WO2023188931A1 - Composite composition comprising silicon oxide - Google Patents

Composite composition comprising silicon oxide Download PDF

Info

Publication number
WO2023188931A1
WO2023188931A1 PCT/JP2023/005184 JP2023005184W WO2023188931A1 WO 2023188931 A1 WO2023188931 A1 WO 2023188931A1 JP 2023005184 W JP2023005184 W JP 2023005184W WO 2023188931 A1 WO2023188931 A1 WO 2023188931A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
composite composition
silicon fine
silicon
composition according
Prior art date
Application number
PCT/JP2023/005184
Other languages
French (fr)
Japanese (ja)
Inventor
悠輝 小林
Original Assignee
株式会社ボスケシリコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ボスケシリコン filed Critical 株式会社ボスケシリコン
Publication of WO2023188931A1 publication Critical patent/WO2023188931A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/30Feeding-stuffs specially adapted for particular animals for swines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/40Feeding-stuffs specially adapted for particular animals for carnivorous animals, e.g. cats or dogs
    • A23K50/42Dry feed
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/70Feeding-stuffs specially adapted for particular animals for birds
    • A23K50/75Feeding-stuffs specially adapted for particular animals for birds for poultry
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/14Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/08Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon

Definitions

  • the present invention relates to a composite composition
  • a composite composition comprising silicon oxide, and pharmaceuticals, quasi-drugs, foods, health foods, food additives, supplements, and feeds containing the composite composition.
  • Silicon microparticles can generate hydrogen when they come into contact with water, so they can be said to have unique physical properties among silicon materials. Therefore, silicon materials have the potential to be used not only in the semiconductor industry and the MEMS field, but also in the food, health food, and medical fields.
  • Patent No. 6467071 International Publication WO2018/037752 Publication International Publication WO2018/037818 Publication International Publication WO2018/037819 Publication International Publication WO2019/211960 Publication Japanese Patent Application Publication No. 2020-183386
  • silicon fine particles that can generate hydrogen when brought into contact with water have physical properties that vary depending on the state of silicon oxide on at least a portion of their surfaces. I learned how to get it. Therefore, in order to exhibit desired physical properties and/or functions for various living organisms including animals (including humans; the same shall apply hereinafter) and plants, silicon microparticles and the silicon oxide they contain must be Therefore, appropriate and sophisticated control is required.
  • the present invention solves at least one of the above-mentioned technical problems, and improves the hydrogen generation ability of a composite composition containing silicon fine particles or aggregates thereof having silicon oxide on at least a portion of the surface. Improving controllability and/or increasing the hydrogen generation ability, and monosilicic acid (typical chemical formula is Si(OH) 4 , also called “orthosilicic acid”. The same applies hereinafter) from silicon oxide in the body ( Typically, it can greatly contribute to dissolution in the intestines).
  • monosilicic acid typically, it can greatly contribute to dissolution in the intestines.
  • silicon fine particles and/or aggregates thereof are water or a water-containing liquid (hereinafter also collectively referred to as “water-containing liquid”).
  • silicon fine particles are water or a water-containing liquid (hereinafter also collectively referred to as “water-containing liquid”).
  • water-containing liquid we conducted extensive research and analysis on the state changes and behavior of silicon oxide formed on at least a portion of the surface of the silicon fine particles when hydrogen is generated by contact with the silicon oxide particles.
  • the present inventors have learned that silicon fine particles formed by a certain treatment exhibit a peculiar behavior in the silicon oxide contained in the silicon fine particles during hydrogen generation.
  • a portion of the silicon oxide that is thought to be formed on the surface of the silicon fine particles during the hydrogen generation process becomes monosilicon.
  • An interesting finding was obtained that it elutes into water-containing liquids in the form of an acid.
  • the present inventor has found that the elution concentration of the monosilicic acid is correlated with the amount of hydrogen generated from the silicon fine particles.
  • the present inventor found that if the density of the silicon oxide film provided on the silicon fine particles is low before the silicon fine particles are ingested by an animal, for example, a human, the following (a) and/or that the action or effect shown in (b) can occur.
  • This monosilicic acid improves the metabolic ability, immunity, elasticity of blood vessels, bone strength, and anti-inflammatory properties of animals, especially humans, suppresses or prevents aging or oxidation, inactivates cells, and improves skin (human beauty).
  • Substances that can contribute to the production or growth of hair including skin as a human cosmetic organ), hair (including hair as a human cosmetic organ), and nails (including nails as a human cosmetic organ). Yes, it is very useful. Therefore, it is important to appropriately control the elution of monosilicic acid while generating hydrogen from the silicon microparticles in order to restore or improve the health of animals, especially humans.
  • the present inventor thought that the present invention could contribute to application to foods, food additives, supplements, and feeds (including feeds for pets, livestock, and fisheries).
  • the present inventor has conducted further studies and conducted research and analysis. As a result, it has been found that the silicon fine particles formed by the above-mentioned process have a unique silicon oxide formed during hydrogen generation. The present inventor has found that even if the silicon fine particles themselves are easily reacted with a water-containing liquid while maintaining hydrogen generation ability. The present invention was created based on the above-mentioned viewpoints.
  • One composite composition of the present invention includes silicon fine particles and/or aggregates thereof having an average particle size of more than 1 ⁇ m and less than 45 ⁇ m, and continues for 24 hours or more after the silicon fine particles come into contact with a water-containing liquid.
  • the method includes silicon oxide that can elute monosilicic acid into the water-containing liquid while automatically generating hydrogen.
  • This composite composition includes monosilicic acid in a water-containing liquid and silicon oxide that can be eluted into the water-containing liquid while generating hydrogen, in other words, while generating hydrogen. Therefore, for example, even if the silicon oxide is formed when the composite composition comes into contact with a water-containing liquid to generate hydrogen, the silicon fine particles are likely to react with the water-containing liquid due to the elution of monosilicic acid. I will do it.
  • the monosilicic acid accounts for more than 50% (more narrowly, 60% or more, still more narrowly, 70% or more, still more narrowly, 80% or more, and most narrowly, 90%) of all the monosilicic acids eluted. It is a preferable embodiment that the monomer (above) is silicic acid because it is easily taken into the bodies of animals (in a broader sense, living things), particularly humans.
  • one composite composition of the present invention will elute (or generate ) can be said to be a composite composition for
  • an example of a more suitable composite composition includes silicon fine particles and/or aggregates thereof having an average particle diameter of more than 1 ⁇ m and less than 45 ⁇ m, and 20 mg of the silicon fine particles and/or the aggregates.
  • the present invention is a composite composition in which the surface of the silicon fine particles and/or the aggregate contains silicon oxide from which 5 ppm or more of monosilicic acid can be eluted into the aqueous sodium bicarbonate solution after a period of time.
  • another example of a more suitable composite composition includes silicon fine particles and/or aggregates thereof having an average particle size of 1 nm or more and 500 nm or less, and 20 mg of the silicon in the composite composition.
  • the fine particles and/or the aggregates are immersed and stirred in 500 mL of a sodium bicarbonate aqueous solution with a pH value of 8.3 and at 36°C, the silicon fine particles and/or the aggregates are dissolved in the hydrogen carbonate.
  • the diameter of silicon fine particles that do not include a silicon oxide film is referred to as "particle diameter.”
  • silicon fine particles in this application refer to silicon particles whose average particle diameter (unless otherwise specified, means weight average particle diameter) is below the micron level, specifically, whose particle diameter is 1 nm or more and 500 ⁇ m or less. is the main particle.
  • an example of "silicon fine particles” in the present application is one with an average particle size of micron level, specifically, a particle size of 1 ⁇ m or more (or more than 1 ⁇ m) and 500 ⁇ m or less (more narrowly, 1 ⁇ m or more (or
  • the main particles are silicon nanoparticles with a particle diameter of 1 nm or more and 500 nm or less (more narrowly, 1 nm or more and 50 nm or less). do.
  • silicon fine particles are not only those in which each silicon fine particle is dispersed, but also those in which multiple silicon fine particles are aggregated to the ⁇ m order (approximately 0.1 ⁇ m or more (or more than 1 ⁇ m)). This includes aggregates with a size of 500 ⁇ m or less. Note that the above-mentioned numerical ranges for “silicon fine particles” are merely examples, and therefore, the numerical ranges are not limited. The particle size and the diameter of the silicon fine particle aggregate are appropriately selected depending on the purpose of the "silicon fine particles", how they are used, the required functions, and the like.
  • the "water-containing liquid” in this application is a liquid or aqueous solution containing water.
  • the "water-containing fluid” includes animal (including human) gastrointestinal fluid.
  • digestive tract fluid includes gastric juice, pancreatic juice, small intestinal fluid after pancreatic juice is secreted, and large intestinal fluid.
  • the "pH adjuster” in the present application has a pH value of 6 or more (preferably more than 7, more preferably 7.4 or more, more preferably more than 7.4, even more preferably 8.0 or more).
  • the material is not particularly limited as long as it is a chemical that can be adjusted to a neutral or alkaline range (hereinafter referred to as an "alkaline agent"). It also includes use on animal skin.
  • the composite composition is not limited to use for animals, but can also be applied to plants.
  • alkaline agents include sodium hydrogen carbonate, sodium carbonate, sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium hydrogen carbonate, potassium carbonate, and others for pharmaceuticals, quasi-drugs, foods, health foods, etc.
  • pH adjusters for food additives, supplements, and feeds may be employed.
  • sodium bicarbonate which is the most general-purpose product, is widely used as a food additive, and this is because it has the multiple advantages required by the present invention, such as the pH value adjustment function, safety, and versatility.
  • it is not limited to the above-mentioned pH adjusters, and a wide range of pH adjusters can be employed.
  • a preferred embodiment of any pH adjuster is that it is in a form that cannot be decomposed by acid.
  • the silicon oxide is formed when hydrogen is generated by contacting the composite composition with a water-containing liquid
  • elution of monosilicic acid can cause the silicon fine particles to form. This will make it easier for the particles to react with the water-containing liquid.
  • Monosilicic acid concentration in the water-containing liquid in the hydrogen generation process that occurs by immersing the silicon fine particles in the first embodiment in a water-containing liquid with a pH value of 8.3 and a temperature of 36°C. It is a graph showing the relationship between (ppm) and hydrogen generation reaction time. It is a graph showing the relationship between the reaction time (hr: time) between silicon fine particles and a water-containing liquid and the amount of hydrogen generated from the silicon fine particles (mL/g) in the first embodiment. 2 is a graph showing a change over time in the monosilicic acid concentration (ppm) in a water-containing liquid in a hydrogen generation process by immersing silicon fine particles in a water-containing liquid in a modification of the first embodiment. It is a graph showing the relationship between the concentration of monosilicic acid in an aqueous solution and the hydrogen generation reaction time when a hydrogen generation reaction occurs by immersing a silicone preparation in an aqueous solution at pH 8.3 and at 36°C.
  • the raw materials for the composite composition of this embodiment include, for example, commercially available high-purity silicon particle powder (manufactured by Osaka Titanium Technologies Co., Ltd., particle size distribution ⁇ 300 ⁇ m (however, silicon particle powder with a crystal grain size of more than 1 ⁇ m is typically used). , purity 99.99%, i-type silicon)) is used.
  • a classification process is performed as a pretreatment for the pulverization process to limit the silicon particle powder to be input into the pulverization process. be exposed.
  • the ratio of the silicon particles having a particle size of 45 ⁇ m or more to all the silicon particles is 1% by mass or less (more preferably 0.5% by mass). % or less, more preferably 0.1% by mass or less, even more preferably 0.05% by mass or less, even more preferably 0.02% by mass or less).
  • the silicon fine particles having a particle size of less than 45 ⁇ m are obtained, and the silicon fine particles having a particle size of 45 ⁇ m or more are almost completely removed.
  • an air flow diversion method that substantially removes the silicon fine particles with a particle size of 45 ⁇ m or more and the silicon fine particles with a particle size of less than 1 ⁇ m is used. It may also be possible to adopt a classification step by.
  • the classified silicon particle powder is bead milled in a physiologically acceptable liquid (in this embodiment, an ethanol solution with a purity of 99.5 wt%) (hereinafter collectively referred to as "liquid").
  • a physiologically acceptable liquid in this embodiment, an ethanol solution with a purity of 99.5 wt%) (hereinafter collectively referred to as "liquid").
  • a pulverization process is performed in which the material is made fine by a pulverization process using a method.
  • the temperature of the liquid during the pulverization step, the bead mill, and the slurry containing the silicon particle powder to be pulverized is adjusted at least from the following points (1) and (2).
  • the above-mentioned temperature increases as the silicon particle powder and the silicon fine particles are repeatedly pulverized and/or dispersed by stirring the liquid and the bead mill. It is thought that this temperature increase affects the surface of the silicon fine particles formed by the pulverization process, and can promote the formation of relatively dense silicon oxide during hydrogen generation. Note that the silicon oxide of this embodiment included in the silicon fine particles formed by the pulverization process is in a state of "extremely low density" compared to the thermal oxide film of silicon used in semiconductor technology.
  • the present inventor devised a method to control the above-mentioned temperature so that dense silicon oxide, so to speak, would not be formed on the surface of the silicon fine particles formed by the pulverization process during hydrogen generation.
  • the above-mentioned temperature during the pulverization step is less than 36°C (preferably less than 35°C, more preferably less than 30°C, even more preferably 25°C or less (more narrowly, 25°C). (most preferably below 20°C).
  • an automatic control is provided to automatically stop the grinding process when the temperature reaches a temperature just below each of the above-mentioned temperatures.
  • a grinding device may be employed that is equipped with a control that activates a stop device.
  • the above-mentioned liquid is not limited to an ethanol solution, but it is preferable to use a liquid that does not harm the health of animals, that is, a physiologically acceptable liquid.
  • the shape of the silicon fine particles formed by the pulverization process is not limited. For example, a spherical shape, an elliptical shape, a disk shape, an amorphous shape, a polygonal shape, or a cylindrical shape is one embodiment of the silicon fine particles.
  • silicon particle powder classified by the above-mentioned classification process is crushed to 99wt% or more (more preferably , 99.5 wt%) in an alcohol such as ethanol, isopropyl alcohol (IPA), or methanol (however, ethanol in this embodiment), and add zirconia beads (2900 ml in volume) with a diameter of 0.5 mm.
  • a pulverization step is carried out in which the material is pulverized in the atmosphere for 4 hours at a rotational speed of 2500 rpm.
  • ethanol for example, 99.5 wt%) as the alcohol contained in the mixed solution is important for the safety of the ultimately produced silicon fine particles and the composite composition containing the silicon fine particles. This is a preferable embodiment from the viewpoint of increasing the accuracy (for example, safety for animals).
  • silicon nanoparticles with an average particle size of 100 nm or less, and silicon nanoparticles containing the silicon nanoparticles of 40 nm to 0.5 ⁇ m are used. sized silicon fine particles, and/or silicon nanoparticles and aggregates of silicon fine particles containing the silicon nanoparticles were confirmed.
  • the mixed solution containing silicon fine particles (including silicon nanoparticles) separated from the beads in the bead mill grinding device is heated to 40° C. using a vacuum evaporator to evaporate the mixed solution.
  • dry silicon fine particles (including silicon nanoparticles) can be obtained.
  • the dried silicon fine particles can be stored in a vacuum container or a nitrogen-substituted container. Note that the method for separating and drying the silicon nanoparticles obtained by pulverization is not limited to the method disclosed in this embodiment. For example, known separation and/or drying methods employed in the production of other particles may also be employed.
  • silicon fine particles (including silicon nanoparticles) obtained by the above method is mainly composed of silicon nanoparticles with an average particle diameter of 1 nm or more and 500 nm or less. Note that the above-mentioned results are only the results of the pulverization process and the like as an example, so the present embodiment is not limited to the above-mentioned numerical values.
  • a composite composition containing silicon fine particles manufactured through the above-described pulverization process a composite composition having the following characteristics (a) and/or (b) can be realized.
  • Monosilicic acid can be eluted from silicon oxide contained in silicon fine particles into a water-containing liquid.
  • Hydrogen is generated by contacting with a water-containing liquid, and ultimately the silicon fine particles are made easier to react with the water-containing liquid.
  • the monosilicic acid of this embodiment accounts for more than 50% (in a narrower sense, 60% or more, still more narrowly, 70% or more, still more narrowly, 80% or more, in the narrowest sense) of all the monosilicic acids eluted. 90% or more) is silicic acid as a monomer rather than a polymer or oligomer, which is a preferred embodiment because it is easily taken into the bodies of animals (more broadly speaking, living organisms), including humans.
  • a pulverizing step is performed in which the material is pulverized using a known jet mill device at a temperature of about 25° C. for a predetermined time of 1 minute or less.
  • the temperature during the pulverizing process is less than 36°C (preferably less than 35°C, more preferably less than 30°C, still more preferably 25°C or less (more narrowly defined). (below 25°C), most preferably below 20°C).
  • fine silicon particles with an average particle size of 1 ⁇ m or more and less than 45 ⁇ m and/or aggregates of the fine silicon particles were confirmed.
  • Example 1 The present inventor has discovered that the average particle size of the composite composition of the first embodiment, which is manufactured based on the manufacturing method of the first embodiment in which the temperature during the pulverization step is 25°C. Silicon fine particles with a size of 1 nm or more and 500 nm or less were used. The present inventor immersed the silicon fine particles in a 36°C water-containing solution (in this example, a sodium hydrogen carbonate aqueous solution) whose pH value was adjusted to 8.3 using sodium hydrogen carbonate as a pH adjuster, and stirred the silicon particles. The time change in the concentration of monosilicic acid eluted into the water-containing liquid was investigated. Note that the stirring conditions in this example are as follows. (a) Beaker size: diameter 108mm, height 158mm (b) Size of stirrer blade: 12mm (c) Stirrer rotation speed: 960 rpm (d) Rotation time: Continuous rotation while hydrogen is generated
  • the aqueous solution obtained by removing silicon fine particles from the aqueous solution using a 0.22 ⁇ m filter is diluted 10 times with ultrapure water.
  • the aqueous solution prepared according to the above procedure exhibited a blue color, and was quantitatively analyzed by absorbance measurement using a Millipore Prove 600 UV/Vis Spectrophotometer.
  • FIG. 1 is a graph showing changes over time in the monosilicic acid concentration (ppm) in the water-containing liquid during the hydrogen generation process by immersing 20 mg of the silicon fine particles in 500 mL of the water-containing liquid.
  • FIG. 2 is a graph showing the relationship between the amount of hydrogen (mL/g) generated when 200 mg of the silicon fine particles are immersed in 200 mL of the water-containing liquid and the reaction time (hr: time).
  • the solid line in FIG. 1 shows the result of connecting the measured values of monosilicic acid concentration with a straight line.
  • the dotted line in Figure 1 connects the concentration of monosilicic acid, assuming that the concentration of monosilicic acid increases in proportion to the time that has passed after contact between the silicon fine particles and the sodium bicarbonate aqueous solution. shows the results.
  • the silicon oxide included in the silicon fine particles of this example is a silicon oxide that can elute monosilicic acid at the above-mentioned concentrations into the water-containing liquid.
  • the concentration of monosilicic acid increases at least within a certain period of time after the contact between the silicon fine particles and the aqueous sodium bicarbonate solution, and the concentration of monosilicic acid increases approximately in proportion to the time that has passed after the contact.
  • the concentration of monosilicic acid is 3 hours or less (in a broader sense, 5 hours or less, in the broadest sense, 6 hours or less) after the contact, and the concentration of monosilicic acid is approximately proportional to the time that has passed after the contact. It was confirmed that there was an increase in
  • the composite composition of the embodiment can be used as a medicine, quasi-drug, food, health food, food additive, supplement, and feed (for pets, livestock, and It was found that this method can contribute to the application of various feeds for fisheries.
  • the present inventor has prepared silicon fine particles manufactured based on the first embodiment in a water-containing liquid at 36° C. whose pH value is adjusted to 8.3 using sodium hydrogen carbonate as a pH adjusting agent (this In this example, the dissolution rate of the silicon fine particles, in other words, the consumption rate of the silicon fine particles when brought into contact with an aqueous sodium bicarbonate solution, can be obtained by differentiating the graph of FIG.
  • the present inventor has discovered that the average particle size is more than 1 ⁇ m and less than 45 ⁇ m, which is produced based on the manufacturing method of the embodiment in which the temperature during the pulverization step in this modification is 25° C. (More specifically, silicon fine particles having a size of 1.9 ⁇ m or more and 44.9 ⁇ m or less, with an abundance ratio of more than 50% of the total silicon fine particles having a size of more than 10 ⁇ m and less than 45 ⁇ m) were used.
  • the present inventor brought the silicon fine particles into contact with a 36°C water-containing solution (in this example, a sodium hydrogen carbonate aqueous solution) whose pH value was adjusted to 8.3 using sodium hydrogen carbonate as a pH adjuster.
  • the concentration of monosilicic acid eluted into the water-containing liquid was examined over time. Note that the stirring conditions and the method for measuring the monosilicic acid concentration in the composite composition of this example are the same as in Example 1.
  • FIG. 3 is a graph showing changes over time in the monosilicic acid concentration (ppm) in the water-containing liquid during the hydrogen generation process by immersing 20 mg of the silicon fine particles in 500 mL of the water-containing liquid.
  • the solid line in FIG. 3 shows the result of connecting the measured values of monosilicic acid concentration with a straight line.
  • the monosilicic acid concentration (ppm) was determined for 20 hours or more (in a narrow sense, 24 hours or more, more Even after 25 hours or more in a narrow sense, and 27 hours or more in a narrower sense), it was confirmed that the temperature continued to rise. Specifically, it was confirmed that 5 ppm or more (in a more narrow sense, 5.5 ppm or more) of monosilicic acid was eluted into the water-containing liquid after 25 hours had passed. Furthermore, it was confirmed that 6 ppm or more of monosilicic acid was eluted into the water-containing liquid after at least 27 hours had elapsed. Although not shown, in this example, as in Example 1, hydrogen continues to be generated for 27 hours or more after the silicon fine particles come into contact with the water-containing liquid. confirmed.
  • the composite composition of this example contains at least silicon fine particles having an average particle diameter of 1 ⁇ m or more (more than 1 ⁇ m in a narrow sense), so that the surface of the silicon fine particles can be maintained for a long time (for example, It has become clear that the liquid contains silicon oxide that can elute monosilicic acid into the water-containing liquid while continuously generating hydrogen (in other words, generating hydrogen and eluting monosilicic acid into the water-containing liquid). In other words, it has become clear that, at least under the above conditions, the elution of monosilicic acid into the water-containing liquid continues with the continuous generation of hydrogen over a long period of time (for example, 20 hours or more). .
  • the water-containing liquid and silicon fine particles come into contact, and silicon oxide forms on the silicon fine particles. Even if formed on the surface, the silicon fine particles can continue to react with the water-containing liquid for a long time due to the elution of monosilicic acid, and hydrogen can be continuously generated, which is a noteworthy effect. It can be played.
  • the composite composition of the first embodiment can be used, for example, in medicines, quasi-drugs, foods, health foods, food additives, supplements, and feeds (for pets, livestock, and fisheries) for animals, especially humans. It can also be used as a food source (including various types of feed).
  • a pill or a cylindrical tablet can be obtained by compressing the silicon fine particles of the first embodiment using a known tableting method. Pills or tablets may be adopted to facilitate oral ingestion by animals, especially humans.
  • another embodiment that may be employed is to mix the silicon fine particles and sodium hydrogen carbonate powder, knead them, and then tablet. Even when the pill or the tablet is employed, the same effects as the composite composition of the first embodiment can be achieved.
  • a disintegrant may be further included.
  • known materials can be employed.
  • preferred examples of more preferred disintegrants are organic acids, the most preferred example being citric acid.
  • the organic acid may also function as a binder to clump the composite composition.
  • the composite composition of the first embodiment is a powdered composite composition (for example, granules or powder) that can generate more hydrogen because the surface area is substantially larger than that of a lump, good.
  • the composite composition in the form of granules or powders becomes powdery at an earlier stage after being orally ingested compared to pills, tablets or capsules.
  • gastric juice is acidic
  • even if the composite composition becomes powdery immediately after reaching the stomach very little hydrogen will be generated and the elution of monosilicic acid will not progress, so after passing through the stomach, In the presence of a water-containing liquid (digestive juice), the hydrogen generation reaction and the elution of monosilicic acid can be promoted.
  • pharmaceuticals, quasi-drugs, foods, health foods, food additives, supplements, and feeds for pets, livestock, and fisheries
  • feeds for pets, livestock, and fisheries
  • a coating material (preferably a known gastrically poorly soluble enteric-coated materials) is one embodiment that may be employed. Covering the composite composition with the coating material reduces exposure of the silicone microparticles to gastric juices and/or stomach contents. As a result, it is possible to increase the surface area exposed to the water-containing liquid in the digestive organs located downstream of the stomach (for example, the small intestine and/or the large intestine) where it is desired to promote the hydrogen generation reaction and the elution of monosilicic acid.
  • An example of a coating layer that can be applied to the capsule is the capsule itself, which is manufactured from a known enteric material that is poorly soluble in the stomach and which contains the silicon fine particles of the first embodiment.
  • FIG. 4 is a graph showing the relationship between the concentration of monosilicic acid in an aqueous solution and the hydrogen generation reaction time when a hydrogen generation reaction occurs by immersing a silicone preparation in an aqueous solution at pH 8.3 and at 36°C. .
  • the silicon microparticles of the first embodiment were immersed in the aqueous solution (the solute was sodium bicarbonate) at pH 8.3 and 36°C, which is an environment similar to pancreatic juice and intestinal fluid secreted in the intestines.
  • An experiment was conducted to generate hydrogen by doing this.
  • the concentration of monosilicic acid increased approximately linearly with the passage of reaction time for hydrogen generation until about 6 hours after hydrogen started to react.
  • the increase in the concentration of monosilicic acid gradually slowed down as the reaction time progressed.
  • the present inventor found that the shape of the curve in FIG. 4 showing the relationship between the concentration of monosilicic acid and the hydrogen generation reaction time is similar to that of the curve showing the relationship between the amount of hydrogen generated and the reaction time. learned. Therefore, until about 6 hours after the start of the hydrogen generation reaction, the elution rate of monosilicic acid from the silicon oxide (i.e., composite composition) included in the silicon fine particles is relatively fast, similar to the hydrogen generation rate; A very interesting finding was obtained that after 6 hours, the rate of hydrogen generation decreased and the rate of elution of monosilicic acid also decreased. That is, this example revealed that monosilicic acid is eluted with hydrogen generation.
  • the composite composition of this example will come into contact with the fluid in the gastrointestinal tract from the small intestine onwards. When this happens, it can be said that it is a composite composition for eluting (or generating) the monosilicic acid.
  • the silicon fine particles of the composite composition of the first embodiment that can generate hydrogen and elute monosilicic acid by contact with a water-containing liquid are used in various formulations in the second and third embodiments described above.
  • the present invention is not limited to this aspect.
  • a formulation including a part of the formulation
  • its bulk substance or a part of its bulk substance
  • the composite composition can be used as a preparation (including a part of the preparation) or a drug substance (or a part of the drug substance) to be applied to the skin of animals, especially humans. can also be used.
  • This preparation is a preferred embodiment that can be adopted from the viewpoint that it can contribute to improving the metabolic ability, immunity, elasticity of blood vessels, strength of bones, and anti-inflammatory properties of animals, especially humans, or to the inactivation of cells. be.
  • a liquid, syrup, drink, drop, lozenge, or starch syrup containing the composite composition of the first embodiment can also be used to produce monosilicic acid along with a hydrogen generation reaction in the body of an animal, especially a human. This is a preferred embodiment that can be adopted because elution is promoted.
  • the composite composition of the present invention can be used for pharmaceuticals, quasi-drugs, foods, health foods, food additives, supplements, and feeds (for pets, livestock, and fisheries) that utilize hydrogen generation and monosilicic acid elution. It can be widely used in various industries that handle feedstuffs (including feedstuffs).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Birds (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cardiology (AREA)
  • Dermatology (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Rheumatology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Dispersion Chemistry (AREA)
  • Insects & Arthropods (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Obesity (AREA)
  • Pain & Pain Management (AREA)

Abstract

One composite composition according to the present invention contains silicon fine particles having an average particle size greater than 1 μm and less than 45 μm and/or aggregates of the silicon fine particles and comprises silicon oxide capable of eluting monosilicic acid into a water-containing solution while generating hydrogen continuously for 24 hours or more after the silicon fine particles come into contact with the water-containing solution.

Description

酸化シリコンを備えた複合組成物Composite composition with silicon oxide
 本発明は、酸化シリコンを備えた複合組成物、並びに、該複合組成物を含む医薬品、医薬部外品、食品、健康食品、食品添加物、サプリメント、及び飼料に関する。 The present invention relates to a composite composition comprising silicon oxide, and pharmaceuticals, quasi-drugs, foods, health foods, food additives, supplements, and feeds containing the composite composition.
 シリコン微細粒子は、水に接触させることによって水素を発生させることができるため、シリコン材料の中でも特異な物性を備えているといえる。従って、シリコン材料は、その活用用途が、半導体業界及びMEMS分野にとどまらず、食品分野、健康食品分野、及び医療分野にも展開される可能性を有している。 Silicon microparticles can generate hydrogen when they come into contact with water, so they can be said to have unique physical properties among silicon materials. Therefore, silicon materials have the potential to be used not only in the semiconductor industry and the MEMS field, but also in the food, health food, and medical fields.
 これまでに、水素が活性酸素、とりわけヒドロキシルラジカルと反応するという性質を利用して、動物の体内のヒドロキシルラジカルを消滅させるためのシリコン微細粒子等が提案されている(例えば、特許文献1)。 So far, silicon fine particles and the like have been proposed to eliminate hydroxyl radicals in the body of animals by utilizing the property that hydrogen reacts with active oxygen, especially hydroxyl radicals (for example, Patent Document 1).
特許第6467071号公報Patent No. 6467071 国際公開WO2018/037752号公報International Publication WO2018/037752 Publication 国際公開WO2018/037818号公報International Publication WO2018/037818 Publication 国際公開WO2018/037819号公報International Publication WO2018/037819 Publication 国際公開WO2019/211960号公報International Publication WO2019/211960 Publication 特開2020-183386号公報Japanese Patent Application Publication No. 2020-183386
 しかしながら、本発明者が検討と分析を重ねたところ、水に接触させることによって水素を発生させ得るシリコン微細粒子は、それらの表面の少なくとも一部が備える酸化シリコンの状態等によって、物性を変動させ得ることを知得した。従って、例えば動物(ヒトを含む。以下、同じ。)及び植物を含む種々の生体に対して所望の物性及び/又は機能を発現させるためには、シリコン微細粒子、並びにそれらが備える酸化シリコンに対して、適切且つ高度な制御を行うことが求められる。 However, after repeated study and analysis by the present inventor, it was found that silicon fine particles that can generate hydrogen when brought into contact with water have physical properties that vary depending on the state of silicon oxide on at least a portion of their surfaces. I learned how to get it. Therefore, in order to exhibit desired physical properties and/or functions for various living organisms including animals (including humans; the same shall apply hereinafter) and plants, silicon microparticles and the silicon oxide they contain must be Therefore, appropriate and sophisticated control is required.
 本発明は、上述の技術課題の少なくとも1つを解消し、表面の少なくとも一部に酸化シリコンを備えたシリコン微細粒子又はその凝集体を含む複合組成物における、該複合組成物の水素発生能の制御性の向上、及び/又は該水素発生能を高めること、並びに酸化シリコンからのモノケイ酸(代表的な化学式はSi(OH),「オルトケイ酸」とも呼ばれる。以下、同じ。)の体内(代表的には、腸内)での溶出に大きく貢献し得る。 The present invention solves at least one of the above-mentioned technical problems, and improves the hydrogen generation ability of a composite composition containing silicon fine particles or aggregates thereof having silicon oxide on at least a portion of the surface. Improving controllability and/or increasing the hydrogen generation ability, and monosilicic acid (typical chemical formula is Si(OH) 4 , also called "orthosilicic acid". The same applies hereinafter) from silicon oxide in the body ( Typically, it can greatly contribute to dissolution in the intestines).
 本発明者は、シリコン微細粒子及び/又はその凝集体(以下、総称して「シリコン微細粒子」ともいう。)が、水又は水含有液(以下、総称して「水含有液」ともいう。)と接触することによって水素が発生しているときの、該シリコン微細粒子の表面の少なくとも一部に形成される酸化シリコンの状態変化及び挙動について鋭意研究と分析を重ねた。 The present inventor has discovered that silicon fine particles and/or aggregates thereof (hereinafter also collectively referred to as "silicon fine particles") are water or a water-containing liquid (hereinafter also collectively referred to as "water-containing liquid"). ) We conducted extensive research and analysis on the state changes and behavior of silicon oxide formed on at least a portion of the surface of the silicon fine particles when hydrogen is generated by contact with the silicon oxide particles.
 その結果、本発明者は、ある処理によって形成されたシリコン微細粒子については、水素発生中の該シリコン微細粒子が備える酸化シリコンに特異な挙動が見られることを知得した。 As a result, the present inventors have learned that silicon fine particles formed by a certain treatment exhibit a peculiar behavior in the silicon oxide contained in the silicon fine particles during hydrogen generation.
 具体的には、該シリコン微細粒子から水素が発生している少なくとも一部の時間帯に、その水素発生過程において該シリコン微細粒子の表面に形成されると考えられる該酸化シリコンの一部がモノケイ酸という状態で水含有液の中に溶出する、という興味深い知見が得られた。加えて、本発明者は、該モノケイ酸の溶出濃度と、該シリコン微細粒子からの水素発生量とが相関していることを知得した。 Specifically, during at least a part of the time when hydrogen is being generated from the silicon fine particles, a portion of the silicon oxide that is thought to be formed on the surface of the silicon fine particles during the hydrogen generation process becomes monosilicon. An interesting finding was obtained that it elutes into water-containing liquids in the form of an acid. In addition, the present inventor has found that the elution concentration of the monosilicic acid is correlated with the amount of hydrogen generated from the silicon fine particles.
 さらに、研究を重ねることにより、本発明者は、動物、例えばヒトが該シリコン微細粒子を摂取する前の段階における、該シリコン微細粒子が備える酸化シリコン膜の密度が低い場合、次の(a)及び/又は(b)に示す作用又は効果が生じ得ることを知得した。
 (a)水素発生反応が促進される効果
 (b)水素発生反応の結果として形成される酸化シリコン膜の密度が低いために、該酸化シリコンが溶解することによってモノケイ酸を溶出し易くなる。
Furthermore, through repeated research, the present inventor found that if the density of the silicon oxide film provided on the silicon fine particles is low before the silicon fine particles are ingested by an animal, for example, a human, the following (a) and/or that the action or effect shown in (b) can occur.
(a) Effect of promoting hydrogen generation reaction (b) Since the density of the silicon oxide film formed as a result of the hydrogen generation reaction is low, monosilicic acid is easily eluted by dissolving the silicon oxide.
 このモノケイ酸は、動物、特にヒトの代謝能力、免疫力、血管の弾力性、骨の強度、及び消炎性の向上、老化又は酸化の抑制又は防止、あるいは細胞の不活化、肌(ヒトの美容用の器官としての肌を含む)、髪(ヒトの美容用の器官としての髪を含む)、爪(ヒトの美容用の器官としての爪を含む)の生成又は育成などに寄与し得る物質であり、大変有用である。従って、該シリコン微細粒子から水素発生をさせながら、該モノケイ酸の溶出を適切に制御することが、動物、特にヒトの健康回復又は増進を図るための、医薬、医薬部外品、食品、健康食品、食品添加物、サプリメント、及び飼料(ペット用、畜産用、及び水産用の各飼料を含む)への適用に貢献し得ると本発明者は考えた。 This monosilicic acid improves the metabolic ability, immunity, elasticity of blood vessels, bone strength, and anti-inflammatory properties of animals, especially humans, suppresses or prevents aging or oxidation, inactivates cells, and improves skin (human beauty). Substances that can contribute to the production or growth of hair (including skin as a human cosmetic organ), hair (including hair as a human cosmetic organ), and nails (including nails as a human cosmetic organ). Yes, it is very useful. Therefore, it is important to appropriately control the elution of monosilicic acid while generating hydrogen from the silicon microparticles in order to restore or improve the health of animals, especially humans. The present inventor thought that the present invention could contribute to application to foods, food additives, supplements, and feeds (including feeds for pets, livestock, and fisheries).
 上述の各知見を踏まえて、本発明者がさらに検討を重ねるとともに、研究と分析に取り組んだ結果、上述の処理によって形成されたシリコン微細粒子については、水素発生中に特有の酸化シリコンが形成されても、水素発生能を保持しつつ、該シリコン微細粒子自身を水含有液と反応し易くすることになることを本発明者は知得した。本発明は、上述の各視点に基づいて創出された。 Based on the above-mentioned findings, the present inventor has conducted further studies and conducted research and analysis. As a result, it has been found that the silicon fine particles formed by the above-mentioned process have a unique silicon oxide formed during hydrogen generation. The present inventor has found that even if the silicon fine particles themselves are easily reacted with a water-containing liquid while maintaining hydrogen generation ability. The present invention was created based on the above-mentioned viewpoints.
 本発明の1つの複合組成物は、平均の粒子径が1μm超45μm未満のシリコン微細粒子及び/又はその凝集体を含み、水含有液に該シリコン微細粒子が接触してから24時間以上、継続的に水素を発生させながら、モノケイ酸を前述の水含有液中に溶出可能な酸化シリコンを備える。 One composite composition of the present invention includes silicon fine particles and/or aggregates thereof having an average particle size of more than 1 μm and less than 45 μm, and continues for 24 hours or more after the silicon fine particles come into contact with a water-containing liquid. The method includes silicon oxide that can elute monosilicic acid into the water-containing liquid while automatically generating hydrogen.
 この複合組成物は、水含有液中にモノケイ酸を、水素を発生させながら、換言すれば、水素を発生させるとともに、該水含有液中に溶出させ得る酸化シリコンを備えている。そのため、例えば、該複合組成物が水含有液に接することによって水素を発生させるときに該酸化シリコンが形成されたとしても、モノケイ酸の溶出によって該シリコン微細粒子を該水含有液と反応し易くすることになる。なお、該モノケイ酸が、溶出した全てのモノケイ酸のうちの50%超(より狭義には60%以上、さらに狭義には70%以上、さらに狭義には80%以上、最も狭義には90%以上)がモノマーとしてのケイ酸であることは、特にヒトを含む動物(より広義には生物)の体内に取り込まれやすいことから好適な一態様である。 This composite composition includes monosilicic acid in a water-containing liquid and silicon oxide that can be eluted into the water-containing liquid while generating hydrogen, in other words, while generating hydrogen. Therefore, for example, even if the silicon oxide is formed when the composite composition comes into contact with a water-containing liquid to generate hydrogen, the silicon fine particles are likely to react with the water-containing liquid due to the elution of monosilicic acid. I will do it. It should be noted that the monosilicic acid accounts for more than 50% (more narrowly, 60% or more, still more narrowly, 70% or more, still more narrowly, 80% or more, and most narrowly, 90%) of all the monosilicic acids eluted. It is a preferable embodiment that the monomer (above) is silicic acid because it is easily taken into the bodies of animals (in a broader sense, living things), particularly humans.
 また、上述の発明をヒトの体内において担う役割として着目すれば、本発明の1つの複合組成物は、ヒトの小腸以降の消化管内液に接触したときに、前述のモノケイ酸を溶出(又は発生)させるための複合組成物といえる。 Furthermore, if we focus on the role that the above-mentioned invention plays in the human body, one composite composition of the present invention will elute (or generate ) can be said to be a composite composition for
 また、上述の発明において、より好適な複合組成物の一例は、平均の粒子径が1μm超45μm未満のシリコン微細粒子及び/又はその凝集体を含み、20mgの該シリコン微細粒子及び/又は該凝集体をpH値が8.3であって36℃の500mLの炭酸水素ナトリウム水溶液に浸漬及び撹拌させたときに、該シリコン微細粒子及び/又は該凝集体が該炭酸水素ナトリウム水溶液に接してから25時間後に5ppm以上のモノケイ酸が該炭酸水素ナトリウム水溶液中に溶出可能な酸化シリコンを、該シリコン微細粒子及び/又は該凝集体の表面が備える複合組成物である。 Further, in the above invention, an example of a more suitable composite composition includes silicon fine particles and/or aggregates thereof having an average particle diameter of more than 1 μm and less than 45 μm, and 20 mg of the silicon fine particles and/or the aggregates. When the aggregate was immersed and stirred in 500 mL of a sodium hydrogen carbonate aqueous solution with a pH value of 8.3 and a temperature of 36°C, 25 minutes after the silicon fine particles and/or the aggregate came into contact with the sodium hydrogen carbonate aqueous solution. The present invention is a composite composition in which the surface of the silicon fine particles and/or the aggregate contains silicon oxide from which 5 ppm or more of monosilicic acid can be eluted into the aqueous sodium bicarbonate solution after a period of time.
 また、上述の発明において、より好適な複合組成物の他の一例は、平均の粒子径が1nm以上500nm以下のシリコン微細粒子及び/又はその凝集体を含み、該複合組成物における20mgの該シリコン微細粒子及び/又は該凝集体をpH値が8.3であって36℃の500mLの炭酸水素ナトリウム水溶液に浸漬及び撹拌させたときに、該シリコン微細粒子及び/又は該凝集体が該炭酸水素ナトリウム水溶液に接してから2時間後に1ppm以上のモノケイ酸が該炭酸水素ナトリウム水溶液中に溶出可能な酸化シリコンを、前記シリコン微細粒子及び/又はその凝集体の表面が備える複合組成物である。 Further, in the above invention, another example of a more suitable composite composition includes silicon fine particles and/or aggregates thereof having an average particle size of 1 nm or more and 500 nm or less, and 20 mg of the silicon in the composite composition. When the fine particles and/or the aggregates are immersed and stirred in 500 mL of a sodium bicarbonate aqueous solution with a pH value of 8.3 and at 36°C, the silicon fine particles and/or the aggregates are dissolved in the hydrogen carbonate. This is a composite composition in which the surface of the silicon fine particles and/or their aggregates includes silicon oxide from which 1 ppm or more of monosilicic acid can be eluted into the sodium bicarbonate aqueous solution 2 hours after coming into contact with the sodium hydrogen carbonate aqueous solution.
 ところで、本願においては、酸化シリコン膜を含まないシリコン微細粒子の径を「粒子径」という。 Incidentally, in the present application, the diameter of silicon fine particles that do not include a silicon oxide film is referred to as "particle diameter."
 また、本願における「シリコン微細粒子」は、平均の粒子径(特に言及がない限り、重量平均粒子径を意味する。)がミクロンレベル以下、具体的には粒子径が1nm以上500μm以下のシリコン粒子を主たる粒子とする。より狭義には、本願における「シリコン微細粒子」の一例は、平均の粒子径がミクロンレベル、具体的には粒子径が1μm以上(又は1μm超)500μm以下(さらに狭義には、1μm以上(又は1μm超)100μm以下)を主たる粒子とし、他の一例は、ナノレベル、具体的には粒子径が、1nm以上500nm以下(さらに狭義には、1nm以上50nm以下)のシリコンナノ粒子を主たる粒子とする。 In addition, "silicon fine particles" in this application refer to silicon particles whose average particle diameter (unless otherwise specified, means weight average particle diameter) is below the micron level, specifically, whose particle diameter is 1 nm or more and 500 μm or less. is the main particle. In a more narrow sense, an example of "silicon fine particles" in the present application is one with an average particle size of micron level, specifically, a particle size of 1 μm or more (or more than 1 μm) and 500 μm or less (more narrowly, 1 μm or more (or In another example, the main particles are silicon nanoparticles with a particle diameter of 1 nm or more and 500 nm or less (more narrowly, 1 nm or more and 50 nm or less). do.
 また、本願において「シリコン微細粒子」は、各シリコン微細粒子が分散している状態のもののみならず、複数のシリコン微細粒子が凝集してμmオーダー(概ね、0.1μm以上(又は1μm超)500μm以下)の大きさの凝集体を構成した状態のものを含む。なお、「シリコン微細粒子」の上述の各数値範囲は一例に過ぎないため、その数値範囲は限定されない。「シリコン微細粒子」の用途、使用方法、必要とする機能等に応じて、適宜、粒子径及びシリコン微細粒子の凝集体の径が選定される。 In addition, in this application, "silicon fine particles" are not only those in which each silicon fine particle is dispersed, but also those in which multiple silicon fine particles are aggregated to the μm order (approximately 0.1 μm or more (or more than 1 μm)). This includes aggregates with a size of 500 μm or less. Note that the above-mentioned numerical ranges for "silicon fine particles" are merely examples, and therefore, the numerical ranges are not limited. The particle size and the diameter of the silicon fine particle aggregate are appropriately selected depending on the purpose of the "silicon fine particles", how they are used, the required functions, and the like.
 また、本願における「水含有液」とは、水を含む液体又は水溶液である。該「水含有液」は、動物(ヒトを含む)消化管内液を含む。なお、「消化管内液」は、胃液、膵液、及び膵液が分泌された後の小腸内液並びに大腸内液を含む。また、本願における「pH調整剤」は、pH値を6以上(好適には7超、より好適には7.4以上、より好適には7.4超、さらに好適には8.0以上)の中性域又はアルカリ性域に調整できる薬剤(以下、「アルカリ剤」)であれば、特に材料は限定されない。また、動物の皮膚上で使用することも含まれる。また、該複合組成物は、動物用に限定されず、植物にも適用され得る。アルカリ剤の例は、炭酸水素ナトリウム、炭酸ナトリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、炭酸水素カリウム、炭酸カリウム、その他、医薬用、医薬部外品用、食品用、健康食品用、食品添加物用、サプリメント用、及び飼料用(ペット用、畜産用、及び水産用の各飼料用途を含む)のpH調整剤が採用され得る。その中でも最も汎用品である炭酸水素ナトリウムは、食品添加物として広く用いられており、本発明が求めるpH値調整機能と、安全性、汎用性に優れるという複数の長所を兼ね揃えるためである。一方、工業用途においては、前述のpH調整剤に限定されず、広くpH調整剤が採用され得る。何れのpH調整剤においても、酸によって分解されない形態とすることは好適な一態様である。 Furthermore, the "water-containing liquid" in this application is a liquid or aqueous solution containing water. The "water-containing fluid" includes animal (including human) gastrointestinal fluid. Note that "digestive tract fluid" includes gastric juice, pancreatic juice, small intestinal fluid after pancreatic juice is secreted, and large intestinal fluid. In addition, the "pH adjuster" in the present application has a pH value of 6 or more (preferably more than 7, more preferably 7.4 or more, more preferably more than 7.4, even more preferably 8.0 or more). The material is not particularly limited as long as it is a chemical that can be adjusted to a neutral or alkaline range (hereinafter referred to as an "alkaline agent"). It also includes use on animal skin. Moreover, the composite composition is not limited to use for animals, but can also be applied to plants. Examples of alkaline agents include sodium hydrogen carbonate, sodium carbonate, sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium hydrogen carbonate, potassium carbonate, and others for pharmaceuticals, quasi-drugs, foods, health foods, etc. pH adjusters for food additives, supplements, and feeds (including feeds for pets, livestock, and fisheries) may be employed. Among them, sodium bicarbonate, which is the most general-purpose product, is widely used as a food additive, and this is because it has the multiple advantages required by the present invention, such as the pH value adjustment function, safety, and versatility. On the other hand, in industrial applications, it is not limited to the above-mentioned pH adjusters, and a wide range of pH adjusters can be employed. A preferred embodiment of any pH adjuster is that it is in a form that cannot be decomposed by acid.
 本発明の1つの複合組成物によれば、例えば、該複合組成物が水含有液に接することによって水素を発生させるときに該酸化シリコンが形成されたとしても、モノケイ酸の溶出によって該シリコン微細粒子が該水含有液と反応し易くすることになる。 According to one composite composition of the present invention, even if the silicon oxide is formed when hydrogen is generated by contacting the composite composition with a water-containing liquid, elution of monosilicic acid can cause the silicon fine particles to form. This will make it easier for the particles to react with the water-containing liquid.
第1の実施形態におけるシリコン微細粒子を、pH値が8.3であって、36℃の条件の水含有液中に浸漬させることによって起こる水素発生過程における、該水含有液中のモノケイ酸濃度(ppm)と水素発生反応時間の関係を示すグラフである。Monosilicic acid concentration in the water-containing liquid in the hydrogen generation process that occurs by immersing the silicon fine particles in the first embodiment in a water-containing liquid with a pH value of 8.3 and a temperature of 36°C. It is a graph showing the relationship between (ppm) and hydrogen generation reaction time. 第1の実施形態におけるシリコン微細粒子と水含有液との反応時間(hr:時間)と、該シリコン微細粒子から発生する水素量(mL/g)との関係を示すグラフである。It is a graph showing the relationship between the reaction time (hr: time) between silicon fine particles and a water-containing liquid and the amount of hydrogen generated from the silicon fine particles (mL/g) in the first embodiment. 第1の実施形態の変形例における、シリコン微細粒子を水含有液中に浸漬させることによる水素発生過程における、該水含有液中のモノケイ酸濃度(ppm)の時間変化を示すグラフである。2 is a graph showing a change over time in the monosilicic acid concentration (ppm) in a water-containing liquid in a hydrogen generation process by immersing silicon fine particles in a water-containing liquid in a modification of the first embodiment. pH8.3で36℃の水溶液にシリコン製剤を浸漬することによって水素発生反応が生じたときの、該水溶液中のモノケイ酸の濃度と水素発生反応時間との関係を示すグラフである。It is a graph showing the relationship between the concentration of monosilicic acid in an aqueous solution and the hydrogen generation reaction time when a hydrogen generation reaction occurs by immersing a silicone preparation in an aqueous solution at pH 8.3 and at 36°C.
 本発明の実施形態を、添付する図面を参照して詳細に述べる。尚、全図にわたり、本実施形態の要素は必ずしもスケール通りに示されていない。 Embodiments of the present invention will be described in detail with reference to the accompanying drawings. It should be noted that elements of this embodiment are not necessarily shown to scale throughout the figures.
[1]複合組成物及びその製造方法
<第1の実施形態>
 本実施形態の複合組成物は、pH値が7超(好適には7.4以上、より好適には7.4超、さらに好適には8.0以上)の水含有液に接触したときに、モノケイ酸をその水含有液中に溶出可能な酸化シリコンを備えた、水素発生能を有するシリコン微細粒子及び/又はその凝集体からなる複合組成物である。本実施形態の複合組成物は、原料となるシリコンを粉砕する粉砕工程における処理条件を従来技術のそれと異ならせることによって得ることができる。以下に、該複合組成物の製造方法について説明する。
[1] Composite composition and method for producing the same <First embodiment>
When the composite composition of the present embodiment comes into contact with a water-containing liquid having a pH value of more than 7 (preferably 7.4 or more, more preferably 7.4 or more, even more preferably 8.0 or more), , a composite composition comprising silicon fine particles and/or aggregates thereof having hydrogen generating ability and containing silicon oxide capable of dissolving monosilicic acid into its water-containing liquid. The composite composition of this embodiment can be obtained by differentiating the processing conditions in the pulverizing step of pulverizing the raw material silicon from those of the prior art. The method for producing the composite composition will be explained below.
[複合組成物の製造方法]
 本実施形態の複合組成物の原料には、例えば市販の高純度シリコン粒子粉末(株式会社大阪チタニウムテクノロジーズ製,粒度分布<φ300μm(ただし、代表的には、結晶粒径が1μm超のシリコン粒子粉末,純度99.99%,i型シリコン))が用いられる。
[Method for manufacturing composite composition]
The raw materials for the composite composition of this embodiment include, for example, commercially available high-purity silicon particle powder (manufactured by Osaka Titanium Technologies Co., Ltd., particle size distribution <φ300 μm (however, silicon particle powder with a crystal grain size of more than 1 μm is typically used). , purity 99.99%, i-type silicon)) is used.
 ここで、本実施形態においては、後述する粉砕工程における処理効果を確度高く実現する観点から、粉砕工程の前処理として、粉砕工程に投入するためのシリコン粒子粉末を限定するための分級工程が行われる。 Here, in this embodiment, from the viewpoint of realizing the processing effect in the pulverization process described later with high accuracy, a classification process is performed as a pretreatment for the pulverization process to limit the silicon particle powder to be input into the pulverization process. be exposed.
<分級工程>
 分級工程の例の一つにおいては、篩を用いて、粒子径が45μm以上の該シリコン粒子粉末の、全ての該シリコン粒子粉末に対する割合が、1質量%以下(より好適には0.5質量%以下、さらに好適には0.1質量%以下、さらに好適には0.05質量%以下、さらに好適には0.02質量%以下)となるように、該分級工程が行われる。その結果、本実施形態においては、45μm未満の粒子径を有する該シリコン微細粒子が得られるとともに、45μm以上の粒子径の該シリコン微細粒子はほぼ除去される。
<Classification process>
In one example of the classification process, using a sieve, the ratio of the silicon particles having a particle size of 45 μm or more to all the silicon particles is 1% by mass or less (more preferably 0.5% by mass). % or less, more preferably 0.1% by mass or less, even more preferably 0.05% by mass or less, even more preferably 0.02% by mass or less). As a result, in this embodiment, the silicon fine particles having a particle size of less than 45 μm are obtained, and the silicon fine particles having a particle size of 45 μm or more are almost completely removed.
 なお、上述の第1分級工程に加えて、又は該第1分級工程に代えて、45μm以上の粒子径の該シリコン微細粒子及び1μm未満の粒子径の該シリコン微細粒子をほぼ除去する気流分流法による分級工程を行うことも採用され得る。 Additionally, in addition to or in place of the first classification step described above, an air flow diversion method that substantially removes the silicon fine particles with a particle size of 45 μm or more and the silicon fine particles with a particle size of less than 1 μm is used. It may also be possible to adopt a classification step by.
<粉砕工程>
 次に、分級された該シリコン粒子粉末を、生理学的に許容可能な液体(本実施形態においては、純度99.5wt%のエタノール溶液)(以下、総称して「液体」という。)中におけるビーズミル法を用いた粉砕処理によって微細化する、粉砕工程が行われる。
<Crushing process>
Next, the classified silicon particle powder is bead milled in a physiologically acceptable liquid (in this embodiment, an ethanol solution with a purity of 99.5 wt%) (hereinafter collectively referred to as "liquid"). A pulverization process is performed in which the material is made fine by a pulverization process using a method.
 本実施形態においては、少なくとも以下の(1)及び(2)の観点から、該粉砕工程中の該液体、該ビーズミル及び粉砕対象となるシリコン粒子粉末を含むスラリーの温度が調整される。
(1)最終的に製造されるシリコン微細粒子及び/又はその凝集体(以下、「発明を実施するための形態」において、総称して「シリコン微細粒子」という。)が備える酸化シリコンから、モノケイ酸を上述の水含有液中に溶出させ易いようにする観点
(2)そのような酸化シリコンが形成されることによって最終的にシリコン微細粒子自身を該水含有液と反応し易くすることになる観点
In this embodiment, the temperature of the liquid during the pulverization step, the bead mill, and the slurry containing the silicon particle powder to be pulverized is adjusted at least from the following points (1) and (2).
(1) From the silicon oxide included in the silicon fine particles and/or their aggregates (hereinafter collectively referred to as "silicon fine particles" in the "Detailed Description of the Invention") that are finally produced, (2) The formation of such silicon oxide makes it easier for the silicon fine particles themselves to react with the water-containing liquid. point of view
 一般的に、粉砕工程の際には、該液体及び該ビーズミルの撹拌による該シリコン粒子粉末及び該シリコン微細粒子の粉砕及び/又は分散を繰り返す中で、上述の温度が上昇することになる。そして、この温度上昇が、該粉砕工程によって形成されたシリコン微細粒子の表面に影響を与え、水素発生時において比較的緻密な酸化シリコンの形成を促し得ると考えられる。なお、粉砕工程によって形成されたシリコン微細粒子が備える本実施形態の酸化シリコンは、半導体技術において用いられるシリコンの熱酸化膜と比べると格段に「緻密性の極めて低い」状態である。しかしながら、その「緻密性の極めて低い」、換言すれば「疎な」酸化シリコンにおいても、さらに確度高く、該酸化シリコンからのモノケイ酸の溶出し易さを実現するためには、該粉砕工程における最高到達温度を細かく制御することが有用であることが、本発明者の研究と分析によって明らかとなった。 Generally, during the pulverization step, the above-mentioned temperature increases as the silicon particle powder and the silicon fine particles are repeatedly pulverized and/or dispersed by stirring the liquid and the bead mill. It is thought that this temperature increase affects the surface of the silicon fine particles formed by the pulverization process, and can promote the formation of relatively dense silicon oxide during hydrogen generation. Note that the silicon oxide of this embodiment included in the silicon fine particles formed by the pulverization process is in a state of "extremely low density" compared to the thermal oxide film of silicon used in semiconductor technology. However, even with silicon oxide that is "very low in density", in other words, "loose", in order to achieve even higher accuracy and ease of elution of monosilicic acid from the silicon oxide, it is necessary to The inventor's research and analysis have revealed that it is useful to precisely control the maximum temperature reached.
 そこで、本発明者は、該粉砕工程によって形成されるシリコン微細粒子の表面に、水素発生時において、いわば緻密な酸化シリコンが形成されないように上述の温度を制御する工夫を行った。具体的には、該粉砕工程中の上述の温度が、36℃未満(好適には、35℃未満、より好適には30℃未満、更に好適には25℃以下(より狭義には、25℃未満、最も好適には20℃未満)となるように制御される。従って、例えば、該温度が前述の各温度に到る直前の温度に達すると、自動的に粉砕処理を停止するための自動停止装置が作動する制御部を備えた粉砕装置が採用され得る。 Therefore, the present inventor devised a method to control the above-mentioned temperature so that dense silicon oxide, so to speak, would not be formed on the surface of the silicon fine particles formed by the pulverization process during hydrogen generation. Specifically, the above-mentioned temperature during the pulverization step is less than 36°C (preferably less than 35°C, more preferably less than 30°C, even more preferably 25°C or less (more narrowly, 25°C). (most preferably below 20°C).Thus, for example, an automatic control is provided to automatically stop the grinding process when the temperature reaches a temperature just below each of the above-mentioned temperatures. A grinding device may be employed that is equipped with a control that activates a stop device.
 なお、本実施形態においては、上述の液体はエタノール溶液に限定されないが、動物の健康を害さない液体、すなわち、生理学的に許容可能な液体が採用されることが好ましい。また、粉砕工程によって形成される該シリコン微細粒子の形は限定されない。例えば、球形、楕円形、円盤形、不定形、多角形、又は円柱形は、該シリコン微細粒子の一態様である。 Note that in this embodiment, the above-mentioned liquid is not limited to an ethanol solution, but it is preferable to use a liquid that does not harm the health of animals, that is, a physiologically acceptable liquid. Further, the shape of the silicon fine particles formed by the pulverization process is not limited. For example, a spherical shape, an elliptical shape, a disk shape, an amorphous shape, a polygonal shape, or a cylindrical shape is one embodiment of the silicon fine particles.
 具体的な粉砕工程の例としては、ビーズミル装置(アイメックス株式会社製:RMH型横型連続式レディーミル)を用い、上述の分級工程によって分級されたシリコン粒子粉末を、99wt%以上(より好適には、99.5wt%)の、エタノール、イソプロピルアルコール(IPA)、又はメタノール等のアルコール類(但し、本実施形態ではエタノール)中に分散させ、φ0.5mmのジルコニア製ビーズ(容量2900ml)を加えて、大気中、4時間、回転数2500rpmで粉砕を行って微細化する、粉砕工程が行われる。なお、該混合溶液に含まれるアルコール類として、エタノール(例えば、99.5wt%)が採用されることは、最終的に製造されるシリコン微細粒子及び該シリコン微細粒子を含む複合組成物の安全性(例えば、動物に対する安全性)の確度を高める観点から好適な一態様である。 As a specific example of the pulverization process, silicon particle powder classified by the above-mentioned classification process is crushed to 99wt% or more (more preferably , 99.5 wt%) in an alcohol such as ethanol, isopropyl alcohol (IPA), or methanol (however, ethanol in this embodiment), and add zirconia beads (2900 ml in volume) with a diameter of 0.5 mm. A pulverization step is carried out in which the material is pulverized in the atmosphere for 4 hours at a rotational speed of 2500 rpm. Note that the use of ethanol (for example, 99.5 wt%) as the alcohol contained in the mixed solution is important for the safety of the ultimately produced silicon fine particles and the composite composition containing the silicon fine particles. This is a preferable embodiment from the viewpoint of increasing the accuracy (for example, safety for animals).
 なお、上述の粉砕工程の他の一例として、例えば、ビーズミル装置による粉砕時間が1時間である場合、平均の粒子径が100nm以下のシリコンナノ粒子、該シリコンナノ粒子を含む40nm~0.5μmの大きさのシリコン微細粒子、及び/又は該シリコンナノ粒子及び該シリコンナノ粒子を含むシリコン微細粒子の凝集体が確認された。 In addition, as another example of the above-mentioned pulverization process, for example, when the pulverization time using a bead mill device is 1 hour, silicon nanoparticles with an average particle size of 100 nm or less, and silicon nanoparticles containing the silicon nanoparticles of 40 nm to 0.5 μm are used. sized silicon fine particles, and/or silicon nanoparticles and aggregates of silicon fine particles containing the silicon nanoparticles were confirmed.
 その後、シリコン微細粒子(シリコンナノ粒子を含む)を含む、ビーズミル粉砕装置中でビーズより分離された該混合溶液を、減圧蒸発装置を用いて40℃に加熱し、該混合溶液を蒸発させることにより、乾燥したシリコン微細粒子(シリコンナノ粒子を含む)を得ることができる。乾燥した該シリコン微細粒子は、真空容器内又は窒素置換された容器内に入れて保管され得る。なお、粉砕されて得られたシリコンナノ粒子の分離方法及び乾燥方法は、本実施形態において開示された方法に限定されない。例えば、他の粒子の生産の際に採用されている公知の分離方法及び/又は乾燥方法も、採用され得る。 Thereafter, the mixed solution containing silicon fine particles (including silicon nanoparticles) separated from the beads in the bead mill grinding device is heated to 40° C. using a vacuum evaporator to evaporate the mixed solution. , dry silicon fine particles (including silicon nanoparticles) can be obtained. The dried silicon fine particles can be stored in a vacuum container or a nitrogen-substituted container. Note that the method for separating and drying the silicon nanoparticles obtained by pulverization is not limited to the method disclosed in this embodiment. For example, known separation and/or drying methods employed in the production of other particles may also be employed.
 上記方法により得たシリコン微細粒子(シリコンナノ粒子を含む)の一例は、主として平均の粒子径が1nm以上500nm以下のシリコンナノ粒子を主成分とするものである。なお、前述の結果は、一例としての粉砕工程等による結果に過ぎないため、本実施形態が前述の数値に限定されるものではない。 An example of the silicon fine particles (including silicon nanoparticles) obtained by the above method is mainly composed of silicon nanoparticles with an average particle diameter of 1 nm or more and 500 nm or less. Note that the above-mentioned results are only the results of the pulverization process and the like as an example, so the present embodiment is not limited to the above-mentioned numerical values.
 上述の粉砕工程を経ることによって製造されるシリコン微細粒子を含む複合組成物によれば、下記の(a)及び/又は(b)の特徴を備えた複合組成物が実現され得る。
 (a)シリコン微細粒子が備える酸化シリコンから、モノケイ酸を水含有液中に溶出させ得る。
 (b)水含有液に接触させることによって水素発生させるとともに、最終的にシリコン微細粒子を該水含有液と反応し易くすることになる。
According to a composite composition containing silicon fine particles manufactured through the above-described pulverization process, a composite composition having the following characteristics (a) and/or (b) can be realized.
(a) Monosilicic acid can be eluted from silicon oxide contained in silicon fine particles into a water-containing liquid.
(b) Hydrogen is generated by contacting with a water-containing liquid, and ultimately the silicon fine particles are made easier to react with the water-containing liquid.
 なお、本実施形態のモノケイ酸が、溶出した全てのモノケイ酸のうちの50%超(より狭義には60%以上、さらに狭義には70%以上、さらに狭義には80%以上、最も狭義には90%以上)が、ポリマー又はオリゴマーではなく、モノマーとしてのケイ酸であることは、特にヒトを含む動物(より広義には生物)の体内に取り込まれやすいことから好適な一態様である。 It should be noted that the monosilicic acid of this embodiment accounts for more than 50% (in a narrower sense, 60% or more, still more narrowly, 70% or more, still more narrowly, 80% or more, in the narrowest sense) of all the monosilicic acids eluted. 90% or more) is silicic acid as a monomer rather than a polymer or oligomer, which is a preferred embodiment because it is easily taken into the bodies of animals (more broadly speaking, living organisms), including humans.
<第1の実施形態の変形例>
 本変形例においては、第1の実施形態の複合組成物の製造方法における高純度シリコン粒子粉末を、ジェットミル法による粉砕工程を用いて作製した高純度シリコン粒子粉末(粒度分布<φ100μm(ただし、代表的には、結晶粒径が1μm超のシリコン粒子粉末,純度99.99%,i型シリコン))に変更した点を除き、第1の実施形態の該製造方法と同じである。なお、本変形例においては、この高純度シリコン粒子粉末を、第1の実施形態の分級工程によって分級しているため、第1の実施形態における粉砕工程は行われない。
<Modification of the first embodiment>
In this modification, high-purity silicon particle powder (particle size distribution <φ100 μm (particle size distribution < φ100 μm (however, The manufacturing method is the same as that of the first embodiment except that silicon particles (typically, a crystal grain size of more than 1 μm, purity 99.99%, i-type silicon) are used. In addition, in this modification, since this high-purity silicon particle powder is classified by the classification process of 1st Embodiment, the pulverization process of 1st Embodiment is not performed.
 具体的な粉砕工程の例としては、公知のジェットミル装置を用い、約25℃の温度下で、1分以下の所定時間、粉砕を行って微細化する、粉砕工程が行われる。なお、本変形例の粉砕工程においても、該粉砕工程中の温度が、36℃未満(好適には、35℃未満、より好適には30℃未満、更に好適には25℃以下(より狭義には、25℃未満)、最も好適には20℃未満)となるように制御され得る。 As a specific example of the pulverizing step, a pulverizing step is performed in which the material is pulverized using a known jet mill device at a temperature of about 25° C. for a predetermined time of 1 minute or less. In addition, also in the pulverizing process of this modification, the temperature during the pulverizing process is less than 36°C (preferably less than 35°C, more preferably less than 30°C, still more preferably 25°C or less (more narrowly defined). (below 25°C), most preferably below 20°C).
 上述の粉砕工程及び分級工程により、平均の粒子径が1μm以上45μm未満のシリコン微細粒子、及び/又は該シリコン微細粒子の凝集体が確認された。 Through the above-mentioned pulverization and classification steps, fine silicon particles with an average particle size of 1 μm or more and less than 45 μm and/or aggregates of the fine silicon particles were confirmed.
<実施例>
 以下、第1の実施形態をより詳細に説明するために、実施例を挙げて説明するが、第1の実施形態及びその変形例はこれらの例によって限定されるものではない。
<Example>
Examples will be described below to explain the first embodiment in more detail, but the first embodiment and its modifications are not limited to these examples.
[実施例1]
 本発明者は、第1の実施形態における粉砕工程中の温度が25℃である該実施形態の製造方法に基づいて製造された、該実施形態の複合組成物を構成する、平均の粒子径が1nm以上500nm以下のシリコン微細粒子を採用した。本発明者は、pH調整剤として炭酸水素ナトリウムを用いてpH値を8.3に調整した36℃の水含有液(この例では、炭酸水素ナトリウム水溶液)に、該シリコン微細粒子を浸漬し撹拌したときの、該水含有液中に溶出したモノケイ酸の濃度との時間変化を調べた。なお、本実施例における撹拌条件は、次のとおりである。
 (a)ビーカーの大きさ:直径108mm、高さ158mm
 (b)スターラーの羽根の大きさ:12mm
 (c)スターラーの回転速度:960rpm
 (d)回転時間:水素が発生している間、継続して回転
[Example 1]
The present inventor has discovered that the average particle size of the composite composition of the first embodiment, which is manufactured based on the manufacturing method of the first embodiment in which the temperature during the pulverization step is 25°C. Silicon fine particles with a size of 1 nm or more and 500 nm or less were used. The present inventor immersed the silicon fine particles in a 36°C water-containing solution (in this example, a sodium hydrogen carbonate aqueous solution) whose pH value was adjusted to 8.3 using sodium hydrogen carbonate as a pH adjuster, and stirred the silicon particles. The time change in the concentration of monosilicic acid eluted into the water-containing liquid was investigated. Note that the stirring conditions in this example are as follows.
(a) Beaker size: diameter 108mm, height 158mm
(b) Size of stirrer blade: 12mm
(c) Stirrer rotation speed: 960 rpm
(d) Rotation time: Continuous rotation while hydrogen is generated
 具体的には、モノケイ酸濃度の測定をStandard methods for the Examination of Water and Wastewater,18th Edition 1992, 4500-Si E, heteropoly blue methodに従って、次の(1)~(4)の手順で行った。
 (1)該水溶液を0.22μmのフィルターを用いてシリコン微細粒子を除去して得られた水溶液を、超純水で10倍に希釈する。
 (2)その後、その水溶液5mLをピペットを用いてテストチューブに入れ、この水溶液の中に、Si-1を3滴落とし撹拌する。
 (3)その後、Si-2を3滴落とし撹拌する。
 (4)その後、Si-3を0.50mL投入して撹拌する。
 上述の手順に従って作製した水溶液は青色を呈し、Millipore Prove 600 UV/Vis Spectrophotometerを用いて、吸光度測定による定量分析を行った。
Specifically, the measurement of monosilicic acid concentration was performed according to Standard methods for the Examination of Water and Wastewater, 18th Edition 1992, 4500-Si E, heteropoly blue me. I followed the steps (1) to (4) below according to the thod. .
(1) The aqueous solution obtained by removing silicon fine particles from the aqueous solution using a 0.22 μm filter is diluted 10 times with ultrapure water.
(2) Then, use a pipette to put 5 mL of the aqueous solution into a test tube, and drop 3 drops of Si-1 into the aqueous solution and stir.
(3) Then, add 3 drops of Si-2 and stir.
(4) Then, add 0.50 mL of Si-3 and stir.
The aqueous solution prepared according to the above procedure exhibited a blue color, and was quantitatively analyzed by absorbance measurement using a Millipore Prove 600 UV/Vis Spectrophotometer.
 図1は、該シリコン微細粒子20mgを該水含有液500mL中に浸漬させることによる水素発生過程における、該水含有液中のモノケイ酸濃度(ppm)の時間変化を示すグラフである。また、図2は、該シリコン微細粒子200mgを該水含有液200mL中に浸漬させた際に発生する水素量(mL/g)と反応時間(hr:時間)との関係を示すグラフである。なお、図1中の実線は、モノケイ酸濃度の実測値を直線で結んだ結果を示している。また、図1中の点線は、モノケイ酸の濃度が、シリコン微細粒子と炭酸水素ナトリウム水溶液との接触後に経過した時間に比例して上昇したと仮定した場合の、モノケイ酸の濃度の値を結んだ結果を示している。 FIG. 1 is a graph showing changes over time in the monosilicic acid concentration (ppm) in the water-containing liquid during the hydrogen generation process by immersing 20 mg of the silicon fine particles in 500 mL of the water-containing liquid. Moreover, FIG. 2 is a graph showing the relationship between the amount of hydrogen (mL/g) generated when 200 mg of the silicon fine particles are immersed in 200 mL of the water-containing liquid and the reaction time (hr: time). In addition, the solid line in FIG. 1 shows the result of connecting the measured values of monosilicic acid concentration with a straight line. In addition, the dotted line in Figure 1 connects the concentration of monosilicic acid, assuming that the concentration of monosilicic acid increases in proportion to the time that has passed after contact between the silicon fine particles and the sodium bicarbonate aqueous solution. shows the results.
 図1に示すように、該シリコン微細粒子を該水含有液中に浸漬させてから2時間後に、1ppm以上(より狭義には、5ppm以上)のモノケイ酸が該水含有液中に溶出していることが確認された。また、該シリコン微細粒子が該水含有液に接触してから5時間後には、3ppm以上(より狭義には、15ppm以上)のモノケイ酸が該水含有液中に溶出していることが確認された。従って、本実施例のシリコン微細粒子が備える酸化シリコンは、該水含有液中に前述の各濃度のモノケイ酸を溶出させ得る酸化シリコンであることが確認された。 As shown in FIG. 1, two hours after the silicon fine particles were immersed in the water-containing liquid, 1 ppm or more (more narrowly, 5 ppm or more) of monosilicic acid was eluted into the water-containing liquid. It was confirmed that there is. Furthermore, it was confirmed that 3 ppm or more (more narrowly speaking, 15 ppm or more) of monosilicic acid was eluted into the water-containing liquid 5 hours after the silicon fine particles came into contact with the water-containing liquid. Ta. Therefore, it was confirmed that the silicon oxide included in the silicon fine particles of this example is a silicon oxide that can elute monosilicic acid at the above-mentioned concentrations into the water-containing liquid.
 また、大変興味深いことに、モノケイ酸の濃度は、シリコン微細粒子と炭酸水素ナトリウム水溶液との接触から少なくとも一定時間内は、モノケイ酸の濃度が該接触後に経過した時間に略比例して増加することが確認された。具体的には、モノケイ酸の濃度は、該接触後に3時間以下(より広義には5時間以下、最も広義には6時間以下)、モノケイ酸の濃度が該接触後に経過した時間に略比例して増加することが確認された。 Also, very interestingly, the concentration of monosilicic acid increases at least within a certain period of time after the contact between the silicon fine particles and the aqueous sodium bicarbonate solution, and the concentration of monosilicic acid increases approximately in proportion to the time that has passed after the contact. was confirmed. Specifically, the concentration of monosilicic acid is 3 hours or less (in a broader sense, 5 hours or less, in the broadest sense, 6 hours or less) after the contact, and the concentration of monosilicic acid is approximately proportional to the time that has passed after the contact. It was confirmed that there was an increase in
 一方、図2に示すように、シリコン微細粒子と該水含有液とが接触してから少なくとも20時間が経過するまでは、該シリコン微細粒子と該水含有液との反応時間の経過とともに、該シリコン微細粒子から水素が継続的に発生していること、及びその発生する水素量が反応時間の経過とともに増加していることが確認される。なお、水素発生反応時間が6時間以下においては、発生する水素量が反応時間に略比例することは特筆に値する。図2に示す結果は、モノケイ酸が水素発生に伴い溶出することを示唆している。 On the other hand, as shown in FIG. 2, until at least 20 hours have passed since the contact between the silicon fine particles and the water-containing liquid, as the reaction time between the silicon fine particles and the water-containing liquid passes, It is confirmed that hydrogen is continuously generated from the silicon fine particles and that the amount of hydrogen generated increases as the reaction time progresses. It is noteworthy that when the hydrogen generation reaction time is 6 hours or less, the amount of hydrogen generated is approximately proportional to the reaction time. The results shown in FIG. 2 suggest that monosilicic acid is eluted with hydrogen generation.
 従って、第1の実施形態における粉砕工程の条件が採用されることにより、該シリコン微細粒子から水素を発生させながら、該モノケイ酸の溶出が適切に制御され得ることが確認されたため、第1の実施形態の複合組成物は、動物、特にヒトの健康回復又は増進を図るための、医薬、医薬部外品、食品、健康食品、食品添加物、サプリメント、及び飼料(ペット用、畜産用、及び水産用の各飼料を含む)への適用に貢献し得ることが分かった。 Therefore, it was confirmed that by adopting the conditions of the pulverization step in the first embodiment, the elution of the monosilicic acid could be appropriately controlled while generating hydrogen from the silicon fine particles. The composite composition of the embodiment can be used as a medicine, quasi-drug, food, health food, food additive, supplement, and feed (for pets, livestock, and It was found that this method can contribute to the application of various feeds for fisheries.
 また、本発明者は、第1の実施形態に基づいて製造されたシリコン微細粒子を、pH調整剤として炭酸水素ナトリウムを用いてpH値を8.3に調整した36℃の水含有液(この例では、炭酸水素ナトリウム水溶液)に接触させたときの、該シリコン微細粒子の溶解率、換言すれば該シリコン微細粒子の消耗率は、図1のグラフを微分することによって得られる。 Further, the present inventor has prepared silicon fine particles manufactured based on the first embodiment in a water-containing liquid at 36° C. whose pH value is adjusted to 8.3 using sodium hydrogen carbonate as a pH adjusting agent (this In this example, the dissolution rate of the silicon fine particles, in other words, the consumption rate of the silicon fine particles when brought into contact with an aqueous sodium bicarbonate solution, can be obtained by differentiating the graph of FIG.
[実施例2]
 本発明者は、第1の実施形態と同様に、本変形例における粉砕工程中の温度が25℃である該実施形態の製造方法に基づいて製造された、平均の粒子径が1μm超45μm未満(より詳細には、1.9μm以上44.9μm以下であり、10μm超45μm未満のシリコン微細粒子の全体に占める存在比率が50%超)のシリコン微細粒子を採用した。本発明者は、pH調整剤として炭酸水素ナトリウムを用いてpH値を8.3に調整した36℃の水含有液(この例では、炭酸水素ナトリウム水溶液)に、該シリコン微細粒子を接触させたときの、該水含有液中に溶出したモノケイ酸の濃度との時間変化を調べた。なお、本実施例の複合組成物における撹拌条件及びモノケイ酸濃度の測定方法は、実施例1と同じである。
[Example 2]
Similar to the first embodiment, the present inventor has discovered that the average particle size is more than 1 μm and less than 45 μm, which is produced based on the manufacturing method of the embodiment in which the temperature during the pulverization step in this modification is 25° C. (More specifically, silicon fine particles having a size of 1.9 μm or more and 44.9 μm or less, with an abundance ratio of more than 50% of the total silicon fine particles having a size of more than 10 μm and less than 45 μm) were used. The present inventor brought the silicon fine particles into contact with a 36°C water-containing solution (in this example, a sodium hydrogen carbonate aqueous solution) whose pH value was adjusted to 8.3 using sodium hydrogen carbonate as a pH adjuster. The concentration of monosilicic acid eluted into the water-containing liquid was examined over time. Note that the stirring conditions and the method for measuring the monosilicic acid concentration in the composite composition of this example are the same as in Example 1.
 図3は、該シリコン微細粒子20mgを該水含有液500mL中に浸漬させることによる水素発生過程における、該水含有液中のモノケイ酸濃度(ppm)の時間変化を示すグラフである。なお、図3中の実線は、モノケイ酸濃度の実測値を直線で結んだ結果を示している。 FIG. 3 is a graph showing changes over time in the monosilicic acid concentration (ppm) in the water-containing liquid during the hydrogen generation process by immersing 20 mg of the silicon fine particles in 500 mL of the water-containing liquid. In addition, the solid line in FIG. 3 shows the result of connecting the measured values of monosilicic acid concentration with a straight line.
 図3に示すように、モノケイ酸濃度(ppm)は、本実施例の複合組成物における該シリコン微細粒子が、該水含有液に接触してから20時間以上(狭義には24時間以上、より狭義には25時間以上、さらに狭義には27時間以上)が経過しても、継続的に上昇していることが確認された。具体的には、25時間経過したときに5ppm以上(より狭義には、5.5ppm以上)のモノケイ酸のモノケイ酸が該水含有液中に溶出していることが確認された。また、少なくとも27時間経過したときに6ppm以上のモノケイ酸が該水含有液中に溶出していることが確認された。なお、図示していないが、本実施例においては、実施例1のときと同様に、該水含有液に該シリコン微細粒子が接触してから27時間以上、水素が発生し続けていることが確認された。 As shown in FIG. 3, the monosilicic acid concentration (ppm) was determined for 20 hours or more (in a narrow sense, 24 hours or more, more Even after 25 hours or more in a narrow sense, and 27 hours or more in a narrower sense), it was confirmed that the temperature continued to rise. Specifically, it was confirmed that 5 ppm or more (in a more narrow sense, 5.5 ppm or more) of monosilicic acid was eluted into the water-containing liquid after 25 hours had passed. Furthermore, it was confirmed that 6 ppm or more of monosilicic acid was eluted into the water-containing liquid after at least 27 hours had elapsed. Although not shown, in this example, as in Example 1, hydrogen continues to be generated for 27 hours or more after the silicon fine particles come into contact with the water-containing liquid. confirmed.
 したがって、本実施例の複合組成物は、少なくとも、平均の粒子径が1μm以上(狭義には、1μm超)のシリコン微細粒子を含むことにより、該シリコン微細粒子の表面が、長時間(例えば、20時間以上)、継続的に水素を発生させながら、換言すれば、水素を発生させるとともに、モノケイ酸を該水含有液中に溶出可能な酸化シリコンを備えていることが明らかとなった。換言すれば、少なくとも上述の条件下であれば、長時間(例えば、20時間以上)の継続的な水素の発生とともに、該水含有液へのモノケイ酸の溶出が持続することが明らかとなった。 Therefore, the composite composition of this example contains at least silicon fine particles having an average particle diameter of 1 μm or more (more than 1 μm in a narrow sense), so that the surface of the silicon fine particles can be maintained for a long time (for example, It has become clear that the liquid contains silicon oxide that can elute monosilicic acid into the water-containing liquid while continuously generating hydrogen (in other words, generating hydrogen and eluting monosilicic acid into the water-containing liquid). In other words, it has become clear that, at least under the above conditions, the elution of monosilicic acid into the water-containing liquid continues with the continuous generation of hydrogen over a long period of time (for example, 20 hours or more). .
 例えば、動物(ヒトを含む)の体内の、pH値を6以上の水含有液が存在する環境下においては、該水含有液とシリコン微細粒子とが接触し、酸化シリコンが該シリコン微細粒子の表面に形成されたとしても、モノケイ酸の溶出によって該シリコン微細粒子が長時間、継続して該水含有液と反応し、水素を継続的に発生させ続けることができるという、特筆すべき効果が奏され得る。 For example, in an environment where there is a water-containing liquid with a pH value of 6 or more in the body of an animal (including humans), the water-containing liquid and silicon fine particles come into contact, and silicon oxide forms on the silicon fine particles. Even if formed on the surface, the silicon fine particles can continue to react with the water-containing liquid for a long time due to the elution of monosilicic acid, and hydrogen can be continuously generated, which is a noteworthy effect. It can be played.
<第2の実施形態>
 ところで、第1の実施形態の複合組成物は、例えば、動物、特に、ヒトの医薬、医薬部外品、食品、健康食品、食品添加物、サプリメント、及び飼料(ペット用、畜産用、及び水産用の各飼料を含む)としても利用し得る。例えば、第1の実施形態のシリコン微細粒子を公知の打錠法を用いて打錠することにより、丸剤又は円柱状の錠剤を得ることができる。丸剤又は錠剤を採用することにより、動物、特にヒトによる経口摂取を容易にし得る。なお、該シリコン微細粒子と炭酸水素ナトリウム粉末とを混合し、混錬したうえで打錠することも採用し得る他の一態様である。該丸剤又は該錠剤を採用した場合であっても、第1の実施形態の複合組成物の効果と同様の効果が奏され得る。なお、丸剤又は錠剤を採用した場合は、さらに崩壊剤を含んでもよい。また、崩壊剤については、公知の材料を採用することができる。加えて、より好適な崩壊剤の好適な例は、有機酸であり、最も好適な例はクエン酸である。ここで、有機酸は、該複合組成物を塊状にする結合剤としても機能し得る。
<Second embodiment>
By the way, the composite composition of the first embodiment can be used, for example, in medicines, quasi-drugs, foods, health foods, food additives, supplements, and feeds (for pets, livestock, and fisheries) for animals, especially humans. It can also be used as a food source (including various types of feed). For example, a pill or a cylindrical tablet can be obtained by compressing the silicon fine particles of the first embodiment using a known tableting method. Pills or tablets may be adopted to facilitate oral ingestion by animals, especially humans. Note that another embodiment that may be employed is to mix the silicon fine particles and sodium hydrogen carbonate powder, knead them, and then tablet. Even when the pill or the tablet is employed, the same effects as the composite composition of the first embodiment can be achieved. In addition, when a pill or a tablet is adopted, a disintegrant may be further included. Furthermore, for the disintegrant, known materials can be employed. In addition, preferred examples of more preferred disintegrants are organic acids, the most preferred example being citric acid. Here, the organic acid may also function as a binder to clump the composite composition.
 なお、第1の実施形態の複合組成物は、塊状よりも実質的に表面積が大きくなるためにより多くの水素を発生させ得る粉状の複合組成物(例えば、顆粒剤又は散剤)であってもよい。顆粒剤又は散剤の該複合組成物は、丸剤、錠剤又はカプセル剤に比して経口摂取された後、早い段階で粉状を呈する。しかし、胃液は酸性であるため、仮に、該複合組成物が胃に達して直ぐに粉状を呈したとしても殆ど水素が発生せず、且つモノケイ酸の溶出が進まないため、胃を通過した後の水含有液(消化液)の存在下において、水素発生反応とともにモノケイ酸の溶出が促進され得る。 Note that even if the composite composition of the first embodiment is a powdered composite composition (for example, granules or powder) that can generate more hydrogen because the surface area is substantially larger than that of a lump, good. The composite composition in the form of granules or powders becomes powdery at an earlier stage after being orally ingested compared to pills, tablets or capsules. However, since gastric juice is acidic, even if the composite composition becomes powdery immediately after reaching the stomach, very little hydrogen will be generated and the elution of monosilicic acid will not progress, so after passing through the stomach, In the presence of a water-containing liquid (digestive juice), the hydrogen generation reaction and the elution of monosilicic acid can be promoted.
 加えて、上述の第1の実施形態の複合組成物から製造され得る医薬、医薬部外品、食品、健康食品、食品添加物、サプリメント、及び飼料(ペット用、畜産用、及び水産用の各飼料を含む)は、例えば、ヒト用、ペット用、畜産用、又は水産用として用いられ得る。 In addition, pharmaceuticals, quasi-drugs, foods, health foods, food additives, supplements, and feeds (for pets, livestock, and fisheries) that can be manufactured from the composite composition of the first embodiment described above are also available. (including feed) can be used, for example, for humans, pets, livestock, or aquaculture.
<第3の実施形態>
 また、第1の実施形態の複合組成物(例えば、第2の実施形態における丸剤、錠剤、カプセル剤、顆粒剤又は散剤)の最外層を覆うコーティング材(好適には、公知の胃難溶性腸溶性材料)は、採用し得る一態様である。該コーティング材によって該複合組成物が覆われると、該シリコン微細粒子が胃液及び/又は胃の内容物に曝される機会が減少する。その結果、水素発生反応とともにモノケイ酸の溶出を促進したい胃の下流側に位置する消化器官(例えば、小腸及び/又は大腸)において水含有液に曝される表面積を多くすることができる。なお、カプセル剤に適用し得る被覆層の例は、第1の実施形態のシリコン微細粒子を内包する、公知の胃難溶性腸溶性材料から製造されるカプセル自身である。
<Third embodiment>
In addition, a coating material (preferably a known gastrically poorly soluble enteric-coated materials) is one embodiment that may be employed. Covering the composite composition with the coating material reduces exposure of the silicone microparticles to gastric juices and/or stomach contents. As a result, it is possible to increase the surface area exposed to the water-containing liquid in the digestive organs located downstream of the stomach (for example, the small intestine and/or the large intestine) where it is desired to promote the hydrogen generation reaction and the elution of monosilicic acid. An example of a coating layer that can be applied to the capsule is the capsule itself, which is manufactured from a known enteric material that is poorly soluble in the stomach and which contains the silicon fine particles of the first embodiment.
[実施例3]
 図4は、pH8.3で36℃の水溶液にシリコン製剤を浸漬することによって水素発生反応が生じたときの、該水溶液中のモノケイ酸の濃度と水素発生反応時間との関係を示すグラフである。
[Example 3]
FIG. 4 is a graph showing the relationship between the concentration of monosilicic acid in an aqueous solution and the hydrogen generation reaction time when a hydrogen generation reaction occurs by immersing a silicone preparation in an aqueous solution at pH 8.3 and at 36°C. .
 本実施例においては、腸内に分泌される膵液や腸液との類似環境であるpH8.3、36℃の該水溶液(溶質は、炭酸水素ナトリウム)に第1の実施形態のシリコン微細粒子を浸漬することによって水素を発生させる実験が行われた。その結果、モノケイ酸の濃度は、水素が反応し始めて約6時間後までは、水素発生の反応時間の経過とともに略直線的に増加した。一方、約6時間が経過した後は該反応時間の経過とともにモノケイ酸の濃度の上昇が徐々に緩やかになることが明らかとなった。 In this example, the silicon microparticles of the first embodiment were immersed in the aqueous solution (the solute was sodium bicarbonate) at pH 8.3 and 36°C, which is an environment similar to pancreatic juice and intestinal fluid secreted in the intestines. An experiment was conducted to generate hydrogen by doing this. As a result, the concentration of monosilicic acid increased approximately linearly with the passage of reaction time for hydrogen generation until about 6 hours after hydrogen started to react. On the other hand, after about 6 hours had elapsed, it became clear that the increase in the concentration of monosilicic acid gradually slowed down as the reaction time progressed.
 ここで、本発明者は、モノケイ酸の濃度と水素発生反応時間との関係を示す図4の曲線の形状が、水素発生量と該反応時間との関係の曲線の形状は類似していることを知得した。従って、水素発生反応の開始から約6時間までは、シリコン微細粒子が備える酸化シリコン(すなわち、複合組成物)からのモノケイ酸の溶出速度が、水素発生速度と同様に比較的速く、一方、該6時間が経過した後は、水素発生速度が低下するとともに、モノケイ酸の溶出速度も低下するという大変興味深い知見が得られた。すなわち、本実施例によって、モノケイ酸が水素発生に伴って溶出することが明らかとなった。 Here, the present inventor found that the shape of the curve in FIG. 4 showing the relationship between the concentration of monosilicic acid and the hydrogen generation reaction time is similar to that of the curve showing the relationship between the amount of hydrogen generated and the reaction time. learned. Therefore, until about 6 hours after the start of the hydrogen generation reaction, the elution rate of monosilicic acid from the silicon oxide (i.e., composite composition) included in the silicon fine particles is relatively fast, similar to the hydrogen generation rate; A very interesting finding was obtained that after 6 hours, the rate of hydrogen generation decreased and the rate of elution of monosilicic acid also decreased. That is, this example revealed that monosilicic acid is eluted with hydrogen generation.
 上述のとおり、本実施例においては、水素を発生させながら溶出するモノケイ酸がヒトの体内において担う役割について着目すれば、本実施例の複合組成物は、ヒトの小腸以降の消化管内液に接触したときに、該モノケイ酸を溶出(又は発生)させるための複合組成物といえる。 As mentioned above, in this example, if we focus on the role that monosilicic acid, which is eluted while generating hydrogen, plays in the human body, the composite composition of this example will come into contact with the fluid in the gastrointestinal tract from the small intestine onwards. When this happens, it can be said that it is a composite composition for eluting (or generating) the monosilicic acid.
<その他の実施形態>
 水含有液との接触によって水素が発生し得るとともにモノケイ酸の溶出し得る第1の実施形態の複合組成物のシリコン微細粒子は、上述の第2の実施形態及び第3の実施形態における各種製剤の態様に限定されない。例えば、動物、特にヒトに対する、皮膚投与、粘膜投与、経皮投与、経鼻投与、又は坐薬投与内への製剤(該製剤の一部を含む)又はその原体(又はその原体の一部を含む)としても活用し得る。また、該複合組成物は、動物の、特にヒトの皮膚に塗布する等により接触させるための製剤(該製剤の一部を含む)又はその原体(又はその原体の一部を含む)としても活用し得る。該製剤は、動物、特にヒトの代謝能力、免疫力、血管の弾力性、骨の強度、及び消炎性の向上、あるいは細胞の不活化などに寄与し得る観点から採用し得る好適な一態様である。
<Other embodiments>
The silicon fine particles of the composite composition of the first embodiment that can generate hydrogen and elute monosilicic acid by contact with a water-containing liquid are used in various formulations in the second and third embodiments described above. However, the present invention is not limited to this aspect. For example, a formulation (including a part of the formulation) or its bulk substance (or a part of its bulk substance) for dermal, mucosal, transdermal, nasal, or suppository administration to animals, especially humans. (including). In addition, the composite composition can be used as a preparation (including a part of the preparation) or a drug substance (or a part of the drug substance) to be applied to the skin of animals, especially humans. can also be used. This preparation is a preferred embodiment that can be adopted from the viewpoint that it can contribute to improving the metabolic ability, immunity, elasticity of blood vessels, strength of bones, and anti-inflammatory properties of animals, especially humans, or to the inactivation of cells. be.
 また、その他の態様として、第1の実施形態の複合組成物を含有する液剤、シロップ剤、ドリンク剤、ドロップ、トローチ剤、又は水飴も、動物、特にヒトの体内において水素発生反応とともにモノケイ酸の溶出が促進されることから、採用し得る好適な一態様である。 In addition, as another aspect, a liquid, syrup, drink, drop, lozenge, or starch syrup containing the composite composition of the first embodiment can also be used to produce monosilicic acid along with a hydrogen generation reaction in the body of an animal, especially a human. This is a preferred embodiment that can be adopted because elution is promoted.
 以上述べたとおり、上述の各実施形態及び各実施例の開示は、該実施形態及び該実施例の説明のために記載したものであって、本発明を限定するために記載したものではない。加えて、該実施形態及び該実施例の他の組合せを含む本発明の範囲内に存在する他の変形例もまた、特許請求の範囲に含まれるものである。 As stated above, the disclosure of each embodiment and each example described above is described for the purpose of explaining the embodiment and each example, and is not described to limit the present invention. In addition, other variations within the scope of the invention, including other combinations of the embodiments and examples, are also within the scope of the claims.
 本発明の複合組成物は、水素の発生及びモノケイ酸の溶出を活用する医薬品、医薬部外品、食品、健康食品、食品添加物、サプリメント、及び飼料(ペット用、畜産用、及び水産用の各飼料を含む)を扱う各種の産業において広く利用され得る。 The composite composition of the present invention can be used for pharmaceuticals, quasi-drugs, foods, health foods, food additives, supplements, and feeds (for pets, livestock, and fisheries) that utilize hydrogen generation and monosilicic acid elution. It can be widely used in various industries that handle feedstuffs (including feedstuffs).

Claims (14)

  1.  平均の粒子径が1μm超45μm未満のシリコン微細粒子及び/又はその凝集体を含み、
     水含有液に前記シリコン微細粒子が接触してから24時間以上、継続的に水素を発生させながら、モノケイ酸を前記水含有液中に溶出可能な酸化シリコンを備えた、
     複合組成物。
    Contains silicon fine particles and/or aggregates thereof with an average particle diameter of more than 1 μm and less than 45 μm,
    comprising silicon oxide that can elute monosilicic acid into the water-containing liquid while continuously generating hydrogen for 24 hours or more after the silicon fine particles contact the water-containing liquid;
    composite composition.
  2.  ヒトの小腸以降の消化管内液に接触したときに、前記モノケイ酸を溶出させるための、
     請求項1に記載の複合組成物。
    For eluting the monosilicic acid when it comes into contact with the gastrointestinal fluid from the human small intestine onward,
    The composite composition according to claim 1.
  3.  20mgの前記シリコン微細粒子及び/又は前記凝集体をpH値が8.3であって36℃の500mLの炭酸水素ナトリウム水溶液に浸漬及び撹拌させたときに、該シリコン微細粒子及び/又は該凝集体が該炭酸水素ナトリウム水溶液に接してから25時間後に5ppm以上のモノケイ酸が前記炭酸水素ナトリウム水溶液中に溶出可能な酸化シリコンを、前記シリコン微細粒子及び/又は前記凝集体の表面が備える、
     請求項1又は請求項2に記載の複合組成物。
    When 20 mg of the silicon fine particles and/or the aggregates were immersed and stirred in 500 mL of aqueous sodium bicarbonate solution with a pH value of 8.3 and 36°C, the silicon fine particles and/or the aggregates The surface of the silicon fine particles and/or the aggregate comprises silicon oxide from which 5 ppm or more of monosilicic acid can be eluted into the sodium hydrogen carbonate aqueous solution 25 hours after contact with the sodium hydrogen carbonate aqueous solution.
    The composite composition according to claim 1 or claim 2.
  4.  平均の粒子径が1nm以上500nm以下のシリコン微細粒子及び/又はその凝集体を含み、
     前記水含有液に前記シリコン微細粒子が接触してから24時間以上、継続的に前記水素を発生させながら、前記モノケイ酸を前記水含有液中に溶出可能な前記酸化シリコンを備えた、
     請求項1乃至請求項3のいずれか1項に複合組成物。
    Contains silicon fine particles and/or aggregates thereof with an average particle size of 1 nm or more and 500 nm or less,
    The silicon oxide is capable of eluting the monosilicic acid into the water-containing liquid while continuously generating the hydrogen for 24 hours or more after the silicon fine particles come into contact with the water-containing liquid.
    A composite composition according to any one of claims 1 to 3.
  5.  平均の粒子径が10μm超45μm未満の前記シリコン微細粒子の、前記シリコン微細粒子の全体に占める存在比率が50%超である、
     請求項1乃至請求項4のいずれか1項に記載の複合組成物。
    The silicon fine particles having an average particle diameter of more than 10 μm and less than 45 μm account for more than 50% of the total silicon fine particles,
    The composite composition according to any one of claims 1 to 4.
  6.  請求項1乃至請求項5のいずれか1項に記載した複合組成物を含む、
     医薬品。
    Comprising the composite composition according to any one of claims 1 to 5.
    Pharmaceutical products.
  7.  請求項1乃至請求項5のいずれか1項に記載した複合組成物を含む、
     医薬部外品。
    Comprising the composite composition according to any one of claims 1 to 5.
    Quasi-drugs.
  8.  請求項1乃至請求項5のいずれか1項に記載した複合組成物を含む、
     健康食品。
    Comprising the composite composition according to any one of claims 1 to 5.
    healthy food.
  9.  請求項1乃至請求項5のいずれか1項に記載した複合組成物を含む、
     食品。
    Comprising the composite composition according to any one of claims 1 to 5.
    food.
  10.  請求項1乃至請求項5のいずれか1項に記載した複合組成物を含む、
     食品添加物。
    Comprising the composite composition according to any one of claims 1 to 5.
    Food additive.
  11.  請求項1乃至請求項5のいずれか1項に記載した複合組成物を含む、
     サプリメント。
    Comprising the composite composition according to any one of claims 1 to 5.
    supplement.
  12.  請求項1乃至請求項5のいずれか1項に記載した複合組成物を含む、
     ペット用飼料。
    Comprising the composite composition according to any one of claims 1 to 5.
    pet feed.
  13.  請求項1乃至請求項5のいずれか1項に記載した複合組成物を含む、
     畜産用飼料。
    Comprising the composite composition according to any one of claims 1 to 5.
    Livestock feed.
  14.  請求項1乃至請求項5のいずれか1項に記載した複合組成物を含む、
     水産用飼料。
    Comprising the composite composition according to any one of claims 1 to 5.
    Aquatic feed.
PCT/JP2023/005184 2022-03-28 2023-02-15 Composite composition comprising silicon oxide WO2023188931A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022051523 2022-03-28
JP2022-051523 2022-03-28
JP2022144068 2022-09-09
JP2022-144068 2022-09-09

Publications (1)

Publication Number Publication Date
WO2023188931A1 true WO2023188931A1 (en) 2023-10-05

Family

ID=88200320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005184 WO2023188931A1 (en) 2022-03-28 2023-02-15 Composite composition comprising silicon oxide

Country Status (1)

Country Link
WO (1) WO2023188931A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183386A (en) * 2018-04-29 2020-11-12 株式会社Kit Composite composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183386A (en) * 2018-04-29 2020-11-12 株式会社Kit Composite composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KATO KIKUO, KITANO YASUSHI: "Solubility and Dissolution Rate of Amorphous Silica in Distilled and Sea Water at 20°C ", JOURNAL OF THE OCEANOGRAPHICAL SOCIETY OF JAPAN, vol. 24, no. 4, 31 August 1968 (1968-08-31), pages 147 - 152, XP093096904, DOI: 10.5928/kaiyou1942.24.147 *

Similar Documents

Publication Publication Date Title
JP7102573B2 (en) Solid preparations and their manufacturing methods, as well as feeds and supplements
Yan et al. Improvement of vitamin C stability in vitamin gummies by encapsulation in casein gel
JP6916184B2 (en) Formulation manufacturing method
JP7493842B2 (en) Method for producing active ingredients of drugs for preventing kidney diseases
JP5439366B2 (en) Cellulose powder excellent in segregation preventing effect and composition thereof
JP6731131B2 (en) Method for producing composite composition for hydrogen generation and method for producing hydrogen
WO2007095734A1 (en) Method for increasing the rate and consistency of bioavailability of supplemental dietary ingredients
JP2024040386A (en) Medical agent and method for manufacturing the same
WO2023188931A1 (en) Composite composition comprising silicon oxide
JP7461009B2 (en) Preventive or therapeutic agent for diabetes
US7189416B2 (en) Method for stable and controlled delivery of (-)-hydroxycitric acid
JP2015514119A (en) Wet granulation method and granular material containing gum arabic
KR20080100575A (en) Preparation method of microcapsule comprising coenzyme q1o
Enayati et al. Granulation and encapsulation of N-Acetylcysteine (NAC) by internal phase separation
JP2021003024A (en) Sustained release covered food powder aggregate, and method for producing the same
WO2022259907A1 (en) Fine silicon particle-containing preventive or therapeutic agent for diseases
Kini et al. Exploring the use of Isomalt as the tooth friendly sugar substitute in the formulation of Salbutamol sulfate compressed tablet Lozenges
Fatimah et al. Optimization Formulation of Spirulina platensis Chewable Tablet
JP2007505129A (en) Enteric delivery product of (-)-hydroxycitric acid
RU2313336C2 (en) Spheroids based on plant extract adsorbates and method for production thereof
Okafo et al. Formulation and Evaluation of Sustained Release Tablet of Metformin by Ionic Gelation Technique using Sida acuta Gum as Release Retardant
KR20210079315A (en) Lipid composition for encapsulating an active substance, allowing control of the release rate of the active substance
JPWO2003086422A1 (en) Therapeutic agent