl phosphate, linear linear or branched tridodecyl phosphate, linear or branched tritridecyl phosphate, linear or branched tritetradecyl phosphate, linear or branched tripentadecyl phosphate, linear Examples include linear or branched trihexadecyl phosphate, linear or branched triheptadecyl phosphate, linear or branched triotadecyl phosphate, and linear or branched trioleyl phosphate. .
 本実施形態の潤滑油組成物の(B)成分としては、上記の中でも、トリクレジルホスフェート、及びトリフェニルホスフェートが好ましく、トリクレジルホスフェートがより好ましい。
 本実施形態の潤滑油組成物の(B)成分は、1種単独で用いてもよく、2種以上を混合して用いてもよい。
Among the above components, tricresyl phosphate and triphenyl phosphate are preferred as component (B) of the lubricating oil composition of the present embodiment, and tricresyl phosphate is more preferred.
Component (B) of the lubricating oil composition of this embodiment may be used alone or in combination of two or more.
 本実施形態の潤滑油組成物の(B)成分の含有量は、潤滑油組成物全量に対して、0.05質量%以上が好ましく、0.1質量%以上がより好ましく、0.3質量%以上がさらに好ましい。
 本実施形態の潤滑油組成物の(B)成分の含有量は、潤滑油組成物全量に対して、2質量%以下が好ましく、1.5質量%以下がより好ましく、1質量%以下がさらに好ましい。
 例えば、本実施形態の潤滑油組成物の(B)成分の含有量は、潤滑油組成物全量に対して、0.05質量%以上2質量%以下が好ましく、0.1質量%以上1.5質量%以下がより好ましく、0.3質量%以上1質量%以下がさらに好ましい。
The content of component (B) in the lubricating oil composition of this embodiment is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and 0.3% by mass based on the total amount of the lubricating oil composition. % or more is more preferable.
The content of component (B) in the lubricating oil composition of the present embodiment is preferably 2% by mass or less, more preferably 1.5% by mass or less, and further preferably 1% by mass or less, based on the total amount of the lubricating oil composition. preferable.
For example, the content of component (B) in the lubricating oil composition of the present embodiment is preferably 0.05% by mass or more and 2% by mass or less, and 0.1% by mass or more and 1.0% by mass or less, based on the total amount of the lubricating oil composition. It is more preferably 5% by mass or less, and even more preferably 0.3% by mass or more and 1% by mass or less.
 潤滑油組成物全量に対する(B)成分の含有量が、上記の好ましい範囲内であれば、熱安定性及び低摩擦性がより向上する。 If the content of component (B) with respect to the total amount of the lubricating oil composition is within the above-mentioned preferred range, thermal stability and low friction properties will be further improved.
 <任意成分>
 本実施形態の潤滑油組成物は、上述した基油(A)、及び(B)成分以外の任意成分を含有してもよい。該任意成分としては、油性剤(C)、酸化防止剤、防錆剤、腐食防止剤、さび止め剤、消泡剤、金属系清浄剤、摩耗防止剤、粘度指数向上剤、流動点降下剤、ミスト防止剤、及び、解乳化剤等が挙げられる。
<Optional ingredients>
The lubricating oil composition of this embodiment may contain arbitrary components other than the above-mentioned base oil (A) and (B) components. The optional components include an oily agent (C), an antioxidant, a rust preventive agent, a corrosion inhibitor, a rust inhibitor, an antifoaming agent, a metal detergent, an antiwear agent, a viscosity index improver, and a pour point depressant. , mist inhibitors, demulsifiers, and the like.
 <油性剤(C)>
 本実施形態の潤滑油組成物の油性剤(C)(以下、「(C)成分」ともいう)は、上述した(B)成分以外のエステル及びアルコールから選択される1種以上の油性剤を含んでもよい。
 上述した(B)成分以外のエステルとして、具体的には、1価アルコールと1塩基酸とから得られる炭素原子数7~26のエステル(C1)(以下、「(C1)成分」ともいう)が挙げられる。
 アルコールとして、具体的には、1価アルコール(C2)(以下、「(C2)成分」ともいう)が挙げられる。
<Oil-based agent (C)>
The oily agent (C) (hereinafter also referred to as "component (C)") of the lubricating oil composition of the present embodiment contains one or more oily agents selected from esters and alcohols other than the component (B) mentioned above. May include.
Specifically, esters other than the above-mentioned (B) component include esters (C1) having 7 to 26 carbon atoms obtained from a monohydric alcohol and a monobasic acid (hereinafter also referred to as "component (C1)") can be mentioned.
Specifically, the alcohol includes monohydric alcohol (C2) (hereinafter also referred to as "component (C2)").
 ・(C1)成分:1価アルコールと1塩基酸とから得られる炭素原子数7~26のエステル
 (C1)成分は、1価アルコールと1塩基酸とから得られる炭素原子数7~26のエステルである。
・Component (C1): An ester having 7 to 26 carbon atoms obtained from a monohydric alcohol and a monobasic acid. Component (C1) is an ester having 7 to 26 carbon atoms obtained from a monohydric alcohol and a monobasic acid. It is.
 ・・1価アルコール
 (C1)成分の原料として使用される1価アルコールとしては、炭素原子数1~25の1価アルコールが挙げられ、該1価アルコールは、直鎖状であっても、分岐鎖状であってもよく、また、飽和であっても、不飽和であってもよい。
 1価アルコールとして、具体的には、メタノール、エタノール、プロパノール、ブタノール、オクタノール(カプリルアルコール)、ノナノール、デカノール(カプリンアルコール)、ウンデカノール、ドデカノール(ラウリルアルコール)、トリデカノール、テトラデカノール(ミリスチルアルコール)、ペンタデカノール、ヘキサデカノール(セチルアルコール)、ヘプタデカノール、オクタデカノール(ステアリルアルコール)、ノナデカノール、エイコサノール(アラキジルアルコール)、ヘンエイコサノール、ドコサノール(ベへニルアルコール)、トリコサノール、テトラコサノール、ペンタコサノール等の直鎖状の飽和アルコール;2-エチルヘキサノール、イソステアリルアルコール、2-n-オクチル-1-ドデカノール等の分岐鎖状の飽和アルコール;シス-9-ヘキサデセン-1-オール(パルミトレイルアルコール)、9E-オクタデセン-1-オール(エライジルアルコール)、シス-9-オクタデセン-1-オール(オレイルアルコール)、9Z,12Z-オクタデカジエン-1-オール(リノレイルアルコール)等の直鎖状の不飽和アルコールなどが挙げられる。
... Monohydric alcohol Monohydric alcohols used as raw materials for the (C1) component include monohydric alcohols having 1 to 25 carbon atoms, and even if the monohydric alcohol is linear, it may be branched. It may be chain-like and may be saturated or unsaturated.
Specifically, monohydric alcohols include methanol, ethanol, propanol, butanol, octanol (caprylic alcohol), nonanol, decanol (capric alcohol), undecanol, dodecanol (lauryl alcohol), tridecanol, tetradecanol (myristyl alcohol), Pentadecanol, hexadecanol (cetyl alcohol), heptadecanol, octadecanol (stearyl alcohol), nonadecanol, eicosanol (arachidyl alcohol), heneicosanol, docosanol (behenyl alcohol), tricosanol, tetracosa Linear saturated alcohols such as alcohol and pentacosanol; Branched saturated alcohols such as 2-ethylhexanol, isostearyl alcohol, and 2-n-octyl-1-dodecanol; cis-9-hexadecen-1-ol (palmitoleyl alcohol), 9E-octadecen-1-ol (elaidyl alcohol), cis-9-octadecen-1-ol (oleyl alcohol), 9Z,12Z-octadecadien-1-ol (linoleyl alcohol), etc. Examples include straight-chain unsaturated alcohols.
 ・・1塩基酸
 (C1)成分の原料として使用される1塩基酸としては、脂肪酸が挙げられ、具体的には、炭素原子数1~25の脂肪酸が挙げられ、該脂肪酸は、直鎖状であっても、分岐鎖状であってもよく、また、飽和であっても、不飽和であってもよい。
 該脂肪酸としては、上記の中でも、炭素原子数6~24の脂肪酸が好ましい。
Monobasic acid Examples of the monobasic acid used as a raw material for the component (C1) include fatty acids, specifically fatty acids having 1 to 25 carbon atoms, and the fatty acids are straight-chain or may be branched, and may be saturated or unsaturated.
Among the fatty acids mentioned above, fatty acids having 6 to 24 carbon atoms are preferred.
 好適な具体例としては、n-ヘキサン酸、n-ヘプタン酸、n-オクタン酸(カプリル酸)、n-ノナン酸、n-デカン酸(カプリン酸)、n-ウンデカン酸、n-ドデカン酸(ラウリン酸)、n-トリデカン酸、n-テトラデカン酸(ミリスチン酸)、n-ペンタデカン酸、n-ヘキサデカン酸(パルミチン酸)、n-ヘプタデカン酸、n-オクタデカン酸(ステアリン酸)、n-イコサン酸(アラキジン酸)、ドコサン酸(ベヘン酸)、テトラコサン酸(リグノセリン酸)等の直鎖状の飽和脂肪酸;イソヘプタン酸、イソオクタン酸、イソノナン酸、イソデカン酸、イソウンデカン酸、イソドデカン酸、イソトリデカン酸、イソテトラデカン酸、イソペンタデカン酸、イソヘキサデカン酸、イソヘプタデカン酸、イソオクタデカン酸、イソイコサン酸等の分岐鎖状の飽和脂肪酸;9-テトラデセン酸(ミリストレイン酸)、9-ヘキサデセン酸(パルミトレイン酸)、9-オクタデセン酸(オレイン酸)、エイコセン酸、リノール酸(9,12-オクタデカジエン酸)等の不飽和脂肪酸;これらの脂肪酸を1種以上含む天然由来の脂肪酸(例えば、牛脂、ヤシ油)などが挙げられる。 Preferred specific examples include n-hexanoic acid, n-heptanoic acid, n-octanoic acid (caprylic acid), n-nonanoic acid, n-decanoic acid (capric acid), n-undecanoic acid, n-dodecanoic acid ( lauric acid), n-tridecanoic acid, n-tetradecanoic acid (myristic acid), n-pentadecanoic acid, n-hexadecanoic acid (palmitic acid), n-heptadecanoic acid, n-octadecanoic acid (stearic acid), n-icosanoic acid Linear saturated fatty acids such as (arachidic acid), docosanoic acid (behenic acid), and tetracosanoic acid (lignoceric acid); isoheptanoic acid, isooctanoic acid, isononanoic acid, isodecanoic acid, isoundecanoic acid, isododecanoic acid, isotridecanoic acid, Branched saturated fatty acids such as tetradecanoic acid, isopentadecanoic acid, isohexadecanoic acid, isoheptadecanoic acid, isooctadecanoic acid, isoicosanoic acid; 9-tetradecenoic acid (myristoleic acid), 9-hexadecenoic acid (palmitoleic acid), 9- Unsaturated fatty acids such as octadecenoic acid (oleic acid), eicosenoic acid, and linoleic acid (9,12-octadecadienoic acid); naturally occurring fatty acids containing one or more of these fatty acids (e.g., beef tallow, coconut oil), etc. Can be mentioned.
 (C1)成分としては、上記の中でも、1価アルコールと1塩基酸とから得られる炭素原子数13~22のエステル(C11)(以下、(C11)成分ともいう)が好ましい。
 (C11)成分として、具体的には、1価の直鎖状の飽和アルコールと直鎖状の飽和脂肪酸とから得られる炭素原子数13~22のエステルがより好ましく、ラウリン酸メチル、ラウリン酸エチル、ラウリン酸プロピル、ラウリン酸ブチル、ラウリン酸ペンチル、ラウリン酸ヘキシル、ラウリン酸ヘプチル、ラウリン酸オクチル、ラウリン酸ノニル、ラウリン酸デシル、パルミチン酸メチル、パルミチン酸エチル、パルミチン酸プロピル、パルミチン酸ブチル、パルミチン酸ペンチル、及びパルミチン酸ヘキシルがさらに好ましく、ラウリン酸メチル、及びパルミチン酸ブチル、ステアリン酸ブチルが特に好ましい。
Among the above components, preferred as component (C1) is an ester (C11) having 13 to 22 carbon atoms obtained from a monohydric alcohol and a monobasic acid (hereinafter also referred to as component (C11)).
Specifically, as the component (C11), esters having 13 to 22 carbon atoms obtained from a monovalent linear saturated alcohol and a linear saturated fatty acid are more preferable, such as methyl laurate and ethyl laurate. , propyl laurate, butyl laurate, pentyl laurate, hexyl laurate, heptyl laurate, octyl laurate, nonyl laurate, decyl laurate, methyl palmitate, ethyl palmitate, propyl palmitate, butyl palmitate, palmitate Pentyl acid and hexyl palmitate are more preferred, and methyl laurate, butyl palmitate, and butyl stearate are particularly preferred.
 ・(C2)成分:1価アルコール
 (C2)成分は、1価アルコールである。(C2)成分としては、上述した(C1)成分の原料として使用される1価アルコールと同様の1価アルコールが挙げられる。
 (C2)成分としては、その中でも、炭素原子数12~14の1価アルコール(C21)(以下、(C21)成分ともいう)が好ましく、炭素原子数12又は14の1価アルコールがより好ましく、ドデカノール(ラウリルアルコール)又はテトラデカノール(ミリスチルアルコール)がさらに好ましい。
- (C2) component: Monohydric alcohol The (C2) component is monohydric alcohol. Examples of the component (C2) include monohydric alcohols similar to the monohydric alcohol used as the raw material for the component (C1) described above.
Among them, as component (C2), a monohydric alcohol (C21) having 12 to 14 carbon atoms (hereinafter also referred to as component (C21)) is preferable, and a monohydric alcohol having 12 or 14 carbon atoms is more preferable. More preferred are dodecanol (lauryl alcohol) or tetradecanol (myristyl alcohol).
 本実施形態の潤滑油組成物における(C)成分としては、上記の中でも、潤滑油特性をより向上させる観点から(C11)成分及び(C21)成分からなる群から選択される1種以上の油性剤が好ましく、ステアリン酸ブチル及びドデカノール(ラウリルアルコール)からなる群から選択される1種以上の油性剤がより好ましい。 As the (C) component in the lubricating oil composition of the present embodiment, from the viewpoint of further improving the lubricating oil properties, one or more oil-based components selected from the group consisting of the (C11) component and the (C21) component are selected from among the above. Preferably, one or more oily agents selected from the group consisting of butyl stearate and dodecanol (lauryl alcohol) are preferred.
 本実施形態の潤滑油組成物における(C)成分は、1種単独で用いてもよく、2種以上を混合して用いてもよい。 Component (C) in the lubricating oil composition of this embodiment may be used alone or in a mixture of two or more.
 本実施形態の潤滑油組成物が(C)成分を含有する場合、本実施形態の潤滑油組成物の(C)成分の含有量は、潤滑油組成物全量に対して、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上がさらに好ましい。
 (C)成分の含有量は、潤滑油組成物全量に対して、30量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。
 例えば、(C)成分の含有量は、潤滑油組成物全量に対して、例えば、1質量%以上30質量%以下が好ましく、2質量%以上20質量%以下がより好ましく、3質量%以上15質量%以下がさらに好ましい。
When the lubricating oil composition of this embodiment contains component (C), the content of component (C) in the lubricating oil composition of this embodiment is 1% by mass or more based on the total amount of the lubricating oil composition. It is preferably 2% by mass or more, more preferably 3% by mass or more.
The content of component (C) is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 15% by mass or less, based on the total amount of the lubricating oil composition.
For example, the content of component (C) is preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 20% by mass or less, and 3% by mass or more and 15% by mass or less, based on the total amount of the lubricating oil composition. It is more preferably less than % by mass.
 潤滑油組成物全量に対する(C)成分の含有量が、上記の好ましい範囲内であれば、潤滑油特性がより向上する。 If the content of component (C) with respect to the total amount of the lubricating oil composition is within the above-mentioned preferred range, the lubricating oil properties will be further improved.
 酸化防止剤としては、例えば、2,6-ジ-t-ブチルフェノール、2,6-ジ-t-ブチル-p-クレゾール等のフェノール系化合物;ジフェニルアミン、ジアルキルジフェニルアミン、フェニル-α-ナフチルアミン、p-アルキルフェニル-α-ナフチルアミン等のアミン系化合物等が挙げられる。潤滑油組成物が酸化防止剤を含有する場合、その含有量は潤滑油組成物全量に対して、例えば、0.5~10質量%である。酸化防止剤は、1種単独で用いてもよく、複数の酸化防止剤を混合して用いてもよい。 Examples of antioxidants include phenolic compounds such as 2,6-di-t-butylphenol and 2,6-di-t-butyl-p-cresol; diphenylamine, dialkyldiphenylamine, phenyl-α-naphthylamine, p- Examples include amine compounds such as alkylphenyl-α-naphthylamine. When the lubricating oil composition contains an antioxidant, the content thereof is, for example, 0.5 to 10% by mass based on the total amount of the lubricating oil composition. One type of antioxidant may be used alone, or a plurality of antioxidants may be used in combination.
 腐食防止剤としては、例えば、ベンゾトリアゾール系化合物、トリルトリアゾール系化合物、チアジアゾール系化合物、及びイミダゾール系化合物等の公知の腐食防止剤を使用可能である。潤滑油組成物が腐食防止剤を含有する場合、その含有量は潤滑油組成物全量に対して、例えば、0.01~10質量%である。腐食防止剤は、1種単独で用いてもよく、複数の腐食防止剤を混合して用いてもよい。 As the corrosion inhibitor, for example, known corrosion inhibitors such as benzotriazole compounds, tolyltriazole compounds, thiadiazole compounds, and imidazole compounds can be used. When the lubricating oil composition contains a corrosion inhibitor, the content thereof is, for example, 0.01 to 10% by mass based on the total amount of the lubricating oil composition. One type of corrosion inhibitor may be used alone, or a plurality of corrosion inhibitors may be used in combination.
 さび止め剤として、具体的には、オレイン酸などの脂肪酸の塩、ジノニルナフタレンスルホネートなどのスルホン酸塩、ソルビタンモノオレエートなどの多価アルコールの部分エステル(油性剤(C)に該当するものを除く)、アミン及びその誘導体等が挙げられる。 Examples of rust inhibitors include salts of fatty acids such as oleic acid, sulfonates such as dinonylnaphthalene sulfonate, and partial esters of polyhydric alcohols such as sorbitan monooleate (corresponding to oily agents (C)). ), amines and derivatives thereof, etc.
 消泡剤としては、シリコーン系消泡剤等が挙げられる。 Examples of antifoaming agents include silicone antifoaming agents.
 金属系清浄剤としては、例えば、アルカリ金属又はアルカリ土類金属のスルホネート、フェネート、サリシレート等の正塩又は塩基性塩が挙げられる。金属系清浄剤は、低級脂肪酸を中和して低級脂肪酸の蒸発を抑制する観点から、好ましくは、アルカリ金属又はアルカリ土類金属のスルホネート、フェネート、サリシレート等の塩基性塩である。アルカリ金属としては、好ましくはナトリウム、カリウム等が挙げられる。アルカリ土類金属としては、好ましくはマグネシウム、カルシウム、バリウム等が挙げられる。これらの金属の中では、好ましくはマグネシウム又はカルシウム、より好ましくはカルシウムである。 Examples of metal-based detergents include normal salts or basic salts of alkali metal or alkaline earth metal sulfonates, phenates, salicylates, and the like. The metal detergent is preferably a basic salt such as an alkali metal or alkaline earth metal sulfonate, phenate, or salicylate from the viewpoint of neutralizing lower fatty acids and suppressing evaporation of lower fatty acids. Preferred examples of the alkali metal include sodium and potassium. Preferred alkaline earth metals include magnesium, calcium, barium, and the like. Among these metals, magnesium or calcium is preferred, and calcium is more preferred.
 摩耗防止剤としては、例えば、ジチオカーバメート、亜鉛ジチオカーバメート、モリブデンジチオカーバメート、ジサルファイド類、ポリサルファイド類、硫化オレフィン類、硫化油脂類等が挙げられる。 Examples of anti-wear agents include dithiocarbamates, zinc dithiocarbamates, molybdenum dithiocarbamates, disulfides, polysulfides, sulfurized olefins, sulfurized oils and fats, and the like.
 粘度指数向上剤としては、例えば、非分散型又は分散型ポリ(メタ)アクリレート系粘度指数向上剤、非分散型又は分散型オレフィン-(メタ)アクリレート共重合体系粘度指数向上剤、スチレン-無水マレイン酸エステル共重合体系粘度指数向上剤、及びこれらの混合物等が挙げられる。 Examples of the viscosity index improver include non-dispersed or dispersed poly(meth)acrylate-based viscosity index improvers, non-dispersed or dispersed olefin-(meth)acrylate copolymer-based viscosity index improvers, and styrene-maleic anhydride. Examples include acid ester copolymer-based viscosity index improvers, mixtures thereof, and the like.
 流動点降下剤としては、例えば、基油(A)に適合するポリメタクリレート系のポリマー等が挙げられる。 Examples of pour point depressants include polymethacrylate polymers that are compatible with the base oil (A).
 ミスト防止剤としては、例えば、エチレン-プロピレン共重合体、ポリメタクリレート、ポリイソブチレン、ポリブテンなどが挙げられる。ミスト防止剤としてのこれらの化合物の平均分子量は、通常、1万~800万である。 Examples of the mist preventive agent include ethylene-propylene copolymer, polymethacrylate, polyisobutylene, and polybutene. The average molecular weight of these compounds as mist inhibitors is usually 10,000 to 8,000,000.
 解乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤等が挙げられる。 Examples of the demulsifier include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether.
 以上説明した本実施形態の潤滑油組成物は、(A1)成分と、(B)成分とを含み、ASTM D6866で測定されるバイオマス由来の炭素の含有量が、潤滑油組成物全炭素基準で20%以上である。
 本実施形態の潤滑油組成物は、バイオマス由来の炭素の含有量が、20%以上であるため、環境への負荷が軽減されている。
 さらに、本実施形態の潤滑油組成物は、(A1)成分と、(B)成分との組み合わせによる相乗効果により、以下のような効果を奏する。
 本実施形態の潤滑油組成物を油圧作動油として用いる場合は、低摩擦性、耐摩耗性、酸化安定性、熱安定性、防錆性、消泡性、水分離性、有機材料相性(シールやパッキンなどを膨潤させたりしない)、高引火点が良好であり、特に低摩擦性及び熱安定性が良好である。
 本実施形態の潤滑油組成物を金属加工油として用いる場合は、加工性、耐焼き付き性、低摩擦性、熱脱脂性(加熱により蒸発しやすいこと)、耐摩耗性、銅、アルミニウムに対する変色防止効果、酸化安定性が良好であり、特に加工性が良好である。
The lubricating oil composition of the present embodiment described above includes component (A1) and component (B), and the content of biomass-derived carbon measured by ASTM D6866 is based on the total carbon of the lubricating oil composition. It is 20% or more.
Since the lubricating oil composition of this embodiment has a biomass-derived carbon content of 20% or more, the load on the environment is reduced.
Furthermore, the lubricating oil composition of this embodiment has the following effects due to the synergistic effect of the combination of component (A1) and component (B).
When the lubricating oil composition of this embodiment is used as a hydraulic oil, it has low friction, wear resistance, oxidation stability, thermal stability, rust prevention, antifoaming properties, water separation properties, organic material compatibility (sealing (does not swell the packing, etc.), has a high flash point, and has particularly good low friction and thermal stability.
When the lubricating oil composition of this embodiment is used as a metal working oil, it has properties such as processability, seizure resistance, low friction, thermal degreasing properties (easily evaporated by heating), wear resistance, and discoloration prevention against copper and aluminum. It has good effects and oxidation stability, and particularly good processability.
 本実施形態の潤滑油組成物は、上記効果を有するため、油圧作動油、タービン油、織機用潤滑油、圧縮機用潤滑油、金属加工油(具体的には、圧延油、切削油、プレス油等)として有用であり、特に、油圧作動油及び金属加工油として有用であり、油圧作動油としてより有用である。 Since the lubricating oil composition of this embodiment has the above-mentioned effects, it can be used in hydraulic oil, turbine oil, lubricating oil for looms, lubricating oil for compressors, metal processing oil (specifically, rolling oil, cutting oil, press oil, etc.). It is particularly useful as a hydraulic fluid and a metal working fluid, and is more useful as a hydraulic fluid.
 以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 以下の実施例において、本実施形態の潤滑油組成物を油圧作動油として用いて、評価を行った。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples.
In the following examples, the lubricating oil composition of this embodiment was used as a hydraulic oil for evaluation.
 <油圧作動油の配合>
 実施例1及び2の油圧作動油並びに比較例1~3の油圧作動油を、表1に示す配合割合で、基油(A)、及び(B)成分を配合することによって調製した。表1中の数値は、各成分の潤滑油組成物全量に対する含有割合(質量%)である。得られた各例の油圧作動油に対して、以下に示す評価を行った。評価結果を表1に示す。
<Hydraulic fluid composition>
The hydraulic fluids of Examples 1 and 2 and the hydraulic fluids of Comparative Examples 1 to 3 were prepared by blending base oil (A) and (B) components at the blending ratios shown in Table 1. The numerical values in Table 1 are the content ratios (% by mass) of each component relative to the total amount of the lubricating oil composition. The following evaluations were performed on the obtained hydraulic fluids of each example. The evaluation results are shown in Table 1.
 (1)基油(A)
 (A1)-1:100%植物由来潤滑油基油(製品名「SynNova 9 Base Oil」、Novvi社製、40℃動粘度:58.5mm/s、100℃動粘度:9.5mm/s(動粘度はASTM D445に準拠した測定値))。
(1) Base oil (A)
(A1)-1: 100% vegetable-derived lubricating base oil (product name "SynNova 9 Base Oil", manufactured by Novvi, 40°C kinematic viscosity: 58.5 mm 2 /s, 100°C kinematic viscosity: 9.5 mm 2 /s s (Kinematic viscosity is a measured value based on ASTM D445)).
 (A2)-1:鉱油(グループI基油、40℃動粘度:57.3mm/s、100℃動粘度:7.8mm/s)。 (A2)-1: Mineral oil (Group I base oil, kinematic viscosity at 40°C: 57.3 mm 2 /s, kinematic viscosity at 100°C: 7.8 mm 2 /s).
 (2)リン酸エステル(B)
 (B)-1:トリクレジルホスフェート
 (B)-2:トリフェニルホスフェート
(2) Phosphoric acid ester (B)
(B)-1: Tricresyl phosphate (B)-2: Triphenyl phosphate
 (3)添加剤
 (b)-1:ジアルキルジチオリン酸亜鉛
(3) Additive (b)-1: Zinc dialkyldithiophosphate
 <油圧作動油の製造>
 表1に示す各成分を混合して、各例の油圧作動油をそれぞれ調製した。
<Manufacture of hydraulic fluid>
Each component shown in Table 1 was mixed to prepare hydraulic oil of each example.
 [バイオベース度の評価]
 ASTM D6866に準拠して、各例の油圧作動油のバイオベース度を算出した。まず、各例の油圧作動油に含まれる放射性炭素(C14)濃度を測定することによってバイオマス由来の炭素の含有量を算出した。次いで、当該バイオマス由来の炭素の含有量から各例の油圧作動油のバイオベース度を算出した。バイオベース度が高いほど環境への負荷を軽減できることを意味する。その結果を表1に示す。
[Evaluation of biobased degree]
The biobased degree of the hydraulic fluid in each example was calculated in accordance with ASTM D6866. First, the content of biomass-derived carbon was calculated by measuring the radioactive carbon (C14) concentration contained in the hydraulic fluid of each example. Next, the biobased degree of the hydraulic fluid of each example was calculated from the content of carbon derived from the biomass. The higher the degree of bio-based content, the lower the burden on the environment. The results are shown in Table 1.
 [熱安定性の評価]
 JIS K2540:2000に規定する「潤滑油熱安定度方法」に準じて、各例の油圧作動油の熱安定性を評価した。容量50mLのビーカーに各例の油圧作動油50mLを採取し、鉄及び銅のコイル状触媒を加え、140℃の空気恒温槽で20日間静置して、各例の油圧作動油の酸価上昇値を測定した。酸価上昇値が低いほど熱安定性が高いことを意味する。その結果を表1に示す。
[Evaluation of thermal stability]
The thermal stability of the hydraulic fluid in each example was evaluated in accordance with the "lubricating oil thermal stability method" specified in JIS K2540:2000. 50 mL of the hydraulic oil of each example was collected in a beaker with a capacity of 50 mL, a coiled catalyst of iron and copper was added, and the acid value of the hydraulic oil of each example was increased by standing in a constant temperature air bath at 140°C for 20 days. The value was measured. The lower the acid value increase value, the higher the thermal stability. The results are shown in Table 1.
 [低摩擦性の評価]
 ASTM D 2174に記載のブロックオンリング試験機(LFW-1)を用いて、各例の油圧作動油の摩擦係数(μ)を以下の条件により測定した。試験は、1m/sの周速(すべり速度)で30分間ならし運転を行い、その後、周速を0.05m/sに低下させ、当該周速域における5分間の摩擦係数を測定した。摩擦係数が小さいほど低摩擦性に優れていることを意味する。その結果を表1に示す。
 <試験条件>
 試験片(リング):Falex S-10 Test Ring(SAE4620 Steel)
 試験片(ブロック):Falex H-60 Test Block(SAE01 Steel)
 各例の油圧作動油の温度:60℃
 荷重:150N
[Evaluation of low friction]
Using a block-on-ring tester (LFW-1) described in ASTM D 2174, the friction coefficient (μ) of each hydraulic fluid was measured under the following conditions. In the test, a break-in operation was performed for 30 minutes at a peripheral speed (sliding speed) of 1 m/s, and then the peripheral speed was lowered to 0.05 m/s, and the friction coefficient was measured for 5 minutes in the peripheral speed range. The smaller the friction coefficient, the better the low friction property. The results are shown in Table 1.
<Test conditions>
Test piece (ring): Falex S-10 Test Ring (SAE4620 Steel)
Test piece (block): Falex H-60 Test Block (SAE01 Steel)
Temperature of hydraulic oil in each example: 60℃
Load: 150N
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示す通り、実施例の油圧作動油は、酸価上昇値及び摩擦係数がいずれも低い値であった。すなわち、実施例の油圧作動油は、熱安定性及び低摩擦性がいずれも良好であった。
 一方で、(A1)成分を含まない比較例1はバイオベース度が低く、(B)成分を含まない比較例2は摩擦係数が高く、摩耗防止剤として汎用的な(b)-1成分を(B)成分の代わりに用いた比較例3は、摩擦係数が高かった。
 したがって、油圧作動油として用いた実施例の潤滑油組成物は、熱安定性及び低摩擦性が良好であり、かつ、環境への負荷が軽減されていることが分かる。
As shown in Table 1, the hydraulic fluids of Examples had low acid value increase values and low friction coefficients. That is, the hydraulic fluid of the example had good thermal stability and low friction.
On the other hand, Comparative Example 1, which does not contain component (A1), has a low biobased content, and Comparative Example 2, which does not contain component (B), has a high coefficient of friction. Comparative Example 3, which was used in place of component (B), had a high coefficient of friction.
Therefore, it can be seen that the lubricating oil compositions of Examples used as hydraulic oils have good thermal stability and low friction properties, and have a reduced burden on the environment.
 以下の試験例において、本実施形態の潤滑油組成物を金属加工油として用いて、評価を行った。 In the following test examples, the lubricating oil composition of this embodiment was used as a metal working oil and evaluated.
 <金属加工油の配合>
 試験例1~4の金属加工油を、表2に示す配合割合で、各成分を配合することによって調製した。表2中の数値は、各成分の潤滑油組成物全量に対する含有割合(質量%)である。得られた各例の金属加工油に対して、以下に示す評価を行った。評価結果を表2に示す。
<Composition of metal working oil>
The metalworking oils of Test Examples 1 to 4 were prepared by blending each component at the blending ratios shown in Table 2. The numerical values in Table 2 are the content ratios (% by mass) of each component relative to the total amount of the lubricating oil composition. The following evaluations were performed on the obtained metal working oils of each example. The evaluation results are shown in Table 2.
 (1)基油(A)
 (A1)-2:100%植物由来潤滑油基油(製品名「NovaSolv 160」、Novvi社製、40℃動粘度:2.8mm/s(動粘度はASTM D445に準拠した測定値))。
 (A2)-2:鉱油(製品名「AFソルベント4号」、ENEOS社製、40℃動粘度:2.4mm/s)
(1) Base oil (A)
(A1)-2: 100% vegetable-derived lubricating base oil (product name "NovaSolv 160", manufactured by Novvi, 40°C kinematic viscosity: 2.8 mm 2 /s (kinematic viscosity is a measured value based on ASTM D445)) .
(A2)-2: Mineral oil (product name "AF Solvent No. 4", manufactured by ENEOS, 40°C kinematic viscosity: 2.4 mm 2 /s)
 (2)リン酸エステル(B)
 (B)-1:トリクレジルホスフェート
 (B)-2:トリフェニルホスフェート
(2) Phosphoric acid ester (B)
(B)-1: Tricresyl phosphate (B)-2: Triphenyl phosphate
 <金属加工油の製造>
 表2に示す各成分を混合して、各例の金属加工油をそれぞれ調製した。
<Manufacture of metal working oil>
Each component shown in Table 2 was mixed to prepare metal working oil of each example.
 [バイオベース度の評価]
 ASTM D6866に準拠して、各例の金属加工油に含まれる放射性炭素(C14)濃度を測定することによってバイオマス由来の炭素の含有量を算出し、各例の金属加工油のバイオベース度を算出した。その結果を表2に示す。
[Evaluation of biobased degree]
In accordance with ASTM D6866, the content of biomass-derived carbon was calculated by measuring the radioactive carbon (C14) concentration contained in the metalworking oil of each example, and the biobased degree of the metalworking oil of each example was calculated. did. The results are shown in Table 2.
 [加工性の評価]
 アルミニウムの角筒成型時に問題となる凝着の度合いを評価するため、アルミニウムの平板摺動試験を実施し、各例の金属加工油の加工性を評価した。
 図1は、平板摺動試験の概略を示す説明図である。図1中、試験片1はアルミニウム合金製であり、各例の金属加工油に浸漬塗布してから試験に供した。この試験片1を1対の平板ブロック2a、2bで挟持し、さらに平板ブロック2aの上面側から(図1中の矢印A)所定の荷重(以下、「締付け荷重」という)を加えて水平方向(図1中の矢印B)に引き抜いた。この操作を金属加工油ごとに、30枚の試験片1について連続で行った。試験条件の詳細は以下のとおりである。
 加工性は、試験後の30個の試験片1及び平板ブロック2a、2bの摺動面を目視で観察し、以下の基準にしたがって評価した。得られた結果を表2に示す。
[Evaluation of workability]
In order to evaluate the degree of adhesion, which is a problem when forming square tubes of aluminum, an aluminum flat plate sliding test was conducted to evaluate the workability of each example of metal working oil.
FIG. 1 is an explanatory diagram showing an outline of a flat plate sliding test. In FIG. 1, test piece 1 is made of aluminum alloy, and was applied to the metal working oil of each example by dipping and then subjected to the test. This test piece 1 is held between a pair of flat blocks 2a and 2b, and a predetermined load (hereinafter referred to as "tightening load") is applied from the top side of the flat block 2a (arrow A in Fig. 1) in a horizontal direction. (arrow B in Figure 1). This operation was continuously performed on 30 test pieces 1 for each metal working oil. Details of the test conditions are as follows.
Workability was evaluated by visually observing the sliding surfaces of the 30 test pieces 1 and the flat blocks 2a and 2b after the test, according to the following criteria. The results obtained are shown in Table 2.
 <試験条件>
 アルミニウム試験片:JIS A1050材
 平板ブロック2a、2b:SKD-11、450mm(幅)×250mm(長さ)×400mm(厚さ)、試験片1との接触面積:10mm×250mm
 締付け荷重:15kN
 引き抜き速度:300mm/min
 浸漬塗布時の各例の金属加工油の温度:40℃±3℃
 試験中の試験片1の温度:25℃±3℃
 平板ブロックの温度:25℃±3℃
 金属加工油1種あたりの試験片1の枚数:30枚
<Test conditions>
Aluminum test piece: JIS A1050 material Flat block 2a, 2b: SKD-11, 450 mm (width) x 250 mm (length) x 400 mm (thickness), contact area with test piece 1: 10 mm x 250 mm
Tightening load: 15kN
Pulling speed: 300mm/min
Temperature of metal working oil in each example during dip application: 40℃±3℃
Temperature of test piece 1 during test: 25℃±3℃
Flat block temperature: 25℃±3℃
Number of test pieces 1 per type of metal working oil: 30 pieces
 <評価条件>
 A:アルミニウム材料の凝着が認められず、かつ、30枚目のアルミニウム材料の表面にも傷などが生じていない
 B:平板ブロックの摺動面にアルミニウム材料の凝着が若干生じたものの、30枚目のアルミニウム材には傷が発生していない
 C:平板ブロックの摺動面にアルミニウム材料の凝着が生じ、かつ、アルミニウム材料にも傷が認められたが、30枚引き抜くことができた
 D:試験が30枚目に達せず、途中で材料が破断した
<Evaluation conditions>
A: No adhesion of aluminum material was observed, and no scratches were observed on the surface of the 30th aluminum material B: Although some adhesion of aluminum material occurred on the sliding surface of the flat block, No scratches occurred on the 30th aluminum plate C: Adhesion of aluminum material occurred on the sliding surface of the flat block, and scratches were also observed on the aluminum material, but 30 pieces could not be pulled out. D: The test did not reach the 30th sheet and the material broke midway through.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示す通り、試験例の金属加工油は加工性が良好であった。
 したがって、金属加工油として用いた試験例の潤滑油組成物は、加工性が良好であり、かつ、環境への負荷が軽減されていることが分かる。
As shown in Table 2, the metal working oil of the test example had good workability.
Therefore, it can be seen that the lubricating oil composition of the test example used as a metal working oil has good workability and has a reduced burden on the environment.
 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。 Although preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments. Additions, omissions, substitutions, and other changes to the configuration are possible without departing from the spirit of the invention. The invention is not limited by the foregoing description, but only by the scope of the appended claims.

Claims (4)

  1.  基油(A)と、リン酸エステル(B)とを含有する潤滑油組成物であって、
     前記基油(A)は、バイオマス由来の炭素を有する基油(A1)(但し、バイオマス原料からフィッシャー・トロプシュ反応で得られた合成油を除く)を含み、
     ASTM D6866で測定されるバイオマス由来の炭素の含有量が、潤滑油組成物中の全炭素基準で20%以上である、潤滑油組成物。
    A lubricating oil composition containing a base oil (A) and a phosphoric acid ester (B),
    The base oil (A) includes a base oil (A1) having carbon derived from biomass (excluding synthetic oil obtained from biomass raw material by Fischer-Tropsch reaction),
    A lubricating oil composition in which the content of biomass-derived carbon as measured by ASTM D6866 is 20% or more based on the total carbon in the lubricating oil composition.
  2.  ASTM D6866で測定されるバイオマス由来の炭素の含有量が、潤滑油組成物中の全炭素基準で40%以上である、請求項1に記載の潤滑油組成物。 The lubricating oil composition according to claim 1, wherein the content of biomass-derived carbon measured by ASTM D6866 is 40% or more based on the total carbon in the lubricating oil composition.
  3.  前記リン酸エステル(B)は、下記一般式(P-1)で表されるリン酸トリエステルである、請求項1又は2に記載の潤滑油組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R~Rは、それぞれ独立に、置換基を有してもよいアリール基、又は置換基を有してもよいアルキル基である。]
    The lubricating oil composition according to claim 1 or 2, wherein the phosphoric acid ester (B) is a phosphoric triester represented by the following general formula (P-1).
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, R 1 to R 3 are each independently an aryl group that may have a substituent or an alkyl group that may have a substituent. ]
  4.  前記リン酸エステル(B)は、トリクレジルホスフェートである、請求項1又は2に記載の潤滑油組成物。 The lubricating oil composition according to claim 1 or 2, wherein the phosphoric acid ester (B) is tricresyl phosphate.
PCT/JP2023/011836 2022-03-31 2023-03-24 Lubricating oil composition WO2023190163A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022059838 2022-03-31
JP2022-059838 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190163A1 true WO2023190163A1 (en) 2023-10-05

Family

ID=88201412

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/011817 WO2023190158A1 (en) 2022-03-31 2023-03-24 Lubricating oil composition
PCT/JP2023/011836 WO2023190163A1 (en) 2022-03-31 2023-03-24 Lubricating oil composition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011817 WO2023190158A1 (en) 2022-03-31 2023-03-24 Lubricating oil composition

Country Status (1)

Country Link
WO (2) WO2023190158A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225661A (en) * 2010-04-16 2011-11-10 Jx Nippon Oil & Energy Corp Lubricant composition excellent in abrasion resistance
WO2021214641A1 (en) * 2020-04-22 2021-10-28 Chevron U.S.A. Inc. High performance grease compositions with a renewable base oil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11158483A (en) * 1997-11-27 1999-06-15 Yachiyo Research Kk Lubricating ester oil composition
JP4996872B2 (en) * 2006-03-30 2012-08-08 協同油脂株式会社 Oil processing composition for metal processing, metal processing method and metal processed product
JP5411455B2 (en) * 2008-06-05 2014-02-12 出光興産株式会社 Biodegradable lubricating oil composition used in all-oil refueling type agricultural machinery
JP5380408B2 (en) * 2010-09-21 2014-01-08 Jx日鉱日石エネルギー株式会社 Metal processing oil and metal processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225661A (en) * 2010-04-16 2011-11-10 Jx Nippon Oil & Energy Corp Lubricant composition excellent in abrasion resistance
WO2021214641A1 (en) * 2020-04-22 2021-10-28 Chevron U.S.A. Inc. High performance grease compositions with a renewable base oil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAYANAGI, MASAAKI: "Biodegradable Lubricating Oils", OREO-SAISENSU : JOURNAL OF JAPAN OIL CHEMISTS' SOCIETY, JAPAN OIL CHEMISTS' SOCIETY, JP, vol. 5, no. 10, 1 January 2005 (2005-01-01), JP , pages 455 - 461, XP009549763, ISSN: 1345-8949 *

Also Published As

Publication number Publication date
WO2023190158A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP4466850B2 (en) Bearing lubricant
EP2142624B1 (en) Lubricant blend composition
JP5443751B2 (en) Lubricating oil composition for internal combustion engines
US8742149B2 (en) Metalworking fluid base oil
US10125335B2 (en) Lubricating compositions containing isoprene based components
WO2012132053A1 (en) Lubricating agent composition for plastic processing
US11104860B2 (en) Lubricating oils
JP2023517562A (en) Lubricating oil composition for automatic transmission
JP5509547B2 (en) Industrial lubricating oil composition
WO2023190163A1 (en) Lubricating oil composition
JP5173329B2 (en) Lubricating oil composition for metal working
JPWO2009004893A1 (en) Lubricating oil additive and lubricating oil composition
US11781086B2 (en) Lubricating oils and greases
JP2022137033A (en) Ether-based lubricant composition, production method and use
JP6163435B2 (en) Lubricating oil composition
JP7107938B2 (en) Ether-based lubricant composition, method and use
JP6892784B2 (en) Lubricating oil composition for metal processing
JP6957145B2 (en) Metalworking oil composition
WO2018198645A1 (en) Additive for lubricant, lubricant composition and sliding mechanism
WO2016152229A1 (en) Lubricating oil composition for transmission
WO2023148697A1 (en) Lubricating engine oil for hybrid or plug-in hybrid electric vehicles
JP2018172509A (en) Lubricating oil composition
JP2010120994A (en) Lubricating oil composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780173

Country of ref document: EP

Kind code of ref document: A1