WO2023189909A1 - Rotor and rotating electric machine - Google Patents

Rotor and rotating electric machine Download PDF

Info

Publication number
WO2023189909A1
WO2023189909A1 PCT/JP2023/011139 JP2023011139W WO2023189909A1 WO 2023189909 A1 WO2023189909 A1 WO 2023189909A1 JP 2023011139 W JP2023011139 W JP 2023011139W WO 2023189909 A1 WO2023189909 A1 WO 2023189909A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux barrier
rotor
barrier section
magnet
axial direction
Prior art date
Application number
PCT/JP2023/011139
Other languages
French (fr)
Japanese (ja)
Inventor
▲寛▼ 楊
大殷 羅
佩均 施
國智 顔
聖展 顔
承宗 劉
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2023189909A1 publication Critical patent/WO2023189909A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a rotor and a rotating electric machine.
  • a rotating electric machine has a rotor including a rotor core having a plurality of holes and end rings arranged on both sides of the rotor core in the axial direction.
  • the rotor of Patent Document 1 has a plurality of holes that penetrate in the axial direction of the rotor core, and a conductor and a magnet are arranged in the holes.
  • the outer diameter of the end ring of Patent Document 1 is equivalent to the outer diameter of the rotor core, and a rectangular opening is provided on the radially inner side of the end ring.
  • the resistance when short-circuiting the conductors electrically connected by the end ring becomes large, and the efficiency during normal rotation of the rotating electric machine may not be sufficiently improved.
  • one of the objects of the present invention is to provide a rotor and a rotating electrical machine having a structure that can improve efficiency and torque during normal rotation in the rotating electrical machine.
  • One aspect of the rotor core of the present invention is a rotor that is rotatable around a central axis, and includes a rotor core and annular conductive parts disposed on both sides of the rotor core in the axial direction.
  • the rotor core is provided with a plurality of flux barrier part groups arranged at intervals in the circumferential direction, and each of the plurality of flux barrier part groups has a plurality of flux barrier parts arranged in line in the radial direction.
  • the plurality of flux barrier portions have a shape convex radially inward when viewed from the axial direction.
  • a conductor electrically connected to the annular conductive part is disposed inside at least one flux barrier part among the plurality of flux barrier parts of each flux barrier part group.
  • One aspect of the rotating electric machine of the present invention includes the above-mentioned rotor and a stator located on the radially outer side of the rotor.
  • a rotor and a rotating electrical machine having a structure that can improve efficiency and torque during normal rotation in the rotating electrical machine.
  • FIG. 1 is a sectional view showing a schematic diagram of a rotating electrical machine according to a first embodiment.
  • FIG. 2 is a top view showing the rotor of the first embodiment, and is a view taken along arrow II-II in FIG.
  • FIG. 3 is a sectional view showing the rotor of the first embodiment, and is a sectional view taken along line III-III in FIG.
  • FIG. 4A is a top view showing the rotor of the first embodiment, and is a diagram for explaining dimensions of each component of the rotor.
  • FIG. 4B is a cross-sectional view showing the rotor of the first embodiment, and is a diagram for explaining dimensions of each component of the rotor.
  • FIG. 1 is a sectional view showing a schematic diagram of a rotating electrical machine according to a first embodiment.
  • FIG. 2 is a top view showing the rotor of the first embodiment, and is a view taken along arrow II-II in FIG.
  • FIG. 3 is a sectional
  • FIG. 5 is a sectional view showing a modification of the rotor of the first embodiment.
  • FIG. 6 is a sectional view showing the rotor of the second embodiment.
  • FIG. 7 is a sectional view showing the rotor of the third embodiment.
  • FIG. 8 is a sectional view showing the rotor of the fourth embodiment.
  • FIG. 9 is a sectional view showing a modification of the rotor of the first to fourth embodiments.
  • FIG. 10 is a sectional view showing another modification of the rotor of the first to fourth embodiments.
  • FIG. 11 is a sectional view showing a rotor of Comparative Example 1.
  • the Z-axis direction appropriately shown in each figure is an up-down direction in which the positive side is the "upper side” and the negative side is the “lower side.”
  • a central axis J shown as appropriate in each figure is an imaginary line that is parallel to the Z-axis direction and extends in the vertical direction.
  • the axial direction of the central axis J that is, the direction parallel to the vertical direction
  • the radial direction centered on the central axis J is simply referred to as the "radial direction.”
  • the circumferential direction centered on is simply called the “circumferential direction.”
  • the direction of clockwise movement in the circumferential direction is called the + ⁇ side
  • the direction of movement counterclockwise is called the - ⁇ side.
  • the rotating electrical machine 1 of this embodiment shown in FIG. 1 is an inner rotor type motor.
  • the rotating electric machine 1 of this embodiment includes a housing 2, a rotor 10, a stator 3, a bearing holder 4, and bearings 5a and 5b.
  • the housing 2 houses therein a rotor 10, a stator 3, a bearing holder 4, and bearings 5a and 5b.
  • the bottom of the housing 2 holds a bearing 5b.
  • the bearing holder 4 holds a bearing 5a.
  • the bearings 5a and 5b are, for example, ball bearings.
  • the stator 3 is located on the outside of the rotor 10 in the radial direction.
  • the stator 3 includes a stator core 3a, an insulator 3d, and a plurality of coils 3e.
  • Stator core 3a has a core back 3b and a plurality of teeth 3c.
  • the core back 3b has an annular shape centered on the central axis J.
  • the plurality of teeth 3c extend radially inward from the core back 3b.
  • the plurality of teeth 3c are arranged at equal intervals all around the circumferential direction.
  • the plurality of coils 3e are attached to the stator core 3a via an insulator 3d.
  • the rotor 10 is rotatable around the central axis J.
  • the rotor 10 includes a shaft 11, a rotor core 20, a conductor 40, an annular conductive portion 50, and a magnet 60.
  • the shaft 11 has a cylindrical shape that extends in the axial direction centering on the central axis J.
  • the shaft 11 is rotatably supported around a central axis J by bearings 5a and 5b.
  • the rotor core 20 is a magnetic material.
  • the material of the rotor core 20 is, for example, silicon steel, which has higher magnetic permeability and lower electrical conductivity than an alloy of iron and carbon.
  • the rotor core 20 is fixed to the outer peripheral surface of the shaft 11.
  • the rotor core 20 has a through hole 20a that passes through the rotor core 20 in the axial direction. As shown in FIG. 2, the through hole 20a has a circular shape centered on the central axis J when viewed in the axial direction.
  • the shaft 11 is passed through the through hole 20a.
  • the shaft 11 is fixed within the through hole 20a by, for example, press fitting.
  • the rotor core 20 is configured by, for example, a plurality of electromagnetic steel sheets laminated in the axial direction.
  • the annular conductive parts 50 are arranged at both ends of the rotor core 20 in the axial direction.
  • the annular conductive portion 50 has an annular shape centered on the central axis J.
  • the material constituting the annular conductive portion 50 is a material with high electrical conductivity. Examples of the material constituting the annular conductive portion 50 include aluminum, copper, and an alloy of aluminum and copper.
  • each flux barrier section 30 is constituted by a hole provided in the rotor core 20.
  • the flux barrier section 30 passes through the rotor core 20 in the axial direction.
  • each flux barrier section 30 extends along a plane perpendicular to the axial direction, and has a shape that is convex radially inward when viewed in the axial direction.
  • the rotor core 20 is provided with a plurality of sets including two or more flux barrier parts 30.
  • One set of flux barrier sections 30 is also referred to as a flux barrier section group 130.
  • Each flux barrier section group 130 includes a plurality of flux barrier sections 30.
  • the four flux barrier section groups 130 are hereinafter also referred to as a first flux barrier section group 130A, a second flux barrier section group 130B, a third flux barrier section group 130C, and a fourth flux barrier section group 130D.
  • first flux barrier section group 130A, the second flux barrier section group 130B, the third flux barrier section group 130C, and the fourth flux barrier section group 130D are arranged in this order toward the + ⁇ direction. There is.
  • the rotor core 20 provided with the flux barrier portion 30 in this manner becomes a rotor core of a synchronous reluctance motor having a magnetic salient pole structure. More specifically, the flux barrier part 30 is difficult for magnetic flux to pass through, and when viewed from the axial direction, the direction between two adjacent flux barrier part groups 130 is a salient pole direction in which magnetic flux can easily pass, and one set of flux barrier part groups A direction in which the magnetic flux is difficult to pass is provided in the center portion of 130 in the circumferential direction.
  • the salient pole direction through which the magnetic flux easily passes is referred to as the "d-axis direction”
  • the direction through which the magnetic flux is difficult to pass is referred to as the "q-axis direction”. Since the rotor core 20 has magnetic anisotropy in the q-axis direction and the d-axis direction, reluctance torque is generated when a magnetic field is generated by the stator 3, making it possible to rotate the rotor 10.
  • the d-axis direction is a radial direction passing through the circumferential center of the magnetic pole portions P of the rotor core 20
  • the q-axis direction is a radial direction passing through the circumferential center between circumferentially adjacent magnetic pole portions P.
  • the portion located between circumferentially adjacent magnetic pole portions P will hereinafter be referred to as a magnetic pole intermediate portion M.
  • the q-axis passes through the middle part M of the magnetic pole.
  • the rotor 10 is provided with a plurality of magnetic pole parts P provided along the circumferential direction and a plurality of magnetic pole intermediate parts M located between circumferentially adjacent magnetic pole parts P. .
  • the magnetic pole intermediate parts M each have a flux barrier part group 130.
  • a conductor 40 and a magnet 60 are arranged within the flux barrier section 30.
  • a conductor 40 is arranged inside at least one flux barrier section 30 among the plurality of flux barrier sections 30 of each flux barrier section group 130 .
  • the material constituting the conductor 40 has high electrical conductivity.
  • the material constituting the conductor 40 is the same as the material constituting the annular conductive portion 50, and examples thereof include aluminum, copper, and an alloy of aluminum and copper.
  • the material constituting the conductor 40 is a non-ferromagnetic metal so as not to affect the magnetic salient pole structure constituted by the flux barrier section 30.
  • each flux barrier section 30 The conductors 40 disposed within each flux barrier section 30 are electrically connected to the annular conductive section 50, respectively. Therefore, the conductors 40 in each flux barrier section 30 are electrically connected via the annular conductive section 50, and the annular conductive section 50 electrically shorts the conductors 40 in each flux barrier section 30. ing.
  • the conductor 40 in the flux barrier section 30 is made by heating the metal that will become the conductor 40 and pouring it into the flux barrier section 30.
  • the conductor 40 and the annular conductive portion 50 are part of the same single member.
  • molds for the annular conductive part 50 are placed on both sides of the rotor core 20 in the axial direction, and the metal that will become the conductor 40 and the annular conductive part 50 is heated and poured into the flux barrier part 30 and the mold, thereby forming the conductor. 40 and an annular conductive portion 50 are made.
  • a member for preventing the heated metal from entering is placed in a part of the flux barrier section 30. Pour the metal with.
  • the conductor 40 and the annular conductive portion 50 may be separate members or may be made of different constituent materials.
  • a magnet 60 is arranged inside at least one flux barrier section 30 among the plurality of flux barrier sections 30 of each flux barrier section group 130 .
  • the magnet 60 has a rectangular shape when viewed in the axial direction. Although not shown, the magnet 60 has a rectangular parallelepiped shape, for example. In this embodiment, when viewed in the axial direction, the magnets 60 are arranged at both ends 30f in the extending direction of the flux barrier section 30 in which the conductor 40 is arranged.
  • Magnet 60 is a ferrite magnet.
  • the type of magnet is not particularly limited, and the magnet may be a neodymium magnet.
  • the conductor 40 When the conductor 40 is placed within the flux barrier section 30 of the synchronous reluctance motor, the conductor is placed in a rotating magnetic field. Therefore, when the magnetic field generated by the stator 3 rotates, an induced current flows through the conductor 40 due to electromagnetic induction, and the Lorentz force of the induced current allows the rotor 10 to generate rotational force. In particular, since torque due to Lorentz force can be obtained when the stationary rotor 10 starts rotating, performance at startup can be improved.
  • a synchronous reluctance motor with improved startup characteristics in this way is also called a DOL SynRM (Direct-On-Line Synchronous Reluctance Motor). Furthermore, the output of the rotating electric machine 1 can be improved by the magnetic force of the magnet placed inside the flux barrier section 30. Therefore, the DOL SynRM in which a magnet is further arranged in the flux barrier section 30 is also called DOL-PMa SynRM (Direct-On-Line Permanent Magnet assisted Synchronous Reluctance Motor).
  • FIGS. 2, 3, 4A, and 4B the configuration of the flux barrier section 30 of this embodiment will be described in more detail using FIGS. 2, 3, 4A, and 4B. Furthermore, the arrangement relationship between the conductor 40 and magnet 60 disposed within the flux barrier section 30 and the annular conductive section 50 will also be described.
  • the rotor 10 of this embodiment includes four flux barrier sections 30 including a first flux barrier section 31, a second flux barrier section 32, a third flux barrier section 33, and a fourth flux barrier section 34. It has four flux barrier unit groups 130.
  • the first flux barrier section 31, the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 are arranged in this order from the radially outer side to the radially inner side. .
  • the flux barrier section located at the outermost radial direction is the first flux barrier section 31, and the flux barrier section located at the innermost radial direction is the first flux barrier section 31. is the fourth flux barrier section 34.
  • flux barrier sections 30 are arranged in one flux barrier section group 130.
  • the number of flux barrier sections 30 in one set of flux barrier section group 130 is not limited to four, and two or more flux barrier sections 30 may be arranged.
  • the number of flux barrier sections 30 may be changed as appropriate depending on the size of rotor core 20.
  • any one of the first flux barrier section 31, the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 is referred to, it will also simply be referred to as the flux barrier section 30.
  • the four flux barrier section groups 130 are arranged at equal intervals along the circumferential direction of the rotor 10.
  • Each set of the flux barrier unit group 130 has the same configuration except that each set is arranged in a position rotated by 90° in the circumferential direction.
  • the flux barrier section 30 included in one representative group among the four flux barrier section groups 130 will be explained.
  • the first flux barrier section 31, the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 included in the flux barrier section group 130 are not in contact with each other, and the diameter located far apart in direction.
  • a radially outer region of the first flux barrier section 31, a region between two radially adjacent flux barrier sections 30, and a radially inner region of the flux barrier section group 130; is a magnetic path MP through which the magnetic flux generated by the stator 3 flows.
  • Each flux barrier portion 30 is a polygonal slit consisting of a plurality of line segments when viewed in the axial direction, and is convex inward in the radial direction.
  • each flux barrier section 30 is composed of a polygonal line made up of three straight lines, but may be composed of a polygonal line composed of less than three or more than three straight lines.
  • each of the flux barrier parts 30 has a line-symmetrical shape with the circumferential center of the magnetic pole intermediate part M as an axis of symmetry when viewed in the axial direction.
  • the circumferential center of the magnetic pole intermediate portion M is provided at a position overlapping the q-axis.
  • each flux barrier section 30 when viewed from the axial direction, includes a straight section 30a orthogonal to the q-axis, and a straight section 30a that extends outward in the radial direction from the - ⁇ side end of the straight section 30a.
  • the first bent portion 30b has a second bent portion 30c that is bent and extends radially outward from the + ⁇ side end of the straight portion 30a.
  • the straight parts of the first flux barrier part 31, the second flux barrier part 32, the third flux barrier part 33, and the fourth flux barrier part 34 are defined as a straight part 31a, a straight part 32a, a straight part 33a, and a straight part, respectively. It is designated with the reference numeral 34a.
  • the straight part 30a when referring to any straight part of the flux barrier section 30, it will also simply be referred to as the straight part 30a.
  • the straight portion 31a, the straight portion 32a, the straight portion 33a, and the straight portion 34a extend in a direction perpendicular to the q-axis when viewed in the axial direction. That is, when viewed in the axial direction, the straight portions 30a extend parallel to each other.
  • the first bent portions on the ⁇ side of the first flux barrier portion 31, the second flux barrier portion 32, the third flux barrier portion 33, and the fourth flux barrier portion 34 are bent into the first bent portion 31b and the first bent portion, respectively. They are referred to by reference numerals as a portion 32b, a first bent portion 33b, and a first bent portion 34b.
  • a first bent part 30b when any first bent part of the flux barrier section 30 is referred to, it will also simply be referred to as a first bent part 30b.
  • the second bent portions on the + ⁇ side of the first flux barrier portion 31, the second flux barrier portion 32, the third flux barrier portion 33, and the fourth flux barrier portion 34 are bent into the second bent portion 31c and the second bent portion, respectively. They are referred to by reference numerals as a portion 32c, a second bent portion 33c, and a second bent portion 34c.
  • a portion 32c a portion of the flux barrier section 30
  • a second bent portion 33c a second bent portion 34c.
  • any second bent part of the flux barrier section 30 when any second bent part of the flux barrier section 30 is referred to, it will also simply be referred to as a second bent part 30c.
  • the straight portion 30a, the first bent portion 30b, and the second bent portion 30c each have a rectangular shape, for example, when viewed in the axial direction.
  • a first bent portion 30b and a second bent portion 30c extending toward the outer circumferential surface of the rotor 10 are arranged in a polygonal shape at both ends of the straight portion 30a extending in a direction perpendicular to the q-axis.
  • the flux barrier section 30 is configured.
  • a pair of bent portions including the first bent portion 30b and the second bent portion 30c extend linearly in a direction away from each other as they go radially outward when viewed in the axial direction.
  • each flux barrier section 30 the angle between the straight section 30a and the first bent section 30b is the same as the angle between the straight section 30a and the second bent section 30c.
  • the angle between the straight portion 30a and the first bent portion 30b and the angle between the straight portion 30a and the second bent portion 30c will be referred to as a “bending angle”.
  • the bending angles of the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 are the same. Therefore, the first bent portion 32b, the first bent portion 33b, and the first bent portion 34b extend parallel to each other when viewed in the axial direction.
  • the second bent portion 32c, the second bent portion 33c, and the second bent portion 34c extend parallel to each other when viewed in the axial direction.
  • the bending angle of the first flux barrier section 31 is larger than that of the other flux barrier sections 30. Note that the bending angles may be the same in all flux barrier sections 30.
  • the bending angle of the flux barrier portion 30 located on the outer side in the radial direction may be larger or smaller.
  • the dimension of the second flux barrier section 32 in the second stretching direction is shorter than the dimension of the third flux barrier section 33 in the third stretching direction.
  • the dimension of the third flux barrier section 33 in the third stretching direction is shorter than the dimension of the fourth flux barrier section 34 in the fourth stretching direction.
  • the circumferential center of the flux barrier portion 30 is the circumferential center of the straight portion 30a.
  • the dimensions in the stretching direction of the straight portions 30a in the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 are the same. That is, the dimensions of the straight portion 32a, the straight portion 33a, and the straight portion 34a in the extending direction are the same.
  • the dimension in the stretching direction of the straight section 31a of the first flux barrier section 31 is shorter than the dimension in the stretching direction of the straight section 30a of the flux barrier section 30 excluding the first flux barrier section 31. Note that the dimensions of the linear portions 30a in the stretching direction may be the same in all flux barrier portions 30.
  • the further the flux barrier section 30 is located on the outer side in the radial direction the shorter the length of the linear section 30a in the extending direction may be.
  • the second bent portion 30c located on the outer side in the radial direction has a shorter dimension in the extending direction of the second bent portion 30c.
  • the dimensions of the first bent portion 30b and the second bent portion 30c in the stretching direction may be the same in all flux barrier portions 30.
  • the farther outward the flux barrier section 30 is located in the radial direction the longer the first bending section 30b and the second bending section 30c may have longer dimensions in the stretching direction.
  • the width direction of the flux barrier section 30 is simply referred to as width.
  • the width of the flux barrier portion 30 is the dimension in the q-axis direction.
  • the width of each flux barrier section 30 is uniform in the stretching direction. Thereby, it is possible to prevent the magnetic paths MP between two radially adjacent flux barrier parts 30 from becoming too narrow.
  • Each of the flux barrier sections 30 has an outer end 30f in the stretching direction.
  • the end portion 30f includes a first end portion 30f1 that is an end portion on the ⁇ side, and a second end portion 30f2 that is an end portion on the + ⁇ side.
  • the first end 30f1 and the second end 30f2 of the flux barrier section 30 are located at the radially outer peripheral edge of the rotor core 20. The radial positions of the first end 30f1 and the second end 30f2 are the same.
  • ⁇ Bridge portion 30g of flux barrier portion 30> In the flux barrier section group 130, at least one of the flux barrier sections 30 excluding the first flux barrier section 31 located at the radially outermost position has a radially inner first edge 30e1 of the flux barrier section 30. A bridge portion 30g connecting the outer second edge portion 30e2 is provided.
  • the first flux barrier section 31 having the shortest dimension in the stretching direction is not provided with the bridge section 30g, and the second flux barrier section 32, the third flux barrier section 33 In the fourth flux barrier section 34, bridge sections 30g are arranged at positions overlapping with the q-axis. As a result, the mechanical strength of the rotor 10 can be suitably maintained.
  • the conductor 40 is disposed inside part of the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34.
  • the conductor 40 is not arranged in the first flux barrier section 31 .
  • the flux barrier section 30 in which the conductor 40 is disposed is connected to the second flux barrier section 31, which is disposed radially inwardly from the first flux barrier section 31, which is the most radially outermost part in the flux barrier section group 130. They are a flux barrier section 32, a third flux barrier section 33, and a fourth flux barrier section 34.
  • the conductor 40 When viewed from the axial direction, the conductor 40 is disposed apart from both ends 30f in the extending direction of the flux barrier section 30 where the conductor 40 is disposed.
  • the first end 30f1 and the second end 30f2 of the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 have a region R where the conductor 40 is not arranged. are provided for each.
  • the region R includes a first region R1 arranged on the first end 30f1 side and a second region R2 arranged on the second end 30f2 side.
  • the first region R1 is provided at the first bent portion 30b
  • the second region R2 is provided at the second bent portion 30c.
  • the first region R1 extends from the end surface of the first end portion 30f1 of the flux barrier portion 30 along the first bent portion 30b in the stretching direction.
  • the second region R2 extends from the end surface of the second end portion 30f2 of the flux barrier portion 30 along the second bent portion 30c in the stretching direction.
  • each flux barrier section 30 the first region R1 and the second region R2 have the same dimensions in the stretching direction.
  • the dimensions of the region R in the stretching direction are the same. Note that the dimensions in the stretching direction of the first region R1 and the second region R2 may be different from each other. Furthermore, the farther the flux barrier portion 30 is located on the outer side in the radial direction of each flux barrier portion 30, the shorter or longer the dimensions of the first region R1 and the second region R2 in the stretching direction may be.
  • annular conductive part 50 When viewed in the axial direction, the annular conductive portion 50 overlaps each conductor 40 in the flux barrier portion 30 at least in part. More specifically, as shown in FIGS. 4A and 4B, when viewed from the axial direction, half of the outer diameter of the rotor core 20 is Ror, half of the outer diameter of the annular conductive portion 50 is Roer, and conductive is conducted inside from the central axis J.
  • Rocb is the shortest distance to the second flux barrier section 32 disposed at the outermost position in the radial direction among the flux barrier sections 30 in which the body 40 is disposed, Rocb ⁇ Roer ⁇ Ror is satisfied.
  • the conductor 40 is not arranged within the first flux barrier section 31. Therefore, when Re is the shortest distance from the central axis J to the first flux barrier section 31, which is the innermost part of the flux barrier section 30 in the radial direction and in which no conductor 40 is disposed, Rocb ⁇ Roer ⁇ Re is satisfied. Thereby, the length of the outer periphery of the annular conductive portion 50 can be shortened, so that the distance in the circumferential direction connecting each conductor 40 by the annular conductive portion 50 is shortened, and copper loss can be reduced.
  • the annular conductive part 50 is provided with an inner hole 51 that penetrates the annular conductive part 50 in the axial direction about the central axis J.
  • the inner hole has a circular shape when viewed from the axial direction.
  • the diameter of the inner hole 51 becomes the inner diameter of the annular conductive portion 50.
  • Rier is half the inner diameter of the annular conductive portion 50 and Rs is half the inner diameter of the through hole 20a, Rs ⁇ Rier ⁇ Rocb is satisfied. Thereby, the width W in the radial direction of the annular conductive portion 50 can be ensured, so that the copper loss of the annular conductive portion 50 can be reduced.
  • the width W in the radial direction is uniform in the circumferential direction.
  • the magnet 60 disposed on the straight portion 30a of the flux barrier portion 30 when viewed from the axial direction is exposed from the opening 501 of the annular conductive portion 500. Therefore, in the circumferential direction, the radial width of the annular conductive portion 500 becomes narrower at the location where the magnet 60 is arranged, and the electrical resistance becomes higher in this range.
  • the radial width W of the annular conductive portion 50 is uniform in the circumferential direction, and the electrical resistance when connecting the conductors 40 to each other can be suppressed.
  • the shortest distance from the central axis J to the fourth flux barrier section 34 disposed innermost in the radial direction of the flux barrier section 30 in which the conductor 40 is disposed when viewed from the axial direction, the shortest distance from the central axis J to the fourth flux barrier section 34 disposed innermost in the radial direction of the flux barrier section 30 in which the conductor 40 is disposed.
  • the distance is Ricb
  • Rier ⁇ Ricb ⁇ Rocb is satisfied.
  • the width W in the radial direction of the annular conductive portion 50 can be secured, so that the copper loss of the annular conductive portion 50 can be reduced.
  • the annular conductive portion 50 is located at a different position from the region R when viewed from the axial direction.
  • the annular conductive portion 50 is disposed radially inside the region R. Therefore, the distance in the circumferential direction connecting the respective conductors 40 by the annular conductive portion 50 is shortened, and the copper loss of the rotor 10 can be reduced.
  • Rir The shortest distance from the central axis J to the region R located innermost in the radial direction among the regions R is defined as Rir.
  • Rir is the shortest distance from the central axis J to the region R of the fourth flux barrier section 34.
  • Roer which is half the outer diameter of the annular conductive portion 50, is equal to or greater than the shortest distance Rir. That is, Roer ⁇ Rir is satisfied.
  • the region R and the annular conductive portion 50 do not overlap when viewed from the axial direction, and each conductor 40 can be electrically connected to the annular conductive portion 50.
  • the farthest distance from the central axis J to the region R is Rofr.
  • the radial positions of the radially outer ends of the region R are the same, so that from the central axis J to the end 30f of the flux barrier section 30 in the extending direction, It can also be said to be the farthest distance.
  • Roer which is half the outer diameter of the annular conductive portion 50, is smaller than the distance Rofr. That is, Roer ⁇ Rofr is satisfied.
  • each conductor 40 can be electrically connected to the annular conductive part 50 while preventing at least a portion of the region R from overlapping with the annular conductive part 50.
  • annular conductive portion 50 as shown in FIG. 5 may be employed.
  • the inner hole 51 is provided at a position intersecting the flux barrier portion 30 when viewed in the axial direction. That is, when viewed from the axial direction, a part of the flux barrier section 30 is provided radially inside the inner hole 51, and Ricb ⁇ Rier is satisfied. Also in this case, since the radial width W of the annular conductive portion 50 can be made uniform in the circumferential direction, the electrical resistance when connecting the conductors 40 to each other can be suppressed.
  • the magnet 60 is arranged at the first end 30f1 and the second end 30f2 of the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34. More specifically, the magnet 60 is arranged in the first region R1 and the second region R2 where the conductor 40 is not arranged. The magnet 60 is not arranged in the first flux barrier section 31 .
  • the magnet 60 has a rectangular shape extending along the extending direction of the region R when viewed in the axial direction. Since the region R extends linearly in the stretching direction, the rectangular magnet 60 can be easily arranged.
  • the dimension of the magnet 60 in the stretching direction is equal to or less than the dimension of the region R in the stretching direction, and the magnets 60 disposed in the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 are each The dimensions in the stretching direction are the same. Note that the dimension in the extending direction of the magnet 60 may be shorter or longer as the magnet 60 is disposed in the flux barrier section 30 located on the outer side in the radial direction. Both sides of the magnet 60 in the width direction are in contact with the first edge 30e1 and the second edge 30e2 of the flux barrier section 30, respectively.
  • the end of the magnet 60 in the stretching direction on the side closer to the q-axis is in contact with the conductor 40 .
  • a part of the end of the magnet 60 in the stretching direction on the side far from the q-axis is in contact with the end surface of the flux barrier section 30 in the stretching direction, or is provided apart from the end surface of the flux barrier section 30 in the stretching direction. There is. That is, in the stretching direction, a gap is provided between the stretching direction end of the magnet 60 on the side far from the q-axis and the end face of the flux barrier section 30 in the stretching direction.
  • the end face of the flux barrier section 30 in the extending direction extends along the outer peripheral surface of the rotor 10 and is not perpendicular to the extending direction of the flux barrier section 30. Therefore, when the end face of the flux barrier section 30 in the stretching direction and a part of the rectangular magnet 60 are in contact with each other, a triangular void is provided when viewed in the axial direction. Furthermore, when the end face of the flux barrier section 30 in the stretching direction and the rectangular magnet 60 are provided apart from each other, a trapezoidal gap is provided when viewed in the axial direction.
  • the shape of the magnet 60 may be similar to the shape of the region R when viewed from the axial direction.
  • the end face of the flux barrier section 30 in the stretching direction may be perpendicular to the stretching direction of the flux barrier section 30. In this case, the magnet 60 contacts the entire inner peripheral surface of the region R when viewed from the axial direction.
  • the magnet 60 When viewed from the axial direction, the magnet 60 is arranged at a different position from the annular conductive part 50. Thereby, the outer diameter of the annular conductive portion 50 can be reduced, so that the conductors 40 can be efficiently short-circuited while reducing copper loss in the rotor 10. Moreover, since the magnet 60 is not covered with the annular conductive part 50 when viewed from the axial direction, the magnet 60 can be inserted into the region R after the conductor 40 and the annular conductive part 50 are made, for example. In this case, demagnetization of the magnet 60 due to the heat of the heated metal serving as the conductor 40 can be prevented.
  • the magnetic poles of the magnet 60 are arranged along the circumferential direction.
  • the magnet 60 provided in the first region R1 is referred to as the first magnet 61b
  • the magnet 60 provided in the second region R2 is referred to as the second magnet 61c. call.
  • the magnetic pole part P side is the N pole in the circumferential direction
  • the magnetic pole The middle part M side is the S pole.
  • the magnetic pole directions of the three first magnets 61b and the three second magnets 61c arranged at intervals in the circumferential direction are indicated by arrows B11 and B12, respectively. Shown.
  • the magnet 60 provided in the first region R1 is referred to as the first magnet 62b
  • the magnet 60 provided in the second region R2 is referred to as the second magnet 62c. call.
  • the magnetic pole part P side is the S pole in the circumferential direction
  • the magnetic pole The middle part M side is the north pole.
  • the magnetic pole directions of the magnets 60 are opposite to each other.
  • three second magnets 62c are arranged on the - ⁇ side, sandwiching the magnetic pole part P between the fourth flux barrier part group 130D and the first flux barrier part group 130A, and three second magnets 62c are arranged on the + ⁇ side.
  • Three first magnets 61b are arranged.
  • the six magnets 62c and 61b are arranged on the outer peripheral edge of the rotor 10 at intervals in the circumferential direction.
  • the magnetic pole direction B22 of the second magnet 62c and the magnetic pole direction B11 of the first magnet 61b are the same.
  • the magnetic pole directions of the six magnets 62c and 61b placed across the magnetic pole part P between the second flux barrier group 130B and the third flux barrier group 130C are B22 and B11, respectively. are the same as each other.
  • three second magnets 61c are arranged on the - ⁇ side, and three second magnets 61c are arranged on the + ⁇ side, sandwiching the magnetic pole part P between the first flux barrier part group 130A and the second flux barrier part group 130B.
  • 1 magnet 62b is arranged.
  • the six magnets 61c and 62b are arranged on the outer peripheral edge of the rotor 10 at intervals in the circumferential direction.
  • the magnetic pole direction B12 of the second magnet 61c and the magnetic pole direction B21 of the first magnet 62b are the same.
  • the magnetic pole directions of the six magnets 61c and 62b placed across the magnetic pole part P between the third flux barrier part group 130C and the fourth flux barrier part group 130D are also the magnetic pole directions B12 and B21, respectively. are the same as each other.
  • the six magnets 60 arranged between the first flux barrier parts 31 adjacent to each other in the circumferential direction have the same magnetic pole direction. Moreover, the directions of the magnetic poles of the six circumferentially adjacent magnets 60 are reversed in the circumferential direction.
  • the magnet 60 is arranged as described above within the flux barrier section 30 that generates reluctance torque.
  • both the reluctance torque generated by the magnetic anisotropy of the rotor 10 and the magnetic torque generated in the rotor 10 by the magnetic force of the magnet 60 can be suitably utilized, so that the torque of the rotating electric machine 1 can be improved.
  • a magnet 60 is disposed within a straight portion 30a of a flux barrier portion 30.
  • the magnetic flux generated by the magnet 60 flows in a direction perpendicular to the extending direction of the straight portion 30a.
  • the arrow C1 through which the magnetic flux of the magnet 60 passes, extends in a direction different from the d-axis, through which the magnetic flux of the synchronous reluctance motor easily passes.
  • the load angle at which the reluctance torque is the minimum and the load angle at which the magnet torque is the minimum are different. It becomes an angle. For this reason, the composite torque of the reluctance torque and the magnet torque may not be sufficiently improved.
  • a plurality of magnets 60 are arranged in parallel in the circumferential direction with the d-axis through which the magnetic flux of the synchronous reluctance motor easily passes. Further, the magnetic poles of the plurality of magnets 60 are arranged along the circumferential direction.
  • the magnet 60 when viewed from the axial direction, the magnet 60 is disposed radially outward from the annular conductive portion 50.
  • the magnet 60 can be disposed on the outer peripheral edge of the rotor core 20 in the circumferential direction, so that the composite torque of the reluctance torque and the magnet torque can be suitably improved as described above, and the outer diameter of the annular conductive portion 50 can be reduced. By making it smaller, copper loss can be reduced.
  • the plurality of magnets 60 are arranged at intervals in the circumferential direction, the magnetic path MP of the rotor core 20 can be secured between the magnets 60.
  • the rotor 10 of this embodiment is a rotor 10 that is rotatable around the central axis J, and includes a rotor core 20 and annular conductive parts 50 arranged on both sides of the rotor core 20 in the axial direction.
  • the rotor core 20 is provided with a plurality of flux barrier section groups 130 arranged at intervals in the circumferential direction, and the plurality of flux barrier section groups 130 include a plurality of flux barrier sections arranged in a line in the radial direction.
  • each of the plurality of flux barrier parts 30 has a shape convex inward in the radial direction when viewed from the axial direction, and at least one of the plurality of flux barrier parts 30 of each flux barrier part group 130 A conductor 40 electrically connected to the annular conductive part 50 is disposed inside the barrier part 30, and when viewed from the axial direction, half of the outer diameter of the rotor core 20 is Ror, and half of the outer diameter of the annular conductive part 50 is Ror.
  • the outer diameter of the annular conductive portion 50 can be made smaller than the outer diameter of the rotor core 20, and the copper loss of the rotor 10 can be reduced. Therefore, efficiency and torque can be improved during normal rotation when the rotor 10 rotates at the rated speed. Further, since the copper loss of the rotor 10 can be reduced without increasing the axial thickness of the annular conductive portion 50, the axial dimension of the rotating electric machine 1 can be made compact. Furthermore, since the rotor 10 of this embodiment can be manufactured using the same manufacturing process as the conventional rotor 100 having the annular conductive portion 500 as shown in FIG. It becomes possible to obtain a rotor 10 with exceptional effects.
  • the flux barrier section 30 in which the conductor 40 is disposed is a flux barrier section 30 disposed radially inward from the first flux barrier section 31 located at the radially outermost position in the flux barrier section group 130. It is. Thereby, the outer diameter of the annular conductive portion 50 can be made smaller, so that copper loss in the annular conductive portion 50 can be further reduced.
  • the conductor 40 when viewed from the axial direction, the conductor 40 is disposed away from both ends 30f in the stretching direction of the flux barrier section 30 where the conductor 40 is disposed.
  • the magnet 60 can be placed in the region R where the conductor 40 is not placed.
  • the region R may be a gap without the magnet 60, or it is also possible to arrange a structure other than the magnet. In this way, by arranging the conductor 40 apart from the end portion 30f, it is possible to obtain a rotor 10 that can be adapted to various designs.
  • the rotating electrical machine 1 of the present embodiment includes the above-described rotor 10 and the stator 3 located on the outside of the rotor 10 in the radial direction. This makes it possible to obtain the rotating electric machine 1 that can improve efficiency and torque during normal rotation when the rotor 10 rotates at the rated speed.
  • the rotor 10 of the present embodiment has a second end 30f2 of the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34.
  • the conductor 40 is arranged, and the second region R2 is not provided. Further, the magnet 60 is not provided at the second end portion 30f2.
  • the dimension in the stretching direction of the first region R1 is longer than that in the first embodiment, and the dimension in the stretching direction of the magnet 60 arranged in the first region R1 is also longer than that in the first embodiment. It is longer than.
  • the magnetic torque in the flux barrier group 130, the magnetic torque can be suitably used on the ⁇ side with respect to the q-axis. Therefore, the efficiency and torque when rotating the rotor 10 in the - ⁇ direction can be improved. Furthermore, the current flowing through the stator 3 during normal operation in which the rotor 10 rotates in the ⁇ direction at the rated speed can be reduced. Furthermore, compared to the first embodiment, the relationship between the direction of the magnetic flux generated by the stator 3 and the direction of the magnetic flux of the magnet 60 makes demagnetization of the magnet 60 arranged in the rotor 10 less likely to occur.
  • the magnetic pole direction B22 of the second magnet 62c and the first The magnetic pole direction B11 of the magnet 61b faces in a direction that faces each other in the circumferential direction.
  • the magnetic pole directions of the six magnets 62c and 61b placed across the magnetic pole part P between the second flux barrier group 130B and the third flux barrier group 130C are B22 and B11, respectively. are facing in directions opposite to each other in the circumferential direction.
  • the magnetic pole direction B12 of the second magnet 61c and the first The magnetic pole direction B21 of the magnet 62b faces in a direction opposite to each other in the circumferential direction.
  • the magnetic pole directions of the six magnets 61c and 62b placed across the magnetic pole part P between the third flux barrier part group 130C and the fourth flux barrier part group 130D are also the magnetic pole directions B12 and B21, respectively. are facing in directions opposite to each other in the circumferential direction.
  • the efficiency and torque when rotating the rotor 10 can be improved. Furthermore, the current flowing through the stator 3 during normal operation when the rotor 10 rotates at the rated speed can be reduced. Furthermore, compared to the first embodiment, the relationship between the direction of the magnetic flux generated by the stator 3 and the direction of the magnetic flux of the magnet 60 makes demagnetization of the magnet 60 arranged in the rotor 10 less likely to occur.
  • the rotor core 20 does not have a magnetic path MP located outside the first flux barrier section 31 in the radial direction. That is, the first flux barrier section 31 is open to the outer peripheral surface of the rotor core 20.
  • the efficiency and torque when rotating the rotor 10 can be improved.
  • the current flowing through the stator 3 during normal operation when the rotor 10 rotates at the rated speed can be reduced.
  • the relationship between the direction of the magnetic flux generated by the stator 3 and the direction of the magnetic flux of the magnet 60 makes demagnetization of the magnet 60 arranged in the rotor 10 less likely to occur.
  • the rotor of Example 1 is the rotor 10 of the first embodiment shown in FIG. 5, the rotor of Example 2 is the rotor 10 of the second embodiment shown in FIG. 6, and the rotor of Example 3 is the rotor 10 of the first embodiment shown in FIG. is the rotor 10 of the third embodiment shown in FIG. 7, the rotor of Example 4 is the rotor 10 of the fourth embodiment shown in FIG. 8, and the rotor of Comparative Example 1 is the rotor 100 shown in FIG. 11. .
  • the Roer and Rier of the annular conductive portion 50 of Examples 1 to 4 are equivalent to each other.
  • Example 2 the conductor 40 was arranged up to the outer peripheral edge of the rotor 10, and the magnetic flux generated by the stator 3 effectively flowed through the conductor 40. Therefore, in Example 2, due to electromagnetic induction in the conductor 40 disposed at the outer peripheral edge of the rotor 10, a larger induced current was generated than in Examples 1 and 3, resulting in larger copper loss.
  • the conductor 40 is arranged at the outer peripheral edge of the rotor 10 as in the second embodiment, but the copper loss of the rotor 10 in the fourth embodiment is smaller than in the first, second and third embodiments. Ta.
  • the first flux barrier section 31 is open, which increases the anisotropy of reluctance and reduces the induced current caused by electromagnetic induction.
  • the copper loss of the rotor of Example 2 was larger than that of Examples 1, 3, and 4, but lower than that of Comparative Example 1. This is considered to be an effect due to the fact that the outer diameter of the annular conductive portion 50 of Comparative Example 2 is smaller than that of Comparative Example 1.
  • ⁇ Performance at rotor startup> the performance at startup was sometimes inferior to Comparative Example 1. This is considered to be because in Examples 1 to 4, the amount of conductors 40 disposed at the outer peripheral edge of the rotor 10 is smaller than in Comparative Example 1, so that the Lorentz force generated at the time of startup becomes smaller.
  • the performance of the rotor at startup can be improved by using a known configuration for controlling the rotation of the rotor at startup.
  • a configuration for controlling the rotation of the rotor during startup includes a VF drive (Variable-Frequency drive) and the like. For example, in Examples 1 to 4, by using the VF drive, it is possible to improve the performance of the rotor 10 at startup, and also to significantly increase the efficiency compared to Comparative Example 1 during normal rotation at the rated speed.
  • the magnet 60 is disposed only in the first region R1 disposed at the first end 30f1, but the magnet 60 is not limited to this example.
  • the magnet 60 may be disposed only in the second region R2 disposed at the second end 30f2, and the magnet 60 may not be disposed at the first end 30f1. This makes it possible to increase the efficiency when rotating toward the + ⁇ side.
  • the number of flux barrier sections 30 that each flux barrier section group 130 has is not limited to four, but only two flux barrier sections 30 may be included.
  • the number of flux barrier sections 30 included in each flux barrier section group 130 may be two, three, or four or more.
  • the number of flux barrier sections 30 included in each flux barrier section group 130 is three.
  • the number of flux barrier sections 30 in which the conductor 40 is not disposed among the flux barrier section group 130 is only one, but the number may be two or more. Further, the flux barrier section 30 in which the conductor 40 is not arranged may not be provided.
  • the conductor 40 may be disposed in the first flux barrier section 31 that is the outermost part in the radial direction.
  • conductors 40 are disposed in at least a portion of all the flux barrier sections 30, and the conductors 40 are electrically connected to each other by an annular conductive section 50 having dimensions that satisfy Rocb ⁇ Roer ⁇ Ror. Connected.
  • the outermost flux barrier part in the radial direction is the first flux barrier part 31, so the shortest distance Rocb is from the center axis J to the first flux barrier part 31. This is the shortest distance to the flux barrier section 31.
  • the amount of conductors 40 disposed in the flux barrier section 30 increases, so a larger Lorentz force can be obtained, and the performance at startup can be improved.
  • regions R may be provided at both ends 30f of the first flux barrier section 31 where the conductor 40 is arranged, and the magnet 60 may be arranged. Note that in the rotor 10 shown in FIG. 9, the region R and the magnet 60 may not be arranged in the first flux barrier section 31, and the inside of the first flux barrier section 31 may be filled with the conductor 40 without any voids.
  • the number of magnetic pole parts P of the rotor core 20 is not limited to four poles, and may be less than four poles or more than four poles.
  • the number of magnetic pole parts P of the rotor 10 may be, for example, two poles, six poles, or eight poles.
  • FIG. 9 shows a rotor 10 having a six-pole structure.
  • the six flux barrier unit groups 130 are arranged at equal intervals along the circumferential direction of the rotor 10. Since the magnetic pole portions P are provided between the flux barrier portion groups 130 adjacent to each other in the circumferential direction, six magnetic pole portions P are provided in the rotor 10 shown in FIG. 5 .
  • the first flux barrier section 31 is not provided with the bridge section 30g, and each of the other flux barrier sections 30 is provided with one bridge section 30g.
  • the first flux barrier section 31 may be provided with a bridge section 30g.
  • the bridge portion 30g may be provided in only one of the second flux barrier portion 32, the third flux barrier portion 33, and the fourth flux barrier portion 34.
  • the number of bridge parts 30g provided in each flux barrier part 30 is not limited to one, but may be two or more.
  • the bridge portion 30g may be arranged at a position other than on the q-axis.
  • the bridge portion 30g may not be provided in the flux barrier portion 30.
  • the conductor 40 is electrically separated by the bridge portion 30g, the Lorentz force generated in the rotor 10 may not be obtained appropriately.
  • the bridge portion 30g it becomes possible to suitably obtain the Lorentz force.
  • the flux barrier section group 130 by not providing the bridge section 30g in the flux barrier section 30 located on the outside in the radial direction, it becomes possible to obtain the Lorentz force more suitably.
  • the shape of the plurality of flux barrier parts 30 is a polygonal line shape that is convex radially inward when viewed in the axial direction, but is not limited to this example. It may be an arcuate shape that is convex inward in the radial direction when viewed.
  • one flux barrier section group 130 may include both arc-shaped flux barrier sections 30 and polygonal line-shaped flux barrier sections 30. Furthermore, the flux barrier section 30 may extend linearly in the stretching direction only at least in the portion where the magnet 60 is arranged.
  • the rotor 10 does not need to include the magnet 60 located inside the flux barrier section 30.
  • the magnet 60 may not be arranged in the region R, and the region R may be a gap.
  • the position where the magnet 60 is arranged is not limited to the end portion 30f of the flux barrier section 30.
  • a magnet 60 may be provided within the straight portion 30a of the flux barrier section 30 other than the first flux barrier section 31.
  • two magnets 60 are arranged with a bridge portion 30g provided at a position overlapping with the q-axis sandwiched therebetween.
  • the magnetic poles of the magnet 60 are oriented in the radial direction or the extending direction.
  • the copper loss of the rotor 10 can be reduced by reducing the outer diameter of the annular conductive portion 50 while increasing the torque of the rotor 10 due to the magnetic force of the magnet.
  • both sides of the magnet 60 in the width direction are in contact with the first edge 30e1 and the second edge 30e2 of the flux barrier section 30, respectively, when viewed in the axial direction.
  • the conductor 40 may be arranged between the side surface of the magnet 60 in the width direction and the edges 30e1 and 30e2 of the flux barrier section 30.
  • the position of the magnet 60 may be fixed by placing the magnet 60 inside the flux barrier section 30 and then filling the flux barrier section 30 with the molten conductor 40.
  • the flux barrier section 30 does not have to penetrate the rotor core 20 in the axial direction.
  • the flux barrier section 30 may be open at the end surface of the rotor core 20 in the axial direction.
  • the flux barrier section 30 is not particularly limited as long as it can suppress the flow of magnetic flux.
  • the conductor 40 is disposed at a position other than the region R within the flux barrier section 30, but a part of the flux barrier section 30 where the conductor 40 is disposed may be a void.
  • the flux barrier section 30 may be configured by embedding a non-magnetic material such as resin in the gap.
  • the use of the rotating electric machine to which the present invention is applied is not particularly limited.
  • the rotating electrical machine may be mounted on a vehicle, or may be mounted on equipment other than the vehicle, for example.
  • the configurations described above in this specification can be combined as appropriate within a mutually consistent range.
  • SYMBOLS 1 Rotating electrical machine, 3... Stator, 10... Rotor, 20... Rotor core, 20a... Through hole, 30... Flux barrier part, 30e1... First edge part, 30e2... Second edge part, 30f... Extension direction of flux barrier part 30g...Bridge part, 40...Conductor, 50...Annular conductive part, 60...Magnet, 130...Flux barrier group, J...Central axis line

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

This rotor is rotatable about the central axis and comprises: a rotor core; and annular conductive parts arranged at axially opposite sides of the rotor core. The rotor core has a plurality of flux barrier groups arranged at intervals along the circumferential direction. The plurality of flux barrier groups each include a plurality of flux barriers arranged radially side by side, and the plurality of flux barriers each have a shape protruding radially inward as viewed in the axial direction. One or more flux barriers, of the plurality of flux barriers in each of the flux barrier groups, have disposed thereinside conductor bodies electrically connected to the annular conductive parts. As viewed in the axial direction, when the half of the outer diameter of the rotor core is defined as Ror, the half of the outer diameter of the annular conductive parts is defined as Roer, and the minimum distance from the central axis line to the radially outermost one of the flux barriers which have disposed thereinside the conductor bodies is defined as Rocb, the relation of Rocb<Roer<Ror is satisfied.

Description

ロータおよび回転電機Rotor and rotating electrical machine
 本発明は、ロータおよび回転電機に関する。 The present invention relates to a rotor and a rotating electric machine.
 本出願は、2022年3月28日に提出された日本特許出願第2022-051475号に基づいている。本出願は、当該出願に対して優先権の利益を主張するものである。その内容全体は、参照されることによって本出願に援用される。 This application is based on Japanese Patent Application No. 2022-051475 filed on March 28, 2022. This application claims priority over that application. The entire contents are incorporated into this application by reference.
 複数の孔を有するロータコアと、ロータコアの軸方向両側にそれぞれ配置されたエンドリングと、を備えるロータを有する回転電機が知られている。例えば、特許文献1のロータは、ロータコアの軸方向に貫通する複数の孔を有し、孔内には、導電体およびマグネットが配置されている。 A rotating electric machine is known that has a rotor including a rotor core having a plurality of holes and end rings arranged on both sides of the rotor core in the axial direction. For example, the rotor of Patent Document 1 has a plurality of holes that penetrate in the axial direction of the rotor core, and a conductor and a magnet are arranged in the holes.
中国実用新案第202134978号明細書China Utility Model No. 202134978
 軸方向に見て、特許文献1のエンドリングの外径はロータコアの外径と同等であり、エンドリングの径方向内側には矩形形状の開口が設けられている。このような構成では、エンドリングにより電気的に接続された導電体同士を短絡させる際の抵抗が大きくなり、回転電機の通常回転時の効率が十分に向上できない場合があった。 Viewed in the axial direction, the outer diameter of the end ring of Patent Document 1 is equivalent to the outer diameter of the rotor core, and a rectangular opening is provided on the radially inner side of the end ring. In such a configuration, the resistance when short-circuiting the conductors electrically connected by the end ring becomes large, and the efficiency during normal rotation of the rotating electric machine may not be sufficiently improved.
 本発明は、上記事情に鑑みて、回転電機において通常回転時の効率およびトルクを向上できる構造を有するロータおよび回転電機を提供することを目的の一つとする。 In view of the above circumstances, one of the objects of the present invention is to provide a rotor and a rotating electrical machine having a structure that can improve efficiency and torque during normal rotation in the rotating electrical machine.
 本発明のロータコアの一つの態様は、中心軸線回りに回転可能なロータであって、ロータコアと、前記ロータコアの軸方向両側にそれぞれ配置された環状導電部と、を備える。前記ロータコアには、周方向に間隔を空けて配置された複数のフラックスバリア部群が設けられ、前記複数のフラックスバリア部群は、径方向に並んで配置された複数のフラックスバリア部をそれぞれ有し、前記複数のフラックスバリア部は、軸方向から見て径方向内側に凸となる形状である。各前記フラックスバリア部群の前記複数のフラックスバリア部のうち、少なくとも一つのフラックスバリア部の内部には、前記環状導電部と電気的に接続された導電体が配置される。軸方向から見て、前記ロータコアの外径の半分をRor、前記環状導電部の外径の半分をRoer、前記中心軸線から、内部に前記導電体が配置された前記フラックスバリア部のうち径方向において最も外側に配置されたフラックスバリア部までの最短距離をRocb、とする時、Rocb<Roer<Rorを満たす。 One aspect of the rotor core of the present invention is a rotor that is rotatable around a central axis, and includes a rotor core and annular conductive parts disposed on both sides of the rotor core in the axial direction. The rotor core is provided with a plurality of flux barrier part groups arranged at intervals in the circumferential direction, and each of the plurality of flux barrier part groups has a plurality of flux barrier parts arranged in line in the radial direction. However, the plurality of flux barrier portions have a shape convex radially inward when viewed from the axial direction. A conductor electrically connected to the annular conductive part is disposed inside at least one flux barrier part among the plurality of flux barrier parts of each flux barrier part group. When viewed from the axial direction, half of the outer diameter of the rotor core is Ror, half of the outer diameter of the annular conductive part is Roer, and from the central axis, in the radial direction of the flux barrier part in which the conductor is arranged. When the shortest distance to the outermost flux barrier section is Rocb, Rocb<Roer<Ror is satisfied.
 本発明の回転電機の一つの態様は、上記のロータと、前記ロータの径方向外側に位置するステータと、を備える。 One aspect of the rotating electric machine of the present invention includes the above-mentioned rotor and a stator located on the radially outer side of the rotor.
 本発明の一つの態様によれば、回転電機において通常回転時の効率およびトルクを向上できる構造を有するロータおよび回転電機を提供することができる。 According to one aspect of the present invention, it is possible to provide a rotor and a rotating electrical machine having a structure that can improve efficiency and torque during normal rotation in the rotating electrical machine.
図1は、第1実施形態の回転電機の模式図を示す断面図である。FIG. 1 is a sectional view showing a schematic diagram of a rotating electrical machine according to a first embodiment. 図2は、第1実施形態のロータを示す上面図であって、図1におけるII-II矢視図である。FIG. 2 is a top view showing the rotor of the first embodiment, and is a view taken along arrow II-II in FIG. 図3は、第1実施形態のロータを示す断面図であって、図1におけるIII-III断面図である。FIG. 3 is a sectional view showing the rotor of the first embodiment, and is a sectional view taken along line III-III in FIG. 図4Aは、第1実施形態のロータを示す上面図であり、ロータの各構成の寸法を説明するための図である。FIG. 4A is a top view showing the rotor of the first embodiment, and is a diagram for explaining dimensions of each component of the rotor. 図4Bは、第1実施形態のロータを示す断面図であり、ロータの各構成の寸法を説明するための図である。FIG. 4B is a cross-sectional view showing the rotor of the first embodiment, and is a diagram for explaining dimensions of each component of the rotor. 図5は、第1実施形態のロータの変形例を示す断面図である。FIG. 5 is a sectional view showing a modification of the rotor of the first embodiment. 図6は、第2実施形態のロータを示す断面図である。FIG. 6 is a sectional view showing the rotor of the second embodiment. 図7は、第3実施形態のロータを示す断面図である。FIG. 7 is a sectional view showing the rotor of the third embodiment. 図8は、第4実施形態のロータを示す断面図である。FIG. 8 is a sectional view showing the rotor of the fourth embodiment. 図9は、第1~第4実施形態のロータの変形例を示す断面図である。FIG. 9 is a sectional view showing a modification of the rotor of the first to fourth embodiments. 図10は、第1~第4実施形態のロータのその他の変形例を示す断面図である。FIG. 10 is a sectional view showing another modification of the rotor of the first to fourth embodiments. 図11は、比較例1のロータを示す断面図である。FIG. 11 is a sectional view showing a rotor of Comparative Example 1.
(第1実施形態)
 各図に適宜示すZ軸方向は、正の側を「上側」とし、負の側を「下側」とする上下方向である。各図に適宜示す中心軸線Jは、Z軸方向と平行であり、上下方向に延びる仮想線である。以下の説明においては、中心軸線Jの軸方向、すなわち上下方向と平行な方向を単に「軸方向」と呼び、中心軸線Jを中心とする径方向を単に「径方向」と呼び、中心軸線Jを中心とする周方向を単に「周方向」と呼ぶ。軸方向の上側から見て、周方向で時計回りに進む方向を+θ側と呼び、反時計回りに進む方向を-θ側と呼ぶ。
(First embodiment)
The Z-axis direction appropriately shown in each figure is an up-down direction in which the positive side is the "upper side" and the negative side is the "lower side." A central axis J shown as appropriate in each figure is an imaginary line that is parallel to the Z-axis direction and extends in the vertical direction. In the following description, the axial direction of the central axis J, that is, the direction parallel to the vertical direction, is simply referred to as the "axial direction," and the radial direction centered on the central axis J is simply referred to as the "radial direction." The circumferential direction centered on is simply called the "circumferential direction." When viewed from above in the axial direction, the direction of clockwise movement in the circumferential direction is called the +θ side, and the direction of movement counterclockwise is called the -θ side.
 なお、上下方向、上側、および下側とは、単に各部の配置関係等を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 Note that the terms "vertical direction, upper side," and "lower side" are simply names used to explain the arrangement of each part, and the actual arrangement may be other than those indicated by these names. There may be.
 図1に示す本実施形態の回転電機1は、インナーロータ型のモータである。図1に示すように、本実施形態の回転電機1は、ハウジング2と、ロータ10と、ステータ3と、ベアリングホルダ4と、ベアリング5a,5bと、を備える。ハウジング2は、ロータ10、ステータ3、ベアリングホルダ4、およびベアリング5a,5bを内部に収容している。ハウジング2の底部は、ベアリング5bを保持している。ベアリングホルダ4は、ベアリング5aを保持している。ベアリング5a,5bは、例えば、ボールベアリングである。 The rotating electrical machine 1 of this embodiment shown in FIG. 1 is an inner rotor type motor. As shown in FIG. 1, the rotating electric machine 1 of this embodiment includes a housing 2, a rotor 10, a stator 3, a bearing holder 4, and bearings 5a and 5b. The housing 2 houses therein a rotor 10, a stator 3, a bearing holder 4, and bearings 5a and 5b. The bottom of the housing 2 holds a bearing 5b. The bearing holder 4 holds a bearing 5a. The bearings 5a and 5b are, for example, ball bearings.
 ステータ3は、ロータ10の径方向外側に位置する。図1に示すように、ステータ3は、ステータコア3aと、インシュレータ3dと、複数のコイル3eと、を有する。ステータコア3aは、コアバック3bと、複数のティース3cと、を有する。コアバック3bは、中心軸線Jを中心とする円環状である。複数のティース3cは、コアバック3bから径方向内側に延びている。複数のティース3cは、周方向に沿って一周に亘って等間隔に配置されている。複数のコイル3eは、インシュレータ3dを介してステータコア3aに装着されている。 The stator 3 is located on the outside of the rotor 10 in the radial direction. As shown in FIG. 1, the stator 3 includes a stator core 3a, an insulator 3d, and a plurality of coils 3e. Stator core 3a has a core back 3b and a plurality of teeth 3c. The core back 3b has an annular shape centered on the central axis J. The plurality of teeth 3c extend radially inward from the core back 3b. The plurality of teeth 3c are arranged at equal intervals all around the circumferential direction. The plurality of coils 3e are attached to the stator core 3a via an insulator 3d.
 ロータ10は、中心軸線Jを中心として回転可能である。図1、図2および図3に示すように、ロータ10は、シャフト11と、ロータコア20と、導電体40と、環状導電部50と、マグネット60と、を備える。シャフト11は、中心軸線Jを中心として軸方向に延びる円柱状である。図1に示すように、シャフト11は、ベアリング5a,5bによって中心軸線J回りに回転可能に支持されている。 The rotor 10 is rotatable around the central axis J. As shown in FIGS. 1, 2, and 3, the rotor 10 includes a shaft 11, a rotor core 20, a conductor 40, an annular conductive portion 50, and a magnet 60. The shaft 11 has a cylindrical shape that extends in the axial direction centering on the central axis J. As shown in FIG. 1, the shaft 11 is rotatably supported around a central axis J by bearings 5a and 5b.
 ロータコア20は、磁性体である。ロータコア20の材質は、例えば、鉄と炭素との合金よりも透磁率の高く電気伝導率の低いケイ素鋼である。ロータコア20は、シャフト11の外周面に固定されている。ロータコア20は、ロータコア20を軸方向に貫通する貫通孔20aを有する。図2に示すように、貫通孔20aは、軸方向に見て、中心軸線Jを中心とする円形状である。貫通孔20aには、シャフト11が通されている。シャフト11は、例えば圧入等により、貫通孔20a内に固定されている。図示は省略するが、ロータコア20は、例えば、複数の電磁鋼板が軸方向に積層されて構成されている。 The rotor core 20 is a magnetic material. The material of the rotor core 20 is, for example, silicon steel, which has higher magnetic permeability and lower electrical conductivity than an alloy of iron and carbon. The rotor core 20 is fixed to the outer peripheral surface of the shaft 11. The rotor core 20 has a through hole 20a that passes through the rotor core 20 in the axial direction. As shown in FIG. 2, the through hole 20a has a circular shape centered on the central axis J when viewed in the axial direction. The shaft 11 is passed through the through hole 20a. The shaft 11 is fixed within the through hole 20a by, for example, press fitting. Although not shown, the rotor core 20 is configured by, for example, a plurality of electromagnetic steel sheets laminated in the axial direction.
 図1に示すように、環状導電部50は、ロータコア20の軸方向両端にそれぞれ配置されている。環状導電部50は中心軸線Jを中心とする円環状である。環状導電部50を構成する材料は、電気伝導率の高い材料である。環状導電部50を構成する材料としては、例えばアルミニウム、銅、およびアルミニウムと銅との合金等が挙げられる。 As shown in FIG. 1, the annular conductive parts 50 are arranged at both ends of the rotor core 20 in the axial direction. The annular conductive portion 50 has an annular shape centered on the central axis J. The material constituting the annular conductive portion 50 is a material with high electrical conductivity. Examples of the material constituting the annular conductive portion 50 include aluminum, copper, and an alloy of aluminum and copper.
 図2および図3に示すように、ロータコア20は、複数のフラックスバリア部30を有する。本実施形態において各フラックスバリア部30はロータコア20に設けられた孔によって構成されている。フラックスバリア部30は、例えば、ロータコア20を軸方向に貫通している。図3に示すように、各フラックスバリア部30は、軸方向と直交する平面に沿って延びており、軸方向に見て径方向内側に凸となる形状となっている。ロータコア20には、2つ以上のフラックスバリア部30を含む組が複数組設けられている。1組のフラックスバリア部30をフラックスバリア部群130とも呼ぶ。各フラックスバリア部群130は、複数のフラックスバリア部30を含む。 As shown in FIGS. 2 and 3, the rotor core 20 has a plurality of flux barrier sections 30. In this embodiment, each flux barrier section 30 is constituted by a hole provided in the rotor core 20. For example, the flux barrier section 30 passes through the rotor core 20 in the axial direction. As shown in FIG. 3, each flux barrier section 30 extends along a plane perpendicular to the axial direction, and has a shape that is convex radially inward when viewed in the axial direction. The rotor core 20 is provided with a plurality of sets including two or more flux barrier parts 30. One set of flux barrier sections 30 is also referred to as a flux barrier section group 130. Each flux barrier section group 130 includes a plurality of flux barrier sections 30.
 本実施形態では、4組のフラックスバリア部群130が設けられている。4組のフラックスバリア部群130について、以降それぞれを第1フラックスバリア部群130A、第2フラックスバリア部群130B、第3フラックスバリア部群130C、および第4フラックスバリア部群130Dとも呼ぶ。軸方向に見て、第1フラックスバリア部群130A、第2フラックスバリア部群130B、第3フラックスバリア部群130C、および第4フラックスバリア部群130Dはこの順で+θ方向に向かって配置されている。 In this embodiment, four flux barrier unit groups 130 are provided. The four flux barrier section groups 130 are hereinafter also referred to as a first flux barrier section group 130A, a second flux barrier section group 130B, a third flux barrier section group 130C, and a fourth flux barrier section group 130D. When viewed in the axial direction, the first flux barrier section group 130A, the second flux barrier section group 130B, the third flux barrier section group 130C, and the fourth flux barrier section group 130D are arranged in this order toward the +θ direction. There is.
 このようにフラックスバリア部30が設けられたロータコア20は、磁気突極構造を有するシンクロナスリラクタンスモータのロータコアとなる。より詳しくは、フラックスバリア部30は磁束を通しにくく、軸方向から見て、隣り合う2組のフラックスバリア部群130同士の間は磁束が通りやすい突極方向となり、1組のフラックスバリア部群130の周方向における中央部には磁束が通りにくい方向が設けられる。なお、以下の説明では、上記の磁束が通りやすい突極方向を「d軸方向」と呼び、上記の磁束が通りにくい方向を「q軸方向」と呼ぶ。ロータコア20はq軸方向およびd軸方向において磁気的な異方性を有するため、ステータ3により磁界が発生した際にリラクタンストルクが発生し、ロータ10を回転させることが可能となる。 The rotor core 20 provided with the flux barrier portion 30 in this manner becomes a rotor core of a synchronous reluctance motor having a magnetic salient pole structure. More specifically, the flux barrier part 30 is difficult for magnetic flux to pass through, and when viewed from the axial direction, the direction between two adjacent flux barrier part groups 130 is a salient pole direction in which magnetic flux can easily pass, and one set of flux barrier part groups A direction in which the magnetic flux is difficult to pass is provided in the center portion of 130 in the circumferential direction. In the following description, the salient pole direction through which the magnetic flux easily passes is referred to as the "d-axis direction", and the direction through which the magnetic flux is difficult to pass is referred to as the "q-axis direction". Since the rotor core 20 has magnetic anisotropy in the q-axis direction and the d-axis direction, reluctance torque is generated when a magnetic field is generated by the stator 3, making it possible to rotate the rotor 10.
 また、d軸方向はロータコア20の磁極部Pの周方向の中心を通る径方向であり、q軸方向は周方向で隣り合う磁極部P同士の間における周方向中心を通る径方向である。周方向で隣り合う磁極部P同士の間に位置する部分を、以降、磁極中間部Mと呼ぶ。q軸は磁極中間部Mを通る。
 このように、ロータ10には、周方向に沿って設けられた複数の磁極部Pと、周方向に隣り合う磁極部P同士の間にそれぞれ位置する複数の磁極中間部Mと、が設けられる。磁極中間部Mは、フラックスバリア部群130をそれぞれ有する。
Further, the d-axis direction is a radial direction passing through the circumferential center of the magnetic pole portions P of the rotor core 20, and the q-axis direction is a radial direction passing through the circumferential center between circumferentially adjacent magnetic pole portions P. The portion located between circumferentially adjacent magnetic pole portions P will hereinafter be referred to as a magnetic pole intermediate portion M. The q-axis passes through the middle part M of the magnetic pole.
In this way, the rotor 10 is provided with a plurality of magnetic pole parts P provided along the circumferential direction and a plurality of magnetic pole intermediate parts M located between circumferentially adjacent magnetic pole parts P. . The magnetic pole intermediate parts M each have a flux barrier part group 130.
 本実施形態では、フラックスバリア部30内には導電体40およびマグネット60が配置されている。
 各フラックスバリア部群130の複数のフラックスバリア部30のうち、少なくとも一つのフラックスバリア部30の内部には、導電体40が配置されている。導電体40を構成する材料は、電気伝導率の高い材料である。導電体40を構成する材料は、環状導電部50を構成する材料と同じであり、例えばアルミニウム、銅、およびアルミニウムと銅との合金等が挙げられる。導電体40を構成する材料は、フラックスバリア部30により構成された磁気突極構造に影響を与えないよう、強磁性体でない金属である。
In this embodiment, a conductor 40 and a magnet 60 are arranged within the flux barrier section 30.
A conductor 40 is arranged inside at least one flux barrier section 30 among the plurality of flux barrier sections 30 of each flux barrier section group 130 . The material constituting the conductor 40 has high electrical conductivity. The material constituting the conductor 40 is the same as the material constituting the annular conductive portion 50, and examples thereof include aluminum, copper, and an alloy of aluminum and copper. The material constituting the conductor 40 is a non-ferromagnetic metal so as not to affect the magnetic salient pole structure constituted by the flux barrier section 30.
 各フラックスバリア部30内に配置された導電体40は、それぞれ、環状導電部50と電気的に接続されている。このため、各フラックスバリア部30内の導電体40同士は環状導電部50を介して電気的に接続されており、環状導電部50は各フラックスバリア部30内の導電体40同士を電気短絡させている。
 フラックスバリア部30内の導電体40は、導電体40となる金属を加熱してフラックスバリア部30内に流し込むことで作られている。
The conductors 40 disposed within each flux barrier section 30 are electrically connected to the annular conductive section 50, respectively. Therefore, the conductors 40 in each flux barrier section 30 are electrically connected via the annular conductive section 50, and the annular conductive section 50 electrically shorts the conductors 40 in each flux barrier section 30. ing.
The conductor 40 in the flux barrier section 30 is made by heating the metal that will become the conductor 40 and pouring it into the flux barrier section 30.
 本実施形態において、導電体40および環状導電部50は、同一の単一部材の一部である。例えば、ロータコア20の軸方向両側にそれぞれ環状導電部50の金型を配置し、導電体40および環状導電部50となる金属を加熱してフラックスバリア部30および金型内に流し込むことで導電体40および環状導電部50は作られている。この際、導電体40を配置しないフラックスバリア部30の空隙部に加熱した金属が流れ込まないようにするため、加熱した金属の進入を防止する部材をフラックスバリア部30内の一部に配置した状態で金属を流し込む。
 なお、導電体40および環状導電部50は、別部材であってもよいし、異なる構成材料であってもよい。
In this embodiment, the conductor 40 and the annular conductive portion 50 are part of the same single member. For example, molds for the annular conductive part 50 are placed on both sides of the rotor core 20 in the axial direction, and the metal that will become the conductor 40 and the annular conductive part 50 is heated and poured into the flux barrier part 30 and the mold, thereby forming the conductor. 40 and an annular conductive portion 50 are made. At this time, in order to prevent the heated metal from flowing into the void of the flux barrier section 30 where the conductor 40 is not placed, a member for preventing the heated metal from entering is placed in a part of the flux barrier section 30. Pour the metal with.
Note that the conductor 40 and the annular conductive portion 50 may be separate members or may be made of different constituent materials.
 各フラックスバリア部群130の複数のフラックスバリア部30のうち、少なくとも一つのフラックスバリア部30の内部には、マグネット60が配置されている。マグネット60は、軸方向に見て矩形状である。図示は省略するが、マグネット60は、例えば、直方体状である。
 本実施形態では、軸方向に見て、内部に導電体40が配置されたフラックスバリア部30の延伸方向の両端部30fにマグネット60が配置されている。マグネット60は、フェライト磁石である。マグネットの種類は、特に限定されず、マグネットは、ネオジム磁石であってもよい。
A magnet 60 is arranged inside at least one flux barrier section 30 among the plurality of flux barrier sections 30 of each flux barrier section group 130 . The magnet 60 has a rectangular shape when viewed in the axial direction. Although not shown, the magnet 60 has a rectangular parallelepiped shape, for example.
In this embodiment, when viewed in the axial direction, the magnets 60 are arranged at both ends 30f in the extending direction of the flux barrier section 30 in which the conductor 40 is arranged. Magnet 60 is a ferrite magnet. The type of magnet is not particularly limited, and the magnet may be a neodymium magnet.
 シンクロナスリラクタンスモータのフラックスバリア部30内に導電体40が配置された場合、回転する磁界の中に導体が配置されることになる。このため、ステータ3により発生した磁界が回転した際に、電磁誘導により導電体40に誘導電流が流れ、誘導電流のローレンツ力によりロータ10に回転力を発生させることが可能となる。特に、静止したロータ10の回転を開始する時にローレンツ力によるトルクを得ることができるため、起動時の性能を高めることができる。このように、起動時の特性を向上させたシンクロナスリラクタンスモータは、特にDOL SynRM(Direct-On-Line Synchronous Reluctance Motor)とも呼ばれる。
 さらに、フラックスバリア部30内に配置されたマグネットの磁力により、回転電機1の出力を向上できる。このため、フラックスバリア部30にマグネットがさらに配置されたDOL SynRMは、DOL-PMa SynRM(Direct-On-Line Permanent Magnet assisted Synchronous Reluctance Motor)とも呼ばれる。
When the conductor 40 is placed within the flux barrier section 30 of the synchronous reluctance motor, the conductor is placed in a rotating magnetic field. Therefore, when the magnetic field generated by the stator 3 rotates, an induced current flows through the conductor 40 due to electromagnetic induction, and the Lorentz force of the induced current allows the rotor 10 to generate rotational force. In particular, since torque due to Lorentz force can be obtained when the stationary rotor 10 starts rotating, performance at startup can be improved. A synchronous reluctance motor with improved startup characteristics in this way is also called a DOL SynRM (Direct-On-Line Synchronous Reluctance Motor).
Furthermore, the output of the rotating electric machine 1 can be improved by the magnetic force of the magnet placed inside the flux barrier section 30. Therefore, the DOL SynRM in which a magnet is further arranged in the flux barrier section 30 is also called DOL-PMa SynRM (Direct-On-Line Permanent Magnet assisted Synchronous Reluctance Motor).
 以下、図2、図3、図4Aおよび図4Bを用い、本実施形態のフラックスバリア部30の構成についてより詳細に説明する。さらに、フラックスバリア部30内に配置された導電体40およびマグネット60と、環状導電部50と、の配置関係についても説明する。 Hereinafter, the configuration of the flux barrier section 30 of this embodiment will be described in more detail using FIGS. 2, 3, 4A, and 4B. Furthermore, the arrangement relationship between the conductor 40 and magnet 60 disposed within the flux barrier section 30 and the annular conductive section 50 will also be described.
(フラックスバリア部30)
 本実施形態のロータ10は、第1フラックスバリア部31と、第2フラックスバリア部32と、第3フラックスバリア部33と、第4フラックスバリア部34とを含む4つのフラックスバリア部30をそれぞれ備える4組のフラックスバリア部群130を有する。第1フラックスバリア部31と、第2フラックスバリア部32と、第3フラックスバリア部33と、第4フラックスバリア部34と、は径方向外側から径方向内側に向かって、この順に配置されている。本実施形態のフラックスバリア部群130では、複数のフラックスバリア部30のうち、最も径方向外側に位置するフラックスバリア部は第1フラックスバリア部31であり、最も径方向内側に位置するフラックスバリア部は第4フラックスバリア部34である。
(Flux barrier section 30)
The rotor 10 of this embodiment includes four flux barrier sections 30 including a first flux barrier section 31, a second flux barrier section 32, a third flux barrier section 33, and a fourth flux barrier section 34. It has four flux barrier unit groups 130. The first flux barrier section 31, the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 are arranged in this order from the radially outer side to the radially inner side. . In the flux barrier section group 130 of the present embodiment, among the plurality of flux barrier sections 30, the flux barrier section located at the outermost radial direction is the first flux barrier section 31, and the flux barrier section located at the innermost radial direction is the first flux barrier section 31. is the fourth flux barrier section 34.
 本実施形態では4つのフラックスバリア部30が、1組のフラックスバリア部群130に配置されている。1組のフラックスバリア部群130におけるフラックスバリア部30の数は4つに限られず、2つ以上のフラックスバリア部30が配置されていればよい。フラックスバリア部30の数は、ロータコア20の大きさにより適宜変更されてもよい。 以降、第1フラックスバリア部31、第2フラックスバリア部32、第3フラックスバリア部33、および第4フラックスバリア部34のいずれかを指す場合は、単にフラックスバリア部30とも呼ぶ。 In this embodiment, four flux barrier sections 30 are arranged in one flux barrier section group 130. The number of flux barrier sections 30 in one set of flux barrier section group 130 is not limited to four, and two or more flux barrier sections 30 may be arranged. The number of flux barrier sections 30 may be changed as appropriate depending on the size of rotor core 20. Hereinafter, when any one of the first flux barrier section 31, the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 is referred to, it will also simply be referred to as the flux barrier section 30.
 4組のフラックスバリア部群130はロータ10の周方向に沿って等間隔に並べられている。
 フラックスバリア部群130の各組は、それぞれ周方向に90°回転した姿勢で配置されている点を除いて、同様の構成である。以下の各フラックスバリア部30の説明においては、4組のフラックスバリア部群130のうち代表して1つの組に含まれるフラックスバリア部30について説明する。
The four flux barrier section groups 130 are arranged at equal intervals along the circumferential direction of the rotor 10.
Each set of the flux barrier unit group 130 has the same configuration except that each set is arranged in a position rotated by 90° in the circumferential direction. In the following description of each flux barrier section 30, the flux barrier section 30 included in one representative group among the four flux barrier section groups 130 will be explained.
 フラックスバリア部群130に含まれる、第1フラックスバリア部31と、第2フラックスバリア部32と、第3フラックスバリア部33と、第4フラックスバリア部34と、はそれぞれ接触しておらず、径方向において離れて位置している。ロータコア20のうち、第1フラックスバリア部31の径方向外側の領域と、径方向に隣り合う2つのフラックスバリア部30同士の間の領域と、フラックスバリア部群130の径方向内側の領域と、は、ステータ3により生じる磁束の流れる磁路MPとなる。 The first flux barrier section 31, the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 included in the flux barrier section group 130 are not in contact with each other, and the diameter located far apart in direction. In the rotor core 20, a radially outer region of the first flux barrier section 31, a region between two radially adjacent flux barrier sections 30, and a radially inner region of the flux barrier section group 130; is a magnetic path MP through which the magnetic flux generated by the stator 3 flows.
 各フラックスバリア部30は、軸方向に見て複数の線分からなる折れ線状のスリットであり、径方向内側に凸となっている。本実施形態では、各フラックスバリア部30は3つの直線からなる折れ線で構成されているが、3未満または3よりも多い直線からなる折れ線で構成されていてもよい。
 本実施形態においてフラックスバリア部30は、それぞれ、軸方向に見て、磁極中間部Mの周方向中心を対称軸とする線対称な形状である。本実施形態では、磁極中間部Mの周方向中心はq軸と重なる位置に設けられる。
Each flux barrier portion 30 is a polygonal slit consisting of a plurality of line segments when viewed in the axial direction, and is convex inward in the radial direction. In the present embodiment, each flux barrier section 30 is composed of a polygonal line made up of three straight lines, but may be composed of a polygonal line composed of less than three or more than three straight lines.
In this embodiment, each of the flux barrier parts 30 has a line-symmetrical shape with the circumferential center of the magnetic pole intermediate part M as an axis of symmetry when viewed in the axial direction. In this embodiment, the circumferential center of the magnetic pole intermediate portion M is provided at a position overlapping the q-axis.
 図3に示すように、軸方向から見て、各フラックスバリア部30は、q軸に直交する直線部30aと、直線部30aの-θ側の端部から径方向外側に屈曲して延びる第1屈曲部30bと、直線部30aの+θ側の端部から径方向外側に屈曲して延びる第2屈曲部30cと、を有する。 As shown in FIG. 3, when viewed from the axial direction, each flux barrier section 30 includes a straight section 30a orthogonal to the q-axis, and a straight section 30a that extends outward in the radial direction from the -θ side end of the straight section 30a. The first bent portion 30b has a second bent portion 30c that is bent and extends radially outward from the +θ side end of the straight portion 30a.
 第1フラックスバリア部31、第2フラックスバリア部32、第3フラックスバリア部33、および第4フラックスバリア部34の直線部を、それぞれ、直線部31a、直線部32a、直線部33a、および直線部34aと符号を付して呼ぶ。
 以降、フラックスバリア部30のいずれかの直線部を指す場合は、単に直線部30aとも呼ぶ。
 直線部31a、直線部32a、直線部33a、および直線部34aは、軸方向に見て、q軸と直交する方向に延びている。すなわち、軸方向に見て、直線部30aは互いに平行に延びている。
The straight parts of the first flux barrier part 31, the second flux barrier part 32, the third flux barrier part 33, and the fourth flux barrier part 34 are defined as a straight part 31a, a straight part 32a, a straight part 33a, and a straight part, respectively. It is designated with the reference numeral 34a.
Hereinafter, when referring to any straight part of the flux barrier section 30, it will also simply be referred to as the straight part 30a.
The straight portion 31a, the straight portion 32a, the straight portion 33a, and the straight portion 34a extend in a direction perpendicular to the q-axis when viewed in the axial direction. That is, when viewed in the axial direction, the straight portions 30a extend parallel to each other.
 第1フラックスバリア部31、第2フラックスバリア部32、第3フラックスバリア部33、および第4フラックスバリア部34の-θ側の第1屈曲部を、それぞれ、第1屈曲部31b、第1屈曲部32b、第1屈曲部33b、および第1屈曲部34bと符号を付して呼ぶ。
 以降、フラックスバリア部30のいずれかの第1屈曲部を指す場合は、単に第1屈曲部30bとも呼ぶ。
The first bent portions on the −θ side of the first flux barrier portion 31, the second flux barrier portion 32, the third flux barrier portion 33, and the fourth flux barrier portion 34 are bent into the first bent portion 31b and the first bent portion, respectively. They are referred to by reference numerals as a portion 32b, a first bent portion 33b, and a first bent portion 34b.
Hereinafter, when any first bent part of the flux barrier section 30 is referred to, it will also simply be referred to as a first bent part 30b.
 第1フラックスバリア部31、第2フラックスバリア部32、第3フラックスバリア部33、および第4フラックスバリア部34の+θ側の第2屈曲部を、それぞれ、第2屈曲部31c、第2屈曲部32c、第2屈曲部33c、および第2屈曲部34cと符号を付して呼ぶ。
 以降、フラックスバリア部30のいずれかの第2屈曲部を指す場合は、単に第2屈曲部30cとも呼ぶ。
The second bent portions on the +θ side of the first flux barrier portion 31, the second flux barrier portion 32, the third flux barrier portion 33, and the fourth flux barrier portion 34 are bent into the second bent portion 31c and the second bent portion, respectively. They are referred to by reference numerals as a portion 32c, a second bent portion 33c, and a second bent portion 34c.
Hereinafter, when any second bent part of the flux barrier section 30 is referred to, it will also simply be referred to as a second bent part 30c.
 直線部30a、第1屈曲部30b、および第2屈曲部30cは、軸方向に見て、例えば、それぞれ、矩形状である。
 軸方向に見て、q軸と直交する方向に延びる直線部30aの両端部のそれぞれに、ロータ10の外周面に向かって延びる第1屈曲部30bおよび第2屈曲部30cが折れ線状に配置されることで、フラックスバリア部30は構成される。第1屈曲部30bおよび第2屈曲部30cを含む一対の屈曲部は、軸方向に見て、径方向外側に向かうに従って互いに離れる向きに直線状に延びている。
The straight portion 30a, the first bent portion 30b, and the second bent portion 30c each have a rectangular shape, for example, when viewed in the axial direction.
When viewed in the axial direction, a first bent portion 30b and a second bent portion 30c extending toward the outer circumferential surface of the rotor 10 are arranged in a polygonal shape at both ends of the straight portion 30a extending in a direction perpendicular to the q-axis. Thus, the flux barrier section 30 is configured. A pair of bent portions including the first bent portion 30b and the second bent portion 30c extend linearly in a direction away from each other as they go radially outward when viewed in the axial direction.
<フラックスバリア部30の屈曲角度>
 各フラックスバリア部30において、直線部30aと第1屈曲部30bとがなす角度は、直線部30aと第2屈曲部30cとがなす角度と同等である。以降、直線部30aと第1屈曲部30bとがなす角度、および直線部30aと第2屈曲部30cとがなす角度を「屈曲角度」と呼ぶ。
 本実施形態では、第2フラックスバリア部32、第3フラックスバリア部33、および第4フラックスバリア部34における屈曲角度は、それぞれ同等である。このため、第1屈曲部32b、第1屈曲部33b、および第1屈曲部34bは、軸方向に見て、互いに平行に延びている。第2屈曲部32c、第2屈曲部33c、および第2屈曲部34cは、軸方向に見て、互いに平行に延びている。
 フラックスバリア部群130において、第1フラックスバリア部31の屈曲角度は、その他のフラックスバリア部30よりも大きい。
 なお、屈曲角度はすべてのフラックスバリア部30において同等になっていてもよい。径方向外側に位置するフラックスバリア部30ほど、屈曲角度が大きくなっていてもよいし、小さくなっていてもよい。
<Bending angle of flux barrier section 30>
In each flux barrier section 30, the angle between the straight section 30a and the first bent section 30b is the same as the angle between the straight section 30a and the second bent section 30c. Hereinafter, the angle between the straight portion 30a and the first bent portion 30b and the angle between the straight portion 30a and the second bent portion 30c will be referred to as a “bending angle”.
In this embodiment, the bending angles of the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 are the same. Therefore, the first bent portion 32b, the first bent portion 33b, and the first bent portion 34b extend parallel to each other when viewed in the axial direction. The second bent portion 32c, the second bent portion 33c, and the second bent portion 34c extend parallel to each other when viewed in the axial direction.
In the flux barrier section group 130, the bending angle of the first flux barrier section 31 is larger than that of the other flux barrier sections 30.
Note that the bending angles may be the same in all flux barrier sections 30. The bending angle of the flux barrier portion 30 located on the outer side in the radial direction may be larger or smaller.
<フラックスバリア部30の延伸方向の長さ>
 以下の説明においては、軸方向に見てフラックスバリア部30が折れ線状に延びる方向を「延伸方向」と呼ぶ。軸方向に見て第1フラックスバリア部31、第2フラックスバリア部32、第3フラックスバリア部33、および第4フラックスバリア部34が折れ線状に延びる方向をそれぞれ「第1延伸方向」、「第2延伸方向」、「第3延伸方向」、および「第4延伸方向」と呼ぶ。
<Length of flux barrier section 30 in stretching direction>
In the following description, the direction in which the flux barrier section 30 extends in a polygonal line shape when viewed in the axial direction will be referred to as the "stretching direction." The directions in which the first flux barrier section 31, the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 extend in the form of a polygonal line when viewed in the axial direction are referred to as a "first stretching direction" and a "first stretching direction," respectively. 2 stretching direction,""third stretching direction," and "fourth stretching direction."
 軸方向に見て、径方向外側に位置するフラックスバリア部30ほど、フラックスバリア部30の延伸方向の寸法が短い。すなわち、第1フラックスバリア部31の第1延伸方向の寸法は第2フラックスバリア部32の第2延伸方向の寸法よりも短い。第2フラックスバリア部32の第2延伸方向の寸法は第3フラックスバリア部33の第3延伸方向の寸法よりも短い。第3フラックスバリア部33の第3延伸方向の寸法は第4フラックスバリア部34の第4延伸方向の寸法よりも短い。 When viewed in the axial direction, the farther the flux barrier part 30 is located on the outer side in the radial direction, the shorter the dimension in the stretching direction of the flux barrier part 30 is. That is, the dimension of the first flux barrier section 31 in the first stretching direction is shorter than the dimension of the second flux barrier section 32 in the second stretching direction. The dimension of the second flux barrier section 32 in the second stretching direction is shorter than the dimension of the third flux barrier section 33 in the third stretching direction. The dimension of the third flux barrier section 33 in the third stretching direction is shorter than the dimension of the fourth flux barrier section 34 in the fourth stretching direction.
 軸方向に見て、フラックスバリア部30の周方向中心は、直線部30aの周方向中心となる。
 本実施形態では、第2フラックスバリア部32、第3フラックスバリア部33、および第4フラックスバリア部34における直線部30aの延伸方向の寸法は、それぞれ同等である。すなわち、直線部32a、直線部33a、および直線部34aの延伸方向の寸法はそれぞれ同等である。フラックスバリア部群130において、第1フラックスバリア部31の直線部31aの延伸方向の寸法は、第1フラックスバリア部31を除くフラックスバリア部30の直線部30aの延伸方向の寸法よりも短い。
 なお、直線部30aの延伸方向の寸法はすべてのフラックスバリア部30において同等になっていてもよい。また、径方向外側に位置するフラックスバリア部30ほど、直線部30aの延伸方向の寸法が短くなっていてもよい。径方向外側に位置するフラックスバリア部30ほど、直線部30aの延伸方向の寸法が長くなっていてもよい。
When viewed in the axial direction, the circumferential center of the flux barrier portion 30 is the circumferential center of the straight portion 30a.
In this embodiment, the dimensions in the stretching direction of the straight portions 30a in the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 are the same. That is, the dimensions of the straight portion 32a, the straight portion 33a, and the straight portion 34a in the extending direction are the same. In the flux barrier section group 130, the dimension in the stretching direction of the straight section 31a of the first flux barrier section 31 is shorter than the dimension in the stretching direction of the straight section 30a of the flux barrier section 30 excluding the first flux barrier section 31.
Note that the dimensions of the linear portions 30a in the stretching direction may be the same in all flux barrier portions 30. Furthermore, the further the flux barrier section 30 is located on the outer side in the radial direction, the shorter the length of the linear section 30a in the extending direction may be. The longer the flux barrier portion 30 is located on the outer side in the radial direction, the longer the linear portion 30a in the extending direction may be.
 軸方向に見て、径方向外側に位置する第1屈曲部30bほど、第1屈曲部30bの延伸方向の寸法が短い。
 軸方向に見て、径方向外側に位置する第2屈曲部30cほど、第2屈曲部30cの延伸方向の寸法が短い。
 なお、第1屈曲部30bおよび第2屈曲部30cの延伸方向の寸法はすべてのフラックスバリア部30において同等になっていてもよい。また、径方向外側に位置するフラックスバリア部30ほど、第1屈曲部30bおよび第2屈曲部30cの延伸方向の寸法が、長くなっていてもよい。
When viewed in the axial direction, the farther the first bent portion 30b is located on the outer side in the radial direction, the shorter the dimension in the extending direction of the first bent portion 30b.
When viewed in the axial direction, the second bent portion 30c located on the outer side in the radial direction has a shorter dimension in the extending direction of the second bent portion 30c.
Note that the dimensions of the first bent portion 30b and the second bent portion 30c in the stretching direction may be the same in all flux barrier portions 30. Furthermore, the farther outward the flux barrier section 30 is located in the radial direction, the longer the first bending section 30b and the second bending section 30c may have longer dimensions in the stretching direction.
<フラックスバリア部30の幅>
 以下の説明においては、軸方向に見てフラックスバリア部30の延伸方向と直交する方向をフラックスバリア部30の「幅方向」と呼ぶ。フラックスバリア部30の幅方向の寸法を単に幅と呼ぶ。直線部30aでは、フラックスバリア部30の幅はq軸方向の寸法である。
 フラックスバリア部30の幅は、それぞれ、延伸方向において均一になっている。これにより、径方向で隣り合う2つのフラックスバリア部30同士の間の磁路MPが、それぞれ、狭くなりすぎることを抑制できる。
<Width of flux barrier section 30>
In the following description, the direction perpendicular to the stretching direction of the flux barrier section 30 when viewed in the axial direction will be referred to as the "width direction" of the flux barrier section 30. The dimension of the flux barrier section 30 in the width direction is simply referred to as width. In the straight portion 30a, the width of the flux barrier portion 30 is the dimension in the q-axis direction.
The width of each flux barrier section 30 is uniform in the stretching direction. Thereby, it is possible to prevent the magnetic paths MP between two radially adjacent flux barrier parts 30 from becoming too narrow.
<フラックスバリア部30の延伸方向の端部30f>
 フラックスバリア部30はそれぞれ、延伸方向外側の端部30fを有する。端部30fは、-θ側の端部である第1端部30f1と、+θ側の端部である第2端部30f2と、を含む。フラックスバリア部30の第1端部30f1、および第2端部30f2はロータコア20の径方向外周縁部に位置する。第1端部30f1、および第2端部30f2の径方向の位置は、それぞれ同等の位置となっている。
<End portion 30f of flux barrier section 30 in the stretching direction>
Each of the flux barrier sections 30 has an outer end 30f in the stretching direction. The end portion 30f includes a first end portion 30f1 that is an end portion on the −θ side, and a second end portion 30f2 that is an end portion on the +θ side. The first end 30f1 and the second end 30f2 of the flux barrier section 30 are located at the radially outer peripheral edge of the rotor core 20. The radial positions of the first end 30f1 and the second end 30f2 are the same.
<フラックスバリア部30のブリッジ部30g>
 フラックスバリア部群130において、最も径方向外側に位置する第1フラックスバリア部31を除くフラックスバリア部30の少なくとも1つには、フラックスバリア部30の径方向内側の第1縁部30e1と径方向外側の第2縁部30e2とを繋ぐブリッジ部30gが設けられている。
 本実施形態では、図3に示すように、延伸方向の寸法が最も短い第1フラックスバリア部31にはブリッジ部30gが設けられておらず、第2フラックスバリア部32、第3フラックスバリア部33および第4フラックスバリア部34において、q軸と重なる位置にブリッジ部30gがそれぞれ配置されている。これより、ロータ10の機械的な強度を好適に保つことができる。
<Bridge portion 30g of flux barrier portion 30>
In the flux barrier section group 130, at least one of the flux barrier sections 30 excluding the first flux barrier section 31 located at the radially outermost position has a radially inner first edge 30e1 of the flux barrier section 30. A bridge portion 30g connecting the outer second edge portion 30e2 is provided.
In this embodiment, as shown in FIG. 3, the first flux barrier section 31 having the shortest dimension in the stretching direction is not provided with the bridge section 30g, and the second flux barrier section 32, the third flux barrier section 33 In the fourth flux barrier section 34, bridge sections 30g are arranged at positions overlapping with the q-axis. As a result, the mechanical strength of the rotor 10 can be suitably maintained.
 なお、本明細書において「或るパラメータ同士が互いに同じである」とは、或るパラメータ同士が厳密に互いに同じである場合に加えて、或るパラメータ同士が互いに略同じである場合も含む。「或るパラメータ同士が互いに略同じである」とは、例えば、公差の範囲内で、或るパラメータ同士が僅かにずれていることを含む。 Note that in this specification, "certain parameters are the same" includes not only cases where certain parameters are strictly the same, but also cases where certain parameters are substantially the same. "Certain parameters are substantially the same" includes, for example, that certain parameters are slightly different from each other within the range of tolerance.
(導電体40)
 本実施形態では、第2フラックスバリア部32、第3フラックスバリア部33および第4フラックスバリア部34の内側の一部に導電体40が配置されている。第1フラックスバリア部31には導電体40が配置されていない。
 このように、内部に導電体40が配置されたフラックスバリア部30は、フラックスバリア部群130において、最も径方向外側に位置する第1フラックスバリア部31よりも径方向内側に配置された第2フラックスバリア部32、第3フラックスバリア部33および第4フラックスバリア部34である。
(Conductor 40)
In this embodiment, the conductor 40 is disposed inside part of the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34. The conductor 40 is not arranged in the first flux barrier section 31 .
In this way, the flux barrier section 30 in which the conductor 40 is disposed is connected to the second flux barrier section 31, which is disposed radially inwardly from the first flux barrier section 31, which is the most radially outermost part in the flux barrier section group 130. They are a flux barrier section 32, a third flux barrier section 33, and a fourth flux barrier section 34.
 軸方向から見て、導電体40は、導電体40が配置されたフラックスバリア部30の延伸方向の両端部30fから離れて配置されている。
 本実施形態では、第2フラックスバリア部32、第3フラックスバリア部33および第4フラックスバリア部34の第1端部30f1および第2端部30f2には、導電体40の配置されていない領域Rがそれぞれ設けられている。領域Rは、第1端部30f1側に配置された第1領域R1と、第2端部30f2側に配置された第2領域R2と、を含む。第1領域R1は第1屈曲部30bに設けられ、第2領域R2は第2屈曲部30cに設けられる。
 第1領域R1は、延伸方向においてフラックスバリア部30の第1端部30f1の端面から第1屈曲部30bに沿って延びている。第2領域R2は、延伸方向においてフラックスバリア部30の第2端部30f2の端面から第2屈曲部30cに沿って延びている。
When viewed from the axial direction, the conductor 40 is disposed apart from both ends 30f in the extending direction of the flux barrier section 30 where the conductor 40 is disposed.
In the present embodiment, the first end 30f1 and the second end 30f2 of the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 have a region R where the conductor 40 is not arranged. are provided for each. The region R includes a first region R1 arranged on the first end 30f1 side and a second region R2 arranged on the second end 30f2 side. The first region R1 is provided at the first bent portion 30b, and the second region R2 is provided at the second bent portion 30c.
The first region R1 extends from the end surface of the first end portion 30f1 of the flux barrier portion 30 along the first bent portion 30b in the stretching direction. The second region R2 extends from the end surface of the second end portion 30f2 of the flux barrier portion 30 along the second bent portion 30c in the stretching direction.
 各フラックスバリア部30において、第1領域R1および第2領域R2の延伸方向の寸法は互いに同等である。第2フラックスバリア部32、第3フラックスバリア部33および第4フラックスバリア部34において、領域Rの延伸方向の寸法は同等である。
 なお、第1領域R1および第2領域R2の延伸方向の寸法が互いに異なっていてもよい。また、各フラックスバリア部30の径方向外側に位置するフラックスバリア部30ほど、第1領域R1および第2領域R2の延伸方向の寸法が短くなっていてもよいし、長くなっていてもよい。
In each flux barrier section 30, the first region R1 and the second region R2 have the same dimensions in the stretching direction. In the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34, the dimensions of the region R in the stretching direction are the same.
Note that the dimensions in the stretching direction of the first region R1 and the second region R2 may be different from each other. Furthermore, the farther the flux barrier portion 30 is located on the outer side in the radial direction of each flux barrier portion 30, the shorter or longer the dimensions of the first region R1 and the second region R2 in the stretching direction may be.
(環状導電部50)
 軸方向に見て、環状導電部50は、フラックスバリア部30内の各導電体40と少なくとも一部において重なっている。
 より詳しくは、図4Aおよび図4Bに示すように、軸方向から見て、ロータコア20の外径の半分をRor、環状導電部50の外径の半分をRoer、中心軸線Jから、内部に導電体40が配置されたフラックスバリア部30のうち径方向において最も外側に配置された第2フラックスバリア部32までの最短距離をRocb、とする時、Rocb<Roer<Rorを満たす。
 Rocb<Roerを満たすため、環状導電部50によりフラックスバリア部30内に配置された導電体40の全てが電気的に接続される。すなわち、導電体40同士を電気的に短絡させることができる。
 ここで、導電体40同士を電気的に短絡させる際の環状導電部50における銅損が小さいほどロータ10を回転させたときの回転電機1の効率が向上する。例えば、図11に示す従来のロータ100では、ロータコア200と環状導電部500の外径が同等になっている。図11に示すロータ100と比較し、本実施形態ではRoer<Rorを満たすため、環状導電部50の外周の長さを短くすることができる。このため、環状導電部50により各導電体40同士を接続する周方向の距離が短くなり、銅損を低減することができる。
(Annular conductive part 50)
When viewed in the axial direction, the annular conductive portion 50 overlaps each conductor 40 in the flux barrier portion 30 at least in part.
More specifically, as shown in FIGS. 4A and 4B, when viewed from the axial direction, half of the outer diameter of the rotor core 20 is Ror, half of the outer diameter of the annular conductive portion 50 is Roer, and conductive is conducted inside from the central axis J. When Rocb is the shortest distance to the second flux barrier section 32 disposed at the outermost position in the radial direction among the flux barrier sections 30 in which the body 40 is disposed, Rocb<Roer<Ror is satisfied.
In order to satisfy Rocb<Roer, all of the conductors 40 disposed within the flux barrier section 30 are electrically connected by the annular conductive section 50. That is, the conductors 40 can be electrically short-circuited.
Here, the smaller the copper loss in the annular conductive portion 50 when the conductors 40 are electrically short-circuited, the more efficient the rotating electric machine 1 is when rotating the rotor 10. For example, in the conventional rotor 100 shown in FIG. 11, the rotor core 200 and the annular conductive portion 500 have the same outer diameter. Compared to the rotor 100 shown in FIG. 11, in this embodiment, since Roer<Ror is satisfied, the length of the outer periphery of the annular conductive portion 50 can be shortened. Therefore, the distance in the circumferential direction connecting the conductors 40 to each other by the annular conductive portion 50 is shortened, and copper loss can be reduced.
 また、本実施形態では、第1フラックスバリア部31内に導電体40が配置されていない。このため、中心軸線Jから、フラックスバリア部30のうち径方向において最も内側に配置された内部に導電体40が配置されていない第1フラックスバリア部31までの最短距離をReとする時、Rocb<Roer≦Reを満たす。
 これにより、環状導電部50の外周の長さを短くすることができるため、環状導電部50により各導電体40同士を接続する周方向の距離が短くなり、銅損を低減することができる。
Further, in this embodiment, the conductor 40 is not arranged within the first flux barrier section 31. Therefore, when Re is the shortest distance from the central axis J to the first flux barrier section 31, which is the innermost part of the flux barrier section 30 in the radial direction and in which no conductor 40 is disposed, Rocb <Roer≦Re is satisfied.
Thereby, the length of the outer periphery of the annular conductive portion 50 can be shortened, so that the distance in the circumferential direction connecting each conductor 40 by the annular conductive portion 50 is shortened, and copper loss can be reduced.
 環状導電部50には、中心軸線Jを中心として環状導電部50を軸方向に貫通する内孔51が設けられている。内孔は軸方向から見て円形形状である。内孔51の直径が環状導電部50の内径となる。
 軸方向から見て、環状導電部50の内径の半分をRierとし、貫通孔20aの内径の半分をRsとする時、Rs≦Rier<Rocbを満たす。
 これにより、環状導電部50の径方向の幅Wを確保することができるため、環状導電部50の銅損を低減できる。また、環状導電部50の内孔51は、軸方向から見て円形形状であるため、周方向において径方向の幅Wが均一となる。例えば図11に示すロータ100では、軸方向から見てフラックスバリア部30の直線部30aに配置されたマグネット60が環状導電部500の開口501から露出している。このため、周方向において、マグネット60が配置された箇所では環状導電部500の径方向の幅が細くなり、当該範囲では電気抵抗が高くなる。これに対して、本実施形態では、周方向において環状導電部50の径方向の幅Wは均一であり、導電体40同士を接続する際の電気抵抗を抑えることができる。
The annular conductive part 50 is provided with an inner hole 51 that penetrates the annular conductive part 50 in the axial direction about the central axis J. The inner hole has a circular shape when viewed from the axial direction. The diameter of the inner hole 51 becomes the inner diameter of the annular conductive portion 50.
When viewed from the axial direction, when Rier is half the inner diameter of the annular conductive portion 50 and Rs is half the inner diameter of the through hole 20a, Rs≦Rier<Rocb is satisfied.
Thereby, the width W in the radial direction of the annular conductive portion 50 can be ensured, so that the copper loss of the annular conductive portion 50 can be reduced. Further, since the inner hole 51 of the annular conductive portion 50 has a circular shape when viewed from the axial direction, the width W in the radial direction is uniform in the circumferential direction. For example, in the rotor 100 shown in FIG. 11, the magnet 60 disposed on the straight portion 30a of the flux barrier portion 30 when viewed from the axial direction is exposed from the opening 501 of the annular conductive portion 500. Therefore, in the circumferential direction, the radial width of the annular conductive portion 500 becomes narrower at the location where the magnet 60 is arranged, and the electrical resistance becomes higher in this range. In contrast, in the present embodiment, the radial width W of the annular conductive portion 50 is uniform in the circumferential direction, and the electrical resistance when connecting the conductors 40 to each other can be suppressed.
 また、本実施形態では、軸方向から見て、中心軸線Jから、内部に導電体40が配置されたフラックスバリア部30の径方向において最も内側に配置された第4フラックスバリア部34までの最短距離をRicbとする時、Rier≦Ricb≦Rocbを満たす。 これにより、環状導電部50の径方向の幅Wを確保することができるため、環状導電部50の銅損を低減できる。 Further, in this embodiment, when viewed from the axial direction, the shortest distance from the central axis J to the fourth flux barrier section 34 disposed innermost in the radial direction of the flux barrier section 30 in which the conductor 40 is disposed. When the distance is Ricb, Rier≦Ricb≦Rocb is satisfied. Thereby, the width W in the radial direction of the annular conductive portion 50 can be secured, so that the copper loss of the annular conductive portion 50 can be reduced.
 図2、および図3に示すように、軸方向から見て、環状導電部50は領域Rと異なる位置に配置されている。軸方向から見て、環状導電部50は領域Rよりも径方向内側に配置されている。
 このため、環状導電部50により各導電体40同士を接続する周方向の距離が短くなり、ロータ10の銅損を低減することができる。
As shown in FIGS. 2 and 3, the annular conductive portion 50 is located at a different position from the region R when viewed from the axial direction. When viewed from the axial direction, the annular conductive portion 50 is disposed radially inside the region R.
Therefore, the distance in the circumferential direction connecting the respective conductors 40 by the annular conductive portion 50 is shortened, and the copper loss of the rotor 10 can be reduced.
 中心軸線Jから、領域Rのうち径方向において最も内側に配置された領域Rまでの最短距離をRirとする。本実施形態では、Rirは、中心軸線Jから、第4フラックスバリア部34の領域Rまでの最短距離となる。本実施形態では、環状導電部50の外径の半分であるRoerが、最短距離Rirの同等以上となっている。すなわち、Roer≦Rirを満たす。これにより、軸方向から見て、領域Rと環状導電部50とが重ならず、かつ、各導電体40を環状導電部50に電気的に接続することができる。 The shortest distance from the central axis J to the region R located innermost in the radial direction among the regions R is defined as Rir. In this embodiment, Rir is the shortest distance from the central axis J to the region R of the fourth flux barrier section 34. In this embodiment, Roer, which is half the outer diameter of the annular conductive portion 50, is equal to or greater than the shortest distance Rir. That is, Roer≦Rir is satisfied. Thereby, the region R and the annular conductive portion 50 do not overlap when viewed from the axial direction, and each conductor 40 can be electrically connected to the annular conductive portion 50.
 中心軸線Jから、領域Rまでの最も遠い距離をRofrとする。本実施形態では、領域Rの径方向の外側の端部の径方向の位置は、それぞれ同等の位置となっているため、中心軸線Jから、フラックスバリア部30の延伸方向の端部30fまでの最も遠い距離とも言える。環状導電部50の外径の半分であるRoerは、距離Rofrよりも小さい。すなわち、Roer<Rofrを満たす。これにより、領域Rの少なくとも一部が環状導電部50と重ならないようにしつつ、かつ、各導電体40を環状導電部50に電気的に接続することができる。 The farthest distance from the central axis J to the region R is Rofr. In this embodiment, the radial positions of the radially outer ends of the region R are the same, so that from the central axis J to the end 30f of the flux barrier section 30 in the extending direction, It can also be said to be the farthest distance. Roer, which is half the outer diameter of the annular conductive portion 50, is smaller than the distance Rofr. That is, Roer<Rofr is satisfied. Thereby, each conductor 40 can be electrically connected to the annular conductive part 50 while preventing at least a portion of the region R from overlapping with the annular conductive part 50.
 なお、図5に示すような環状導電部50を採用してもよい。図5に示す環状導電部50は、軸方向に見て、内孔51は、フラックスバリア部30に交差する位置に設けられている。すなわち、軸方向から見て、フラックスバリア部30の一部が内孔51よりも径方向内側に設けられており、Ricb≦Rierを満たす。この場合においても、周方向において環状導電部50の径方向の幅Wを均一にすることができるため、導電体40同士を接続する際の電気抵抗を抑えることができる。 Note that an annular conductive portion 50 as shown in FIG. 5 may be employed. In the annular conductive portion 50 shown in FIG. 5, the inner hole 51 is provided at a position intersecting the flux barrier portion 30 when viewed in the axial direction. That is, when viewed from the axial direction, a part of the flux barrier section 30 is provided radially inside the inner hole 51, and Ricb≦Rier is satisfied. Also in this case, since the radial width W of the annular conductive portion 50 can be made uniform in the circumferential direction, the electrical resistance when connecting the conductors 40 to each other can be suppressed.
(マグネット60)
 図3に示すように、マグネット60は、第2フラックスバリア部32、第3フラックスバリア部33および第4フラックスバリア部34の第1端部30f1および第2端部30f2に配置される。より詳しくは、マグネット60は導電体40が配置されていない第1領域R1および第2領域R2に配置される。第1フラックスバリア部31にはマグネット60は配置されない。
(Magnet 60)
As shown in FIG. 3, the magnet 60 is arranged at the first end 30f1 and the second end 30f2 of the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34. More specifically, the magnet 60 is arranged in the first region R1 and the second region R2 where the conductor 40 is not arranged. The magnet 60 is not arranged in the first flux barrier section 31 .
 軸方向に見て、マグネット60は領域Rの延伸方向に沿って延びる矩形形状である。領域Rは延伸方向に向かって直線状に延びているため、矩形形状のマグネット60を容易に配置することができる。
 マグネット60の延伸方向の寸法は、領域Rの延伸方向の寸法と同等以下あり、第2フラックスバリア部32、第3フラックスバリア部33および第4フラックスバリア部34に配置されたマグネット60は、それぞれ延伸方向の寸法が同じである。なお、マグネット60の延伸方向の寸法は、径方向外側に位置するフラックスバリア部30に配置されるマグネット60ほど、短くなっていてもよいし、長くなっていてもよい。
 マグネット60の幅方向の両側面は、フラックスバリア部30の第1縁部30e1および第2縁部30e2とそれぞれ接触している。
The magnet 60 has a rectangular shape extending along the extending direction of the region R when viewed in the axial direction. Since the region R extends linearly in the stretching direction, the rectangular magnet 60 can be easily arranged.
The dimension of the magnet 60 in the stretching direction is equal to or less than the dimension of the region R in the stretching direction, and the magnets 60 disposed in the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34 are each The dimensions in the stretching direction are the same. Note that the dimension in the extending direction of the magnet 60 may be shorter or longer as the magnet 60 is disposed in the flux barrier section 30 located on the outer side in the radial direction.
Both sides of the magnet 60 in the width direction are in contact with the first edge 30e1 and the second edge 30e2 of the flux barrier section 30, respectively.
 マグネット60のq軸に近い側の延伸方向端部は、導電体40に接触している。
 マグネット60のq軸から遠い側の延伸方向端部の一部は、フラックスバリア部30の延伸方向の端面に接触しているか、または、フラックスバリア部30の延伸方向の端面から離れて設けられている。すなわち、延伸方向において、マグネット60のq軸から遠い側の延伸方向端部と、フラックスバリア部30の延伸方向の端面との間には空隙部が設けられる。
 より詳しくは、軸方向に見て、フラックスバリア部30の延伸方向の端面はロータ10の外周面に沿って延びており、フラックスバリア部30の延伸方向と直交していない。このため、フラックスバリア部30の延伸方向の端面と、矩形形状のマグネット60との一部が接触している場合には、軸方向に見て三角形状の空隙部が設けられる。また、フラックスバリア部30の延伸方向の端面と、矩形形状のマグネット60とが離れて設けられている場合は、軸方向に見て台形形状の空隙部が設けられる。
The end of the magnet 60 in the stretching direction on the side closer to the q-axis is in contact with the conductor 40 .
A part of the end of the magnet 60 in the stretching direction on the side far from the q-axis is in contact with the end surface of the flux barrier section 30 in the stretching direction, or is provided apart from the end surface of the flux barrier section 30 in the stretching direction. There is. That is, in the stretching direction, a gap is provided between the stretching direction end of the magnet 60 on the side far from the q-axis and the end face of the flux barrier section 30 in the stretching direction.
More specifically, when viewed in the axial direction, the end face of the flux barrier section 30 in the extending direction extends along the outer peripheral surface of the rotor 10 and is not perpendicular to the extending direction of the flux barrier section 30. Therefore, when the end face of the flux barrier section 30 in the stretching direction and a part of the rectangular magnet 60 are in contact with each other, a triangular void is provided when viewed in the axial direction. Furthermore, when the end face of the flux barrier section 30 in the stretching direction and the rectangular magnet 60 are provided apart from each other, a trapezoidal gap is provided when viewed in the axial direction.
 なお、軸方向から見て、マグネット60の形状が領域Rと同様の形状となっていてもよい。または、フラックスバリア部30の延伸方向の端面がフラックスバリア部30の延伸方向に直交してもよい。この場合、軸方向から見てマグネット60が領域Rの内周面の全周にわたって接触する。 Note that the shape of the magnet 60 may be similar to the shape of the region R when viewed from the axial direction. Alternatively, the end face of the flux barrier section 30 in the stretching direction may be perpendicular to the stretching direction of the flux barrier section 30. In this case, the magnet 60 contacts the entire inner peripheral surface of the region R when viewed from the axial direction.
 軸方向から見て、マグネット60は環状導電部50と異なる位置に配置されている。これにより、環状導電部50の外径を小さくできるので、ロータ10における銅損を低減しつつ効率よく導電体40同士を短絡させることができる。また、軸方向から見て、マグネット60が環状導電部50で覆われていないので、例えば、マグネット60は導電体40および環状導電部50が作られた後に領域Rに挿入できる。この場合、加熱された導電体40となる金属の熱によるマグネット60の減磁を防止することができる。 When viewed from the axial direction, the magnet 60 is arranged at a different position from the annular conductive part 50. Thereby, the outer diameter of the annular conductive portion 50 can be reduced, so that the conductors 40 can be efficiently short-circuited while reducing copper loss in the rotor 10. Moreover, since the magnet 60 is not covered with the annular conductive part 50 when viewed from the axial direction, the magnet 60 can be inserted into the region R after the conductor 40 and the annular conductive part 50 are made, for example. In this case, demagnetization of the magnet 60 due to the heat of the heated metal serving as the conductor 40 can be prevented.
<マグネット60の磁極の方向>
 マグネット60の磁極は、周方向に沿って配置されている。
 第1フラックスバリア部群130A、第3フラックスバリア部群130Cにおいて、第1領域R1に設けられたマグネット60を第1マグネット61bとし、第2領域R2に設けられたマグネット60を第2マグネット61cと呼ぶ。
 径方向に隣り合う磁極中間部Mと磁極部Pとの間に配置された第1マグネット61bおよび第2マグネット61cでは、それぞれ、周方向において、磁極部P側はN極になっており、磁極中間部M側はS極になっている。図3では、フラックスバリア部群130A、130Cにおいて、周方向に間隔を空けて配置された3つの第1マグネット61b、および3つの第2マグネット61cの磁極の向きをそれぞれ矢印B11、および矢印B12にて示す。
<Direction of magnetic poles of magnet 60>
The magnetic poles of the magnet 60 are arranged along the circumferential direction.
In the first flux barrier group 130A and the third flux barrier group 130C, the magnet 60 provided in the first region R1 is referred to as the first magnet 61b, and the magnet 60 provided in the second region R2 is referred to as the second magnet 61c. call.
In the first magnet 61b and the second magnet 61c, which are arranged between the radially adjacent magnetic pole intermediate part M and the magnetic pole part P, the magnetic pole part P side is the N pole in the circumferential direction, and the magnetic pole The middle part M side is the S pole. In FIG. 3, in the flux barrier unit groups 130A and 130C, the magnetic pole directions of the three first magnets 61b and the three second magnets 61c arranged at intervals in the circumferential direction are indicated by arrows B11 and B12, respectively. Shown.
 第2フラックスバリア部群130B、第4フラックスバリア部群130Dにおいて、第1領域R1に設けられたマグネット60を第1マグネット62bとし、第2領域R2に設けられたマグネット60を第2マグネット62cと呼ぶ。
 径方向に隣り合う磁極部Pと磁極中間部Mとの間に配置された第1マグネット62bおよび第2マグネット62cでは、それぞれ、周方向において、磁極部P側はS極になっており、磁極中間部M側はN極になっている。図3では、フラックスバリア部群130B、130Dにおいて、周方向に間隔を空けて配置された3つの第1マグネット62b、および3つの第2マグネット62cの磁極の向きをそれぞれ矢印B21、および矢印B22にて示している。
In the second flux barrier group 130B and the fourth flux barrier group 130D, the magnet 60 provided in the first region R1 is referred to as the first magnet 62b, and the magnet 60 provided in the second region R2 is referred to as the second magnet 62c. call.
In the first magnet 62b and the second magnet 62c, which are arranged between the magnetic pole part P and the magnetic pole intermediate part M that are adjacent to each other in the radial direction, the magnetic pole part P side is the S pole in the circumferential direction, and the magnetic pole The middle part M side is the north pole. In FIG. 3, the directions of the magnetic poles of the three first magnets 62b and the three second magnets 62c arranged at intervals in the circumferential direction in the flux barrier unit groups 130B and 130D are indicated by arrows B21 and B22, respectively. It shows.
 このように、周方向で隣り合うフラックスバリア部群130では、マグネット60の磁極の向きが互いに逆になっている。 In this way, in the flux barrier section groups 130 that are adjacent to each other in the circumferential direction, the magnetic pole directions of the magnets 60 are opposite to each other.
 図3に示すように、第4フラックスバリア部群130Dと第1フラックスバリア部群130Aとの間の磁極部Pを挟んで、-θ側には3つの第2マグネット62cが配置され、+θ側には3つの第1マグネット61bが配置される。当該6つのマグネット62c、61bは、ロータ10の外周縁部に周方向に間隔を空けて配置される。6つのマグネット60のうち、第2マグネット62cの磁極の向きB22と、第1マグネット61bの磁極の向きB11とが互いに同じになっている。
 第2フラックスバリア部群130Bと第3フラックスバリア部群130Cとの間の磁極部Pを挟んで配置されている6つのマグネット62c、61bの磁極の向きについてもそれぞれ同様に磁極の向きB22、B11が互いに同じになっている。
As shown in FIG. 3, three second magnets 62c are arranged on the -θ side, sandwiching the magnetic pole part P between the fourth flux barrier part group 130D and the first flux barrier part group 130A, and three second magnets 62c are arranged on the +θ side. Three first magnets 61b are arranged. The six magnets 62c and 61b are arranged on the outer peripheral edge of the rotor 10 at intervals in the circumferential direction. Among the six magnets 60, the magnetic pole direction B22 of the second magnet 62c and the magnetic pole direction B11 of the first magnet 61b are the same.
Similarly, the magnetic pole directions of the six magnets 62c and 61b placed across the magnetic pole part P between the second flux barrier group 130B and the third flux barrier group 130C are B22 and B11, respectively. are the same as each other.
 また、第1フラックスバリア部群130Aと第2フラックスバリア部群130Bとの間の磁極部Pを挟んで、-θ側には3つの第2マグネット61cが配置され、+θ側には3つの第1マグネット62bが配置される。当該6つのマグネット61c、62bは、ロータ10の外周縁部に周方向に間隔を空けて配置される。6つのマグネット60のうち、第2マグネット61cの磁極の向きB12と、第1マグネット62bの磁極の向きB21とが互いに同じになっている。
 第3フラックスバリア部群130Cと第4フラックスバリア部群130Dとの間の磁極部Pを挟んで配置されている6つのマグネット61c、62bの磁極の向きについてもそれぞれ同様に磁極の向きB12、B21が互いに同じになっている。
Further, three second magnets 61c are arranged on the -θ side, and three second magnets 61c are arranged on the +θ side, sandwiching the magnetic pole part P between the first flux barrier part group 130A and the second flux barrier part group 130B. 1 magnet 62b is arranged. The six magnets 61c and 62b are arranged on the outer peripheral edge of the rotor 10 at intervals in the circumferential direction. Among the six magnets 60, the magnetic pole direction B12 of the second magnet 61c and the magnetic pole direction B21 of the first magnet 62b are the same.
Similarly, the magnetic pole directions of the six magnets 61c and 62b placed across the magnetic pole part P between the third flux barrier part group 130C and the fourth flux barrier part group 130D are also the magnetic pole directions B12 and B21, respectively. are the same as each other.
 このように、周方向において隣り合う第1フラックスバリア部31の間に配置された6つのマグネット60の磁極の向きは同じになっている。かつ、周方向で隣り合う当該6つのマグネット60同士の磁極の向きは周方向に反転している。 In this way, the six magnets 60 arranged between the first flux barrier parts 31 adjacent to each other in the circumferential direction have the same magnetic pole direction. Moreover, the directions of the magnetic poles of the six circumferentially adjacent magnets 60 are reversed in the circumferential direction.
<マグネットトルクによる回転電機1のトルクの向上>
 本実施形態では、リラクタンストルクを生じさせるフラックスバリア部30内にマグネット60が上述のように配置される。これにより、ロータ10の磁気的な異方性により生じるリラクタンストルクと、マグネット60の磁力によってロータ10に生じるマグネットトルクと、の両方を好適に利用できるため、回転電機1のトルクを向上できる。
 例えば図11に示す従来のロータ100では、フラックスバリア部30の直線部30a内にマグネット60が配置されている。また、図11に矢印C1で示すように、マグネット60により生じた磁束は直線部30aの延伸方向を直交する方向に流れている。この場合、シンクロナスリラクタンスモータの磁束が通りやすいd軸と異なる方向に、マグネット60の磁束が通る矢印C1が延びることになる。また、図11に示すロータ100の構成では、回転電機の負荷角と、リラクタンストルクおよびマグネットトルクと、の関係において、リラクタンストルクが最小となる負荷角とマグネットトルクが最小となる負荷角とが異なる角度となる。このため、リラクタンストルクとマグネットトルクとの合成トルクが十分に向上できない場合があった。
<Improvement of torque of rotating electric machine 1 by magnet torque>
In this embodiment, the magnet 60 is arranged as described above within the flux barrier section 30 that generates reluctance torque. Thereby, both the reluctance torque generated by the magnetic anisotropy of the rotor 10 and the magnetic torque generated in the rotor 10 by the magnetic force of the magnet 60 can be suitably utilized, so that the torque of the rotating electric machine 1 can be improved.
For example, in a conventional rotor 100 shown in FIG. 11, a magnet 60 is disposed within a straight portion 30a of a flux barrier portion 30. Further, as shown by an arrow C1 in FIG. 11, the magnetic flux generated by the magnet 60 flows in a direction perpendicular to the extending direction of the straight portion 30a. In this case, the arrow C1, through which the magnetic flux of the magnet 60 passes, extends in a direction different from the d-axis, through which the magnetic flux of the synchronous reluctance motor easily passes. Furthermore, in the configuration of the rotor 100 shown in FIG. 11, in the relationship between the load angle of the rotating electric machine, reluctance torque, and magnet torque, the load angle at which the reluctance torque is the minimum and the load angle at which the magnet torque is the minimum are different. It becomes an angle. For this reason, the composite torque of the reluctance torque and the magnet torque may not be sufficiently improved.
 これに対して、本実施形態のロータ10では、シンクロナスリラクタンスモータの磁束が通りやすいd軸を挟んで、周方向に並んで配置された複数のマグネット60が配置されている。また、複数のマグネット60の磁極は、周方向に沿って配置されている。この構成により、回転電機1の負荷角と、リラクタンストルクおよびマグネットトルクと、の関係において、リラクタンストルクが最小となる負荷角とマグネットトルクが最小となる負荷角とを一致させることができる。また、リラクタンストルクが最大となる負荷角とマグネットトルクが最大となる負荷角とを一致させることもできる。
 このように、本実施形態のロータ10では、リラクタンストルクとマグネットトルクとの合成トルクを好適に向上させることができるため、回転電機1のトルクを好適に向上できる。
On the other hand, in the rotor 10 of the present embodiment, a plurality of magnets 60 are arranged in parallel in the circumferential direction with the d-axis through which the magnetic flux of the synchronous reluctance motor easily passes. Further, the magnetic poles of the plurality of magnets 60 are arranged along the circumferential direction. With this configuration, in the relationship between the load angle of the rotating electrical machine 1 and the reluctance torque and magnet torque, the load angle at which the reluctance torque is the minimum and the load angle at which the magnet torque is the minimum can be matched. Furthermore, the load angle at which the reluctance torque is maximum and the load angle at which the magnet torque is maximum can be made to match.
In this way, in the rotor 10 of the present embodiment, the composite torque of the reluctance torque and the magnet torque can be suitably improved, so that the torque of the rotating electric machine 1 can be suitably improved.
 また、軸方向から見て、マグネット60は環状導電部50よりも径方向外側に配置されている。これにより、マグネット60をロータコア20の周方向外周縁部に配置できるため、上述のようにリラクタンストルクとマグネットトルクとの合成トルクを好適に向上させることができるとともに、環状導電部50の外径を小さくすることで銅損を減らすことができる。
 また、複数のマグネット60は周方向に間隔を空けて配置されているため、マグネット60同士の間にロータコア20の磁路MPを確保することができる。
Further, when viewed from the axial direction, the magnet 60 is disposed radially outward from the annular conductive portion 50. As a result, the magnet 60 can be disposed on the outer peripheral edge of the rotor core 20 in the circumferential direction, so that the composite torque of the reluctance torque and the magnet torque can be suitably improved as described above, and the outer diameter of the annular conductive portion 50 can be reduced. By making it smaller, copper loss can be reduced.
Moreover, since the plurality of magnets 60 are arranged at intervals in the circumferential direction, the magnetic path MP of the rotor core 20 can be secured between the magnets 60.
 以上説明したように、本実施形態のロータ10は、中心軸線J回りに回転可能なロータ10であって、ロータコア20と、ロータコア20の軸方向両側にそれぞれ配置された環状導電部50と、を備え、ロータコア20には、周方向に間隔を空けて配置された複数のフラックスバリア部群130が設けられ、複数のフラックスバリア部群130は、径方向に並んで配置された複数のフラックスバリア部30をそれぞれ有し、複数のフラックスバリア部30は、軸方向から見て径方向内側に凸となる形状であり、各フラックスバリア部群130の複数のフラックスバリア部30のうち、少なくとも一つのフラックスバリア部30の内部には、環状導電部50と電気的に接続された導電体40が配置され、軸方向から見て、ロータコア20の外径の半分をRor、環状導電部50の外径の半分をRoer、中心軸線Jから、内部に導電体40が配置されたフラックスバリア部30のうち径方向において最も外側に配置されたフラックスバリア部30までの最短距離をRocb、とする時、Rocb<Roer<Rorを満たす。 As explained above, the rotor 10 of this embodiment is a rotor 10 that is rotatable around the central axis J, and includes a rotor core 20 and annular conductive parts 50 arranged on both sides of the rotor core 20 in the axial direction. The rotor core 20 is provided with a plurality of flux barrier section groups 130 arranged at intervals in the circumferential direction, and the plurality of flux barrier section groups 130 include a plurality of flux barrier sections arranged in a line in the radial direction. 30, each of the plurality of flux barrier parts 30 has a shape convex inward in the radial direction when viewed from the axial direction, and at least one of the plurality of flux barrier parts 30 of each flux barrier part group 130 A conductor 40 electrically connected to the annular conductive part 50 is disposed inside the barrier part 30, and when viewed from the axial direction, half of the outer diameter of the rotor core 20 is Ror, and half of the outer diameter of the annular conductive part 50 is Ror. When half is Roer and the shortest distance from the central axis J to the flux barrier section 30 that is disposed at the outermost position in the radial direction among the flux barrier sections 30 in which the conductor 40 is disposed inside is Rocb, Rocb< Satisfies Roer<Ror.
 これにより、環状導電部50の外径をロータコア20の外径よりも小さくすることができ、ロータ10の銅損を低減できる。そのため、ロータ10が定格速度で回転する通常回転時において効率およびトルクの向上が可能となる。
 また、環状導電部50の軸方向の厚さを大きくすることなく、ロータ10の銅損を低減できるため、回転電機1の軸方向の寸法をコンパクトにすることができる。
 また、図11に示すような環状導電部500を有する従来のロータ100と同様の製造プロセスで本実施形態のロータ10を製造することが可能であるため、製造コストを抑えつつ、上述のような格別な効果を有するロータ10を得ることが可能となる。
Thereby, the outer diameter of the annular conductive portion 50 can be made smaller than the outer diameter of the rotor core 20, and the copper loss of the rotor 10 can be reduced. Therefore, efficiency and torque can be improved during normal rotation when the rotor 10 rotates at the rated speed.
Further, since the copper loss of the rotor 10 can be reduced without increasing the axial thickness of the annular conductive portion 50, the axial dimension of the rotating electric machine 1 can be made compact.
Furthermore, since the rotor 10 of this embodiment can be manufactured using the same manufacturing process as the conventional rotor 100 having the annular conductive portion 500 as shown in FIG. It becomes possible to obtain a rotor 10 with exceptional effects.
 また、内部に導電体40が配置されたフラックスバリア部30は、フラックスバリア部群130において、最も径方向外側に位置する第1フラックスバリア部31よりも径方向内側に配置されたフラックスバリア部30である。これにより、環状導電部50の外径を小さくできるため、環状導電部50における銅損をより低減させることができる。 Further, the flux barrier section 30 in which the conductor 40 is disposed is a flux barrier section 30 disposed radially inward from the first flux barrier section 31 located at the radially outermost position in the flux barrier section group 130. It is. Thereby, the outer diameter of the annular conductive portion 50 can be made smaller, so that copper loss in the annular conductive portion 50 can be further reduced.
 また、軸方向から見て、導電体40は、導電体40が配置されたフラックスバリア部30の延伸方向の両端部30fから離れて配置されている。これにより、例えば、導電体40の配置されていない領域Rに、マグネット60を配置することができる。また、領域Rにはマグネット60を配置せず空隙部としてもよいし、マグネット以外のその他の構成を配置することも可能となる。このように、導電体40が端部30fから離れて配置されることで、種々のデザインに対応可能なロータ10を得ることができる。 Furthermore, when viewed from the axial direction, the conductor 40 is disposed away from both ends 30f in the stretching direction of the flux barrier section 30 where the conductor 40 is disposed. Thereby, for example, the magnet 60 can be placed in the region R where the conductor 40 is not placed. Further, the region R may be a gap without the magnet 60, or it is also possible to arrange a structure other than the magnet. In this way, by arranging the conductor 40 apart from the end portion 30f, it is possible to obtain a rotor 10 that can be adapted to various designs.
 また、本実施形態の回転電機1は、上述のロータ10と、ロータ10の径方向外側に位置するステータ3と、を備える。
 これにより、ロータ10が定格速度で回転する通常回転時において、効率およびトルクの向上が可能な回転電機1を得ることが可能となる。
Further, the rotating electrical machine 1 of the present embodiment includes the above-described rotor 10 and the stator 3 located on the outside of the rotor 10 in the radial direction.
This makes it possible to obtain the rotating electric machine 1 that can improve efficiency and torque during normal rotation when the rotor 10 rotates at the rated speed.
(第2実施形態)
 次に、本発明に係る第2実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図6に示すように、第1実施形態と比較し、本実施形態のロータ10は、第2フラックスバリア部32、第3フラックスバリア部33および第4フラックスバリア部34の第2端部30f2に導電体40が配置されており、第2領域R2が設けられていない。また、第2端部30f2にマグネット60が設けられていない。
 本実施形態のロータ10では、第1領域R1の延伸方向の寸法が第1実施形態よりも長くなっており、第1領域R1内に配置されたマグネット60の延伸方向の寸法も第1実施形態よりも長くなっている。
(Second embodiment)
Next, a second embodiment according to the present invention will be described, which has the same basic configuration as the first embodiment. Therefore, similar configurations will be given the same reference numerals and their explanations will be omitted, and only the different points will be explained.
As shown in FIG. 6, compared to the first embodiment, the rotor 10 of the present embodiment has a second end 30f2 of the second flux barrier section 32, the third flux barrier section 33, and the fourth flux barrier section 34. The conductor 40 is arranged, and the second region R2 is not provided. Further, the magnet 60 is not provided at the second end portion 30f2.
In the rotor 10 of this embodiment, the dimension in the stretching direction of the first region R1 is longer than that in the first embodiment, and the dimension in the stretching direction of the magnet 60 arranged in the first region R1 is also longer than that in the first embodiment. It is longer than.
 本実施形態では、フラックスバリア部群130において、q軸よりも-θ側でマグネットトルクを好適に利用できる。そのため、-θ方向にロータ10を回転させた際の効率およびトルクを向上することができる。また、定格速度でロータ10が-θ方向に回転する通常運転時のステータ3の電流を低くすることができる。
 また、第1実施形態と比較し、ステータ3により生じる磁束の向きとマグネット60の磁束の向きとの関係により、ロータ10内に配置されたマグネット60の減磁が起こりにくくなる。
In this embodiment, in the flux barrier group 130, the magnetic torque can be suitably used on the −θ side with respect to the q-axis. Therefore, the efficiency and torque when rotating the rotor 10 in the -θ direction can be improved. Furthermore, the current flowing through the stator 3 during normal operation in which the rotor 10 rotates in the −θ direction at the rated speed can be reduced.
Furthermore, compared to the first embodiment, the relationship between the direction of the magnetic flux generated by the stator 3 and the direction of the magnetic flux of the magnet 60 makes demagnetization of the magnet 60 arranged in the rotor 10 less likely to occur.
(第3実施形態)
 次に、本発明に係る第3実施形態について説明するが、第1実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図7に示すように、第1実施形態と比較し、本実施形態のロータ10では、4つのフラックスバリア部群130の第1マグネット61b、62bの磁極の向きが周方向において反転している。
 すなわち、第4フラックスバリア部群130Dと第1フラックスバリア部群130Aとの間の磁極部Pを挟んで配置される6つのマグネット60のうち、第2マグネット62cの磁極の向きB22と、第1マグネット61bの磁極の向きB11とが周方向に互いに対向する方向を向いている。
 第2フラックスバリア部群130Bと第3フラックスバリア部群130Cとの間の磁極部Pを挟んで配置されている6つのマグネット62c、61bの磁極の向きについてもそれぞれ同様に磁極の向きB22、B11が周方向に互いに対向する方向を向いている。
(Third embodiment)
Next, a third embodiment according to the present invention will be described, which has the same basic configuration as the first embodiment. Therefore, similar configurations will be given the same reference numerals and their explanations will be omitted, and only the different points will be explained.
As shown in FIG. 7, compared to the first embodiment, in the rotor 10 of this embodiment, the directions of the magnetic poles of the first magnets 61b and 62b of the four flux barrier section groups 130 are reversed in the circumferential direction.
That is, among the six magnets 60 arranged across the magnetic pole part P between the fourth flux barrier part group 130D and the first flux barrier part group 130A, the magnetic pole direction B22 of the second magnet 62c and the first The magnetic pole direction B11 of the magnet 61b faces in a direction that faces each other in the circumferential direction.
Similarly, the magnetic pole directions of the six magnets 62c and 61b placed across the magnetic pole part P between the second flux barrier group 130B and the third flux barrier group 130C are B22 and B11, respectively. are facing in directions opposite to each other in the circumferential direction.
 また、第1フラックスバリア部群130Aと第2フラックスバリア部群130Bとの間の磁極部Pを挟んで配置される6つのマグネット60のうち、第2マグネット61cの磁極の向きB12と、第1マグネット62bの磁極の向きB21とが周方向に互いに対向する方向を向いている。
 第3フラックスバリア部群130Cと第4フラックスバリア部群130Dとの間の磁極部Pを挟んで配置されている6つのマグネット61c、62bの磁極の向きについてもそれぞれ同様に磁極の向きB12、B21が周方向に互いに対向する方向を向いている。
Moreover, among the six magnets 60 arranged across the magnetic pole part P between the first flux barrier part group 130A and the second flux barrier part group 130B, the magnetic pole direction B12 of the second magnet 61c and the first The magnetic pole direction B21 of the magnet 62b faces in a direction opposite to each other in the circumferential direction.
Similarly, the magnetic pole directions of the six magnets 61c and 62b placed across the magnetic pole part P between the third flux barrier part group 130C and the fourth flux barrier part group 130D are also the magnetic pole directions B12 and B21, respectively. are facing in directions opposite to each other in the circumferential direction.
 これにより、ロータ10を回転させた際の効率およびトルクを向上することができる。また、定格速度でロータ10が回転する通常運転時のステータ3の電流を低くすることができる。
 また、第1実施形態と比較し、ステータ3により生じる磁束の向きとマグネット60の磁束の向きとの関係により、ロータ10内に配置されたマグネット60の減磁が起こりにくくなる。
Thereby, the efficiency and torque when rotating the rotor 10 can be improved. Furthermore, the current flowing through the stator 3 during normal operation when the rotor 10 rotates at the rated speed can be reduced.
Furthermore, compared to the first embodiment, the relationship between the direction of the magnetic flux generated by the stator 3 and the direction of the magnetic flux of the magnet 60 makes demagnetization of the magnet 60 arranged in the rotor 10 less likely to occur.
(第4実施形態)
 次に、本発明に係る第4実施形態について説明するが、第1実施形態および第2実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図8に示すように、第2実施形態と比較し、ロータコア20において、第1フラックスバリア部31よりも径方向外側の磁路MP設けられていない。すなわち、第1フラックスバリア部31はロータコア20の外周面に開口している。
 これにより、ロータ10を回転させた際の効率およびトルクを向上させることができる。また、定格速度でロータ10が回転する通常運転時のステータ3の電流を低くすることができる。
 また、第1実施形態と比較し、ステータ3により生じる磁束の向きとマグネット60の磁束の向きとの関係により、ロータ10内に配置されたマグネット60の減磁が起こりにくくなる。
(Fourth embodiment)
Next, a fourth embodiment according to the present invention will be described, but the basic configuration is the same as that of the first embodiment and the second embodiment. Therefore, similar configurations will be given the same reference numerals and their explanations will be omitted, and only the different points will be explained.
As shown in FIG. 8, compared to the second embodiment, the rotor core 20 does not have a magnetic path MP located outside the first flux barrier section 31 in the radial direction. That is, the first flux barrier section 31 is open to the outer peripheral surface of the rotor core 20.
Thereby, the efficiency and torque when rotating the rotor 10 can be improved. Furthermore, the current flowing through the stator 3 during normal operation when the rotor 10 rotates at the rated speed can be reduced.
Furthermore, compared to the first embodiment, the relationship between the direction of the magnetic flux generated by the stator 3 and the direction of the magnetic flux of the magnet 60 makes demagnetization of the magnet 60 arranged in the rotor 10 less likely to occur.
 以下、具体的な実施例を用いて、上記実施形態を説明する。なお、本発明は以下の実施例に限定されない。 Hereinafter, the above embodiment will be described using specific examples. Note that the present invention is not limited to the following examples.
 マグネット60の配置、およびフラックスバリア部30の形状を異ならせたロータを有する回転電機において、ロータにおける銅損、ロータの通常回転時におけるステータの動作電流、ロータの同期回転可能な最大トルク、およびロータの起動時のトルクを比較した。
 以下の説明において、実施例1のロータは図5に示す第1実施形態のロータ10であり、実施例2のロータは図6に示す第2実施形態のロータ10であり、実施例3のロータは図7に示す第3実施形態のロータ10であり、実施例4のロータは図8に示す第4実施形態のロータ10であり、比較例1のロータは図11に示されるロータ100である。なお、実施例1~4の環状導電部50のRoerおよびRierは互いに同等である。
In a rotating electric machine having a rotor in which the arrangement of the magnets 60 and the shape of the flux barrier section 30 are different, copper loss in the rotor, operating current of the stator during normal rotation of the rotor, maximum torque that allows synchronous rotation of the rotor, and The torque at startup was compared.
In the following description, the rotor of Example 1 is the rotor 10 of the first embodiment shown in FIG. 5, the rotor of Example 2 is the rotor 10 of the second embodiment shown in FIG. 6, and the rotor of Example 3 is the rotor 10 of the first embodiment shown in FIG. is the rotor 10 of the third embodiment shown in FIG. 7, the rotor of Example 4 is the rotor 10 of the fourth embodiment shown in FIG. 8, and the rotor of Comparative Example 1 is the rotor 100 shown in FIG. 11. . Note that the Roer and Rier of the annular conductive portion 50 of Examples 1 to 4 are equivalent to each other.
<ロータの銅損>
 比較例1と比較し、実施例1~4のロータ10の銅損は低くなっていた。これは、比較例1の環状導電部500よりも、実施例1~4の環状導電部50の外径が小さくなったためである。例えば、実施例1のロータの銅損は比較例1の約半分となった。
 実施例1~4のうち、実施例2では、実施例1、3および4と比較しロータ10の銅損が大きかった。実施例2の銅損が実施例1および4よりも大きい理由は、実施例2では第2端部30f2に導電体40が配置されているためと考えられる。実施例2では、ロータ10の外周縁部まで導電体40が配置されており、ステータ3により生じた磁束が導電体40に効果的に流れた。このため、実施例2では、ロータ10の外周縁部に配置された導電体40における電磁誘導により、実施例1、および3よりも大きな誘導電流が生じ、銅損が大きくなっていた。
<Rotor copper loss>
Compared to Comparative Example 1, the copper loss of the rotor 10 of Examples 1 to 4 was lower. This is because the outer diameter of the annular conductive portion 50 of Examples 1 to 4 was smaller than that of the annular conductive portion 500 of Comparative Example 1. For example, the copper loss of the rotor of Example 1 was about half that of Comparative Example 1.
Among Examples 1 to 4, in Example 2, the copper loss of the rotor 10 was greater than in Examples 1, 3, and 4. The reason why the copper loss of Example 2 is larger than that of Examples 1 and 4 is considered to be that in Example 2, the conductor 40 is disposed at the second end 30f2. In Example 2, the conductor 40 was arranged up to the outer peripheral edge of the rotor 10, and the magnetic flux generated by the stator 3 effectively flowed through the conductor 40. Therefore, in Example 2, due to electromagnetic induction in the conductor 40 disposed at the outer peripheral edge of the rotor 10, a larger induced current was generated than in Examples 1 and 3, resulting in larger copper loss.
 実施例4では、実施例2と同様に、ロータ10の外周縁部に導電体40が配置されているが、実施例4のロータ10の銅損は、実施例1、2および3よりも小さかった。これは、実施例4では第1フラックスバリア部31が開口しており、リラクタンスの異方性がより高まり、電磁誘導により生じる誘導電流が少なくなったためと考えられる。
 なお、実施例2のロータの銅損は、実施例1、3、および4よりも大きくなっているが、比較例1よりも低かった。これは、比較例2の環状導電部50の外径が比較例1よりも小さいことによる効果であると考えられる。
In the fourth embodiment, the conductor 40 is arranged at the outer peripheral edge of the rotor 10 as in the second embodiment, but the copper loss of the rotor 10 in the fourth embodiment is smaller than in the first, second and third embodiments. Ta. This is considered to be because in Example 4, the first flux barrier section 31 is open, which increases the anisotropy of reluctance and reduces the induced current caused by electromagnetic induction.
Note that the copper loss of the rotor of Example 2 was larger than that of Examples 1, 3, and 4, but lower than that of Comparative Example 1. This is considered to be an effect due to the fact that the outer diameter of the annular conductive portion 50 of Comparative Example 2 is smaller than that of Comparative Example 1.
<定格動作電流>
 実施例1~4では、比較例1と比較し、ロータの通常回転時におけるステータの動作電流である定格動作電流は同等以下となった。特に、実施例2、3および4では、比較例1と比較し、好適にロータ10の通常回転時におけるステータの動作電流が低減された。 これは、マグネット60をロータコア20の外周縁部に配置させることにより、リラクタンストルクとマグネットトルクとの合成トルクを好適に向上させることができたためである。これにより、実施例1~4では回転電機1の効率を向上できることがわかる。
<Rated operating current>
In Examples 1 to 4, compared to Comparative Example 1, the rated operating current, which is the operating current of the stator during normal rotation of the rotor, was equal to or lower than that of Comparative Example 1. In particular, in Examples 2, 3, and 4, compared to Comparative Example 1, the operating current of the stator during normal rotation of the rotor 10 was suitably reduced. This is because by arranging the magnet 60 at the outer peripheral edge of the rotor core 20, the composite torque of the reluctance torque and the magnet torque can be suitably improved. This shows that in Examples 1 to 4, the efficiency of the rotating electric machine 1 can be improved.
<ロータの最大同期トルク>
 実施例1~4では、比較例1と比較し、ロータの同期回転可能な最大トルクが同等以上となった。特に、実施例2、3および4では最大動機トルクの大きな向上があった。これは、上述のように、実施例1~4で合成トルクを好適に向上できたためであると考えられる。
<Maximum synchronous torque of rotor>
In Examples 1 to 4, compared to Comparative Example 1, the maximum torque that allows the rotor to rotate synchronously was equal to or higher than that of Comparative Example 1. In particular, in Examples 2, 3, and 4, there was a large improvement in the maximum motive torque. This is considered to be because, as described above, the composite torque was suitably improved in Examples 1 to 4.
<ロータの起動時の性能>
 実施例1~4では起動時の性能が比較例1よりも劣る場合があった。これは、実施例1~4では、ロータ10の外周縁部に配置された導電体40の量が比較例1よりも少ないため、起動時に生じるローレンツ力が小さくなるためであると考えられる。
 ここで、ロータの起動時の性能は、公知の起動時のロータの回転を制御する構成を用いることで高めることができる。起動時のロータの回転を制御する構成としては、VFドライブ(Variable-Frequency drive)等が挙げられる。例えば、実施例1~4では、VFドライブを用いることで、ロータ10の起動時の性能を高めつつ、定格速度となる通常回転時には、比較例1と比較し格別に効率を高めることもできる。
<Performance at rotor startup>
In Examples 1 to 4, the performance at startup was sometimes inferior to Comparative Example 1. This is considered to be because in Examples 1 to 4, the amount of conductors 40 disposed at the outer peripheral edge of the rotor 10 is smaller than in Comparative Example 1, so that the Lorentz force generated at the time of startup becomes smaller.
Here, the performance of the rotor at startup can be improved by using a known configuration for controlling the rotation of the rotor at startup. A configuration for controlling the rotation of the rotor during startup includes a VF drive (Variable-Frequency drive) and the like. For example, in Examples 1 to 4, by using the VF drive, it is possible to improve the performance of the rotor 10 at startup, and also to significantly increase the efficiency compared to Comparative Example 1 during normal rotation at the rated speed.
 本発明は上述の実施形態に限られず、本発明の技術的思想の範囲内において、他の構成を採用することもできる。 The present invention is not limited to the above-described embodiments, and other configurations may be adopted within the scope of the technical idea of the present invention.
 例えば、図6に示すロータ10では、第1端部30f1に配置された第1領域R1のみにマグネット60が配置されていたが、この例に限られない。
 例えば、第2端部30f2に配置された第2領域R2のみにマグネット60が配置され、第1端部30f1にマグネット60が配置されていなくてもよい。これにより、+θ側へ回転する際の効率を高めることができる。
For example, in the rotor 10 shown in FIG. 6, the magnet 60 is disposed only in the first region R1 disposed at the first end 30f1, but the magnet 60 is not limited to this example.
For example, the magnet 60 may be disposed only in the second region R2 disposed at the second end 30f2, and the magnet 60 may not be disposed at the first end 30f1. This makes it possible to increase the efficiency when rotating toward the +θ side.
 また、各フラックスバリア部群130が有するフラックスバリア部30の数は、4つに限られず、2つのフラックスバリア部30を有していればよい。例えば、各フラックスバリア部群130が有するフラックスバリア部30の数は、2つ、3つ、または4つ以上であってもよい。
 例えば、図9に示すロータコア20では、各フラックスバリア部群130の有するフラックスバリア部30の数は、3つである。
Furthermore, the number of flux barrier sections 30 that each flux barrier section group 130 has is not limited to four, but only two flux barrier sections 30 may be included. For example, the number of flux barrier sections 30 included in each flux barrier section group 130 may be two, three, or four or more.
For example, in the rotor core 20 shown in FIG. 9, the number of flux barrier sections 30 included in each flux barrier section group 130 is three.
 また、図3に示すロータ10では、フラックスバリア部群130のうち、導電体40が配置されていないフラックスバリア部30の数は1つのみであったが、2つ以上であってもよい。また、導電体40が配置されていないフラックスバリア部30が設けられていなくてもよい。
 例えば、図9に示すように、径方向で最も外側の第1フラックスバリア部31に導電体40が配置されていてもよい。図9に示すロータ10では、すべてのフラックスバリア部30内の少なくとも一部に導電体40が配置され、導電体40同士は、Rocb<Roer<Rorを満たす寸法の環状導電部50により電気的に接続される。なお、内部に導電体40が配置されたフラックスバリア部30のうち径方向において最も外側に配置されたフラックスバリア部は第1フラックスバリア部31となるため、最短距離Rocbは中心軸線Jから第1フラックスバリア部31までの最短距離となる。
 これにより、フラックスバリア部30に配置される導電体40の量が多くなるため、より大きなローレンツ力を得ることができ、起動時の性能を向上させることができる。
Further, in the rotor 10 shown in FIG. 3, the number of flux barrier sections 30 in which the conductor 40 is not disposed among the flux barrier section group 130 is only one, but the number may be two or more. Further, the flux barrier section 30 in which the conductor 40 is not arranged may not be provided.
For example, as shown in FIG. 9, the conductor 40 may be disposed in the first flux barrier section 31 that is the outermost part in the radial direction. In the rotor 10 shown in FIG. 9, conductors 40 are disposed in at least a portion of all the flux barrier sections 30, and the conductors 40 are electrically connected to each other by an annular conductive section 50 having dimensions that satisfy Rocb<Roer<Ror. Connected. Note that among the flux barrier parts 30 in which the conductor 40 is arranged, the outermost flux barrier part in the radial direction is the first flux barrier part 31, so the shortest distance Rocb is from the center axis J to the first flux barrier part 31. This is the shortest distance to the flux barrier section 31.
As a result, the amount of conductors 40 disposed in the flux barrier section 30 increases, so a larger Lorentz force can be obtained, and the performance at startup can be improved.
 さらに、図9に示すロータ10のように、導電体40が配置された第1フラックスバリア部31の両端部30fに領域Rが設けられ、マグネット60が配置されていてもよい。 なお、図9に示すロータ10において、第1フラックスバリア部31に領域Rおよびマグネット60は配置されず、第1フラックスバリア部31内は空隙なく導電体40が充填されていてもよい。 Further, as in the rotor 10 shown in FIG. 9, regions R may be provided at both ends 30f of the first flux barrier section 31 where the conductor 40 is arranged, and the magnet 60 may be arranged. Note that in the rotor 10 shown in FIG. 9, the region R and the magnet 60 may not be arranged in the first flux barrier section 31, and the inside of the first flux barrier section 31 may be filled with the conductor 40 without any voids.
 また、ロータコア20の磁極部Pの数は4極に限られず、4極よりも少なくてもよいし、4極より多くてもよい。ロータ10の磁極部Pの数は、例えば、2極、6極、または8極であってもよい。
 図9に、6極構造のロータ10を示す。6組のフラックスバリア部群130はロータ10の周方向に沿って等間隔に並べられている。周方向で隣り合うフラックスバリア部群130同士の間に、磁極部Pが設けられるため、図5に示すロータ10では6極の磁極部Pが設けられている。
Further, the number of magnetic pole parts P of the rotor core 20 is not limited to four poles, and may be less than four poles or more than four poles. The number of magnetic pole parts P of the rotor 10 may be, for example, two poles, six poles, or eight poles.
FIG. 9 shows a rotor 10 having a six-pole structure. The six flux barrier unit groups 130 are arranged at equal intervals along the circumferential direction of the rotor 10. Since the magnetic pole portions P are provided between the flux barrier portion groups 130 adjacent to each other in the circumferential direction, six magnetic pole portions P are provided in the rotor 10 shown in FIG. 5 .
 また、図3に示すロータ10では、フラックスバリア部群130において、第1フラックスバリア部31にブリッジ部30gが設けられておらず、その他のフラックスバリア部30にそれぞれ1つのブリッジ部30gが設けられているが、この例に限られない。
 例えば、第1フラックスバリア部31にブリッジ部30gが設けられていてもよい。第2フラックスバリア部32、第3フラックスバリア部33および第4フラックスバリア部34のうち、いずれか1つのみにブリッジ部30gが設けられていてもよい。各フラックスバリア部30に設けられるブリッジ部30gの数は1つに限られず2つ以上であってもよい。また、q軸上以外の位置にブリッジ部30gが配置されていてもよい。
 なお、各フラックスバリア部30において、ブリッジ部30gにより分断された導電体40同士は環状導電部50にそれぞれ電気的に接続されるよう環状導電部50の寸法を調整することが好ましい。
Furthermore, in the rotor 10 shown in FIG. 3, in the flux barrier section group 130, the first flux barrier section 31 is not provided with the bridge section 30g, and each of the other flux barrier sections 30 is provided with one bridge section 30g. However, it is not limited to this example.
For example, the first flux barrier section 31 may be provided with a bridge section 30g. The bridge portion 30g may be provided in only one of the second flux barrier portion 32, the third flux barrier portion 33, and the fourth flux barrier portion 34. The number of bridge parts 30g provided in each flux barrier part 30 is not limited to one, but may be two or more. Further, the bridge portion 30g may be arranged at a position other than on the q-axis.
In addition, in each flux barrier part 30, it is preferable to adjust the dimensions of the annular conductive part 50 so that the conductors 40 separated by the bridge part 30g are electrically connected to the annular conductive part 50, respectively.
 また、図9に示すように、フラックスバリア部30にブリッジ部30gが設けられていなくてもよい。
 例えば、導電体40がブリッジ部30gにより電気的に分断された場合、ロータ10に発生するローレンツ力が好適に得られない場合がある。ブリッジ部30gを設けないことで、ローレンツ力を好適に得ることが可能になる。特に、フラックスバリア部群130において、径方向外側に位置するフラックスバリア部30にブリッジ部30gを設けないことで、より好適にローレンツ力を得ることが可能になる。
Further, as shown in FIG. 9, the bridge portion 30g may not be provided in the flux barrier portion 30.
For example, if the conductor 40 is electrically separated by the bridge portion 30g, the Lorentz force generated in the rotor 10 may not be obtained appropriately. By not providing the bridge portion 30g, it becomes possible to suitably obtain the Lorentz force. In particular, in the flux barrier section group 130, by not providing the bridge section 30g in the flux barrier section 30 located on the outside in the radial direction, it becomes possible to obtain the Lorentz force more suitably.
 また、図3に示されるロータ10では、複数のフラックスバリア部30の形状は、軸方向に見て径方向内側に凸となる折れ線状となっているが、この例に限られず、軸方向に見て円径方向内側に凸となる円弧状となっていてもよい。また、1組のフラックスバリア部群130において、円弧状のフラックスバリア部30と折れ線状のフラックスバリア部30との両方が含まれていてもよい。また、少なくともマグネット60を配置する部分のみ、フラックスバリア部30が延伸方向に向かって直線状に延びていてもよい。 Further, in the rotor 10 shown in FIG. 3, the shape of the plurality of flux barrier parts 30 is a polygonal line shape that is convex radially inward when viewed in the axial direction, but is not limited to this example. It may be an arcuate shape that is convex inward in the radial direction when viewed. Furthermore, one flux barrier section group 130 may include both arc-shaped flux barrier sections 30 and polygonal line-shaped flux barrier sections 30. Furthermore, the flux barrier section 30 may extend linearly in the stretching direction only at least in the portion where the magnet 60 is arranged.
 また、ロータ10は、フラックスバリア部30内に位置するマグネット60を備えていなくてもよい。例えば、領域Rにはマグネット60が配置されず、空隙部となっていてもよい。 Further, the rotor 10 does not need to include the magnet 60 located inside the flux barrier section 30. For example, the magnet 60 may not be arranged in the region R, and the region R may be a gap.
 また、マグネット60の配置される位置は、フラックスバリア部30の端部30fに限られない。例えば図10に示すように、第1フラックスバリア部31以外のフラックスバリア部30の直線部30a内に、マグネット60が設けられていてもよい。図10に示すロータ10では、q軸と重なる位置に設けられたブリッジ部30gを挟んで2つのマグネット60が配置されている。マグネット60の磁極の向きは径方向または延伸方向を向いている。
 この場合においても、マグネットの磁力により、ロータ10のトルクを向上させつつ、環状導電部50の外径が小さくなることで、ロータ10の銅損を低減することができる。
Further, the position where the magnet 60 is arranged is not limited to the end portion 30f of the flux barrier section 30. For example, as shown in FIG. 10, a magnet 60 may be provided within the straight portion 30a of the flux barrier section 30 other than the first flux barrier section 31. In the rotor 10 shown in FIG. 10, two magnets 60 are arranged with a bridge portion 30g provided at a position overlapping with the q-axis sandwiched therebetween. The magnetic poles of the magnet 60 are oriented in the radial direction or the extending direction.
In this case as well, the copper loss of the rotor 10 can be reduced by reducing the outer diameter of the annular conductive portion 50 while increasing the torque of the rotor 10 due to the magnetic force of the magnet.
 図3に示すロータ10では、軸方向に見て、マグネット60の幅方向の両側面は、フラックスバリア部30の第1縁部30e1および第2縁部30e2とそれぞれ接触しているが、この例に限られない。マグネット60の幅方向の側面とフラックスバリア部30の縁部30e1、30e2との間に導電体40が配置されていてもよい。
 例えば、フラックスバリア部30内にマグネット60を配置した後に溶融した導電体40がフラックスバリア部30内に充填されることでマグネット60の位置が固定されてもよい。
In the rotor 10 shown in FIG. 3, both sides of the magnet 60 in the width direction are in contact with the first edge 30e1 and the second edge 30e2 of the flux barrier section 30, respectively, when viewed in the axial direction. Not limited to. The conductor 40 may be arranged between the side surface of the magnet 60 in the width direction and the edges 30e1 and 30e2 of the flux barrier section 30.
For example, the position of the magnet 60 may be fixed by placing the magnet 60 inside the flux barrier section 30 and then filling the flux barrier section 30 with the molten conductor 40.
 また、フラックスバリア部30は、ロータコア20を軸方向に貫通しなくてもよい。フラックスバリア部30は、ロータコア20の軸方向の端面に開口していてもよい。 Furthermore, the flux barrier section 30 does not have to penetrate the rotor core 20 in the axial direction. The flux barrier section 30 may be open at the end surface of the rotor core 20 in the axial direction.
 フラックスバリア部30は、磁束の流れを抑制できるならば、特に限定されない。上述した実施形態においてフラックスバリア部30内の領域R以外の位置に導電体40を配置した構成としたが、導電体40が配置されたフラックスバリア部30内の一部を空隙部としてもよい。また、空隙部に樹脂等の非磁性体が埋め込まれることで、フラックスバリア部30が構成されてもよい。 The flux barrier section 30 is not particularly limited as long as it can suppress the flow of magnetic flux. In the above-described embodiment, the conductor 40 is disposed at a position other than the region R within the flux barrier section 30, but a part of the flux barrier section 30 where the conductor 40 is disposed may be a void. Further, the flux barrier section 30 may be configured by embedding a non-magnetic material such as resin in the gap.
 本発明が適用される回転電機の用途は、特に限定されない。回転電機は、例えば、車両に搭載されてもよいし、車両以外の機器に搭載されてもよい。以上、本明細書において説明した構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 The use of the rotating electric machine to which the present invention is applied is not particularly limited. The rotating electrical machine may be mounted on a vehicle, or may be mounted on equipment other than the vehicle, for example. The configurations described above in this specification can be combined as appropriate within a mutually consistent range.
 1…回転電機、3…ステータ、10…ロータ、20…ロータコア、20a…貫通孔、30…フラックスバリア部、30e1…第1縁部、30e2…第2縁部、30f…フラックスバリア部の延伸方向の端部、30g…ブリッジ部、40…導電体、50…環状導電部、60…マグネット、130…フラックスバリア部群、J…中心軸線 DESCRIPTION OF SYMBOLS 1... Rotating electrical machine, 3... Stator, 10... Rotor, 20... Rotor core, 20a... Through hole, 30... Flux barrier part, 30e1... First edge part, 30e2... Second edge part, 30f... Extension direction of flux barrier part 30g...Bridge part, 40...Conductor, 50...Annular conductive part, 60...Magnet, 130...Flux barrier group, J...Central axis line

Claims (8)

  1. 中心軸線回りに回転可能なロータであって、
     ロータコアと、
     前記ロータコアの軸方向両側にそれぞれ配置された環状導電部と、
    を備え、
     前記ロータコアには、周方向に間隔を空けて配置された複数のフラックスバリア部群が設けられ、
     前記複数のフラックスバリア部群は、径方向に並んで配置された複数のフラックスバリア部をそれぞれ有し、
     前記複数のフラックスバリア部は、軸方向から見て径方向内側に凸となる形状であり、 各前記フラックスバリア部群の前記複数のフラックスバリア部のうち、少なくとも一つのフラックスバリア部の内部には、前記環状導電部と電気的に接続された導電体が配置され、
     軸方向から見て、
      前記ロータコアの外径の半分をRor、
      前記環状導電部の外径の半分をRoer、
      前記中心軸線から、内部に前記導電体が配置された前記フラックスバリア部のうち径方向において最も外側に配置されたフラックスバリア部までの最短距離をRocb、とする時、
     Rocb<Roer<Rorを満たす、ロータ。
    A rotor rotatable around a central axis,
    rotor core and
    annular conductive parts disposed on both sides of the rotor core in the axial direction;
    Equipped with
    The rotor core is provided with a plurality of flux barrier portion groups arranged at intervals in the circumferential direction,
    Each of the plurality of flux barrier section groups includes a plurality of flux barrier sections arranged in a line in the radial direction,
    The plurality of flux barrier parts have a shape convex inward in the radial direction when viewed from the axial direction, and at least one of the plurality of flux barrier parts of each flux barrier part group has a , a conductor electrically connected to the annular conductive part is arranged,
    Viewed from the axial direction,
    Half the outer diameter of the rotor core is Ror,
    Half of the outer diameter of the annular conductive part is Roer,
    When Rocb is the shortest distance from the central axis to the flux barrier part disposed most outwardly in the radial direction among the flux barrier parts in which the conductor is disposed,
    A rotor that satisfies Rocb<Roer<Ror.
  2.  前記ロータコアは、前記ロータコアを軸方向に貫通する貫通孔を有し、
     前記貫通孔には、前記中心軸線が通り、
     軸方向から見て、
      前記環状導電部の内径の半分をRierとし、
      前記貫通孔の内径の半分をRsとする時、
     Rs≦Rier<Rocbを満たす、請求項1に記載のロータ。
    The rotor core has a through hole that passes through the rotor core in the axial direction,
    The central axis passes through the through hole,
    Viewed from the axial direction,
    Half of the inner diameter of the annular conductive part is set as Rier,
    When half of the inner diameter of the through hole is Rs,
    The rotor according to claim 1, satisfying Rs≦Rier<Rocb.
  3.  前記フラックスバリア部内に位置するマグネットを備え、
     軸方向から見て、前記マグネットは前記環状導電部と異なる位置に配置されている、請求項1または2に記載のロータ。
    comprising a magnet located within the flux barrier section,
    The rotor according to claim 1 or 2, wherein the magnet is located at a different position from the annular conductive portion when viewed from the axial direction.
  4.  軸方向から見て、前記マグネットは前記環状導電部よりも径方向外側に配置されている、請求項3に記載のロータ。 The rotor according to claim 3, wherein the magnet is disposed radially outward from the annular conductive portion when viewed from the axial direction.
  5.  前記フラックスバリア部群において、最も径方向外側に位置する前記フラックスバリア部を除く前記フラックスバリア部の少なくとも1つには、前記フラックスバリア部の径方向内側の第1縁部と径方向外側の第2縁部とを繋ぐブリッジ部が設けられている、請求項1から4のいずれか一項に記載のロータ。 In the flux barrier part group, at least one of the flux barrier parts other than the flux barrier part located at the radially outermost position has a first edge on the inner side in the radial direction and a first edge on the outer side in the radial direction of the flux barrier part. The rotor according to any one of claims 1 to 4, further comprising a bridge portion connecting the two edges.
  6.  内部に前記導電体が配置された前記フラックスバリア部は、前記フラックスバリア部群において、最も径方向外側に位置する前記フラックスバリア部よりも径方向内側に配置された前記フラックスバリア部である、請求項1から5のいずれか一項に記載のロータ。 The flux barrier section in which the conductor is disposed is the flux barrier section disposed radially inward from the flux barrier section located radially outermost in the flux barrier section group. The rotor according to any one of items 1 to 5.
  7.  軸方向から見て、前記導電体は、前記導電体が配置された前記フラックスバリア部の延伸方向の両端部から離れて配置されている、請求項1から6のいずれか一項に記載のロータ。 The rotor according to any one of claims 1 to 6, wherein the electric conductor is disposed apart from both ends in the stretching direction of the flux barrier section in which the electric conductor is disposed, when viewed from the axial direction. .
  8.  請求項1から7のいずれか一項に記載のロータと、
     前記ロータの径方向外側に位置するステータと、
    を備える、回転電機。
    A rotor according to any one of claims 1 to 7,
    a stator located on the radially outer side of the rotor;
    A rotating electric machine equipped with
PCT/JP2023/011139 2022-03-28 2023-03-22 Rotor and rotating electric machine WO2023189909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022051475A JP2023144485A (en) 2022-03-28 2022-03-28 Rotor and rotary electric machine
JP2022-051475 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023189909A1 true WO2023189909A1 (en) 2023-10-05

Family

ID=88201322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011139 WO2023189909A1 (en) 2022-03-28 2023-03-22 Rotor and rotating electric machine

Country Status (2)

Country Link
JP (1) JP2023144485A (en)
WO (1) WO2023189909A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270525A (en) * 1999-03-18 2000-09-29 Toshiba Corp Permanent magnet reluctance rotating electric machine
JP2006121765A (en) * 2004-10-19 2006-05-11 Mitsubishi Electric Corp Reluctance rotary electric machine
JP2008136298A (en) * 2006-11-28 2008-06-12 Toyota Industries Corp Rotator of rotary electric machine, and rotary electric machine
JP2011035997A (en) * 2009-07-30 2011-02-17 Toyota Motor Corp Rotor for ipm motors, and ipm motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270525A (en) * 1999-03-18 2000-09-29 Toshiba Corp Permanent magnet reluctance rotating electric machine
JP2006121765A (en) * 2004-10-19 2006-05-11 Mitsubishi Electric Corp Reluctance rotary electric machine
JP2008136298A (en) * 2006-11-28 2008-06-12 Toyota Industries Corp Rotator of rotary electric machine, and rotary electric machine
JP2011035997A (en) * 2009-07-30 2011-02-17 Toyota Motor Corp Rotor for ipm motors, and ipm motor

Also Published As

Publication number Publication date
JP2023144485A (en) 2023-10-11

Similar Documents

Publication Publication Date Title
EP2553792B1 (en) Rotor of an electric machine with embedded permanent magnets and electric machine
JP5969946B2 (en) Synchronous reluctance motor
JP4900132B2 (en) Rotor and rotating electric machine
US10720818B2 (en) Synchronous reluctance type rotary electric machine
WO2013098940A1 (en) Electric motor
US10090741B2 (en) Double-stator rotating electric machine
US10622853B2 (en) Synchronous reluctance type rotary electric machine
WO2023189909A1 (en) Rotor and rotating electric machine
JP6546042B2 (en) Synchronous reluctance motor
US10361614B2 (en) AC excitation synchronous rotating electric machine
JP2015216786A (en) Permanent magnet embedded rotary electric machine
WO2023171530A1 (en) Rotor core, rotor, and rotating electrical machine
WO2023163021A1 (en) Rotor and rotating electric machine
JP6127893B2 (en) Rotor for rotating electrical machines
JP2015177643A (en) Dynamo-electric machine
JP6752379B1 (en) Rotor of rotary electric machine and rotary electric machine
WO2023068326A1 (en) Rotation electrical machine rotor
WO2022054302A1 (en) Rotating electric machine
WO2023089667A1 (en) Dynamo-electric machine rotor
US20230179043A1 (en) Rotor and rotating electrical machine using same
JP2023148333A (en) Rotor and rotary electric machine
JP2024005784A (en) Rotor and motor with rotor
JP2018108003A (en) Rotor and reluctance rotary electric machine
CN116896185A (en) Rotor and rotating electrical machine
CN116888861A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779921

Country of ref document: EP

Kind code of ref document: A1