WO2023189429A1 - Temperature sensor and sensor device - Google Patents

Temperature sensor and sensor device Download PDF

Info

Publication number
WO2023189429A1
WO2023189429A1 PCT/JP2023/009335 JP2023009335W WO2023189429A1 WO 2023189429 A1 WO2023189429 A1 WO 2023189429A1 JP 2023009335 W JP2023009335 W JP 2023009335W WO 2023189429 A1 WO2023189429 A1 WO 2023189429A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
mems
converter
chip
resistors
Prior art date
Application number
PCT/JP2023/009335
Other languages
French (fr)
Japanese (ja)
Inventor
喬 三宅
弘樹 矢野
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023189429A1 publication Critical patent/WO2023189429A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval

Definitions

  • the present disclosure relates to a temperature sensor.
  • a temperature sensor using a constant current source and a diode is known as a temperature sensor (for example, FIG. 4 of Patent Document 1).
  • an object of the present disclosure is to provide a temperature sensor that can suppress the output of an AD converter from having power supply voltage characteristics when AD conversion is performed using an AD converter.
  • the temperature sensor according to the present disclosure includes a first resistor and a second resistor connected in series between a power supply voltage application end and a ground potential application end, and a first resistor and a second resistor connected in series between the power supply voltage application end and the ground potential application end.
  • a first resistor bridge circuit having a third resistor and a fourth resistor connected in series between the application terminal;
  • the first resistor is provided on the ground potential side and has positive temperature characteristics with respect to resistance value
  • the second resistor is provided on the power supply voltage side and has negative temperature characteristics with respect to resistance value
  • the third resistor is provided on the power supply voltage side and has positive temperature characteristics with respect to resistance value
  • the fourth resistor is provided on the ground potential side and has a negative temperature characteristic with respect to resistance value.
  • the temperature sensor when AD conversion is performed using an AD converter, it is possible to suppress the output of the AD converter from having power supply voltage characteristics.
  • FIG. 1 is a diagram illustrating the configuration of a sensor device according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a specific configuration example of the AD conversion unit according to the embodiment of the present disclosure.
  • FIG. 3 is a timing chart showing an example of the behavior of the output voltages Vout1, Vout2 and the comparator output CPout.
  • FIG. 4 is a timing chart illustrating an example of a case where noise is added to the temperature sensor according to the embodiment of the present disclosure.
  • FIG. 5 is a diagram showing a first example of arrangement of various resistors.
  • FIG. 6 is a diagram showing a second example of arrangement of various resistors.
  • FIG. 7 is a diagram showing a third arrangement example of various resistors.
  • FIG. 1 is a diagram illustrating the configuration of a sensor device according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a specific configuration example of the AD conversion unit according to the embodiment of the present disclosure.
  • FIG. 8 is a diagram showing a fourth example of arrangement of various resistors.
  • FIG. 9 is a diagram showing the configuration of a sensor device according to a comparative example.
  • FIG. 10 is a diagram illustrating a specific configuration example of an AD converter according to a comparative example.
  • FIG. 11 is a timing chart showing an example of the behavior of the output voltage Vout and the comparator output CPout.
  • FIG. 12 is a timing chart showing an example of a case where noise is added to the temperature sensor according to the comparative example.
  • FIG. 9 is a diagram showing the configuration of a sensor device 50 according to a comparative example.
  • the sensor device 50 shown in FIG. 9 includes a temperature sensor 10, an AD converter 20, and a MEMS (Micro Electro Mechanical Systems) sensor 30.
  • the temperature sensor 10 includes a constant current source 101 and a diode 102.
  • Constant current source 101 is connected between the application end of internal voltage Vreg and the anode of diode 102.
  • a cathode of the diode 102 is connected to a ground potential application terminal.
  • the anode of the diode 102 is connected to the AD converter 20 via the switch SW10.
  • Vf (forward voltage) of the diode 102 changes depending on the temperature when a constant current generated by the constant current source 101 is applied. By AD converting the above Vf by the AD converter 20, it becomes possible to detect the temperature.
  • the MEMS sensor 30 has a resistive bridge circuit 301 composed of MEMS resistors Ra, Rb, Rc, and Rd.
  • MEMS resistors Ra and Rb are connected in series between an end to which a power supply voltage Vdd is applied and an end to which a ground potential is applied.
  • the MEMS resistors Rc and Rd are connected in series between an end to which a power supply voltage Vdd is applied and an end to which a ground potential is applied.
  • the MEMS sensor 30 is configured by integrating a diaphragm and a resistive bridge circuit 301.
  • the resistance bridge circuit 301 is formed by using a Si substrate as a diaphragm and diffusing impurities into the surface of the Si substrate.
  • the MEMS sensor 30 is a pressure sensor that utilizes a piezoresistance effect.
  • the piezoresistive effect is a phenomenon in which the resistance value changes when pressure is applied to the resistance.
  • switch SW10 when detecting temperature with the temperature sensor 10, switch SW10 is turned on and switches SW11 and SW12 are turned off. When detecting pressure with the MEMS sensor 30, switch SW10 is turned off and switches SW11 and SW12 are turned on. shall be.
  • a DSP digital signal processor
  • the DSP described above can correct the pressure value detected by the MEMS sensor 30 based on the temperature detected by the temperature sensor 10. That is, the temperature characteristic of the resistance value of the resistance bridge circuit 301 is corrected by the temperature sensor 10.
  • FIG. 10 is a diagram showing a specific configuration example of the AD conversion section 20.
  • the AD converter 20 includes a non-inverting amplifier circuit 201, an AD converter 202, and a comparator 203.
  • the non-inverting amplifier circuit 201 includes an amplifier (op-amp) 201A and resistors 201B and 201C.
  • a non-inverting input terminal of amplifier 201A is connected to the anode of diode 102.
  • a switch SW10 (FIG. 9) is connected between the anode of the diode 102 and the non-inverting input terminal of the amplifier 201A.
  • the output end of amplifier 201A is connected to one end of resistor 201B.
  • the other end of the resistor 201B and the inverting input end of the amplifier 201A are connected to one end of the resistor 201C.
  • the other end of the resistor 201C is connected to a ground potential application end.
  • Vf of the diode 102 is non-invertingly amplified with an amplification factor determined by the resistors 201B and 201C.
  • the AD converter 202 is provided after the non-inverting amplifier circuit 201.
  • the AD converter 202 is configured as an integral type AD converter, and includes an input resistor Ri, an input switch SWi, a discharge resistor Ro, a discharge switch SWo, a capacitor C, and an amplifier 202A.
  • One end of the input resistor Ri is connected to the output end of the amplifier 201A.
  • the other end of the resistor Ri is connected to one end of the input switch SWi.
  • the other end of the input switch SWi is connected to the first input end of the amplifier 202A.
  • One end of the discharge switch SWo is connected to the first input terminal of the amplifier 202A.
  • the other end of the discharge switch SWo is connected to one end of the discharge resistor Ro.
  • the other end of the discharge resistor Ro is connected to a ground potential application end.
  • Capacitor C is connected between the first input terminal of amplifier 202A and the output terminal of amplifier 202A.
  • a second input terminal of the amplifier 202A is connected to an application terminal of the reference voltage Vref.
  • the comparator 203 is provided after the AD converter 202.
  • a first input terminal of comparator 203 is connected to an output terminal of amplifier 202A.
  • a second input terminal of the comparator 203 is connected to an application terminal of the reference voltage Vref.
  • FIG. 11 is a timing chart showing an example of the behavior of the output voltage Vout and the comparator output CPout output from the comparator 203. As shown in FIG. 11, the output voltage Vout gradually decreases from the reference voltage Vref during the charging time Ti.
  • the output voltage Vout gradually increases during the discharge time To, and when the discharge time To has elapsed, the output voltage Vout reaches the reference voltage Vref. Since the comparator 203 compares the output voltage Vout with the reference voltage Vref, the comparator output Cpout switches from low level to high level when the discharge time To has elapsed.
  • the discharging time To changes depending on the input voltage Vin.
  • the input voltage Vin is a voltage obtained by amplifying Vf of the diode 102 by the non-inverting amplifier circuit 201. Therefore, Vf, that is, temperature can be detected by counting the discharging time To, which is the time from the timing when the charging time Ti has elapsed to the timing when the level of the comparator output CPout is switched.
  • the output voltage Vout shown by the broken line in FIG. 11 indicates a case where Vf, that is, the input voltage Vin is smaller than the output voltage Vout shown by the solid line, and the discharge time To is shorter.
  • Av is the amplification factor of the non-inverting amplifier circuit 201. Therefore, when the AD converter 202 is operated based on Vdd, Vf is not affected by Vdd, so the output (To/Ti) of the AD converter 202 is affected by Vdd, that is, the power supply characteristics. Therefore, in order to avoid being affected by the power supply characteristics, the AD converter 202 also needs to be operated based on the internal voltage Vreg. In this case, a constant voltage source such as an LDO (Low Dropout) is required to generate Vreg so that Vreg does not vary even if Vdd varies.
  • LDO Low Dropout
  • FIG. 12 is a diagram showing an example of a case where noise is added to the temperature sensor 10. Similar to FIG. 11, FIG. 12 shows the behavior of the output voltage Vout and the comparator output CPout. In FIG. 12, the solid line shows the output voltage Vout when there is no noise, and the broken line shows the output voltage Vout when there is noise.
  • the discharge time To becomes longer, resulting in an error ⁇ To in the discharge time To. Therefore, there is a problem that errors in temperature detection occur.
  • FIG. 1 is a diagram showing the configuration of a sensor device 5 according to an exemplary embodiment of the present disclosure.
  • the sensor device 5 shown in FIG. 1 includes a temperature sensor 1, an AD converter 2, a MEMS sensor 30, and switches SW1, SW2, SW11, and SW12.
  • the temperature sensor 1 has a resistive bridge circuit 11 composed of resistors R1, R2, R3, and R4. Resistors R2 and R1 are connected in series between an end to which power supply voltage Vdd is applied and an end to which ground potential is applied. The resistor R2 is provided on the power supply voltage Vdd side, and the resistor R1 is provided on the ground potential side. Resistors R3 and R4 are connected in series between an end to which power supply voltage Vdd is applied and an end to which ground potential is applied. The resistor R3 is provided on the power supply voltage Vdd side, and the resistor R4 is provided on the ground potential side.
  • the resistors R1 and R3 have positive temperature characteristics regarding resistance values.
  • the positive temperature characteristic is a characteristic in which the higher the temperature, the greater the resistance value.
  • Resistors R2 and R4 have negative temperature characteristics regarding resistance values. Negative temperature characteristics are characteristics in which the higher the temperature, the smaller the resistance value.
  • a node N1 to which resistors R2 and R1 are connected is connected to the AD converter 2 via a switch SW2.
  • a node N2 to which resistors R3 and R4 are connected is connected to the AD converter 2 via a switch SW1. The higher the temperature, the greater the voltage difference between nodes N1 and N2.
  • the AD converter 2 can detect the temperature by AD converting the voltage difference.
  • the MEMS sensor 30 has the same configuration as the comparative example (FIG. 9) described above.
  • Node Na is connected to AD converter 2 via switch SW12.
  • Node Nb is connected to AD converter 2 via switch SW11.
  • the pressure can be detected by AD converting the voltage difference generated between the nodes Na and Nb depending on the pressure by the AD converter 2.
  • a DSP (not shown) is provided downstream of the AD converter 2.
  • the DSP described above can correct the pressure value detected by the MEMS sensor 30 based on the temperature detected by the temperature sensor 1.
  • FIG. 2 is a diagram showing a specific configuration example of the AD conversion section 2.
  • the AD converter 2 includes a first voltage follower 21 , a first AD converter 22 , a second voltage follower 23 , a second AD converter 24 , and a comparator 25 .
  • the voltage at the node N1 in the resistor bridge circuit 11 is input to the first voltage follower 21.
  • a switch SW2 (FIG. 1) is connected between the node N1 and the first voltage follower 21.
  • the first AD converter 22 is provided after the first voltage follower 21 and has the same configuration as the AD converter 202 according to the comparative example (FIG. 10) described above, so a detailed description thereof will be omitted.
  • the input voltage Vin1 output from the first voltage follower 21 is applied to one end of the input resistor Ri in the first AD converter 22.
  • the voltage at the node N2 in the resistor bridge circuit 11 is input to the second voltage follower 23.
  • a switch SW1 (FIG. 1) is connected between the node N2 and the second voltage follower 23.
  • the second AD converter 24 is provided after the second voltage follower 23 and has basically the same configuration as the AD converter 202 according to the comparative example (FIG. 10) described above, so a detailed description thereof will be omitted.
  • the end to which the power supply voltage Vdd is applied is connected to the discharge resistor Ro.
  • the input voltage Vin2 output from the second voltage follower 23 is applied to one end of the input resistor Ri in the second AD converter 24.
  • the comparator 25 is provided after the first AD converter 22 and the second AD converter 24.
  • the output voltage Vout1 output from the amplifier 22A in the first AD converter 22 is applied to the first input terminal of the comparator 25.
  • the output voltage Vout2 output from the amplifier 24A in the second AD converter 24 is applied to the second input terminal of the comparator 25.
  • the comparator 25 outputs the result of comparing the output voltages Vout1 and Vout2 as a comparator output CPout.
  • the input switch SWi is turned on and the discharge switch SWo is turned off, so that the input current Ii flows through the input resistor Ri, and the capacitor C is charged. Thereafter, by turning the input switch SWi off and turning the discharge switch SWo on, a discharge current Io flows through the discharge resistor Ro, and the capacitor C is discharged. At this time, as shown in FIG. 2, the input current Ii flows to the amplifier 22A side, and the discharge current Io flows to the ground potential side.
  • FIG. 3 is a timing chart showing an example of the behavior of the output voltages Vout1, Vout2 and the comparator output CPout.
  • the output voltage Vout1 decreases from the reference voltage Vref during the charging time Ti, and rises to the reference voltage Vref during the discharging time To.
  • the input switch SWi is turned on and the discharge switch SWo is turned off, so that the input current Ii flows through the input resistor Ri, and the capacitor C is charged. Thereafter, by turning the input switch SWi off and turning the discharge switch SWo on, a discharge current Io flows through the discharge resistor Ro, and the capacitor C is discharged. At this time, as shown in FIG. 2, the input current Ii flows to the second voltage follower 23 side, and the discharge current Io flows to the amplifier 24A side.
  • the output voltage Vout2 increases from the reference voltage Vref during the charging time Ti, and decreases to the reference voltage Vref during the discharging time To.
  • the influence of Vdd can also be suppressed on the output of the second AD converter 24.
  • FIG. 4 is a diagram showing an example when noise is added to the temperature sensor 1. Similar to FIG. 3, FIG. 4 shows the behavior of the output voltages Vout1, Vout2 and the comparator output CPout.
  • the solid line shows the output voltage Vout when there is no noise
  • the broken line shows the output voltage Vout when there is noise.
  • the noise is common mode noise (such as PSRR) that affects nodes N1 and N2 in the same phase.
  • PSRR common mode noise
  • the output voltages Vout1 and Vout2 shift in the same direction, so that the error in the discharge time To is suppressed. In this way, according to the configuration of the temperature sensor 1 and the AD converter 2 according to the present disclosure, noise resistance is improved.
  • the node Na in the MEMS sensor 30 is connected to the first voltage follower 21 via the switch SW12, and the node Nb in the MEMS sensor 30 is connected to the second voltage follower 23 via the switch SW11.
  • pressure can be detected by measuring the discharge time To.
  • noise resistance is improved as in the case of temperature detection. That is, since the temperature sensor 1 has the same circuit configuration as the MEMS sensor 30, compatibility with the MEMS sensor 30 can be improved.
  • resistor arrangement> Various arrangement examples of the resistors R1 to R4 in the temperature sensor 1 and the MEMS resistors Ra to Rd in the MEMS sensor 30 will be described below.
  • FIG. 5 is a diagram showing a first arrangement example of the resistors R1 to R4 and the MEMS resistors Ra to Rd.
  • the sensor device 5 includes a MEMS chip 3 and an ASIC (application specific integrated circuit) chip 4. Note that this also applies to the configurations shown in FIGS. 6 to 8, which will be described later.
  • ASIC application specific integrated circuit
  • the resistors R1 to R4 and the MEMS resistors Ra to Rd are integrated into the MEMS chip 3.
  • a diaphragm is also integrated into the MEMS chip 3.
  • the pad P31 for applying the power supply voltage Vdd is connected to the resistors R2 and R3, the pad P32 is connected to the node N2, the pad P33 is connected to the node N1, and the pad P31 is connected to the resistors R1 and R4.
  • a pad P34 for applying a ground potential is provided on the MEMS chip 3.
  • a pad P38 is provided on the MEMS chip 3.
  • the ASIC chip 4 is provided with pads P41 to P48 that are connected to pads P31 to P38, respectively, by wires Wr.
  • the ASIC chip 4 is provided with AD converters 22 and 24 and a DSP 400. This also applies to the configurations shown in FIGS. 6 to 8, which will be described later.
  • the temperature detection resistors R1 to R4 are provided on the MEMS chip 3, the temperature of the MEMS chip 3 can be directly measured, and the error factors with the temperature of the MEMS sensor 30 are reduced.
  • FIG. 6 is a diagram showing a second arrangement example of the resistors R1 to R4 and the MEMS resistors Ra to Rd.
  • resistors R1 to R4 are provided on the ASIC chip 4.
  • a pad P34 for this purpose is provided on the MEMS chip 3.
  • the ASIC chip 4 is provided with pads P41 to P44 connected to the pads P31 to P34, respectively, by wires Wr.
  • the number of pads and wires can be reduced. Further, by providing the resistors R1 to R4 having predetermined temperature characteristics in the ASIC chip 4 different from the MEMS chip 3, the resistors R1 to R4 can be easily formed.
  • FIG. 7 is a diagram showing a third arrangement example of resistors R1 to R4 and MEMS resistors Ra to Rd.
  • resistors R3 and R1 are provided on the MEMS chip 3
  • resistors R2 and R4 are provided on the ASIC chip 4.
  • P34 is provided on the MEMS chip 3.
  • One end of resistor R3 is connected to pad P31.
  • a pad P35 connected to the other end of the resistor R3 is provided on the MEMS chip 3.
  • the MEMS chip 3 is provided with a pad P36 connected to one end of the resistor R1 and a pad P37 connected to the other end of the resistor R1.
  • the ASIC chip 4 is provided with pads P41 to P47 that are connected to pads P31 to P37, respectively, by wires Wr.
  • a switch SW41 having one end connected to the pad P44 is provided on the ASIC chip 4. The other end of the switch SW41 is connected to a ground potential application end.
  • One end of resistor R2 is connected to pad P41.
  • the other end of resistor R2 is connected to pad P46.
  • One end of resistor R4 is connected to pad P45.
  • a switch SW42 is provided on the ASIC chip 4, and has one end connected to the other end of the resistor R4 and the pad P47. The other end of the switch SW42 is connected to a ground potential application end.
  • the switch SW41 When detecting pressure using the MEMS sensor 30, the switch SW41 is turned on and the switch SW42 is turned off. When the temperature is detected by the temperature sensor 1, the switch SW41 is turned off and the switch SW42 is turned on.
  • the MEMS chip 3 is provided with resistors R1 and R3, both of which have positive temperature characteristics with respect to resistance value
  • the ASIC chip 4 is provided with resistors R2, R4, both of which have negative temperature characteristics with respect to resistance value.
  • Resistors R1 and R3 can be formed as the same resistance as the resistances Ra to Rd in the MEMS sensor 30, that is, as resistances having the same temperature characteristics.
  • resistors R2 and R4 having temperature characteristics opposite to those of resistors R1 and R3 can be formed in the ASIC chip 4. Therefore, it becomes easy to form the resistors R1 to R4.
  • the error factor with respect to the temperature of the MEMS sensor 30 is reduced. Furthermore, the number of pads and wires can be reduced.
  • resistors R2 and R4 may be provided on the MEMS chip 3, and the resistors R1 and R3 may be provided on the ASIC chip 4.
  • FIG. 8 is a diagram showing a fourth arrangement example of resistors R1 to R4 and MEMS resistors Ra to Rd.
  • the MEMS chip 3 is provided with a switch SW31 having one end connected to the resistors Rb and Rd. The other end of switch SW31 and resistor R3 are connected to pad P34.
  • Pad P44 which is connected to pad P34 by wire Wr, is connected to switch SW41 and resistor R4.
  • One end of resistor R1 is connected to pad P35.
  • Pad P45 which is connected to pad P35 by wire Wr, is connected to resistor R2.
  • the other end of resistor R1 is connected to pad P36.
  • Pad P46 which is connected to pad P36 by wire Wr, is connected to switch SW42.
  • the switches SW31 and SW41 are turned on and the switch SW42 is turned off.
  • the switches SW31 and SW41 are turned off and the switch SW42 is turned on.
  • the temperature sensor (1) is A first resistor (R1) and a second resistor (R2) connected in series between an end to which a power supply voltage (Vdd) is applied and an end to which a ground potential is applied, and an end to which the power supply voltage is applied and the ground potential is applied.
  • a first resistor bridge circuit (11) having a third resistor (R3) and a fourth resistor (R4) connected in series between the two ends;
  • the first resistor is provided on the ground potential side and has positive temperature characteristics with respect to resistance value
  • the second resistor is provided on the power supply voltage side and has negative temperature characteristics with respect to resistance value
  • the third resistor is provided on the power supply voltage side and has positive temperature characteristics with respect to resistance value
  • the fourth resistor is provided on the ground potential side and has a configuration having negative temperature characteristics with respect to resistance value (first configuration, FIG. 1).
  • a sensor device (5) includes a temperature sensor (1) having the first configuration and an AD converter (2) provided at a subsequent stage of the resistor bridge circuit (11).
  • the AD converter includes: a first AD converter (22) connectable to a first node (N1) to which the first resistor and the second resistor are connected; a second AD converter (24) connectable to a second node (N2) to which the third resistor and the fourth resistor are connected; has The first AD converter and the second AD converter each include an amplifier (22A, 24A) having a first input terminal to which a reference voltage (Vref) can be applied, and a second input terminal of the amplifier and an output terminal of the amplifier. a capacitor (C) connected between; The first AD converter and the second AD converter are each configured to perform AD conversion by charging the capacitor and discharging the capacitor based on the voltage at the first node or the voltage at the second node. (second configuration, Figure 2).
  • the reference voltage (Vref) is a voltage based on the power supply voltage (Vdd)
  • the capacitor is discharged by a discharge current (Io) flowing toward the ground potential side
  • the second AD converter (24) may have a configuration in which the capacitor is discharged by a discharge current (Io) flowing from the power supply voltage side (third configuration, FIG. 2).
  • the output of the amplifier (22A) in the first AD converter (22) and the output of the amplifier (24A) in the second AD converter (24) are input. (4th configuration, FIG. 2).
  • a first MEMS resistor (Ra) and a second MEMS resistor are connected in series between an end to which the power supply voltage (Vdd) is applied and an end to which the ground potential is applied. (Rb); a third MEMS resistor (Rc) and a fourth MEMS resistor (Rd) connected in series between the power supply voltage application terminal and the ground potential application terminal; 301);
  • a third node (Na) to which the first MEMS resistor and the second MEMS resistor are connected can be connected to the first AD converter (22),
  • the fourth node (Nb) to which the third MEMS resistor and the fourth MEMS resistor are connected may be configured to be connectable to the second AD converter (24) (fifth configuration, FIG. 1).
  • the first chip (3) may be provided with the first to fourth resistors (R1 to R4) and the first to fourth MEMS resistors (Ra to Rd).
  • the fifth configuration includes a first chip (3) on which the first to fourth MEMS resistors (Ra to Rd) are provided, and a second chip (4),
  • the first resistor (R1) and the third resistor (R3) are provided on the first chip, and the second resistor (R2) and the fourth resistor (R4) are provided on the second chip, or , the second resistor and the fourth resistor may be provided on the first chip, and the first resistor and the third resistor may be provided on the second chip (eighth configuration, FIG. 7, Figure 8).
  • a first switch (SW41) connected between the second MEMS resistor (Rb) and the fourth MEMS resistor (Rd) and the ground potential application terminal, and the first resistor (R1) and a second switch (SW42) connected between the fourth resistor (R4) and the end to which the ground potential is applied may be provided in the second chip (4).
  • a third switch (SW31) connected between the pad and the first chip (3) may be provided in the first chip (3) (a tenth configuration, FIG. 8).
  • the present disclosure can be used, for example, for temperature correction of MEMS sensors.
  • Temperature sensor 2 AD converter 3 MEMS chip 4 ASIC chip 5 Sensor device 10 Temperature sensor 11 Resistance bridge circuit 20 AD converter 21 1st voltage follower 22 1st AD converter 22A amplifier 23 2nd voltage follower 24 2nd AD converter 24A amplifier 25 Comparator 30 MEMS sensor 50 Sensor device 101 Constant current source 102 Diode 301 Resistance bridge circuit C Capacitor P31 to P38 Pad P41 to P48 Pad R1, R2, R3, R4 Resistance Ra, Rb, Rc, Rd MEMS resistance Ri Input resistance Ro Discharge resistance SW1, SW2, SW11, SW12 Switch SW31 Switch SW41 Switch SW42 Switch SWi Input switch SWo Discharge switch Wr Wire

Abstract

A temperature sensor (1) comprises a first resistor bridge circuit (11) having a first resistor (R1) and a second resistor (R2) connected in series between an application terminal of a power supply voltage (Vdd) and an application terminal of a ground potential, and a third resistor (R3) and a fourth resistor (R4) connected in series between the application terminal of the power supply voltage and the application terminal of the ground potential, wherein the first resistor is provided on the ground potential side and has a positive temperature characteristic with respect to a resistance value, the second resistor is provided on the power supply voltage side and has a negative temperature characteristic with respect to a resistance value, the third resistor is provided on the power supply voltage side and has a positive temperature characteristic with respect to a resistance value, and the fourth resistor is provided on the ground potential side and has a negative temperature characteristic with respect to a resistance value.

Description

温度センサ、およびセンサ装置Temperature sensors and sensor devices
 本開示は、温度センサに関する。 The present disclosure relates to a temperature sensor.
 従来、温度センサとして、定電流源とダイオードを用いた温度センサが知られている(例えば特許文献1の第4図)。 Conventionally, a temperature sensor using a constant current source and a diode is known as a temperature sensor (for example, FIG. 4 of Patent Document 1).
特開2002-368110号公報Japanese Patent Application Publication No. 2002-368110
 しかしながら、上記のような温度センサでは、温度センサの出力をAD変換(アナログデジタル変換)するADコンバータを用いた場合に、ADコンバータの出力が電源電圧の影響を受けてしまう課題があった。すなわち、ADコンバータの出力が電源電圧特性を持ってしまう課題があった。 However, in the above-described temperature sensor, when an AD converter that performs AD conversion (analog-to-digital conversion) of the output of the temperature sensor is used, there is a problem that the output of the AD converter is affected by the power supply voltage. That is, there is a problem that the output of the AD converter has power supply voltage characteristics.
 上記状況に鑑み、本開示は、ADコンバータを用いてAD変換を行った場合に、ADコンバータの出力が電源電圧特性を持つことを抑制できる温度センサを提供することを目的とする。 In view of the above situation, an object of the present disclosure is to provide a temperature sensor that can suppress the output of an AD converter from having power supply voltage characteristics when AD conversion is performed using an AD converter.
 例えば、本開示に係る温度センサは、電源電圧の印加端とグランド電位の印加端との間に直列に接続される第1抵抗および第2抵抗と、前記電源電圧の印加端と前記グランド電位の印加端との間に直列に接続される第3抵抗および第4抵抗と、を有する第1抵抗ブリッジ回路を備え、
 前記第1抵抗は、前記グランド電位側に設けられ、抵抗値に関して正の温度特性を有し、
 前記第2抵抗は、前記電源電圧側に設けられ、抵抗値に関して負の温度特性を有し、
 前記第3抵抗は、前記電源電圧側に設けられ、抵抗値に関して正の温度特性を有し、
 前記第4抵抗は、前記グランド電位側に設けられ、抵抗値に関して負の温度特性を有する構成としている。
For example, the temperature sensor according to the present disclosure includes a first resistor and a second resistor connected in series between a power supply voltage application end and a ground potential application end, and a first resistor and a second resistor connected in series between the power supply voltage application end and the ground potential application end. a first resistor bridge circuit having a third resistor and a fourth resistor connected in series between the application terminal;
The first resistor is provided on the ground potential side and has positive temperature characteristics with respect to resistance value,
The second resistor is provided on the power supply voltage side and has negative temperature characteristics with respect to resistance value,
The third resistor is provided on the power supply voltage side and has positive temperature characteristics with respect to resistance value,
The fourth resistor is provided on the ground potential side and has a negative temperature characteristic with respect to resistance value.
 本開示に係る温度センサによれば、ADコンバータを用いてAD変換を行った場合に、ADコンバータの出力が電源電圧特性を持つことを抑制できる。 According to the temperature sensor according to the present disclosure, when AD conversion is performed using an AD converter, it is possible to suppress the output of the AD converter from having power supply voltage characteristics.
図1は、本開示の例示的な実施形態に係るセンサ装置の構成を示す図である。FIG. 1 is a diagram illustrating the configuration of a sensor device according to an exemplary embodiment of the present disclosure. 図2は、本開示の実施形態に係るAD変換部の具体的な構成例を示す図である。FIG. 2 is a diagram illustrating a specific configuration example of the AD conversion unit according to the embodiment of the present disclosure. 図3は、出力電圧Vout1,Vout2およびコンパレータ出力CPoutの挙動の一例を示すタイミングチャートである。FIG. 3 is a timing chart showing an example of the behavior of the output voltages Vout1, Vout2 and the comparator output CPout. 図4は、本開示の実施形態に係る温度センサにノイズが乗った場合の一例を示すタイミングチャートである。FIG. 4 is a timing chart illustrating an example of a case where noise is added to the temperature sensor according to the embodiment of the present disclosure. 図5は、各種抵抗の第1配置例を示す図である。FIG. 5 is a diagram showing a first example of arrangement of various resistors. 図6は、各種抵抗の第2配置例を示す図である。FIG. 6 is a diagram showing a second example of arrangement of various resistors. 図7は、各種抵抗の第3配置例を示す図である。FIG. 7 is a diagram showing a third arrangement example of various resistors. 図8は、各種抵抗の第4配置例を示す図である。FIG. 8 is a diagram showing a fourth example of arrangement of various resistors. 図9は、比較例に係るセンサ装置の構成を示す図である。FIG. 9 is a diagram showing the configuration of a sensor device according to a comparative example. 図10は、比較例に係るAD変換部の具体的な構成例を示す図である。FIG. 10 is a diagram illustrating a specific configuration example of an AD converter according to a comparative example. 図11は、出力電圧Voutとコンパレータ出力CPoutの挙動の一例を示すタイミングチャートである。FIG. 11 is a timing chart showing an example of the behavior of the output voltage Vout and the comparator output CPout. 図12は、比較例に係る温度センサにノイズが乗った場合の一例を示すタイミングチャートである。FIG. 12 is a timing chart showing an example of a case where noise is added to the temperature sensor according to the comparative example.
 以下、本開示の例示的な実施形態について図面を参照して説明する。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings.
<1.比較例>
 ここでは、本開示に係る例示的な実施形態について説明する前に、対比のための比較例について説明する。このような比較例を説明することで、課題が明らかとなる。
<1. Comparative example>
Here, before describing exemplary embodiments according to the present disclosure, a comparative example will be described for comparison. The problem becomes clear by explaining such a comparative example.
 図9は、比較例に係るセンサ装置50の構成を示す図である。図9に示すセンサ装置50は、温度センサ10と、AD変換部20と、MEMS(Micro Electro Mechanical Systems)センサ30と、を備える。 FIG. 9 is a diagram showing the configuration of a sensor device 50 according to a comparative example. The sensor device 50 shown in FIG. 9 includes a temperature sensor 10, an AD converter 20, and a MEMS (Micro Electro Mechanical Systems) sensor 30.
 温度センサ10は、定電流源101と、ダイオード102と、を有する。定電流源101は、内部電圧Vregの印加端とダイオード102のアノードとの間に接続される。ダイオード102のカソードは、グランド電位の印加端に接続される。ダイオード102のアノードは、スイッチSW10を介してAD変換部20に接続される。定電流源101により生成される定電流が流された状態でダイオード102のVf(順電圧)は、温度に応じて変化する。上記VfがAD変換部20によりAD変換されることで、温度を検出することが可能となる。 The temperature sensor 10 includes a constant current source 101 and a diode 102. Constant current source 101 is connected between the application end of internal voltage Vreg and the anode of diode 102. A cathode of the diode 102 is connected to a ground potential application terminal. The anode of the diode 102 is connected to the AD converter 20 via the switch SW10. Vf (forward voltage) of the diode 102 changes depending on the temperature when a constant current generated by the constant current source 101 is applied. By AD converting the above Vf by the AD converter 20, it becomes possible to detect the temperature.
 MEMSセンサ30は、MEMS抵抗Ra,Rb,Rc,Rdから構成される抵抗ブリッジ回路301を有する。MEMS抵抗Ra,Rbは、電源電圧Vddの印加端とグランド電位の印加端との間に直列に接続される。MEMS抵抗Rc,Rdは、電源電圧Vddの印加端とグランド電位の印加端との間に直列に接続される。 The MEMS sensor 30 has a resistive bridge circuit 301 composed of MEMS resistors Ra, Rb, Rc, and Rd. MEMS resistors Ra and Rb are connected in series between an end to which a power supply voltage Vdd is applied and an end to which a ground potential is applied. The MEMS resistors Rc and Rd are connected in series between an end to which a power supply voltage Vdd is applied and an end to which a ground potential is applied.
 MEMSセンサ30は、ダイヤフラムと抵抗ブリッジ回路301とを集積化して構成される。例えば、Si基板をダイヤフラムとして、Si基板の表面に不純物を拡散することで抵抗ブリッジ回路301を形成する。MEMSセンサ30は、ピエゾ抵抗効果を利用した圧力センサである。ピエゾ抵抗効果は、圧力が抵抗に加わった場合に抵抗値が変化する現象である。 The MEMS sensor 30 is configured by integrating a diaphragm and a resistive bridge circuit 301. For example, the resistance bridge circuit 301 is formed by using a Si substrate as a diaphragm and diffusing impurities into the surface of the Si substrate. The MEMS sensor 30 is a pressure sensor that utilizes a piezoresistance effect. The piezoresistive effect is a phenomenon in which the resistance value changes when pressure is applied to the resistance.
 ダイヤフラムに圧力が加わると、MEMS抵抗Ra,Rb,Rc,Rdに抵抗値変化が生じる。MEMS抵抗Ra,Rb,Rc,Rdの抵抗値に応じて、Ra,Rbが接続されるノードNaと、Rc,Rdが接続されるノードNbとの間に電圧差が生じる。ノードNaは、スイッチSW12を介して、ノードNbは、スイッチSW11を介してそれぞれAD変換部20に接続される。上記電圧差がAD変換部20によりAD変換されることで、圧力が検出される。 When pressure is applied to the diaphragm, resistance values change in the MEMS resistors Ra, Rb, Rc, and Rd. Depending on the resistance values of the MEMS resistors Ra, Rb, Rc, and Rd, a voltage difference occurs between the node Na to which Ra and Rb are connected and the node Nb to which Rc and Rd are connected. The node Na is connected to the AD converter 20 via the switch SW12, and the node Nb is connected to the AD converter 20 via the switch SW11. The pressure is detected by AD converting the voltage difference by the AD converter 20.
 なお、温度センサ10により温度を検出する場合はスイッチSW10をオン状態、スイッチSW11,SW12をオフ状態とし、MEMSセンサ30により圧力を検出する場合はスイッチSW10をオフ状態、スイッチSW11,SW12をオン状態とする。 In addition, when detecting temperature with the temperature sensor 10, switch SW10 is turned on and switches SW11 and SW12 are turned off. When detecting pressure with the MEMS sensor 30, switch SW10 is turned off and switches SW11 and SW12 are turned on. shall be.
 AD変換部20の後段には、図示しないDSP(digital signal processor)が設けられる。上記DSPにより、温度センサ10により検出された温度に基づいてMEMSセンサ30により検出された圧力値を補正することができる。すなわち、抵抗ブリッジ回路301の抵抗値の温度特性を温度センサ10により補正する。 A DSP (digital signal processor), not shown, is provided downstream of the AD conversion unit 20. The DSP described above can correct the pressure value detected by the MEMS sensor 30 based on the temperature detected by the temperature sensor 10. That is, the temperature characteristic of the resistance value of the resistance bridge circuit 301 is corrected by the temperature sensor 10.
 図10は、AD変換部20の具体的な構成例を示す図である。AD変換部20は、非反転増幅回路201と、ADコンバータ202と、コンパレータ203と、を有する。 FIG. 10 is a diagram showing a specific configuration example of the AD conversion section 20. The AD converter 20 includes a non-inverting amplifier circuit 201, an AD converter 202, and a comparator 203.
 非反転増幅回路201は、アンプ(オペアンプ)201Aと、抵抗201B,201Cと、を有する。アンプ201Aの非反転入力端は、ダイオード102のアノードに接続される。なお、ダイオード102のアノードとアンプ201Aの非反転入力端との間には、スイッチSW10(図9)が接続される。アンプ201Aの出力端は、抵抗201Bの一端に接続される。抵抗201Bの他端とアンプ201Aの反転入力端は、抵抗201Cの一端に接続される。抵抗201Cの他端は、グランド電位の印加端に接続される。ダイオード102のVfは、抵抗201B,201Cにより決まる増幅率で非反転増幅される。 The non-inverting amplifier circuit 201 includes an amplifier (op-amp) 201A and resistors 201B and 201C. A non-inverting input terminal of amplifier 201A is connected to the anode of diode 102. Note that a switch SW10 (FIG. 9) is connected between the anode of the diode 102 and the non-inverting input terminal of the amplifier 201A. The output end of amplifier 201A is connected to one end of resistor 201B. The other end of the resistor 201B and the inverting input end of the amplifier 201A are connected to one end of the resistor 201C. The other end of the resistor 201C is connected to a ground potential application end. Vf of the diode 102 is non-invertingly amplified with an amplification factor determined by the resistors 201B and 201C.
 ADコンバータ202は、非反転増幅回路201の後段に設けられる。ADコンバータ202は、積分型のADコンバータとして構成され、入力抵抗Riと、入力スイッチSWiと、放電抵抗Roと、放電スイッチSWoと、コンデンサCと、アンプ202Aと、を有する。 The AD converter 202 is provided after the non-inverting amplifier circuit 201. The AD converter 202 is configured as an integral type AD converter, and includes an input resistor Ri, an input switch SWi, a discharge resistor Ro, a discharge switch SWo, a capacitor C, and an amplifier 202A.
 入力抵抗Riの一端は、アンプ201Aの出力端に接続される。抵抗Riの他端は、入力スイッチSWiの一端に接続される。入力スイッチSWiの他端は、アンプ202Aの第1入力端に接続される。放電スイッチSWoの一端は、アンプ202Aの第1入力端に接続される。放電スイッチSWoの他端は、放電抵抗Roの一端に接続される。放電抵抗Roの他端は、グランド電位の印加端に接続される。コンデンサCは、アンプ202Aの第1入力端とアンプ202Aの出力端との間に接続される。アンプ202Aの第2入力端は、基準電圧Vrefの印加端に接続される。 One end of the input resistor Ri is connected to the output end of the amplifier 201A. The other end of the resistor Ri is connected to one end of the input switch SWi. The other end of the input switch SWi is connected to the first input end of the amplifier 202A. One end of the discharge switch SWo is connected to the first input terminal of the amplifier 202A. The other end of the discharge switch SWo is connected to one end of the discharge resistor Ro. The other end of the discharge resistor Ro is connected to a ground potential application end. Capacitor C is connected between the first input terminal of amplifier 202A and the output terminal of amplifier 202A. A second input terminal of the amplifier 202A is connected to an application terminal of the reference voltage Vref.
 コンパレータ203は、ADコンバータ202の後段に設けられる。コンパレータ203の第1入力端は、アンプ202Aの出力端に接続される。コンパレータ203の第2入力端は、基準電圧Vrefの印加端に接続される。 The comparator 203 is provided after the AD converter 202. A first input terminal of comparator 203 is connected to an output terminal of amplifier 202A. A second input terminal of the comparator 203 is connected to an application terminal of the reference voltage Vref.
 ここで、ADコンバータ202およびコンパレータ203の動作について説明する。まず、入力スイッチSWiをオン状態、放電スイッチSWoをオフ状態とすることで、入力抵抗Riを介して入力電流Iiが流れ、コンデンサCが充電される。このとき、充電時間をTi、コンデンサCの電圧をVintとすると、(1)式が成り立つ。
 Vint=(Ii×Ti)/C=Vref-Vout(T=Ti)  (1)
 ただし、Vout(T=Ti)は、充電時間Ti経過後のアンプ202Aの出力電圧
Here, the operations of the AD converter 202 and the comparator 203 will be explained. First, by turning on the input switch SWi and turning off the discharge switch SWo, the input current Ii flows through the input resistor Ri, and the capacitor C is charged. At this time, if the charging time is Ti and the voltage of the capacitor C is Vint, then equation (1) holds true.
Vint=(Ii×Ti)/C=Vref−Vout (T=Ti) (1)
However, Vout (T=Ti) is the output voltage of the amplifier 202A after the charging time Ti has elapsed.
 ここで、図11は、出力電圧Voutとコンパレータ203から出力されるコンパレータ出力CPoutの挙動の一例をタイミングチャートに示す図である。図11に示すように、充電時間Tiにおいて出力電圧Voutは、基準電圧Vrefから徐々に低下する。 Here, FIG. 11 is a timing chart showing an example of the behavior of the output voltage Vout and the comparator output CPout output from the comparator 203. As shown in FIG. 11, the output voltage Vout gradually decreases from the reference voltage Vref during the charging time Ti.
 次に、入力スイッチSWiをオフ状態、放電スイッチSWoをオン状態とすることで、放電抵抗Roを介して放電電流Ioが流れ、コンデンサCが放電される。このとき、充電時間TiによってコンデンサCに充電された電荷を放電するのに要する放電時間をToとすれば、(2)式が成り立つ。
 To=(C×Vint)/Io  (2)
Next, by turning off the input switch SWi and turning on the discharge switch SWo, a discharge current Io flows through the discharge resistor Ro, and the capacitor C is discharged. At this time, if To is the discharging time required to discharge the electric charge charged in the capacitor C by the charging time Ti, the formula (2) holds true.
To=(C×Vint)/Io (2)
 (1)式を(2)式に代入すれば、
 To=(C×Vint)/Io=(Ii×Ti)/Io  (3)
If we substitute equation (1) into equation (2), we get
To=(C×Vint)/Io=(Ii×Ti)/Io (3)
 ここで、Ii=(Vin-Vref)/Ri
     Io=Vref/Roである(ただし、Vinは、非反転増幅回路201の出力電圧)。Ri=Roとすれば、(3)式は、
 To/Ti=(Vin-Vref)/Vref  (4)
  となる。
Here, Ii=(Vin-Vref)/Ri
Io=Vref/Ro (where Vin is the output voltage of the non-inverting amplifier circuit 201). If Ri=Ro, equation (3) becomes
To/Ti=(Vin-Vref)/Vref (4)
becomes.
 図11に示すように、放電時間Toにおいて出力電圧Voutは徐々に上昇し、放電時間Toが経過したときに出力電圧Voutは基準電圧Vrefに到達する。コンパレータ203は、出力電圧Voutを基準電圧Vrefと比較するため、放電時間Toが経過したときにコンパレータ出力Cpoutがローレベルからハイレベルに切り替わる。 As shown in FIG. 11, the output voltage Vout gradually increases during the discharge time To, and when the discharge time To has elapsed, the output voltage Vout reaches the reference voltage Vref. Since the comparator 203 compares the output voltage Vout with the reference voltage Vref, the comparator output Cpout switches from low level to high level when the discharge time To has elapsed.
 (4)式より、充電時間Tiを固定値とすれば、入力電圧Vinに応じて放電時間Toが変化する。入力電圧Vinは、ダイオード102のVfを非反転増幅回路201により増幅した電圧である。従って、充電時間Tiが経過したタイミングからコンパレータ出力CPoutのレベルが切り替わるタイミングまでの時間である放電時間Toをカウントすることで、Vfすなわち温度を検出することができる。なお、図11に示す破線の出力電圧Voutは、実線の出力電圧Voutの場合よりもVfすなわち入力電圧Vinが小さい場合を示し、放電時間Toが短くなる。 From equation (4), if the charging time Ti is a fixed value, the discharging time To changes depending on the input voltage Vin. The input voltage Vin is a voltage obtained by amplifying Vf of the diode 102 by the non-inverting amplifier circuit 201. Therefore, Vf, that is, temperature can be detected by counting the discharging time To, which is the time from the timing when the charging time Ti has elapsed to the timing when the level of the comparator output CPout is switched. Note that the output voltage Vout shown by the broken line in FIG. 11 indicates a case where Vf, that is, the input voltage Vin is smaller than the output voltage Vout shown by the solid line, and the discharge time To is shorter.
 ここで、基準電圧Vref=(1/2)×Vddとしたとする。この場合、(4)式は、
 To/Ti=(Vf×Av-(1/2)×Vdd)/((1/2)×Vdd)
 となる。ただし、Avは、非反転増幅回路201の増幅率である。
 従って、ADコンバータ202をVdd基準で動作させると、VfはVddの影響を受けないので、ADコンバータ202の出力(To/Ti)はVdd、すなわち電源特性の影響を受けてしまう。これにより、電源特性の影響を受けないようにするには、ADコンバータ202も内部電圧Vreg基準で動作させる必要がある。この場合、Vddが変動してもVregが変動しないようにVregを生成するLDO(Low Dropout)などの定電圧源が必要になってしまう。
Here, it is assumed that the reference voltage Vref=(1/2)×Vdd. In this case, equation (4) is
To/Ti=(Vf×Av-(1/2)×Vdd)/((1/2)×Vdd)
becomes. However, Av is the amplification factor of the non-inverting amplifier circuit 201.
Therefore, when the AD converter 202 is operated based on Vdd, Vf is not affected by Vdd, so the output (To/Ti) of the AD converter 202 is affected by Vdd, that is, the power supply characteristics. Therefore, in order to avoid being affected by the power supply characteristics, the AD converter 202 also needs to be operated based on the internal voltage Vreg. In this case, a constant voltage source such as an LDO (Low Dropout) is required to generate Vreg so that Vreg does not vary even if Vdd varies.
 また、温度センサ10にノイズが乗った場合、次のような課題が生じる。図12は、温度センサ10にノイズが乗った場合の一例を示す図である。図12は、図11と同様、出力電圧Voutとコンパレータ出力CPoutの挙動を示す。図12において、実線の出力電圧Voutがノイズが乗っていない場合であり、破線の出力電圧Voutがノイズが乗った場合である。破線の出力電圧Voutのように、ノイズによって入力電圧Vinが大きくなると、放電時間Toが長くなり、放電時間Toの誤差ΔToが生じてしまう。従って、温度検出の誤差が生じる課題がある。 Further, when noise is applied to the temperature sensor 10, the following problem occurs. FIG. 12 is a diagram showing an example of a case where noise is added to the temperature sensor 10. Similar to FIG. 11, FIG. 12 shows the behavior of the output voltage Vout and the comparator output CPout. In FIG. 12, the solid line shows the output voltage Vout when there is no noise, and the broken line shows the output voltage Vout when there is noise. When the input voltage Vin increases due to noise, as shown by the output voltage Vout shown by the broken line, the discharge time To becomes longer, resulting in an error ΔTo in the discharge time To. Therefore, there is a problem that errors in temperature detection occur.
<2.本開示のセンサ装置>
 上記のような課題を解決すべく、本開示の実施形態が実施される。図1は、本開示の例示的な実施形態に係るセンサ装置5の構成を示す図である。
<2. Sensor device of the present disclosure>
Embodiments of the present disclosure are implemented to solve the above problems. FIG. 1 is a diagram showing the configuration of a sensor device 5 according to an exemplary embodiment of the present disclosure.
 図1に示すセンサ装置5は、温度センサ1と、AD変換部2と、MEMSセンサ30と、スイッチSW1,SW2,SW11,SW12と、を有する。 The sensor device 5 shown in FIG. 1 includes a temperature sensor 1, an AD converter 2, a MEMS sensor 30, and switches SW1, SW2, SW11, and SW12.
 温度センサ1は、抵抗R1,R2,R3,R4から構成される抵抗ブリッジ回路11を有する。抵抗R2,R1は、電源電圧Vddの印加端とグランド電位の印加端との間に直列に接続される。抵抗R2は電源電圧Vdd側に設けられ、抵抗R1はグランド電位側に設けられる。抵抗R3,R4は、電源電圧Vddの印加端とグランド電位の印加端との間に直列に接続される。抵抗R3は電源電圧Vdd側に設けられ、抵抗R4はグランド電位側に設けられる。 The temperature sensor 1 has a resistive bridge circuit 11 composed of resistors R1, R2, R3, and R4. Resistors R2 and R1 are connected in series between an end to which power supply voltage Vdd is applied and an end to which ground potential is applied. The resistor R2 is provided on the power supply voltage Vdd side, and the resistor R1 is provided on the ground potential side. Resistors R3 and R4 are connected in series between an end to which power supply voltage Vdd is applied and an end to which ground potential is applied. The resistor R3 is provided on the power supply voltage Vdd side, and the resistor R4 is provided on the ground potential side.
 抵抗R1,R3は、抵抗値に関する正の温度特性を有する。正の温度特性とは、温度が高くなるほど抵抗値が大きくなる特性である。抵抗R2,R4は、抵抗値に関する負の温度特性を有する。負の温度特性とは、温度が高くなるほど抵抗値が小さくなる特性である。 The resistors R1 and R3 have positive temperature characteristics regarding resistance values. The positive temperature characteristic is a characteristic in which the higher the temperature, the greater the resistance value. Resistors R2 and R4 have negative temperature characteristics regarding resistance values. Negative temperature characteristics are characteristics in which the higher the temperature, the smaller the resistance value.
 抵抗R2,R1が接続されるノードN1は、スイッチSW2を介してAD変換部2に接続される。抵抗R3,R4が接続されるノードN2は、スイッチSW1を介してAD変換部2に接続される。温度が高くなるほど、ノードN1,N2間の電圧差は大きくなる。AD変換部2は、上記電圧差をAD変換することで、温度を検出することができる。 A node N1 to which resistors R2 and R1 are connected is connected to the AD converter 2 via a switch SW2. A node N2 to which resistors R3 and R4 are connected is connected to the AD converter 2 via a switch SW1. The higher the temperature, the greater the voltage difference between nodes N1 and N2. The AD converter 2 can detect the temperature by AD converting the voltage difference.
 MEMSセンサ30は、先述した比較例(図9)と同様の構成である。ノードNaは、スイッチSW12を介してAD変換部2に接続される。ノードNbは、スイッチSW11を介してAD変換部2に接続される。圧力に応じてノードNa,Nb間に生じる電圧差をAD変換部2によりAD変換することで、圧力を検出することができる。 The MEMS sensor 30 has the same configuration as the comparative example (FIG. 9) described above. Node Na is connected to AD converter 2 via switch SW12. Node Nb is connected to AD converter 2 via switch SW11. The pressure can be detected by AD converting the voltage difference generated between the nodes Na and Nb depending on the pressure by the AD converter 2.
 なお、温度センサ1により温度を検出する場合はスイッチSW1,SW2をオン状態、スイッチSW11,SW12をオフ状態とし、MEMSセンサ30により圧力を検出する場合はスイッチSW1,SW2をオフ状態、スイッチSW11,SW12をオン状態とする。 Note that when temperature is detected by the temperature sensor 1, the switches SW1 and SW2 are turned on and switches SW11 and SW12 are turned off. When the pressure is detected by the MEMS sensor 30, the switches SW1 and SW2 are turned off and the switches SW11 and SW12 are turned off. SW12 is turned on.
 AD変換部2の後段には、図示しないDSPが設けられる。上記DSPにより、温度センサ1により検出された温度に基づいてMEMSセンサ30により検出された圧力値を補正することができる。 A DSP (not shown) is provided downstream of the AD converter 2. The DSP described above can correct the pressure value detected by the MEMS sensor 30 based on the temperature detected by the temperature sensor 1.
 図2は、AD変換部2の具体的な構成例を示す図である。AD変換部2は、第1ボルテージフォロワ21と、第1ADコンバータ22と、第2ボルテージフォロワ23と、第2ADコンバータ24と、コンパレータ25と、を有する。 FIG. 2 is a diagram showing a specific configuration example of the AD conversion section 2. The AD converter 2 includes a first voltage follower 21 , a first AD converter 22 , a second voltage follower 23 , a second AD converter 24 , and a comparator 25 .
 抵抗ブリッジ回路11におけるノードN1の電圧が第1ボルテージフォロワ21に入力される。なお、ノードN1と第1ボルテージフォロワ21との間には、スイッチSW2(図1)が接続される。第1ADコンバータ22は、第1ボルテージフォロワ21の後段に設けられ、先述した比較例(図10)に係るADコンバータ202と同様の構成であるため、詳述は省く。第1ボルテージフォロワ21から出力される入力電圧Vin1は、第1ADコンバータ22における入力抵抗Riの一端に印加される。 The voltage at the node N1 in the resistor bridge circuit 11 is input to the first voltage follower 21. Note that a switch SW2 (FIG. 1) is connected between the node N1 and the first voltage follower 21. The first AD converter 22 is provided after the first voltage follower 21 and has the same configuration as the AD converter 202 according to the comparative example (FIG. 10) described above, so a detailed description thereof will be omitted. The input voltage Vin1 output from the first voltage follower 21 is applied to one end of the input resistor Ri in the first AD converter 22.
 抵抗ブリッジ回路11におけるノードN2の電圧が第2ボルテージフォロワ23に入力される。なお、ノードN2と第2ボルテージフォロワ23との間には、スイッチSW1(図1)が接続される。第2ADコンバータ24は、第2ボルテージフォロワ23の後段に設けられ、先述した比較例(図10)に係るADコンバータ202と基本的に同様の構成であるため、詳述は省く。ただし、第2ADコンバータ24においては、放電抵抗Roには電源電圧Vddの印加端が接続される。第2ボルテージフォロワ23から出力される入力電圧Vin2は、第2ADコンバータ24における入力抵抗Riの一端に印加される。 The voltage at the node N2 in the resistor bridge circuit 11 is input to the second voltage follower 23. Note that a switch SW1 (FIG. 1) is connected between the node N2 and the second voltage follower 23. The second AD converter 24 is provided after the second voltage follower 23 and has basically the same configuration as the AD converter 202 according to the comparative example (FIG. 10) described above, so a detailed description thereof will be omitted. However, in the second AD converter 24, the end to which the power supply voltage Vdd is applied is connected to the discharge resistor Ro. The input voltage Vin2 output from the second voltage follower 23 is applied to one end of the input resistor Ri in the second AD converter 24.
 コンパレータ25は、第1ADコンバータ22および第2ADコンバータ24の後段に設けられる。第1ADコンバータ22におけるアンプ22Aから出力される出力電圧Vout1は、コンパレータ25の第1入力端に印加される。第2ADコンバータ24におけるアンプ24Aから出力される出力電圧Vout2は、コンパレータ25の第2入力端に印加される。コンパレータ25は、出力電圧Vout1とVout2を比較した結果をコンパレータ出力CPoutとして出力する。 The comparator 25 is provided after the first AD converter 22 and the second AD converter 24. The output voltage Vout1 output from the amplifier 22A in the first AD converter 22 is applied to the first input terminal of the comparator 25. The output voltage Vout2 output from the amplifier 24A in the second AD converter 24 is applied to the second input terminal of the comparator 25. The comparator 25 outputs the result of comparing the output voltages Vout1 and Vout2 as a comparator output CPout.
 第1ADコンバータ22においては、入力スイッチSWiをオン状態、放電スイッチSWoをオフ状態とすることで入力抵抗Riに入力電流Iiが流れ、コンデンサCの充電が行われる。その後、入力スイッチSWiをオフ状態、放電スイッチSWoをオン状態とすることで放電抵抗Roに放電電流Ioが流れ、コンデンサCの放電が行われる。このとき、図2に示すように、入力電流Iiはアンプ22A側に流れ、放電電流Ioはグランド電位側に流れる。 In the first AD converter 22, the input switch SWi is turned on and the discharge switch SWo is turned off, so that the input current Ii flows through the input resistor Ri, and the capacitor C is charged. Thereafter, by turning the input switch SWi off and turning the discharge switch SWo on, a discharge current Io flows through the discharge resistor Ro, and the capacitor C is discharged. At this time, as shown in FIG. 2, the input current Ii flows to the amplifier 22A side, and the discharge current Io flows to the ground potential side.
 ここで、図3は、出力電圧Vout1,Vout2およびコンパレータ出力CPoutの挙動の一例を示すタイミングチャートである。出力電圧Vout1は、充電時間Tiにおいて基準電圧Vrefから低下し、放電時間Toにおいて基準電圧Vrefまで上昇する。 Here, FIG. 3 is a timing chart showing an example of the behavior of the output voltages Vout1, Vout2 and the comparator output CPout. The output voltage Vout1 decreases from the reference voltage Vref during the charging time Ti, and rises to the reference voltage Vref during the discharging time To.
 ここで、Vref=(1/2)×Vddとしているため、(4)式により、
 To/Ti=(Vin1-Vref)/Vref=((Vdd×R1)/(R1+R2)-(1/2)×Vdd)/((1/2)×Vdd) (5)
Here, since Vref=(1/2)×Vdd, according to equation (4),
To/Ti=(Vin1-Vref)/Vref=((Vdd×R1)/(R1+R2)-(1/2)×Vdd)/((1/2)×Vdd) (5)
 (5)式から、Vddをキャンセルすることができることがわかる。従って、第1ADコンバータ22の出力において、Vddの影響を抑制することができる。 From equation (5), it can be seen that Vdd can be canceled. Therefore, the influence of Vdd on the output of the first AD converter 22 can be suppressed.
 第2ADコンバータ24においては、入力スイッチSWiをオン状態、放電スイッチSWoをオフ状態とすることで入力抵抗Riに入力電流Iiが流れ、コンデンサCの充電が行われる。その後、入力スイッチSWiをオフ状態、放電スイッチSWoをオン状態とすることで放電抵抗Roに放電電流Ioが流れ、コンデンサCの放電が行われる。このとき、図2に示すように、入力電流Iiは第2ボルテージフォロワ23側に流れ、放電電流Ioはアンプ24A側に流れる。 In the second AD converter 24, the input switch SWi is turned on and the discharge switch SWo is turned off, so that the input current Ii flows through the input resistor Ri, and the capacitor C is charged. Thereafter, by turning the input switch SWi off and turning the discharge switch SWo on, a discharge current Io flows through the discharge resistor Ro, and the capacitor C is discharged. At this time, as shown in FIG. 2, the input current Ii flows to the second voltage follower 23 side, and the discharge current Io flows to the amplifier 24A side.
 これにより、図3に示すように、出力電圧Vout2は、充電時間Tiにおいて基準電圧Vrefから上昇し、放電時間Toにおいて基準電圧Vrefまで低下する。第2ADコンバータ24の出力においても、Vddの影響を抑制することができる。 As a result, as shown in FIG. 3, the output voltage Vout2 increases from the reference voltage Vref during the charging time Ti, and decreases to the reference voltage Vref during the discharging time To. The influence of Vdd can also be suppressed on the output of the second AD converter 24.
 図3に示すように、放電時間Toが経過したときに出力電圧Vout1,Vout2の大小が逆転し、コンパレータ出力CPoutはローレベルからハイレベルに切り替わる。固定値である充電時間Tiの経過したときからコンパレータ出力CPoutのレベルの切り替わりまでの時間(放電時間To)をカウントすることで、入力電圧Vin1,Vin2、ひいては温度を検出することができる。 As shown in FIG. 3, when the discharge time To has elapsed, the magnitudes of the output voltages Vout1 and Vout2 are reversed, and the comparator output CPout switches from low level to high level. By counting the time (discharge time To) from when the charging time Ti, which is a fixed value, elapses until the level of the comparator output CPout changes, the input voltages Vin1 and Vin2, and eventually the temperature can be detected.
 また、図4は、温度センサ1にノイズが乗った場合の一例を示す図である。図4は、図3と同様、出力電圧Vout1,Vout2とコンパレータ出力CPoutの挙動を示す。図4において、実線の出力電圧Voutがノイズが乗っていない場合であり、破線の出力電圧Voutがノイズが乗った場合である。ノイズは、ノードN1,N2に同相で影響を及ぼす同相ノイズ(PSRRなど)である。これにより、図4の破線で示す出力電圧Vout1,Vout2のように、ノイズが乗った場合でも出力電圧Vout1,Vout2は同じ方向にずれるため、放電時間Toの誤差は抑制される。このように、本開示に係る温度センサ1とAD変換部2の構成によれば、ノイズ耐性が向上する。 Further, FIG. 4 is a diagram showing an example when noise is added to the temperature sensor 1. Similar to FIG. 3, FIG. 4 shows the behavior of the output voltages Vout1, Vout2 and the comparator output CPout. In FIG. 4, the solid line shows the output voltage Vout when there is no noise, and the broken line shows the output voltage Vout when there is noise. The noise is common mode noise (such as PSRR) that affects nodes N1 and N2 in the same phase. As a result, even when noise is added to the output voltages Vout1 and Vout2 shown by broken lines in FIG. 4, the output voltages Vout1 and Vout2 shift in the same direction, so that the error in the discharge time To is suppressed. In this way, according to the configuration of the temperature sensor 1 and the AD converter 2 according to the present disclosure, noise resistance is improved.
 なお、MEMSセンサ30におけるノードNaは、スイッチSW12を介して第1ボルテージフォロワ21に接続され、MEMSセンサ30におけるノードNbは、スイッチSW11を介して第2ボルテージフォロワ23に接続される。これにより、温度検出の場合と同様に、放電時間Toを計測することで圧力を検出することができる。MEMSセンサ30にノイズが乗った場合でも、温度検出の場合と同様にノイズ耐性が向上する。すなわち、温度センサ1はMEMSセンサ30と同様の回路構成としているため、MEMSセンサ30との親和性を高くすることができる。 Note that the node Na in the MEMS sensor 30 is connected to the first voltage follower 21 via the switch SW12, and the node Nb in the MEMS sensor 30 is connected to the second voltage follower 23 via the switch SW11. Thereby, as in the case of temperature detection, pressure can be detected by measuring the discharge time To. Even when noise is applied to the MEMS sensor 30, noise resistance is improved as in the case of temperature detection. That is, since the temperature sensor 1 has the same circuit configuration as the MEMS sensor 30, compatibility with the MEMS sensor 30 can be improved.
<3.抵抗の第1配置例>
 温度センサ1における抵抗R1~R4、およびMEMSセンサ30におけるMEMS抵抗Ra~Rdの各種配置例について、以下説明する。
<3. First example of resistor arrangement>
Various arrangement examples of the resistors R1 to R4 in the temperature sensor 1 and the MEMS resistors Ra to Rd in the MEMS sensor 30 will be described below.
 図5は、抵抗R1~R4およびMEMS抵抗Ra~Rdの第1配置例を示す図である。図5に示す構成では、センサ装置5は、MEMSチップ3とASIC(application specific integrated circuit)チップ4を有する。なお、これは後述する図6~図8に示す構成でも同様である。 FIG. 5 is a diagram showing a first arrangement example of the resistors R1 to R4 and the MEMS resistors Ra to Rd. In the configuration shown in FIG. 5, the sensor device 5 includes a MEMS chip 3 and an ASIC (application specific integrated circuit) chip 4. Note that this also applies to the configurations shown in FIGS. 6 to 8, which will be described later.
 図5に示すように、抵抗R1~R4およびMEMS抵抗Ra~Rdは、MEMSチップ3に集積化される。MEMSチップ3には、ダイヤフラムも集積化される。このような構成により、抵抗R2,R3に接続される電源電圧Vdd印加用のパッドP31、ノードN2に接続されるパッドP32、ノードN1に接続されるパッドP33、および抵抗R1,R4に接続されるグランド電位印加用のパッドP34がMEMSチップ3に設けられる。 As shown in FIG. 5, the resistors R1 to R4 and the MEMS resistors Ra to Rd are integrated into the MEMS chip 3. A diaphragm is also integrated into the MEMS chip 3. With this configuration, the pad P31 for applying the power supply voltage Vdd is connected to the resistors R2 and R3, the pad P32 is connected to the node N2, the pad P33 is connected to the node N1, and the pad P31 is connected to the resistors R1 and R4. A pad P34 for applying a ground potential is provided on the MEMS chip 3.
 さらに、抵抗Ra,Rcに接続される電源電圧Vdd印加用のパッドP35、ノードNbに接続されるパッドP36、ノードNaに接続されるパッドP37、および抵抗Rb,Rdに接続されるグランド電位印加用のパッドP38がMEMSチップ3に設けられる。 Further, a pad P35 for applying the power supply voltage Vdd connected to the resistors Ra and Rc, a pad P36 connected to the node Nb, a pad P37 connected to the node Na, and a pad P37 for applying the ground potential connected to the resistors Rb and Rd. A pad P38 is provided on the MEMS chip 3.
 ASICチップ4には、パッドP31~P38それぞれとワイヤWrにより接続されるパッドP41~P48が設けられる。 The ASIC chip 4 is provided with pads P41 to P48 that are connected to pads P31 to P38, respectively, by wires Wr.
 また、ASICチップ4には、ADコンバータ22,24およびDSP400が設けられる。これは、後述する図6~図8に示す構成も同様である。 Further, the ASIC chip 4 is provided with AD converters 22 and 24 and a DSP 400. This also applies to the configurations shown in FIGS. 6 to 8, which will be described later.
 このように、温度検出用の抵抗R1~R4をMEMSチップ3に設けるため、MEMSチップ3の温度を直接測定でき、MEMSセンサ30の温度との誤差要因が少なくなる。 In this way, since the temperature detection resistors R1 to R4 are provided on the MEMS chip 3, the temperature of the MEMS chip 3 can be directly measured, and the error factors with the temperature of the MEMS sensor 30 are reduced.
<4.抵抗の第2配置例>
 図6は、抵抗R1~R4およびMEMS抵抗Ra~Rdの第2配置例を示す図である。図6に示す構成では、抵抗R1~R4をASICチップ4に設けている。これにより、抵抗Ra,Rcに接続される電源電圧Vdd印加用のパッドP31、ノードNbに接続されるパッドP32、ノードNaに接続されるパッドP33、および抵抗Rb,Rdに接続されるグランド電位印加用のパッドP34がMEMSチップ3に設けられる。ASICチップ4には、パッドP31~P34それぞれとワイヤWrにより接続されるパッドP41~P44が設けられる。
<4. Second arrangement example of resistor>
FIG. 6 is a diagram showing a second arrangement example of the resistors R1 to R4 and the MEMS resistors Ra to Rd. In the configuration shown in FIG. 6, resistors R1 to R4 are provided on the ASIC chip 4. Thereby, pad P31 for applying power supply voltage Vdd connected to resistors Ra and Rc, pad P32 connected to node Nb, pad P33 connected to node Na, and ground potential application connected to resistors Rb and Rd. A pad P34 for this purpose is provided on the MEMS chip 3. The ASIC chip 4 is provided with pads P41 to P44 connected to the pads P31 to P34, respectively, by wires Wr.
 このような構成により、パッドおよびワイヤの数を減らすことができる。また、所定の温度特性を有する抵抗R1~R4をMEMSチップ3と異なるASICチップ4に設けることで、抵抗R1~R4の形成が容易となる。 With such a configuration, the number of pads and wires can be reduced. Further, by providing the resistors R1 to R4 having predetermined temperature characteristics in the ASIC chip 4 different from the MEMS chip 3, the resistors R1 to R4 can be easily formed.
<5.抵抗の第3配置例>
 図7は、抵抗R1~R4およびMEMS抵抗Ra~Rdの第3配置例を示す図である。図7に示す構成では、抵抗R3,R1をMEMSチップ3に設け、抵抗R2,R4をASICチップ4に設けている。
<5. Third arrangement example of resistor>
FIG. 7 is a diagram showing a third arrangement example of resistors R1 to R4 and MEMS resistors Ra to Rd. In the configuration shown in FIG. 7, resistors R3 and R1 are provided on the MEMS chip 3, and resistors R2 and R4 are provided on the ASIC chip 4.
 抵抗Ra,Rcに接続される電源電圧Vdd印加用のパッドP31、ノードNbに接続されるパッドP32、ノードNaに接続されるパッドP33、および抵抗Rb,Rdに接続されるグランド電位印加用のパッドP34がMEMSチップ3に設けられる。抵抗R3の一端は、パッドP31に接続される。抵抗R3の他端に接続されるパッドP35がMEMSチップ3に設けられる。抵抗R1の一端に接続されるパッドP36と、抵抗R1の他端に接続されるパッドP37がMEMSチップ3に設けられる。 Pad P31 for applying power supply voltage Vdd connected to resistors Ra and Rc, pad P32 connected to node Nb, pad P33 connected to node Na, and pad for applying ground potential connected to resistors Rb and Rd. P34 is provided on the MEMS chip 3. One end of resistor R3 is connected to pad P31. A pad P35 connected to the other end of the resistor R3 is provided on the MEMS chip 3. The MEMS chip 3 is provided with a pad P36 connected to one end of the resistor R1 and a pad P37 connected to the other end of the resistor R1.
 ASICチップ4には、パッドP31~P37それぞれとワイヤWrにより接続されるパッドP41~P47が設けられる。パッドP44に接続される一端を有するスイッチSW41がASICチップ4に設けられる。スイッチSW41の他端は、グランド電位の印加端に接続される。抵抗R2の一端は、パッドP41に接続される。抵抗R2の他端は、パッドP46に接続される。抵抗R4の一端は、パッドP45に接続される。抵抗R4の他端およびパッドP47に接続される一端を有するスイッチSW42がASICチップ4に設けられる。スイッチSW42の他端は、グランド電位の印加端に接続される。 The ASIC chip 4 is provided with pads P41 to P47 that are connected to pads P31 to P37, respectively, by wires Wr. A switch SW41 having one end connected to the pad P44 is provided on the ASIC chip 4. The other end of the switch SW41 is connected to a ground potential application end. One end of resistor R2 is connected to pad P41. The other end of resistor R2 is connected to pad P46. One end of resistor R4 is connected to pad P45. A switch SW42 is provided on the ASIC chip 4, and has one end connected to the other end of the resistor R4 and the pad P47. The other end of the switch SW42 is connected to a ground potential application end.
 MEMSセンサ30により圧力を検出する場合には、スイッチSW41をオン状態、スイッチSW42をオフ状態とする。温度センサ1により温度を検出する場合は、スイッチSW41をオフ状態、スイッチSW42をオン状態とする。 When detecting pressure using the MEMS sensor 30, the switch SW41 is turned on and the switch SW42 is turned off. When the temperature is detected by the temperature sensor 1, the switch SW41 is turned off and the switch SW42 is turned on.
 このように、ともに抵抗値に関して正の温度特性を有する抵抗R1,R3をMEMSチップ3に設け、ともに抵抗値に関して負の温度特性を有する抵抗R2,R4をASICチップ4に設けている。抵抗R1,R3は、MEMSセンサ30における抵抗Ra~Rdと同じ抵抗、すなわち同じ温度特性を有する抵抗として形成することができる。また、抵抗R1,R3と逆の温度特性を有する抵抗R2,R4は、ASICチップ4において形成することができる。従って、抵抗R1~R4を形成することが容易となる。また、抵抗R1,R3をMEMSチップ3に設けることで、MEMSセンサ30の温度との誤差要因が小さくなる。さらに、パッドおよびワイヤの数を減らすことができる。 In this way, the MEMS chip 3 is provided with resistors R1 and R3, both of which have positive temperature characteristics with respect to resistance value, and the ASIC chip 4 is provided with resistors R2, R4, both of which have negative temperature characteristics with respect to resistance value. Resistors R1 and R3 can be formed as the same resistance as the resistances Ra to Rd in the MEMS sensor 30, that is, as resistances having the same temperature characteristics. Further, resistors R2 and R4 having temperature characteristics opposite to those of resistors R1 and R3 can be formed in the ASIC chip 4. Therefore, it becomes easy to form the resistors R1 to R4. Moreover, by providing the resistors R1 and R3 in the MEMS chip 3, the error factor with respect to the temperature of the MEMS sensor 30 is reduced. Furthermore, the number of pads and wires can be reduced.
 なお、抵抗R2,R4をMEMSチップ3に設け、抵抗R1,R3をASICチップ4に設けてもよい。 Note that the resistors R2 and R4 may be provided on the MEMS chip 3, and the resistors R1 and R3 may be provided on the ASIC chip 4.
<6.抵抗の第4配置例>
 図8は、抵抗R1~R4およびMEMS抵抗Ra~Rdの第4配置例を示す図である。図8に示す構成の先述した第3配置例(図7)との相違点について説明すると、抵抗Rb,Rdに接続される一端を有するスイッチSW31がMEMSチップ3に設けられる。スイッチSW31の他端および抵抗R3がパッドP34に接続される。パッドP34とワイヤWrにより接続されるパッドP44は、スイッチSW41および抵抗R4に接続される。抵抗R1の一端は、パッドP35に接続される。パッドP35とワイヤWrにより接続されるパッドP45は、抵抗R2に接続される。抵抗R1の他端は、パッドP36に接続される。パッドP36とワイヤWrにより接続されるパッドP46は、スイッチSW42に接続される。
<6. Fourth example of resistor arrangement>
FIG. 8 is a diagram showing a fourth arrangement example of resistors R1 to R4 and MEMS resistors Ra to Rd. To explain the difference between the configuration shown in FIG. 8 and the third arrangement example (FIG. 7) described above, the MEMS chip 3 is provided with a switch SW31 having one end connected to the resistors Rb and Rd. The other end of switch SW31 and resistor R3 are connected to pad P34. Pad P44, which is connected to pad P34 by wire Wr, is connected to switch SW41 and resistor R4. One end of resistor R1 is connected to pad P35. Pad P45, which is connected to pad P35 by wire Wr, is connected to resistor R2. The other end of resistor R1 is connected to pad P36. Pad P46, which is connected to pad P36 by wire Wr, is connected to switch SW42.
 MEMSセンサ30により圧力を検出する場合には、スイッチSW31,SW41をオン状態、スイッチSW42をオフ状態とする。温度センサ1により温度を検出する場合は、スイッチSW31,SW41をオフ状態、スイッチSW42をオン状態とする。 When detecting pressure using the MEMS sensor 30, the switches SW31 and SW41 are turned on and the switch SW42 is turned off. When the temperature is detected by the temperature sensor 1, the switches SW31 and SW41 are turned off and the switch SW42 is turned on.
 このように、図7に示す構成と比べて、スイッチSW31を設けることで、抵抗Rb,Rdに接続されるパッドと、抵抗R3に接続されるパッドを共通化し、パッドおよびワイヤの数をより減らすことができる。 In this way, compared to the configuration shown in FIG. 7, by providing the switch SW31, the pads connected to the resistors Rb and Rd and the pad connected to the resistor R3 are made common, and the number of pads and wires is further reduced. be able to.
<7.その他>
 以上、例示的な実施形態について説明したが、本発明の趣旨の範囲内において、実施形態は種々に変形が可能である。
<7. Others>
Although exemplary embodiments have been described above, the embodiments can be modified in various ways within the scope of the spirit of the present invention.
<8.付記>
 以上の通り、例えば、本開示の一態様に係る温度センサ(1)は、
 電源電圧(Vdd)の印加端とグランド電位の印加端との間に直列に接続される第1抵抗(R1)および第2抵抗(R2)と、前記電源電圧の印加端と前記グランド電位の印加端との間に直列に接続される第3抵抗(R3)および第4抵抗(R4)と、を有する第1抵抗ブリッジ回路(11)を備え、
 前記第1抵抗は、前記グランド電位側に設けられ、抵抗値に関して正の温度特性を有し、
 前記第2抵抗は、前記電源電圧側に設けられ、抵抗値に関して負の温度特性を有し、
 前記第3抵抗は、前記電源電圧側に設けられ、抵抗値に関して正の温度特性を有し、
 前記第4抵抗は、前記グランド電位側に設けられ、抵抗値に関して負の温度特性を有する構成としている(第1の構成、図1)。
<8. Additional notes>
As mentioned above, for example, the temperature sensor (1) according to one aspect of the present disclosure is
A first resistor (R1) and a second resistor (R2) connected in series between an end to which a power supply voltage (Vdd) is applied and an end to which a ground potential is applied, and an end to which the power supply voltage is applied and the ground potential is applied. a first resistor bridge circuit (11) having a third resistor (R3) and a fourth resistor (R4) connected in series between the two ends;
The first resistor is provided on the ground potential side and has positive temperature characteristics with respect to resistance value,
The second resistor is provided on the power supply voltage side and has negative temperature characteristics with respect to resistance value,
The third resistor is provided on the power supply voltage side and has positive temperature characteristics with respect to resistance value,
The fourth resistor is provided on the ground potential side and has a configuration having negative temperature characteristics with respect to resistance value (first configuration, FIG. 1).
 また、本開示の一態様に係るセンサ装置(5)は、上記第1の構成の温度センサ(1)と、前記抵抗ブリッジ回路(11)の後段に設けられるAD変換部(2)と、を備え、
 前記AD変換部は、
  前記第1抵抗と前記第2抵抗とが接続される第1ノード(N1)に接続可能な第1ADコンバータ(22)と、
  前記第3抵抗と前記第4抵抗とが接続される第2ノード(N2)に接続可能な第2ADコンバータ(24)と、
 を有し、
 前記第1ADコンバータおよび前記第2ADコンバータはそれぞれ、基準電圧(Vref)を印加可能な第1入力端を有するアンプ(22A,24A)と、前記アンプの第2入力端と前記アンプの出力端との間に接続されるコンデンサ(C)と、を有し、
 前記第1ADコンバータおよび前記第2ADコンバータはそれぞれ、前記第1ノードの電圧または前記第2ノードの電圧に基づく前記コンデンサの充電、および前記コンデンサの放電を行うことで、AD変換を実行するように構成される(第2の構成、図2)。
Further, a sensor device (5) according to an aspect of the present disclosure includes a temperature sensor (1) having the first configuration and an AD converter (2) provided at a subsequent stage of the resistor bridge circuit (11). Prepare,
The AD converter includes:
a first AD converter (22) connectable to a first node (N1) to which the first resistor and the second resistor are connected;
a second AD converter (24) connectable to a second node (N2) to which the third resistor and the fourth resistor are connected;
has
The first AD converter and the second AD converter each include an amplifier (22A, 24A) having a first input terminal to which a reference voltage (Vref) can be applied, and a second input terminal of the amplifier and an output terminal of the amplifier. a capacitor (C) connected between;
The first AD converter and the second AD converter are each configured to perform AD conversion by charging the capacitor and discharging the capacitor based on the voltage at the first node or the voltage at the second node. (second configuration, Figure 2).
 また、上記第2の構成において、前記基準電圧(Vref)は、前記電源電圧(Vdd)に基づく電圧であり、
 前記第1ADコンバータ(22)においては、グランド電位側へ放電電流(Io)が流れることで前記コンデンサの放電が行われ、
 前記第2ADコンバータ(24)においては、前記電源電圧側から放電電流(Io)が流れることで前記コンデンサの放電が行われる構成としてもよい(第3の構成、図2)。
Further, in the second configuration, the reference voltage (Vref) is a voltage based on the power supply voltage (Vdd),
In the first AD converter (22), the capacitor is discharged by a discharge current (Io) flowing toward the ground potential side,
The second AD converter (24) may have a configuration in which the capacitor is discharged by a discharge current (Io) flowing from the power supply voltage side (third configuration, FIG. 2).
 また、上記第2または第3の構成において、前記第1ADコンバータ(22)における前記アンプ(22A)の出力と、前記第2ADコンバータ(24)における前記アンプ(24A)の出力が入力されるように構成されるコンパレータ(25)を備える構成としてもよい(第4の構成、図2)。 Further, in the second or third configuration, the output of the amplifier (22A) in the first AD converter (22) and the output of the amplifier (24A) in the second AD converter (24) are input. (4th configuration, FIG. 2).
 また、上記第2から第4のいずれかの構成において、前記電源電圧(Vdd)の印加端と前記グランド電位の印加端との間に直列に接続される第1MEMS抵抗(Ra)および第2MEMS抵抗(Rb)と、前記電源電圧の印加端と前記グランド電位の印加端との間に直列に接続される第3MEMS抵抗(Rc)および第4MEMS抵抗(Rd)と、を含む第2抵抗ブリッジ回路(301)を有するMEMSセンサ(30)を備え、
 前記第1MEMS抵抗と前記第2MEMS抵抗とが接続される第3ノード(Na)は、前記第1ADコンバータ(22)に接続可能であり、
 前記第3MEMS抵抗と前記第4MEMS抵抗とが接続される第4ノード(Nb)は、前記第2ADコンバータ(24)に接続可能である構成としてもよい(第5の構成、図1)。
Further, in any one of the second to fourth configurations, a first MEMS resistor (Ra) and a second MEMS resistor are connected in series between an end to which the power supply voltage (Vdd) is applied and an end to which the ground potential is applied. (Rb); a third MEMS resistor (Rc) and a fourth MEMS resistor (Rd) connected in series between the power supply voltage application terminal and the ground potential application terminal; 301);
A third node (Na) to which the first MEMS resistor and the second MEMS resistor are connected can be connected to the first AD converter (22),
The fourth node (Nb) to which the third MEMS resistor and the fourth MEMS resistor are connected may be configured to be connectable to the second AD converter (24) (fifth configuration, FIG. 1).
 また、上記第5の構成において、前記第1~第4抵抗(R1~R4)および前記第1~第4MEMS抵抗(Ra~Rd)が設けられる第1チップ(3)を備える構成としてもよい(第6の構成、図5)。 Further, in the fifth configuration, the first chip (3) may be provided with the first to fourth resistors (R1 to R4) and the first to fourth MEMS resistors (Ra to Rd). Sixth configuration, Figure 5).
 また、上記第5の構成において、前記第1~第4MEMS抵抗(Ra~Rd)が設けられる第1チップ(3)と、前記第1~第4抵抗(R1~R4)が設けられる第2チップ(4)と、を備える構成としてもよい(第7の構成、図6)。 Further, in the fifth configuration, a first chip (3) in which the first to fourth MEMS resistors (Ra to Rd) are provided, and a second chip in which the first to fourth resistors (R1 to R4) are provided. (4) (Seventh configuration, FIG. 6).
 また、上記第5の構成において、前記第1~第4MEMS抵抗(Ra~Rd)が設けられる第1チップ(3)と、第2チップ(4)と、を備え、
 前記第1抵抗(R1)および前記第3抵抗(R3)が前記第1チップに設けられ、かつ前記第2抵抗(R2)および前記第4抵抗(R4)が前記第2チップに設けられ、あるいは、前記第2抵抗および前記第4抵抗が前記第1チップに設けられ、かつ前記第1抵抗および前記第3抵抗が前記第2チップに設けられる構成としてもよい(第8の構成、図7、図8)。
Further, the fifth configuration includes a first chip (3) on which the first to fourth MEMS resistors (Ra to Rd) are provided, and a second chip (4),
The first resistor (R1) and the third resistor (R3) are provided on the first chip, and the second resistor (R2) and the fourth resistor (R4) are provided on the second chip, or , the second resistor and the fourth resistor may be provided on the first chip, and the first resistor and the third resistor may be provided on the second chip (eighth configuration, FIG. 7, Figure 8).
 また、上記第8の構成において、前記第2MEMS抵抗(Rb)および前記第4MEMS抵抗(Rd)と前記グランド電位の印加端との間に接続される第1スイッチ(SW41)と、前記第1抵抗(R1)および前記第4抵抗(R4)と前記グランド電位の印加端との間に接続される第2スイッチ(SW42)と、が前記第2チップ(4)に設けられる構成としてもよい(第9の構成、図7、図8)。 Further, in the eighth configuration, a first switch (SW41) connected between the second MEMS resistor (Rb) and the fourth MEMS resistor (Rd) and the ground potential application terminal, and the first resistor (R1) and a second switch (SW42) connected between the fourth resistor (R4) and the end to which the ground potential is applied may be provided in the second chip (4). 9 configuration, Fig. 7, Fig. 8).
 また、上記第9の構成において、前記第3抵抗(R3)あるいは前記第2抵抗(R2)が接続されるパッド(P34)と、前記第2MEMS抵抗(Rb)および前記第4MEMS抵抗(Rd)と前記パッドとの間に接続される第3スイッチ(SW31)と、が前記第1チップ(3)に設けられる構成としてもよい(第10の構成、図8)。 In the ninth configuration, the pad (P34) to which the third resistor (R3) or the second resistor (R2) is connected, the second MEMS resistor (Rb) and the fourth MEMS resistor (Rd) A third switch (SW31) connected between the pad and the first chip (3) may be provided in the first chip (3) (a tenth configuration, FIG. 8).
 本開示は、例えば、MEMSセンサの温度補正に利用することが可能である。 The present disclosure can be used, for example, for temperature correction of MEMS sensors.
   1   温度センサ
   2   AD変換部
   3   MEMSチップ
   4   ASICチップ
   5   センサ装置
   10   温度センサ
   11   抵抗ブリッジ回路
   20   AD変換部
   21   第1ボルテージフォロワ
   22   第1ADコンバータ
   22A  アンプ
   23   第2ボルテージフォロワ
   24   第2ADコンバータ
   24A  アンプ
   25   コンパレータ
   30   MEMSセンサ
   50   センサ装置
   101   定電流源
   102   ダイオード
   301   抵抗ブリッジ回路
   C   コンデンサ
   P31~P38 パッド
   P41~P48 パッド
   R1,R2,R3,R4 抵抗
   Ra,Rb,Rc,Rd MEMS抵抗
   Ri   入力抵抗
   Ro   放電抵抗
   SW1,SW2,SW11,SW12 スイッチ
   SW31   スイッチ
   SW41   スイッチ
   SW42   スイッチ
   SWi   入力スイッチ
   SWo   放電スイッチ
   Wr   ワイヤ
1 Temperature sensor 2 AD converter 3 MEMS chip 4 ASIC chip 5 Sensor device 10 Temperature sensor 11 Resistance bridge circuit 20 AD converter 21 1st voltage follower 22 1st AD converter 22A amplifier 23 2nd voltage follower 24 2nd AD converter 24A amplifier 25 Comparator 30 MEMS sensor 50 Sensor device 101 Constant current source 102 Diode 301 Resistance bridge circuit C Capacitor P31 to P38 Pad P41 to P48 Pad R1, R2, R3, R4 Resistance Ra, Rb, Rc, Rd MEMS resistance Ri Input resistance Ro Discharge resistance SW1, SW2, SW11, SW12 Switch SW31 Switch SW41 Switch SW42 Switch SWi Input switch SWo Discharge switch Wr Wire

Claims (10)

  1.  電源電圧の印加端とグランド電位の印加端との間に直列に接続される第1抵抗および第2抵抗と、前記電源電圧の印加端と前記グランド電位の印加端との間に直列に接続される第3抵抗および第4抵抗と、を有する第1抵抗ブリッジ回路を備え、
     前記第1抵抗は、前記グランド電位側に設けられ、抵抗値に関して正の温度特性を有し、
     前記第2抵抗は、前記電源電圧側に設けられ、抵抗値に関して負の温度特性を有し、
     前記第3抵抗は、前記電源電圧側に設けられ、抵抗値に関して正の温度特性を有し、
     前記第4抵抗は、前記グランド電位側に設けられ、抵抗値に関して負の温度特性を有する、温度センサ。
    A first resistor and a second resistor connected in series between the power supply voltage application end and the ground potential application end; and a first resistor and a second resistor connected in series between the power supply voltage application end and the ground potential application end. a first resistor bridge circuit having a third resistor and a fourth resistor;
    The first resistor is provided on the ground potential side and has positive temperature characteristics with respect to resistance value,
    The second resistor is provided on the power supply voltage side and has negative temperature characteristics with respect to resistance value,
    The third resistor is provided on the power supply voltage side and has positive temperature characteristics with respect to resistance value,
    A temperature sensor in which the fourth resistor is provided on the ground potential side and has negative temperature characteristics with respect to resistance value.
  2.  請求項1に記載の温度センサと、前記抵抗ブリッジ回路の後段に設けられるAD変換部と、を備え、
     前記AD変換部は、
      前記第1抵抗と前記第2抵抗とが接続される第1ノードに接続可能な第1ADコンバータと、
      前記第3抵抗と前記第4抵抗とが接続される第2ノードに接続可能な第2ADコンバータと、
     を有し、
     前記第1ADコンバータおよび前記第2ADコンバータはそれぞれ、基準電圧を印加可能な第1入力端を有するアンプと、前記アンプの第2入力端と前記アンプの出力端との間に接続されるコンデンサと、を有し、
     前記第1ADコンバータおよび前記第2ADコンバータはそれぞれ、前記第1ノードの電圧または前記第2ノードの電圧に基づく前記コンデンサの充電、および前記コンデンサの放電を行うことで、AD変換を実行するように構成される、センサ装置。
    The temperature sensor according to claim 1, and an AD conversion section provided at a subsequent stage of the resistance bridge circuit,
    The AD converter includes:
    a first AD converter connectable to a first node to which the first resistor and the second resistor are connected;
    a second AD converter connectable to a second node to which the third resistor and the fourth resistor are connected;
    has
    The first AD converter and the second AD converter each include an amplifier having a first input terminal to which a reference voltage can be applied, and a capacitor connected between a second input terminal of the amplifier and an output terminal of the amplifier; has
    The first AD converter and the second AD converter are each configured to perform AD conversion by charging the capacitor and discharging the capacitor based on the voltage at the first node or the voltage at the second node. sensor device.
  3.  前記基準電圧は、前記電源電圧に基づく電圧であり、
     前記第1ADコンバータにおいては、グランド電位側へ放電電流が流れることで前記コンデンサの放電が行われ、
     前記第2ADコンバータにおいては、前記電源電圧側から放電電流が流れることで前記コンデンサの放電が行われる、請求項2に記載のセンサ装置。
    The reference voltage is a voltage based on the power supply voltage,
    In the first AD converter, the capacitor is discharged by a discharge current flowing toward the ground potential side,
    3. The sensor device according to claim 2, wherein in the second AD converter, the capacitor is discharged by a discharge current flowing from the power supply voltage side.
  4.  前記第1ADコンバータにおける前記アンプの出力と、前記第2ADコンバータにおける前記アンプの出力が入力されるように構成されるコンパレータを備える、請求項2または請求項3に記載のセンサ装置。 The sensor device according to claim 2 or 3, comprising a comparator configured to receive the output of the amplifier in the first AD converter and the output of the amplifier in the second AD converter.
  5.  前記電源電圧の印加端と前記グランド電位の印加端との間に直列に接続される第1MEMS抵抗および第2MEMS抵抗と、前記電源電圧の印加端と前記グランド電位の印加端との間に直列に接続される第3MEMS抵抗および第4MEMS抵抗と、を含む第2抵抗ブリッジ回路を有するMEMSセンサを備え、
     前記第1MEMS抵抗と前記第2MEMS抵抗とが接続される第3ノードは、前記第1ADコンバータに接続可能であり、
     前記第3MEMS抵抗と前記第4MEMS抵抗とが接続される第4ノードは、前記第2ADコンバータに接続可能である、請求項2から請求項4のいずれか1項に記載のセンサ装置。
    a first MEMS resistor and a second MEMS resistor connected in series between the power supply voltage application end and the ground potential application end; and a first MEMS resistor and a second MEMS resistor connected in series between the power supply voltage application end and the ground potential application end. a MEMS sensor having a second resistor bridge circuit including a third MEMS resistor and a fourth MEMS resistor connected;
    A third node to which the first MEMS resistor and the second MEMS resistor are connected can be connected to the first AD converter,
    The sensor device according to any one of claims 2 to 4, wherein a fourth node to which the third MEMS resistor and the fourth MEMS resistor are connected is connectable to the second AD converter.
  6.  前記第1~第4抵抗および前記第1~第4MEMS抵抗が設けられる第1チップを備える、請求項5に記載のセンサ装置。 The sensor device according to claim 5, comprising a first chip on which the first to fourth resistors and the first to fourth MEMS resistors are provided.
  7.  前記第1~第4MEMS抵抗が設けられる第1チップと、前記第1~第4抵抗が設けられる第2チップと、を備える、請求項5に記載のセンサ装置。 The sensor device according to claim 5, comprising a first chip on which the first to fourth MEMS resistors are provided, and a second chip on which the first to fourth resistors are provided.
  8.  前記第1~第4MEMS抵抗が設けられる第1チップと、第2チップと、を備え、
     前記第1抵抗および前記第3抵抗が前記第1チップに設けられ、かつ前記第2抵抗および前記第4抵抗が前記第2チップに設けられ、あるいは、前記第2抵抗および前記第4抵抗が前記第1チップに設けられ、かつ前記第1抵抗および前記第3抵抗が前記第2チップに設けられる、請求項5に記載のセンサ装置。
    comprising a first chip on which the first to fourth MEMS resistors are provided, and a second chip,
    The first resistor and the third resistor are provided on the first chip, and the second resistor and the fourth resistor are provided on the second chip, or the second resistor and the fourth resistor are provided on the first chip. The sensor device according to claim 5, wherein the sensor device is provided on a first chip, and the first resistor and the third resistor are provided on the second chip.
  9.  前記第2MEMS抵抗および前記第4MEMS抵抗と前記グランド電位の印加端との間に接続される第1スイッチと、前記第1抵抗および前記第4抵抗と前記グランド電位の印加端との間に接続される第2スイッチと、が前記第2チップに設けられる、請求項8に記載のセンサ装置。 a first switch connected between the second MEMS resistor and the fourth MEMS resistor and the ground potential application terminal; a first switch connected between the first resistor and the fourth resistor and the ground potential application terminal; The sensor device according to claim 8, wherein a second switch is provided on the second chip.
  10.  前記第3抵抗あるいは前記第2抵抗が接続されるパッドと、前記第2MEMS抵抗および前記第4MEMS抵抗と前記パッドとの間に接続される第3スイッチと、が前記第1チップに設けられる、請求項9に記載のセンサ装置。 The first chip is provided with a pad to which the third resistor or the second resistor is connected, and a third switch connected between the second MEMS resistor, the fourth MEMS resistor, and the pad. The sensor device according to item 9.
PCT/JP2023/009335 2022-03-31 2023-03-10 Temperature sensor and sensor device WO2023189429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-060364 2022-03-31
JP2022060364 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023189429A1 true WO2023189429A1 (en) 2023-10-05

Family

ID=88200840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009335 WO2023189429A1 (en) 2022-03-31 2023-03-10 Temperature sensor and sensor device

Country Status (1)

Country Link
WO (1) WO2023189429A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388733U (en) * 1986-11-29 1988-06-09
JP2003121268A (en) * 2001-10-09 2003-04-23 Fujitsu Ltd Semi-conductor device
JP2006284301A (en) * 2005-03-31 2006-10-19 Mitsubishi Materials Corp Temperature detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388733U (en) * 1986-11-29 1988-06-09
JP2003121268A (en) * 2001-10-09 2003-04-23 Fujitsu Ltd Semi-conductor device
JP2006284301A (en) * 2005-03-31 2006-10-19 Mitsubishi Materials Corp Temperature detector

Similar Documents

Publication Publication Date Title
US10826523B2 (en) Analog-to-digital converter, measurement arrangement and method for analog-to-digital conversion
EP1894026B1 (en) Capacitance-to-voltage conversion method and apparatus
EP3627699B1 (en) Amplifier with common mode detection
WO2007007765A1 (en) Current-voltage conversion circuit and power consumption detection circuit and electronic device using the same
WO2023189429A1 (en) Temperature sensor and sensor device
US20060162454A1 (en) Capacitive acceleration sensor arrangement
JP4893053B2 (en) Physical quantity detection device
JP5331572B2 (en) Non-inverting amplifier circuit and measuring machine
JP3584803B2 (en) Pressure sensor circuit
TW310387B (en)
JP3806637B2 (en) Semiconductor pressure detector
JP4977829B2 (en) High precision level improved window comparator for DC-DC converter
JP2024043887A (en) Integrated circuit and semiconductor device
JP2006170797A (en) Unbalance capacity detecting device, sensor unbalance capacity detecting method, and transducer used therefor
JP4178663B2 (en) Pressure sensor circuit
JP3544102B2 (en) Semiconductor pressure sensor
JP2000105890A (en) Input circuit for temperature transmitter
JP3888196B2 (en) Sensor output characteristics adjustment method
JP6879189B2 (en) A / D converter
JP2021167741A (en) Signal processing circuit and load detection device
JP5315184B2 (en) Temperature detection circuit
WO2004093311A1 (en) Differential voltage amplifier circuit
JP3310864B2 (en) Output current measurement circuit of stabilized DC power supply
CN115597634A (en) Resistance value conversion circuit
CN114189221A (en) Constant current source power supply charge amplification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779453

Country of ref document: EP

Kind code of ref document: A1