WO2023189315A1 - Liquid matter assessment method and liquid matter assessment device - Google Patents

Liquid matter assessment method and liquid matter assessment device Download PDF

Info

Publication number
WO2023189315A1
WO2023189315A1 PCT/JP2023/008735 JP2023008735W WO2023189315A1 WO 2023189315 A1 WO2023189315 A1 WO 2023189315A1 JP 2023008735 W JP2023008735 W JP 2023008735W WO 2023189315 A1 WO2023189315 A1 WO 2023189315A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid material
liquid
resin
peak intensity
fluorescent marker
Prior art date
Application number
PCT/JP2023/008735
Other languages
French (fr)
Japanese (ja)
Inventor
卓哉 小出
康敏 伊藤
葉月 中江
翔太 橋本
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2023189315A1 publication Critical patent/WO2023189315A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a liquid material evaluation method and a liquid material evaluation device, and in particular, to a liquid material evaluation method that can constantly detect minute fluctuations in water content, impurities, etc. in a liquid material without using a reactive fluorescent marker. Concerning methods of evaluating things.
  • optical films such as polarizing plate protective films and retardation films for display devices such as liquid crystal displays and organic electroluminescent displays, as well as base films such as touch panel base films and gas barrier base films, have become available.
  • polarizing plate protective films and retardation films for display devices such as liquid crystal displays and organic electroluminescent displays
  • base films such as touch panel base films and gas barrier base films
  • In-process products are composed of resins, additives, and solvents, and the quality of these products is affected by lot variations caused by different manufacturers.
  • microscopic impurities were mixed in during storage or when piped, etc., which affected product quality.
  • Patent Documents 1 and 2 describe an evaluation system for monitoring fluctuations such as quality variations as described above, in which a fluorescent substance is added as a medium and the fluorescent substance reacts to remove trace impurities in the sample. A method of quantifying is disclosed. Further, Patent Document 3 discloses a moisture detection method using a fluorescent substance that indirectly emits fluorescence by directly reacting with water to generate hydrogen peroxide.
  • the present invention was made in view of the above-mentioned problems and circumstances, and its problem to be solved is to constantly detect minute fluctuations in water content, impurities, etc. in liquid materials without using reactive fluorescent marker agents.
  • An object of the present invention is to provide a method for evaluating a liquid substance and an apparatus for evaluating a liquid substance.
  • the present inventor added a fluorescent marker compound as a non-reactive additive to a liquid material in the process of investigating the causes of the above problem, and thereby changed the peak intensity of the fluorescence spectrum of the liquid material. It was discovered that by measuring the amount, minute fluctuations in the amount of water or impurities in a liquid can be constantly detected without using a reactive fluorescent marker agent, leading to the present invention. That is, the above-mentioned problems related to the present invention are solved by the following means.
  • a method for evaluating a liquid material containing at least a solvent, a resin, and a non-reactive additive comprising: the non-reactive additive is a fluorescent marker compound, a fluorescence spectrum observation step of acquiring a fluorescence spectrum at an arbitrary excitation wavelength of the liquid;
  • a method for evaluating a liquid material comprising: a spectral analysis step of acquiring data regarding a peak intensity shift degree based on the interaction between the fluorescent marker compound in the liquid material and the test object from the acquired fluorescence spectrum.
  • paragraphs 1 to 4 comprising a data processing step of calculating the content of the test object using a calibration curve based on the peak intensity included in the data regarding the degree of peak intensity shift. Evaluation method of the liquid material described.
  • An apparatus for evaluating a liquid material containing at least a solvent, a resin, and a non-reactive additive is a fluorescent marker compound, a fluorescence spectrum observation unit that acquires a fluorescence spectrum of the liquid at an arbitrary excitation wavelength;
  • An evaluation device for a liquid substance comprising: a spectrum analysis unit that acquires data regarding a peak intensity shift degree based on the interaction between the fluorescent marker compound in the liquid substance and the test object from the acquired fluorescence spectrum.
  • liquid material evaluation device further comprising a data processing unit that calculates the content of the test object based on the peak intensity included in the data regarding the peak intensity shift degree using a calibration curve.
  • liquid substance evaluation device according to item 6 or 7, further comprising an information display unit that displays data regarding the peak intensity shift degree.
  • a liquid substance evaluation method and a liquid substance evaluation apparatus that can constantly detect minute fluctuations in water content, impurities, etc. in a liquid substance without using a reactive fluorescent marker agent. can do.
  • non-reactive additive non-reactive fluorescent marker compound
  • a non-reactive additive non-reactive fluorescent marker compound
  • the fluorescence spectrum was measured.
  • the peak intensity of the non-reactive fluorescent marker compound shifted. I found out that it does.
  • the reason why a highly accurate evaluation method was achieved without involving a chemical reaction between the fluorescent marker compound that does not react with the resin and the test object is as follows.
  • the density becomes higher than when the two components are present, and intermolecular interactions are more likely to occur. becomes significantly more likely to occur. Furthermore, it is estimated that due to the interaction between the resin and the test object, it is possible to indirectly detect even if the signal of a non-reactive fluorescent marker compound is minute. Furthermore, the amount of information obtained from multiple wavelength signals from the non-reactive fluorescent marker compound, the test object, and the resin has increased compared to the case of a single wavelength, making it easier to detect changes in fluorescence intensity.
  • a fluorescent marker compound as a non-reactive additive to a liquid and measuring the amount of change in the peak intensity of the fluorescence spectrum of the liquid, it is possible to It is possible to constantly detect minute changes in moisture content, impurities, etc. in substances. As a result, since the minute fluctuations can be detected in real time, the time required for feedback in the manufacturing process can be significantly reduced, and manufacturing efficiency can be improved.
  • a diagram schematically showing a configuration example of a liquid material evaluation device of the present invention Flowchart showing a computer control procedure executed by the liquid material evaluation device of the present invention
  • the method for evaluating a liquid product of the present invention is a method for evaluating a liquid product containing at least a solvent, a resin, and a non-reactive additive, wherein the non-reactive additive is a fluorescent marker compound, and the non-reactive additive is a fluorescent marker compound.
  • the difference ⁇ SP in solubility parameters between the fluorescent marker compound and the test object in the liquid is within a range of 6 to 22. This is preferable because interaction with the compound is likely to occur and the degree of shift in peak intensity can be easily obtained. Moreover, it is preferable in that it is easy to obtain transparency in products using liquid substances.
  • the content of the non-reactive additive in the range of 1 to 5,000 ppm by mass based on the liquid material makes it possible to achieve both the haze of the optical film using the liquid material and the measurement sensitivity of the fluorescence spectrum. This is preferable because it allows you to
  • a data processing step of calculating the content of the test object using a calibration curve based on the peak intensity included in the data regarding the peak intensity shift degree is preferable in terms of improving manufacturing efficiency.
  • the evaluation device of the present invention is an evaluation device for a liquid material containing at least a solvent, a resin, and a non-reactive additive, wherein the non-reactive additive is a fluorescent marker compound, and an arbitrary excitation wavelength of the liquid material is provided.
  • a fluorescence spectrum observation unit that acquires a fluorescence spectrum; and a spectrum analysis that acquires data regarding the degree of peak intensity shift based on the interaction between the fluorescent marker compound in the liquid and the test object from the acquired fluorescence spectrum. It is equipped with a section and a section. Thereby, minute fluctuations in the amount of water, impurities, etc. in the liquid can be constantly detected without using a reactive fluorescent marker.
  • the evaluation device of the present invention also includes a data processing unit that calculates the content of the test object using a calibration curve based on the peak intensity included in the data regarding the peak intensity shift degree; It is preferable to include an information display unit that displays data related to the information.
  • is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
  • the method for evaluating a liquid product of the present invention is a method for evaluating a liquid product containing at least a solvent, a resin, and a non-reactive additive, wherein the non-reactive additive is a fluorescent marker compound, and the non-reactive additive is a fluorescent marker compound.
  • the method for evaluating a liquid material of the present invention may include a data processing step of calculating the content of the test object using a calibration curve based on the peak intensity included in the data regarding the degree of peak intensity shift. , it is possible to detect variations in the content of the substance to be inspected, which is preferable in terms of improving manufacturing efficiency.
  • the "liquid material” may contain at least a solvent, a resin, and a non-reactive additive, and the amount of residual solvent may be 1000 mass ppm or more.
  • Specific examples of such liquids include, for example, dope for forming an optical film, an adhesive liquid for bonding an optical film and a polarizer, a coating liquid for forming a hard coat layer to protect the film, A coating liquid for forming an antistatic layer, a water-based coating liquid used for forming a near-infrared reflective film (e.g., a coating liquid for forming a high refractive index layer, a coating liquid for forming a low refractive index layer), or a coating liquid using these coating liquids.
  • Residual solvent after coating coating material for coating products used in ink applications, electrolyte in batteries, coating solution for protecting positive electrode active materials, coating solution for coating automobile parts, Examples include engine oil, photosensitive materials before UV curing in the semiconductor field, and solutions containing polymers such as gelatin in the food field. Note that details of the dope, the coating liquid for forming a hard coat layer, the coating liquid for forming an antistatic layer, and the coating liquid for forming a high refractive index layer and a low refractive index layer will be described later.
  • the "non-reactive additive" according to the present invention refers to a compound that does not form a covalent bond or an ionic bond (does not change its structure) with at least an object to be tested.
  • the non-reactive additive according to the present invention is a compound that can change the degree of peak intensity shift through interaction with the test object due to hydrogen bonding, van der Waals forces, or the like.
  • the non-reactive additive it is preferable for the non-reactive additive to be a compound that does not have a single absorption wavelength in the visible light region for application in the optical region, since the liquid material will not be colored.
  • Non-reactive additives include, for example, non-reactive fluorescent marker compounds.
  • non-reactive fluorescent marker compounds may be used as long as they emit fluorescence, and those that have functions derived from antioxidants, dyes, phase difference regulators, wavelength regulators, size regulators, and additives may be used. Also good.
  • antioxidant commonly known ones can be used, and lactone-based, sulfur-based, phenol-based, double bond-based, hindered amine-based, and phosphorus-based compounds are particularly preferred. Can be used.
  • the above-mentioned phenolic compound preferably has a 2,6-dialkylphenol structure, such as "Irganox 1076" and “Irganox 1010” commercially available from BASF Japan Co., Ltd., and "Irganox 1010" commercially available from ADEKA Co., Ltd. Examples include "ADEKA STAB AO-50".
  • the dye examples include compounds having absorption wavelengths in the near-infrared region and compounds having absorption wavelengths in the near-ultraviolet region.
  • the compound having an absorption wavelength in the near-infrared region also referred to as a "near-infrared absorbing composition” may be used as an additive for adjusting absorption waveforms. It is preferable to add at least one kind of absorption modifier from the viewpoint of spectral characteristics.
  • the near-infrared absorption modifier used in the present invention it is preferable to use a near-infrared absorption dye having a maximum absorption wavelength in the wavelength range of 650 to 800 nm.
  • NIR dyes Near-infrared absorbing dyes suitable for the present invention include, for example, cyanine dyes, squarylium dyes, croconium dyes, azo dyes, anthraquinone dyes, naphthoquinone dyes, phthalocyanine dyes, naphthalocyanine dyes, quaterylene dyes, and dithiol metal complex dyes. Examples include dyes and the like. Among these, cyanine dyes and squarylium dyes are preferred, and squarylium dyes are particularly preferred, from the viewpoint of detecting changes in fluorescence intensity depending on the amount of variation in the object to be inspected.
  • the compound having an absorption wavelength in the near-ultraviolet region may be used as an additive for adjusting the absorption waveform. It is preferable to add at least one kind of agent from the viewpoint of spectral characteristics.
  • the near-ultraviolet absorption modifier used in the present invention it is preferable to use a near-ultraviolet absorbing dye having a maximum absorption wavelength in the wavelength range of 300 to 400 nm.
  • NUV dyes include, for example, merocyanine dyes, benzotriazole-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, salicylate-based ultraviolet absorbers, cyanoacrylate-based ultraviolet absorbers, and triazine-based ultraviolet absorbers
  • NUV dyes include, for example, merocyanine dyes, benzotriazole-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, salicylate-based ultraviolet absorbers, cyanoacrylate-based ultraviolet absorbers, and triazine-based ultraviolet absorbers
  • Examples include absorbers, oxanilide-based UV absorbers, nickel complex salt-based UV absorbers, and inorganic UV absorbers.
  • merocyanine-based Dyes are particularly preferred.
  • the "resin” in the present invention can be changed as appropriate depending on the use of the liquid material, and may be a thermoplastic resin or a thermosetting resin. Specific examples include cycloolefin resin (COP resin), triacetyl cellulose resin (TAC resin), acrylic resin, urethane resin, polyvinyl alcohol resin, polyimide resin, and the like.
  • COP resin cycloolefin resin
  • TAC resin triacetyl cellulose resin
  • acrylic resin urethane resin
  • polyvinyl alcohol resin polyimide resin
  • the “solvent” in the present invention can be changed as appropriate depending on the use of the liquid material, and includes organic solvents, water, and the like.
  • organic solvents include, as will be described later, chlorinated solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; methanol, ethanol, isopropanol, n-butanol, and 2-butanol.
  • Alcohol solvents such as butanol; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethyl formamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether; and the like.
  • solvents may be used alone or in combination of two or more.
  • the "test object” refers to elemental ions and charged compounds (ionic compounds and polar compounds), and when the charged elemental ions and compounds mix into the liquid material, they do not react. It causes an interaction between the additive and the test object, and has the role of changing the degree of shift in peak intensity of non-reactive additives. That is, the test object is the fluorescence obtained by exciting the non-reactive additive at an arbitrary excitation wavelength using a spectrofluorometer and measuring part or all of the fluorescence wavelength of 250 to 950 nm. A compound that fluctuates fluorescence intensity at the excitation wavelength and fluorescence wavelength at the maximum fluorescence intensity in the spectrum.
  • Test objects suitable for the present invention include water, lithium, sodium, potassium, magnesium, calcium, strontium, metal ions such as chromium, iron, and copper, halogen element ions such as fluorine, chlorine, and bromine, benzene, and acetone. , ethanol, methanol, formamide, etc.
  • peak intensity shift degree refers to the change in the fluorescence wavelength and fluorescence intensity of a characteristic peak of a non-reactive additive (fluorescent marker compound) depending on the amount of change in the test object in the liquid. , refers to the amount of change in the fluorescence intensity of the fluctuated peak. From the peak intensity shift degree, not only can the amount of variation in the content of the test object be estimated, but also the test object can be identified.
  • the difference ⁇ SP in solubility parameters between the non-reactive additive (fluorescent marker compound) and the test object is preferably within the range of 6 to 22, and preferably within the range of 14 to 22. It is more preferable that there be.
  • the solubility parameter difference ⁇ SP is within the above range, interaction between the non-reactive additive and the test object is likely to occur, and the peak intensity shift degree can be easily obtained. Furthermore, it is easy to obtain transparency in products using liquid materials.
  • the reason why ⁇ SP is set to 6 or more is because when the SP values of the fluorescent marker compound and the test object become close, the fluorescent marker compound and the test object have excellent compatibility, and therefore, the fluorescent marker compound and the test object have excellent compatibility. This is to prevent such a situation that the peak intensity shift degree corresponding to the amount of the mixed substance to be tested cannot be obtained correctly because the particles aggregate without any structural change.
  • the solubility parameter is an index for evaluating the physical properties of a substance, particularly the solubility behavior of a solvent, and Hildebrand's SP value (solubility parameter; ⁇ ) is conventionally used.
  • the "SP value” is a physical property value specific to a substance expressed as the square root of the cohesive energy density of the substance.
  • HSP value The Hansen solubility parameter (HSP value) is based on the idea that "two substances with similar intermolecular interactions are likely to dissolve in each other," and is composed of the following three parameters. can be regarded as coordinates in a three-dimensional space (also called “Hansen space”). It is considered that the closer the distance between the coordinates of two substances, the higher their affinity for each other and the easier they are to dissolve.
  • ⁇ D Energy due to intermolecular dispersion force
  • ⁇ P Energy due to intermolecular dipole interaction
  • ⁇ H Energy due to intermolecular hydrogen bonding
  • the method of calculating ⁇ D, ⁇ P, and ⁇ H in the Hansen solubility parameters is not particularly limited, and may be calculated by inputting the chemical structure into software, or may be calculated experimentally. It is preferable to input and calculate.
  • HSP value a registered value or an estimated value in HSPiP 5th Edition 5.0.10.1, which is commercially available software, can be used. This software is available at https://www. hansen-solubility. It can be obtained from sites such as com/. Furthermore, methods for estimating HSP based on such software include, for example, C. M. The document “Hansen Solubility Parameters: A User's Handbook, Second Edition” by Hansen et al. Press, 2007).
  • the SP value of the fluorescent marker compound contained in the liquid of the present invention is preferably within the range of 5 to 10
  • the SP value of the resin is preferably within the range of 10 to 20
  • the SP value of the test object is preferably within the range of 10 to 20
  • the SP value of the test object is preferably within the range of 9 to 30.
  • the difference ⁇ SP in solubility parameters between the solvent and the resin is preferably within the range of 6 to 22.
  • the fluorescence spectrum observation step is a step of acquiring a fluorescence spectrum of a liquid material at an arbitrary excitation wavelength.
  • “Arbitrary excitation wavelength” refers to the fluorescent fingerprint of the liquid or the fluorescence spectrum obtained by changing the excitation wavelength by several nanometers in advance, and among the obtained fluorescence spectra, it indicates the fluorescence spectrum that is effective for measurement.
  • Select the excitation wavelength as an arbitrary excitation wavelength.
  • Such an excitation wavelength is, for example, preferably within the range of 200 to 900 nm, and more preferably within the ranges of 200 to 400 nm and 680 to 900 nm.
  • the means to obtain a fluorescence spectrum by irradiating a liquid material with light of an arbitrary excitation wavelength includes an irradiation unit that irradiates the liquid material with light of an excitation wavelength, and a method that captures the fluorescence from the liquid material excited by the light of the excitation wavelength. It is preferable to have a configuration including a light receiving unit that receives light. The details of the irradiation unit and the light receiving unit will be explained later in connection with the liquid substance evaluation device.
  • the irradiation unit irradiates the liquid material with light of an arbitrary excitation wavelength, and the light receiving unit receives the fluorescence from the liquid material excited by the irradiation.
  • each fluorescence spectrum may be acquired using a plurality of excitation wavelengths.
  • the spectrum analysis step is a step of acquiring data regarding the peak intensity shift degree based on the interaction between the fluorescent marker compound in the liquid and the test object from the fluorescence spectrum acquired in the fluorescence spectrum observation step.
  • the "data regarding the peak intensity shift degree" includes data on the fluctuated peak fluorescence intensity and the amount of change in the fluorescence intensity, the fluctuated peak fluorescence wavelength, and the amount of change in the fluorescence wavelength.
  • the spectrum analysis step may include simply acquiring the data, or may include analyzing the acquired data. Examples of means for acquiring data regarding the degree of shift in peak intensity include a general personal computer.
  • the data processing step includes at least a step of calculating the content of the test object using a calibration curve created in advance based on the peak intensity included in the data regarding the degree of peak intensity shift obtained in the spectrum analysis step. It is.
  • a calibration curve is created by using a liquid material whose contents of the test object and fluorescent marker compound are known, irradiating the liquid material with light of an arbitrary excitation wavelength, and calculating the fluorescence spectrum from the liquid material excited by the irradiation. Data on fluorescence intensity and fluorescence wavelength is acquired in advance, and the information is created based on this acquired data.
  • the vertical axis represents the fluorescence peak intensity
  • the horizontal axis represents the content of the test object. Examples of the means for calculating the content of the inspection object include a general personal computer.
  • the data processing step it is preferable to display data such as the calculated content of the test object, the excitation wavelength of the irradiated light, the fluorescence wavelength and fluorescence intensity of the liquid material, on the information display section.
  • the liquid product evaluation device (hereinafter also simply referred to as “evaluation device”) of the present invention can be applied to manufacturing processes using various forms of liquid materials depending on the purpose, and can be used to evaluate the fluorescence of liquid materials in-line.
  • the spectrum is constantly measured, and the liquid material is evaluated by identifying the amount of variation in the content of the test object in the liquid material and identifying the test object.
  • the evaluation device of the present invention is an evaluation device for a liquid material containing at least a solvent, a resin, and a non-reactive additive, wherein the non-reactive additive is a fluorescent marker compound, and an arbitrary excitation wavelength of the liquid material is provided.
  • the evaluation device also includes a data processing unit that calculates the content of the test object using a calibration curve based on the peak intensity included in the data regarding the peak intensity shift degree, and a data processing unit that displays the data regarding the peak intensity shift degree. It is preferable to include an information display section.
  • FIG. 1 is a diagram schematically showing a configuration example of a liquid material evaluation apparatus according to the present invention.
  • the evaluation device 100 is installed in-line in a manufacturing process using liquid materials, and includes a fluorescence spectrum observation section 110, and a computer 120 having a spectrum analysis section, a data processing section, and an information display section. ing.
  • the fluorescence spectrum observation unit 110 includes an irradiation unit 111 that irradiates a liquid with light of an arbitrary excitation wavelength, and a light reception unit 112 that receives fluorescence from the liquid excited by the light of the excitation wavelength and measures the fluorescence spectrum. It is preferable that the configuration has the following.
  • the irradiation unit 111 irradiates the liquid material with light of an arbitrary excitation light wavelength to generate fluorescence from the fluorescent marker compound.
  • the irradiation unit 111 preferably includes, for example, an LED driver 111a, an LED light source 111b, an irradiation fiber collimator 111c, and the like. Then, the LED driver 111a supplies a current to turn on the LED light source 111b, and thereby the liquid material is irradiated with light of an arbitrary excitation wavelength from the LED light source 111b via the irradiation fiber collimator 111c.
  • irradiation unit commercial products can be used, such as a high-power LED light source (manufactured by Ocean Photonics, LSM series) and a high-power UV-Vis fiber light source unit (manufactured by Hamamatsu Photonics, L10290). It will be done.
  • a high-power LED light source manufactured by Ocean Photonics, LSM series
  • a high-power UV-Vis fiber light source unit manufactured by Hamamatsu Photonics, L10290. It will be done.
  • the wavelength range of the excitation light is preferably within the range of visible light.
  • the wavelength of the excitation light irradiated from the irradiation unit can be arbitrarily changed by the user inputting multiple excitation wavelengths that indicate a fluorescence spectrum effective for measurement using a keyboard, mouse, etc. It has become.
  • a plurality of excitation wavelengths exhibiting fluorescence spectra effective for the measurement can be selected from the fluorescence spectra obtained by acquiring the fluorescence fingerprint of the liquid or the fluorescence spectra obtained by changing the excitation wavelength by several nanometers in advance. It is preferable that
  • the light receiving unit 112 receives the fluorescence emitted from the fluorescent marker compound when it is irradiated with excitation light, measures the excitation light wavelength, fluorescence wavelength, and fluorescence intensity from the received fluorescence, and sends the measured data to the spectrum analysis section (computer 120 ).
  • the light receiving unit 112 is preferably composed of, for example, a spectroscope 112a, a light receiving fiber collimator 112b, and the like. Then, the fluorescence wavelength and fluorescence intensity of the fluorescence received by the spectrometer 112a via the light-receiving fiber collimator 112b are measured, and the data is transmitted to the spectrum analysis section (computer 120).
  • spectrometer commercially available products can be used, such as a small fiber optical spectrometer (manufactured by Ocean Photonics, USB2000) and a multichannel spectrometer (manufactured by Hamamatsu Photonics, PMA-12).
  • the irradiation fiber collimator 111c connected to the LED light source 111b is placed near the piping through which the liquid flows (for example, reference numeral P1 in FIG. 1) or the liquid pump P2 so that the liquid can be irradiated with light. It is located in Further, a light-receiving fiber collimator 112b connected to the spectrometer 112a is also arranged near the pipe P1 through which the liquid flows and the liquid pump P2 so as to be able to receive fluorescence from the liquid. Further, it is preferable that the irradiation fiber collimator 111c and the light receiving fiber collimator 112b are covered with a light shielding cover 113.
  • the spectrum analysis unit acquires data regarding the peak intensity shift degree based on the interaction between the fluorescent marker compound in the liquid and the test object from the fluorescence spectrum acquired by the spectrum observation unit. Then, the obtained data regarding the peak intensity shift degree is transmitted to the data processing section.
  • the data processing section calculates the content of the test object from the data regarding the peak intensity shift degree acquired by the spectrum analysis section, using a calibration curve created in advance. Data regarding the calculated content and peak intensity shift degree is transmitted to the information display section.
  • the information display section performs display according to the instructions of the display signal input from the data processing section, and specifically displays data regarding the peak intensity shift degree and the content of the test object.
  • the data regarding the peak intensity shift degree includes the excitation wavelength of the light irradiated to the liquid material, the fluorescence spectrum at the excitation wavelength, and the peak intensity shift degree (characteristic peak fluorescence wavelength and amount of change in fluorescence intensity). ) etc.
  • the information display section includes, for example, an LCD (Liquid Crystal Display), and performs display using, for example, a dot matrix method.
  • a general computer 120 is used as the spectrum analysis section, data processing section, and information display section.
  • a dedicated integrated circuit (ASIC) may be provided when handling a very large amount of data or in applications requiring ultra-high-speed processing.
  • the computer 120 centrally controls the entire operation of the evaluation device 100, and includes a memory, a control section, a calculation processing section, and the like. Further, the user can input measurement processing conditions and the like into the computer 120 using the keyboard and mouse.
  • FIG. 2 is a flowchart showing a control procedure performed by the computer 120 in the liquid material evaluation apparatus.
  • a group of fluorescence spectra were measured using a spectrophotometer in advance by changing the fluorescence fingerprint or excitation wavelength by several nanometers (for example, by 5 nm) for a fluorescent marker compound in a liquid substance to be measured.
  • the LED light source is switched to an LED light source that emits an excitation wavelength effective for measurement selected by the user (step S1).
  • the liquid material is irradiated with excitation light from the switched LED light source (irradiation unit) (step S2).
  • the irradiation time, irradiation intensity, etc. of the excitation light are appropriately set depending on the fluorescent marker compound in the liquid.
  • the liquid material may be transported by a transport mechanism so as to be irradiated at a desired position, or if the liquid material is a dope or a coating liquid, it may be transported in-line in the film forming apparatus. It is preferable to do so.
  • the liquid substance is irradiated with excitation light, and the fluorescence from the fluorescent marker compound in the liquid substance excited by the light of the excitation wavelength is received as a spectroscopic spectrum by a spectrometer (light receiving unit), that is, the fluorescence spectrum is observed.
  • the peak wavelength and intensity are measured based on the fluorescence spectrum, that is, data regarding the peak intensity shift degree is acquired (spectrum analysis) (Step S4), and the acquired data is transmitted to a computer.
  • the content of the test object is calculated based on a calibration curve prepared in advance, that is, data processing is performed (step S5).
  • step S6 It is determined whether the calculated content of the inspection object is within the specified value range (step S6), and if it is within the range (step S6; YES), it is determined that there is no abnormality and the process ends. If it is outside the range (step S6; NO), it is determined that there is an abnormality, and a warning is issued by display or sound (step S7), and the abnormality is displayed, such as the location, time, and type of abnormality where the abnormality occurred. An occurrence record is taken (step S8), and the process ends.
  • FIG. 3 is a diagram schematically showing an example of a dope preparation process, a casting process, a drying process, and a winding process of the solution casting film forming method.
  • a fine particle dispersion liquid in which a solvent and a matting agent are dispersed by a dispersing machine passes from a charging tank 41 through a filter 44 and is stocked in a stock tank 42.
  • the cycloolefin resin which is the main dope
  • the melting pot 1 together with the solvent and the fluorescent marker compound according to the present invention, and the matting agent stored in the stock pot 42 is appropriately added and mixed.
  • Form a dope The obtained main dope is filtered from the filter 3 and stock pot 4 to the filter 6, additives are added through the confluence pipe 20, mixed in the mixer 21, and the liquid is sent to the pressure die 30.
  • additives for example, ultraviolet absorbers, etc.
  • a solvent passed from the additive charging tank 10 through the filter 12, and stored in the stock tank 13. Thereafter, it passes through a filter 15, passes through a conduit 16, and is mixed with the main dope by a confluence pipe 20 and a mixer 21.
  • the main dope fed to the pressure die 30 is cast onto a metal belt-shaped support 31 to form a web 32, which is peeled off at a predetermined peeling position 33 after drying to obtain an original film.
  • the peeled web 32 is passed through a number of transport rollers and dried until a predetermined amount of residual solvent is reached, and then stretched by a stretching device 34 to a predetermined stretching ratio in the longitudinal direction or the width direction.
  • the solvent is heated to a predetermined amount of residual solvent.
  • the film is dried by a drying device 35 while being passed through conveying rollers 36 until a predetermined amount of residual solvent is reached, and then wound into a roll by a winding device 37.
  • the liquid material evaluation device of the present invention is preferably arranged as follows, depending on the purpose of detecting the identity of the liquid material.
  • the purpose is to detect the state of the dope after merging, it is preferable to arrange it between the mixer 21 and the pressure die 30.
  • the fluorescence spectrum of the dope can be measured at any time, and the water content in the dope can be measured at any time. If there is a minute change in the amount or impurities, it can be detected easily and quickly.
  • the dope used in the solution casting film forming method may contain at least a solvent, a resin, and a non-reactive additive (fluorescent marker compound).
  • the resin used in the dope according to the present invention is preferably a cycloolefin resin, an acrylic resin, a triacetylcellulose resin, or the like. The cycloolefin resin will be explained below.
  • the cycloolefin resin contained in the dope according to the present invention is preferably formed from a resin composition containing at least one hydrogen bond accepting group.
  • cycloolefin resins are hydrophobic resins, so they tend to separate if there is moisture when formed into a film, which is not preferable from the perspective of transparency, but resin compositions containing at least one hydrogen bond-accepting group By forming hydrogen bonds with the hydroxyl groups of alcohols and hydroxyl groups of hindered phenol compounds, it is possible to maintain transparency even when it contains some moisture; Strength is improved.
  • “Hydrogen bond-accepting group” refers to a functional group that accepts a hydrogen atom when forming a hydrogen bond.
  • Examples of the hydrogen bond-accepting group include an alkoxy group having 1 to 10 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, an allyloxycarbonyl group, a cyano group, and an amide group. group, an imide ring-containing group, a triorganosiloxy group, a triorganosilyl group, an acyl group, an alkoxysilyl group having 1 to 10 carbon atoms, a sulfonyl-containing group, and a carboxy group.
  • examples of the alkoxy groups include methoxy and ethoxy groups; examples of the acyloxy groups include alkylcarbonyloxy groups such as acetoxy and propionyloxy groups; and arylcarbonyloxy groups such as benzoyloxy groups; examples of alkoxycarbonyl groups include methoxycarbonyl groups and ethoxycarbonyl groups; examples of allyloxycarbonyl groups include phenoxycarbonyl groups and naphthyloxycarbonyl groups.
  • examples of triorganosiloxy groups include trimethylsiloxy groups, triethylsiloxy groups, etc.; examples of triorganosilyl groups include trimethylsilyl groups, triethyl groups, etc.
  • examples of the alkoxysilyl group include a trimethoxysilyl group and a triethoxysilyl group.
  • the amount of the cycloolefin resin containing the hydrogen bond-accepting group contained in the resin component is not particularly limited, but the content is preferably 10 to 100% by mass. If the content is 10% by mass or more, the resulting ring-opened copolymer will easily exhibit solubility in solvents such as toluene or dichloromethane, so it is preferable. It is more preferable that the amount is within the range of % by mass.
  • Examples of the cycloolefin resin according to the present invention include the following (co)polymers.
  • R 1 to R 4 each independently represent a hydrogen atom, a hydrocarbon group, a halogen atom, or a hydrogen bond-accepting group. Furthermore, two or more of R 1 to R 4 may be bonded to each other to form an unsaturated bond, a monocyclic ring, or a polycyclic ring, and this monocyclic ring or polycyclic ring may have a double bond. or may form an aromatic ring.
  • the preferred proportion of hydrogen bond-accepting groups in the cycloolefin resin is that in general formula (I), 1 to 2 of R 1 to R 4 have hydrogen bond-accepting groups.
  • the proportion of hydrogen bond-accepting groups in the cycloolefin resin can be identified using, for example, carbon-13 nuclear magnetic resonance ( 13 CNMR) spectroscopy.
  • halogen atom examples include a fluorine atom, a chlorine atom, and a bromine atom.
  • hydrocarbon groups having 1 to 30 carbon atoms include alkyl groups such as methyl, ethyl and propyl groups; cycloalkyl groups such as cyclopentyl and cyclohexyl; alkenyl such as vinyl, allyl and propenyl groups; Groups include aromatic groups such as phenyl, biphenyl, naphthyl, and anthracenyl groups. These hydrocarbon groups may be substituted, and examples of the substituents include halogen atoms such as fluorine atoms, chlorine atoms, and bromine atoms, and phenylsulfonyl groups.
  • the preferred molecular weight of the cycloolefin resin according to the present invention is 0.2 to 5 cm 3 /g, more preferably 0.3 to 3 cm 3 /g, particularly preferably 0.4 to 1. 5 cm 3 /g, and the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is 8,000 to 100,000, more preferably 10,000 to 80,000, particularly preferably 12,000 to 50,000, and the weight average
  • Mw is preferably in the range of 20,000 to 300,000, more preferably 30,000 to 250,000, particularly preferably 40,000 to 200,000.
  • the heat resistance, water resistance, chemical resistance, and mechanical properties of the cycloolefin resin and the cycloolefin resin film according to the present invention can be improved.
  • the molding processability is improved.
  • the glass transition temperature (Tg) of the cycloolefin resin according to the present invention is usually 110°C or higher, preferably 110 to 350°C, more preferably 120 to 250°C, particularly preferably 120 to 220°C.
  • Tg is 110° C. or higher, deformation due to use under high temperature conditions or secondary processing such as coating and printing is suppressed, which is preferable.
  • the Tg is 350° C. or less because deterioration of the resin due to molding or heat during molding is suppressed.
  • cycloolefin resin As the cycloolefin resin described above, commercially available products can be preferably used. Examples of commercially available products are those sold by JSR Corporation under the trade names Arton G, Arton F, Arton R, and Arton RX. and can be used.
  • solvent examples of the solvent contained in the dope according to the present invention include organic solvents.
  • organic solvent include chlorinated solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; and methanol, ethanol, isopropanol, n-butanol, and 2-butanol.
  • Alcohol solvents methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethyl formamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether; and the like.
  • solvents may be used alone or in combination of two or more.
  • the organic solvent is preferably a mixed solvent of a good solvent and a poor solvent
  • the good solvent is, for example, dichloromethane as a chlorinated organic solvent, methyl acetate, ethyl acetate as a non-chlorinated organic solvent, etc.
  • the poor solvent is preferably an alcoholic solvent
  • the alcoholic solvent is preferably selected from methanol, ethanol, and butanol from the viewpoint of improving strippability and enabling high-speed casting.
  • the proportion of alcohol in the dope is high, the web gels, making it easier to peel off from the metal support, and when the proportion of alcohol is low, it is difficult to use cycloolefin resins and other compounds in non-chlorinated organic solvent systems. It also plays a role in promoting the dissolution of.
  • Non-reactive additives fluorescent marker compounds contained in the dope according to the present invention include the aforementioned antioxidants (for example, Irganox 1076 (manufactured by BASF Japan), dyes (NIR dyes, NUV dyes), etc. .
  • matting agents such as plasticizers, retardation increasing agents, and silica particles described in JP-A-2017-90872 can be added to the dope according to the present invention.
  • FIG. 4 is a schematic diagram showing an example of a hard coat layer forming apparatus used when manufacturing a functional film.
  • the hard coat layer forming apparatus is a so-called roll-to-roll type apparatus.
  • the hard coat layer forming device 130 includes a feed roller 132a, conveyance rollers 133a, 133b, 133c, 133d, and 133e, a hard coat layer forming coating liquid application device 134, a heating drying section 135, a conveyance roller 136, and an ultraviolet ray It includes an irradiation device 137 and a winding roller 132b.
  • a film 131 having a base material and a functional layer is fed out from a feeding roller 132a. Then, the coating liquid for forming a hard coat layer is applied by the coating liquid coating device 134 onto the functional layer of the film 131 or the base material after being fed out by the roller. Note that it is preferable to eliminate static electricity from the film before applying the coating liquid for forming a hard coat layer.
  • the coating liquid application device include a die coater, a gravure coater, and a comma coater.
  • the base material coated with the coating liquid for forming a hard coat layer is conveyed to the heating drying section 135 via conveyance rollers 133b and 133c.
  • the solvent in the coating liquid is dried.
  • the drying means is not particularly limited, and hot air drying, infrared drying, and microwave drying are used. Although four drying devices are shown in the heating drying section 135 in FIG. 4, the drying is not limited to using a plurality of drying devices in this way, and drying can be performed using only one drying device. Good too.
  • the drying temperature at this time is appropriately set at a temperature that allows removal of the solvent used, but is usually 70 to 120°C.
  • the base material coated with the coating liquid for forming a hard coat layer is conveyed via a conveyance roller 133d for ultraviolet irradiation by an ultraviolet irradiation device 137.
  • the ultraviolet curing resin is cured by the irradiated ultraviolet light.
  • an ultraviolet lamp such as a high pressure UV lamp (high pressure mercury lamp) or a metal halide lamp can be used.
  • an ultraviolet irradiation device is shown in FIG. 4, other curing devices such as a heating device may be used depending on the curing resin used.
  • heat treatment is performed within a temperature range of 50 to 150°C for 30 minutes to several days in order to promote curing and crosslinking of the hard coat material. It is preferable.
  • the illumination intensity is preferably 50 to 1500 mW/cm 2 and the irradiation energy amount is preferably 50 to 1500 mJ/cm 2 .
  • a hard coat layer is formed on the base material or functional layer by the ultraviolet irradiation treatment.
  • the thickness of the formed hard coat layer is preferably 0.1 to 20 ⁇ m, more preferably 1 to 15 ⁇ m, and even more preferably 3 to 10 ⁇ m. If it is 0.1 ⁇ m or more, hard coat properties tend to improve, and if it is 20 ⁇ m or less, curling of the hard coat layer is small and flexibility tends to be maintained.
  • the hard coat layer is not limited to this form, and the hard coat layer may be formed on other intermediate layers, etc. .
  • the liquid material evaluation apparatus of the present invention is applied to, for example, the coating liquid applying apparatus 134, the vicinity of the conveying roller 133b immediately after applying the hard coat layer forming coating liquid, or the drying part. It is preferable to arrange it between the conveyance roller 133c and the conveyance roller 133d during drying, or near the conveyance roller 133d immediately after drying.
  • the liquid substance evaluation device of the present invention By arranging the liquid substance evaluation device of the present invention during the hard coat layer forming process, it is possible to monitor, for example, the fluorescence spectrum of the coating liquid for forming the hard coat layer or the coated film of the hard coat layer at any time. It is possible to easily and quickly detect minute fluctuations in the water content, impurities, etc. of the coating solution for forming a hard coat layer or the coating film.
  • the hard coat layer forming coating liquid used in the hard coat layer forming step may contain at least a solvent, a resin, and a non-reactive additive (fluorescent marker compound).
  • resin examples of the resin used in the coating liquid for forming a hard coat layer according to the present invention include thermosetting resins and active energy ray-curing resins. Active energy ray-curable resins are preferred because they are easy to mold. Such cured resins can be used alone or in combination of two or more. Moreover, a commercially available product or a synthetic product may be used as the cured resin.
  • Active energy ray-curable resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
  • active energy ray-curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and is cured by irradiation with active energy rays such as ultraviolet rays or electron beams to form an active energy ray hard coat layer. is formed.
  • Typical active energy ray-curable resins include ultraviolet curable resins and electron beam curable resins, but ultraviolet curable resins that are cured by ultraviolet irradiation are preferred.
  • One type of active energy ray-curable resin may be used alone, or two or more types may be used in combination.
  • UV-curable resin for example, UV-curable urethane acrylate resin, UV-curable polyester acrylate resin, UV-curable epoxy acrylate resin, UV-curable polyol acrylate resin, UV-curable epoxy resin, etc. are preferably used. Among these, UV-curable urethane acrylate resins and UV-curable polyol acrylate resins are preferred.
  • Ultraviolet curable urethane acrylate resin is generally made by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and then adding 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate (hereinafter acrylate includes methacrylate).
  • 2-hydroxypropyl acrylate can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • a mixture of 100 parts of Unidic 17-806 (manufactured by Dainippon Ink Co., Ltd.) and 1 part of Coronate L (manufactured by Nippon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used. It will be done.
  • the ultraviolet curable urethane acrylate resin commercially available products may be used, and examples of commercially available products include Beam Set (registered trademark) 575, 577 (manufactured by Arakawa Chemical Industry Co., Ltd.), Shiko (registered trademark) UV series, etc. be able to.
  • ultraviolet curable polyester acrylate resins include those formed by reacting polyester polyol with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers, as described in JP-A-59-151112. Those described can be used.
  • ultraviolet curable epoxy acrylate resins include those produced by making epoxy acrylate into oligomers, adding a reactive diluent and a photopolymerization initiator to the oligomers, and reacting them. Those described can be used.
  • UV-curable polyol acrylate resins include ethylene glycol (meth)acrylate, polyethylene glycol di(meth)acrylate, glycerin tri(meth)acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipentaerythritol. Examples include pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate.
  • the ultraviolet curable polyol acrylate resin commercially available products may be used, and examples of the commercially available products include Sartomer SR295 and SR399 (manufactured by Sartomer Co., Ltd.).
  • a polymerizable silicone compound may be used in combination with an ultraviolet curable resin (or alone).
  • the polymerizable silicone compound is preferably used in combination with the ultraviolet curable resin.
  • a polymerizable silicone compound is a compound that has a main skeleton (silicone skeleton) formed by siloxane bonds and a polymerizable group in the molecule.
  • the polymerizable group is a group that can be polymerized with the ultraviolet curable resin, and includes groups having a polymerizable double bond such as a (meth)acryloyl group and a (meth)acryloyloxy group. Preferably it is a (meth)acryloyl group. Therefore, the preferred polymerizable silicone compound is preferably silicone (meth)acrylate or silicone (meth)acrylate oligomer (hereinafter collectively referred to as silicone (meth)acrylate).
  • the polymerizable silicone compound is an organically modified polymerizable silicone compound that contains a moiety in the molecule that improves compatibility with the ultraviolet curable resin. It is preferable that there be.
  • organically modified polymerizable silicone compounds include, for example, urethane-modified, amino-modified, alkyl-modified, epoxy-modified, carboxyl-modified, alcohol-modified, fluorine-modified, alkylaralkyl polyether-modified, epoxy/polyether-modified or polyether-modified. Examples include polymerizable silicone compounds.
  • the polymerizable silicone compound is preferably a urethane-modified silicone (meth)acrylate.
  • Urethane-modified silicone (meth)acrylate is produced by, for example, reacting a silicone compound having OH at both ends with a polyvalent isocyanate to obtain a terminal isocyanate silicone compound, and then combining the terminal isocyanate silicone compound with the hydroxyl group-containing (meth)acrylate. Obtained by reacting.
  • EBECRYL1360 EBECRYL350
  • KRM8495 manufactured by Daicel Allnex
  • CN9800 CN9800
  • CN990 manufactured by Arkema
  • the polymerizable silicone compound also forms a polymer, so it becomes a polymerizable component of the resin.
  • photopolymerization initiator radiation polymerization initiator
  • benzoin and its alkyl ethers such as penzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzyl methyl ketal
  • acetophenone, 2,2-dimethoxy- Acetophenones such as 2-phenylacetophenone and 1-hydroxycyclohexylphenyl ketone
  • Anthraquinones such as methylanthraquinone, 2-ethylanthraquinone, and 2-amylanthraquinone
  • Thioxanthones such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone and 4,4-bismethylaminobenzophenone; and azo compounds can be used. These can be used alone or in combination of two or more. In addition, it can be used in combination with photoinitiation aids such as tertiary amines such as triethanolamine and methyldiethanolamine; benzoic acid derivatives such as 2-dimethylaminoethylbenzoic acid and ethyl 4-dimethylaminobenzoate. can.
  • photoinitiation aids such as tertiary amines such as triethanolamine and methyldiethanolamine
  • benzoic acid derivatives such as 2-dimethylaminoethylbenzoic acid and ethyl 4-dimethylaminobenzoate.
  • photopolymerization initiators such as Irgacure (registered trademark) -184, 819, 907, 651, 1700, 1800, 819, 369, 261, DAROCUR-TPO (manufactured by BASF Japan Co., Ltd.), Darocure (registered trademark)-1173 (manufactured by Merck Co., Ltd.), Ezacure-KIP150, TZT (manufactured by DKSH Japan Co., Ltd.), Kayacure (registered trademark) BMS, DMBI (manufactured by Nippon Kayaku Co., Ltd.), and the like.
  • the amount of these photopolymerization initiators used is preferably 0.5 to 30 parts by weight, more preferably 1 to 25 parts by weight, based on 100 parts by weight of the polymerizable component of the resin.
  • thermosetting resins examples include polysiloxane hard coats.
  • the starting material for the polysiloxane hard coat is represented by the general formula RmSi(OR')n.
  • a starting material in which a hydrolyzable group such as a methoxy group or an ethoxy group is substituted with a hydroxyl group is generally referred to as a polyorganosiloxane hard coat.
  • polyorganosiloxane hard coat commercially available products can be used, such as Surcoat series (manufactured by Doken), SR2441 (Dow Corning Toray Co., Ltd.), KF-86 (Shin-Etsu Silicone Co., Ltd.), Perma-New (registered trademark) 6000. (California Hardcoating Company), etc. can be used.
  • heat treatment is performed at a temperature of 50°C or higher and 150°C or lower for 30 minutes to several days in order to accelerate curing and crosslinking of the hard coat. I need.
  • the blending amount of the curable resin (including the above-mentioned polymerizable silicone compound) in the coating solution for forming the hard coat layer is 40 to 90% by mass with respect to the total 100% by mass (in terms of solid content) of the hard coat layer. It is preferably 50 to 85% by mass, and more preferably 50 to 85% by mass.
  • solvents contained in the coating solution for forming a hard coat layer according to the present invention include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone,
  • the solvent can be appropriately selected from organic solvents such as methyl ethyl ketone, methyl isobutyl ketone), esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture of these can be used.
  • the amount of solvent in the hard coat layer forming coating liquid is appropriately set in an amount that can dissolve and disperse the cured resin, and is approximately 20 to 80% by weight based on 100% by weight of the coating liquid.
  • Non-reactive additives contained in the coating solution for forming a hard coat layer according to the present invention include the above-mentioned antioxidants (for example, Irganox 1076 (manufactured by BASF Japan) and dyes (NIR dyes, NUV dyes), etc.
  • the coating liquid for forming a hard coat layer may contain metal oxide particles described in JP 2018-196322A for the purpose of giving the hard coat layer an infrared shielding function and improving mechanical strength. preferable.
  • a surfactant can be added to the coating liquid for forming a hard coat layer to impart leveling properties, water repellency, slipperiness, and the like.
  • the type of surfactant is not particularly limited, and acrylic surfactants, silicone surfactants, fluorine surfactants, etc. can be used.
  • a fluorine-based surfactant it is preferable to use a fluorine-based surfactant.
  • fluorine-based surfactants examples include Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc.) manufactured by DIC Corporation. ), Megafac (registered trademark) RS series (RS-76-E, etc.) manufactured by DIC Corporation, Surflon (registered trademark) series manufactured by AGC Seimi Chemical Co., Ltd., POLYFOX series manufactured by OMNOVA SOLUTIONS, T&K TOKA Corporation
  • Commercially available products such as the ZX series manufactured by Daikin Industries, Ltd., the Optool series manufactured by Daikin Industries, Ltd., and the Ftergent (registered trademark) series manufactured by Neos Corporation (602A, 650A, etc.) can be used.
  • the method for producing the coating liquid for forming a hard coat layer is not particularly limited, and can be obtained by adding each component to a solvent and mixing appropriately.
  • the addition order and addition method are not particularly limited, and each component may be added and mixed one after another while stirring, or may be added and mixed all at once while stirring.
  • the base material used is not particularly limited, but from the viewpoint of flexibility etc., it is preferably a resin base material, and it may be transparent or opaque. It's okay. In applications where transparency in visible light is required from the point of view of design, such as automotive applications, it is preferable to be transparent in the visible light region.
  • polyester film polyethylene, polypropylene, etc.
  • polyester film polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride polyvinyl chloride
  • cellulose triacetate cellulose triacetate
  • polyester film is not particularly limited, it is preferably a polyester having film-forming properties whose main components are a dicarboxylic acid component and a diol component.
  • polyesters terephthalic acid and 2,6-naphthalene dicarboxylic acid are the main dicarboxylic acid components, and ethylene glycol and 1,4-cyclohexanedimethanol are the diol components, in terms of transparency, mechanical strength, and dimensional stability.
  • Polyester as a constituent component is preferred.
  • the thickness of the base material is preferably 10 to 300 ⁇ m, more preferably 20 to 150 ⁇ m. Further, the base material may be a stack of two or more sheets, and in this case, the types thereof may be the same or different.
  • the resin base material can be manufactured by a conventionally known general method.
  • the resin base material may be an unstretched film, a unidirectionally stretched film, or a biaxially stretched film. Stretched films are preferred from the viewpoint of improving strength and suppressing thermal expansion.
  • the functional layer formed on the base material may be any functional layer as long as it is a thin film that provides some function on the base material.
  • functional layers include optical films that transmit or reflect/absorb specific light rays (e.g., antireflection films, infrared shielding films, ultraviolet shielding films, etc.), and barrier films that suppress the transmission of oxygen and/or water vapor. , polarizing film, retardation film, photosensitive film, etc.
  • the film having a base material and a functional layer is sufficient as long as it has a base material and a functional layer.
  • a functional layer is provided on the intermediate layer
  • forms in which another intermediate layer is provided on the opposite side of the base material to the functional layer, forms in which another intermediate layer is provided on the functional layer, etc. include.
  • the material constituting the functional layer is appropriately selected depending on the desired functional layer.
  • metal oxides such as aluminum, silica, zirconia, tantalum oxide, titanium oxide, tin oxide, and tin-doped indium oxide, metal oxynitrides such as silicon oxynitride, metals such as silver, gold, and copper, and fluoride.
  • metal fluorides such as magnesium, polymers, and conductive polymers such as polythiophene. It is preferable that the functional layer contains a polymer because the conductivity is low and the effects of the present invention can be more easily obtained.
  • the functional layer can contain various additives as necessary. Specifically, various anionic, cationic or nonionic surfactants; dispersants such as polycarboxylic acid ammonium salts, allyl ether copolymers, benzenesulfonic acid sodium salts, graft compound dispersants, polyethylene glycol type nonionic dispersants; It may contain various known additives such as a pH adjuster and an antifoaming agent.
  • the thickness of the functional layer is appropriately set so as to satisfy the required function, and is, for example, about 10 nm to 100 ⁇ m.
  • the liquid substance evaluation device of the present invention can be applied during the process of applying a coating liquid for forming an antistatic layer to be provided on a near-infrared reflective film.
  • the coating liquid for the antistatic layer can be applied using a coating liquid coating device (such as a gravure coater) in the same manner as in Application Example 2 described above.
  • the liquid substance evaluation apparatus of the present invention can be used, for example, in a coating liquid applicator, near a conveyance roller immediately after applying a coating liquid for forming an antistatic layer, During drying in the subsequent drying section, it is preferable to arrange it near the conveyance roller immediately after drying.
  • the liquid material evaluation device of the present invention By disposing the liquid material evaluation device of the present invention during the antistatic layer forming process as described above, it is possible to monitor, for example, the fluorescence spectrum of the antistatic layer forming coating solution or the applied antistatic layer coating film at any time. It is possible to easily and quickly detect minute fluctuations in the water content, impurities, etc. of the coating solution for forming an antistatic layer or the coating film.
  • the coating solution for forming an antistatic layer a coating solution for forming an antistatic layer containing a known conductive composition can be used, and the coating solution contains at least a solvent, a resin, and a non-reactive additive (fluorescent marker compound). All you have to do is stay there.
  • the resins used in the coating solution for forming an antistatic layer according to the present invention include polyester resin, acrylic modified polyester resin, polyurethane, acrylic resin, vinyl resin, vinylidene chloride resin, polyethyleneimine vinylidene resin, polyethyleneimine, polyvinyl alcohol, modified Polyvinyl alcohol, cellulose ester resin, gelatin and the like are preferred. The details of these resins are as described in Japanese Patent No. 5811536.
  • solvent examples of the solvent contained in the coating solution for forming an antistatic layer according to the present invention include water or an organic solvent, and examples of the organic solvent include methyl ethyl ketone, acetone, acetylacetone, and the like.
  • Non-reactive additives contained in the coating solution for forming an antistatic layer according to the present invention include the above-mentioned antioxidants (for example, Irganox 1076 (manufactured by BASF Japan) and dyes (NIR dyes, NUV dyes), etc.
  • the conductive composition contained in the coating solution for forming an antistatic layer according to the present invention includes, for example, polyaniline and its derivatives, preferably water-soluble sulfonated polyaniline, organic solvent-soluble polypyrrole, that is, long-chain alkyl group substituent bond.
  • polyaniline and its derivatives preferably water-soluble sulfonated polyaniline, organic solvent-soluble polypyrrole, that is, long-chain alkyl group substituent bond.
  • examples include polypyrrole, polythiophene and derivatives thereof.
  • metal oxides examples include ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , SiO 2 , MgO, BaO, MoO 2 , V 2 O 5 , etc., or composite oxides thereof.
  • SnO 2 titanium oxide
  • Sb, Nb, a halogen element, etc. can be added to SnO2 .
  • the amount of these different elements added is preferably in the range of 0.01 to 25 mol%, particularly preferably in the range of 0.1 to 15 mol%.
  • Specific examples of the above conductive composition are as described in Japanese Patent No. 5811536.
  • the liquid substance evaluation device of the present invention can also be applied during the process of forming a near-infrared reflective film. That is, it can be applied during the process of coating a coating solution for a high refractive index layer and a low refractive index layer formed on a transparent support, and in this case as well, the coating can be carried out in the same manner as in Application Example 2 described above.
  • a coating liquid for a high refractive index layer or a low refractive index layer can be applied using a liquid coating device (such as a gravure coater).
  • the liquid substance evaluation apparatus of the present invention is, for example, a coating liquid coating apparatus, a coating liquid coating apparatus for forming a high refractive index layer or a low refractive index layer, etc. It is preferable to arrange it near the transport roller immediately after applying the liquid, during drying in the drying section after application, or near the transport roller immediately after drying.
  • the coating liquid for forming a high refractive index layer or a low refractive index layer By disposing the liquid substance evaluation device of the present invention during the process of forming a high refractive index layer or a low refractive index layer, for example, the coating liquid for forming a high refractive index layer or a low refractive index layer, the coating The fluorescence spectrum of the coating film of the high refractive index layer or low refractive index layer can be measured at any time. If there is a change, it can be detected easily and quickly.
  • the coating liquid for forming a high refractive index layer and the coating liquid for forming a low refractive index layer known coating liquids for forming a high refractive index layer and coating liquid for forming a low refractive index layer (see, for example, Japanese Patent No. 5593916) are used. It is sufficient that it contains at least a solvent, a resin, and a non-reactive additive (fluorescent marker compound).
  • Examples of the resin used in the coating liquid for forming a high refractive index layer according to the present invention include hydrophilic resins.
  • Examples of the hydrophilic resin include water-soluble resins, water-dispersible resins, colloid-dispersed resins, and mixtures thereof.
  • Specific examples of hydrophilic resins include acrylic, polyester, polyamide, polyurethane, and fluorine resins, such as polyvinyl alcohol, gelatin, polyethylene oxide, polyvinylpyrrolidone, casein, starch, agar, and carrageenan.
  • polyacrylic acid polymethacrylic acid, polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, water-soluble polyvinyl butyral, and other polymers.
  • polyvinyl alcohol is preferred.
  • One type of polymer used as the binder resin may be used alone, or two or more types may be mixed and used as necessary.
  • polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, particularly 1,500 to 1,500. 5000 is preferably used. Furthermore, the degree of saponification is preferably 70 to 100%, particularly preferably 80 to 99.5%.
  • solvent When using a water-soluble resin, a mixture containing water as the main component and optionally a hydrophilic organic solvent can be used.
  • hydrophilic solvents examples include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and diethyl ether.
  • ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, ketones such as acetone, methyl ethyl ketone, acetylacetone, and cyclohexanone, and aromatic carbonization such as benzene, toluene, and xylene.
  • amides such as dimethylformamide and N-methylpyrrolidone
  • ketones such as acetone, methyl ethyl ketone, acetylacetone, and cyclohexanone
  • aromatic carbonization such as benzene, toluene, and xylene.
  • Examples include hydrogen, aliphatic hydrocarbons such as heptane, hexane, pentane, decane, and cyclohexane, and one or more of these can be used. From an environmental point of view, it is particularly preferable to use water
  • Non-reactive additives contained in the coating solution for forming a high refractive index layer according to the present invention include the above-mentioned antioxidants (for example, Irganox 1076 (manufactured by BASF Japan) and dyes (NIR dyes, NUV dye), etc.
  • the coating liquid for forming a high refractive index layer according to the present invention preferably contains a metal oxide.
  • metal oxides include TiO 2 (titanium oxide), SiO 2 , ZrO 2 , Al 2 O 3 , ZnO, Sb 2 O 3 , ZrSiO 4 , zeolite, and the like.
  • the coating liquid for forming a low refractive index layer a known coating liquid for forming a low refractive index layer can be used, as long as it contains at least a solvent, a resin, and a non-reactive additive (fluorescent marker compound).
  • resin As the resin contained in the coating liquid for forming a low refractive index layer, a small amount of the hydrophilic binder resin contained in the coating liquid for forming a high refractive index layer mentioned above can be used.
  • solvent As the solvent contained in the coating liquid for forming a low refractive index layer, the solvent contained in the coating liquid for forming a high refractive index layer mentioned above can also be used.
  • Non-reactive additives contained in the coating solution for forming a low refractive index layer according to the present invention include the above-mentioned antioxidants (for example, Irganox 1076 (manufactured by BASF Japan) and dyes (NIR dyes, NUV dye), etc.
  • the coating liquid for forming a low refractive index layer according to the present invention also preferably contains the metal oxide contained in the above-mentioned coating liquid for forming a high refractive index layer.
  • Liquid material (dope for optical film) 1 having the following composition was prepared. First, dichloromethane was added to a pressurized dissolution tank. Next, the COP was charged into a pressurized dissolution tank while being stirred. Next, an antioxidant ("Irganox 1076" manufactured by BASF Japan Co., Ltd.) was added as a fluorescent marker compound, and completely dissolved while stirring. COP: 100 parts by mass Dichloromethane: 280 parts by mass Irganox1076: 100 parts by mass
  • Liquid material (dope for optical film) 2 was prepared in the same manner as in the preparation of liquid material 1 except that the solvent (dichloromethane) was not added.
  • Example 3 (Preparation of liquid material 3) A liquid material (dope for optical film) 3 was prepared in the same manner as in the preparation of liquid material 1 except that COP was not added.
  • Liquid material (dope for optical film) 4 was prepared using the same procedure as in the preparation of liquid material 1, except that the fluorescent marker compound was changed to Elecut S-418 (manufactured by Takemoto Yushi Co., Ltd.) (reactive additive: chelating agent). did.
  • Example 5 (Preparation of liquid material 5) A liquid material (dope for optical film) 5 having the following composition was prepared. First, dichloromethane and ethanol (92% by mass of dichloromethane, 8% by mass of ethanol) were added to a pressurized dissolution tank. Next, the COP was charged into a pressurized dissolution tank while being stirred. Next, an antioxidant ("Irganox 1076" manufactured by BASF Japan Co., Ltd.) was added as a fluorescent marker compound, and completely dissolved while stirring. COP: 100 parts by mass Dichloromethane: 260 parts by mass Ethanol: 22 parts by mass Irganox1076: 100 parts by mass
  • Example 6 (Preparation of liquid material 6) A liquid material (dope for optical film) 6 was prepared in the same manner as in the preparation of liquid material 5, except that the resin was changed to cellulose acylate (degree of acetyl group substitution: 2.80).
  • Liquid material (dope for optical film) 7 was prepared in the same manner as in the preparation of liquid material 5, except that the resin was changed to Delpet 80N (manufactured by Asahi Kasei Chemicals, polymethyl methacrylate).
  • Example 8 (Preparation of liquid material 8) A liquid material (dope for optical film) 8 was prepared in the same manner as in the preparation of liquid material 5, except that the fluorescent marker compound was changed to the following compound A (NIR dye) (100 mass ppm).
  • NIR dye NIR dye
  • Example 9 (Preparation of liquid material 9) A liquid material (dope for optical film) 9 was prepared in the same manner as in the preparation of liquid material 5, except that the fluorescent marker compound was changed to the following compound B (NUV dye) (100 mass ppm).
  • the fluorescent marker compound was changed to the following compound B (NUV dye) (100 mass ppm).
  • Example 10 (Preparation of liquid material 10) A liquid material (dope for optical film) 10 was prepared with the same composition as liquid material 5.
  • Example 11 (Preparation of liquid material 11) A liquid material (dope for optical film) 11 was prepared in the same manner as in the preparation of liquid material 5, except that the amount of the fluorescent marker compound added was changed to 5000 mass ppm.
  • Example 12 (Preparation of liquid material 12) A liquid material (dope for optical film) 12 was prepared in the same manner as in the preparation of liquid material 5, except that the amount of the fluorescent marker compound added was changed to 10,000 mass ppm.
  • Example 16 (Preparation of liquid material 16) A liquid material (dope for optical film) 16 was prepared with the same composition as liquid material 9.
  • Liquids (optical film dope) 18 and 19 were prepared with the same composition as Liquid 8.
  • Example 20 (Preparation of liquid material 20) Beam Set 577 (manufactured by Arakawa Chemical Industries, Ltd.) (urethane resin) was used as the ultraviolet curable resin, and methyl ethyl ketone (MEK) was added as a solvent. Furthermore, 0.08% by mass of a fluorine-based surfactant (trade name: Ftergent (registered trademark) 650A, manufactured by Neos Co., Ltd.) was added, and then 100% by mass of Irganox 1076 was added as a fluorescent marker compound, and the total solid content was adjusted to 40 parts by mass to prepare a liquid material (coating liquid for forming a hard coat layer) 20.
  • a fluorine-based surfactant trade name: Ftergent (registered trademark) 650A, manufactured by Neos Co., Ltd.
  • Example 21 (Preparation of liquid material 21) While 10 parts by mass of a 3% by mass boric acid aqueous solution was heated and stirred at 45°C, 5% by mass of polyvinyl alcohol (PVA-117H, degree of polymerization 1700, degree of saponification 99.5 mol%, manufactured by Kuraray Co., Ltd.) was added as a resin. After adding 80 parts by mass of an aqueous solution, 1 part by mass of a 1% by mass aqueous solution of a surfactant (Rapisol A30, manufactured by NOF Corporation) was added, 9 parts by mass of pure water was added as a solvent, and then Irganox 1076 was added as a fluorescent marker agent. A liquid material (coating liquid for forming a low refractive index layer) 21 was prepared by adding 100 mass ppm of .
  • PVA-117H degree of polymerization 1700, degree of saponification 99.5 mol%, manufactured by Kuraray Co., Ltd.
  • a surfactant
  • Irganox 1076 was used as a fluorescent marker compound, but in liquid material 10 where the test object is magnesium ions, the effective excitation wavelength for measurement is 330 nm, and in liquid material 13 where the test object is benzene, it is effective for measurement. For liquid material 14 where the test object is acetone, the effective wavelength for measurement is 260 nm.For liquid material 15 where the test object is strontium chloride, the effective wavelength for measurement is 250 nm. For the liquid material 17, which is methanol, 290 nm was selected as the effective wavelength for measurement, and for the liquid materials 20 and 21, where the test object was sodium ions, 300 nm was selected as the effective excitation wavelength for measurement.
  • the effective excitation wavelength for measurement is 680 nm
  • the effective wavelength for measurement is 690 nm
  • 330 nm is selected as the effective excitation wavelength for measurement for liquid material 9 where the test object is water
  • 340 nm is selected as the effective wavelength for measurement for liquid material 16 where the test object is ethanol. did.
  • the test target is water, adjust the water content to 0.1% by mass and 1.0% by mass. Water was added.
  • the test object was a magnesium ion or a sodium ion
  • the magnesium ion or sodium ion was added so that the content of the magnesium ion or sodium ion was 0.01% by mass and 0.1% by mass.
  • MgCl2 was added
  • NaCl was added.
  • test object when the test object was benzene, acetone, or formamide, benzene, acetone, or formamide was added so that the contents of the benzene, acetone, or formamide were 0.1% by mass and 1.0% by mass.
  • object to be tested was strontium chloride
  • strontium chloride was added so that the content of the strontium chloride was 0.01% by mass and 0.1% by mass.
  • test object when the test object was ethanol or methanol, ethanol or methanol was added so that the content of the ethanol or methanol was 1% by mass and 10% by mass.
  • each liquid material to which the test object had been added was irradiated with light having the effective excitation wavelength to measure its respective fluorescence spectrum, and the peak top fluorescence wavelength and peak intensity were measured. Then, the amount of change in fluorescence wavelength and the amount of change in peak intensity (peak intensity shift degree) due to changes in the content of the test object were calculated, and evaluation was performed based on the obtained peak intensity shift degree based on the following criteria.
  • A, AA, and AAA of the following standards were determined to be at a level that poses no problem in practice. (standard) AAA: The amount of change in fluorescence wavelength exceeds 3.0%, and the amount of change in peak intensity exceeds 5.0%.
  • AA The amount of change in fluorescence wavelength is more than 1.5% and not more than 3.0%, and the amount of change in peak intensity is more than 1.0% and not more than 5.0%.
  • A The amount of change in fluorescence wavelength is more than 0.3% and not more than 1.5%, and the amount of change in peak intensity is more than 0.1% and not more than 1.0%.
  • B The amount of change in fluorescence wavelength is 0.3% or less, and the amount of change in peak intensity is 0.1% or less.
  • ⁇ Haze value> One hour after starting the production of films using Liquids 1 to 14, the haze of the films obtained was measured using a haze meter (NDH, manufactured by Nippon Denshoku Industries Co., Ltd.). Then, the measured haze was evaluated based on the following criteria. A, AA, and AAA of the following standards were determined to be at a level that poses no problem in practice. AAA: Haze is 0.1% or less. AA: Haze is more than 0.1% and less than 0.5%. A: Haze is more than 0.5% and less than 1%. B: Haze exceeds 1%.
  • SP values and ⁇ SP of the solvent, resin, marker compound, and test object used in the preparation of each sample were calculated by the method described above and shown in the table below.
  • the sensitivity of the peak intensity shift degree is superior to that of the comparative example, and it is possible to reduce film quality variations.
  • the present invention can be applied to a liquid material evaluation method and a liquid material evaluation device that can constantly detect minute fluctuations in water content, impurities, etc. in a liquid material without using a reactive fluorescent marker. can.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

A liquid matter assessment method according to the present invention is for assessing a liquid matter containing at least a solvent, a resin, and a non-reactive additive. The non-reactive additive is a fluorescent marker compound. The method comprises: a fluorescent spectrum observation step for acquiring a fluorescent spectrum in an arbitrarily defined excitation wavelength of the liquid matter; and a spectrum analysis step for acquiring data pertaining to a peak intensity shift degree from the acquired fluorescent spectrum on the basis of an interaction between the fluorescent marker compound and an object to be tested in the liquid matter.

Description

液状物の評価方法及び液状物の評価装置Liquid material evaluation method and liquid material evaluation device
 本発明は、液状物の評価方法及び液状物の評価装置に関し、特に、反応性蛍光マーカー剤を用いずに、液状物中の水分量や不純物等の微小な変動を常時検出することができる液状物の評価方法等に関する。 The present invention relates to a liquid material evaluation method and a liquid material evaluation device, and in particular, to a liquid material evaluation method that can constantly detect minute fluctuations in water content, impurities, etc. in a liquid material without using a reactive fluorescent marker. Concerning methods of evaluating things.
 近年、表示デバイスである液晶表示装置や有機エレクトロルミネッセンス表示装置用の偏光板保護フィルムや位相差フィルム等の光学フィルムや、タッチパネル用基材フィルムやガスバリアー性基材フィルム等の基材フィルムのみならず、ナノインプリント用基板フィルムやフレキシブル電子回路用基板フィルム等の基板フィルムなど用途の拡大に伴い、高透明性、高機能性といった品質の高い光学フィルムの安定供給が求められていた。
 ここで、樹脂成型物を製造するにあたり、加工性の高さから樹脂を溶剤に溶解させて機能性を有する添加剤を付与することで所望の製品を得る工程が知られている。
 工程途中品は、樹脂・添加剤・溶剤で構成されるが、これらは供給メーカー違いに伴うロットばらつき等により品質が左右される。また、工場においては、保管中や配管投入時などで極微小な不純物が混入し、製品品質に影響を及ぼしていた。
In recent years, optical films such as polarizing plate protective films and retardation films for display devices such as liquid crystal displays and organic electroluminescent displays, as well as base films such as touch panel base films and gas barrier base films, have become available. First, with the expansion of applications such as substrate films for nanoimprints and substrate films for flexible electronic circuits, there was a need for a stable supply of high-quality optical films with high transparency and high functionality.
Here, in manufacturing a resin molded product, a process is known in which a desired product is obtained by dissolving the resin in a solvent and adding functional additives to the resin due to its high processability.
In-process products are composed of resins, additives, and solvents, and the quality of these products is affected by lot variations caused by different manufacturers. Furthermore, in factories, microscopic impurities were mixed in during storage or when piped, etc., which affected product quality.
 上記のような、品質のばらつきなどの変動を監視する評価システムとして、特許文献1及び2には、蛍光を発する物質を媒体として添加し、蛍光物質を反応させることで試料中の微量な不純物を定量化する方法が開示されている。
 また、特許文献3には、水と直接反応して過酸化水素を発生させることで、間接的に蛍光を発する蛍光物質を用いた水分検出方法が開示されている。
Patent Documents 1 and 2 describe an evaluation system for monitoring fluctuations such as quality variations as described above, in which a fluorescent substance is added as a medium and the fluorescent substance reacts to remove trace impurities in the sample. A method of quantifying is disclosed.
Further, Patent Document 3 discloses a moisture detection method using a fluorescent substance that indirectly emits fluorescence by directly reacting with water to generate hydrogen peroxide.
 しかしながら、特許文献1~3に開示されている技術では、不純物の蛍光情報を検知するために、反応性蛍光マーカー剤を用いて、検査対象物の変動を検知している。すなわち、添加した反応後の蛍光マーカー化合物自体が不純物となり、フィルムなどの樹脂成型物の性能を落としてしまい、昨今の光学フィルムの品質には不適であった。 However, in the techniques disclosed in Patent Documents 1 to 3, in order to detect fluorescence information of impurities, a reactive fluorescent marker agent is used to detect changes in the test object. That is, the added fluorescent marker compound itself becomes an impurity after reaction, degrading the performance of resin molded products such as films, and is unsuitable for the quality of modern optical films.
特開2001-56327号公報Japanese Patent Application Publication No. 2001-56327 特開2011-95111号公報JP2011-95111A 国際公開第2029/039963号International Publication No. 2029/039963
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、反応性蛍光マーカー剤を用いずに、液状物中の水分量や不純物等の微小な変動を常時検出することができる液状物の評価方法及び液状物の評価装置を提供することである。 The present invention was made in view of the above-mentioned problems and circumstances, and its problem to be solved is to constantly detect minute fluctuations in water content, impurities, etc. in liquid materials without using reactive fluorescent marker agents. An object of the present invention is to provide a method for evaluating a liquid substance and an apparatus for evaluating a liquid substance.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、液状物中に、非反応添加物として蛍光マーカー化合物を添加し、液状物の蛍光スペクトルのピーク強度の変化量を測定することで、反応性蛍光マーカー剤を用いずに、液状物中の水分量や不純物等の微小な変動を常時検出することができることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above problem, the present inventor added a fluorescent marker compound as a non-reactive additive to a liquid material in the process of investigating the causes of the above problem, and thereby changed the peak intensity of the fluorescence spectrum of the liquid material. It was discovered that by measuring the amount, minute fluctuations in the amount of water or impurities in a liquid can be constantly detected without using a reactive fluorescent marker agent, leading to the present invention.
That is, the above-mentioned problems related to the present invention are solved by the following means.
 1.少なくとも、溶剤、樹脂及び非反応添加物を含有する液状物の評価方法であって、
 前記非反応添加物が、蛍光マーカー化合物であり、
 前記液状物の任意の励起波長における蛍光スペクトルを取得する蛍光スペクトル観測工程と、
 取得した前記蛍光スペクトルから前記液状物中の前記蛍光マーカー化合物と検査対象物との相互作用に基づいて、ピーク強度シフト度に関するデータを取得するスペクトル解析工程と、を備える液状物の評価方法。
1. A method for evaluating a liquid material containing at least a solvent, a resin, and a non-reactive additive, the method comprising:
the non-reactive additive is a fluorescent marker compound,
a fluorescence spectrum observation step of acquiring a fluorescence spectrum at an arbitrary excitation wavelength of the liquid;
A method for evaluating a liquid material, comprising: a spectral analysis step of acquiring data regarding a peak intensity shift degree based on the interaction between the fluorescent marker compound in the liquid material and the test object from the acquired fluorescence spectrum.
 2.前記液状物中の、前記蛍光マーカー化合物と前記検査対象物との溶解度パラメーターの差ΔSPが、6~22の範囲内である第1項に記載の液状物の評価方法。 2. 2. The method for evaluating a liquid material according to claim 1, wherein a difference ΔSP in solubility parameters between the fluorescent marker compound and the test object in the liquid material is within a range of 6 to 22.
 3.前記非反応添加物が、前記液状物に対して1~5000質量ppmの範囲内で含有されている第1項又は第2項に記載の液状物の評価方法。 3. The method for evaluating a liquid material according to item 1 or 2, wherein the non-reactive additive is contained in a range of 1 to 5000 ppm by mass based on the liquid material.
 4.前記スペクトル解析工程をインラインで行う第1項から第3項までのいずれか一項に記載の液状物の評価方法。 4. The method for evaluating a liquid material according to any one of paragraphs 1 to 3, in which the spectrum analysis step is performed inline.
 5.前記ピーク強度シフト度に関するデータに含まれるピーク強度に基づき、検量線を用いて、前記検査対象物の含有量を算出するデータ処理工程を備える第1項から第4項までのいずれか一項に記載の液状物の評価方法。 5. Any one of paragraphs 1 to 4, comprising a data processing step of calculating the content of the test object using a calibration curve based on the peak intensity included in the data regarding the degree of peak intensity shift. Evaluation method of the liquid material described.
 6.少なくとも、溶剤、樹脂及び非反応添加物を含有する液状物の評価装置であって、
 前記非反応添加物が、蛍光マーカー化合物であり、
 前記液状物の任意の励起波長における蛍光スペクトルを取得する蛍光スペクトル観測部と、
 取得した前記蛍光スペクトルから前記液状物中の前記蛍光マーカー化合物と検査対象物との相互作用に基づいて、ピーク強度シフト度に関するデータを取得するスペクトル解析部と、を備える液状物の評価装置。
6. An apparatus for evaluating a liquid material containing at least a solvent, a resin, and a non-reactive additive,
the non-reactive additive is a fluorescent marker compound,
a fluorescence spectrum observation unit that acquires a fluorescence spectrum of the liquid at an arbitrary excitation wavelength;
An evaluation device for a liquid substance, comprising: a spectrum analysis unit that acquires data regarding a peak intensity shift degree based on the interaction between the fluorescent marker compound in the liquid substance and the test object from the acquired fluorescence spectrum.
 7.前記ピーク強度シフト度に関するデータに含まれるピーク強度に基づき、検量線を用いて、前記検査対象物の含有量を算出するデータ処理部を備える第6項に記載の液状物の評価装置。 7. 7. The liquid material evaluation device according to claim 6, further comprising a data processing unit that calculates the content of the test object based on the peak intensity included in the data regarding the peak intensity shift degree using a calibration curve.
 8.前記ピーク強度シフト度に関するデータを表示する情報表示部を備える第6項又は第7項に記載の液状物の評価装置。 8. The liquid substance evaluation device according to item 6 or 7, further comprising an information display unit that displays data regarding the peak intensity shift degree.
 本発明の上記手段により、反応性蛍光マーカー剤を用いずに、液状物中の水分量や不純物等の微小な変動を常時検出することができる液状物の評価方法及び液状物の評価装置を提供することができる。 By the above means of the present invention, there is provided a liquid substance evaluation method and a liquid substance evaluation apparatus that can constantly detect minute fluctuations in water content, impurities, etc. in a liquid substance without using a reactive fluorescent marker agent. can do.
 本発明の効果の発現機構又は作用機構については、明確にはなっていないが、以下のように推察している。
 例えば、フィルムの品質(ヘイズ)バラツキに関しては、以下に示す変動が原因であると考えた。
 (i)納入される原材料の生産時の不純物や安定化剤が異なること
 (ii)保管される際の季節変動に伴ったフィルム製造時の樹脂や添加剤の水分量又は溶媒のpH等の違い
 (iii)工場ごとの配管設備の違いや、工場を建ててからの経時変化が異なることによる配管の劣化度の差異による金属イオンの流出等
 そこで、性能劣化を生じさせる反応性蛍光マーカー剤を添加せずに上記のような変動を検知するために、原材料と溶質を含んだ液状物に、非反応添加物(非反応蛍光マーカー化合物)を添加し蛍光スペクトルを測定した。
 さらに、上記(i)~(iii)の液状物を作製して、各液状物の蛍光スペクトルを測定し、基準となる試料の蛍光スペクトルと比較した結果、非反応蛍光マーカー化合物のピーク強度がシフトすることが分かった。
 ここで、樹脂と非反応蛍光マーカー化合物及び検査対象物が化学反応などを伴わないで高精度な評価方法ができた理由としては以下のとおりである。
 非反応蛍光マーカー化合物と検査対象物の二成分のみが液状物中にある場合に対して、樹脂が液状物中に入ると、上記二成分時よりも密度が高くなり、分子間相互作用がより顕著に起こりやすくなる。さらに、樹脂と検査対象物が相互作用することで、間接的に非反応蛍光マーカー化合物の信号が微小であっても検出が可能であると推定している。
 さらに、非反応蛍光マーカー化合物、検査対象物及び樹脂による複数波長の信号から得られる情報の数が、単一波長のときよりも増え、蛍光強度の変化をより捉えやすくなった。
Although the mechanism of expression or action of the effects of the present invention is not clear, it is speculated as follows.
For example, the following fluctuations were thought to be the cause of the variation in film quality (haze).
(i) Differences in impurities and stabilizers during production of delivered raw materials (ii) Differences in moisture content of resins and additives or pH of solvents during film production due to seasonal fluctuations during storage (iii) Outflow of metal ions due to differences in the degree of deterioration of piping due to differences in piping equipment at each factory or changes over time since the factory was built.Therefore, a reactive fluorescent marker agent that causes performance deterioration is added. In order to detect the above-mentioned fluctuations without any reaction, a non-reactive additive (non-reactive fluorescent marker compound) was added to a liquid containing raw materials and solutes, and the fluorescence spectrum was measured.
Furthermore, we prepared the liquid substances (i) to (iii) above, measured the fluorescence spectra of each liquid substance, and compared them with the fluorescence spectrum of the reference sample. As a result, the peak intensity of the non-reactive fluorescent marker compound shifted. I found out that it does.
Here, the reason why a highly accurate evaluation method was achieved without involving a chemical reaction between the fluorescent marker compound that does not react with the resin and the test object is as follows.
In contrast to the case where only the non-reactive fluorescent marker compound and the test object are present in the liquid, when the resin enters the liquid, the density becomes higher than when the two components are present, and intermolecular interactions are more likely to occur. becomes significantly more likely to occur. Furthermore, it is estimated that due to the interaction between the resin and the test object, it is possible to indirectly detect even if the signal of a non-reactive fluorescent marker compound is minute.
Furthermore, the amount of information obtained from multiple wavelength signals from the non-reactive fluorescent marker compound, the test object, and the resin has increased compared to the case of a single wavelength, making it easier to detect changes in fluorescence intensity.
 以上のように、液状物中に、非反応添加物として蛍光マーカー化合物を添加し、液状物の蛍光スペクトルのピーク強度の変化量を測定することで、反応性蛍光マーカー剤を用いずに、液状物中の水分量や不純物等の微小な変動を常時検出することができる。その結果、リアルタイムで前記微小な変動を検出できるので、製造工程においてフィードバックまでに要する時間を格段に減らすことができ、製造効率を向上させることができる。 As described above, by adding a fluorescent marker compound as a non-reactive additive to a liquid and measuring the amount of change in the peak intensity of the fluorescence spectrum of the liquid, it is possible to It is possible to constantly detect minute changes in moisture content, impurities, etc. in substances. As a result, since the minute fluctuations can be detected in real time, the time required for feedback in the manufacturing process can be significantly reduced, and manufacturing efficiency can be improved.
本発明の液状物の評価装置の構成例を模式的に示した図A diagram schematically showing a configuration example of a liquid material evaluation device of the present invention 本発明の液状物の評価装置で実行されるコンピューターによる制御手順を示すフローチャートFlowchart showing a computer control procedure executed by the liquid material evaluation device of the present invention 溶液流延製膜法のドープ調製工程、流延工程、乾燥工程及び巻取り工程の一例を模式的に示した図A diagram schematically showing an example of the dope preparation process, casting process, drying process, and winding process of the solution casting film forming method. ハードコート層形成装置の一例を示す概略図Schematic diagram showing an example of a hard coat layer forming apparatus
 本発明の液状物の評価方法は、少なくとも、溶剤、樹脂及び非反応添加物を含有する液状物の評価方法であって、前記非反応添加物が、蛍光マーカー化合物であり、前記液状物の任意の励起波長における蛍光スペクトルを取得する蛍光スペクトル観測工程と、取得した前記蛍光スペクトルから前記液状物中の前記蛍光マーカー化合物と検査対象物との相互作用に基づいて、ピーク強度シフト度に関するデータを取得するスペクトル解析工程と、を備える。
 この特徴は、下記各実施形態に共通又は対応する技術的特徴である。
The method for evaluating a liquid product of the present invention is a method for evaluating a liquid product containing at least a solvent, a resin, and a non-reactive additive, wherein the non-reactive additive is a fluorescent marker compound, and the non-reactive additive is a fluorescent marker compound. A fluorescence spectrum observation step of acquiring a fluorescence spectrum at an excitation wavelength of and a spectrum analysis step.
This feature is a technical feature common to or corresponding to each of the embodiments described below.
 本発明の実施態様としては、前記液状物中の、前記蛍光マーカー化合物と前記検査対象物との溶解度パラメーターの差ΔSPが、6~22の範囲内であることが、蛍光マーカー化合物と検査対象物との相互作用が生じやすく、ピーク強度シフト度が容易に取得できる点で好ましい。また、液状物を用いた製品の透明性が得られ易い点で好ましい。 In an embodiment of the present invention, the difference ΔSP in solubility parameters between the fluorescent marker compound and the test object in the liquid is within a range of 6 to 22. This is preferable because interaction with the compound is likely to occur and the degree of shift in peak intensity can be easily obtained. Moreover, it is preferable in that it is easy to obtain transparency in products using liquid substances.
 また、前記非反応添加物が、前記液状物に対して1~5000質量ppmの範囲内で含有されていることが、液状物を用いた光学フィルムのヘイズと、蛍光スペクトルの測定感度の両立を図れる点で好ましい。 Furthermore, the content of the non-reactive additive in the range of 1 to 5,000 ppm by mass based on the liquid material makes it possible to achieve both the haze of the optical film using the liquid material and the measurement sensitivity of the fluorescence spectrum. This is preferable because it allows you to
 また、前記スペクトル解析工程をインラインで行うことが、液状物中の水分量や不純物が混入した場合にリアルタイムで検出することができ、製造工程においてフィードバックまでに要する時間を格段に減らすことができ、製造効率を向上させることができる点で好ましい。 In addition, by performing the spectrum analysis step in-line, it is possible to detect in real time the amount of water or impurities in the liquid, and the time required for feedback in the manufacturing process can be significantly reduced. This is preferable because manufacturing efficiency can be improved.
 また、前記ピーク強度シフト度に関するデータに含まれるピーク強度に基づき、検量線を用いて、前記検査対象物の含有量を算出するデータ処理工程を備えることが、検査対象物の含有量の変動を検出することができ、製造効率向上の点で好ましい。 Further, it is preferable to include a data processing step of calculating the content of the test object using a calibration curve based on the peak intensity included in the data regarding the peak intensity shift degree. This is preferable in terms of improving manufacturing efficiency.
 本発明の評価装置は、少なくとも、溶剤、樹脂及び非反応添加物を含有する液状物の評価装置であって、前記非反応添加物が、蛍光マーカー化合物であり、前記液状物の任意の励起波長における蛍光スペクトルを取得する蛍光スペクトル観測部と、取得した前記蛍光スペクトルから前記液状物中の前記蛍光マーカー化合物と検査対象物との相互作用に基づいて、ピーク強度シフト度に関するデータを取得するスペクトル解析部と、を備える。これにより、反応性蛍光マーカー剤を用いずに、液状物中の水分量や不純物等の微小な変動を常時検出することができる。 The evaluation device of the present invention is an evaluation device for a liquid material containing at least a solvent, a resin, and a non-reactive additive, wherein the non-reactive additive is a fluorescent marker compound, and an arbitrary excitation wavelength of the liquid material is provided. a fluorescence spectrum observation unit that acquires a fluorescence spectrum; and a spectrum analysis that acquires data regarding the degree of peak intensity shift based on the interaction between the fluorescent marker compound in the liquid and the test object from the acquired fluorescence spectrum. It is equipped with a section and a section. Thereby, minute fluctuations in the amount of water, impurities, etc. in the liquid can be constantly detected without using a reactive fluorescent marker.
 また、本発明の評価装置は、前記ピーク強度シフト度に関するデータに含まれるピーク強度に基づき、検量線を用いて、前記検査対象物の含有量を算出するデータ処理部や、前記ピーク強度シフト度に関するデータを表示する情報表示部を備えることが好ましい。 The evaluation device of the present invention also includes a data processing unit that calculates the content of the test object using a calibration curve based on the peak intensity included in the data regarding the peak intensity shift degree; It is preferable to include an information display unit that displays data related to the information.
 以下、本発明とその構成要素及び本発明を実施するための形態・態様について説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and forms and aspects for carrying out the present invention will be explained. In this application, "~" is used to include the numerical values described before and after it as a lower limit value and an upper limit value.
[本発明の液状物の評価方法の概要]
 本発明の液状物の評価方法は、少なくとも、溶剤、樹脂及び非反応添加物を含有する液状物の評価方法であって、前記非反応添加物が、蛍光マーカー化合物であり、前記液状物の任意の励起波長における蛍光スペクトルを取得する蛍光スペクトル観測工程と、取得した前記蛍光スペクトルから前記液状物中の前記蛍光マーカー化合物と検査対象物との相互作用に基づいて、ピーク強度シフト度に関するデータを取得するスペクトル解析工程と、を備える。
 また、本発明の液状物の評価方法は、前記ピーク強度シフト度に関するデータに含まれるピーク強度に基づき、検量線を用いて、前記検査対象物の含有量を算出するデータ処理工程を備えることが、検査対象物の含有量の変動を検出することができ、製造効率向上の点で好ましい。
[Summary of the method for evaluating liquid materials of the present invention]
The method for evaluating a liquid product of the present invention is a method for evaluating a liquid product containing at least a solvent, a resin, and a non-reactive additive, wherein the non-reactive additive is a fluorescent marker compound, and the non-reactive additive is a fluorescent marker compound. A fluorescence spectrum observation step of acquiring a fluorescence spectrum at an excitation wavelength of and a spectrum analysis step.
Further, the method for evaluating a liquid material of the present invention may include a data processing step of calculating the content of the test object using a calibration curve based on the peak intensity included in the data regarding the degree of peak intensity shift. , it is possible to detect variations in the content of the substance to be inspected, which is preferable in terms of improving manufacturing efficiency.
 本発明において、「液状物」とは、少なくとも、溶剤、樹脂及び非反応添加物を含有し、残留溶媒量が1000質量ppm以上であればよい。
 このような液状物の具体例としては、例えば、光学フィルムを製膜するためのドープ、光学フィルムと偏光子を接着するための接着液、フィルムを保護するためのハードコート層形成用塗布液、帯電防止層形成用塗布液、近赤外反射フィルの形成用途に用いられる水系塗布液(例えば、高屈折率層形成用塗布液、低屈折率層形成用塗布液)、又は、これら塗布液を塗布後の残留溶媒、インク用途で用いられる製品に塗布するための塗布材料、電池中の電解液、正極活物質を保護するための塗工液、自動車の部品をコーティングするための塗工液、エンジンオイル、半導体分野において紫外線硬化する前の感光材、食品分野においてゼラチン等の高分子体を含む溶液等が挙げられる。
 なお、前記ドープ、ハードコート層形成用塗布液、帯電防止層形成用塗布液、高屈折率層及び低屈折率層形成用塗布液の詳細については後述する。
In the present invention, the "liquid material" may contain at least a solvent, a resin, and a non-reactive additive, and the amount of residual solvent may be 1000 mass ppm or more.
Specific examples of such liquids include, for example, dope for forming an optical film, an adhesive liquid for bonding an optical film and a polarizer, a coating liquid for forming a hard coat layer to protect the film, A coating liquid for forming an antistatic layer, a water-based coating liquid used for forming a near-infrared reflective film (e.g., a coating liquid for forming a high refractive index layer, a coating liquid for forming a low refractive index layer), or a coating liquid using these coating liquids. Residual solvent after coating, coating material for coating products used in ink applications, electrolyte in batteries, coating solution for protecting positive electrode active materials, coating solution for coating automobile parts, Examples include engine oil, photosensitive materials before UV curing in the semiconductor field, and solutions containing polymers such as gelatin in the food field.
Note that details of the dope, the coating liquid for forming a hard coat layer, the coating liquid for forming an antistatic layer, and the coating liquid for forming a high refractive index layer and a low refractive index layer will be described later.
 本発明において、本発明に係る「非反応添加物」とは、少なくとも検査対象物と、共有結合又はイオン結合を形成しない(構造変化しない)化合物をいう。ただし、本発明に係る非反応添加物は、検査対象物と、水素結合やファンデルワールス力等による相互作用により、ピーク強度シフト度を変化させることができる化合物である。
 前記非反応添加物は、具体的には、可視光領域で吸収単波長をもたない化合物であることが、液状物が着色しないことから、光学領域での適用に好ましい。
 非反応添加物としては、例えば、非反応性の蛍光マーカー化合物が挙げられる。また、非反応性の蛍光マーカー化合物として、蛍光を発するものであればよく、酸化防止剤、色素、位相差調整剤、波長調整剤、寸法調整剤、添加剤由来の機能を有するものを用いても良い。
In the present invention, the "non-reactive additive" according to the present invention refers to a compound that does not form a covalent bond or an ionic bond (does not change its structure) with at least an object to be tested. However, the non-reactive additive according to the present invention is a compound that can change the degree of peak intensity shift through interaction with the test object due to hydrogen bonding, van der Waals forces, or the like.
Specifically, it is preferable for the non-reactive additive to be a compound that does not have a single absorption wavelength in the visible light region for application in the optical region, since the liquid material will not be colored.
Non-reactive additives include, for example, non-reactive fluorescent marker compounds. In addition, non-reactive fluorescent marker compounds may be used as long as they emit fluorescence, and those that have functions derived from antioxidants, dyes, phase difference regulators, wavelength regulators, size regulators, and additives may be used. Also good.
 前記酸化防止剤(AO剤)としては、通常知られているものを使用することができ、特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系の各化合物を好ましく用いることができる。上記フェノール系化合物としては、2,6-ジアルキルフェノールの構造を有するものが好ましく、例えば、BASFジャパン株式会社から市販されている「Irganox 1076」、「Irganox 1010」、(株)ADEKAから市販されている「ADEKA STAB AO-50」等を挙げることができる。 As the antioxidant (AO agent), commonly known ones can be used, and lactone-based, sulfur-based, phenol-based, double bond-based, hindered amine-based, and phosphorus-based compounds are particularly preferred. Can be used. The above-mentioned phenolic compound preferably has a 2,6-dialkylphenol structure, such as "Irganox 1076" and "Irganox 1010" commercially available from BASF Japan Co., Ltd., and "Irganox 1010" commercially available from ADEKA Co., Ltd. Examples include "ADEKA STAB AO-50".
 前記色素としては、近赤外領域に吸収波長をもつ化合物や、近紫外領域に吸収波長をもつ化合物が挙げられる。
 前記近赤外領域に吸収波長をもつ化合物(「近赤外線吸収性組成物」ともいう。)としては、吸収波形調整用の添加剤として、650~800nmの波長域に吸収極大波長を有する近赤外線吸収調整剤を少なくとも1種添加することが、分光特性の観点から好ましい。本発明に適用する近赤外線吸収調整剤としては、650~800nmの波長域に吸収極大波長を有する近赤外線吸収色素を適用することが好ましい。
 本発明に好適な近赤外線吸収色素(NIR色素)としては、例えば、シアニン色素、スクアリリウム色素、クロコニウム色素、アゾ色素、アントラキノン色素、ナフトキノン色素、フタロシアニン色素、ナフタロシアニン色素、クアテリレン色素、ジチオール金属錯体系色素等を挙げることができる。その中でも、検査対象物の変動量に応じて蛍光強度の変化を検知する点から、シアニン色素、スクアリリウム色素が好ましく、スクアリリウム色素が特に好ましい。
Examples of the dye include compounds having absorption wavelengths in the near-infrared region and compounds having absorption wavelengths in the near-ultraviolet region.
The compound having an absorption wavelength in the near-infrared region (also referred to as a "near-infrared absorbing composition") may be used as an additive for adjusting absorption waveforms. It is preferable to add at least one kind of absorption modifier from the viewpoint of spectral characteristics. As the near-infrared absorption modifier used in the present invention, it is preferable to use a near-infrared absorption dye having a maximum absorption wavelength in the wavelength range of 650 to 800 nm.
Near-infrared absorbing dyes (NIR dyes) suitable for the present invention include, for example, cyanine dyes, squarylium dyes, croconium dyes, azo dyes, anthraquinone dyes, naphthoquinone dyes, phthalocyanine dyes, naphthalocyanine dyes, quaterylene dyes, and dithiol metal complex dyes. Examples include dyes and the like. Among these, cyanine dyes and squarylium dyes are preferred, and squarylium dyes are particularly preferred, from the viewpoint of detecting changes in fluorescence intensity depending on the amount of variation in the object to be inspected.
 前記近紫外領域に吸収波長をもつ化合物(「近紫外線吸収組成物」ともいう。)としては、吸収波形調整用の添加剤として、300~400nmの波長域に吸収極大波長を有する近紫外線吸収調整剤を少なくとも1種添加することが、分光特性の観点から好ましい。本発明に適用する近紫外線吸収調整剤としては、300~400nmの波長域に吸収極大波長を有する近紫外線吸収色素を適用することが好ましい。
 本発明に好適な近紫外線吸収色素(NUV色素としては、例えば、メロシアニン系色素、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、トリアジン系紫外線吸収剤、オキザニリド系紫外線吸収剤、ニッケル錯塩系紫外線吸収剤、無機系紫外線吸収剤等が挙げられる。その中でも、検査対象物の変動量に応じて蛍光強度の変化を検知する点から、メロシアニン系色素が特に好ましい。
The compound having an absorption wavelength in the near-ultraviolet region (also referred to as a "near-ultraviolet absorbing composition") may be used as an additive for adjusting the absorption waveform. It is preferable to add at least one kind of agent from the viewpoint of spectral characteristics. As the near-ultraviolet absorption modifier used in the present invention, it is preferable to use a near-ultraviolet absorbing dye having a maximum absorption wavelength in the wavelength range of 300 to 400 nm.
Suitable near-ultraviolet absorbing dyes for the present invention (NUV dyes include, for example, merocyanine dyes, benzotriazole-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, salicylate-based ultraviolet absorbers, cyanoacrylate-based ultraviolet absorbers, and triazine-based ultraviolet absorbers) Examples include absorbers, oxanilide-based UV absorbers, nickel complex salt-based UV absorbers, and inorganic UV absorbers. Among these, merocyanine-based Dyes are particularly preferred.
 本発明における「樹脂」としては、液状物の用途に応じて適宜変更可能であり、熱可塑性樹脂であっても、熱硬化性樹脂であってもよい。具体的には、シクロオレフィン系樹脂(COP樹脂)、トリアセチルセルロース樹脂(TAC樹脂)、アクリル樹脂、ウレタン樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂などが挙げられる。 The "resin" in the present invention can be changed as appropriate depending on the use of the liquid material, and may be a thermoplastic resin or a thermosetting resin. Specific examples include cycloolefin resin (COP resin), triacetyl cellulose resin (TAC resin), acrylic resin, urethane resin, polyvinyl alcohol resin, polyimide resin, and the like.
 本発明における「溶剤」としては、液状物の用途に応じて適宜変更可能であり、有機溶媒、水等が挙げられる。
 有機溶媒としては、後述するが、例えば、クロロホルム、ジクロロメタンなどの塩素系溶媒;トルエン、キシレン、ベンゼン、及びこれらの混合溶媒などの芳香族系溶媒;メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノールなどのアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、酢酸エチル、ジエチルエーテル;などが挙げられる。これら溶媒は1種のみ用いてもよいし、2種以上を併用してもよい。
The "solvent" in the present invention can be changed as appropriate depending on the use of the liquid material, and includes organic solvents, water, and the like.
Examples of organic solvents include, as will be described later, chlorinated solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; methanol, ethanol, isopropanol, n-butanol, and 2-butanol. Alcohol solvents such as butanol; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethyl formamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether; and the like. These solvents may be used alone or in combination of two or more.
 本発明において、「検査対象物」とは、元素イオン及び電荷をもつ化合物(イオン化合物及び極性化合物)であり、当該電荷を持つ元素イオンや化合物が前記液状物中に混入することで、非反応添加物と検査対象物との間で相互作用を起こすし、非反応添加物のピーク強度シフト度を変化させる役割を有する。すなわち、検査対象物は、前記非反応添加物に対して、分光蛍光光度計を用いて、任意の励起波長で励起させ、蛍光波長250~950nmの一部又は全部を測定して得られた蛍光スペクトルのうち、最大蛍光強度における励起波長及び蛍光波長において、蛍光強度を変動させる化合物をいう。 In the present invention, the "test object" refers to elemental ions and charged compounds (ionic compounds and polar compounds), and when the charged elemental ions and compounds mix into the liquid material, they do not react. It causes an interaction between the additive and the test object, and has the role of changing the degree of shift in peak intensity of non-reactive additives. That is, the test object is the fluorescence obtained by exciting the non-reactive additive at an arbitrary excitation wavelength using a spectrofluorometer and measuring part or all of the fluorescence wavelength of 250 to 950 nm. A compound that fluctuates fluorescence intensity at the excitation wavelength and fluorescence wavelength at the maximum fluorescence intensity in the spectrum.
 本発明に好適な検査対象物としては、水、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、又はクロムや鉄、銅などの金属イオンやフッ素、塩素、臭素などのハロゲン元素イオン、ベンゼン、アセトン、エタノール、メタノール、ホルムアミドなどが挙げられる。 Test objects suitable for the present invention include water, lithium, sodium, potassium, magnesium, calcium, strontium, metal ions such as chromium, iron, and copper, halogen element ions such as fluorine, chlorine, and bromine, benzene, and acetone. , ethanol, methanol, formamide, etc.
 本発明において、「ピーク強度シフト度」とは、液状物中の検査対象物の変化量に応じて、非反応添加物(蛍光マーカー化合物)に特徴的なピークの蛍光波長及び蛍光強度が変動し、変動したピークの蛍光強度の変化量をいう。
 当該ピーク強度シフト度から、検査対象物の含有量の変動量を推測できるだけでなく、検査対象物を同定することができる。
In the present invention, "peak intensity shift degree" refers to the change in the fluorescence wavelength and fluorescence intensity of a characteristic peak of a non-reactive additive (fluorescent marker compound) depending on the amount of change in the test object in the liquid. , refers to the amount of change in the fluorescence intensity of the fluctuated peak.
From the peak intensity shift degree, not only can the amount of variation in the content of the test object be estimated, but also the test object can be identified.
 また、本発明の液状物は、非反応添加物(蛍光マーカー化合物)と検査対象物との溶解度パラメーターの差ΔSPが、6~22の範囲内であることが好ましく、14~22の範囲内であることがより好ましい。溶解度パラメーターの差ΔSPが、前記範囲内であることにより、非反応添加物と検査対象物との相互作用が生じやすく、ピーク強度シフト度が容易に取得できる。さらに、液状物を用いた製品の透明性が得られ易い。なお、ΔSPを6以上としたのは、蛍光マーカー化合物と検査対象物のSP値が近くなると、蛍光マーカー化合物と検査対象物は相溶性に優れ、そのために、蛍光マーカー化合物と検査対象物が、構造変化を伴うことなく会合してしまい、検査対象物の混入量に応じたピーク強度シフト度が正しく得られなくなるが、このようなことを防ぐためである。 Further, in the liquid material of the present invention, the difference ΔSP in solubility parameters between the non-reactive additive (fluorescent marker compound) and the test object is preferably within the range of 6 to 22, and preferably within the range of 14 to 22. It is more preferable that there be. When the solubility parameter difference ΔSP is within the above range, interaction between the non-reactive additive and the test object is likely to occur, and the peak intensity shift degree can be easily obtained. Furthermore, it is easy to obtain transparency in products using liquid materials. The reason why ΔSP is set to 6 or more is because when the SP values of the fluorescent marker compound and the test object become close, the fluorescent marker compound and the test object have excellent compatibility, and therefore, the fluorescent marker compound and the test object have excellent compatibility. This is to prevent such a situation that the peak intensity shift degree corresponding to the amount of the mixed substance to be tested cannot be obtained correctly because the particles aggregate without any structural change.
 前記溶解度パラメーターとは、物質の物性、特に溶媒の溶解挙動を評価する指標であり、ヒルデブラントのSP値(溶解度パラメーター;δ)が従来用いられている。当該「SP値」とは、物質の凝集エネルギー密度の平方根で示される物質固有の物性値である。
 また、このSP値は、ハンセンによって、分散力項(δD)、極性項(δP)、水素結合項(δH)の3成分に分割して物質の極性を考慮したパラメーターとして提案されたハンセン溶解度パラメーター(HSP値)を用いて、下記式のとおり表される。
 SP値=(δD+δP+δH0.5
The solubility parameter is an index for evaluating the physical properties of a substance, particularly the solubility behavior of a solvent, and Hildebrand's SP value (solubility parameter; δ) is conventionally used. The "SP value" is a physical property value specific to a substance expressed as the square root of the cohesive energy density of the substance.
In addition, this SP value is the Hansen solubility parameter proposed by Hansen as a parameter that takes into account the polarity of the substance by dividing it into three components: dispersion force term (δD), polarity term (δP), and hydrogen bond term (δH). (HSP value) is expressed as the following formula.
SP value = (δD 2 + δP 2 + δH 2 ) 0.5
 ハンセン溶解度パラメーター(HSP値)は、「分子間の相互作用が似ている2つの物質は、互いに溶解しやすい」との考えに基づいており、以下の3つのパラメーターで構成され、これら3つのパラメーターは三次元空間(「ハンセン空間」ともいう。)における座標とみなすことができる。2つの物質の当該座標間の距離が近ければ近いほど互いに親和性が高く、溶解しやすいと考えられる。
 δD:分子間の分散力によるエネルギー
 δP:分子間の双極子相互作用によるエネルギー
 δH:分子間の水素結合によるエネルギー
The Hansen solubility parameter (HSP value) is based on the idea that "two substances with similar intermolecular interactions are likely to dissolve in each other," and is composed of the following three parameters. can be regarded as coordinates in a three-dimensional space (also called "Hansen space"). It is considered that the closer the distance between the coordinates of two substances, the higher their affinity for each other and the easier they are to dissolve.
δD: Energy due to intermolecular dispersion force δP: Energy due to intermolecular dipole interaction δH: Energy due to intermolecular hydrogen bonding
 なお、ハンセン溶解度パラメーターにおけるδD、δP及びδHを算出する方法は、特に制限されず、化学構造をソフトウェアに入力して算出してもよく、実験的に算出してもよいが、化学構造をソフトウェアに入力して算出することが好ましい。 Note that the method of calculating δD, δP, and δH in the Hansen solubility parameters is not particularly limited, and may be calculated by inputting the chemical structure into software, or may be calculated experimentally. It is preferable to input and calculate.
 HSP値は、市販されているソフトウェアである、HSPiP 5th Edition 5.0.10.1中の登録値又は推算値を使用できる。このソフトウェアは、https://www.hansen-solubility.com/等のサイトから取得可能である。また、こうしたソフトウェアに基づくHSPの推算方法は、例えば、C.M.Hansenらによる文献“Hansen Solubility Parameters:A User’s Handbook,Second Edition”(CRC
 Press,2007)に基づく。
As the HSP value, a registered value or an estimated value in HSPiP 5th Edition 5.0.10.1, which is commercially available software, can be used. This software is available at https://www. hansen-solubility. It can be obtained from sites such as com/. Furthermore, methods for estimating HSP based on such software include, for example, C. M. The document “Hansen Solubility Parameters: A User's Handbook, Second Edition” by Hansen et al.
Press, 2007).
 本発明の液状物に含有される蛍光マーカー化合物のSP値は、5~10の範囲内であることが好ましく、前記樹脂のSP値は、10~20の範囲内であることが好ましく、前記溶剤のSP値は、10~20の範囲内、前記検査対象物のSP値は、9~30の範囲内であることが好ましい。
 さらに、前記溶剤と樹脂との溶解度パラメーターの差ΔSPは6~22の範囲内であることが好ましい。
The SP value of the fluorescent marker compound contained in the liquid of the present invention is preferably within the range of 5 to 10, the SP value of the resin is preferably within the range of 10 to 20, and the The SP value of the test object is preferably within the range of 10 to 20, and the SP value of the test object is preferably within the range of 9 to 30.
Furthermore, the difference ΔSP in solubility parameters between the solvent and the resin is preferably within the range of 6 to 22.
<蛍光スペクトル観測工程>
 蛍光スペクトル観測工程は、液状物の任意の励起波長における蛍光スペクトルを取得する工程である。
 「任意の励起波長」とは、あらかじめ液状物の蛍光指紋又は励起波長を数ナノメートルずつ変えたときの蛍光スペクトルを取得しておき、取得した蛍光スペクトルのうち、測定に有効な蛍光スペクトルを示す励起波長を任意の励起波長として選択する。特に、取得した蛍光スペクトルのうち強度が高い励起波長を任意の励起波長として選択することが好ましいが、強度の高い蛍光スペクトルを示す励起波長に限らず、検査対象物が吸収する波長を励起波長としてもよい。
 このような励起波長としては、例えば、200~900nmの範囲内であることが好ましく、さらには200~400nmと680~900nmの範囲内であることがより好ましい。
<Fluorescence spectrum observation process>
The fluorescence spectrum observation step is a step of acquiring a fluorescence spectrum of a liquid material at an arbitrary excitation wavelength.
"Arbitrary excitation wavelength" refers to the fluorescent fingerprint of the liquid or the fluorescence spectrum obtained by changing the excitation wavelength by several nanometers in advance, and among the obtained fluorescence spectra, it indicates the fluorescence spectrum that is effective for measurement. Select the excitation wavelength as an arbitrary excitation wavelength. In particular, it is preferable to select an excitation wavelength with a high intensity among the acquired fluorescence spectra as an arbitrary excitation wavelength, but the excitation wavelength is not limited to an excitation wavelength that exhibits a high-intensity fluorescence spectrum. Good too.
Such an excitation wavelength is, for example, preferably within the range of 200 to 900 nm, and more preferably within the ranges of 200 to 400 nm and 680 to 900 nm.
 液状物に任意の励起波長の光を照射して蛍光スペクトルを取得する手段としては、液状物に励起波長の光を照射する照射ユニットと、励起波長の光によって励起された液状物からの蛍光を受光する受光ユニットとを有する構成であることが好ましい。
 照射ユニット及び受光ユニットの詳細については、後述する液状物の評価装置で説明する。
The means to obtain a fluorescence spectrum by irradiating a liquid material with light of an arbitrary excitation wavelength includes an irradiation unit that irradiates the liquid material with light of an excitation wavelength, and a method that captures the fluorescence from the liquid material excited by the light of the excitation wavelength. It is preferable to have a configuration including a light receiving unit that receives light.
The details of the irradiation unit and the light receiving unit will be explained later in connection with the liquid substance evaluation device.
 蛍光スペクトル観測工程では、具体的には、照射ユニットから液状物に任意の励起波長の光を照射し、照射により励起された液状物からの蛍光を、受光ユニットにより受光する。なお、蛍光スペクトル観測工程では、複数の励起波長を用いて、それぞれの蛍光スペクトルを取得してもよい。 In the fluorescence spectrum observation step, specifically, the irradiation unit irradiates the liquid material with light of an arbitrary excitation wavelength, and the light receiving unit receives the fluorescence from the liquid material excited by the irradiation. In addition, in the fluorescence spectrum observation step, each fluorescence spectrum may be acquired using a plurality of excitation wavelengths.
<スペクトル解析工程>
 スペクトル解析工程は、前記蛍光スペクトル観測工程において取得した蛍光スペクトルから液状物中の蛍光マーカー化合物と検査対象物との相互作用に基づいて、ピーク強度シフト度に関するデータを取得する工程である。
 「ピーク強度シフト度に関するデータ」としては、変動したピークの蛍光強度及びその蛍光強度の変化量、変動したピークの蛍光波長及びその蛍光波長の変化量のデータが挙げられる。また、スペクトル解析工程は、前記データを取得するだけであってもよいし、取得したデータを解析処理することを含んでもよい。
 前記ピーク強度シフト度に関するデータを取得する手段としては、例えば、一般的なパソコン等が挙げられる。
<Spectral analysis process>
The spectrum analysis step is a step of acquiring data regarding the peak intensity shift degree based on the interaction between the fluorescent marker compound in the liquid and the test object from the fluorescence spectrum acquired in the fluorescence spectrum observation step.
The "data regarding the peak intensity shift degree" includes data on the fluctuated peak fluorescence intensity and the amount of change in the fluorescence intensity, the fluctuated peak fluorescence wavelength, and the amount of change in the fluorescence wavelength. Moreover, the spectrum analysis step may include simply acquiring the data, or may include analyzing the acquired data.
Examples of means for acquiring data regarding the degree of shift in peak intensity include a general personal computer.
<データ処理工程>
 データ処理工程は、少なくとも前記スペクトル解析工程で取得したピーク強度シフト度に関するデータに含まれるピーク強度に基づき、あらかじめ作成した検量線を用いて、前記検査対象物の含有量を算出する工程を含む工程である。
 検量線は、検査対象物と蛍光マーカー化合物の含有量が既知の液状物を用いて、当該液状物に任意の励起波長の光を照射して、照射により励起された液状物からの蛍光スペクトルから蛍光強度及び蛍光波長のデータを取得しておき、この取得したデータに基づいて作成する。検量線は、例えば、縦軸が蛍光ピーク強度、横軸が検査対象物の含有量を表す。
 前記検査対象物の含有量を算出する手段としては、例えば、一般的なパソコン等が挙げられる。
<Data processing process>
The data processing step includes at least a step of calculating the content of the test object using a calibration curve created in advance based on the peak intensity included in the data regarding the degree of peak intensity shift obtained in the spectrum analysis step. It is.
A calibration curve is created by using a liquid material whose contents of the test object and fluorescent marker compound are known, irradiating the liquid material with light of an arbitrary excitation wavelength, and calculating the fluorescence spectrum from the liquid material excited by the irradiation. Data on fluorescence intensity and fluorescence wavelength is acquired in advance, and the information is created based on this acquired data. In the calibration curve, for example, the vertical axis represents the fluorescence peak intensity, and the horizontal axis represents the content of the test object.
Examples of the means for calculating the content of the inspection object include a general personal computer.
 前記データ処理工程後、算出した検査対象物の含有量や、照射した光の励起波長、液状物の蛍光波長及び蛍光強度等のデータを情報表示部に表示することが好ましい。 After the data processing step, it is preferable to display data such as the calculated content of the test object, the excitation wavelength of the irradiated light, the fluorescence wavelength and fluorescence intensity of the liquid material, on the information display section.
[液状物の評価装置の構成]
 本発明の液状物の評価装置(以下、単に「評価装置」ともいう。)は、目的に応じて種々の形態の液状物を用いた製造工程に適用することができ、インラインで液状物の蛍光スペクトルを常時測定して、液状物中の検査対象物の含有量の変動量や、検査対象物を同定して液状物を評価する。
 本発明の評価装置は、少なくとも、溶剤、樹脂及び非反応添加物を含有する液状物の評価装置であって、前記非反応添加物が、蛍光マーカー化合物であり、前記液状物の任意の励起波長における蛍光スペクトルを取得する蛍光スペクトル観測部と、取得した前記蛍光スペクトルから前記液状物中の前記蛍光マーカー化合物と検査対象物との相互作用に基づいて、ピーク強度シフト度に関するデータを取得するスペクトル解析部と、を備える。
 また、評価装置は、ピーク強度シフト度に関するデータに含まれるピーク強度に基づき、検量線を用いて、検査対象物の含有量を算出するデータ処理部や、前記ピーク強度シフト度に関するデータを表示する情報表示部を備えることが好ましい。
[Configuration of liquid material evaluation device]
The liquid product evaluation device (hereinafter also simply referred to as “evaluation device”) of the present invention can be applied to manufacturing processes using various forms of liquid materials depending on the purpose, and can be used to evaluate the fluorescence of liquid materials in-line. The spectrum is constantly measured, and the liquid material is evaluated by identifying the amount of variation in the content of the test object in the liquid material and identifying the test object.
The evaluation device of the present invention is an evaluation device for a liquid material containing at least a solvent, a resin, and a non-reactive additive, wherein the non-reactive additive is a fluorescent marker compound, and an arbitrary excitation wavelength of the liquid material is provided. a fluorescence spectrum observation unit that acquires a fluorescence spectrum; and a spectrum analysis that acquires data regarding the degree of peak intensity shift based on the interaction between the fluorescent marker compound in the liquid and the test object from the acquired fluorescence spectrum. It is equipped with a section and a section.
The evaluation device also includes a data processing unit that calculates the content of the test object using a calibration curve based on the peak intensity included in the data regarding the peak intensity shift degree, and a data processing unit that displays the data regarding the peak intensity shift degree. It is preferable to include an information display section.
 図1は、本発明の液状物の評価装置の構成例を模式的に示した図である。
 図1に示すように、評価装置100は、液状物を用いた製造工程のインラインに設置され、蛍光スペクトル観測部110と、スペクトル解析部、データ処理部及び情報表示部を有するコンピューター120とを備えている。
FIG. 1 is a diagram schematically showing a configuration example of a liquid material evaluation apparatus according to the present invention.
As shown in FIG. 1, the evaluation device 100 is installed in-line in a manufacturing process using liquid materials, and includes a fluorescence spectrum observation section 110, and a computer 120 having a spectrum analysis section, a data processing section, and an information display section. ing.
<蛍光スペクトル観測部>
 蛍光スペクトル観測部110は、液状物に任意の励起波長の光を照射する照射ユニット111と、励起波長の光によって励起された液状物からの蛍光を受光して蛍光スペクトルを測定する受光ユニット112とを有する構成であることが好ましい。
<Fluorescence spectrum observation section>
The fluorescence spectrum observation unit 110 includes an irradiation unit 111 that irradiates a liquid with light of an arbitrary excitation wavelength, and a light reception unit 112 that receives fluorescence from the liquid excited by the light of the excitation wavelength and measures the fluorescence spectrum. It is preferable that the configuration has the following.
 照射ユニット111は、任意の励起光波長の光を液状物に照射して蛍光マーカー化合物
から蛍光を生じさせる。
 照射ユニット111としては、例えば、LEDドライバー111a、LED光源111b及び照射用ファイバーコリメーター111c等から構成されたものが好ましい。そして、LEDドライバー111aが、LED光源111bを点灯させる電流を供給し、これによりLED光源111bから照射用ファイバーコリメーター111cを介して任意の励起波長の光が液状物に照射される。
 また、照射ユニットとしては、市販品を用いることができ、例えば、高出力LED光源(オーシャンフォトニクス社製、LSMシリーズ)や高出力UV-Visファイバー光源ユニット(浜松ホトニクス社製、L10290)などが挙げられる。
The irradiation unit 111 irradiates the liquid material with light of an arbitrary excitation light wavelength to generate fluorescence from the fluorescent marker compound.
The irradiation unit 111 preferably includes, for example, an LED driver 111a, an LED light source 111b, an irradiation fiber collimator 111c, and the like. Then, the LED driver 111a supplies a current to turn on the LED light source 111b, and thereby the liquid material is irradiated with light of an arbitrary excitation wavelength from the LED light source 111b via the irradiation fiber collimator 111c.
Furthermore, as the irradiation unit, commercial products can be used, such as a high-power LED light source (manufactured by Ocean Photonics, LSM series) and a high-power UV-Vis fiber light source unit (manufactured by Hamamatsu Photonics, L10290). It will be done.
 また、励起光波長の範囲としては、可視光の範囲内であることが好ましい。ここで、照射ユニットから照射される励起光の波長は、測定に有効な蛍光スペクトルを示す複数の励起波長を、キーボード・マウス等を用いてユーザーが入力することで、任意に変えることが可能となっている。前記測定に有効な蛍光スペクトルを示す複数の励起波長は、あらかじめ液状物の蛍光指紋又は励起波長を数ナノメートルずつ変えたときの蛍光スペクトルを取得しておき、取得した蛍光スペクトルから選択可能となっていることが好ましい。 Furthermore, the wavelength range of the excitation light is preferably within the range of visible light. Here, the wavelength of the excitation light irradiated from the irradiation unit can be arbitrarily changed by the user inputting multiple excitation wavelengths that indicate a fluorescence spectrum effective for measurement using a keyboard, mouse, etc. It has become. A plurality of excitation wavelengths exhibiting fluorescence spectra effective for the measurement can be selected from the fluorescence spectra obtained by acquiring the fluorescence fingerprint of the liquid or the fluorescence spectra obtained by changing the excitation wavelength by several nanometers in advance. It is preferable that
 受光ユニット112は、励起光が照射されて蛍光マーカー化合物から発光される蛍光を受光し、受光した蛍光から励起光波長、蛍光波長及び蛍光強度を測定し、測定したデータをスペクトル解析部(コンピューター120)に送信する。
 受光ユニット112は、例えば、分光器112a及び受光用ファイバーコリメーター112b等から構成されたものが好ましい。そして、受光用ファイバーコリメーター112bを介して分光器112aで受光した蛍光の蛍光波長及び蛍光強度を測定し、そのデータをスペクトル解析部(コンピューター120)に送信する。
 前記分光器としては、市販品を用いることができ、例えば、小型ファイバー光学分光器(オーシャンフォトニクス社製、USB2000)やマルチチャンネル分光器(浜松ホトニクス社製、PMA-12)などが挙げられる。
The light receiving unit 112 receives the fluorescence emitted from the fluorescent marker compound when it is irradiated with excitation light, measures the excitation light wavelength, fluorescence wavelength, and fluorescence intensity from the received fluorescence, and sends the measured data to the spectrum analysis section (computer 120 ).
The light receiving unit 112 is preferably composed of, for example, a spectroscope 112a, a light receiving fiber collimator 112b, and the like. Then, the fluorescence wavelength and fluorescence intensity of the fluorescence received by the spectrometer 112a via the light-receiving fiber collimator 112b are measured, and the data is transmitted to the spectrum analysis section (computer 120).
As the spectrometer, commercially available products can be used, such as a small fiber optical spectrometer (manufactured by Ocean Photonics, USB2000) and a multichannel spectrometer (manufactured by Hamamatsu Photonics, PMA-12).
 なお、LED光源111bに接続される照射用ファイバーコリメーター111cは、液状物が流される配管(例えば、図1における符号P1)や送液ポンプP2近傍に、液状物に光が照射可能となるように配置されている。また、分光器112aに接続される受光用ファイバーコリメーター112bも、液状物が流される配管P1や送液ポンプP2近傍に、液状物からの蛍光が受光可能に配置されている。また、照射用ファイバーコリメーター111c及び受光用ファイバーコリメーター112bは遮光カバー113に覆われていることが好ましい。 Note that the irradiation fiber collimator 111c connected to the LED light source 111b is placed near the piping through which the liquid flows (for example, reference numeral P1 in FIG. 1) or the liquid pump P2 so that the liquid can be irradiated with light. It is located in Further, a light-receiving fiber collimator 112b connected to the spectrometer 112a is also arranged near the pipe P1 through which the liquid flows and the liquid pump P2 so as to be able to receive fluorescence from the liquid. Further, it is preferable that the irradiation fiber collimator 111c and the light receiving fiber collimator 112b are covered with a light shielding cover 113.
<スペクトル解析部>
 スペクトル解析部は、スペクトル観測部で取得した蛍光スペクトルから液状物中の蛍光マーカー化合物と検査対象物との相互作用に基づいて、ピーク強度シフト度に関するデータを取得する。そして、取得したピーク強度シフト度に関するデータを、データ処理部に送信する。
<Spectrum analysis section>
The spectrum analysis unit acquires data regarding the peak intensity shift degree based on the interaction between the fluorescent marker compound in the liquid and the test object from the fluorescence spectrum acquired by the spectrum observation unit. Then, the obtained data regarding the peak intensity shift degree is transmitted to the data processing section.
<データ処理部>
 データ処理部は、スペクトル解析部で取得したピーク強度シフト度に関するデータから、あらかじめ作成した検量線を用いて、検査対象物の含有量を算出する。算出した含有量やピーク強度シフト度に関するデータは、情報表示部に送信する。
<Data processing section>
The data processing section calculates the content of the test object from the data regarding the peak intensity shift degree acquired by the spectrum analysis section, using a calibration curve created in advance. Data regarding the calculated content and peak intensity shift degree is transmitted to the information display section.
<情報表示部>
 情報表示部は、データ処理部から入力される表示信号の指示に従って表示を行い、具体的には、前記ピーク強度シフト度に関するデータや検査対象物の含有量を表示する。ピーク強度シフト度に関するデータとしては、具体的には、液状物に照射した光の励起波長や、当該励起波長における蛍光スペクトル、ピーク強度シフト度(特徴的なピークの蛍光波長及び蛍光強度の変化量)等が挙げられる。
 また、情報表示部は、例えば、LCD(Liquid Crystal Display)等を備えて構成され、例えばドットマトリックス方式により表示を行うものである。
<Information display section>
The information display section performs display according to the instructions of the display signal input from the data processing section, and specifically displays data regarding the peak intensity shift degree and the content of the test object. Specifically, the data regarding the peak intensity shift degree includes the excitation wavelength of the light irradiated to the liquid material, the fluorescence spectrum at the excitation wavelength, and the peak intensity shift degree (characteristic peak fluorescence wavelength and amount of change in fluorescence intensity). ) etc.
Further, the information display section includes, for example, an LCD (Liquid Crystal Display), and performs display using, for example, a dot matrix method.
 前記スペクトル解析部、データ処理部及び情報表示部としては、例えば、一般的なコンピューター(パソコン)120などが用いられる。なお、非常に膨大なデータ量を扱う場合や、超高速処理が必要な用途においては、専用の集積回路(ASIC:エーシック)を設けてもよい。
 また、前記コンピューター120は、評価装置100の動作全体を統括制御し、メモリ、制御部、計算処理部等を備えている。また、ユーザーがキーボード・マウスにより、コンピューター120に測定処理条件等を入力可能となっている。
For example, a general computer (personal computer) 120 is used as the spectrum analysis section, data processing section, and information display section. Note that a dedicated integrated circuit (ASIC) may be provided when handling a very large amount of data or in applications requiring ultra-high-speed processing.
Further, the computer 120 centrally controls the entire operation of the evaluation device 100, and includes a memory, a control section, a calculation processing section, and the like. Further, the user can input measurement processing conditions and the like into the computer 120 using the keyboard and mouse.
 次に、上記のように構成された液状物の評価装置100における液状物のピーク強度シフト度に関するデータを取得する処理の一例について図2を参照して説明する。
 図2は、液状物の評価装置で実行されるコンピューター120による制御手順を示すフローチャートである。
 図2に示すように、あらかじめ分光光度計を用いて測定対象となる液状物中の蛍光マーカー化合物について、蛍光指紋又は励起波長を数ナノメートルずつ(例えば、5nmずつ)変えて測定した蛍光スペクトル群から、ユーザーによって選択された測定に有効な励起波長を照射するLED光源に切り替える(ステップS1)。
Next, an example of a process for acquiring data regarding the degree of shift in the peak intensity of a liquid in the liquid substance evaluation apparatus 100 configured as described above will be described with reference to FIG. 2.
FIG. 2 is a flowchart showing a control procedure performed by the computer 120 in the liquid material evaluation apparatus.
As shown in Figure 2, a group of fluorescence spectra were measured using a spectrophotometer in advance by changing the fluorescence fingerprint or excitation wavelength by several nanometers (for example, by 5 nm) for a fluorescent marker compound in a liquid substance to be measured. , the LED light source is switched to an LED light source that emits an excitation wavelength effective for measurement selected by the user (step S1).
 次に、切り替えたLED光源(照射ユニット)から液状物に励起光を照射する(ステップS2)。励起光の照射時間や照射強度等は液状物中の蛍光マーカー化合物に対応して適宜設定する。また、このとき液状物は、搬送機構によって所望の位置で照射されるように搬送されていてもよいし、液状物がドープである場合や塗布液である場合には、成膜装置のインラインで行うことが好ましい。 Next, the liquid material is irradiated with excitation light from the switched LED light source (irradiation unit) (step S2). The irradiation time, irradiation intensity, etc. of the excitation light are appropriately set depending on the fluorescent marker compound in the liquid. In addition, at this time, the liquid material may be transported by a transport mechanism so as to be irradiated at a desired position, or if the liquid material is a dope or a coating liquid, it may be transported in-line in the film forming apparatus. It is preferable to do so.
 次に、液状物に励起光を照射し、励起波長の光によって励起された液状物中の蛍光マーカー化合物からの蛍光を、分光器(受光ユニット)により分光スペクトルとして受光し、すなわち蛍光スペクトルを観測し(ステップS3)、当該蛍光スペクトルに基づきピーク波長や強度を測定し、すなわちピーク強度シフト度に関するデータを取得(スペクトルの解析)し(ステップS4)、取得したデータをコンピューターに送信する。
 コンピューターに送信されたピーク強度シフト度に関するデータから、あらかじめ作成した検量線に基づき、検査対象物の含有量を算出する、すなわちデータ処理をする(ステップS5)。
 算出した検査対象物の含有量が規定値の範囲内であるかを判定し(ステップS6)、範囲内であれば(ステップS6;YES)異常でないと判定して終了する。範囲外であれば(ステップS6;NO)異常であると判定して、表示や音声により警告を出し(ステップS7)、異常発生があった場所、時間及びどのような異常であるかなどの異常発生記録を取り(ステップS8)、処理を終了する。
Next, the liquid substance is irradiated with excitation light, and the fluorescence from the fluorescent marker compound in the liquid substance excited by the light of the excitation wavelength is received as a spectroscopic spectrum by a spectrometer (light receiving unit), that is, the fluorescence spectrum is observed. (Step S3), the peak wavelength and intensity are measured based on the fluorescence spectrum, that is, data regarding the peak intensity shift degree is acquired (spectrum analysis) (Step S4), and the acquired data is transmitted to a computer.
Based on the data regarding the peak intensity shift degree transmitted to the computer, the content of the test object is calculated based on a calibration curve prepared in advance, that is, data processing is performed (step S5).
It is determined whether the calculated content of the inspection object is within the specified value range (step S6), and if it is within the range (step S6; YES), it is determined that there is no abnormality and the process ends. If it is outside the range (step S6; NO), it is determined that there is an abnormality, and a warning is issued by display or sound (step S7), and the abnormality is displayed, such as the location, time, and type of abnormality where the abnormality occurred. An occurrence record is taken (step S8), and the process ends.
<液状物の評価装置の適用例>
 (適用例1)
 本発明の液状物の評価装置を、光学フィルムの成膜工程中に適用した場合について説明する。
 光学フィルムの成膜は、溶液流延製膜法又は溶融流延製膜法を採用することができるが、以下の説明では溶液流延製膜法を採用した場合を例に説明する。
 図3は、溶液流延製膜法のドープ調製工程、流延工程、乾燥工程及び巻取り工程の一例を模式的に示した図である。
 分散機によって溶媒とマット剤を分散させた微粒子分散液は仕込み釜41から濾過器44を通過しストック釜42にストックされる。一方、主ドープであるシクロオレフィン系樹脂は溶媒(溶剤)及び本発明に係る蛍光マーカー化合物とともに溶解釜1にて溶解され、適宜ストック釜42に保管されているマット剤が添加されて混合され主ドープを形成する。得られた主ドープは、濾過器3、ストック釜4から濾過器6によって濾過され、合流管20によって添加剤が添加されて、混合機21で混合されて加圧ダイ30に液送される。
<Application example of liquid substance evaluation device>
(Application example 1)
A case will be described in which the liquid substance evaluation device of the present invention is applied during the film forming process of an optical film.
The optical film can be formed by a solution casting method or a melt casting method, but in the following description, an example in which the solution casting method is used will be described.
FIG. 3 is a diagram schematically showing an example of a dope preparation process, a casting process, a drying process, and a winding process of the solution casting film forming method.
A fine particle dispersion liquid in which a solvent and a matting agent are dispersed by a dispersing machine passes from a charging tank 41 through a filter 44 and is stocked in a stock tank 42. On the other hand, the cycloolefin resin, which is the main dope, is dissolved in the melting pot 1 together with the solvent and the fluorescent marker compound according to the present invention, and the matting agent stored in the stock pot 42 is appropriately added and mixed. Form a dope. The obtained main dope is filtered from the filter 3 and stock pot 4 to the filter 6, additives are added through the confluence pipe 20, mixed in the mixer 21, and the liquid is sent to the pressure die 30.
 一方、添加剤(例えば紫外線吸収剤など)は、溶媒に溶解され、添加剤仕込み釜10から濾過器12を通過してストック釜13にストックされる。その後、濾過器15を通して導管16を経由して合流管20、混合機21によって主ドープと混合される。 On the other hand, additives (for example, ultraviolet absorbers, etc.) are dissolved in a solvent, passed from the additive charging tank 10 through the filter 12, and stored in the stock tank 13. Thereafter, it passes through a filter 15, passes through a conduit 16, and is mixed with the main dope by a confluence pipe 20 and a mixer 21.
 加圧ダイ30に液送された主ドープは、金属ベルト状の支持体31上に流延されてウェブ32を形成し、所定の乾燥後剥離位置33で剥離され原反フィルムを得る。剥離されたウェブ32は、多数の搬送ローラーに通しながら、所定の残留溶媒量になるまで乾燥された後、延伸装置34によって、長手方向又は幅手方向に所定の延伸倍率となるように延伸するとともに所定の残留溶媒量となるように加熱される。延伸後、乾燥装置35によって所定の残留溶媒量になるまで、搬送ローラー36に通しながら乾燥し、巻取り装置37によって、ロール状に巻取られる。 The main dope fed to the pressure die 30 is cast onto a metal belt-shaped support 31 to form a web 32, which is peeled off at a predetermined peeling position 33 after drying to obtain an original film. The peeled web 32 is passed through a number of transport rollers and dried until a predetermined amount of residual solvent is reached, and then stretched by a stretching device 34 to a predetermined stretching ratio in the longitudinal direction or the width direction. At the same time, the solvent is heated to a predetermined amount of residual solvent. After stretching, the film is dried by a drying device 35 while being passed through conveying rollers 36 until a predetermined amount of residual solvent is reached, and then wound into a roll by a winding device 37.
 上記のような溶液流延製膜法において、本発明の液状物の評価装置は、液状物の素性を検知する目的に応じて例えば以下のとおりに配置することが好ましい。
 (1)濾過前のドープの状態を検知する目的の場合、送液ポンプ2と濾過器3との間に配置することが好ましい。
 (2)合流管20前のドープの状態を検知する目的の場合、濾過器6と導管8との間又は濾過器15と導管16との間に配置することが好ましい。
 (3)合流した後のドープの状態を検知する目的の場合、混合機21と加圧ダイ30との間に配置することが好ましい。
 このように溶液流延製膜法の工程中において、本発明の液状物の評価装置を配置することで、例えば、ドープ(液状物)の蛍光スペクトルを随時測定することができ、ドープ内の水分量や不純物等の微小な変動があった場合に容易にかつ早急に検知することができる。
In the solution casting film forming method as described above, the liquid material evaluation device of the present invention is preferably arranged as follows, depending on the purpose of detecting the identity of the liquid material.
(1) When the purpose is to detect the state of the dope before filtration, it is preferable to arrange it between the liquid feeding pump 2 and the filter 3.
(2) When the purpose is to detect the state of the dope before the confluence pipe 20, it is preferable to arrange it between the filter 6 and the conduit 8 or between the filter 15 and the conduit 16.
(3) When the purpose is to detect the state of the dope after merging, it is preferable to arrange it between the mixer 21 and the pressure die 30.
By arranging the liquid substance evaluation device of the present invention during the process of solution casting film forming method, for example, the fluorescence spectrum of the dope (liquid substance) can be measured at any time, and the water content in the dope can be measured at any time. If there is a minute change in the amount or impurities, it can be detected easily and quickly.
 前記溶液流延製膜法において用いられるドープとしては、少なくとも、溶剤、樹脂及び非反応添加物(蛍光マーカー化合物)を含有していればよい。
 本発明に係るドープに用いられる樹脂としては、シクロオレフィン系樹脂やアクリル樹脂、トリアセチルセルロース樹脂等であることが好ましい。以下では、シクロオレフィン系樹脂について説明する。
The dope used in the solution casting film forming method may contain at least a solvent, a resin, and a non-reactive additive (fluorescent marker compound).
The resin used in the dope according to the present invention is preferably a cycloolefin resin, an acrylic resin, a triacetylcellulose resin, or the like. The cycloolefin resin will be explained below.
 《シクロオレフィン系樹脂》
 本発明に係るドープに含有されるシクロオレフィン系樹脂は、少なくとも一つの水素結合受容性基を含む樹脂組成物から形成されていることが好ましい。一般的にシクロオレフィン系樹脂は、疎水性の樹脂であるため、フィルム化した際に水分があると分離しやすく透明性の観点から好ましくないが、少なくとも一つの水素結合受容性基を含む樹脂組成物から形成されることで、アルコールのヒドロキシ基やヒンダードフェノール系化合物のヒドロキシ基と水素結合できることから、水分を多少含んだ状態であっても、透明性も維持でき、逆に水素結合によりフィルム強度が向上する。
 「水素結合受容性基」とは、水素結合を形成する際に水素原子を受容する官能基をいう。
《Cycloolefin resin》
The cycloolefin resin contained in the dope according to the present invention is preferably formed from a resin composition containing at least one hydrogen bond accepting group. In general, cycloolefin resins are hydrophobic resins, so they tend to separate if there is moisture when formed into a film, which is not preferable from the perspective of transparency, but resin compositions containing at least one hydrogen bond-accepting group By forming hydrogen bonds with the hydroxyl groups of alcohols and hydroxyl groups of hindered phenol compounds, it is possible to maintain transparency even when it contains some moisture; Strength is improved.
"Hydrogen bond-accepting group" refers to a functional group that accepts a hydrogen atom when forming a hydrogen bond.
 水素結合受容性基としては、例えば、炭素原子数1~10のアルコキシ基、炭素原子数1~10のアシルオキシ基、炭素原子数2~10のアルコキシカルボニル基、アリルオキシカルボニル基、シアノ基、アミド基、イミド環含有基、トリオルガノシロキシ基、トリオルガノシリル基、アシル基、炭素原子数1~10のアルコキシシリル基、スルホニル含有基、及びカルボキシ基など挙げられる。これらの極性基についてさらに具体的に説明すると、上記アルコキシ基としては、例えば、メトキシ基、エトキシ基等が挙げられ;アシルオキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基等のアルキルカルボニルオキシ基、及びベンゾイルオキシ基等のアリールカルボニルオキシ基が挙げられ;アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基等が挙げられ;アリルオキシカルボニル基としては、例えば、フェノキシカルボニル基、ナフチルオキシカルボニル基、フルオレニルオキシカルボニル基、ビフェニリルオキシカルボニル基等が挙げられ;トリオルガノシロキシ基としては、例えば、トリメチルシロキシ基、トリエチルシロキシ基等が挙げられ;トリオルガノシリル基としてはトリメチルシリル基、トリエチルシリル基等が挙げられ;アルコキシシリル基としては、例えば、トリメトキシシリル基、トリエトキシシリル基等が挙げられる。 Examples of the hydrogen bond-accepting group include an alkoxy group having 1 to 10 carbon atoms, an acyloxy group having 1 to 10 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, an allyloxycarbonyl group, a cyano group, and an amide group. group, an imide ring-containing group, a triorganosiloxy group, a triorganosilyl group, an acyl group, an alkoxysilyl group having 1 to 10 carbon atoms, a sulfonyl-containing group, and a carboxy group. To explain these polar groups in more detail, examples of the alkoxy groups include methoxy and ethoxy groups; examples of the acyloxy groups include alkylcarbonyloxy groups such as acetoxy and propionyloxy groups; and arylcarbonyloxy groups such as benzoyloxy groups; examples of alkoxycarbonyl groups include methoxycarbonyl groups and ethoxycarbonyl groups; examples of allyloxycarbonyl groups include phenoxycarbonyl groups and naphthyloxycarbonyl groups. Examples of triorganosiloxy groups include trimethylsiloxy groups, triethylsiloxy groups, etc.; examples of triorganosilyl groups include trimethylsilyl groups, triethyl groups, etc. Examples of the alkoxysilyl group include a trimethoxysilyl group and a triethoxysilyl group.
 樹脂成分中に含まれる上記水素結合受容性基を含むシクロオレフィン系樹脂の量は、特に限定されるものではないが、好ましくは、含有割合が10~100質量%である。10質量%以上であると、得られる開環共重合体がトルエンやジクロロメタンなどの溶媒への溶解性を示しやすくなるため好ましく、更に溶解性やフィルムの強度、透明性の観点から、30~100質量%の範囲にあると更に好ましい。 The amount of the cycloolefin resin containing the hydrogen bond-accepting group contained in the resin component is not particularly limited, but the content is preferably 10 to 100% by mass. If the content is 10% by mass or more, the resulting ring-opened copolymer will easily exhibit solubility in solvents such as toluene or dichloromethane, so it is preferable. It is more preferable that the amount is within the range of % by mass.
 本発明に係るシクロオレフィン系樹脂としては、例えば、次のような(共)重合体が挙げられる。 Examples of the cycloolefin resin according to the present invention include the following (co)polymers.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 〔式中、pは0又は1であり、mは0又は1以上の整数である。R~Rは、それぞれ独立に、水素原子、炭化水素基、ハロゲン原子、又は水素結合受容性基を表す。また、R~Rは、二つ以上が互いに結合して、不飽和結合、単環又は多環を形成していてもよく、この単環又は多環は、二重結合を有していても、芳香環を形成してもよい。〕
 本発明において、シクロオレフィン系樹脂の好ましい水素結合受容性基の保有比率は一般式(I)でR~Rのうち1~2個が水素結合受容性基を有することが好ましい。
[In the formula, p is 0 or 1, and m is 0 or an integer of 1 or more. R 1 to R 4 each independently represent a hydrogen atom, a hydrocarbon group, a halogen atom, or a hydrogen bond-accepting group. Furthermore, two or more of R 1 to R 4 may be bonded to each other to form an unsaturated bond, a monocyclic ring, or a polycyclic ring, and this monocyclic ring or polycyclic ring may have a double bond. or may form an aromatic ring. ]
In the present invention, the preferred proportion of hydrogen bond-accepting groups in the cycloolefin resin is that in general formula (I), 1 to 2 of R 1 to R 4 have hydrogen bond-accepting groups.
 また、シクロオレフィン系樹脂の水素結合受容性基の保有比率は例えば、カーボン-13核磁気共鳴(13CNMR)スペクトル法を用いて同定することができる。 Furthermore, the proportion of hydrogen bond-accepting groups in the cycloolefin resin can be identified using, for example, carbon-13 nuclear magnetic resonance ( 13 CNMR) spectroscopy.
 また一般式(I)中、R及びRが水素原子又は炭素数1~10、さらに好ましくは1~4、特に好ましくは1~2の炭化水素基であり、R及びRの少なくとも一つは水素原子及び炭化水素基以外の極性を有する水素結合受容性基を示し、pとmは、ガラス転移温度が高くかつ機械的強度が優れるという観点から、m=1、p=0であるものが好ましい。 Further, in the general formula (I), R 1 and R 3 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms, and at least one of R 2 and R 4 is One is a polar hydrogen bond-accepting group other than a hydrogen atom or a hydrocarbon group, and p and m are m=1 and p=0 from the viewpoint of having a high glass transition temperature and excellent mechanical strength. Something is preferable.
 ハロゲン原子としては、フッ素原子、塩素原子及び臭素原子が挙げられる。炭素原子数1~30の炭化水素基としては、例えば、メチル基、エチル基、プロピル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基等のアルケニル基;フェニル基、ビフェニル基、ナフチル基、アントラセニル基等の芳香族基等が挙げられる。これらの炭化水素基は置換されていてもよく、置換基としては、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子、フェニルスルホニル基等が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. Examples of hydrocarbon groups having 1 to 30 carbon atoms include alkyl groups such as methyl, ethyl and propyl groups; cycloalkyl groups such as cyclopentyl and cyclohexyl; alkenyl such as vinyl, allyl and propenyl groups; Groups include aromatic groups such as phenyl, biphenyl, naphthyl, and anthracenyl groups. These hydrocarbon groups may be substituted, and examples of the substituents include halogen atoms such as fluorine atoms, chlorine atoms, and bromine atoms, and phenylsulfonyl groups.
 本発明に係るシクロオレフィン系樹脂の好ましい分子量は、固有粘度〔η〕inhで0.2~5cm/g、さらに好ましくは0.3~3cm/g、特に好ましくは0.4~1.5cm/gであり、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量(Mn)は8000~100000、さらに好ましくは10000~80000、特に好ましくは12000~50000であり、重量平均分子量(Mw)は20000~300000、さらに好ましくは30000~250000、特に好ましくは40000~200000の範囲のものが好適である。 The preferred molecular weight of the cycloolefin resin according to the present invention is 0.2 to 5 cm 3 /g, more preferably 0.3 to 3 cm 3 /g, particularly preferably 0.4 to 1. 5 cm 3 /g, and the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is 8,000 to 100,000, more preferably 10,000 to 80,000, particularly preferably 12,000 to 50,000, and the weight average The molecular weight (Mw) is preferably in the range of 20,000 to 300,000, more preferably 30,000 to 250,000, particularly preferably 40,000 to 200,000.
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあることによって、シクロオレフィン樹脂の耐熱性、耐水性、耐薬品性、機械的特性と、本発明に係るシクロオレフィン系樹脂フィルムとしての成形加工性が良好となる。 By having the intrinsic viscosity [η] inh, number average molecular weight, and weight average molecular weight within the above ranges, the heat resistance, water resistance, chemical resistance, and mechanical properties of the cycloolefin resin and the cycloolefin resin film according to the present invention can be improved. As a result, the molding processability is improved.
 本発明に係るシクロオレフィン系樹脂のガラス転移温度(Tg)としては、通常、110℃以上、好ましくは110~350℃、さらに好ましくは120~250℃、特に好ましくは120~220℃である。Tgが110℃以上の場合は、高温条件下での使用、又はコーティング、印刷などの二次加工による変形が抑制されるため好ましい。また、Tgが350℃以下であると、成形加工や成形加工時の熱による樹脂劣化が抑制されるため好ましい。 The glass transition temperature (Tg) of the cycloolefin resin according to the present invention is usually 110°C or higher, preferably 110 to 350°C, more preferably 120 to 250°C, particularly preferably 120 to 220°C. When Tg is 110° C. or higher, deformation due to use under high temperature conditions or secondary processing such as coating and printing is suppressed, which is preferable. Further, it is preferable that the Tg is 350° C. or less because deterioration of the resin due to molding or heat during molding is suppressed.
 以上説明したシクロオレフィン系樹脂は、市販品を好ましく用いることができ、市販品の例としては、JSR(株)からアートン(Arton)G、アートンF、アートンR、及びアートンRXという商品名で発売されており、これらを使用することができる。 As the cycloolefin resin described above, commercially available products can be preferably used. Examples of commercially available products are those sold by JSR Corporation under the trade names Arton G, Arton F, Arton R, and Arton RX. and can be used.
 《溶剤》
 本発明に係るドープに含有される溶剤としては、例えば有機溶媒が挙げられる。
 前記有機溶媒としては、例えば、クロロホルム、ジクロロメタンなどの塩素系溶媒;トルエン、キシレン、ベンゼン、及びこれらの混合溶媒などの芳香族系溶媒;メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノールなどのアルコール系溶媒;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ジメチルホルムアミド、ジメチルスルホキシド、ジオキサン、シクロヘキサノン、テトラヒドロフラン、アセトン、メチルエチルケトン(MEK)、酢酸エチル、ジエチルエーテル;などが挙げられる。これら溶媒は1種のみ用いてもよいし、2種以上を併用してもよい。
"solvent"
Examples of the solvent contained in the dope according to the present invention include organic solvents.
Examples of the organic solvent include chlorinated solvents such as chloroform and dichloromethane; aromatic solvents such as toluene, xylene, benzene, and mixed solvents thereof; and methanol, ethanol, isopropanol, n-butanol, and 2-butanol. Alcohol solvents; methyl cellosolve, ethyl cellosolve, butyl cellosolve, dimethyl formamide, dimethyl sulfoxide, dioxane, cyclohexanone, tetrahydrofuran, acetone, methyl ethyl ketone (MEK), ethyl acetate, diethyl ether; and the like. These solvents may be used alone or in combination of two or more.
 また、前記有機溶媒は、良溶媒と貧溶媒の混合溶媒であることが好ましく、当該良溶媒は、例えば、塩素系有機溶媒としては、ジクロロメタン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、メチルエチルケトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノール等が挙げられ、中でもジクロロメタンであることが好ましい。当該良溶媒は、溶媒全体量に対して55質量%以上を用いることが好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上用いることである。 Further, the organic solvent is preferably a mixed solvent of a good solvent and a poor solvent, and the good solvent is, for example, dichloromethane as a chlorinated organic solvent, methyl acetate, ethyl acetate as a non-chlorinated organic solvent, etc. , amyl acetate, acetone, methyl ethyl ketone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1- Propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro- Examples include 2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, etc. Among them, dichloromethane is preferred. The good solvent is preferably used in an amount of 55% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, based on the total amount of the solvent.
 貧溶媒はアルコール系溶媒であることが好ましく、当該アルコール系溶媒が、メタノール、エタノール及びブタノールから選択されることが、剥離性を改善し、高速度流延を可能にする観点から好ましい。中でもメタノール又はエタノールを用いることが好ましい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ないときは非塩素系有機溶媒系でのシクロオレフィン系樹脂及びその他の化合物の溶解を促進する役割もある。
 本発明においては、得られる光学フィルムの平面性を高める点から、アルコール濃度が0.5~15.0質量%の範囲内にあるドープを用いて製膜することが好ましい。
The poor solvent is preferably an alcoholic solvent, and the alcoholic solvent is preferably selected from methanol, ethanol, and butanol from the viewpoint of improving strippability and enabling high-speed casting. Among these, it is preferable to use methanol or ethanol. When the proportion of alcohol in the dope is high, the web gels, making it easier to peel off from the metal support, and when the proportion of alcohol is low, it is difficult to use cycloolefin resins and other compounds in non-chlorinated organic solvent systems. It also plays a role in promoting the dissolution of.
In the present invention, from the viewpoint of improving the flatness of the resulting optical film, it is preferable to form the film using a dope having an alcohol concentration within the range of 0.5 to 15.0% by mass.
 《非反応添加物》
 本発明に係るドープに含有される非反応添加物(蛍光マーカー化合物)としては、前記した酸化防止剤(例えば、Irganox 1076(BASFジャパン社製)や色素(NIR色素、NUV色素)等が挙げられる。
《Non-reactive additives》
Examples of non-reactive additives (fluorescent marker compounds) contained in the dope according to the present invention include the aforementioned antioxidants (for example, Irganox 1076 (manufactured by BASF Japan), dyes (NIR dyes, NUV dyes), etc. .
 《その他の添加剤》
 本発明に係るドープには、その他、特開2017-90872号公報に記載の、可塑剤、位相差上昇剤、シリカ粒子等のマット剤を添加することができる。
《Other additives》
In addition, matting agents such as plasticizers, retardation increasing agents, and silica particles described in JP-A-2017-90872 can be added to the dope according to the present invention.
 (適用例2)
 次に、本発明の液状物の評価装置を、機能性フィルムに塗布するハードコート層用の塗布液を塗布する工程中に適用した場合について説明する。
 図4は、機能性フィルムを製造する際に用いられるハードコート層形成装置の一例を示す概略図である。
 ハードコート層形成装置は、いわゆるロール・ツー・ロール方式の装置である。ハードコート層形成装置130は、送り出しローラー132aと、搬送ローラー133a、133b、133c、133d、133eと、ハードコート層形成用塗布液塗布装置134と、加熱乾燥部135と、搬送ローラー136と、紫外線照射装置137と、巻取りローラー132bとを備えている。
(Application example 2)
Next, a case will be described in which the liquid substance evaluation apparatus of the present invention is applied during the process of applying a coating liquid for a hard coat layer to be applied to a functional film.
FIG. 4 is a schematic diagram showing an example of a hard coat layer forming apparatus used when manufacturing a functional film.
The hard coat layer forming apparatus is a so-called roll-to-roll type apparatus. The hard coat layer forming device 130 includes a feed roller 132a, conveyance rollers 133a, 133b, 133c, 133d, and 133e, a hard coat layer forming coating liquid application device 134, a heating drying section 135, a conveyance roller 136, and an ultraviolet ray It includes an irradiation device 137 and a winding roller 132b.
 このようなハードコート層形成装置130では、送り出しローラー132aから基材及び機能性層を有するフィルム131が送り出される。そして、ローラー送り出し後のフィルム131の機能性層上又は基材上に、塗布液塗布装置134によって、ハードコート層形成用塗布液を塗布する。なお、ハードコート層形成用塗布液を塗布する前に、フィルムを除電することが好ましい。
 塗布液塗布装置としては、例えば、ダイコーター、グラビアコーター、コンマコーターなどが挙げられる。
In such a hard coat layer forming device 130, a film 131 having a base material and a functional layer is fed out from a feeding roller 132a. Then, the coating liquid for forming a hard coat layer is applied by the coating liquid coating device 134 onto the functional layer of the film 131 or the base material after being fed out by the roller. Note that it is preferable to eliminate static electricity from the film before applying the coating liquid for forming a hard coat layer.
Examples of the coating liquid application device include a die coater, a gravure coater, and a comma coater.
 ハードコート層形成用塗布液が塗布された基材は、搬送ローラー133b、133cを経て、加熱乾燥部135に搬送される。乾燥部では、塗布液中の溶媒を乾燥させる。乾燥手段としては特に限定されず、温風乾燥、赤外乾燥、マイクロ波乾燥が用いられる。なお、図4においては、加熱乾燥部135に乾燥装置が4つ記載されているが、このように複数の乾燥装置を用いて乾燥を行う形態に限られず、1つの乾燥装置のみで乾燥してもよい。この際の乾燥温度としては、用いられる溶媒を除去できる温度で適宜設定されるが、通常70~120℃である。 The base material coated with the coating liquid for forming a hard coat layer is conveyed to the heating drying section 135 via conveyance rollers 133b and 133c. In the drying section, the solvent in the coating liquid is dried. The drying means is not particularly limited, and hot air drying, infrared drying, and microwave drying are used. Although four drying devices are shown in the heating drying section 135 in FIG. 4, the drying is not limited to using a plurality of drying devices in this way, and drying can be performed using only one drying device. Good too. The drying temperature at this time is appropriately set at a temperature that allows removal of the solvent used, but is usually 70 to 120°C.
 ハードコート層形成用塗布液が塗布された基材は、搬送ローラー133dを経て、紫外線照射装置137による紫外線照射のため搬送される。
 紫外線照射装置137では、紫外線硬化樹脂が照射された紫外線により硬化する。紫外線照射装置としては、例えば、高圧UVランプ(高圧水銀ランプ)、メタルハライドランプなどの紫外線ランプを用いることができる。図4においては、紫外線照射装置を図示したが、用いられる硬化樹脂によって、加熱装置など他の硬化用装置が用いられる。ポリシロキサン系ハードコート材料の場合、塗布後、溶剤を乾燥させた後、該ハードコート材料の硬化・架橋を促進するため、50~150℃の温度範囲内で30分~数日間の熱処理を行うことが好ましい。
The base material coated with the coating liquid for forming a hard coat layer is conveyed via a conveyance roller 133d for ultraviolet irradiation by an ultraviolet irradiation device 137.
In the ultraviolet irradiation device 137, the ultraviolet curing resin is cured by the irradiated ultraviolet light. As the ultraviolet irradiation device, for example, an ultraviolet lamp such as a high pressure UV lamp (high pressure mercury lamp) or a metal halide lamp can be used. Although an ultraviolet irradiation device is shown in FIG. 4, other curing devices such as a heating device may be used depending on the curing resin used. In the case of polysiloxane hard coat materials, after coating, after drying the solvent, heat treatment is performed within a temperature range of 50 to 150°C for 30 minutes to several days in order to promote curing and crosslinking of the hard coat material. It is preferable.
 活性エネルギー線硬化樹脂を用いる場合、活性エネルギー線の照射波長、照度、光量によってその反応性が変わるため、使用する樹脂によって最適な条件を選択する必要がある。例えば、活性エネルギー線として紫外線ランプを用いる場合、その照度は50~1500mW/cmが好ましく、照射エネルギー量は50~1500mJ/cmが好ましい。 When using an active energy ray-curable resin, its reactivity varies depending on the irradiation wavelength, illumination intensity, and light amount of the active energy ray, so it is necessary to select optimal conditions depending on the resin used. For example, when an ultraviolet lamp is used as the active energy ray, the illumination intensity is preferably 50 to 1500 mW/cm 2 and the irradiation energy amount is preferably 50 to 1500 mJ/cm 2 .
 上記紫外線照射処理により、基材又は機能性層上にハードコート層が形成される。
 形成されたハードコート層の厚みは0.1~20μmが好ましく、1~15μmがより好ましく、3~10μmであることがさらに好ましい。0.1μm以上であればハードコート性が向上する傾向にあり、20μm以下であればハードコート層のカールが小さく、耐屈曲性が維持される傾向にある。
A hard coat layer is formed on the base material or functional layer by the ultraviolet irradiation treatment.
The thickness of the formed hard coat layer is preferably 0.1 to 20 μm, more preferably 1 to 15 μm, and even more preferably 3 to 10 μm. If it is 0.1 μm or more, hard coat properties tend to improve, and if it is 20 μm or less, curling of the hard coat layer is small and flexibility tends to be maintained.
 なお、上記においては、ハードコート層を基材または機能性層上に形成する形態について説明したが、該形態に限定されず、ハードコート層はその他の中間層などの上に形成されてもよい。 In addition, although the form in which the hard coat layer is formed on the base material or the functional layer has been described above, the hard coat layer is not limited to this form, and the hard coat layer may be formed on other intermediate layers, etc. .
 上記のようなハードコート層形成装置において、本発明の液状物の評価装置は、例えば、塗布液塗布装置134や、ハードコート層形成用塗布液を塗布した直後の搬送ローラー133bの近傍、乾燥部による乾燥中で搬送ローラー133cと搬送ローラー133dの間、乾燥直後の搬送ローラー133dの近傍に配置することが好ましい。
 このようにハードコート層の形成工程中において、本発明の液状物の評価装置を配置することで、例えば、ハードコート層形成用塗布液や、塗布したハードコート層の塗布膜の蛍光スペクトルを随時測定することができ、前記ハードコート層形成用塗布液又は塗布膜の水分量や不純物等の微小な変動があった場合に容易にかつ早急に検知することができる。
In the above-described hard coat layer forming apparatus, the liquid material evaluation apparatus of the present invention is applied to, for example, the coating liquid applying apparatus 134, the vicinity of the conveying roller 133b immediately after applying the hard coat layer forming coating liquid, or the drying part. It is preferable to arrange it between the conveyance roller 133c and the conveyance roller 133d during drying, or near the conveyance roller 133d immediately after drying.
By arranging the liquid substance evaluation device of the present invention during the hard coat layer forming process, it is possible to monitor, for example, the fluorescence spectrum of the coating liquid for forming the hard coat layer or the coated film of the hard coat layer at any time. It is possible to easily and quickly detect minute fluctuations in the water content, impurities, etc. of the coating solution for forming a hard coat layer or the coating film.
 また、前記ハードコート層形成工程において用いられるハードコート層形成用塗布液は、少なくとも、溶剤、樹脂及び非反応添加物(蛍光マーカー化合物)を含有していればよい。 Furthermore, the hard coat layer forming coating liquid used in the hard coat layer forming step may contain at least a solvent, a resin, and a non-reactive additive (fluorescent marker compound).
 《樹脂》
 本発明に係るハードコート層形成用塗布液に用いられる樹脂としては、熱硬化樹脂や活性エネルギー線硬化樹脂が挙げられる。成形が容易なことから、活性エネルギー線硬化樹脂が好ましい。このような硬化樹脂は、単独でもまたは2種以上組み合わせても用いることができる。また、硬化樹脂は市販品を用いてもよいし、合成品を用いてもよい。
"resin"
Examples of the resin used in the coating liquid for forming a hard coat layer according to the present invention include thermosetting resins and active energy ray-curing resins. Active energy ray-curable resins are preferred because they are easy to mold. Such cured resins can be used alone or in combination of two or more. Moreover, a commercially available product or a synthetic product may be used as the cured resin.
 活性エネルギー線硬化樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。
 活性エネルギー線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することに
よって硬化させて活性エネルギー線ハードコート層が形成される。活性エネルギー線硬化樹脂としては紫外線硬化型樹脂や電子線硬化型樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化型樹脂が好ましい。活性エネルギー線硬化樹脂は1種単独で用いてもよいし、2種以上併用してもよい。
Active energy ray-curable resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays or electron beams.
As the active energy ray-curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and is cured by irradiation with active energy rays such as ultraviolet rays or electron beams to form an active energy ray hard coat layer. is formed. Typical active energy ray-curable resins include ultraviolet curable resins and electron beam curable resins, but ultraviolet curable resins that are cured by ultraviolet irradiation are preferred. One type of active energy ray-curable resin may be used alone, or two or more types may be used in combination.
 紫外線硬化型樹脂としては、例えば、紫外線硬化型ウレタンアクリレート樹脂、紫外線硬化型ポリエステルアクリレート樹脂、紫外線硬化型エポキシアクリレート樹脂、紫外線硬化型ポリオールアクリレート樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも紫外線硬化型ウレタンアクリレート樹脂、紫外線硬化型ポリオールアクリレート樹脂が好ましい。 As the UV-curable resin, for example, UV-curable urethane acrylate resin, UV-curable polyester acrylate resin, UV-curable epoxy acrylate resin, UV-curable polyol acrylate resin, UV-curable epoxy resin, etc. are preferably used. Among these, UV-curable urethane acrylate resins and UV-curable polyol acrylate resins are preferred.
 紫外線硬化型ウレタンアクリレート樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物にさらに2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。例えば、特開昭59-151110号公報に記載の、ユニディック17-806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。紫外線硬化型ウレタンアクリレート樹脂としては、市販品を用いてもよく、市販品としては、ビームセット(登録商標)575、577(荒川化学工業株式会社製)、紫光(登録商標)UVシリーズなどを挙げることができる。 Ultraviolet curable urethane acrylate resin is generally made by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and then adding 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate (hereinafter acrylate includes methacrylate). 2-hydroxypropyl acrylate) can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate. For example, a mixture of 100 parts of Unidic 17-806 (manufactured by Dainippon Ink Co., Ltd.) and 1 part of Coronate L (manufactured by Nippon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used. It will be done. As the ultraviolet curable urethane acrylate resin, commercially available products may be used, and examples of commercially available products include Beam Set (registered trademark) 575, 577 (manufactured by Arakawa Chemical Industry Co., Ltd.), Shiko (registered trademark) UV series, etc. be able to.
 紫外線硬化型ポリエステルアクリレート樹脂としては、一般にポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させることにより形成されるものを挙げることができ、特開昭59-151112号公報に記載のものを用いることができる。 Examples of ultraviolet curable polyester acrylate resins include those formed by reacting polyester polyol with 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers, as described in JP-A-59-151112. Those described can be used.
 紫外線硬化型エポキシアクリレート樹脂としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光重合開始剤を添加し、反応させて生成するものを挙げることができ、特開平1-105738号公報に記載のものを用いることができる。 Examples of ultraviolet curable epoxy acrylate resins include those produced by making epoxy acrylate into oligomers, adding a reactive diluent and a photopolymerization initiator to the oligomers, and reacting them. Those described can be used.
 紫外線硬化型ポリオールアクリレート樹脂としては、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。紫外線硬化型ポリオールアクリレート樹脂としては、市販品を用いてもよく、市販品としては、サートマーSR295、SR399(サートマー社製)などを挙げることができる。 Examples of UV-curable polyol acrylate resins include ethylene glycol (meth)acrylate, polyethylene glycol di(meth)acrylate, glycerin tri(meth)acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, and dipentaerythritol. Examples include pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate. As the ultraviolet curable polyol acrylate resin, commercially available products may be used, and examples of the commercially available products include Sartomer SR295 and SR399 (manufactured by Sartomer Co., Ltd.).
 また、紫外線硬化型樹脂と組み合わせて(または単独で)、重合性シリコーン化合物を用いてもよい。該重合性シリコーン化合物は、上記紫外線硬化型樹脂と組み合わせて用いることが好ましい。 Additionally, a polymerizable silicone compound may be used in combination with an ultraviolet curable resin (or alone). The polymerizable silicone compound is preferably used in combination with the ultraviolet curable resin.
 重合性シリコーン化合物は、分子内にシロキサン結合による主骨格(シリコーン骨格)と重合性基を有する化合物である。 A polymerizable silicone compound is a compound that has a main skeleton (silicone skeleton) formed by siloxane bonds and a polymerizable group in the molecule.
 重合性基は、上記紫外線硬化型樹脂と重合可能な基であり、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基等の重合性の二重結合を有する基が挙げられる。好ましく
は(メタ)アクリロイル基である。したがって、好ましい重合性シリコーン化合物は、シリコーン(メタ)アクリレートまたはシリコーン(メタ)アクリレートオリゴマー(以下、併せてシリコーン(メタ)アクリレートという。)であることが好ましい。
The polymerizable group is a group that can be polymerized with the ultraviolet curable resin, and includes groups having a polymerizable double bond such as a (meth)acryloyl group and a (meth)acryloyloxy group. Preferably it is a (meth)acryloyl group. Therefore, the preferred polymerizable silicone compound is preferably silicone (meth)acrylate or silicone (meth)acrylate oligomer (hereinafter collectively referred to as silicone (meth)acrylate).
 また、重合性シリコーン化合物は、上述の紫外線硬化型樹脂との相溶性を向上させるという点から、分子内に紫外線硬化性樹脂との相溶性を向上する部位を含有する有機変性重合性シリコーン化合物であることが好ましい。このような有機変性重合性シリコーン化合物としては、例えば、ウレタン変性、アミノ変性、アルキル変性、エポキシ変性、カルボキシル変性、アルコール変性、フッ素変性、アルキルアラルキルポリエーテル変性、エポキシ・ポリエーテル変性またはポリエーテル変性した重合性シリコーン化合物が挙げられる。 In addition, the polymerizable silicone compound is an organically modified polymerizable silicone compound that contains a moiety in the molecule that improves compatibility with the ultraviolet curable resin. It is preferable that there be. Such organically modified polymerizable silicone compounds include, for example, urethane-modified, amino-modified, alkyl-modified, epoxy-modified, carboxyl-modified, alcohol-modified, fluorine-modified, alkylaralkyl polyether-modified, epoxy/polyether-modified or polyether-modified. Examples include polymerizable silicone compounds.
 例えば、紫外線硬化型樹脂が、紫外線硬化型ウレタンアクリレート樹脂を含む場合には、重合性シリコーン化合物は、ウレタン変性シリコーン(メタ)アクリレートであることが好ましい。ウレタン変性シリコーン(メタ)アクリレートは、たとえば両末端がOHであるシリコーン化合物に多価イソシアネートを反応させ、末端イソシアナートシリコーン化合物を得て、末端イソシアナートシリコーン化合物と前記ヒドロキシル基含有(メタ)アクリレートとを反応させて得られる。 For example, when the ultraviolet curable resin includes an ultraviolet curable urethane acrylate resin, the polymerizable silicone compound is preferably a urethane-modified silicone (meth)acrylate. Urethane-modified silicone (meth)acrylate is produced by, for example, reacting a silicone compound having OH at both ends with a polyvalent isocyanate to obtain a terminal isocyanate silicone compound, and then combining the terminal isocyanate silicone compound with the hydroxyl group-containing (meth)acrylate. Obtained by reacting.
 重合性シリコーン化合物は、市販品を用いることができ、市販品としては、例えば、EBECRYL1360、EBECRYL350、KRM8495(ダイセル・オルネクス社製)、CN9800、CN990(アルケマ社製)などが挙げられる。 Commercially available products can be used as the polymerizable silicone compound, and examples of the commercially available products include EBECRYL1360, EBECRYL350, KRM8495 (manufactured by Daicel Allnex), CN9800, and CN990 (manufactured by Arkema).
 なお、重合性シリコーン化合物も重合物が形成されるため、樹脂の重合性成分となる。 Note that the polymerizable silicone compound also forms a polymer, so it becomes a polymerizable component of the resin.
 紫外線硬化型樹脂は、光重合開始剤(ラジカル重合開始剤)を用いることが好ましい。光重合開始剤としては、ペンゾイン、べンゾインメチルエーテル、べンゾインエチルエーテル、ベンゾインイソプロピルエーテル、べンジルメチルケタールなどのべンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのアセトフェノン類;メチルアントラキノン、2-エチルアントラキノン、2-アミルアントラキノンなどのアントラキノン類;チオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4,4-ビスメチルアミノべンゾフェノンなどのベンゾフェノン類およびアゾ化合物等を用いることができる。これらは単独でもまたは2種以上組み合わせても使用することができる。加えて、トリエタノールアミン、メチルジエタノールアミンなどの第3級アミン;2-ジメチルアミノエチル安息香酸、4-ジメチルアミノ安息香酸エチルなどの安息香酸誘導体等の光開始助剤などと組み合わせて使用することができる。光重合開始剤は市販品を用いてもよく、例えばイルガキュア(登録商標)-184、819、907、651、1700、1800、819、369、261、DAROCUR-TPO(BASFジャパン株式会社製)、ダロキュア(登録商標)-1173(メルク株式会社製)、エザキュア-KIP150、TZT(DKSHジャパン株式会社製)、カヤキュア(登録商標)BMS、DMBI(日本化薬株式会社製)等が挙げられる。これら光重合開始剤の使用量は、樹脂の重合性成分100重量部に対して好ましくは0.5~30重量部、より好ましくは1~25重量部である。 It is preferable to use a photopolymerization initiator (radical polymerization initiator) for the ultraviolet curable resin. As photopolymerization initiators, benzoin and its alkyl ethers such as penzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzyl methyl ketal; acetophenone, 2,2-dimethoxy- Acetophenones such as 2-phenylacetophenone and 1-hydroxycyclohexylphenyl ketone; Anthraquinones such as methylanthraquinone, 2-ethylanthraquinone, and 2-amylanthraquinone; Thioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, etc. Thioxanthones; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone and 4,4-bismethylaminobenzophenone; and azo compounds can be used. These can be used alone or in combination of two or more. In addition, it can be used in combination with photoinitiation aids such as tertiary amines such as triethanolamine and methyldiethanolamine; benzoic acid derivatives such as 2-dimethylaminoethylbenzoic acid and ethyl 4-dimethylaminobenzoate. can. Commercially available photopolymerization initiators may be used, such as Irgacure (registered trademark) -184, 819, 907, 651, 1700, 1800, 819, 369, 261, DAROCUR-TPO (manufactured by BASF Japan Co., Ltd.), Darocure (registered trademark)-1173 (manufactured by Merck Co., Ltd.), Ezacure-KIP150, TZT (manufactured by DKSH Japan Co., Ltd.), Kayacure (registered trademark) BMS, DMBI (manufactured by Nippon Kayaku Co., Ltd.), and the like. The amount of these photopolymerization initiators used is preferably 0.5 to 30 parts by weight, more preferably 1 to 25 parts by weight, based on 100 parts by weight of the polymerizable component of the resin.
 熱硬化性樹脂としては、ポリシロキサン系ハードコートが挙げられる。 Examples of thermosetting resins include polysiloxane hard coats.
 ポリシロキサン系ハードコートは、一般式RmSi(OR′)nで示されるものが出発原料である。RおよびR′は、炭素数1~10のアルキル基を表し、mおよびnは、m+n=4の関係を満たす整数である。出発原料中のメトキシ基、エトキシ基などの加水分解性基が水酸基に置換した状態のものが、一般的にポリオルガノシロキサン系ハードコートといわれている。これを塗布し、加熱硬化させることで、脱水縮合反応が促進し、硬化・架橋することで、ハードコートが製膜される。 The starting material for the polysiloxane hard coat is represented by the general formula RmSi(OR')n. R and R' represent an alkyl group having 1 to 10 carbon atoms, and m and n are integers satisfying the relationship m+n=4. A starting material in which a hydrolyzable group such as a methoxy group or an ethoxy group is substituted with a hydroxyl group is generally referred to as a polyorganosiloxane hard coat. By applying this and heating and curing it, a dehydration condensation reaction is promoted, and by curing and crosslinking, a hard coat is formed.
 ポリオルガノシロキサン系ハードコートとしては、市販品を用いることもでき、サーコートシリーズ(動研製)、SR2441(東レ・ダウコーニング社)、KF-86(信越シリコーン社)、Perma‐New(登録商標)6000(California Hardcoating Company)などを利用することができる。 As the polyorganosiloxane hard coat, commercially available products can be used, such as Surcoat series (manufactured by Doken), SR2441 (Dow Corning Toray Co., Ltd.), KF-86 (Shin-Etsu Silicone Co., Ltd.), Perma-New (registered trademark) 6000. (California Hardcoating Company), etc. can be used.
 なお、ポリシロキサン系ハードコートの場合、塗布後、溶剤を乾燥させた後、該ハードコートの硬化・架橋を促進するため、50℃以上、150℃以下の温度で30分~数日間の熱処理を必要とする。塗布基材の耐熱性やロールにした時の基材の安定性を考慮して、40℃以上80℃以下で2日間以上処理することが好ましい。 In addition, in the case of a polysiloxane hard coat, after coating and drying the solvent, heat treatment is performed at a temperature of 50°C or higher and 150°C or lower for 30 minutes to several days in order to accelerate curing and crosslinking of the hard coat. I need. In consideration of the heat resistance of the coated substrate and the stability of the substrate when rolled, it is preferable to perform the treatment at 40° C. or higher and 80° C. or lower for 2 days or more.
 ハードコート層形成用塗布液中の硬化性樹脂(上記重合性シリコーン化合物を含む)の配合量は、ハードコート層の合計100質量%(固形分換算)に対して、40~90質量%であることが好ましく、50~85質量%であることがより好ましい。 The blending amount of the curable resin (including the above-mentioned polymerizable silicone compound) in the coating solution for forming the hard coat layer is 40 to 90% by mass with respect to the total 100% by mass (in terms of solid content) of the hard coat layer. It is preferably 50 to 85% by mass, and more preferably 50 to 85% by mass.
 《溶剤》
 本発明に係るハードコート層形成用塗布液に含有される溶剤としては、例えば、炭化水素類(トルエン、キシレン)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、又はこれらを混合し利用できる。
 ハードコート層形成用塗布液中の溶剤の配合量は、上記硬化樹脂を溶解、分散できる量において適宜設定されるが、塗布液100質量%に対して、20~80質量%程度である。
"solvent"
Examples of the solvents contained in the coating solution for forming a hard coat layer according to the present invention include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, The solvent can be appropriately selected from organic solvents such as methyl ethyl ketone, methyl isobutyl ketone), esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture of these can be used.
The amount of solvent in the hard coat layer forming coating liquid is appropriately set in an amount that can dissolve and disperse the cured resin, and is approximately 20 to 80% by weight based on 100% by weight of the coating liquid.
 《非反応添加物》
 本発明に係るハードコート層形成用塗布液に含有される非反応添加物(蛍光マーカー化合物)としては、前記した酸化防止剤(例えば、Irganox 1076(BASFジャパン社製)や色素(NIR色素、NUV色素)等が挙げられる。
《Non-reactive additives》
Non-reactive additives (fluorescent marker compounds) contained in the coating solution for forming a hard coat layer according to the present invention include the above-mentioned antioxidants (for example, Irganox 1076 (manufactured by BASF Japan) and dyes (NIR dyes, NUV dyes), etc.
 《その他の添加剤》
 ハードコート層形成用塗布液は、ハードコート層に赤外遮蔽機能を持たせる、機械的強度を向上させるなどの目的で、特開2018-196322号公報に記載の金属酸化物粒子を含むことが好ましい。
 また、ハードコート層形成用塗布液には、界面活性剤を添加して、レベリング性、撥水性、滑り性等を付与することができる。界面活性剤の種類として、特に制限はなく、アクリル系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤等を用いることができる。特にレベリング性、撥水性、滑り性という観点で、フッ素系界面活性剤を用いることが好ましい。フッ素系界面活性剤の例としては、例えば、DIC株式会社製のメガファック(登録商標)Fシリーズ(F-430、F-477、F-552~F-559、F-561、F-562等)、DIC株式会社製のメガファック(登録商標)RSシリーズ(RS-76-E等)、AGCセイミケミカル株式会社製のサーフロン(登録商標)シリーズ、OMNOVA SOLUTIONS社製のPOLYFOXシリーズ、株式会社T&K TOKAのZXシリーズ、ダイキン工業株式会社製のオプツールシリーズ、ネオス社製のフタージェント(登録商標)シリーズ(602A、650A等)等の市販品を使用するこ
とができる。
《Other additives》
The coating liquid for forming a hard coat layer may contain metal oxide particles described in JP 2018-196322A for the purpose of giving the hard coat layer an infrared shielding function and improving mechanical strength. preferable.
Furthermore, a surfactant can be added to the coating liquid for forming a hard coat layer to impart leveling properties, water repellency, slipperiness, and the like. The type of surfactant is not particularly limited, and acrylic surfactants, silicone surfactants, fluorine surfactants, etc. can be used. In particular, from the viewpoint of leveling properties, water repellency, and slipperiness, it is preferable to use a fluorine-based surfactant. Examples of fluorine-based surfactants include Megafac (registered trademark) F series (F-430, F-477, F-552 to F-559, F-561, F-562, etc.) manufactured by DIC Corporation. ), Megafac (registered trademark) RS series (RS-76-E, etc.) manufactured by DIC Corporation, Surflon (registered trademark) series manufactured by AGC Seimi Chemical Co., Ltd., POLYFOX series manufactured by OMNOVA SOLUTIONS, T&K TOKA Corporation Commercially available products such as the ZX series manufactured by Daikin Industries, Ltd., the Optool series manufactured by Daikin Industries, Ltd., and the Ftergent (registered trademark) series manufactured by Neos Corporation (602A, 650A, etc.) can be used.
 ハードコート層形成用塗布液の製造方法は特に限定されず、溶剤に各成分を添加し、適宜混合することによって得られる。添加順序、添加方法は特に限定されず、撹拌しながら各成分を順次添加し混合してもよいし、撹拌しながら一度に添加し混合してもよい。 The method for producing the coating liquid for forming a hard coat layer is not particularly limited, and can be obtained by adding each component to a solvent and mixing appropriately. The addition order and addition method are not particularly limited, and each component may be added and mixed one after another while stirring, or may be added and mixed all at once while stirring.
 本発明に係るハードコート層形成工程において、用いられる基材としては、特に制限されるものではないが、屈曲性などの観点から樹脂基材であることが好ましく、透明であっても不透明であってもよい。自動車用途など、意匠性の点から可視光で透明であることが求められる用途では、可視光領域において透明であることが好ましい。 In the hard coat layer forming step according to the present invention, the base material used is not particularly limited, but from the viewpoint of flexibility etc., it is preferably a resin base material, and it may be transparent or opaque. It's okay. In applications where transparency in visible light is required from the point of view of design, such as automotive applications, it is preferable to be transparent in the visible light region.
 樹脂基材としては、例えば、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース等を用いることができ、好ましくはポリエステルフィルムである。ポリエステルフィルム(以降ポリエステルと称す)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。ポリエステルの中でも透明性機械的強度、寸法安定性などの点から、ジカルボン酸成分として、テレフタル酸や2,6-ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4-シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6-ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、およびこれらのポリエステルの2種以上の混合物を主要な構成成分とするポリエステルが好ましい。 As the resin base material, for example, polyolefin film (polyethylene, polypropylene, etc.), polyester film (polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, cellulose triacetate, etc. can be used, and polyester film is preferable. Although the polyester film (hereinafter referred to as polyester) is not particularly limited, it is preferably a polyester having film-forming properties whose main components are a dicarboxylic acid component and a diol component. Among polyesters, terephthalic acid and 2,6-naphthalene dicarboxylic acid are the main dicarboxylic acid components, and ethylene glycol and 1,4-cyclohexanedimethanol are the diol components, in terms of transparency, mechanical strength, and dimensional stability. Polyester as a constituent component is preferred. Among them, polyesters whose main constituents are polyethylene terephthalate and polyethylene naphthalate, copolyesters consisting of terephthalic acid, 2,6-naphthalene dicarboxylic acid, and ethylene glycol, and mixtures of two or more of these polyesters are mainly used. Polyester as a constituent component is preferred.
 基材の厚さとしては、10~300μmであることが好ましく、20~150μmであることがより好ましい。また、基材は、2枚以上重ねたものであっても良く、この場合、その種類が同じでも異なってもよい。 The thickness of the base material is preferably 10 to 300 μm, more preferably 20 to 150 μm. Further, the base material may be a stack of two or more sheets, and in this case, the types thereof may be the same or different.
 樹脂基材は、従来公知の一般的な方法により製造することが可能である。樹脂基材は、未延伸フィルムでもよく、一方に延伸された延伸フィルム、または二軸延伸フィルムでもよい。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。 The resin base material can be manufactured by a conventionally known general method. The resin base material may be an unstretched film, a unidirectionally stretched film, or a biaxially stretched film. Stretched films are preferred from the viewpoint of improving strength and suppressing thermal expansion.
 基材上に形成される機能性層は、基材上の何かしらの機能を付与する薄膜であればどのような機能性層であってもよい。機能性層としては、例えば、特定の光線を透過または反射吸収する光学フィルム(例えば、反射防止フィルム、赤外遮蔽フィルム、紫外線遮蔽フィルムなど)、酸素および/または水蒸気の透過を抑制するバリア性フィルム、偏光フィルム、位相差フィルム、感光性フィルム、などが挙げられる。 The functional layer formed on the base material may be any functional layer as long as it is a thin film that provides some function on the base material. Examples of functional layers include optical films that transmit or reflect/absorb specific light rays (e.g., antireflection films, infrared shielding films, ultraviolet shielding films, etc.), and barrier films that suppress the transmission of oxygen and/or water vapor. , polarizing film, retardation film, photosensitive film, etc.
 ここで、基材および機能性層を有するフィルムは、基材および機能性層を有していれば足り、基材上に直接機能性層を設ける形態のみならず、基材に他の中間層が設けられ、該中間層上に機能性層を設ける形態や、基材の機能性層との反対面に他の中間層を有する形態、機能性層上に他の中間層を含む形態なども含む。 Here, the film having a base material and a functional layer is sufficient as long as it has a base material and a functional layer. There are also forms in which a functional layer is provided on the intermediate layer, forms in which another intermediate layer is provided on the opposite side of the base material to the functional layer, forms in which another intermediate layer is provided on the functional layer, etc. include.
 機能性層を構成する材料としては、目的の機能性層により適宜選択される。例えば、アルミ、シリカ、ジルコニア、酸化タンタル、酸化チタン、酸化錫、錫をドープした酸化インジウムなどの金属酸化物、酸窒化ケイ素などの金属酸窒化物、銀、金、銅などの金属、フッ化マグネシウムなどの金属フッ化物、ポリマー、ポリチオフェンなどの導電性ポリマーなどが挙げられる。導電性が低く、本発明の効果がより得られやすいことから、機能性層はポリマーを含むことが好ましい。 The material constituting the functional layer is appropriately selected depending on the desired functional layer. For example, metal oxides such as aluminum, silica, zirconia, tantalum oxide, titanium oxide, tin oxide, and tin-doped indium oxide, metal oxynitrides such as silicon oxynitride, metals such as silver, gold, and copper, and fluoride. Examples include metal fluorides such as magnesium, polymers, and conductive polymers such as polythiophene. It is preferable that the functional layer contains a polymer because the conductivity is low and the effects of the present invention can be more easily obtained.
 機能性層には、必要に応じて各種の添加剤を含有させることが出来る。具体的には、アニオン、カチオンまたはノニオンの各種界面活性剤;ポリカルボン酸アンモニウム塩、アリルエーテルコポリマー、ベンゼンスルホン酸ナトリウム塩、グラフト化合物系分散剤、ポリエチレングリコール型ノニオン系分散剤などの分散剤;pH調整剤;消泡剤などの公知の各種添加剤を含有していてもよい。 The functional layer can contain various additives as necessary. Specifically, various anionic, cationic or nonionic surfactants; dispersants such as polycarboxylic acid ammonium salts, allyl ether copolymers, benzenesulfonic acid sodium salts, graft compound dispersants, polyethylene glycol type nonionic dispersants; It may contain various known additives such as a pH adjuster and an antifoaming agent.
 機能性層の厚さとしては、求められる機能を満たすように適宜設定されるが、例えば、10nm~100μm程度である。 The thickness of the functional layer is appropriately set so as to satisfy the required function, and is, for example, about 10 nm to 100 μm.
 (適用例3)
 また、本発明の液状物の評価装置は、近赤外線反射フィルムに設けられる帯電防止層形成用の塗布液を塗布する工程中にも適用することができる。
 なお、この場合は、上述した適用例2と同様にして、塗布液塗布装置(グラビアコーター等)により帯電防止層用の塗布液を塗布することができる。具体的には、帯電防止層を形成する装置において、本発明の液状物の評価装置は、例えば、塗布液塗布装置や、帯電防止層形成用塗布液を塗布した直後の搬送ローラーの近傍、塗布後の乾燥部による乾燥中、乾燥直後の搬送ローラーの近傍に配置することが好ましい。
(Application example 3)
Furthermore, the liquid substance evaluation device of the present invention can be applied during the process of applying a coating liquid for forming an antistatic layer to be provided on a near-infrared reflective film.
In this case, the coating liquid for the antistatic layer can be applied using a coating liquid coating device (such as a gravure coater) in the same manner as in Application Example 2 described above. Specifically, in an apparatus for forming an antistatic layer, the liquid substance evaluation apparatus of the present invention can be used, for example, in a coating liquid applicator, near a conveyance roller immediately after applying a coating liquid for forming an antistatic layer, During drying in the subsequent drying section, it is preferable to arrange it near the conveyance roller immediately after drying.
 このように帯電防止層の形成工程中において、本発明の液状物の評価装置を配置することで、例えば、帯電防止層形成用塗布液や、塗布した帯電防止層の塗布膜の蛍光スペクトルを随時測定することができ、前記帯電防止層形成用塗布液又は塗布膜の水分量や不純物等の微小な変動があった場合に容易にかつ早急に検知することができる。 By disposing the liquid material evaluation device of the present invention during the antistatic layer forming process as described above, it is possible to monitor, for example, the fluorescence spectrum of the antistatic layer forming coating solution or the applied antistatic layer coating film at any time. It is possible to easily and quickly detect minute fluctuations in the water content, impurities, etc. of the coating solution for forming an antistatic layer or the coating film.
 帯電防止層形成用塗布液としては、公知の導電性組成物を含有する帯電防止層形成用塗布液を用いることができ、少なくとも、溶剤、樹脂及び非反応添加物(蛍光マーカー化合物)を含有していればよい。 As the coating solution for forming an antistatic layer, a coating solution for forming an antistatic layer containing a known conductive composition can be used, and the coating solution contains at least a solvent, a resin, and a non-reactive additive (fluorescent marker compound). All you have to do is stay there.
 《樹脂》
 本発明に係る帯電防止層形成用塗布液に用いられる樹脂としては、ポリエステル樹脂、アクリル変性ポリエステル樹脂、ポリウレタン、アクリル樹脂、ビニル樹脂、塩化ビニリデン樹脂、ポリエチレンイミンビニリデン樹脂、ポリエチレンイミン、ポリビニルアルコール、変性ポリビニルアルコール、セルロースエステル樹脂及びゼラチン等が好ましい。なお、これらの樹脂の詳細は、特許第5811536号公報に記載されているとおりである。
"resin"
The resins used in the coating solution for forming an antistatic layer according to the present invention include polyester resin, acrylic modified polyester resin, polyurethane, acrylic resin, vinyl resin, vinylidene chloride resin, polyethyleneimine vinylidene resin, polyethyleneimine, polyvinyl alcohol, modified Polyvinyl alcohol, cellulose ester resin, gelatin and the like are preferred. The details of these resins are as described in Japanese Patent No. 5811536.
 《溶剤》
 本発明に係る帯電防止層形成用塗布液に含有される溶剤としては、水又は有機溶媒が挙げられ、有機溶媒としては、メチルエチルケトン、アセトン、アセチルアセトン等が挙げられる。
"solvent"
Examples of the solvent contained in the coating solution for forming an antistatic layer according to the present invention include water or an organic solvent, and examples of the organic solvent include methyl ethyl ketone, acetone, acetylacetone, and the like.
 《非反応添加物》
 本発明に係る帯電防止層形成用塗布液に含有される非反応添加物(蛍光マーカー化合物)としては、前記した酸化防止剤(例えば、Irganox 1076(BASFジャパン社製)や色素(NIR色素、NUV色素)等が挙げられる。
《Non-reactive additives》
Non-reactive additives (fluorescent marker compounds) contained in the coating solution for forming an antistatic layer according to the present invention include the above-mentioned antioxidants (for example, Irganox 1076 (manufactured by BASF Japan) and dyes (NIR dyes, NUV dyes), etc.
 《導電性組成物》
 本発明に係る帯電防止層形成用塗布液に含有される導電性組成物としては、例えばポリアニリン及びその誘導体、好ましくは水溶性のスルホン化ポリアニリン、有機溶媒可溶性ポリピロール、すなわち長鎖アルキル基置換基結合ポリピロール、ポリチオフェン及びその誘導体などが挙げられる。
《Conductive composition》
The conductive composition contained in the coating solution for forming an antistatic layer according to the present invention includes, for example, polyaniline and its derivatives, preferably water-soluble sulfonated polyaniline, organic solvent-soluble polypyrrole, that is, long-chain alkyl group substituent bond. Examples include polypyrrole, polythiophene and derivatives thereof.
 また、導電性組成物としては、金属酸化物も用いることが好ましい。金属酸化物の例としては、ZnO、TiO、SnO、Al、In、SiO、MgO、BaO、MoO、V等あるいはこれらの複合酸化物が好ましく、特にバインダーとの混和性、導電性、透明性等の点から、SnO(酸化スズ)が好ましい。異元素を含む例としては、SnOに対してはSb、Nb、ハロゲン元素等を添加することができる。これらの異元素の添加量は0.01~25mol%の範囲が好ましいが、0.1~15mol%の範囲が特に好ましい。
 上記の導電性組成物の具体例としては、特許第5811536号公報に記載されているとおりである。
Moreover, it is preferable to also use metal oxides as the conductive composition. Examples of metal oxides include ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , SiO 2 , MgO, BaO, MoO 2 , V 2 O 5 , etc., or composite oxides thereof. In particular, SnO 2 (tin oxide) is preferred from the viewpoint of miscibility with the binder, conductivity, transparency, and the like. As an example of containing a different element, Sb, Nb, a halogen element, etc. can be added to SnO2 . The amount of these different elements added is preferably in the range of 0.01 to 25 mol%, particularly preferably in the range of 0.1 to 15 mol%.
Specific examples of the above conductive composition are as described in Japanese Patent No. 5811536.
 (適用例4)
 さらに、本発明の液状物の評価装置は、近赤外線反射フィルムを形成する工程中にも適用することができる。すなわち、透明支持体上に形成される高屈折率層及び低屈折率層用の塗布液を塗布する工程中に適用可能であり、この場合においても、上述した適用例2と同様にして、塗布液塗布装置(グラビアコーター等)により高屈折率層用又は低屈折率層用の塗布液を塗布することができる。
 具体的には、高屈折率層及び低屈折率層を形成する装置において、本発明の液状物の評価装置は、例えば、塗布液塗布装置や、高屈折率層又は低屈折率層形成用塗布液を塗布した直後の搬送ローラーの近傍、塗布後の乾燥部による乾燥中、乾燥直後の搬送ローラーの近傍に配置することが好ましい。
(Application example 4)
Furthermore, the liquid substance evaluation device of the present invention can also be applied during the process of forming a near-infrared reflective film. That is, it can be applied during the process of coating a coating solution for a high refractive index layer and a low refractive index layer formed on a transparent support, and in this case as well, the coating can be carried out in the same manner as in Application Example 2 described above. A coating liquid for a high refractive index layer or a low refractive index layer can be applied using a liquid coating device (such as a gravure coater).
Specifically, in an apparatus for forming a high refractive index layer and a low refractive index layer, the liquid substance evaluation apparatus of the present invention is, for example, a coating liquid coating apparatus, a coating liquid coating apparatus for forming a high refractive index layer or a low refractive index layer, etc. It is preferable to arrange it near the transport roller immediately after applying the liquid, during drying in the drying section after application, or near the transport roller immediately after drying.
 このように高屈折率層又は低屈折率層の形成工程中において、本発明の液状物の評価装置を配置することで、例えば、高屈折率層又は低屈折率層形成用塗布液や、塗布した高屈折率層又は低屈折率層の塗布膜の蛍光スペクトルを随時測定することができ、前記高屈折率層又は低屈折率層形成用塗布液又は塗布膜の水分量や不純物等の微小な変動があった場合に容易にかつ早急に検知することができる。 By disposing the liquid substance evaluation device of the present invention during the process of forming a high refractive index layer or a low refractive index layer, for example, the coating liquid for forming a high refractive index layer or a low refractive index layer, the coating The fluorescence spectrum of the coating film of the high refractive index layer or low refractive index layer can be measured at any time. If there is a change, it can be detected easily and quickly.
 高屈折率層形成用塗布液及び低屈折率層形成用塗布液としては、公知の高屈折率層形成用塗布液及び低屈折率層形成用塗布液(例えば、特許第5593916号参照。)を用いることができ、少なくとも、溶剤、樹脂及び非反応添加物(蛍光マーカー化合物)を含有していればよい。 As the coating liquid for forming a high refractive index layer and the coating liquid for forming a low refractive index layer, known coating liquids for forming a high refractive index layer and coating liquid for forming a low refractive index layer (see, for example, Japanese Patent No. 5593916) are used. It is sufficient that it contains at least a solvent, a resin, and a non-reactive additive (fluorescent marker compound).
 《樹脂》
 本発明に係る高屈折率層形成用塗布液に用いられる樹脂としては、親水性樹脂が挙げられる。
 親水性樹脂としては水溶性の樹脂、水分散性の樹脂、コロイド分散樹脂、又はそれらの混合物が挙げられる。親水性樹脂の具体例としては、アクリル系、ポリエステル系、ポリアミド系、ポリウレタン系、フッ素系等の樹脂が挙げられ、例えば、ポリビニルアルコール、ゼラチン、ポリエチレンオキサイド、ポリビニルピロリドン、カゼイン、澱粉、寒天、カラギーナン、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、ポリメタクリルアミド、ポリスチレンスルホン酸、セルロース、ヒドロキシルエチルセルロース、カルボキシルメチルセルロース、ヒドロキシルエチルセルロース、デキストラン、デキストリン、プルラン、水溶性ポリビニルブチラール等のポリマーを挙げることができるが、これらの中でポリビニルアルコールが好ましい。
 バインダー樹脂として用いられるポリマーは1種類を単独で用いてもよいし、必要に応じて2種類以上を混合して使用してもよい。
"resin"
Examples of the resin used in the coating liquid for forming a high refractive index layer according to the present invention include hydrophilic resins.
Examples of the hydrophilic resin include water-soluble resins, water-dispersible resins, colloid-dispersed resins, and mixtures thereof. Specific examples of hydrophilic resins include acrylic, polyester, polyamide, polyurethane, and fluorine resins, such as polyvinyl alcohol, gelatin, polyethylene oxide, polyvinylpyrrolidone, casein, starch, agar, and carrageenan. , polyacrylic acid, polymethacrylic acid, polyacrylamide, polymethacrylamide, polystyrene sulfonic acid, cellulose, hydroxyl ethyl cellulose, carboxyl methyl cellulose, hydroxyl ethyl cellulose, dextran, dextrin, pullulan, water-soluble polyvinyl butyral, and other polymers. Among these, polyvinyl alcohol is preferred.
One type of polymer used as the binder resin may be used alone, or two or more types may be mixed and used as necessary.
 高屈折率層のバインダー樹脂として用いられるポリマーの分子量には特に制限はないが、酢酸ビニルを加水分解して得られるポリビニルアルコールは、平均重合度が1000以上のものが好ましく用いられ、特に1500~5000のものが好ましく用いられる。さらに、ケン化度は70~100%のものが好ましく、80~99.5%のものが特に好ましい。 There is no particular restriction on the molecular weight of the polymer used as the binder resin for the high refractive index layer, but polyvinyl alcohol obtained by hydrolyzing vinyl acetate preferably has an average degree of polymerization of 1,000 or more, particularly 1,500 to 1,500. 5000 is preferably used. Furthermore, the degree of saponification is preferably 70 to 100%, particularly preferably 80 to 99.5%.
 《溶剤》
 水溶性の樹脂を用いる場合には、溶剤として水を主成分とし、場合により親水性有機溶剤を添加した混合物を用いることができる。
"solvent"
When using a water-soluble resin, a mixture containing water as the main component and optionally a hydrophilic organic solvent can be used.
 親水性の溶剤としては、例えば、メタノール、エタノール、2-プロパノール、1-ブタノールなどのアルコール類、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのエステル類、ジエチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのエーテル類、ジメチルホルムアミド、N-メチルピロリドンなどのアミド類、アセトン、メチルエチルケトン、アセチルアセトン、シクロヘキサノンなどのケトン類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、ヘプタン、ヘキサン、ペンタン、デカン、シクロヘキサンなどの脂肪族炭化水素などが挙げられ、これらのうち1種又は2種以上を用いることができる。環境面からは塗布溶液の溶媒としては特に水、アルコール類の使用が好ましい。 Examples of hydrophilic solvents include alcohols such as methanol, ethanol, 2-propanol, and 1-butanol, esters such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and diethyl ether. , ethers such as propylene glycol monomethyl ether and ethylene glycol monoethyl ether, amides such as dimethylformamide and N-methylpyrrolidone, ketones such as acetone, methyl ethyl ketone, acetylacetone, and cyclohexanone, and aromatic carbonization such as benzene, toluene, and xylene. Examples include hydrogen, aliphatic hydrocarbons such as heptane, hexane, pentane, decane, and cyclohexane, and one or more of these can be used. From an environmental point of view, it is particularly preferable to use water and alcohols as the solvent for the coating solution.
 《非反応添加物》
 本発明に係る高屈折率層形成用塗布液に含有される非反応添加物(蛍光マーカー化合物)としては、前記した酸化防止剤(例えば、Irganox 1076(BASFジャパン社製)や色素(NIR色素、NUV色素)等が挙げられる。
《Non-reactive additives》
Non-reactive additives (fluorescent marker compounds) contained in the coating solution for forming a high refractive index layer according to the present invention include the above-mentioned antioxidants (for example, Irganox 1076 (manufactured by BASF Japan) and dyes (NIR dyes, NUV dye), etc.
 《金属酸化物》
 本発明に係る高屈折率層形成用塗布液には金属酸化物を含有することが好ましい。
 このような金属酸化物としては、TiO(酸化チタン)、SiO、ZrO、Al、ZnO、Sb、ZrSiO、ゼオライトなどが挙げられる。
《Metal oxide》
The coating liquid for forming a high refractive index layer according to the present invention preferably contains a metal oxide.
Examples of such metal oxides include TiO 2 (titanium oxide), SiO 2 , ZrO 2 , Al 2 O 3 , ZnO, Sb 2 O 3 , ZrSiO 4 , zeolite, and the like.
 低屈折率層形成用塗布液としては、公知の低屈折率層形成用塗布液を用いることができ、少なくとも、溶剤、樹脂及び非反応添加物(蛍光マーカー化合物)を含有していればよい。 As the coating liquid for forming a low refractive index layer, a known coating liquid for forming a low refractive index layer can be used, as long as it contains at least a solvent, a resin, and a non-reactive additive (fluorescent marker compound).
 《樹脂》
 低屈折率層形成用塗布液に含有される樹脂としては、上述した高屈折率層形成用塗布液に含有される少量の親水性バインダー樹脂を用いることができる。
"resin"
As the resin contained in the coating liquid for forming a low refractive index layer, a small amount of the hydrophilic binder resin contained in the coating liquid for forming a high refractive index layer mentioned above can be used.
 《溶剤》
 低屈折率層形成用塗布液に含有される溶剤も、上述した高屈折率層形成用塗布液に含有される溶剤を用いることができる。
"solvent"
As the solvent contained in the coating liquid for forming a low refractive index layer, the solvent contained in the coating liquid for forming a high refractive index layer mentioned above can also be used.
 《非反応添加物》
 本発明に係る低屈折率層形成用塗布液に含有される非反応添加物(蛍光マーカー化合物)としては、前記した酸化防止剤(例えば、Irganox 1076(BASFジャパン社製)や色素(NIR色素、NUV色素)等が挙げられる。
《Non-reactive additives》
Non-reactive additives (fluorescent marker compounds) contained in the coating solution for forming a low refractive index layer according to the present invention include the above-mentioned antioxidants (for example, Irganox 1076 (manufactured by BASF Japan) and dyes (NIR dyes, NUV dye), etc.
 《金属酸化物》
 本発明に係る低屈折率層形成用塗布液においても、上述した高屈折率層形成用塗布液に含有される金属酸化物を含有することが好ましい。
《Metal oxide》
The coating liquid for forming a low refractive index layer according to the present invention also preferably contains the metal oxide contained in the above-mentioned coating liquid for forming a high refractive index layer.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」及び「部」は、それぞれ、「質量%」及び「質量部」を意味する。 The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto. In addition, in the following examples, unless otherwise specified, operations were performed at room temperature (25° C.). Further, unless otherwise specified, "%" and "parts" mean "% by mass" and "parts by mass", respectively.
[試料1]
 (樹脂1)
 シクロオレフィン系重合体を含む樹脂として、水添ノルボルネン樹脂(JSR社製「アートンG7810」)を用いた。以下、このシクロオレフィン系樹脂を「COP」とする。
[Sample 1]
(Resin 1)
As the resin containing the cycloolefin polymer, hydrogenated norbornene resin ("Arton G7810" manufactured by JSR Corporation) was used. Hereinafter, this cycloolefin resin will be referred to as "COP".
 (液状物1の調製)
 下記組成の液状物(光学フィルム用ドープ)1を調製した。まず、加圧溶解タンクにジクロロメタンを添加した。次いで、加圧溶解タンクに、COPを撹拌しながら投入した。次いで、蛍光マーカー化合物として酸化防止剤(BASFジャパン株式会社製「Irganox1076」)を投入して、これを撹拌しながら完全に溶解させた。
 COP:100質量部
 ジクロロメタン:280質量部
 Irganox1076:100質量ppm
(Preparation of liquid material 1)
Liquid material (dope for optical film) 1 having the following composition was prepared. First, dichloromethane was added to a pressurized dissolution tank. Next, the COP was charged into a pressurized dissolution tank while being stirred. Next, an antioxidant ("Irganox 1076" manufactured by BASF Japan Co., Ltd.) was added as a fluorescent marker compound, and completely dissolved while stirring.
COP: 100 parts by mass Dichloromethane: 280 parts by mass Irganox1076: 100 parts by mass
[試料2]
 (液状物2の調製)
 液状物1の調製において、溶剤(ジクロロメタン)を添加しないこと以外は同じ手順で液状物(光学フィルム用ドープ)2を調製した。
[Sample 2]
(Preparation of liquid material 2)
Liquid material (dope for optical film) 2 was prepared in the same manner as in the preparation of liquid material 1 except that the solvent (dichloromethane) was not added.
[試料3]
 (液状物3の調製)
 液状物1の調製において、COPを添加しないこと以外は同じ手順で液状物(光学フィルム用ドープ)3を調製した。
[Sample 3]
(Preparation of liquid material 3)
A liquid material (dope for optical film) 3 was prepared in the same manner as in the preparation of liquid material 1 except that COP was not added.
[試料4]
 (液状物4の調製)
 液状物1の調製において、蛍光マーカー化合物をエレカットS-418(竹本油脂株式会社製)(反応添加物:キレート剤)に変えたこと以外は同じ手順で液状物(光学フィルム用ドープ)4を調製した。
[Sample 4]
(Preparation of liquid material 4)
Liquid material (dope for optical film) 4 was prepared using the same procedure as in the preparation of liquid material 1, except that the fluorescent marker compound was changed to Elecut S-418 (manufactured by Takemoto Yushi Co., Ltd.) (reactive additive: chelating agent). did.
[試料5]
 (液状物5の調製)
 下記組成の液状物(光学フィルム用ドープ)5を調製した。まず、加圧溶解タンクにジクロロメタン及びエタノール(ジクロロメタン92質量%、エタノール8質量%)を添加した。次いで、加圧溶解タンクに、COPを撹拌しながら投入した。次いで、蛍光マーカー化合物として酸化防止剤(BASFジャパン株式会社製「Irganox1076」)を投入して、これを撹拌しながら完全に溶解させた。
 COP:100質量部
 ジクロロメタン:260質量部
 エタノール:22質量部
 Irganox1076:100質量ppm
[Sample 5]
(Preparation of liquid material 5)
A liquid material (dope for optical film) 5 having the following composition was prepared. First, dichloromethane and ethanol (92% by mass of dichloromethane, 8% by mass of ethanol) were added to a pressurized dissolution tank. Next, the COP was charged into a pressurized dissolution tank while being stirred. Next, an antioxidant ("Irganox 1076" manufactured by BASF Japan Co., Ltd.) was added as a fluorescent marker compound, and completely dissolved while stirring.
COP: 100 parts by mass Dichloromethane: 260 parts by mass Ethanol: 22 parts by mass Irganox1076: 100 parts by mass
[試料6]
 (液状物6の調製)
 液状物5の調製において、樹脂をセルロースアシレート(アセチル基置換度2.80)に変えたこと以外は同じ手順で液状物(光学フィルム用ドープ)6を調製した。
[Sample 6]
(Preparation of liquid material 6)
A liquid material (dope for optical film) 6 was prepared in the same manner as in the preparation of liquid material 5, except that the resin was changed to cellulose acylate (degree of acetyl group substitution: 2.80).
[試料7]
 (液状物7の調製)
 液状物5の調製において、樹脂をデルペット80N(旭化成ケミカルズ社製、ポリメチルメタクリレート)に変えたこと以外は同じ手順で液状物(光学フィルム用ドープ)7を調製した。
[Sample 7]
(Preparation of liquid material 7)
Liquid material (dope for optical film) 7 was prepared in the same manner as in the preparation of liquid material 5, except that the resin was changed to Delpet 80N (manufactured by Asahi Kasei Chemicals, polymethyl methacrylate).
[試料8]
 (液状物8の調製)
 液状物5の調製において、蛍光マーカー化合物を下記化合物A(NIR色素)(100質量ppm)に変えたこと以外は同じ手順で液状物(光学フィルム用ドープ)8を調製した。
[Sample 8]
(Preparation of liquid material 8)
A liquid material (dope for optical film) 8 was prepared in the same manner as in the preparation of liquid material 5, except that the fluorescent marker compound was changed to the following compound A (NIR dye) (100 mass ppm).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
[試料9]
 (液状物9の調製)
 液状物5の調製において、蛍光マーカー化合物を下記化合物B(NUV色素)(100質量ppm)に変えたこと以外は同じ手順で液状物(光学フィルム用ドープ)9を調製した。
[Sample 9]
(Preparation of liquid material 9)
A liquid material (dope for optical film) 9 was prepared in the same manner as in the preparation of liquid material 5, except that the fluorescent marker compound was changed to the following compound B (NUV dye) (100 mass ppm).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[試料10]
 (液状物10の調製)
 液状物5と同じ組成で、液状物(光学フィルム用ドープ)10を調製した。
[Sample 10]
(Preparation of liquid material 10)
A liquid material (dope for optical film) 10 was prepared with the same composition as liquid material 5.
[試料11]
 (液状物11の調製)
 液状物5の調製において、蛍光マーカー化合物の添加量を5000質量ppmにしたこと以外は同じ手順で液状物(光学フィルム用ドープ)11を調製した。
[Sample 11]
(Preparation of liquid material 11)
A liquid material (dope for optical film) 11 was prepared in the same manner as in the preparation of liquid material 5, except that the amount of the fluorescent marker compound added was changed to 5000 mass ppm.
[試料12]
 (液状物12の調製)
 液状物5の調製において、蛍光マーカー化合物の添加量を10000質量ppmにしたこと以外は同じ手順で液状物(光学フィルム用ドープ)12を調製した。
[Sample 12]
(Preparation of liquid material 12)
A liquid material (dope for optical film) 12 was prepared in the same manner as in the preparation of liquid material 5, except that the amount of the fluorescent marker compound added was changed to 10,000 mass ppm.
[試料13~15及び17]
 (液状物13~15及び17の調製)
 液状物5と同じ組成で、液状物(光学フィルム用ドープ)13~15及び17を調製した。
[Samples 13-15 and 17]
(Preparation of liquids 13 to 15 and 17)
Liquids (dopes for optical films) 13 to 15 and 17 were prepared with the same composition as Liquid 5.
[試料16]
 (液状物16の調製)
 液状物9と同じ組成で、液状物(光学フィルム用ドープ)16を調製した。
[Sample 16]
(Preparation of liquid material 16)
A liquid material (dope for optical film) 16 was prepared with the same composition as liquid material 9.
[試料18及び19]
 (液状物18及び19の調製)
 液状物8と同じ組成で、液状物(光学フィルム用ドープ)18及び19を調製した。
[Samples 18 and 19]
(Preparation of liquids 18 and 19)
Liquids (optical film dope) 18 and 19 were prepared with the same composition as Liquid 8.
[試料20]
 (液状物20の調製)
 紫外線硬化性樹脂として、ビームセット577(荒川化学工業株式会社製)(ウレタン樹脂)を用い、溶媒としてメチルエチルケトン(MEK)を添加した。さらに、フッ素系界面活性剤(商品名:フタージェント(登録商標)650A、株式会社ネオス製)を0.08質量%添加し、次いで、蛍光マーカー化合物としてIrganox1076を100質量ppm添加し、全固形分が40質量部となるように調製して、液状物(ハードコー
ト層形成用塗布液)20を作製した。
[Sample 20]
(Preparation of liquid material 20)
Beam Set 577 (manufactured by Arakawa Chemical Industries, Ltd.) (urethane resin) was used as the ultraviolet curable resin, and methyl ethyl ketone (MEK) was added as a solvent. Furthermore, 0.08% by mass of a fluorine-based surfactant (trade name: Ftergent (registered trademark) 650A, manufactured by Neos Co., Ltd.) was added, and then 100% by mass of Irganox 1076 was added as a fluorescent marker compound, and the total solid content was adjusted to 40 parts by mass to prepare a liquid material (coating liquid for forming a hard coat layer) 20.
[試料21]
 (液状物21の調製)
 3質量%ホウ酸水溶液10質量部を45℃で加熱・撹拌している中に、樹脂としてポリビニルアルコール(PVA-117H、重合度1700、鹸化度99.5mol%、クラレ社製)の5質量%水溶液80質量部を添加した後、界面活性剤(ラピゾールA30、日油社製)の1質量%水溶液1質量部を添加し、溶剤として純水9質量部を加え、次いで、蛍光マーカー剤としてIrganox1076を100質量ppm添加し、液状物(低屈折率層形成用塗布液)21を調製した。
[Sample 21]
(Preparation of liquid material 21)
While 10 parts by mass of a 3% by mass boric acid aqueous solution was heated and stirred at 45°C, 5% by mass of polyvinyl alcohol (PVA-117H, degree of polymerization 1700, degree of saponification 99.5 mol%, manufactured by Kuraray Co., Ltd.) was added as a resin. After adding 80 parts by mass of an aqueous solution, 1 part by mass of a 1% by mass aqueous solution of a surfactant (Rapisol A30, manufactured by NOF Corporation) was added, 9 parts by mass of pure water was added as a solvent, and then Irganox 1076 was added as a fluorescent marker agent. A liquid material (coating liquid for forming a low refractive index layer) 21 was prepared by adding 100 mass ppm of .
[評価]
<ピーク強度シフト度の感度>
 上記で調製した各液状物について、あらかじめ分光光度計を用いて励起波長を5nmずつ変えて測定した蛍光スペクトル群から測定に有効な励起波長として強度の最も高い蛍光スペクトルを示す励起波長を選択した。
 使用した分光光度計は、分光蛍光光度計F-7100(日立ハイテクサイエンス社製)である。
 蛍光マーカー化合物として、Irganox1076を用いた液状物1~3、5~7、11及び12では、測定に有効な励起波長として280nmを選択した。また、蛍光マーカー化合物として、Irganox1076を用いたが、検査対象物がマグネシウムイオンである液状物10では、測定に有効な励起波長として330nm、検査対象物がベンゼンである液状物13では、測定に有効な波長として270nm、検査対象物がアセトンである液状物14では、測定に有効な波長として260nm、検査対象物が塩化ストロンチウムである液状物15では、測定に有効な波長として250nm、検査対象物がメタノールである液状物17では、測定に有効な波長として290nm、検査対象物がナトリウムイオンである液状物20及び21では、測定に有効な励起波長として300nmを選択した。また、化合物Aを用いて、検査対象物が水である液状物8では、測定に有効な励起波長として680nm、検査対象物がホルムアミドである液状物18では、測定に有効な波長として690nm、検査対象物が塩化マグネシウムである液状物19では、測定に有効な波長として700nmを選択した。また、化合物Bを用いて、検査対象物が水である液状物9では、測定に有効な励起波長として330nm、検査対象物がエタノールである液状物16では、測定に有効な波長として340nmを選択した。
[evaluation]
<Sensitivity of peak intensity shift degree>
For each of the liquids prepared above, an excitation wavelength exhibiting the highest intensity fluorescence spectrum was selected as an effective excitation wavelength for measurement from a group of fluorescence spectra measured in advance using a spectrophotometer while changing the excitation wavelength in 5 nm increments.
The spectrophotometer used was a spectrofluorometer F-7100 (manufactured by Hitachi High-Tech Science).
For liquids 1 to 3, 5 to 7, 11 and 12 using Irganox 1076 as a fluorescent marker compound, 280 nm was selected as the effective excitation wavelength for measurement. In addition, Irganox 1076 was used as a fluorescent marker compound, but in liquid material 10 where the test object is magnesium ions, the effective excitation wavelength for measurement is 330 nm, and in liquid material 13 where the test object is benzene, it is effective for measurement. For liquid material 14 where the test object is acetone, the effective wavelength for measurement is 260 nm.For liquid material 15 where the test object is strontium chloride, the effective wavelength for measurement is 250 nm. For the liquid material 17, which is methanol, 290 nm was selected as the effective wavelength for measurement, and for the liquid materials 20 and 21, where the test object was sodium ions, 300 nm was selected as the effective excitation wavelength for measurement. In addition, using Compound A, for liquid material 8 where the test target is water, the effective excitation wavelength for measurement is 680 nm, and for liquid material 18 where the test target is formamide, the effective wavelength for measurement is 690 nm. For liquid material 19 whose target substance is magnesium chloride, 700 nm was selected as an effective wavelength for measurement. In addition, using Compound B, 330 nm is selected as the effective excitation wavelength for measurement for liquid material 9 where the test object is water, and 340 nm is selected as the effective wavelength for measurement for liquid material 16 where the test object is ethanol. did.
 次に、各液状物について、下記表に示すとおりの検査対象物を使用し、検査対象物が水の場合は、水の含有量が0.1質量%と1.0質量%となるように水を添加した。また、検査対象物がマグネシウムイオン又はナトリウムイオンの場合は、当該マグネシウムイオン又はナトリウムイオンの含有量が0.01質量%と0.1質量%となるようにマグネシウムイオン又はナトリウムイオンを添加した。ここで、マグネシウムイオンの場合は、MgClを添加し、ナトリウムイオンの場合はNaClを添加した。さらに、検査対象物がベンゼン、アセトン又はホルムアミドの場合は、当該ベンゼン、アセトン又はホルムアミドの含有量が0.1質量%と1.0質量%となるようにベンゼン、アセトン又はホルムアミドを添加した。また検査対象物が塩化ストロンチウムの場合は、当該塩化ストロンチウムの含有量が0.01質量%と0.1質量%となるように塩化ストロンチウムを添加した。また、検査対象物がエタノール又はメタノールの場合は、当該エタノール又はメタノールの含有量が1質量%と10質量%となるようにエタノールまたはメタノールを添加した。
 次に、検査対象物を添加した各液状物について、前記有効な励起波長の光を照射してそれぞれの蛍光スペクトルを測定し、ピークトップの蛍光波長及びピーク強度を測定した。そして、検査対象物の含有量の変化による、蛍光波長の変化量及びピーク強度の変化量(ピーク強度シフト度)を算出し、得られたピーク強度シフト度によって以下の基準により評価を行った。下記基準のA、AA及びAAAを実用上問題ないレベルとした。
 (基準)
 AAA:蛍光波長の変化量が3.0%を超え、ピーク強度の変化量が5.0%を超える。
 AA:蛍光波長の変化量が1.5%を超え3.0%以下であり、ピーク強度の変化量が1.0%を超え5.0%以下である。
 A:蛍光波長の変化量が0.3%を超え1.5%以下であり、ピーク強度の変化量が0.1%を超え1.0%以下である。
 B:蛍光波長の変化量が0.3%以下であり、ピーク強度の変化量が0.1%以下である。
Next, for each liquid substance, use the test target as shown in the table below, and if the test target is water, adjust the water content to 0.1% by mass and 1.0% by mass. Water was added. Moreover, when the test object was a magnesium ion or a sodium ion, the magnesium ion or sodium ion was added so that the content of the magnesium ion or sodium ion was 0.01% by mass and 0.1% by mass. Here, in the case of magnesium ions, MgCl2 was added, and in the case of sodium ions, NaCl was added. Furthermore, when the test object was benzene, acetone, or formamide, benzene, acetone, or formamide was added so that the contents of the benzene, acetone, or formamide were 0.1% by mass and 1.0% by mass. When the object to be tested was strontium chloride, strontium chloride was added so that the content of the strontium chloride was 0.01% by mass and 0.1% by mass. Moreover, when the test object was ethanol or methanol, ethanol or methanol was added so that the content of the ethanol or methanol was 1% by mass and 10% by mass.
Next, each liquid material to which the test object had been added was irradiated with light having the effective excitation wavelength to measure its respective fluorescence spectrum, and the peak top fluorescence wavelength and peak intensity were measured. Then, the amount of change in fluorescence wavelength and the amount of change in peak intensity (peak intensity shift degree) due to changes in the content of the test object were calculated, and evaluation was performed based on the obtained peak intensity shift degree based on the following criteria. A, AA, and AAA of the following standards were determined to be at a level that poses no problem in practice.
(standard)
AAA: The amount of change in fluorescence wavelength exceeds 3.0%, and the amount of change in peak intensity exceeds 5.0%.
AA: The amount of change in fluorescence wavelength is more than 1.5% and not more than 3.0%, and the amount of change in peak intensity is more than 1.0% and not more than 5.0%.
A: The amount of change in fluorescence wavelength is more than 0.3% and not more than 1.5%, and the amount of change in peak intensity is more than 0.1% and not more than 1.0%.
B: The amount of change in fluorescence wavelength is 0.3% or less, and the amount of change in peak intensity is 0.1% or less.
<ヘイズ値>
 液状物1~14を用いたフィルムを製造し始めてから、1時間後に得られたフィルムのヘイズを、ヘイズメーター(日本電色工業株式会社製のNDH)を用いて測定した。そ
して、測定されたヘイズによって、以下の基準で評価を行った。下記基準のA、AA及びAAAを実用上問題ないレベルとした。
 AAA:ヘイズが0.1%以下である。
 AA:ヘイズが0.1%を超え、0.5%以下である。
 A:ヘイズが0.5%を超え、1%以下である。
 B:ヘイズが1%を超える。
<Haze value>
One hour after starting the production of films using Liquids 1 to 14, the haze of the films obtained was measured using a haze meter (NDH, manufactured by Nippon Denshoku Industries Co., Ltd.). Then, the measured haze was evaluated based on the following criteria. A, AA, and AAA of the following standards were determined to be at a level that poses no problem in practice.
AAA: Haze is 0.1% or less.
AA: Haze is more than 0.1% and less than 0.5%.
A: Haze is more than 0.5% and less than 1%.
B: Haze exceeds 1%.
 なお、各試料の調製で使用した溶剤、樹脂、マーカー化合物及び検査対象物のSP値や、ΔSPについては、前記した方法により算出し、下記表に示した。 Note that the SP values and ΔSP of the solvent, resin, marker compound, and test object used in the preparation of each sample were calculated by the method described above and shown in the table below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記結果に示されるように、本発明の液状物の評価方法を用いることにより、比較例に比べて、ピーク強度シフト度の感度に優れ、かつ、フィルムの品質ばらつきも低減できることが認められる。 As shown in the above results, it is recognized that by using the liquid material evaluation method of the present invention, the sensitivity of the peak intensity shift degree is superior to that of the comparative example, and it is possible to reduce film quality variations.
 本発明は、反応性蛍光マーカー剤を用いずに、液状物中の水分量や不純物等の微小な変動を常時検出することができる液状物の評価方法及び液状物の評価装置に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be applied to a liquid material evaluation method and a liquid material evaluation device that can constantly detect minute fluctuations in water content, impurities, etc. in a liquid material without using a reactive fluorescent marker. can.
 1 溶解釜
 3、6、12、15 濾過器
 4、13 ストック釜
 2、5、11、14 送液ポンプ
 8、16 導管
 10 添加剤仕込釜
 20 合流管
 21 混合機
 30 加圧ダイ
 31 金属支持体
 32 ウェブ
 33 剥離位置
 34 延伸装置
 35 乾燥装置
 36 搬送ローラー
 37 巻取り装置
 41 仕込釜
 42 ストック釜
 43 ポンプ
1 Melting pot 3, 6, 12, 15 Filter 4, 13 Stock pot 2, 5, 11, 14 Liquid feeding pump 8, 16 Conduit 10 Additive charging pot 20 Merging tube 21 Mixer 30 Pressure die 31 Metal support 32 Web 33 Peeling position 34 Stretching device 35 Drying device 36 Conveyance roller 37 Winding device 41 Preparation pot 42 Stock pot 43 Pump

Claims (8)

  1.  少なくとも、溶剤、樹脂及び非反応添加物を含有する液状物の評価方法であって、
     前記非反応添加物が、蛍光マーカー化合物であり、
     前記液状物の任意の励起波長における蛍光スペクトルを取得する蛍光スペクトル観測工程と、
     取得した前記蛍光スペクトルから前記液状物中の前記蛍光マーカー化合物と検査対象物との相互作用に基づいて、ピーク強度シフト度に関するデータを取得するスペクトル解析工程と、を備える液状物の評価方法。
    A method for evaluating a liquid material containing at least a solvent, a resin, and a non-reactive additive, the method comprising:
    the non-reactive additive is a fluorescent marker compound,
    a fluorescence spectrum observation step of acquiring a fluorescence spectrum at an arbitrary excitation wavelength of the liquid;
    A method for evaluating a liquid material, comprising: a spectral analysis step of acquiring data regarding a peak intensity shift degree based on the interaction between the fluorescent marker compound in the liquid material and the test object from the acquired fluorescence spectrum.
  2.  前記液状物中の、前記蛍光マーカー化合物と前記検査対象物との溶解度パラメーターの差ΔSPが、6~22の範囲内である請求項1に記載の液状物の評価方法。 The method for evaluating a liquid material according to claim 1, wherein a difference ΔSP in solubility parameters between the fluorescent marker compound and the test object in the liquid material is within a range of 6 to 22.
  3.  前記非反応添加物が、前記液状物に対して1~5000質量ppmの範囲内で含有されている請求項1又は請求項2に記載の液状物の評価方法。 The method for evaluating a liquid material according to claim 1 or 2, wherein the non-reactive additive is contained in a range of 1 to 5000 ppm by mass based on the liquid material.
  4.  前記スペクトル解析工程をインラインで行う請求項1から請求項3までのいずれか一項に記載の液状物の評価方法。 The method for evaluating a liquid material according to any one of claims 1 to 3, wherein the spectrum analysis step is performed inline.
  5.  前記ピーク強度シフト度に関するデータに含まれるピーク強度に基づき、検量線を用いて、前記検査対象物の含有量を算出するデータ処理工程を備える請求項1から請求項4までのいずれか一項に記載の液状物の評価方法。 Any one of claims 1 to 4, comprising a data processing step of calculating the content of the test object based on the peak intensity included in the data regarding the peak intensity shift degree using a calibration curve. Evaluation method of the described liquid material.
  6.  少なくとも、溶剤、樹脂及び非反応添加物を含有する液状物の評価装置であって、
     前記非反応添加物が、蛍光マーカー化合物であり、
     前記液状物の任意の励起波長における蛍光スペクトルを取得する蛍光スペクトル観測部と、
     取得した前記蛍光スペクトルから前記液状物中の前記蛍光マーカー化合物と検査対象物との相互作用に基づいて、ピーク強度シフト度に関するデータを取得するスペクトル解析部と、を備える液状物の評価装置。
    An apparatus for evaluating a liquid material containing at least a solvent, a resin, and a non-reactive additive,
    the non-reactive additive is a fluorescent marker compound,
    a fluorescence spectrum observation unit that acquires a fluorescence spectrum of the liquid at an arbitrary excitation wavelength;
    An evaluation device for a liquid substance, comprising: a spectrum analysis unit that acquires data regarding a peak intensity shift degree based on the interaction between the fluorescent marker compound in the liquid substance and the test object from the acquired fluorescence spectrum.
  7.  前記ピーク強度シフト度に関するデータに含まれるピーク強度に基づき、検量線を用いて、前記検査対象物の含有量を算出するデータ処理部を備える請求項6に記載の液状物の評価装置。 The liquid material evaluation device according to claim 6, further comprising a data processing unit that calculates the content of the test object based on the peak intensity included in the data regarding the peak intensity shift degree and using a calibration curve.
  8.  前記ピーク強度シフト度に関するデータを表示する情報表示部を備える請求項6又は請求項7に記載の液状物の評価装置。 The liquid material evaluation device according to claim 6 or 7, further comprising an information display unit that displays data regarding the peak intensity shift degree.
PCT/JP2023/008735 2022-03-29 2023-03-08 Liquid matter assessment method and liquid matter assessment device WO2023189315A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022052703 2022-03-29
JP2022-052703 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189315A1 true WO2023189315A1 (en) 2023-10-05

Family

ID=88201458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008735 WO2023189315A1 (en) 2022-03-29 2023-03-08 Liquid matter assessment method and liquid matter assessment device

Country Status (1)

Country Link
WO (1) WO2023189315A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056327A (en) * 1999-06-10 2001-02-27 Kanagawa Acad Of Sci & Technol Method for detecting and determining trace amount of moisture through use of acridine derivative
JP2008058319A (en) * 2007-08-31 2008-03-13 Japan Science & Technology Agency Fluorescence sensor for detecting anion
JP2012096465A (en) * 2010-11-02 2012-05-24 Konica Minolta Opto Inc Method of manufacturing cellulose ester optical film
KR20160079164A (en) * 2014-12-25 2016-07-06 주식회사 효성 Process for preparing anti-reflection triacetylcellulose film for polarizing film
JP2017097284A (en) * 2015-11-27 2017-06-01 コニカミノルタ株式会社 Optical laminate film and method for manufacturing the same, polarizing plate and liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056327A (en) * 1999-06-10 2001-02-27 Kanagawa Acad Of Sci & Technol Method for detecting and determining trace amount of moisture through use of acridine derivative
JP2008058319A (en) * 2007-08-31 2008-03-13 Japan Science & Technology Agency Fluorescence sensor for detecting anion
JP2012096465A (en) * 2010-11-02 2012-05-24 Konica Minolta Opto Inc Method of manufacturing cellulose ester optical film
KR20160079164A (en) * 2014-12-25 2016-07-06 주식회사 효성 Process for preparing anti-reflection triacetylcellulose film for polarizing film
JP2017097284A (en) * 2015-11-27 2017-06-01 コニカミノルタ株式会社 Optical laminate film and method for manufacturing the same, polarizing plate and liquid crystal display device

Similar Documents

Publication Publication Date Title
JP7413290B2 (en) Reinforced polarizing optical film laminate for power running vehicles, and optical display panel using the reinforced polarizing optical film laminate
KR101998151B1 (en) Liquid crystal panel and liquid crystal display device
US9529122B2 (en) Polarizing plate including hard coating film
US11016223B2 (en) Hardcoat film and application thereof
JPWO2015163224A1 (en) High durability iodine polarizer
JP6122812B2 (en) Polarizing plate and image display device
JP2016014770A (en) Image display device
CN111093984A (en) Laminate, polarizing plate, and image display device
US11644604B2 (en) Optical film, polarizing plate, and image display device
JP7198946B2 (en) Optical laminate, polarizing plate, image display device, resistive touch panel and capacitive touch panel
WO2023189315A1 (en) Liquid matter assessment method and liquid matter assessment device
US20160161800A1 (en) Polarizing plate and image display device
CN110969941B (en) Optical film
US20230095251A1 (en) Photosensitive transfer material and method of producing the same, film, touch panel, method of suppressing deterioration, and laminate and method of producing the same
JP4747531B2 (en) Aromatic polyamide film and optical member and display using the same
US20180208776A1 (en) Hardcoat film, front plate of image display element, resistive film-type touch panel, capacitance-type touch panel, and image display
TW202409546A (en) Liquid substance evaluation method and liquid substance evaluation device
TW201840431A (en) Antireflection laminate, and polarizing plate and image display device including same
TW202146224A (en) Antireflection layer-equipped circular polarizing plate and image display device using antireflection layer-equipped circular polarizing plate
KR20220054320A (en) A polarizing film laminate, an optical display panel in which the polarizing film laminate is used, a polarizing film laminate with a transparent adhesive layer, and a polarizing film assembly
CN113748018A (en) Optical laminate and image display device
JP7347035B2 (en) Optical films, polarizing plates and organic EL display devices
WO2019172651A1 (en) Polarizing plate and image display device comprising same
CN118112704A (en) Optical laminate and image display device
TW202116562A (en) Polarizing film laminate, optical display panel in which said polarizing film laminate is used, polarizing film laminate with transparent adhesive layer, and polarizing film assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779342

Country of ref document: EP

Kind code of ref document: A1