WO2023189747A1 - Vehicle-mounted light source component and vehicular lamp - Google Patents
Vehicle-mounted light source component and vehicular lamp Download PDFInfo
- Publication number
- WO2023189747A1 WO2023189747A1 PCT/JP2023/010651 JP2023010651W WO2023189747A1 WO 2023189747 A1 WO2023189747 A1 WO 2023189747A1 JP 2023010651 W JP2023010651 W JP 2023010651W WO 2023189747 A1 WO2023189747 A1 WO 2023189747A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- wavelength
- vehicle
- light source
- integrated intensity
- Prior art date
Links
- 238000001228 spectrum Methods 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims description 38
- 239000004065 semiconductor Substances 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 238000004611 spectroscopical analysis Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 17
- 239000011230 binding agent Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 238000000295 emission spectrum Methods 0.000 description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920002050 silicone resin Polymers 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 229910003564 SiAlON Inorganic materials 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910016066 BaSi Inorganic materials 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 229910015999 BaAl Inorganic materials 0.000 description 1
- 229910004122 SrSi Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S41/00—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
- F21S41/10—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
- F21S41/14—Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
- F21S41/141—Light emitting diodes [LED]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/08—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/30—Elements containing photoluminescent material distinct from or spaced from the light source
- F21V9/38—Combination of two or more photoluminescent elements of different materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2102/00—Exterior vehicle lighting devices for illuminating purposes
- F21W2102/10—Arrangement or contour of the emitted light
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
Definitions
- the present disclosure relates to a vehicle-mounted light source component and a vehicle lamp.
- Patent Document 1 discloses a vehicle headlamp and its LED light source that can ensure visibility and visibility when the road surface is wet, such as in rainy weather, or in dense fog or snow.
- the white LED light source currently used in vehicle headlamps combines a semiconductor light emitting element that emits blue light with a peak wavelength of 460 nm and a phosphor that converts the blue light into yellow light with a peak wavelength of 565 nm. Most commonly, a blue-yellow pseudo-white composition is adopted.
- a blue-yellow pseudo-white composition is adopted.
- An object of the present disclosure is to provide a vehicle-mounted light source component that can improve visibility when driving a vehicle at night, and a vehicle lamp equipped with the vehicle-mounted light source component.
- An in-vehicle light source component includes: In the spectroscopic spectrum, white light is emitted in which the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less is 12% or more.
- a vehicle lamp according to one aspect of the present disclosure includes the vehicle-mounted light source component described above.
- an in-vehicle light source component that can improve visibility when driving a vehicle at night, and a vehicle lamp that includes the in-vehicle light source component.
- FIG. 1 is a schematic cross-sectional view of an in-vehicle light source component according to an embodiment.
- FIG. 7 is a schematic cross-sectional view of an in-vehicle light source component according to another embodiment.
- FIG. 2 is a diagram showing emission spectra, scotopic luminous efficiencies, and photopic luminous efficiencies of Example 1 and Comparative Example 1.
- FIG. 2 is a diagram showing the chromaticity of Example 1, Comparative Example 1, and Reference Examples 1 to 4 in a CIE chromaticity diagram.
- FIG. 1 is a schematic cross-sectional view of an in-vehicle light source component 1A.
- the vehicle-mounted light source component 1A includes at least a light source 10 on a substrate 2.
- the board 2 is, for example, a printed circuit board on which a predetermined wiring pattern (not shown) is printed.
- the light source 10 placed on the substrate 2 is electrically connected to the wiring pattern via, for example, a conductive wire (not shown).
- the light source 10 includes a semiconductor light emitting device 11 and a wavelength conversion section 12A that converts the wavelength of light emitted from the semiconductor light emitting device.
- the semiconductor light emitting device 11 is a light emitting device that emits blue light.
- a blue LED Light Emitting Diode
- a blue LED device including an InGaN layer can be mentioned.
- the semiconductor light emitting device 11 emits blue light having a dominant wavelength of 430 nm to 480 nm.
- dominant wavelength refers to the extension from the white point (0.333, 0.333) on the CIE chromaticity diagram (CIExy chromaticity diagram) to the chromaticity coordinates that indicate the chromaticity of the material. This is the wavelength of monochromatic light indicated by the intersection of the straight line and the outer circumferential line of the CIE chromaticity diagram.
- the wavelength conversion section 12A is composed of a binder 13 and a wavelength conversion material 14.
- Binder 13 is provided on semiconductor light emitting device 11 .
- the binder 13 supports the wavelength conversion material 14 in a state where the wavelength conversion material 14 is dispersed inside the binder 13 .
- the material for the binder 13 is not particularly limited, but organic resin materials, inorganic amorphous materials, inorganic sol-gel materials, ceramic materials, etc. can be used.
- the binder 13 transmits the light emitted from the semiconductor light emitting device 11 and the wavelength-converted light whose wavelength has been converted by the wavelength conversion material 14, and specifically, the transmittance of these lights must be 80% or more. is preferred.
- the wavelength conversion material 14 is composed of a green light emitting material 14g and an orange light emitting material 14a that convert the wavelength of blue light emitted from the semiconductor light emitting device 11.
- the green light emitting material 14g absorbs blue light emitted from the semiconductor light emitting element 11 and emits green light.
- the green light-emitting material 14g is used from the viewpoint of enhancing the spectrum in the wavelength range of 480 to 530 nm, which has high scotopic luminous efficiency.
- the green light-emitting material 14g is not particularly limited, but includes, for example, Lu 3 Al 5 O 12 : Ce 3+ , ⁇ -SiAlON:Eu 2+ , Y 3 (Al,Ga) 5 O 12 :Ce 3+ , Ca 3 SiO 4 Cl 2 :Eu 2+ , Ba 5 Si 2 O 6 Cl 6 :Eu 2+ , SrSi 2 O 2 N 2 :Eu 2+ , CaSc 2 O 4 :Ce 4+ , Ca 3 Sc 2 Si 3 O 12 :Ce 4+ , (Ba,Sr) 2 SiO 4 :Eu 2+ , BaSi 2 O 2 N 2 :Eu 2+ , La 3 Br(SiS 4 ) 2 :Ce 3+ , BaSi 7 N 10 :Eu 2+ ,RE 2 Si 4 N 6 C:Ce 3+ , Ca 2 LaZr 2 Ga 3 O 12 :Ce 3+ , LuCa 2 Hf
- Examples include phosphors that absorb blue light and emit green light. In order to enhance the spectrum in the wavelength range of 480 to 530 nm, which has high scotopic luminous efficiency, it is preferable that the wavelength converter 12A contains one or more of these green-emitting phosphors.
- the orange light emitting material 14a absorbs the blue light emitted from the semiconductor light emitting element 11 and emits orange light.
- the orange light emitting material 14a is used from the viewpoint of adjusting the white chromaticity range by mixing the blue light of the semiconductor light emitting element 11 and the green light of the green light emitting material 14g.
- the orange light emitting material 14a absorbs the blue light emitted from the semiconductor light emitting element 11 and emits light having a main wavelength of 580 nm to 600 nm.
- orange light-emitting material 14a examples include, but are not limited to, ⁇ -SiAlON:Eu 2+ , Sr 3 Y 2 Ge 3 O 12 :Eu 2+ , (Y,Gd) 3 Al 5 O 12 :Ce 3+ , Examples include phosphors that absorb blue light and emit orange light, such as Ba 2 Mg(BO 3 ) 2 :Eu 2+ and Y 3 Si 5 N 9 O:Eu 2+ .
- the green light-emitting material 14g and the orange light-emitting material 14a may be composed of quantum dots in addition to the phosphors illustrated.
- the green light emitting material 14g and the orange light emitting material 14a can be mounted on the semiconductor light emitting element 11 by mixing these two types of material powders and using transparent resin or low melting point glass as the binder 13.
- each material powder can be dispersed in a transparent resin or low melting point glass, then molded into a sheet, and stacked on top of each other to mount the green luminescent material 14g and the orange luminescent material 14a.
- FIG. 2 shows a schematic cross-sectional view of an in-vehicle light source component 1B according to another embodiment.
- the vehicle-mounted light source component 1B has the same configuration as the vehicle-mounted light source component 1A except for the wavelength conversion section 12B. Similar configurations are given the same reference numerals and explanations will be omitted.
- the wavelength conversion section 12B of the vehicle-mounted light source component 1B is composed of a green wavelength conversion layer 12g and an orange wavelength conversion layer 12a.
- the green wavelength conversion layer 12g is a layer in which a green light emitting material 14g is dispersed in a first binder 13g.
- the orange wavelength conversion layer 12a is a layer in which an orange luminescent material 14a is dispersed in a second binder 13a.
- the first binder 13g and the second binder 13a may be the same or different, and may have the same configuration as the binder 13 described above.
- the green light-emitting material 14g and the orange light-emitting material 14a can be sintered into a plate shape, and then mounted by overlapping them. There is no particular regulation on the order of stacking, including the example shown in FIG. 2, but if it is mounted so that the orange wavelength conversion layer 12a is on the bottom and the green wavelength conversion layer 12g is on the top, multiple excitation between the wavelength conversion materials can be suppressed. This is preferable because the white LED light emission color is stable.
- the on-vehicle light source components 1A and 1B emit white light in which the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less is 12% or more in the spectrum.
- the white light has a chromaticity within a region (region Rw in FIG. 4, which will be described later) defined as white in automotive lamps on the CIE chromaticity diagram.
- the vehicle-mounted light source components 1A and 1B emit white light in which the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less is 25% or less of the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less in the spectroscopic spectrum. preferable.
- the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less is 25% or less of the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
- the in-vehicle light source components 1A and 1B emit white light in which the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less is 5% or more in the spectroscopic spectrum. .
- the ratio of the integrated intensity of light with a wavelength of 610 nm to 780 nm to the integrated intensity of light with a wavelength of 380 nm to 780 nm to 5% or more the chromaticity of white light falls within the white chromaticity range required for vehicle lamps. , or a chromaticity close to the required white chromaticity range.
- the vehicle lamp according to the embodiment is not particularly limited as long as it includes the above-described vehicle-mounted light source components 1A and 1B, for example.
- the above-mentioned in-vehicle light source parts 1A and 1B can be used, for example, as headlamps, fog lamps, position lamps, rear combination lamps, turn signal lamps of automobiles, or to inform pedestrians and drivers of other vehicles of the status of their own vehicle (for example, autonomous driving). It can be suitably used for various lamps etc. that notify that the vehicle is running.
- the surface of a black irradiated object becomes a discontinuous point for the propagation of light, which is a type of electromagnetic wave, and a scattering phenomenon occurs in which the traveling direction of light is disrupted on the surface of the irradiated object. It is thought that the outline is slightly visible. In addition, when viewing a black irradiated object at night, it becomes a ⁇ black irradiated object'' in a background color of ⁇ black,'' so the receptivity of the rod cells of the eyes, which are highly sensitive to light, is important. it is conceivable that.
- the scotopic luminous efficiency is 0.8 in the scotopic luminous efficiency curve, which corresponds to the sensitivity of the rod cells of the eye.
- the integrated intensity of light having a wavelength of 480 nm or more and 530 nm or less is relatively low.
- the vehicle-mounted light source components 1A and 1B in the embodiment are white, in which the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less is 12% or more. It is configured to emit light.
- the visibility of the irradiated object can be improved, and in particular, the visibility of the irradiated object that is close to black can be improved.
- the intensity of light with a shorter wavelength is higher than that of yellow light in the blue-yellow pseudo white, the intensity of light with a short wavelength that can be expected to have a large refractive index increases, and the light with high scotopic luminosity increases. It is thought that the amount of scattered light from the irradiator increases, further improving visibility.
- the vehicle-mounted light source components 1A and 1B in the embodiment include a semiconductor light emitting device 11 that emits blue light, and a green light emitting material 14g and an orange light emitting material 14a that convert the wavelength of the blue light emitted from the semiconductor light emitting device 11.
- wavelength converters 12A and 12B By adopting a blue-green-orange pseudo-white composition, the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less, with a scotopic luminous efficiency of 0.8 or more, is higher than the conventional blue-yellow pseudo white composition. It is elevated.
- Example 1 A semiconductor light-emitting element emitting light at a dominant wavelength of 447 nm and having each side of 1 mm was flip-chip mounted on an aluminum nitride substrate provided with a gold power supply pattern using gold bumps.
- a green-emitting phosphor Lu 3 Al 5 O 12 :Ce 3+ (emission dominant wavelength: 546 nm) and an orange-emitting phosphor ⁇ -SiAlON:Eu (emission dominant wavelength: 591 nm) were mixed at a weight ratio of 5:4.
- the obtained mixed phosphor was dispersed in dimethyl silicone resin at a concentration of 6 vol % and defoamed.
- the obtained phosphor-dispersed silicone resin was applied onto a semiconductor light emitting device to a thickness of 150 ⁇ m and cured, thereby producing the vehicle light source component of Example 1.
- the emission spectrum of the in-vehicle light source component of Example 1 was evaluated using CAS140D manufactured by Instrument Systems.
- the obtained spectrum (spectrum with code EX1) is shown in FIG.
- the scotopic luminous efficiency (the line indicated by the symbol DLF) and the photopic luminous efficiency (the line indicated by the symbol BLF) are also shown. Note that the scotopic luminous efficiency and the photopic luminous efficiency are normalized and shown so that the sensitivity at the peak wavelength is 1.
- the chromaticity of light emitted by the in-vehicle light source component of Example 1 is plotted and shown in the CIE chromaticity diagram of FIG. 4 (plot with symbol EX1).
- the area labeled Rw indicates an area defined as white in the automotive lamp.
- the plot of symbol A in FIG. 4 shows the peak wavelength of scotopic luminous efficiency in the CIE chromaticity diagram
- the plot of symbol B in FIG. This shows the chromaticity when
- Table 1 shows the ratio and the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
- Example 1 A semiconductor light emitting device mounted product similar to that in Example 1 was prepared, and a yellow phosphor (Y,Gd) 3 Al 5 O 12 :Ce (emission dominant wavelength: 500 nm) was dispersed in dimethyl silicone resin at a concentration of 6 vol%. Defoamed. The obtained phosphor-dispersed silicone resin was applied onto a semiconductor light emitting device to a thickness of 150 ⁇ m and cured, thereby producing a vehicle light source component of Comparative Example 1.
- the emission spectrum of the vehicle-mounted light source component of Comparative Example 1 was evaluated in the same manner as in Example 1. Note that the input current was adjusted so that the number of emitted photons was the same as in the evaluation in Example 1.
- the obtained spectrum (spectrum labeled CE1) is shown in FIG.
- the chromaticity (cx, cy) of the light emitted by the automotive light source component of Comparative Example 1 in the CIE chromaticity diagram and the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less with respect to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
- Table 1 shows the ratio and the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
- Example 1 From the results shown in FIG. 3 and Table 1, it was confirmed that the relative luminous flux 1 of Example 1 was improved by 15% compared to Comparative Example 1, and the visibility of objects such as pedestrians was improved in a dark place. In particular, it can be expected that the visibility of "black irradiated objects" against a "black” background color, such as pedestrians wearing black clothes, will be further improved.
- the ratio of the integrated intensity of the spectrum in the wavelength range (480 to 530 nm) with high dark visibility sensitivity was 19.70% in Example 1, while it was 10.8% in Comparative Example 1.
- Example 1 had approximately twice the amount of light in this wavelength range.
- Example 1 the intensity of light with a shorter wavelength than that of yellow light in the blue-yellow pseudo white is increased, so the intensity of light with a short wavelength that can be expected to have a large refractive index increases, and It is thought that the amount of scattered light from the highly sensitive irradiated object increases, further improving visibility.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
Provided is a vehicle-mounted light source component (1A) emitting white light in which the ratio of integrated intensity of light having a wavelength 480nm-530nm to integrated intensity of light having a wavelength 380nm-780nm is 12% or more in a spectroscopy spectrum.
Description
本開示は、車載用光源部品および車両用灯具に関する。
The present disclosure relates to a vehicle-mounted light source component and a vehicle lamp.
特許文献1は、雨天等の路面が濡れているときや、濃霧,積雪時に視認性および被視認性を確保することができるようにした車両前照灯とそのLED光源を開示する。
Patent Document 1 discloses a vehicle headlamp and its LED light source that can ensure visibility and visibility when the road surface is wet, such as in rainy weather, or in dense fog or snow.
現在車両用ヘッドランプ(HL)に用いられている白色LED光源では、ピーク波長460nmの青色光を発光する半導体発光素子と、青色光をピーク波長565nmの黄色光に変換する蛍光体と、を組み合わせた青‐黄の疑似白色の構成が採用されることが主流である。
ところで、夜間の車両走行では昼間と比較して視認性が低下し、歩行者の視認が遅れるおそれがある。特に、黒い服を着た人はより視認しづらく、例えば日本自動車連盟(JAF)のLED‐HLを用いた夜間の検証実験において、黒い服は白い服に比べて視認可能な距離が短くなることが報告されている。 The white LED light source currently used in vehicle headlamps (HL) combines a semiconductor light emitting element that emits blue light with a peak wavelength of 460 nm and a phosphor that converts the blue light into yellow light with a peak wavelength of 565 nm. Most commonly, a blue-yellow pseudo-white composition is adopted.
By the way, when a vehicle is running at night, visibility is lower than during the day, and there is a possibility that visibility of pedestrians may be delayed. In particular, people wearing black clothing are more difficult to see; for example, in a nighttime verification experiment using LED-HL by the Japan Automobile Federation (JAF), it was found that the visible distance for black clothing was shorter than for white clothing. has been reported.
ところで、夜間の車両走行では昼間と比較して視認性が低下し、歩行者の視認が遅れるおそれがある。特に、黒い服を着た人はより視認しづらく、例えば日本自動車連盟(JAF)のLED‐HLを用いた夜間の検証実験において、黒い服は白い服に比べて視認可能な距離が短くなることが報告されている。 The white LED light source currently used in vehicle headlamps (HL) combines a semiconductor light emitting element that emits blue light with a peak wavelength of 460 nm and a phosphor that converts the blue light into yellow light with a peak wavelength of 565 nm. Most commonly, a blue-yellow pseudo-white composition is adopted.
By the way, when a vehicle is running at night, visibility is lower than during the day, and there is a possibility that visibility of pedestrians may be delayed. In particular, people wearing black clothing are more difficult to see; for example, in a nighttime verification experiment using LED-HL by the Japan Automobile Federation (JAF), it was found that the visible distance for black clothing was shorter than for white clothing. has been reported.
本開示は、夜間の車両走行において視認性を向上できる車載用光源部品および当該車載用光源部品を備える車両用灯具を提供することを目的とする。
An object of the present disclosure is to provide a vehicle-mounted light source component that can improve visibility when driving a vehicle at night, and a vehicle lamp equipped with the vehicle-mounted light source component.
本開示の一側面に係る車載用光源部品は、
分光スペクトルにおいて、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合が12%以上である白色光を出射する。 An in-vehicle light source component according to one aspect of the present disclosure includes:
In the spectroscopic spectrum, white light is emitted in which the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less is 12% or more.
分光スペクトルにおいて、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合が12%以上である白色光を出射する。 An in-vehicle light source component according to one aspect of the present disclosure includes:
In the spectroscopic spectrum, white light is emitted in which the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less is 12% or more.
本開示の一側面に係る車両用灯具は、上記車載用光源部品を備える。
A vehicle lamp according to one aspect of the present disclosure includes the vehicle-mounted light source component described above.
本開示によれば、夜間の車両走行において視認性を向上できる車載用光源部品および当該車載用光源部品を備える車両用灯具を提供できる。
According to the present disclosure, it is possible to provide an in-vehicle light source component that can improve visibility when driving a vehicle at night, and a vehicle lamp that includes the in-vehicle light source component.
以下、図面を参照しつつ本開示の実施形態について詳細に説明する。尚、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Note that the dimensions of each member shown in this drawing may differ from the actual dimensions of each member for convenience of explanation.
まず、図1を参照して、実施形態に係る車載用光源部品1Aを説明する。図1は車載用光源部品1Aの断面模式図である。図1に示すように、車載用光源部品1Aは、基板2上に、光源10を少なくとも備えている。基板2は、例えば、所定の配線パターン(図示せず)がプリントされたプリント基板である。基板2上に配置された光源10は、例えば、導電ワイヤ(図示せず)を介して上記配線パターンと電気的に接続される。
First, with reference to FIG. 1, an in-vehicle light source component 1A according to an embodiment will be described. FIG. 1 is a schematic cross-sectional view of an in-vehicle light source component 1A. As shown in FIG. 1, the vehicle-mounted light source component 1A includes at least a light source 10 on a substrate 2. As shown in FIG. The board 2 is, for example, a printed circuit board on which a predetermined wiring pattern (not shown) is printed. The light source 10 placed on the substrate 2 is electrically connected to the wiring pattern via, for example, a conductive wire (not shown).
光源10は、半導体発光素子11と、半導体発光素子から出射される光の波長を変換する波長変換部12Aと、を備える。
半導体発光素子11は、青色光を出射する発光素子である。半導体発光素子11としては、特に制限はされないが、例えば、青色LED(Light Emitting Diode)を用いることができ、具体的には、InGaN層を含む青色LED素子が挙げられる。ここで半導体発光素子11は、主波長が430nm~480nmである青色光を出射すると好ましい。また本明細書において「主波長」とは、CIE色度図(CIExy色度図)上の白色点(0.333、0.333)から、その材料の色度を示す色度座標へと伸ばした直線と、CIE色度図の外周線との交点が示す単色光の波長である。 Thelight source 10 includes a semiconductor light emitting device 11 and a wavelength conversion section 12A that converts the wavelength of light emitted from the semiconductor light emitting device.
The semiconductorlight emitting device 11 is a light emitting device that emits blue light. As the semiconductor light emitting device 11, although not particularly limited, for example, a blue LED (Light Emitting Diode) can be used, and specifically, a blue LED device including an InGaN layer can be mentioned. Here, it is preferable that the semiconductor light emitting device 11 emits blue light having a dominant wavelength of 430 nm to 480 nm. In addition, in this specification, "dominant wavelength" refers to the extension from the white point (0.333, 0.333) on the CIE chromaticity diagram (CIExy chromaticity diagram) to the chromaticity coordinates that indicate the chromaticity of the material. This is the wavelength of monochromatic light indicated by the intersection of the straight line and the outer circumferential line of the CIE chromaticity diagram.
半導体発光素子11は、青色光を出射する発光素子である。半導体発光素子11としては、特に制限はされないが、例えば、青色LED(Light Emitting Diode)を用いることができ、具体的には、InGaN層を含む青色LED素子が挙げられる。ここで半導体発光素子11は、主波長が430nm~480nmである青色光を出射すると好ましい。また本明細書において「主波長」とは、CIE色度図(CIExy色度図)上の白色点(0.333、0.333)から、その材料の色度を示す色度座標へと伸ばした直線と、CIE色度図の外周線との交点が示す単色光の波長である。 The
The semiconductor
波長変換部12Aは、バインダ13と波長変換材料14とにより構成されている。バインダ13は、半導体発光素子11上に設けられている。バインダ13は、バインダ13の内部に波長変換材料14を分散した状態で、波長変換材料14を担持する。バインダ13の材料としては、特に制限はされないが、有機樹脂材、無機アモルファス材、無機ゾルゲル材、セラミック材等を用いることができる。バインダ13は、半導体発光素子11からの出射光および波長変換材料14によって波長変換された波長変換光を透過させるものであり、具体的には、これらの光の透過率が80%以上であることが好ましい。
The wavelength conversion section 12A is composed of a binder 13 and a wavelength conversion material 14. Binder 13 is provided on semiconductor light emitting device 11 . The binder 13 supports the wavelength conversion material 14 in a state where the wavelength conversion material 14 is dispersed inside the binder 13 . The material for the binder 13 is not particularly limited, but organic resin materials, inorganic amorphous materials, inorganic sol-gel materials, ceramic materials, etc. can be used. The binder 13 transmits the light emitted from the semiconductor light emitting device 11 and the wavelength-converted light whose wavelength has been converted by the wavelength conversion material 14, and specifically, the transmittance of these lights must be 80% or more. is preferred.
本実施形態では、波長変換材料14は、半導体発光素子11から出射される青色光の波長を変換する緑色発光材料14gおよび橙色発光材料14aから構成される。
緑色発光材料14gは、半導体発光素子11から出射される青色光を吸収し、緑色光を出射する。緑色発光材料14gは、暗所比視感度が高い波長域480~530nmの分光スペクトルを高める観点で、用いられる。ここで緑色発光材料14gは、半導体発光素子11から出射される青色光を吸収して主波長が535nm~555nmである光を出射すると好ましい。緑色発光材料14gとしては、特に限定されないが、例えば、Lu3Al5O12: Ce3+、β-SiAlON:Eu2+、Y3(Al,Ga)5O12:Ce3+、Ca3SiO4Cl2:Eu2+、Ba5Si2O6Cl6:Eu2+、SrSi2O2N2:Eu2+、CaSc2O4:Ce4+、Ca3Sc2Si3O12:Ce4+、(Ba,Sr)2SiO4:Eu2+、BaSi2O2N2:Eu2+、La3Br(SiS4)2:Ce3+、BaSi7N10:Eu2+,RE2Si4N6C:Ce3+、Ca2LaZr2Ga3O12:Ce3+、LuCa2Hf2Al3O12:Ce3+、Lu2BaAl4SiO12:Ce3+等の、青色光を吸収し、緑色光を出射する蛍光体が挙げられる。暗所比視感度が高い波長域480~530nmの分光スペクトルを高める上で、波長変換部12Aはこれらの緑色発光の蛍光体のいずれか一種以上を含むことが好ましい。 In this embodiment, thewavelength conversion material 14 is composed of a green light emitting material 14g and an orange light emitting material 14a that convert the wavelength of blue light emitted from the semiconductor light emitting device 11.
The greenlight emitting material 14g absorbs blue light emitted from the semiconductor light emitting element 11 and emits green light. The green light-emitting material 14g is used from the viewpoint of enhancing the spectrum in the wavelength range of 480 to 530 nm, which has high scotopic luminous efficiency. Here, it is preferable that the green light emitting material 14g absorbs the blue light emitted from the semiconductor light emitting element 11 and emits light having a dominant wavelength of 535 nm to 555 nm. The green light-emitting material 14g is not particularly limited, but includes, for example, Lu 3 Al 5 O 12 : Ce 3+ , β-SiAlON:Eu 2+ , Y 3 (Al,Ga) 5 O 12 :Ce 3+ , Ca 3 SiO 4 Cl 2 :Eu 2+ , Ba 5 Si 2 O 6 Cl 6 :Eu 2+ , SrSi 2 O 2 N 2 :Eu 2+ , CaSc 2 O 4 :Ce 4+ , Ca 3 Sc 2 Si 3 O 12 :Ce 4+ , (Ba,Sr) 2 SiO 4 :Eu 2+ , BaSi 2 O 2 N 2 :Eu 2+ , La 3 Br(SiS 4 ) 2 :Ce 3+ , BaSi 7 N 10 :Eu 2+ ,RE 2 Si 4 N 6 C:Ce 3+ , Ca 2 LaZr 2 Ga 3 O 12 :Ce 3+ , LuCa 2 Hf 2 Al 3 O 12 :Ce 3+ , Lu 2 BaAl 4 SiO 12 :Ce 3+ etc. Examples include phosphors that absorb blue light and emit green light. In order to enhance the spectrum in the wavelength range of 480 to 530 nm, which has high scotopic luminous efficiency, it is preferable that the wavelength converter 12A contains one or more of these green-emitting phosphors.
緑色発光材料14gは、半導体発光素子11から出射される青色光を吸収し、緑色光を出射する。緑色発光材料14gは、暗所比視感度が高い波長域480~530nmの分光スペクトルを高める観点で、用いられる。ここで緑色発光材料14gは、半導体発光素子11から出射される青色光を吸収して主波長が535nm~555nmである光を出射すると好ましい。緑色発光材料14gとしては、特に限定されないが、例えば、Lu3Al5O12: Ce3+、β-SiAlON:Eu2+、Y3(Al,Ga)5O12:Ce3+、Ca3SiO4Cl2:Eu2+、Ba5Si2O6Cl6:Eu2+、SrSi2O2N2:Eu2+、CaSc2O4:Ce4+、Ca3Sc2Si3O12:Ce4+、(Ba,Sr)2SiO4:Eu2+、BaSi2O2N2:Eu2+、La3Br(SiS4)2:Ce3+、BaSi7N10:Eu2+,RE2Si4N6C:Ce3+、Ca2LaZr2Ga3O12:Ce3+、LuCa2Hf2Al3O12:Ce3+、Lu2BaAl4SiO12:Ce3+等の、青色光を吸収し、緑色光を出射する蛍光体が挙げられる。暗所比視感度が高い波長域480~530nmの分光スペクトルを高める上で、波長変換部12Aはこれらの緑色発光の蛍光体のいずれか一種以上を含むことが好ましい。 In this embodiment, the
The green
橙色発光材料14aは、半導体発光素子11から出射される青色光を吸収し、橙色光を出射する。橙色発光材料14aは、半導体発光素子11の青色光と緑色発光材料14gの緑色光と混色して白色の色度域を調整する観点で、用いられる。ここで橙色発光材料14aは、半導体発光素子11から出射される青色光を吸収して主波長が580nm~600nmである光を出射すると好ましい。橙色発光材料14aとしては、特に限定されないが、例えば、α-SiAlON:Eu2+、Sr3Y2Ge3O12:Eu2+、(Y,Gd)3Al5O12:Ce3+、Ba2Mg(BO3)2:Eu2+、Y3Si5N9O:Eu2+等の、青色光を吸収し、橙色光を出射する蛍光体が挙げられる。
The orange light emitting material 14a absorbs the blue light emitted from the semiconductor light emitting element 11 and emits orange light. The orange light emitting material 14a is used from the viewpoint of adjusting the white chromaticity range by mixing the blue light of the semiconductor light emitting element 11 and the green light of the green light emitting material 14g. Here, it is preferable that the orange light emitting material 14a absorbs the blue light emitted from the semiconductor light emitting element 11 and emits light having a main wavelength of 580 nm to 600 nm. Examples of the orange light-emitting material 14a include, but are not limited to, α-SiAlON:Eu 2+ , Sr 3 Y 2 Ge 3 O 12 :Eu 2+ , (Y,Gd) 3 Al 5 O 12 :Ce 3+ , Examples include phosphors that absorb blue light and emit orange light, such as Ba 2 Mg(BO 3 ) 2 :Eu 2+ and Y 3 Si 5 N 9 O:Eu 2+ .
なお、緑色発光材料14gおよび橙色発光材料14aは例示した蛍光体以外に、量子ドットで構成されてもよい。量子ドットは、粒径、組成によって発光波長を調整できる。具体的には、CdS、CdSe、PbS、InP、ZnInGaP、AgInS2、ZnS、CuInSe2、CH3NH3PbX3(X=Cl,Br,I)、CsPbX3(X=Cl,Br,I)、(La,Y)3Si6N11:Ce等の量子ドットを用いることができる。
Note that the green light-emitting material 14g and the orange light-emitting material 14a may be composed of quantum dots in addition to the phosphors illustrated. The emission wavelength of quantum dots can be adjusted depending on the particle size and composition. Specifically, CdS, CdSe, PbS, InP, ZnInGaP, AgInS 2 , ZnS, CuInSe 2 , CH 3 NH 3 PbX 3 (X=Cl,Br,I), CsPbX 3 (X=Cl,Br,I) , (La,Y) 3 Si 6 N 11 :Ce and the like can be used.
緑色発光材料14gおよび橙色発光材料14aは、これら2種類の材料粉末を混合し、透明樹脂、又は、低融点ガラスをバインダ13にして、半導体発光素子11上に実装できる。
The green light emitting material 14g and the orange light emitting material 14a can be mounted on the semiconductor light emitting element 11 by mixing these two types of material powders and using transparent resin or low melting point glass as the binder 13.
また、別の態様として、それぞれの材料粉末毎に、透明樹脂、又は、低融点ガラスに分散後、シート状に成型し、重ね合わせて緑色発光材料14gおよび橙色発光材料14aを実装することもできる。図2に当該別の態様に係る車載用光源部品1Bの断面模式図を示す。車載用光源部品1Bは波長変換部12Bが異なる以外は車載用光源部品1Aと同様の構成である。同様の構成については同じ符号を付して説明を省略する。車載用光源部品1Bの波長変換部12Bは、緑色波長変換層12gと橙色波長変換層12aとから構成される。緑色波長変換層12gは第1バインダ13gに緑色発光材料14gが分散した層である。橙色波長変換層12aは第2バインダ13aに橙色発光材料14aが分散した層である。第1バインダ13gおよび第2バインダ13aは同一でも異なってもよく、上述のバインダ13と同様の構成を採用できる。
Alternatively, each material powder can be dispersed in a transparent resin or low melting point glass, then molded into a sheet, and stacked on top of each other to mount the green luminescent material 14g and the orange luminescent material 14a. . FIG. 2 shows a schematic cross-sectional view of an in-vehicle light source component 1B according to another embodiment. The vehicle-mounted light source component 1B has the same configuration as the vehicle-mounted light source component 1A except for the wavelength conversion section 12B. Similar configurations are given the same reference numerals and explanations will be omitted. The wavelength conversion section 12B of the vehicle-mounted light source component 1B is composed of a green wavelength conversion layer 12g and an orange wavelength conversion layer 12a. The green wavelength conversion layer 12g is a layer in which a green light emitting material 14g is dispersed in a first binder 13g. The orange wavelength conversion layer 12a is a layer in which an orange luminescent material 14a is dispersed in a second binder 13a. The first binder 13g and the second binder 13a may be the same or different, and may have the same configuration as the binder 13 described above.
また、緑色発光材料14gおよび橙色発光材料14aは、それぞれを板状に焼結し、重ね合わせて実装することもできる。図2に示す例も含め、重ね合わせる順番は特に規定はないが、橙色波長変換層12aが下で、緑色波長変換層12gが上になるように実装すると、波長変換材料間の多重励起を抑制でき、白色LEDの発光色が安定して好ましい。
Furthermore, the green light-emitting material 14g and the orange light-emitting material 14a can be sintered into a plate shape, and then mounted by overlapping them. There is no particular regulation on the order of stacking, including the example shown in FIG. 2, but if it is mounted so that the orange wavelength conversion layer 12a is on the bottom and the green wavelength conversion layer 12g is on the top, multiple excitation between the wavelength conversion materials can be suppressed. This is preferable because the white LED light emission color is stable.
車載用光源部品1A,1Bは、分光スペクトルにおいて、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合が12%以上である白色光を出射する。ここで、白色光としては、CIE色度図上の自動車用灯具において白色として定められた領域(後述する図4の領域Rw)内の色度のものであると好ましい。
The on-vehicle light source components 1A and 1B emit white light in which the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less is 12% or more in the spectrum. Here, it is preferable that the white light has a chromaticity within a region (region Rw in FIG. 4, which will be described later) defined as white in automotive lamps on the CIE chromaticity diagram.
具体的には、車載用光源部品1A,1Bは、分光スペクトルにおいて、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度が25%以下である白色光を出射すると好ましい。波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度を25%以下とすることで、白色光を車両用灯具に要求される白色色度域に収まる色度、または当該要求白色色度域に近い色度とすることができる。
Specifically, the vehicle-mounted light source components 1A and 1B emit white light in which the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less is 25% or less of the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less in the spectroscopic spectrum. preferable. By setting the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to 25% or less of the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less, the chromaticity of white light falls within the white chromaticity range required for vehicle lamps, or The chromaticity can be set close to the required white chromaticity range.
また、車載用光源部品1A,1Bは、分光スペクトルにおいて、波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合が5%以上である白色光を出射すると好ましい。波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合を5%以上とすることで、白色光を車両用灯具に要求される白色色度域に収まる色度、または当該要求白色色度域に近い色度とすることができる。
Further, it is preferable that the in-vehicle light source components 1A and 1B emit white light in which the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less is 5% or more in the spectroscopic spectrum. . By setting the ratio of the integrated intensity of light with a wavelength of 610 nm to 780 nm to the integrated intensity of light with a wavelength of 380 nm to 780 nm to 5% or more, the chromaticity of white light falls within the white chromaticity range required for vehicle lamps. , or a chromaticity close to the required white chromaticity range.
実施形態に係る車両用灯具は、例えば、上述の車載用光源部品1A,1Bを備えるものであれば、特に制限はされない。上述の車載用光源部品1A,1Bは、例えば、自動車のヘッドランプ、フォグランプ、ポジションランプ、リヤコンビネーションランプ、ターンシグナルランプ、又は、歩行者や他車両のドライバーに自車両の状況(例えば、自動運転走行中であること)を知らせる各種ランプ等に好適に用いることができる。
The vehicle lamp according to the embodiment is not particularly limited as long as it includes the above-described vehicle-mounted light source components 1A and 1B, for example. The above-mentioned in-vehicle light source parts 1A and 1B can be used, for example, as headlamps, fog lamps, position lamps, rear combination lamps, turn signal lamps of automobiles, or to inform pedestrians and drivers of other vehicles of the status of their own vehicle (for example, autonomous driving). It can be suitably used for various lamps etc. that notify that the vehicle is running.
(作用・効果)
ところで、人の視認は、物体に照射した光の反射光を視ることで可能になる。被照射体にはそれぞれ固有の分光反射スペクトルがあり、人は物体に吸収されず反射する波長の光を確認する事で、被照射体の視認および識別が可能になる。
人が夜間に黒色に近い被照射体を視認する際、被照射体は背景色「黒」の中の「黒色被照射体」となり、夜間の背景色との差が生じず、反射する光も少ないため視認が困難になる。一方、黒色被照射体でもその表面は電磁波の1種である光の伝搬にとって不連続点となり、被照射体表面で光の進行方向が乱れる散乱現象が生じることで、夜間でも黒色被照射体の輪郭が僅かながら視認できると考えられる。
また、夜間での黒色被照射体の視認は、背景色「黒」の中の「黒色被照射体」となるため、光に対して感度の高い目の桿体細胞の受容性が重要であると考えられる。一方で従来の青‐黄色光の混色による疑似白色の構成が採用された白色LED光源では、目の桿体細胞の感度に該当する暗所比視感度曲線において暗所比視感度が0.8以上である波長480nm以上530nm以下の光の積分強度が相対的に低い。 (action/effect)
By the way, human visibility is possible by viewing the reflected light of the light irradiated onto the object. Each object to be irradiated has its own spectral reflection spectrum, and by checking the wavelength of light that is not absorbed by the object but reflected, it becomes possible for people to visually recognize and identify the object to be irradiated.
When a person visually recognizes an irradiated object that is nearly black at night, the irradiated object becomes a "black irradiated object" within the background color "black", and there is no difference from the background color at night, and the reflected light is also It is difficult to see because it is so small. On the other hand, the surface of a black irradiated object becomes a discontinuous point for the propagation of light, which is a type of electromagnetic wave, and a scattering phenomenon occurs in which the traveling direction of light is disrupted on the surface of the irradiated object. It is thought that the outline is slightly visible.
In addition, when viewing a black irradiated object at night, it becomes a ``black irradiated object'' in a background color of ``black,'' so the receptivity of the rod cells of the eyes, which are highly sensitive to light, is important. it is conceivable that. On the other hand, with a white LED light source that uses a conventional pseudo-white composition created by mixing blue and yellow light, the scotopic luminous efficiency is 0.8 in the scotopic luminous efficiency curve, which corresponds to the sensitivity of the rod cells of the eye. The integrated intensity of light having a wavelength of 480 nm or more and 530 nm or less is relatively low.
ところで、人の視認は、物体に照射した光の反射光を視ることで可能になる。被照射体にはそれぞれ固有の分光反射スペクトルがあり、人は物体に吸収されず反射する波長の光を確認する事で、被照射体の視認および識別が可能になる。
人が夜間に黒色に近い被照射体を視認する際、被照射体は背景色「黒」の中の「黒色被照射体」となり、夜間の背景色との差が生じず、反射する光も少ないため視認が困難になる。一方、黒色被照射体でもその表面は電磁波の1種である光の伝搬にとって不連続点となり、被照射体表面で光の進行方向が乱れる散乱現象が生じることで、夜間でも黒色被照射体の輪郭が僅かながら視認できると考えられる。
また、夜間での黒色被照射体の視認は、背景色「黒」の中の「黒色被照射体」となるため、光に対して感度の高い目の桿体細胞の受容性が重要であると考えられる。一方で従来の青‐黄色光の混色による疑似白色の構成が採用された白色LED光源では、目の桿体細胞の感度に該当する暗所比視感度曲線において暗所比視感度が0.8以上である波長480nm以上530nm以下の光の積分強度が相対的に低い。 (action/effect)
By the way, human visibility is possible by viewing the reflected light of the light irradiated onto the object. Each object to be irradiated has its own spectral reflection spectrum, and by checking the wavelength of light that is not absorbed by the object but reflected, it becomes possible for people to visually recognize and identify the object to be irradiated.
When a person visually recognizes an irradiated object that is nearly black at night, the irradiated object becomes a "black irradiated object" within the background color "black", and there is no difference from the background color at night, and the reflected light is also It is difficult to see because it is so small. On the other hand, the surface of a black irradiated object becomes a discontinuous point for the propagation of light, which is a type of electromagnetic wave, and a scattering phenomenon occurs in which the traveling direction of light is disrupted on the surface of the irradiated object. It is thought that the outline is slightly visible.
In addition, when viewing a black irradiated object at night, it becomes a ``black irradiated object'' in a background color of ``black,'' so the receptivity of the rod cells of the eyes, which are highly sensitive to light, is important. it is conceivable that. On the other hand, with a white LED light source that uses a conventional pseudo-white composition created by mixing blue and yellow light, the scotopic luminous efficiency is 0.8 in the scotopic luminous efficiency curve, which corresponds to the sensitivity of the rod cells of the eye. The integrated intensity of light having a wavelength of 480 nm or more and 530 nm or less is relatively low.
これに対して実施形態における車載用光源部品1A,1Bは、分光スペクトルにおいて、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合が12%以上である白色光を出射するように構成されている。暗所比視感度曲線(後述する図3の符号DLFのスペクトル)において暗所比視感度が0.8以上である波長480nm以上530nm以下の光の積分強度を高くすることで、夜間の走行においても被照射体の視認性を向上でき、特に黒色に近い被照射体の視認性を向上できる。また、青‐黄の疑似白色における黄色の光よりも波長の短い光の強度を高めているため、大きな屈折率を期待できる短波長の光の強度が増加し、暗所比視感度が高い被照射体からの散乱光が増加して視認性がさらに向上すると考えられる。
On the other hand, the vehicle-mounted light source components 1A and 1B in the embodiment are white, in which the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less is 12% or more. It is configured to emit light. By increasing the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less for which the scotopic luminous efficiency is 0.8 or more in the scotopic luminous efficiency curve (the spectrum of DLF in FIG. 3, which will be described later), it is possible to improve the performance when driving at night. Also, the visibility of the irradiated object can be improved, and in particular, the visibility of the irradiated object that is close to black can be improved. In addition, because the intensity of light with a shorter wavelength is higher than that of yellow light in the blue-yellow pseudo white, the intensity of light with a short wavelength that can be expected to have a large refractive index increases, and the light with high scotopic luminosity increases. It is thought that the amount of scattered light from the irradiator increases, further improving visibility.
また、実施形態における車載用光源部品1A,1Bは、青色光を出射する半導体発光素子11と、半導体発光素子11から出射される青色光の波長を変換する緑色発光材料14gおよび橙色発光材料14aを含む波長変換部12A,12Bと、を有する。青‐緑‐橙による疑似白色の構成を採用することで、従来の青‐黄の疑似白色よりも、暗所比視感度が0.8以上である波長480nm以上530nm以下の光の積分強度が高められている。
In addition, the vehicle-mounted light source components 1A and 1B in the embodiment include a semiconductor light emitting device 11 that emits blue light, and a green light emitting material 14g and an orange light emitting material 14a that convert the wavelength of the blue light emitted from the semiconductor light emitting device 11. wavelength converters 12A and 12B. By adopting a blue-green-orange pseudo-white composition, the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less, with a scotopic luminous efficiency of 0.8 or more, is higher than the conventional blue-yellow pseudo white composition. It is elevated.
(実施例1)
金による給電パターンを付与した窒化アルミ基板上に、各辺が1mmの主波長447nmで発光する半導体発光素子を、金バンプを用いてフリップチップ実装した。緑色発光の蛍光体Lu3Al5O12:Ce3+(発光主波長:546nm)と橙色発光の蛍光体α-SiAlON:Eu(発光主波長:591nm)を重量比5:4で混合した。得られた混合蛍光体をジメチルシリコーン樹脂に6vol%の濃度で分散させて脱泡した。得られた蛍光体分散シリコーン樹脂を半導体発光素子の上に、150μm厚で塗布して硬化させることで、実施例1の車載用光源部品を作製した。 (Example 1)
A semiconductor light-emitting element emitting light at a dominant wavelength of 447 nm and having each side of 1 mm was flip-chip mounted on an aluminum nitride substrate provided with a gold power supply pattern using gold bumps. A green-emitting phosphor Lu 3 Al 5 O 12 :Ce 3+ (emission dominant wavelength: 546 nm) and an orange-emitting phosphor α-SiAlON:Eu (emission dominant wavelength: 591 nm) were mixed at a weight ratio of 5:4. The obtained mixed phosphor was dispersed in dimethyl silicone resin at a concentration of 6 vol % and defoamed. The obtained phosphor-dispersed silicone resin was applied onto a semiconductor light emitting device to a thickness of 150 μm and cured, thereby producing the vehicle light source component of Example 1.
金による給電パターンを付与した窒化アルミ基板上に、各辺が1mmの主波長447nmで発光する半導体発光素子を、金バンプを用いてフリップチップ実装した。緑色発光の蛍光体Lu3Al5O12:Ce3+(発光主波長:546nm)と橙色発光の蛍光体α-SiAlON:Eu(発光主波長:591nm)を重量比5:4で混合した。得られた混合蛍光体をジメチルシリコーン樹脂に6vol%の濃度で分散させて脱泡した。得られた蛍光体分散シリコーン樹脂を半導体発光素子の上に、150μm厚で塗布して硬化させることで、実施例1の車載用光源部品を作製した。 (Example 1)
A semiconductor light-emitting element emitting light at a dominant wavelength of 447 nm and having each side of 1 mm was flip-chip mounted on an aluminum nitride substrate provided with a gold power supply pattern using gold bumps. A green-emitting phosphor Lu 3 Al 5 O 12 :Ce 3+ (emission dominant wavelength: 546 nm) and an orange-emitting phosphor α-SiAlON:Eu (emission dominant wavelength: 591 nm) were mixed at a weight ratio of 5:4. The obtained mixed phosphor was dispersed in dimethyl silicone resin at a concentration of 6 vol % and defoamed. The obtained phosphor-dispersed silicone resin was applied onto a semiconductor light emitting device to a thickness of 150 μm and cured, thereby producing the vehicle light source component of Example 1.
実施例1の車載用光源部品の発光スペクトルを、Instrument Systems社製CAS140Dによって評価した。得られたスペクトル(符号EX1のスペクトル)を図3に示す。また、図3において暗所比視感度(符号DLFの線)および明所比視感度(符号BLFの線)も併せて示す。なお、暗所比視感度および明所比視感度はピーク波長における感度が1となるように規格化して示している。
The emission spectrum of the in-vehicle light source component of Example 1 was evaluated using CAS140D manufactured by Instrument Systems. The obtained spectrum (spectrum with code EX1) is shown in FIG. Further, in FIG. 3, the scotopic luminous efficiency (the line indicated by the symbol DLF) and the photopic luminous efficiency (the line indicated by the symbol BLF) are also shown. Note that the scotopic luminous efficiency and the photopic luminous efficiency are normalized and shown so that the sensitivity at the peak wavelength is 1.
また、実施例1の車載用光源部品が出射する光の色度を、図4のCIE色度図にプロットして示す(符号EX1のプロット)。なお、図4において符号Rwが付された領域は、自動車用灯具において白色として定められた領域を示す。また、図4における符号AのプロットはCIE色度図における暗所比視感度のピーク波長を示し、図4における符号BのプロットはCIE色度図における暗所比視感度曲線を発光スペクトルに見立てた場合の色度を示す。
Furthermore, the chromaticity of light emitted by the in-vehicle light source component of Example 1 is plotted and shown in the CIE chromaticity diagram of FIG. 4 (plot with symbol EX1). Note that in FIG. 4, the area labeled Rw indicates an area defined as white in the automotive lamp. In addition, the plot of symbol A in FIG. 4 shows the peak wavelength of scotopic luminous efficiency in the CIE chromaticity diagram, and the plot of symbol B in FIG. This shows the chromaticity when
また、実施例1の車載用光源部品が出射する光のCIE色度図における色度(cx,cy)、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合、および波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合を表1に示す。
In addition, the chromaticity (cx, cy) of the light emitted by the automotive light source component of Example 1 in the CIE chromaticity diagram, and the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less with respect to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less. Table 1 shows the ratio and the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
(比較例1)
実施例1と同様の半導体発光素子実装品を準備し、黄色蛍光体(Y,Gd)3Al5O12:Ce(発光主波長:500nm)を6vol%の濃度でジメチルシリコーン樹脂に分散させて脱泡した。得られた蛍光体分散シリコーン樹脂を半導体発光素子の上に、150μm厚で塗布して硬化させることで、比較例1の車載用光源部品を作製した。 (Comparative example 1)
A semiconductor light emitting device mounted product similar to that in Example 1 was prepared, and a yellow phosphor (Y,Gd) 3 Al 5 O 12 :Ce (emission dominant wavelength: 500 nm) was dispersed in dimethyl silicone resin at a concentration of 6 vol%. Defoamed. The obtained phosphor-dispersed silicone resin was applied onto a semiconductor light emitting device to a thickness of 150 μm and cured, thereby producing a vehicle light source component of Comparative Example 1.
実施例1と同様の半導体発光素子実装品を準備し、黄色蛍光体(Y,Gd)3Al5O12:Ce(発光主波長:500nm)を6vol%の濃度でジメチルシリコーン樹脂に分散させて脱泡した。得られた蛍光体分散シリコーン樹脂を半導体発光素子の上に、150μm厚で塗布して硬化させることで、比較例1の車載用光源部品を作製した。 (Comparative example 1)
A semiconductor light emitting device mounted product similar to that in Example 1 was prepared, and a yellow phosphor (Y,Gd) 3 Al 5 O 12 :Ce (emission dominant wavelength: 500 nm) was dispersed in dimethyl silicone resin at a concentration of 6 vol%. Defoamed. The obtained phosphor-dispersed silicone resin was applied onto a semiconductor light emitting device to a thickness of 150 μm and cured, thereby producing a vehicle light source component of Comparative Example 1.
比較例1の車載用光源部品の発光スペクトルを、実施例1と同様の手順で評価した。尚、出射される光子数は、実施例1での評価時と同一になるように、入力電流を調整した。得られたスペクトル(符号CE1のスペクトル)を図3に示す。また、比較例1の車載用光源部品が出射する光のCIE色度図における色度(cx,cy)、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合、および波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合を表1に示す。
The emission spectrum of the vehicle-mounted light source component of Comparative Example 1 was evaluated in the same manner as in Example 1. Note that the input current was adjusted so that the number of emitted photons was the same as in the evaluation in Example 1. The obtained spectrum (spectrum labeled CE1) is shown in FIG. In addition, the chromaticity (cx, cy) of the light emitted by the automotive light source component of Comparative Example 1 in the CIE chromaticity diagram, and the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less with respect to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less. Table 1 shows the ratio and the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
(参考例1)
実施例1の青‐緑‐橙による疑似白色の構成で、CIE色度図上の領域Rwと色温度5000Kの線との交点のうちのcyの小さい交点に対応する色度(図4における符号RE1のプロット)を有する参考例1の車載用光源部品の発光スペクトルをシミュレーションにより評価した。参考例1の車載用光源部品が出射する光のCIE色度図における色度(cx,cy)、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合、および波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合を表1に示す。 (Reference example 1)
In the pseudo-white configuration of blue-green-orange in Example 1, the chromaticity (symbol in FIG. 4 The emission spectrum of the vehicle-mounted light source component of Reference Example 1 having a plot of RE1) was evaluated by simulation. Chromaticity (cx, cy) in the CIE chromaticity diagram of the light emitted by the automotive light source component of Reference Example 1, the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less, Table 1 shows the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
実施例1の青‐緑‐橙による疑似白色の構成で、CIE色度図上の領域Rwと色温度5000Kの線との交点のうちのcyの小さい交点に対応する色度(図4における符号RE1のプロット)を有する参考例1の車載用光源部品の発光スペクトルをシミュレーションにより評価した。参考例1の車載用光源部品が出射する光のCIE色度図における色度(cx,cy)、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合、および波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合を表1に示す。 (Reference example 1)
In the pseudo-white configuration of blue-green-orange in Example 1, the chromaticity (symbol in FIG. 4 The emission spectrum of the vehicle-mounted light source component of Reference Example 1 having a plot of RE1) was evaluated by simulation. Chromaticity (cx, cy) in the CIE chromaticity diagram of the light emitted by the automotive light source component of Reference Example 1, the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less, Table 1 shows the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
(参考例2)
実施例1の青‐緑‐橙による疑似白色の構成で、CIE色度図上の符号Aのプロットおよび符号Bのプロットに最も近い領域Rwにおける角の色度(図4における符号RE2のプロット)を有する参考例2の車載用光源部品の発光スペクトルをシミュレーションにより評価した。参考例2の車載用光源部品が出射する光のCIE色度図における色度(cx,cy)、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合、および波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合を表1に示す。 (Reference example 2)
In the blue-green-orange pseudo-white configuration of Example 1, the chromaticity of the corner in the region Rw closest to the plot of symbol A and the plot of symbol B on the CIE chromaticity diagram (plot of symbol RE2 in FIG. 4) The emission spectrum of the vehicle-mounted light source component of Reference Example 2 having the following was evaluated by simulation. Chromaticity (cx, cy) in the CIE chromaticity diagram of the light emitted by the automotive light source component of Reference Example 2, the ratio of the integrated intensity of light with a wavelength of 480 nm to 530 nm to the integrated intensity of light with a wavelength of 380 nm to 780 nm, Table 1 shows the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
実施例1の青‐緑‐橙による疑似白色の構成で、CIE色度図上の符号Aのプロットおよび符号Bのプロットに最も近い領域Rwにおける角の色度(図4における符号RE2のプロット)を有する参考例2の車載用光源部品の発光スペクトルをシミュレーションにより評価した。参考例2の車載用光源部品が出射する光のCIE色度図における色度(cx,cy)、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合、および波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合を表1に示す。 (Reference example 2)
In the blue-green-orange pseudo-white configuration of Example 1, the chromaticity of the corner in the region Rw closest to the plot of symbol A and the plot of symbol B on the CIE chromaticity diagram (plot of symbol RE2 in FIG. 4) The emission spectrum of the vehicle-mounted light source component of Reference Example 2 having the following was evaluated by simulation. Chromaticity (cx, cy) in the CIE chromaticity diagram of the light emitted by the automotive light source component of Reference Example 2, the ratio of the integrated intensity of light with a wavelength of 480 nm to 530 nm to the integrated intensity of light with a wavelength of 380 nm to 780 nm, Table 1 shows the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
(参考例3)
実施例1の青‐緑‐橙による疑似白色の構成で、CIE色度図上の符号Aのプロットおよび符号Bのプロットに符号RE2のプロットの次に近い領域Rwにおける角の色度(図4における符号RE3のプロット)を有する参考例3の車載用光源部品の発光スペクトルをシミュレーションにより評価した。参考例3の車載用光源部品が出射する光のCIE色度図における色度(cx,cy)、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合、および波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合を表1に示す。 (Reference example 3)
In the pseudo white configuration of blue-green-orange in Example 1, the chromaticity of the corner in the region Rw next to the plot of symbol A and the plot of symbol B on the CIE chromaticity diagram next to the plot of symbol RE2 (Fig. 4 The emission spectrum of the on-vehicle light source component of Reference Example 3 having a plot of symbol RE3 in Fig. 3 was evaluated by simulation. Chromaticity (cx, cy) in the CIE chromaticity diagram of the light emitted by the automotive light source component of Reference Example 3, the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less, Table 1 shows the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
実施例1の青‐緑‐橙による疑似白色の構成で、CIE色度図上の符号Aのプロットおよび符号Bのプロットに符号RE2のプロットの次に近い領域Rwにおける角の色度(図4における符号RE3のプロット)を有する参考例3の車載用光源部品の発光スペクトルをシミュレーションにより評価した。参考例3の車載用光源部品が出射する光のCIE色度図における色度(cx,cy)、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合、および波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合を表1に示す。 (Reference example 3)
In the pseudo white configuration of blue-green-orange in Example 1, the chromaticity of the corner in the region Rw next to the plot of symbol A and the plot of symbol B on the CIE chromaticity diagram next to the plot of symbol RE2 (Fig. 4 The emission spectrum of the on-vehicle light source component of Reference Example 3 having a plot of symbol RE3 in Fig. 3 was evaluated by simulation. Chromaticity (cx, cy) in the CIE chromaticity diagram of the light emitted by the automotive light source component of Reference Example 3, the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less, Table 1 shows the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
(参考例4)
実施例1の青‐緑‐橙による疑似白色の構成で、CIE色度図上の領域Rwと色温度5000Kの線との交点のうちのcyの大きい交点に対応する色度(図4における符号RE4のプロット)を有する参考例4の車載用光源部品の発光スペクトルをシミュレーションにより評価した。参考例4の車載用光源部品が出射する光のCIE色度図における色度(cx,cy)、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合、および波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合を表1に示す。 (Reference example 4)
In the pseudo-white configuration of blue-green-orange in Example 1, the chromaticity (symbol in FIG. 4 The emission spectrum of the vehicle-mounted light source component of Reference Example 4 having a plot of RE4) was evaluated by simulation. Chromaticity (cx, cy) in the CIE chromaticity diagram of the light emitted by the automotive light source component of Reference Example 4, the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less, Table 1 shows the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
実施例1の青‐緑‐橙による疑似白色の構成で、CIE色度図上の領域Rwと色温度5000Kの線との交点のうちのcyの大きい交点に対応する色度(図4における符号RE4のプロット)を有する参考例4の車載用光源部品の発光スペクトルをシミュレーションにより評価した。参考例4の車載用光源部品が出射する光のCIE色度図における色度(cx,cy)、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合、および波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合を表1に示す。 (Reference example 4)
In the pseudo-white configuration of blue-green-orange in Example 1, the chromaticity (symbol in FIG. 4 The emission spectrum of the vehicle-mounted light source component of Reference Example 4 having a plot of RE4) was evaluated by simulation. Chromaticity (cx, cy) in the CIE chromaticity diagram of the light emitted by the automotive light source component of Reference Example 4, the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less, Table 1 shows the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less.
また、各例の車載用光源部品の相対光束1(発光スペクトル×暗所比視感度)および相対光束2(発光スペクトル×明所比視感度)について、比較例1の値を100%とした場合の相対%を表1に示す。
In addition, for the relative luminous flux 1 (emission spectrum x scotopic luminous efficiency) and relative luminous flux 2 (emission spectrum x photopic luminous efficiency) of the vehicle-mounted light source components of each example, when the value of comparative example 1 is taken as 100%. The relative percentages are shown in Table 1.
図3と表1の結果から、実施例1は比較例1に対して相対光束1が15%向上し、暗所において歩行者などの対象物の視認性が高まることが確認された。特に黒い衣服を着用している歩行者などの、背景色「黒」の中の「黒色被照射体」の視認性がより高まることが期待できる。暗所被視感度の高い波長域(480~530nm)の分光スペクトルの積分強度の割合は、実施例1では19.70%であるのに対して、比較例1では10.8%であり、実施例1はこの波長域で約2倍の光量を有していた。また、実施例1では青‐黄の疑似白色における黄色の光よりも波長の短い光の強度を高めているため、大きな屈折率が期待できる短波長の光の強度が増加し、暗所比視感度が高い被照射体からの散乱光が増加して視認性がさらに向上すると考えられる。
From the results shown in FIG. 3 and Table 1, it was confirmed that the relative luminous flux 1 of Example 1 was improved by 15% compared to Comparative Example 1, and the visibility of objects such as pedestrians was improved in a dark place. In particular, it can be expected that the visibility of "black irradiated objects" against a "black" background color, such as pedestrians wearing black clothes, will be further improved. The ratio of the integrated intensity of the spectrum in the wavelength range (480 to 530 nm) with high dark visibility sensitivity was 19.70% in Example 1, while it was 10.8% in Comparative Example 1. Example 1 had approximately twice the amount of light in this wavelength range. In addition, in Example 1, the intensity of light with a shorter wavelength than that of yellow light in the blue-yellow pseudo white is increased, so the intensity of light with a short wavelength that can be expected to have a large refractive index increases, and It is thought that the amount of scattered light from the highly sensitive irradiated object increases, further improving visibility.
以上、本開示の実施形態について説明をしたが、本発明の技術的範囲が本実施形態の説明によって限定的に解釈されるべきではないのは言うまでもない。本実施形態は単なる一例であって、請求の範囲に記載された発明の範囲内において、様々な実施形態の変更が可能であることが当業者によって理解されるところである。本発明の技術的範囲は請求の範囲に記載された発明の範囲及びその均等の範囲に基づいて定められるべきである。
Although the embodiments of the present disclosure have been described above, it goes without saying that the technical scope of the present invention should not be interpreted to be limited by the description of the present embodiments. This embodiment is merely an example, and those skilled in the art will understand that various modifications can be made within the scope of the invention as set forth in the claims. The technical scope of the present invention should be determined based on the scope of the invention described in the claims and the equivalent scope thereof.
本出願は、2022年3月28日出願の日本特許出願2022-051499に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on Japanese Patent Application No. 2022-051499 filed on March 28, 2022, the contents of which are incorporated herein by reference.
Claims (5)
- 分光スペクトルにおいて、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度の割合が12%以上である白色光を出射する、車載用光源部品。 A vehicle-mounted light source component that emits white light in which the ratio of the integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less in the spectrum is 12% or more.
- 青色光を出射する半導体発光素子と、前記半導体発光素子から出射される前記青色光の波長を変換する緑色発光材料および橙色発光材料を含む波長変換部と、を有する、請求項1に記載の車載用光源部品。 The in-vehicle device according to claim 1, comprising: a semiconductor light-emitting element that emits blue light; and a wavelength conversion section that includes a green light-emitting material and an orange light-emitting material that converts the wavelength of the blue light emitted from the semiconductor light-emitting element. light source parts.
- 分光スペクトルにおいて、波長380nm以上780nm以下の光の積分強度に対する波長480nm以上530nm以下の光の積分強度が25%以下である白色光を出射する、請求項1または請求項2に記載の車載用光源部品。 The vehicle-mounted light source according to claim 1 or 2, which emits white light whose integrated intensity of light with a wavelength of 480 nm or more and 530 nm or less is 25% or less of the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less in a spectroscopic spectrum. parts.
- 分光スペクトルにおいて、波長380nm以上780nm以下の光の積分強度に対する波長610nm以上780nm以下の光の積分強度の割合が5%以上である白色光を出射する、請求項1に記載の車載用光源部品。 The vehicle-mounted light source component according to claim 1, which emits white light in which the ratio of the integrated intensity of light with a wavelength of 610 nm or more and 780 nm or less to the integrated intensity of light with a wavelength of 380 nm or more and 780 nm or less in the spectrum is 5% or more.
- 請求項1に記載の車載用光源部品を備える、車両用灯具。
A vehicle lamp comprising the vehicle light source component according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-051499 | 2022-03-28 | ||
JP2022051499 | 2022-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023189747A1 true WO2023189747A1 (en) | 2023-10-05 |
Family
ID=88201039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010651 WO2023189747A1 (en) | 2022-03-28 | 2023-03-17 | Vehicle-mounted light source component and vehicular lamp |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023189747A1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016093119A1 (en) * | 2014-12-09 | 2016-06-16 | 信越化学工業株式会社 | Led light source for vehicle-mounted headlight |
-
2023
- 2023-03-17 WO PCT/JP2023/010651 patent/WO2023189747A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016093119A1 (en) * | 2014-12-09 | 2016-06-16 | 信越化学工業株式会社 | Led light source for vehicle-mounted headlight |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4001892B2 (en) | Semiconductor light emitting element, LED display device, illumination device, and illumination device for liquid crystal display unit | |
US7703961B2 (en) | Lamp, optical module, vehicle headlight including the same, and method for controlling color tone of emitted light | |
EP3168525A1 (en) | Lamp | |
US20060181192A1 (en) | White LEDs with tailorable color temperature | |
JP2006135002A (en) | Light-emitting device and lighting fixture for car | |
TW201425820A (en) | Light source and LED automobile lamp with the light source | |
KR101245005B1 (en) | White light emitting device and lighting fitting for vehicles using the white light emitting device | |
US20170186926A1 (en) | Light emitting device package having enhanced light extraction efficiency | |
JP7348521B2 (en) | light emitting device | |
JP6471756B2 (en) | LED light source for in-vehicle headlights | |
WO2023189747A1 (en) | Vehicle-mounted light source component and vehicular lamp | |
JP6861389B2 (en) | Outdoor lighting equipment | |
CN103403887B (en) | There is the illuminator of light source, radiation converting element and filter | |
US20160293806A1 (en) | Light-emitting diode (led) package | |
TW201425803A (en) | LED automobile lamp | |
CN103883955A (en) | LED automobile lamp | |
WO2024079960A1 (en) | Light-emitting device, headlight, and vehicle equipped with same | |
US20240093846A1 (en) | Vehicle light-emitting device and vehicle lighting device | |
KR102550462B1 (en) | Light emitting device package | |
JP2024042652A (en) | Light-emitting device for vehicles and lighting device for vehicles | |
JP2023145094A (en) | Light-emitting device | |
JP5630952B6 (en) | Semiconductor light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23779763 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024511833 Country of ref document: JP Kind code of ref document: A |