WO2023188874A1 - Powder charging component, powder set, and powder charging method - Google Patents

Powder charging component, powder set, and powder charging method Download PDF

Info

Publication number
WO2023188874A1
WO2023188874A1 PCT/JP2023/004716 JP2023004716W WO2023188874A1 WO 2023188874 A1 WO2023188874 A1 WO 2023188874A1 JP 2023004716 W JP2023004716 W JP 2023004716W WO 2023188874 A1 WO2023188874 A1 WO 2023188874A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
container
component
tip
cavity
Prior art date
Application number
PCT/JP2023/004716
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 平野
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Publication of WO2023188874A1 publication Critical patent/WO2023188874A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/06Storage, supply or control of the application of particulate material; Recovery of excess particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B69/00Unpacking of articles or materials, not otherwise provided for

Definitions

  • the present disclosure relates to a powder charging component, a powder set, and a powder charging method.
  • a cold spray method which is one of the thermal spray methods, is conventionally known.
  • a film is formed on a base material by injecting a film forming raw material together with a carrier gas onto the base material from the nozzle tip of a spray gun.
  • oxidation and thermal deterioration of the film forming raw material in the atmosphere can be suppressed, and a dense and highly adhesive film can be formed on the substrate.
  • the film forming apparatus used in the cold spray method is equipped with a powder feeder that supplies powder, which is a collection of powders that become film forming raw materials, to a nozzle. Prior to supplying the powder to the nozzle, it is necessary to supply the powder into the powder supply machine.
  • JP-A-7-256081 discloses a method for efficiently dropping powder in a bag without scattering and charging it into a reaction tank.
  • Patent Document 1 discloses a method for efficiently dropping powder in a bag without scattering and charging it into a reaction tank.
  • Japanese Patent Application Laid-Open No. 7-256081 proposes a method in which a bag is torn open using a cutter having four acute triangular blades, and the powder is dropped.
  • Powder for film formation by the cold spray method is stored in a powder container.
  • the mouth of a powder container through which powder can be discharged is usually covered with an aluminum film. This seals the inside of the powder container. When feeding the powder into the powder feeder, it is necessary to tear the film.
  • the tip that tears the bag has a single protrusion shape like the tip of an umbrella.
  • a cutter is used to break the film of a container containing cold spray powder, there is a risk that the powder will scatter out of the powder container from the part where the film is torn.
  • the cutter needs to have a large dimension in the height direction, and at this time there is a risk of powder scattering.
  • the powder accumulates above the tip of the cutter, there is a possibility that the powder cannot be smoothly fed into the powder feeder.
  • the present disclosure has been made in view of the above problems.
  • the purpose is to provide a powder charging part, a powder set, and a powder charging method that can efficiently transfer powder to a powder feeder without scattering.
  • a powder charging component includes a first component and a second component.
  • the first part includes a bottom and an outer frame. A bottom hole is formed at the bottom.
  • the outer frame extends from the outer periphery of the bottom in a first direction intersecting the bottom.
  • the second part is attached to the bottom so as to be surrounded by the outer frame.
  • the second component includes a tip portion having a width in plan view. The tip portion has a cylindrical portion that extends in the first direction and has a first cavity formed therein.
  • a powder set according to the present disclosure includes the above-mentioned powder input component and a powder container in which powder is stored.
  • the powder container includes a container body in which a container opening is formed. The inside of the container body is sealed by pasting a film on the container mouth.
  • the powder input method uses the above powder set.
  • a powder container is prepared with a film attached to the container mouth.
  • a powder feeding component on which the second component is installed, is attached to a powder feeding machine that is to supply powder.
  • a powder container is inserted into the outer frame of the powder input component. In the step of inserting, the powder container is lowered until the container opening is located below the top surface of the tip portion while the powder container is upside down.
  • FIG. 1 is a schematic diagram showing the configuration of a film forming apparatus according to the present embodiment.
  • FIG. 1 is a schematic diagram showing a powder set according to the present embodiment.
  • FIG. 3 is a schematic diagram showing each part of the powder charging part of FIG. 2.
  • FIG. 4 is a side view of the second part of FIG. 3;
  • FIG. 4 is a plan view of the second part of FIG. 3;
  • FIG. 4 is a side view of the powder charging component of FIG. 3;
  • FIG. 4 is a schematic diagram showing a disassembled state of the first part and the second part in the powder charging part of FIG. 3;
  • FIG. 6 is a schematic cross-sectional view showing a first example of a portion along line AA in FIG.
  • FIG. 6 is a schematic sectional view showing a first example of a portion along line BB in FIG. 5 in a state where the second component is installed at the bottom of the powder input component.
  • FIG. 6 is a schematic cross-sectional view showing a second example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder input component.
  • FIG. 6 is a schematic cross-sectional view showing a third example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder input component.
  • FIG. 6 is a schematic cross-sectional view showing a fourth example of a portion along line AA in FIG.
  • FIG. 4 is a plan view of a first modification of the second component of FIG. 3;
  • FIG. 4 is a plan view of a second modification of the second component of FIG. 3;
  • FIG. 4 is a plan view of a third modification of the second component of FIG. 3;
  • 3 is a schematic diagram showing each part of the powder container of FIG. 2.
  • FIG. 3 is a flowchart showing a powder charging method according to the present embodiment. It is a schematic diagram of a powder feeder. It is a schematic diagram which shows the aspect immediately before a powder container is inserted into the part for powder injection
  • FIG. 20 is a schematic diagram showing a state in which a powder container is inserted after FIG. 19.
  • FIG. FIG. 21 is a sectional view showing an internal aspect in FIG. 20;
  • FIG. 2 is a schematic diagram showing a state in which bridging occurs when powder in a powder container is dropped.
  • It is a schematic diagram of a cutter prepared as a comparative example of this embodiment. It is a photograph showing the appearance of a damaged part of an aluminum film stuck to a container body when a cutter of a comparative example is used. It is a photograph which shows the aspect of the damaged part of the aluminum film stuck to the container main body when the part for powder injection
  • FIG. 1 is a schematic diagram showing the configuration of a film forming apparatus according to this embodiment.
  • the film forming apparatus 200 shown in FIG. 1 mainly includes a spray gun 5 including a nozzle 5b, a powder supply machine 3, a gas supply section 4, and a mask jig 6.
  • the spray gun 5 mainly includes a spray gun main body 5a, a nozzle 5b, a heater 5c, and a temperature sensor 5d.
  • a nozzle 5b is connected to a first end, which is the tip side, of the spray gun main body 5a.
  • a pipe 9 is connected to a second end, which is the rear end side, of the spray gun main body 5a.
  • the pipe 9 is connected to the gas supply section 4 via a valve 7.
  • Gas supply section 4 supplies operating gas to spray gun 5 via piping 9. By opening and closing the valve 7, the supply state of the operating gas from the gas supply section 4 to the spray gun 5 can be controlled.
  • a pressure sensor 8 is installed in the pipe 9. The pressure sensor 8 measures the pressure of the working gas supplied from the gas supply section 4 to the pipe 9.
  • the operating gas supplied from the second end of the spray gun body 5a into the interior of the spray gun body 5a is heated by the heater 5c.
  • the heater 5c is arranged on the second end side of the spray gun main body 5a.
  • the operating gas flows along the arrow 41 inside the spray gun main body 5a.
  • a temperature sensor 5d is connected to the connection between the nozzle 5b and the spray gun main body 5a. The temperature sensor 5d measures the temperature of the operating gas flowing inside the spray gun main body 5a.
  • a pipe 9 is connected to the nozzle 5b. Piping 9 is connected to powder feeder 3.
  • the powder supply device 3 supplies powder, which is a film forming raw material, to the nozzle 5b of the spray gun 5 via a pipe 9.
  • the mask jig 6 is placed between the base material 50 and the spray gun 5.
  • a through hole is formed in the mask jig 6.
  • the through hole defines a film formation area on the surface of the base material 50.
  • FIG. 2 is a schematic diagram showing a powder set according to this embodiment.
  • the powder set 100 includes a powder charging component 1 and a powder container 2.
  • the powder set 100 is used to supply powder for cold spray stored in the powder container 2 into the powder feeder 3 (see FIG. 1). Details of the powder charging part 1 and the powder container 2 will be described later.
  • FIG. 3 is a schematic diagram showing each part of the powder charging part of FIG. 2.
  • the X direction, Y direction, Z direction, r direction (radial direction), and ⁇ direction (circumferential direction) will be used.
  • the upper side and lower side of the powder feeding part 1 (each member thereof) in the Z direction corresponds to the upper side and lower side of the powder feeding part 1 in the Z direction when it is installed in the powder feeder 3.
  • the powder charging component 1 is made of, for example, commonly known stainless steel.
  • the powder charging part 1 mainly includes a first part 10 and a second part 15.
  • the first part 10 is a member that serves as the base of the entire powder charging part 1, and is an inserted part into which at least the second part 15 in the example of FIG. 3 is inserted.
  • the first part 10 includes a bottom part 11 and an outer frame 12.
  • the bottom portion 11 is disposed below the powder charging component 1 and serves as the base of the powder charging component 1.
  • the bottom portion 11 has, for example, a circular planar shape on the XY plane.
  • the outer frame 12 is integral with the bottom part 11.
  • the outer frame 12 extends from the outer periphery of the bottom portion 11 in the Z direction.
  • the first component 10 has a container shape.
  • the second component 15 is a component that can be placed in the center of the powder input component 1 when viewed from above, and is an insertion port component that can be inserted into at least the first component 10 in the example of FIG. Planar view here means a mode viewed from the XY plane from the Z direction.
  • the second part 15 is installed on the upper surface of the bottom part 11. Thereby, the second component 15 is surrounded by the outer frame 12.
  • FIG. 4 is a side view of the second part of FIG. 3.
  • FIG. 5 is a plan view of the second part of FIG. 3.
  • the second component 15 mainly includes a tip portion 15A and a radial portion 15B.
  • the tip portion 15A is arranged at the center of the second component 15 in a plan view, and is provided at the top in the Z direction.
  • the center means a center line C indicating the center of the entire second component 15 in plan view in FIG. 5 and a region relatively close to the center line C.
  • the distal end portion 15A has a center portion 15A1 and a peripheral portion 15A2.
  • the center portion 15A1 in FIG. 5 has a cylindrical shape extending along the Z direction.
  • the top surface 15Aa of the tip portion 15A which is the top surface of the tip portion 15A, has a circular planar shape.
  • a first cavity 15CV is formed inside the center portion 15A1. As shown in FIG.
  • the center portion 15A1 of the tip portion 15A has a certain width toward the outside in the r direction from the first cavity 15CV in plan view. Therefore, the topmost surface 15Aa of the tip part has an annular shape having a width in the r direction.
  • the peripheral portion 15A2 is a portion directly connected to the center portion 15A1.
  • the peripheral portion 15A2 is adjacent to the outer side of the center portion 15A1 in the r direction, and surrounds the entire center portion 15A1 in the ⁇ direction (one round). Therefore, at least the inner region in the r direction of the center portion 15A1 has a generally annular shape.
  • a plurality of radial portions 15B extend radially from the tip portion 15A.
  • Each of the plurality of radial portions 15B extends outward in the r direction from the outer peripheral surface of the tip portion 15A.
  • Each of the plurality of radial portions 15B is arranged with a gap 15C between them in the ⁇ direction.
  • FIG. 5 shows an example in which twelve radial portions 15B are formed.
  • the number of radial portions 15B formed is not limited to this, and may be, for example, 3 or more and 5 or less. Alternatively, the number of radial portions 15B may be 6 or more and 11 or less, or 13 or more and 16 or less.
  • the radial portion 15B has a main portion 15D and leg portions 15E.
  • the main portion 15D is disposed on the upper side of the radial portion 15B and is connected to the tip portion 15A.
  • the main portion 15D may be connected to a position farthest from the center portion 15A1 of the peripheral portion 15A2 (away from the center line C in the r direction in plan view) as shown in FIG.
  • the main portion 15D may be arranged so as to be directly connected to the lowest part of the center portion 15A1, or may be connected to the lower side surface of the center portion 15A1 and extended from there.
  • the tip portion 15A may include only the cylindrical center portion 15A1 without the peripheral portion 15A2.
  • the leg portion 15E is connected to the opposite side (that is, the lower side) of the tip portion 15A of the main portion 15D.
  • the main part 15D has a main part surface 15Ds as its uppermost surface.
  • the main part surface 15Ds is a surface of the main part 15D that exists at a position farthest from the leg part 15E (on the opposite side to the leg part 15E).
  • the main part surface 15Ds is arranged so as to be connected to the outer side of the uppermost surface (peripheral part surface 15A2a) of the peripheral part 15A2 in the r direction.
  • the main part surface 15Ds extends radially outward in the r direction from the outer periphery of the peripheral part surface 15A2a. Therefore, a plurality of main parts 15D including the main part surface 15Ds are arranged with gaps 15C in between in the ⁇ direction.
  • the outer periphery of the main part surface 15Ds furthest away from the tip 15A in the r direction (the top of the outer peripheral surface 15Dc) has an arc shape in plan view. Therefore, the outer circumferential surface 15Dc in the r direction of the main portion 15D (columnar portion 15D2 extending along the Z direction described below: see FIG. 4) is arcuate in plan view.
  • the peripheral surface 15A2a is arranged so as to include the entire circumference in the ⁇ direction, whereas a plurality of main portion surfaces 15Ds are arranged intermittently across the gap 15C in the ⁇ direction. They differ in this respect.
  • the peripheral surface 15A2a and the main surface 15Ds are connected to form a single surface. This surface is inclined with respect to the XY plane.
  • the inner side of the main part 15D in the r direction (the tip 15A, the side closer to the center line C) is located on the upper side in the Z direction, and the side of the main part 15D away from the tip 15A in the r direction is the leg part.
  • the main part surface 15Ds is inclined so that the outer peripheral surface 15Dc side of the main part 15D is located lower in the Z direction than the side closer to the tip part 15A.
  • the angles of inclination of the peripheral surface 15A2a and the main surface 15Ds with respect to the XY plane may be equal or different. If they are different, it is preferable that the angle of inclination that the peripheral surface 15A2a makes with the XY plane is larger than the angle of inclination that the main part surface 15Ds makes with the XY plane.
  • the main part 15D of the radial part 15B includes a columnar part 15D2, which will be described later, extending along the Z direction, in addition to the above-mentioned main part surface 15Ds and a region immediately below it (slanted part 15D1, which will be described later).
  • the columnar portion 15D2 is arranged below the lowest part of the main portion surface 15Ds in FIG. 4, and extends in the vertical direction.
  • the columnar portion 15D2 is disposed directly below an outer region in the r direction that is relatively distant from the tip portion 15A and includes at least the outer circumferential surface 15Dc of the main portion 15D in the r direction.
  • the columnar portions 15D2 of the main portion 15D are cylinders in which a plurality of outer circumferential surfaces 15Dc (including a region adjacent to the inside of the outer circumferential surface 15Dc in the r direction) are formed intermittently with gaps 15C in the ⁇ direction. It has a shape as part of a shape.
  • the leg portion 15E like the main portion 15D, includes a columnar portion 15E2 (see FIG. 4) that extends along the Z direction. It is preferable that the outer circumferential surface of the leg portion 15E is formed slightly inside in the r direction compared to the outer circumferential surface of the main portion 15D. As a result, a step 15F (see FIG. 4) is formed at the boundary between the outer circumferential surface of the main portion 15D and the outer circumferential surface of the leg portion 15E.
  • the leg portion 15E is formed in at least a portion of a region of the main portion 15D that overlaps with the columnar portion 15D2 in a plan view so as to be continuous with the columnar portion 15D2.
  • the leg portion 15E has a width along the ⁇ direction. Therefore, in FIGS. 4 and 5, the leg portions 15E are formed as part of a cylindrical shape in which a plurality of leg portions are formed intermittently so that the outer circumferential surface furthest from the tip portion 15A in the r direction is sandwiched with a gap 15C in the ⁇ direction. It has a shape.
  • a plurality of radial portions 15B (the main portion surface 15Ds and the area immediately below the main portion surface 15Ds) are formed, a plurality of gaps 15C sandwiched therebetween in the ⁇ direction are also formed.
  • the same number of gaps 15C are also formed.
  • the individual gaps 15C have the same overall width along the ⁇ direction. That is, as shown in FIG. 5, the end surface of the gap 15C in the circumferential direction does not face the center line C of the second component 15. A pair of circumferential end faces of the gap 15C extend parallel to each other.
  • the width (shortest linear distance) w of the gap 15C in FIG. 5 is 8 mm.
  • This value of w is approximately equal to the dimension L of the gap 15C along the ⁇ direction (at the same position in the r direction as the outer peripheral surface 15Dc of the radial portion 15B).
  • the width of the gap 15C is constant throughout, and conversely, the width of the main part surface 15Ds in FIG. 5 along the ⁇ direction increases toward the outside in the r direction.
  • the width of the outer peripheral surface of the main part surface 15Ds in FIG. 5 along the ⁇ direction is close to 8 mm.
  • each part of the second part 15 in FIGS. 4 and 5 other than the above w is as follows.
  • the dimension a of the tip end 15A in FIG. 4 along the Z direction is 5 mm.
  • the dimension b along the Z direction of the columnar part 15D2 extending from the lowest part of the main part surface 15Ds of the main part 15D in FIG. 4 is 20 mm.
  • the dimension c of the columnar portion 15E2 of the leg portion 15E in FIG. 4 along the Z direction is 15 mm.
  • the diameter ⁇ d of the first cavity 15CV of the tip portion 15A in FIG. 5 is 30 mm.
  • the diameter ⁇ e of the outer peripheral surface of the center portion 15A1 in FIG. 5 is 33 mm.
  • the diameter ⁇ f of the inner peripheral surface of the leg portion 15E is 54 mm, and the diameter ⁇ g of the outer peripheral surface of the leg portion 15E is 57 mm.
  • the diameter ⁇ h of the outer peripheral surface 15Dc of the main portion 15D is 61 mm.
  • FIG. 6 is a side view of the powder charging part of FIG. 3. However, for convenience of explanation, the internal aspects of the insertion section 16 and dust collecting section 17, which will be described later, are also shown in cross section.
  • the powder feeding part 1 includes an insertion part 16 and a dust collection part 17 in addition to the above.
  • the insertion part 16 is arranged on the lower surface of the bottom part 11 of the first part 10, that is, on the surface opposite to the side on which the second part 15 is arranged in the Z direction (facing the outside of the first part 10). .
  • the insertion portion 16 extends downward in the Z direction from the lower surface of the bottom portion 11 .
  • the insertion part 16 is a part that can be placed inside the powder feeder 3 when the powder feeding part 1 is installed in the powder feeder 3 .
  • the dust collecting section 17 extends from the outer circumferential surface of the outer frame 12 in a direction along the bottom section 11 (for example, the X direction).
  • the dust collection section 17 is a part for collecting powder and the like remaining inside the container-shaped first component 10 to the outside of the powder input component 1.
  • a second cavity 16CV is formed inside the insertion portion 16. Therefore, the insertion portion 16 has a generally cylindrical shape.
  • a male screw may be formed on the outer peripheral surface of the insertion portion 16, or a projection or a groove may be formed.
  • a third cavity 17CV is formed inside the dust collecting section 17. Therefore, the dust collecting section 17 has a cylindrical shape.
  • FIG. 7 is a schematic diagram showing a state in which the first part and the second part of the powder charging part shown in FIG. 3 are disassembled.
  • FIG. 7 shows a state immediately before the second component 15 is about to be inserted into the first component 10.
  • the second component 15 is inserted into the bottom hole 11CV of the first component 10, as indicated by the dashed-dotted arrow in the figure.
  • the second component 15 is installed so as to fit in the center of the first component 10 in a plan view.
  • the cross-sectional shape of the entire powder charging component 1 in which the second component 15 is installed on the first component 10 will be described.
  • FIG. 8 is a schematic cross-sectional view showing a first example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder charging component. Note that in FIG. 8, from the viewpoint of making the diagram easier to read, some of the members visible on the back side of the line AA (particularly inside the cavity in the X direction) are omitted. This also applies to FIGS. 9 to 12, which will be described later.
  • the cross-sectional aspect of the second component 15, particularly the radial portion 15B is as follows.
  • the main portion 15D of the radial portion 15B has a configuration in which an inclined portion 15D1 and a columnar portion 15D2 are connected.
  • the sloped portion 15D1 is an upper portion of the main portion 15D, and means a portion that includes the main portion surface 15Ds and extends and expands at an angle to the XY plane.
  • the main portion 15D includes an inclined portion 15D1 that includes the main portion surface 15Ds and is inclined in the XY plane, and a columnar portion 15D2 that is below the inclined portion and extends along the Z direction. As shown in FIG.
  • the distal end portion 15A, the main portion 15D, and the leg portions 15E may be continuous as one body, but they may also be continuous so that separate members are connected.
  • the first cavity 15CV of the center portion 15A1 and the cavity 15CV2 within the inner circumferential surface of the radial portion 15B (and peripheral portion 15A2), regardless of whether they are integrated or connected as separate members. may be consecutive. Therefore, below, the cavity 15CV2 may be considered as the same cavity as the first cavity 15CV.
  • the leg portion 15E of the radial portion 15B consists of a columnar portion 15E2.
  • the thickness of the main portion 15D shown in the cross section of FIG. 8 may be equal to the thickness of the tip portion 15A in the r direction.
  • the thickness shown in the cross section of FIG. 8 means the thickness in the direction perpendicular to the diagonal direction in which the inclined part 15D1 of the main part 15D extends, and the thickness in the direction perpendicular to the Z direction in which the columnar part 15D2 of the main part 15D extends. do.
  • the term “equal” as used above includes both the case of being exactly the same and the case of being almost the same but including some errors.
  • the thickness of the main portion 15D may be wider than the thickness of the tip portion 15A (particularly the center portion 15A1) in the r direction. By increasing the thickness of the main portion 15D, the rigidity of the second component 15 can be improved.
  • a step 15F is formed on the outer peripheral surface of the leg portion 15E and the main portion 15D. Therefore, if the inner peripheral surface of the leg portion 15E is at the same position as the main portion 15D as shown in FIG. 8, the thickness of the leg portion 15E in the r direction is thinner than the thickness of the main portion 15D (columnar portion 15D2) in the r direction. Become. However, although not shown, by forming the inner circumferential surface of the leg portion 15E (the surface closest to the distal end portion 15A in the r direction) inside the inner circumferential surface of the main portion 15D in the r direction, the leg portion 15E can be formed in the r direction. The thickness of the main portion 15D may be equal to the thickness of the main portion 15D in the r direction.
  • a bottom hole 11CV having, for example, a circular plane is formed in the bottom 11 so as to be centered on the center line C.
  • the bottom hole 11CV passes through the bottom 11 in the Z direction.
  • the leg portion 15E is arranged so as to be inserted into the bottom hole 11CV. Due to the insertion, a slight distance G may be created between the surface of the leg portion 15E and the inner circumferential surface of the bottom hole 11CV.
  • the second part 15 is installed on the bottom part 11 so that the step 15F formed at the boundary between the outer peripheral surfaces of the main part 15D and the leg parts 15E rests on a portion of the surface 11A of the bottom part 11 adjacent to the outer edge of the bottom hole 11CV. It is preferable that More specifically, it is preferable that the main part 15D is placed on the bottom part 11 so that the lowermost surface of the main part 15D forming the step 15F and facing downward in the Z direction contacts the surface 11A.
  • FIG. 9 is a schematic sectional view showing a first example of a portion along line BB in FIG. 5 in a state where the second component is installed at the bottom of the powder charging component. That is, FIG. 9 shows a cross-sectional aspect in the same state as FIG. 8 but at a different position from FIG. Referring to FIG. 9, the portion along the line BB corresponds to the gap 15C of the second component 15. In the portion along the line BB, only the tip portion 15A is disposed, and the radial portion 15B is not disposed. Therefore, the outer circumferential surface 15Dc of the columnar portion 15D2 of the main portion 15D is disposed intermittently by the gap 15C. This is basically the same in the second to fourth examples described below, so the explanation will not be repeated below.
  • FIG. 9 only shows a pair of radial portions 15B on the front side (at the left end and right end in the X direction in the figure), which are closest to the A-A line among the members visible on the back side of the A-A line. .
  • the radial portions 15B other than the radial portion 15B closest to the front are omitted.
  • FIG. 10 is a schematic cross-sectional view showing a second example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder input component.
  • the columnar portion 15D2 is different from that in FIG.
  • the columnar portion 15D2 is disposed almost entirely directly below the inclined portion 15D1, which is the area directly under the main portion surface 15Ds that is inclined with respect to the XY plane.
  • a columnar portion 15A3 is also formed directly below the tip portion 15A, and this may be integrated with the columnar portion 15D2 of the main portion 15D.
  • the main portion 15D is formed thicker in the r direction than in the first example of FIG.
  • the r-direction dimension of the main portion 15D is equal to the dimension from the inner circumferential surface of the tip portion 15A to the outer circumferential surface of the main portion 15D, as shown in FIG. 10, for example.
  • the first cavity 15CV2 which is the inner circumferential surface of the main part 15D in the r direction, is arranged directly below the first cavity 15CV of the center part 15A1. It may be a mode in which it extends straight from to the cavity portion 15CV2. However, it is not limited to this.
  • the inner circumferential surface of the cavity 15CV2 of the radial portion 15B may be located slightly outside in the r direction than the inner circumferential surface of the first cavity 15CV of the distal end portion 15A. That is, although not shown, for example, only the main portion 15D may have the columnar portion 15D2, and the columnar portion 15A3 may not be formed directly below the tip portion 15A. This also applies to the examples shown in FIGS. 11 and 12, so the description will not be repeated below.
  • FIG. 11 is a schematic sectional view showing a third example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder charging component.
  • the leg portion 15E inserted into the bottom hole 11CV is also thicker in the r direction than in the second example of FIG. 10. Specifically, it extends straight along the Z direction so that the inner wall surface of the cavity 15CV2 in the main portion 15D (and the tip portion 15A) and the inner wall surface of the cavity 15CV2 in the leg portion 15E overlap in plan view. Therefore, the leg portion 15E is thinner in the r direction than the main portion 15D by the step 15F on the outer peripheral surface.
  • Such an embodiment may be adopted.
  • FIG. 12 is a schematic sectional view showing a fourth example of the portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder charging component.
  • the second part 15 and the bottom part 11 are integrally formed. Therefore, the second part 15 and the bottom part 11 are fixed so that they cannot be separated from each other.
  • the second part 15 is attached to the bottom part 11 in this manner.
  • the radial portion 15B includes only the main portion 15D.
  • the portion corresponding to the leg portion 15E is formed as the bottom portion 11 in FIG.
  • a portion of the cavity formed so as to be continuous with the first cavity 15CV and the cavity portion 15CV2 in the region formed as the bottom portion 11 is defined as the bottom hole 11CV in FIG. 12 .
  • the fourth example shown in FIG. 12 is different from the first to third examples in which the second component 15 is attached to the bottom part 11 by inserting the second part 15 into the bottom hole 11CV of the bottom part 11. ing.
  • the second component 15 may be formed to be integrally fixed to the bottom portion 11 in the same manner as in FIG. 12 in each of the examples shown in FIGS. 8 and 10.
  • the bottom hole 11CV is formed directly below the first cavity 15CV so as to be continuous with the first cavity 15CV.
  • continuous here means that the first cavity 15CV and the bottom hole 11CV are continuous as a single cavity.
  • the above can be said by defining the portion of the cavity 15CV2 disposed within the bottom hole 11CV as the bottom hole 11CV. Therefore, the cavity 15CV2 may be sandwiched between the first cavity 15CV and the bottom hole 11CV. This is because in each of the above examples, the first cavity 15CV, the cavity part 15CV2, and the bottom hole 11CV are all connected to form a single cavity.
  • a second cavity 16CV formed in the insertion part 16 below the bottom part 11 is arranged so as to be continuous with the bottom hole 11CV. Therefore, the first cavity 15CV, the cavity portion 15CV2, the bottom hole 11CV, and the second cavity 16CV may all be connected to form a single cavity.
  • FIG. 13 is a plan view of a first modification of the second component in FIG. 3.
  • FIG. 14 is a plan view of a second modification of the second part of FIG. 3.
  • FIG. 13 basically the same aspect as FIG. 5 is shown here, so the same components as in FIG. Don't repeat explanations.
  • the planar shape of the tip portion 15A is not circular but rectangular (square).
  • the planar shape of the tip portion 15A is triangular. In this way, the planar shape of the tip portion 15A is not limited to a circular shape.
  • the tip portion 15A can have any polygonal planar shape, such as a hexagon or an octagon.
  • the tip portion 15A may have a cylindrical shape as shown in FIG. 5, or may have a polygonal cylindrical shape in plan view as shown in FIGS. 13 and 14.
  • FIG. 15 is a plan view of a third modification of the second component in FIG. 3.
  • the same components as in FIG. do not have.
  • a plurality of regions including the main portion surface 15Ds, which are formed in the main portion 15D have the same overall width along the ⁇ direction. Therefore, conversely, the width of the gap 15C in FIG. 15 along the ⁇ direction increases toward the outside in the r direction. In this way, the relationship between the planar shapes of the main portion surface 15Ds and the gap 15C may be reversed from that in FIG. 5.
  • FIG. 16 is a schematic diagram showing each part of the powder container of FIG. 2.
  • the powder container 2 includes a container body 21 in which a container opening 21A is formed, and a powder 22 (see FIG. 1) that is housed in the container body 21 and serves as a film forming raw material.
  • the container body 21 usually has a cylindrical shape, but as shown in FIG. 16, the diameter may be smaller in some areas (particularly in the area adjacent to the container mouth 21A) than in other areas.
  • a film 23 made of aluminum is attached to cover the container mouth 21A. As a result, the inside of the container body 21 is sealed.
  • FIG. 17 is a flowchart showing the powder charging method according to this embodiment.
  • a powder container with a film pasted thereon is prepared (S10).
  • a powder container 2 is prepared in which a film 23 made of aluminum or the like is pasted on a container mouth 21A of a container body 21 containing powder 22.
  • the powder container 2 may be purchased with the film 23 pasted on the container mouth 21A in advance. Alternatively, after purchasing the powder container 2 to which the film 23 is not attached, the process of attaching the film 23 to the container mouth 21A may be performed.
  • FIG. 18 is a schematic diagram of the powder feeder.
  • the powder feeder 3 shown in FIG. 1 is a device (receiving device) that receives powder supplied from the powder container 2.
  • the powder supply machine 3 includes a powder storage section 31 and a powder supply port 32.
  • the powder storage section 31 is a main body of the powder supply machine 3 in which the powder 22 (see FIG. 1) for film formation is actually stored.
  • the powder supply port 32 is an opening (a member forming the opening) for supplying the powder 22 to the powder storage section 31.
  • the second part 15 may be attached so as to be inserted into the bottom part 11 (bottom hole 11CV) of the powder charging part 1, as shown in FIGS. 8, 10, and 11.
  • the second part 15 may be formed integrally with the bottom part 11 of the powder charging part 1 and fixedly attached to the bottom part 11, as shown in FIG.
  • the insertion part 16 is inserted into the inner peripheral surface of the powder supply port 32.
  • a female thread may be formed on the inner peripheral surface of the powder supply port 32 and a male thread may be formed on the outer peripheral surface of the insertion portion 16.
  • the insertion part 16 of the powder input part 1 (see FIG. 6) is inserted into the powder supply port 32, and the male thread of the insertion part 16 and the female thread of the powder supply port 32 are connected. It may be concluded.
  • the insert portion 16 may be attached to the powder supply port 32 by means other than screws (for example, a protrusion and a groove).
  • FIG. 19 is a schematic diagram illustrating a state immediately before the powder container is inserted into the powder supplying part in which the second part is installed and is attached to the powder supply machine.
  • the powder feeding component 1 is attached, for example, so as to overlap the top of the powder feeder 3 by the above-described procedure.
  • FIG. 20 is a schematic diagram showing a state in which the powder container is inserted after FIG. 19.
  • powder container 2 is inserted inside the inner peripheral surface of outer frame 12 of powder charging component 1 attached to powder feeder 3.
  • the powder container 2 is turned upside down so that the container mouth 21A is on the lower side and the bottom of the container body 21 is on the upper side.
  • the powder container 2 is lowered until the container mouth 21A is located below the uppermost surface of the tip 15A (see FIG. 4).
  • the diameter ⁇ 1 (diameter; the same applies hereinafter) of the container mouth 21A is larger than the diameter ⁇ 2 of the tip 15A (see FIG. 7).
  • the diameter ⁇ 2 of the tip portion 15A means the outer diameter of the center portion 15A1.
  • the diameter ⁇ 1 of the container mouth 21A is larger than the diameter ⁇ 3 of the radial portion 15B (see FIG. 7) (which has a larger diameter than the tip portion 15A).
  • the diameter ⁇ 5 of the inner peripheral surface 12A of the outer frame 12 is larger than the diameter ⁇ 4 of the container body 21.
  • the diameter ⁇ 4 refers to the diameter of the thickest region of the container body 21 other than the constricted region particularly near the container mouth 21A.
  • FIG. 21 is a sectional view showing the internal aspect in FIG. 20.
  • the second component 15 is a side view, and the other parts are sectional views.
  • the diameter ⁇ 1 in FIG. 19 is larger than the diameter ⁇ 3. Therefore, the film 23 (see FIG. 16) attached to the container mouth 21A is penetrated by the second part 15 including the tip 15A, enters the area surrounded by the outer frame 12, and reaches the bottom 11. ing. At this time, the container main body 21, which has been turned upside down, covers the second component 15 from above.
  • the diameter ⁇ 1 in FIG. 19 may be at least 40 mm or more.
  • ⁇ e in FIG. 5 is, for example, 33 mm, and ⁇ h is, for example, 61 mm. Therefore, the diameter ⁇ 1 in FIG. 19 may be larger than the diameter ⁇ 2 and smaller than the diameter ⁇ 3.
  • the container opening 21A does not reach the bottom 11 as shown in FIG. 21, but remains on the main part surface 15Ds, for example. At this time, the container body 21 covers only a portion of the tip portion 15A and the radial portion 15B of the second component 15.
  • the container main body 21 can be inserted into the outer frame 12.
  • the diameter ⁇ 5 is slightly larger than the diameter ⁇ 4.
  • the diameter ⁇ 5 is larger than the diameter ⁇ 4 by 1% or more and 2% or less. This reduces the gap between the inner circumferential surface 12A of the outer frame 12 and the largest diameter portion of the container body 21 in FIG. 21 when the powder container 2 is inserted into the powder charging component 1.
  • the height at which the outer frame 12 extends in the first direction (Z direction) from the surface 11A of the bottom part 11 (the surface on which the second component 15 is installed) is the height of the outer frame 12 other than the thick part on the bottom side of the container body 21 It is more preferable that the height is greater than or equal to the height of the part) in the Z direction.
  • the height is greater than or equal to the height of the part in the Z direction.
  • the residue of the powder 22 in the powder input component 1 is collected in the dust collecting section 17 (see FIG. (see) to the outside of the powder charging part 1 (S40).
  • the powder charging component 1 includes a first component 10 including a bottom portion 11 and an outer frame 12, and a second component 15.
  • the bottom portion 11 is formed with a bottom hole 11CV.
  • the outer frame 12 extends from the outer periphery of the bottom portion 11 in a first direction (Z direction) intersecting the bottom portion 11 .
  • the second part 15 is attached (by insertion or fixation) to the bottom part 11 so as to be surrounded by the outer frame 12 .
  • the second component 15 includes a tip portion 15A having a width in plan view.
  • the distal end portion 15A has a cylindrical portion (center portion 15A1) that extends in the first direction and has a first cavity 15CV formed therein.
  • the powder 22 When transferring the powder 22 from the powder container 2 to the powder feeder 3, for example, if a cutter having a protruding tip with a single point as disclosed in JP-A-7-256081 is used, the powder 22 will be transferred to the powder feeder 3. There is a risk of scattering from the body container 2. Further, powder may adhere and accumulate on the upper part of the protrusion-shaped cutter, reducing the efficiency of transferring the powder 22 from the powder container 2 to the powder feeder 3.
  • the powder 22 (see FIG. 1) used in the cold spray method has a relatively small particle size of 1 ⁇ m or more and 60 ⁇ m or less. This is because if the particle size is small, the powder 22 tends to aggregate and scatter, and is likely to adhere to the inner circumferential surface of the powder container 2 and the vicinity of one protrusion.
  • the distal end portion 15A of the second component 15 has a cylindrical center portion 15A1, and has a width in a plan view.
  • the tip portion 15A is arranged not at one point but over a wide range. Therefore, the tip portion 15A easily tears the film 23 over a wide range by simply lowering the film 23 of the powder container 2 a little. Furthermore, when the powder 22 is introduced, the container opening 21A is surrounded by the outer frame 12. Thereby, the risk of the powder 22 scattering to the outside of the powder charging component 1 during charging can be reduced.
  • the tip 15A has a cylindrical center portion 15A1, the powder 22 in the powder container 2 can easily flow into the first cavity 15CV from the damaged part where the film 23 is extensively torn by the tip 15A. Can be introduced.
  • the film 23 (not shown) attached to the container mouth 21A is torn as the powder container 2 descends as indicated by arrow M.
  • the powder 22 (not shown) is transferred to the first portion extending in the Z direction as shown by the arrow F. Falling inside the cavity 15CV. If the first cavity 15CV is connected to the inside of the powder feeder 3 as shown in FIG. 3 can be transferred efficiently.
  • the tip portion 15A has a cylindrical center portion 15A1
  • the distance that the film 23 must descend to break through the tip portion 15A can be shortened compared to the case where the tip portion has a protrusion shape with only one point. Therefore, even if powder comes into contact with the tip 15A, it is possible to reduce the possibility that a large amount of powder 22 will aggregate in a narrow range or adhere to the surface of the tip 15A. From this point of view, the powder 22 can be efficiently supplied into the powder feeder 3 and the like.
  • the bottom hole 11CV is preferably arranged so as to be continuous with the first cavity 15CV. If the first cavity 15CV communicates with the bottom hole 11CV as shown in FIG. 21, the structure is such that the first cavity 15CV communicates with the inside of the powder feeder 3 via the bottom hole 11CV. Therefore, the powder 22 can be efficiently transferred from the tip portion 15A (first cavity 15CV) into the powder feeder 3.
  • the second component 15 is preferably arranged such that a plurality of radial portions 15B extending radially from the tip portion 15A are arranged with gaps 15C in the circumferential direction ( ⁇ direction).
  • a part of the powder 22 that has fallen into the radial portion 15B is introduced from the gap 15C into the cavity 15CV2 (which is continuous with and is considered to be the same cavity as the first cavity 15CV). From there, it can be efficiently transferred into the powder feeder 3. Therefore, the possibility that the fallen powder 22 will be stacked on the second component 15 can be reduced.
  • the outer circumferential surface 15Dc of the radial portion 15B is also left open in the gap 15C where the main portion 15D and the leg portions 15E are not arranged in the ⁇ direction. Therefore, the powder can be introduced into the first cavity 15CV from the outside of the gap 15C in the r direction and allowed to fall into the powder feeder 3.
  • the aperture ratio due to the gap 15C on the outer circumferential surface of the main part 15D is It will be about 50%.
  • the radial portion 15B has a main portion 15D connected to the tip 15A, and a leg portion 15E connected to the opposite side (lower side in the Z direction) of the main portion 15D from the tip 15A.
  • the main part surface 15Ds of the main part 15D that is farthest from the leg part 15E is preferably inclined so that the side (outside) away from the tip part 15A of the main part 15D approaches the leg part 15E. Thereby, for example, the powder 22 that has fallen onto the main part surface 15Ds can be smoothly dropped into the cavity 15CV2, and can be efficiently transferred from there into the powder feeder 3.
  • each gap 15C may have the same width along the circumferential direction as a whole. By making the width of the gap 15C equal as shown in FIG. 5, the gap 15C can be easily processed. A method of manufacturing the powder charging part 1 will be described later.
  • the radial portion 15B may include a columnar portion 15D2 extending in the first direction. Thereby, the powder 22 that has entered the gap 15C can be easily dropped along the Z direction and easily introduced into the powder feeder 3.
  • the tip portion 15A has a circular planar portion (center portion 15A1). By having a cylindrical shape, the tip portion 15A can be easily processed.
  • the powder input component 1 may further include an insertion portion 16 in which a second cavity 16CV connected to the bottom hole 11CV is formed on the outside (lower side in the Z direction) of the bottom portion 11. If the first cavity 15CV communicates with the bottom hole 11CV as shown in FIG. 21, it is possible to form a continuous space from the first cavity 15CV to the second cavity 16CV via the bottom hole 11CV. Since the second cavity 16CV exists outside the area surrounded by the outer frame 12, it can be configured to communicate into the powder feeder 3 from there. Therefore, the powder 22 can be efficiently transferred from the tip portion 15A (first cavity 15CV) into the powder feeder 3.
  • a powder set 100 includes the above-mentioned powder input component 1 and a powder container 2 in which powder 22 is stored.
  • the powder container 2 includes a container body 21 in which a container opening 21A is formed.
  • the inside of the container body 21 is sealed by pasting a film 23 on the container mouth 21A.
  • a film 23 is attached to the container mouth 21A.
  • the diameter of the container mouth is preferably larger than the diameter of the tip.
  • FIG. 22 is a schematic diagram showing a state in which bridging occurs when powder in a powder container is dropped.
  • the diameter of the container mouth 21A is very small compared to the diameter of the container body 21.
  • the powder 22 will form an upwardly curved arch 25 at the constricted part of the container body 21.
  • the arch 25 receives resistance from below, and a phenomenon called bridging, which makes it difficult for the powder 22 to fall, tends to occur.
  • the container body made of polyethylene of the powder container 2 with a volume of 2 liters is 21, it is preferable that the diameter of the container opening 21A is 40 mm or more.
  • the diameter of the inner peripheral surface 12A of the outer frame 12 is preferably larger than the diameter of the container body 21.
  • the powder container 2 can be installed so that the part with the largest diameter of the container body 21 (the part with the diameter ⁇ 4 in FIG. 19) is surrounded by the outer frame 12. Thereby, scattering of the powder 22 to the outside of the outer frame 12 can be suppressed more reliably.
  • the powder feeding method uses the powder set 100 described above.
  • a powder container 2 with a film 23 attached to the container mouth 21A is prepared.
  • the powder feeding part 1, on which the second part 15 is installed (by insertion or fixation), is attached to the powder feeder 3 to which powder 22 is to be fed.
  • the powder container 2 is inserted into the outer frame 12 of the powder charging component 1. In the insertion process, the powder container 2 is lowered until the container opening 21A is located below the uppermost surface of the tip portion 15A while the powder container 2 is upside down.
  • the tip 15A contacts the film 23 and applies force to the film 23 from below, making it possible to break the film 23 attached to the container mouth 21A over a wide range. Further, as described above, scattering, aggregation, and adhesion of the powder 22 can be suppressed, and the powder 22 can be fed into the powder feeder 3 with high efficiency.
  • the powder input component 1 has a dust collection section 17.
  • the dust collecting section 17 has a cylindrical shape, for example, and has a third cavity 17CV.
  • the dust collecting section 17 is arranged so that the third cavity 17CV is connected to an opening formed in a part of the outer frame 12.
  • the residual amount of the powder 22 of the powder input component 1 can be collected through the dust collection duct 17A attached to the dust collection section 17. Therefore, since the powder feeding part 1 has the dust collection part 17, even after the feeding work of the powder 22 to the powder feeding machine 3 is completed, the powder 22 is not released to the outside of the powder feeding part 1. Scattering can be suppressed.
  • the powder 22 is scattered by the film 23 before being introduced into the powder feeder 3, by the second part 15 and the outer frame 12 while being introduced, and by the dust collector 17 after being introduced. can be suppressed.
  • the powder charging component 1 may be made of any material that can tear the film 23. That is, the powder charging component 1 is formed from either a metal material or a resin material, for example.
  • the powder charging component 1 made of a metal material is obtained by cutting a material such as generally known stainless steel (SUS304), for example. Among the cutting processes, it is preferable to perform turning using a machining center, for example.
  • the powder injection part 1 formed from a resin material may be obtained by resin molding using a metal mold, in addition to the cutting process as described above.
  • FIG. 23 is a schematic diagram of a cutter prepared as a comparative example of this embodiment. On the left side of FIG. 23 is shown a schematic diagram illustrating an aspect of a second component of a comparative example consisting of a cutter and a penetrating component. The right side of FIG. 23 shows an enlarged schematic view of the cutter.
  • a cutter 150 was prepared in which four triangular blades (triangular blades 150A) were combined. The cutter 150 roughly corresponds to the tip portion 15A of this embodiment.
  • the triangular blade was formed by cutting stainless steel.
  • the four triangular blades 150A were assembled so that their respective apexes were gathered at one protrusion 150P and their surfaces were at right angles.
  • a penetrating component 151 was attached directly below the cutter 150.
  • the penetrating component 151 is made of stainless steel and roughly corresponds to the radial portion 15B of this embodiment.
  • a fourth cavity 151CV as a through hole was formed at the center in plan view.
  • the fourth cavity 151CV was arranged to overlap with the protrusion 150P. This is an embodiment in which the powder 22 can fall inside the fourth cavity 151CV.
  • a powder charging part 1 shown in FIG. 8 was formed as a sample of this embodiment.
  • the second part 15 was formed by cutting.
  • Powder 22 (see FIG. 22) was fed into the powder feeder 3 using the above two types of samples.
  • the powder 22 transferred here is a mixed powder of aluminum and aluminum oxide.
  • the powder container 2 used had a container body 21 made of polyethylene and having a volume of 2 liters. 1 kg of powder 22 was charged, and the charging speed was 400 g/min.
  • FIG. 24 is a photograph showing a damaged part of the aluminum film attached to the container body when the cutter of the comparative example was used.
  • FIG. 25 is a photograph showing a damaged part of the aluminum film attached to the container body when the powder charging component including the second component of this embodiment is used. Referring to FIGS. 24 and 25, it was found that by using the powder charging component 1 of this embodiment, the film was damaged over a wider range than by using the cutter 150 of the comparative example. Furthermore, when the powder charging part 1 of the present embodiment was used, scattering, aggregation, and adhesion (stacking of the powder 22) of the powder 22 were suppressed compared to the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

A powder charging component (1) comprises a first component (10) including a bottom section (11) and an outer frame (12), and a second component (15). The bottom section (11) has a bottom section hole (11CV) formed therein. The outer frame (12) extends from the outer periphery of the bottom section (11) in a first direction that intersects the bottom section (11). The second component (15) can be attached to the bottom section (11) so as to be surrounded by the outer frame (12). The second component (15) includes a leading end section (15A) with width in a planar view. The leading end section (15A) extends in the first direction and has a cylindrical part in which a first cavity (15CV) is formed.

Description

粉体投入用部品、粉体セットおよび粉体投入方法Powder charging parts, powder set, and powder charging method
 本開示は、粉体投入用部品、粉体セットおよび粉体投入方法に関する。 The present disclosure relates to a powder charging component, a powder set, and a powder charging method.
 従来、溶射法の1つであるコールドスプレー法が知られている。コールドスプレー法では、スプレーガンのノズル先端から、キャリアガスと共に成膜原料を基材に噴射することで、当該基材上に成膜する。コールドスプレー法を用いれば、大気中での成膜原料の酸化および熱変質を抑制でき、基材上に緻密で密着性の高い皮膜を形成できる。 A cold spray method, which is one of the thermal spray methods, is conventionally known. In the cold spray method, a film is formed on a base material by injecting a film forming raw material together with a carrier gas onto the base material from the nozzle tip of a spray gun. By using the cold spray method, oxidation and thermal deterioration of the film forming raw material in the atmosphere can be suppressed, and a dense and highly adhesive film can be formed on the substrate.
 コールドスプレー法に用いられる成膜装置には、ノズルに成膜原料となる粉末が集合した粉体を供給する粉体供給機が設置される。ノズルへの粉体の供給に先立ち、粉体供給機内に粉体を供給する必要がある。 The film forming apparatus used in the cold spray method is equipped with a powder feeder that supplies powder, which is a collection of powders that become film forming raw materials, to a nozzle. Prior to supplying the powder to the nozzle, it is necessary to supply the powder into the powder supply machine.
 粉体の投入方法として、特開平7-256081号公報(特許文献1)には、袋に入った粉体を飛散なく効率的に落下させ、反応槽に投入する方法が開示されている。具体的には、特開平7-256081号公報には、鋭角の三角形の刃を4枚組み合わせたカッターにより袋を破り粉体を落下させる方法が提案されている。 As a method for charging powder, JP-A-7-256081 (Patent Document 1) discloses a method for efficiently dropping powder in a bag without scattering and charging it into a reaction tank. Specifically, Japanese Patent Application Laid-Open No. 7-256081 proposes a method in which a bag is torn open using a cutter having four acute triangular blades, and the powder is dropped.
特開平7-256081号公報Japanese Patent Application Publication No. 7-256081
 コールドスプレー法による成膜用の粉体は、粉体容器内に収納されている。粉体容器において粉体が吐出可能な容器口は、通常、アルミニウム製のフィルムが貼られている。これにより、粉体容器内が封止される。粉体を粉体供給機内に供給する際には、当該フィルムを破る必要がある。 Powder for film formation by the cold spray method is stored in a powder container. The mouth of a powder container through which powder can be discharged is usually covered with an aluminum film. This seals the inside of the powder container. When feeding the powder into the powder feeder, it is necessary to tear the film.
 特開平7-256081号公報に開示されるカッターは、袋を破る先端部が、傘の先端部のように1点による突起形状である。このようなカッターを使ってコールドスプレー用の粉体が収納された容器のフィルムを破損する場合、フィルムが破れた部分から粉体が粉体容器外へ飛散するリスクが生じる。またフィルムを広範囲に破るためにはカッターが高さ方向に大きな寸法を有する必要があり、その時に粉体が飛散するリスクが生じる。さらにカッターの先端部の上部に粉体が蓄積するため、粉体供給機内への粉体の供給がスムーズになされない可能性がある。 In the cutter disclosed in JP-A-7-256081, the tip that tears the bag has a single protrusion shape like the tip of an umbrella. When such a cutter is used to break the film of a container containing cold spray powder, there is a risk that the powder will scatter out of the powder container from the part where the film is torn. Furthermore, in order to tear the film over a wide range, the cutter needs to have a large dimension in the height direction, and at this time there is a risk of powder scattering. Furthermore, since the powder accumulates above the tip of the cutter, there is a possibility that the powder cannot be smoothly fed into the powder feeder.
 本開示は上記の課題に鑑みなされたものである。その目的は、飛散なく、効率的に粉体を粉体供給機へ移し替えることが可能な粉体投入用部品、粉体セットおよび粉体投入方法を提供することである。 The present disclosure has been made in view of the above problems. The purpose is to provide a powder charging part, a powder set, and a powder charging method that can efficiently transfer powder to a powder feeder without scattering.
 本開示に従った粉体投入用部品は、第1部品と、第2部品とを備える。第1部品は底部と外枠とを含む。底部は底部穴が形成される。外枠は底部の外周から底部に交差する第1方向に延びる。第2部品は外枠に囲まれるように底部に取り付けられる。第2部品は、平面視において幅を有する先端部を含む。先端部は、第1方向に延び、第1の空洞が形成された筒形状の部分を有する。 A powder charging component according to the present disclosure includes a first component and a second component. The first part includes a bottom and an outer frame. A bottom hole is formed at the bottom. The outer frame extends from the outer periphery of the bottom in a first direction intersecting the bottom. The second part is attached to the bottom so as to be surrounded by the outer frame. The second component includes a tip portion having a width in plan view. The tip portion has a cylindrical portion that extends in the first direction and has a first cavity formed therein.
 本開示に従った粉体セットは、上記の粉体投入用部品と、粉体が収納された粉体容器とを備える。当該粉体容器は、容器口が形成された容器本体を含む。容器口にはフィルムが貼り付けられることにより容器本体内が封止されている。 A powder set according to the present disclosure includes the above-mentioned powder input component and a powder container in which powder is stored. The powder container includes a container body in which a container opening is formed. The inside of the container body is sealed by pasting a film on the container mouth.
 本開示に従った粉体投入方法は、上記の粉体セットを用いる。当該粉体投入方法では、容器口にフィルムを貼り付けられた粉体容器が準備される。粉体を供給すべき粉体供給機へ、第2部品が設置された粉体投入用部品が取り付けられる。粉体容器が粉体投入用部品の外枠内に挿入される。挿入する工程では、粉体容器が上下反転された状態で容器口が先端部の最上面より下方に位置するまで、粉体容器が下降される。 The powder input method according to the present disclosure uses the above powder set. In this powder charging method, a powder container is prepared with a film attached to the container mouth. A powder feeding component, on which the second component is installed, is attached to a powder feeding machine that is to supply powder. A powder container is inserted into the outer frame of the powder input component. In the step of inserting, the powder container is lowered until the container opening is located below the top surface of the tip portion while the powder container is upside down.
 上記によれば、飛散なく、効率的に粉体を粉体供給機へ移し替えることが可能な粉体投入用部品、粉体セットおよび粉体投入方法が得られる。 According to the above, it is possible to obtain a powder charging part, a powder set, and a powder charging method that can efficiently transfer powder to a powder supply machine without scattering.
本実施の形態に係る成膜装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of a film forming apparatus according to the present embodiment. 本実施の形態に係る粉体セットを示す概略図である。FIG. 1 is a schematic diagram showing a powder set according to the present embodiment. 図2の粉体投入用部品の各部を示す概略図である。FIG. 3 is a schematic diagram showing each part of the powder charging part of FIG. 2. FIG. 図3の第2部品の側面図である。FIG. 4 is a side view of the second part of FIG. 3; 図3の第2部品の平面図である。FIG. 4 is a plan view of the second part of FIG. 3; 図3の粉体投入用部品の側面図である。FIG. 4 is a side view of the powder charging component of FIG. 3; 図3の粉体投入用部品における、第1部品と第2部品とが分解された態様を示す概略図である。FIG. 4 is a schematic diagram showing a disassembled state of the first part and the second part in the powder charging part of FIG. 3; 第2部品が粉体投入用部品の底部に設置された状態における、図5中のA-A線に沿う部分の第1例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a first example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder input component. 第2部品が粉体投入用部品の底部に設置された状態における、図5中のB-B線に沿う部分の第1例を示す概略断面図である。FIG. 6 is a schematic sectional view showing a first example of a portion along line BB in FIG. 5 in a state where the second component is installed at the bottom of the powder input component. 第2部品が粉体投入用部品の底部に設置された状態における、図5中のA-A線に沿う部分の第2例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a second example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder input component. 第2部品が粉体投入用部品の底部に設置された状態における、図5中のA-A線に沿う部分の第3例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a third example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder input component. 第2部品が粉体投入用部品の底部に設置された状態における、図5中のA-A線に沿う部分の第4例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a fourth example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder input component. 図3の第2部品の第1変形例の平面図である。FIG. 4 is a plan view of a first modification of the second component of FIG. 3; 図3の第2部品の第2変形例の平面図である。FIG. 4 is a plan view of a second modification of the second component of FIG. 3; 図3の第2部品の第3変形例の平面図である。FIG. 4 is a plan view of a third modification of the second component of FIG. 3; 図2の粉体容器の各部を示す概略図である。3 is a schematic diagram showing each part of the powder container of FIG. 2. FIG. 本実施の形態に係る粉体投入方法を示すフローチャートである。3 is a flowchart showing a powder charging method according to the present embodiment. 粉体供給機の概略図である。It is a schematic diagram of a powder feeder. 第2部品が設置された粉体投入用部品が粉体供給機へ取り付けられたところへ、粉体容器が挿入される直前の態様を示す概略図である。It is a schematic diagram which shows the aspect immediately before a powder container is inserted into the part for powder injection|throwing-in which the 2nd part was installed in the powder supply machine. 図19の後に、粉体容器が挿入された態様を示す概略図である。20 is a schematic diagram showing a state in which a powder container is inserted after FIG. 19. FIG. 図20における内部態様を示す断面図である。FIG. 21 is a sectional view showing an internal aspect in FIG. 20; 粉体容器内の粉体を落下させる際のブリッジが起こった状態を示す概略図である。FIG. 2 is a schematic diagram showing a state in which bridging occurs when powder in a powder container is dropped. 本実施の形態の比較例として準備されたカッターの概略図である。It is a schematic diagram of a cutter prepared as a comparative example of this embodiment. 比較例のカッターを用いたときの、容器本体に貼られたアルミニウム製のフィルムの破損部の態様を示す写真である。It is a photograph showing the appearance of a damaged part of an aluminum film stuck to a container body when a cutter of a comparative example is used. 本実施の形態の第2部品を備える粉体投入用部品を用いたときの、容器本体に貼られたアルミニウム製のフィルムの破損部の態様を示す写真である。It is a photograph which shows the aspect of the damaged part of the aluminum film stuck to the container main body when the part for powder injection|throwing-in which is equipped with the 2nd part of this Embodiment is used.
 以下、図面を参照しながら、本開示の実施の形態について説明する。
 <成膜装置の構成>
 図1は、本実施の形態に係る成膜装置の構成を示す模式図である。図1に示す成膜装置200は、ノズル5bを含むスプレーガン5と、粉体供給機3と、ガス供給部4と、マスク治具6とを主に備える。
Embodiments of the present disclosure will be described below with reference to the drawings.
<Configuration of film forming apparatus>
FIG. 1 is a schematic diagram showing the configuration of a film forming apparatus according to this embodiment. The film forming apparatus 200 shown in FIG. 1 mainly includes a spray gun 5 including a nozzle 5b, a powder supply machine 3, a gas supply section 4, and a mask jig 6.
 スプレーガン5は、スプレーガン本体部5aと、ノズル5bと、ヒータ5cと、温度センサ5dとを主に含む。スプレーガン本体部5aの先端側である第1端にはノズル5bが接続されている。スプレーガン本体部5aの後端側である第2端には配管9が接続されている。当該配管9はバルブ7を介してガス供給部4に接続されている。ガス供給部4は、配管9を介してスプレーガン5に動作ガスを供給する。バルブ7を開閉することで、ガス供給部4からスプレーガン5に対する動作ガスの供給状態を制御できる。配管9には圧力センサ8が設置されている。圧力センサ8はガス供給部4から配管9に供給される動作ガスの圧力を測定する。 The spray gun 5 mainly includes a spray gun main body 5a, a nozzle 5b, a heater 5c, and a temperature sensor 5d. A nozzle 5b is connected to a first end, which is the tip side, of the spray gun main body 5a. A pipe 9 is connected to a second end, which is the rear end side, of the spray gun main body 5a. The pipe 9 is connected to the gas supply section 4 via a valve 7. Gas supply section 4 supplies operating gas to spray gun 5 via piping 9. By opening and closing the valve 7, the supply state of the operating gas from the gas supply section 4 to the spray gun 5 can be controlled. A pressure sensor 8 is installed in the pipe 9. The pressure sensor 8 measures the pressure of the working gas supplied from the gas supply section 4 to the pipe 9.
 スプレーガン本体部5aの第2端からスプレーガン本体部5aの内部に供給される動作ガスは、ヒータ5cにより加熱される。ヒータ5cはスプレーガン本体部5aの第2端側に配置されている。スプレーガン本体部5aの内部を矢印41に沿って動作ガスが流れる。ノズル5bとスプレーガン本体部5aとの接続部に温度センサ5dが接続されている。温度センサ5dはスプレーガン本体部5aの内部を流れる動作ガスの温度を測定する。 The operating gas supplied from the second end of the spray gun body 5a into the interior of the spray gun body 5a is heated by the heater 5c. The heater 5c is arranged on the second end side of the spray gun main body 5a. The operating gas flows along the arrow 41 inside the spray gun main body 5a. A temperature sensor 5d is connected to the connection between the nozzle 5b and the spray gun main body 5a. The temperature sensor 5d measures the temperature of the operating gas flowing inside the spray gun main body 5a.
 ノズル5bには配管9が接続されている。配管9は粉体供給機3に接続されている。粉体供給機3は、配管9を介してスプレーガン5のノズル5bに成膜原料となる粉体を供給する。 A pipe 9 is connected to the nozzle 5b. Piping 9 is connected to powder feeder 3. The powder supply device 3 supplies powder, which is a film forming raw material, to the nozzle 5b of the spray gun 5 via a pipe 9.
 マスク治具6は、基材50とスプレーガン5との間に配置される。マスク治具6には貫通穴が形成されている。当該貫通穴は基材50の表面における成膜領域を規定する。 The mask jig 6 is placed between the base material 50 and the spray gun 5. A through hole is formed in the mask jig 6. The through hole defines a film formation area on the surface of the base material 50.
 <成膜装置の動作>
 図1に示した成膜装置200では、矢印40に示すようにガス供給部4から配管9を介して動作ガスがスプレーガン5に供給される。スプレーガン本体部5aの第2端に供給された動作ガスは、ヒータ5cによって加熱される。スプレーガン本体部5aからノズル5bに動作ガスは流れる。ノズル5bには、配管9を介して粉体供給機3から矢印42に示すように成膜原料となる粉体22が供給される。ノズル5bに供給された粉体22は、動作ガスとともにノズル5bの先端から基材50に向けて噴射される。基材50の表面にはマスク治具6が配置されている。噴射された粉体22はマスク治具6の貫通穴を介して基材50の表面に到達する。基材50の表面では、噴射された粉体22を原料とする膜が形成される。
<Operation of film forming equipment>
In the film forming apparatus 200 shown in FIG. 1, operating gas is supplied from the gas supply section 4 to the spray gun 5 via the pipe 9 as shown by an arrow 40. The operating gas supplied to the second end of the spray gun main body 5a is heated by the heater 5c. The operating gas flows from the spray gun main body 5a to the nozzle 5b. Powder 22, which serves as a film-forming raw material, is supplied to the nozzle 5b from the powder supply device 3 via a pipe 9 as shown by an arrow 42. The powder 22 supplied to the nozzle 5b is injected from the tip of the nozzle 5b toward the base material 50 together with the operating gas. A mask jig 6 is arranged on the surface of the base material 50. The injected powder 22 reaches the surface of the base material 50 through the through hole of the mask jig 6. On the surface of the base material 50, a film is formed using the injected powder 22 as a raw material.
 <粉体セット>
 図2は、本実施の形態に係る粉体セットを示す概略図である。図2を参照して、粉体セット100は、粉体投入用部品1と、粉体容器2とを備えている。粉体セット100は、粉体容器2内に収納されるコールドスプレー用の粉体を粉体供給機3(図1参照)内に供給するために用いられる。粉体投入用部品1および粉体容器2についての詳細は後述する。
<Powder set>
FIG. 2 is a schematic diagram showing a powder set according to this embodiment. Referring to FIG. 2, the powder set 100 includes a powder charging component 1 and a powder container 2. The powder set 100 is used to supply powder for cold spray stored in the powder container 2 into the powder feeder 3 (see FIG. 1). Details of the powder charging part 1 and the powder container 2 will be described later.
 <粉体投入用部品の構成>
 図3は、図2の粉体投入用部品の各部を示す概略図である。なお以降においては説明の便宜上、X方向、Y方向、Z方向、r方向(径方向)およびθ方向(周方向)が用いられる。また以降における粉体投入用部品1(の各部材)のZ方向の上側および下側との説明は、これが粉体供給機3に設置された状態でのZ方向の上側および下側に一致する。図3を参照して、粉体投入用部品1は、たとえば一般公知のステンレス鋼により形成されている。粉体投入用部品1は、第1部品10と、第2部品15とを主に備えている。
<Configuration of powder input parts>
FIG. 3 is a schematic diagram showing each part of the powder charging part of FIG. 2. Note that hereinafter, for convenience of explanation, the X direction, Y direction, Z direction, r direction (radial direction), and θ direction (circumferential direction) will be used. In addition, in the following description, the upper side and lower side of the powder feeding part 1 (each member thereof) in the Z direction corresponds to the upper side and lower side of the powder feeding part 1 in the Z direction when it is installed in the powder feeder 3. . Referring to FIG. 3, the powder charging component 1 is made of, for example, commonly known stainless steel. The powder charging part 1 mainly includes a first part 10 and a second part 15.
 第1部品10は、粉体投入用部品1の全体の土台となる部材であり、少なくとも図3の例における第2部品15が差し込まれる被差込用部品である。第1部品10は、底部11と、外枠12とを含んでいる。底部11は、粉体投入用部品1の下側に配置され、粉体投入用部品1の土台となる部分である。底部11はたとえばXY平面上にて円形の平面形状を有する。 The first part 10 is a member that serves as the base of the entire powder charging part 1, and is an inserted part into which at least the second part 15 in the example of FIG. 3 is inserted. The first part 10 includes a bottom part 11 and an outer frame 12. The bottom portion 11 is disposed below the powder charging component 1 and serves as the base of the powder charging component 1. The bottom portion 11 has, for example, a circular planar shape on the XY plane.
 外枠12は、底部11と一体である。外枠12は、底部11の外周からZ方向に延びている。外枠12と底部11とが一体となることにより、容器形状を有する第1部品10となっている。 The outer frame 12 is integral with the bottom part 11. The outer frame 12 extends from the outer periphery of the bottom portion 11 in the Z direction. By integrating the outer frame 12 and the bottom portion 11, the first component 10 has a container shape.
 第2部品15は、粉体投入用部品1を平面視したときの中央部に配置可能な部品であり、少なくとも図3の例における第1部品10に挿入可能な差込口用部品である。ここで平面視とは、Z方向からXY平面を見た態様を意味する。第2部品15は、底部11の上面上に設置されている。これにより、第2部品15は外枠12に囲まれている。 The second component 15 is a component that can be placed in the center of the powder input component 1 when viewed from above, and is an insertion port component that can be inserted into at least the first component 10 in the example of FIG. Planar view here means a mode viewed from the XY plane from the Z direction. The second part 15 is installed on the upper surface of the bottom part 11. Thereby, the second component 15 is surrounded by the outer frame 12.
 図4は、図3の第2部品の側面図である。図5は、図3の第2部品の平面図である。図3、図4および図5を参照して、第2部品15は、先端部15Aと、放射状部15Bとを主に含んでいる。 FIG. 4 is a side view of the second part of FIG. 3. FIG. 5 is a plan view of the second part of FIG. 3. Referring to FIGS. 3, 4, and 5, the second component 15 mainly includes a tip portion 15A and a radial portion 15B.
 先端部15Aは、第2部品15の平面視における中央に配置され、Z方向の最上部に設けられる。中央は、図5中の平面視された第2部品15全体の中心を示す中心線Cおよびこれに比較的近い領域を意味する。先端部15Aは、中心部15A1と、周囲部15A2とを有する。図5の中心部15A1は、Z方向に沿って延びる円筒形状である。つまり先端部15Aの最上面である先端部最上面15Aaは円形の平面形状を有する。中心部15A1の内部には第1の空洞15CVが形成されている。図5に示すように、先端部15Aの中心部15A1は、平面視において第1の空洞15CVからr方向の外側へ向けてある幅を有している。このため先端部最上面15Aaはr方向に幅を有する円環形状である。 The tip portion 15A is arranged at the center of the second component 15 in a plan view, and is provided at the top in the Z direction. The center means a center line C indicating the center of the entire second component 15 in plan view in FIG. 5 and a region relatively close to the center line C. The distal end portion 15A has a center portion 15A1 and a peripheral portion 15A2. The center portion 15A1 in FIG. 5 has a cylindrical shape extending along the Z direction. In other words, the top surface 15Aa of the tip portion 15A, which is the top surface of the tip portion 15A, has a circular planar shape. A first cavity 15CV is formed inside the center portion 15A1. As shown in FIG. 5, the center portion 15A1 of the tip portion 15A has a certain width toward the outside in the r direction from the first cavity 15CV in plan view. Therefore, the topmost surface 15Aa of the tip part has an annular shape having a width in the r direction.
 周囲部15A2は、中心部15A1に直接連なる部分である。図5の平面図において、周囲部15A2は中心部15A1のr方向外側に隣接し、中心部15A1のθ方向の全体(1周分)を取り囲む。このため中心部15A1の少なくともr方向内側の領域は、概ね円環形状である。 The peripheral portion 15A2 is a portion directly connected to the center portion 15A1. In the plan view of FIG. 5, the peripheral portion 15A2 is adjacent to the outer side of the center portion 15A1 in the r direction, and surrounds the entire center portion 15A1 in the θ direction (one round). Therefore, at least the inner region in the r direction of the center portion 15A1 has a generally annular shape.
 放射状部15Bは、先端部15Aから複数、放射状に延びている。複数の放射状部15Bのそれぞれは、先端部15Aの外周面からr方向の外側に向けて延びている。複数の放射状部15Bのそれぞれは、θ方向について互いに隙間15Cをあけて配置されている。一例として、図5においては12個の放射状部15Bが形成された例が示される。ただし放射状部15Bの形成される数はこれに限らず、たとえば3個以上5個以下であってもよい。あるいは放射状部15Bは6個以上11個以下であってもよいし、13個以上16個以下であってもよい。 A plurality of radial portions 15B extend radially from the tip portion 15A. Each of the plurality of radial portions 15B extends outward in the r direction from the outer peripheral surface of the tip portion 15A. Each of the plurality of radial portions 15B is arranged with a gap 15C between them in the θ direction. As an example, FIG. 5 shows an example in which twelve radial portions 15B are formed. However, the number of radial portions 15B formed is not limited to this, and may be, for example, 3 or more and 5 or less. Alternatively, the number of radial portions 15B may be 6 or more and 11 or less, or 13 or more and 16 or less.
 放射状部15Bは、主要部15Dと、脚部15Eとを有する。主要部15Dは、放射状部15Bのうち上側に配置され、先端部15Aに繋がる。主要部15Dは図5のように周囲部15A2の最も中心部15A1から離れた(平面視において中心線Cからr方向の外側に離れた)位置に繋がってもよい。あるいは主要部15Dは中心部15A1の最下部に直接繋がるように配置されてもよいし、中心部15A1の下方の側面に繋がりそこから延びる態様でもよい。つまり先端部15Aは周囲部15A2を有さず筒形状の中心部15A1のみからなってもよい。脚部15Eは、主要部15Dの先端部15Aと反対側(つまり下側)に繋がる。 The radial portion 15B has a main portion 15D and leg portions 15E. The main portion 15D is disposed on the upper side of the radial portion 15B and is connected to the tip portion 15A. The main portion 15D may be connected to a position farthest from the center portion 15A1 of the peripheral portion 15A2 (away from the center line C in the r direction in plan view) as shown in FIG. Alternatively, the main portion 15D may be arranged so as to be directly connected to the lowest part of the center portion 15A1, or may be connected to the lower side surface of the center portion 15A1 and extended from there. In other words, the tip portion 15A may include only the cylindrical center portion 15A1 without the peripheral portion 15A2. The leg portion 15E is connected to the opposite side (that is, the lower side) of the tip portion 15A of the main portion 15D.
 主要部15Dは、その最上面としての主要部表面15Dsを有している。つまり主要部表面15Dsは主要部15Dのうち脚部15Eから最も離れた(脚部15Eと反対側の)位置に存在する表面である。 The main part 15D has a main part surface 15Ds as its uppermost surface. In other words, the main part surface 15Ds is a surface of the main part 15D that exists at a position farthest from the leg part 15E (on the opposite side to the leg part 15E).
 主要部表面15Dsは、図5の平面図において周囲部15A2の最上面(周囲部表面15A2a)のr方向の外側に連なるように配置される。主要部表面15Dsは、周囲部表面15A2aの外周からr方向の外側に向けて放射状に延びている。このため主要部表面15Dsを含む主要部15Dは、θ方向について隙間15Cを挟むように複数配置される。主要部表面15Dsのr方向の先端部15Aから最も離れた外周(外周面15Dcの最上部)は平面視にて円弧状である。したがって主要部15D(後述のZ方向に沿って延びる柱状部15D2:図4参照)のr方向の外周面15Dcは平面視にて円弧状である。 In the plan view of FIG. 5, the main part surface 15Ds is arranged so as to be connected to the outer side of the uppermost surface (peripheral part surface 15A2a) of the peripheral part 15A2 in the r direction. The main part surface 15Ds extends radially outward in the r direction from the outer periphery of the peripheral part surface 15A2a. Therefore, a plurality of main parts 15D including the main part surface 15Ds are arranged with gaps 15C in between in the θ direction. The outer periphery of the main part surface 15Ds furthest away from the tip 15A in the r direction (the top of the outer peripheral surface 15Dc) has an arc shape in plan view. Therefore, the outer circumferential surface 15Dc in the r direction of the main portion 15D (columnar portion 15D2 extending along the Z direction described below: see FIG. 4) is arcuate in plan view.
 以上のように、周囲部表面15A2aはθ方向の1周分の全体を含むように配置されるのに対し、主要部表面15Dsはθ方向について隙間15Cを挟むように間欠的に複数配置される点において異なる。ただし周囲部表面15A2aと主要部表面15Dsとは、単一の表面を形成するように連結している。この表面はXY平面に対して傾斜している。主要部表面15Dsは、主要部15Dのr方向の内側(先端部15A、中心線Cに近い側)がZ方向の上側に位置し、主要部15Dのr方向の先端部15Aから離れる側が脚部15Eに近づく(Z方向の下側に位置する)ように傾斜している。言い換えれば、主要部15Dが放射状に延びる終点側が、放射状に延びる始点側(先端部15A側)よりも脚部15Eに近い。さらに言い換えれば、主要部15Dの外周面15Dc側が、先端部15Aに近い側よりもZ方向の下側に位置するように、主要部表面15Dsは傾斜している。 As described above, the peripheral surface 15A2a is arranged so as to include the entire circumference in the θ direction, whereas a plurality of main portion surfaces 15Ds are arranged intermittently across the gap 15C in the θ direction. They differ in this respect. However, the peripheral surface 15A2a and the main surface 15Ds are connected to form a single surface. This surface is inclined with respect to the XY plane. In the main part surface 15Ds, the inner side of the main part 15D in the r direction (the tip 15A, the side closer to the center line C) is located on the upper side in the Z direction, and the side of the main part 15D away from the tip 15A in the r direction is the leg part. It is inclined so as to approach 15E (located on the lower side in the Z direction). In other words, the radially extending end point side of the main portion 15D is closer to the leg portion 15E than the radially extending starting point side (tip portion 15A side). In other words, the main part surface 15Ds is inclined so that the outer peripheral surface 15Dc side of the main part 15D is located lower in the Z direction than the side closer to the tip part 15A.
 周囲部表面15A2aと主要部表面15DsとのXY平面に対する傾斜角は等しくてもよいが異なっていてもよい。両者が異なる場合、周囲部表面15A2aがXY平面となす傾斜角の方が、主要部表面15DsがXY平面となす傾斜角よりも大きいことが好ましい。 The angles of inclination of the peripheral surface 15A2a and the main surface 15Ds with respect to the XY plane may be equal or different. If they are different, it is preferable that the angle of inclination that the peripheral surface 15A2a makes with the XY plane is larger than the angle of inclination that the main part surface 15Ds makes with the XY plane.
 放射状部15Bの主要部15Dは、上記の主要部表面15Dsおよびその直下の領域(後述の傾斜部15D1)に加え、Z方向に沿って延びる後述の柱状部15D2を含む。柱状部15D2は、図4中にて、主要部表面15Dsの最下部よりも下側に配置され、上下方向に延びている。柱状部15D2は、少なくとも主要部15Dのr方向の外周面15Dcを含む、比較的先端部15Aから離れたr方向の外側の領域の真下に配置されている。したがって、主要部15Dのうちの柱状部15D2は、外周面15Dc(外周面15Dcのr方向内側に隣接する領域を含む)がθ方向に隙間15Cを挟むように間欠的に複数形成された、円筒形状の一部としての形状を有する。 The main part 15D of the radial part 15B includes a columnar part 15D2, which will be described later, extending along the Z direction, in addition to the above-mentioned main part surface 15Ds and a region immediately below it (slanted part 15D1, which will be described later). The columnar portion 15D2 is arranged below the lowest part of the main portion surface 15Ds in FIG. 4, and extends in the vertical direction. The columnar portion 15D2 is disposed directly below an outer region in the r direction that is relatively distant from the tip portion 15A and includes at least the outer circumferential surface 15Dc of the main portion 15D in the r direction. Therefore, the columnar portions 15D2 of the main portion 15D are cylinders in which a plurality of outer circumferential surfaces 15Dc (including a region adjacent to the inside of the outer circumferential surface 15Dc in the r direction) are formed intermittently with gaps 15C in the θ direction. It has a shape as part of a shape.
 脚部15Eは、主要部15Dと同様に、Z方向に沿って延びる柱状部15E2(図4参照)を含む。脚部15Eの外周面は、主要部15Dの外周面に比べてややr方向の内側に形成されることが好ましい。これにより、主要部15Dの外周面と脚部15Eの外周面との境界には段差15F(図4参照)が形成される。脚部15Eは、主要部15Dの柱状部15D2と平面視にて重なる領域の少なくとも一部に、当該柱状部15D2と連なるように形成されている。脚部15Eはθ方向に沿う幅を有している。したがって図4および図5において、脚部15Eは、r方向について最も先端部15Aから離れた外周面がθ方向に隙間15Cを挟むように間欠的に複数形成された、円筒形状の一部としての形状を有する。 The leg portion 15E, like the main portion 15D, includes a columnar portion 15E2 (see FIG. 4) that extends along the Z direction. It is preferable that the outer circumferential surface of the leg portion 15E is formed slightly inside in the r direction compared to the outer circumferential surface of the main portion 15D. As a result, a step 15F (see FIG. 4) is formed at the boundary between the outer circumferential surface of the main portion 15D and the outer circumferential surface of the leg portion 15E. The leg portion 15E is formed in at least a portion of a region of the main portion 15D that overlaps with the columnar portion 15D2 in a plan view so as to be continuous with the columnar portion 15D2. The leg portion 15E has a width along the θ direction. Therefore, in FIGS. 4 and 5, the leg portions 15E are formed as part of a cylindrical shape in which a plurality of leg portions are formed intermittently so that the outer circumferential surface furthest from the tip portion 15A in the r direction is sandwiched with a gap 15C in the θ direction. It has a shape.
 放射状部15B(主要部表面15Dsおよびその真下の領域)が複数形成されるため、θ方向についてそれらに挟まれる隙間15Cも複数形成される。図5では放射状部15Bが12個形成されるため、隙間15Cもこれと同数の12個形成される。個々の隙間15Cは、全体においてθ方向に沿う幅が等しい。つまり図5に示すように、隙間15Cの周方向の端面は第2部品15の中心線Cに向かっていない。隙間15Cの周方向の1対の端面は互いに平行となるように延びている。一例として、図5における隙間15Cの幅(最短の直線距離)wは8mmである。このwの値は、θ方向に沿う隙間15Cの(放射状部15Bの外周面15Dcと同じr方向位置における)寸法Lとほぼ等しい。図5では隙間15Cの幅が全体において一定であるため、逆に図5の主要部表面15Dsは、r方向の外側に向けてθ方向に沿う幅が大きくなる。一例として、図5における主要部表面15Dsの外周面のθ方向に沿う幅は、8mmに近い値である。 Since a plurality of radial portions 15B (the main portion surface 15Ds and the area immediately below the main portion surface 15Ds) are formed, a plurality of gaps 15C sandwiched therebetween in the θ direction are also formed. In FIG. 5, since twelve radial portions 15B are formed, the same number of gaps 15C are also formed. The individual gaps 15C have the same overall width along the θ direction. That is, as shown in FIG. 5, the end surface of the gap 15C in the circumferential direction does not face the center line C of the second component 15. A pair of circumferential end faces of the gap 15C extend parallel to each other. As an example, the width (shortest linear distance) w of the gap 15C in FIG. 5 is 8 mm. This value of w is approximately equal to the dimension L of the gap 15C along the θ direction (at the same position in the r direction as the outer peripheral surface 15Dc of the radial portion 15B). In FIG. 5, the width of the gap 15C is constant throughout, and conversely, the width of the main part surface 15Ds in FIG. 5 along the θ direction increases toward the outside in the r direction. As an example, the width of the outer peripheral surface of the main part surface 15Ds in FIG. 5 along the θ direction is close to 8 mm.
 図4および図5の第2部品15の、上記w以外の各部の寸法の一例は以下の通りである。図4の先端部15AのZ方向に沿う寸法aは5mmである。図4の主要部15Dのうち主要部表面15Dsの最下部から延びる柱状部15D2のZ方向に沿う寸法bは20mmである。図4の脚部15Eの柱状部15E2のZ方向に沿う寸法cは15mmである。図5の先端部15Aの第1の空洞15CVの直径φdは30mmである。図5の中心部15A1の外周面の直径φeは33mmである。脚部15Eの内周面の直径φfは54mmであり、脚部15Eの外周面の直径φgは57mmである。主要部15Dの外周面15Dcの直径φhは61mmである。 An example of the dimensions of each part of the second part 15 in FIGS. 4 and 5 other than the above w is as follows. The dimension a of the tip end 15A in FIG. 4 along the Z direction is 5 mm. The dimension b along the Z direction of the columnar part 15D2 extending from the lowest part of the main part surface 15Ds of the main part 15D in FIG. 4 is 20 mm. The dimension c of the columnar portion 15E2 of the leg portion 15E in FIG. 4 along the Z direction is 15 mm. The diameter φd of the first cavity 15CV of the tip portion 15A in FIG. 5 is 30 mm. The diameter φe of the outer peripheral surface of the center portion 15A1 in FIG. 5 is 33 mm. The diameter φf of the inner peripheral surface of the leg portion 15E is 54 mm, and the diameter φg of the outer peripheral surface of the leg portion 15E is 57 mm. The diameter φh of the outer peripheral surface 15Dc of the main portion 15D is 61 mm.
 図6は、図3の粉体投入用部品の側面図である。ただし説明の便宜上、後述する差込部16および集塵部17については断面による内部の態様を併せて図示している。図6を参照して、粉体投入用部品1は上記の他に、差込部16と、集塵部17とを備えている。差込部16は、第1部品10における底部11の下面上、すなわちZ方向について第2部品15が配置される側と反対側の(第1部品10の外側を向く)面上に配置される。差込部16は、底部11の下面からZ方向の下方に延びている。差込部16は、粉体投入用部品1を粉体供給機3に設置する際に、粉体供給機3内に配置可能な部分である。集塵部17は、外枠12の外周面から、底部11に沿う方向(たとえばX方向)に沿って延びている。集塵部17は、容器形状の第1部品10の内部に残存する粉末等を粉体投入用部品1の外部に回収するための部分である。 FIG. 6 is a side view of the powder charging part of FIG. 3. However, for convenience of explanation, the internal aspects of the insertion section 16 and dust collecting section 17, which will be described later, are also shown in cross section. Referring to FIG. 6, the powder feeding part 1 includes an insertion part 16 and a dust collection part 17 in addition to the above. The insertion part 16 is arranged on the lower surface of the bottom part 11 of the first part 10, that is, on the surface opposite to the side on which the second part 15 is arranged in the Z direction (facing the outside of the first part 10). . The insertion portion 16 extends downward in the Z direction from the lower surface of the bottom portion 11 . The insertion part 16 is a part that can be placed inside the powder feeder 3 when the powder feeding part 1 is installed in the powder feeder 3 . The dust collecting section 17 extends from the outer circumferential surface of the outer frame 12 in a direction along the bottom section 11 (for example, the X direction). The dust collection section 17 is a part for collecting powder and the like remaining inside the container-shaped first component 10 to the outside of the powder input component 1.
 差込部16は内部に、第2の空洞16CVが形成されている。このため差込部16は大筋で円筒形状を有している。差込部16の外周面には雄ネジが形成されてもよいし、突起または溝が形成されてもよい。また集塵部17は内部に、第3の空洞17CVが形成されている。このため集塵部17は円筒形状を有している。 A second cavity 16CV is formed inside the insertion portion 16. Therefore, the insertion portion 16 has a generally cylindrical shape. A male screw may be formed on the outer peripheral surface of the insertion portion 16, or a projection or a groove may be formed. Further, a third cavity 17CV is formed inside the dust collecting section 17. Therefore, the dust collecting section 17 has a cylindrical shape.
 図7は、図3の粉体投入用部品における、第1部品と第2部品とが分解された態様を示す概略図である。言い換えれば図7では、第1部品10に第2部品15が挿入されようとする直前の態様を示している。図7を参照して、図中一点鎖線の矢印のように、第2部品15が、第1部品10の底部穴11CVに挿入される。これにより第2部品15は第1部品10の平面視における中央部に収まるように設置される。次に、第2部品15が第1部品10に設置された粉体投入用部品1全体の断面形状について説明する。 FIG. 7 is a schematic diagram showing a state in which the first part and the second part of the powder charging part shown in FIG. 3 are disassembled. In other words, FIG. 7 shows a state immediately before the second component 15 is about to be inserted into the first component 10. Referring to FIG. 7, the second component 15 is inserted into the bottom hole 11CV of the first component 10, as indicated by the dashed-dotted arrow in the figure. Thereby, the second component 15 is installed so as to fit in the center of the first component 10 in a plan view. Next, the cross-sectional shape of the entire powder charging component 1 in which the second component 15 is installed on the first component 10 will be described.
 図8は、第2部品が粉体投入用部品の底部に設置された状態における、図5中のA-A線に沿う部分の第1例を示す概略断面図である。なお図8では図を見やすくする観点から、A-A線の奥側に見える部材の一部(特にX方向における空洞部内)の図示が省略される。このことは、後述する図9~図12についても同様である。 FIG. 8 is a schematic cross-sectional view showing a first example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder charging component. Note that in FIG. 8, from the viewpoint of making the diagram easier to read, some of the members visible on the back side of the line AA (particularly inside the cavity in the X direction) are omitted. This also applies to FIGS. 9 to 12, which will be described later.
 図8を参照して、第2部品15の特に放射状部15Bの断面態様は以下の通りである。放射状部15Bのうちの主要部15Dは傾斜部15D1と柱状部15D2とが連なった態様である。ここで傾斜部15D1とは、主要部15Dのうちの上側の部分であり、主要部表面15Dsを含みXY平面に傾斜して延び拡がる部分を意味する。言い換えれば主要部15Dは主要部表面15Dsを含みXY平面に傾斜する傾斜部15D1と、傾斜部の下側でありZ方向に沿って延びる柱状部15D2とを有する。図8のように、先端部15Aと主要部15Dと脚部15Eとは一体として連なっていてもよいが、これらは別部材が接続されるように連なった態様であってもよい。これらが一体であるか別部材が接続されたものであるかにかかわらず、中心部15A1の第1の空洞15CVと、放射状部15B(および周囲部15A2)の内周面内の空洞部15CV2とは連なってもよい。このため以下にて空洞部15CV2を第1の空洞15CVと同一の空洞として考える場合がある。一方、放射状部15Bのうちの脚部15Eは柱状部15E2からなる。 Referring to FIG. 8, the cross-sectional aspect of the second component 15, particularly the radial portion 15B, is as follows. The main portion 15D of the radial portion 15B has a configuration in which an inclined portion 15D1 and a columnar portion 15D2 are connected. Here, the sloped portion 15D1 is an upper portion of the main portion 15D, and means a portion that includes the main portion surface 15Ds and extends and expands at an angle to the XY plane. In other words, the main portion 15D includes an inclined portion 15D1 that includes the main portion surface 15Ds and is inclined in the XY plane, and a columnar portion 15D2 that is below the inclined portion and extends along the Z direction. As shown in FIG. 8, the distal end portion 15A, the main portion 15D, and the leg portions 15E may be continuous as one body, but they may also be continuous so that separate members are connected. The first cavity 15CV of the center portion 15A1 and the cavity 15CV2 within the inner circumferential surface of the radial portion 15B (and peripheral portion 15A2), regardless of whether they are integrated or connected as separate members. may be consecutive. Therefore, below, the cavity 15CV2 may be considered as the same cavity as the first cavity 15CV. On the other hand, the leg portion 15E of the radial portion 15B consists of a columnar portion 15E2.
 主要部15Dは、図8の断面に示す厚みが、先端部15Aのr方向の厚みと等しくてもよい。ここで図8の断面に示す厚みとは、主要部15Dの傾斜部15D1が延びる斜め方向に直交する方向の厚み、および主要部15Dの柱状部15D2が延びるZ方向に直交する方向の厚みを意味する。また上記にて等しいとは全く同一である場合と、ほぼ同一だが多少の誤差を含む場合との双方を含む。ただし主要部15Dの上記厚みは先端部15A(特に中心部15A1)のr方向の厚みよりも広くてもよい。主要部15Dの厚みを大きくすることにより、第2部品15の剛性を向上できる。 The thickness of the main portion 15D shown in the cross section of FIG. 8 may be equal to the thickness of the tip portion 15A in the r direction. Here, the thickness shown in the cross section of FIG. 8 means the thickness in the direction perpendicular to the diagonal direction in which the inclined part 15D1 of the main part 15D extends, and the thickness in the direction perpendicular to the Z direction in which the columnar part 15D2 of the main part 15D extends. do. In addition, the term "equal" as used above includes both the case of being exactly the same and the case of being almost the same but including some errors. However, the thickness of the main portion 15D may be wider than the thickness of the tip portion 15A (particularly the center portion 15A1) in the r direction. By increasing the thickness of the main portion 15D, the rigidity of the second component 15 can be improved.
 脚部15Eは、主要部15Dとの間で外周面に段差15Fが生じる。このため図8のように脚部15Eの内周面が主要部15Dと同じ位置であれば、脚部15Eのr方向の厚みは主要部15D(柱状部15D2)のr方向の厚みよりも薄くなる。ただし図示されないが、脚部15Eの内周面(r方向について先端部15Aに最も近い面)を主要部15Dの内周面よりもr方向の内側に形成することにより、脚部15Eのr方向の厚みを主要部15Dのr方向の厚みに等しくしてもよい。 A step 15F is formed on the outer peripheral surface of the leg portion 15E and the main portion 15D. Therefore, if the inner peripheral surface of the leg portion 15E is at the same position as the main portion 15D as shown in FIG. 8, the thickness of the leg portion 15E in the r direction is thinner than the thickness of the main portion 15D (columnar portion 15D2) in the r direction. Become. However, although not shown, by forming the inner circumferential surface of the leg portion 15E (the surface closest to the distal end portion 15A in the r direction) inside the inner circumferential surface of the main portion 15D in the r direction, the leg portion 15E can be formed in the r direction. The thickness of the main portion 15D may be equal to the thickness of the main portion 15D in the r direction.
 底部11には、中心線Cを中心とするように、たとえば円形の平面を有する底部穴11CVが形成されている。底部穴11CVはZ方向に底部11を貫通する。底部穴11CVに挿入されるように、脚部15Eが配置される。挿入により脚部15Eの表面と底部穴11CVの内周面との間に僅かな間隔Gが生じてもよい。主要部15Dと脚部15Eとの外周面の境界に形成された段差15Fが底部穴11CVの外縁に隣接する底部11の表面11Aの部分に乗るように、第2部品15が底部11に設置されることが好ましい。より詳しくは、段差15Fを形成する主要部15Dの最下部のZ方向下側を向く表面が、表面11Aに接触するように、主要部15Dが底部11上に載置されることが好ましい。 A bottom hole 11CV having, for example, a circular plane is formed in the bottom 11 so as to be centered on the center line C. The bottom hole 11CV passes through the bottom 11 in the Z direction. The leg portion 15E is arranged so as to be inserted into the bottom hole 11CV. Due to the insertion, a slight distance G may be created between the surface of the leg portion 15E and the inner circumferential surface of the bottom hole 11CV. The second part 15 is installed on the bottom part 11 so that the step 15F formed at the boundary between the outer peripheral surfaces of the main part 15D and the leg parts 15E rests on a portion of the surface 11A of the bottom part 11 adjacent to the outer edge of the bottom hole 11CV. It is preferable that More specifically, it is preferable that the main part 15D is placed on the bottom part 11 so that the lowermost surface of the main part 15D forming the step 15F and facing downward in the Z direction contacts the surface 11A.
 図9は、第2部品が粉体投入用部品の底部に設置された状態における、図5中のB-B線に沿う部分の第1例を示す概略断面図である。つまり図9では、図8と同状態における、図8とは異なる位置の断面態様が示される。図9を参照して、B-B線に沿う部分は第2部品15の隙間15Cに相当する部分である。B-B線に沿う部分には先端部15Aのみ配置され、放射状部15Bは配置されない。このため主要部15Dの柱状部15D2の外周面15Dcは隙間15Cにより間欠的に配置される。このことは、次に述べる第2例~第4例においても基本的に同様であるため以下では説明を繰り返さない。 FIG. 9 is a schematic sectional view showing a first example of a portion along line BB in FIG. 5 in a state where the second component is installed at the bottom of the powder charging component. That is, FIG. 9 shows a cross-sectional aspect in the same state as FIG. 8 but at a different position from FIG. Referring to FIG. 9, the portion along the line BB corresponds to the gap 15C of the second component 15. In the portion along the line BB, only the tip portion 15A is disposed, and the radial portion 15B is not disposed. Therefore, the outer circumferential surface 15Dc of the columnar portion 15D2 of the main portion 15D is disposed intermittently by the gap 15C. This is basically the same in the second to fourth examples described below, so the explanation will not be repeated below.
 なお図9には、A-A線の奥側に見える部材のうち最もA-A線に近い、手前側の(図中X方向の左端および右端の)1対の放射状部15Bのみ図示される。図9では最も手前側の放射状部15B以外の放射状部15Bは省略されている。 Note that FIG. 9 only shows a pair of radial portions 15B on the front side (at the left end and right end in the X direction in the figure), which are closest to the A-A line among the members visible on the back side of the A-A line. . In FIG. 9, the radial portions 15B other than the radial portion 15B closest to the front are omitted.
 <粉体投入用部品の変形例>
 図10は、第2部品が粉体投入用部品の底部に設置された状態における、図5中のA-A線に沿う部分の第2例を示す概略断面図である。図10を参照して、ここには図8の第1例と基本的に同様の態様が示されるため、図8と同一の構成要素には同一の符号を付し、特に異なる点がない限りその説明を繰り返さない。図10では、柱状部15D2が図8とは異なる。図10では、XY平面に対して傾斜する主要部表面15Dsの直下の領域としての傾斜部15D1の真下のほぼ全体に柱状部15D2が配置される。また図10では、先端部15Aの真下にも柱状部15A3が形成され、これが主要部15Dの柱状部15D2と一体になってもよい。
<Modified examples of powder input parts>
FIG. 10 is a schematic cross-sectional view showing a second example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder input component. Referring to FIG. 10, since basically the same aspect as the first example of FIG. 8 is shown, the same components as in FIG. Don't repeat the explanation. In FIG. 10, the columnar portion 15D2 is different from that in FIG. In FIG. 10, the columnar portion 15D2 is disposed almost entirely directly below the inclined portion 15D1, which is the area directly under the main portion surface 15Ds that is inclined with respect to the XY plane. Further, in FIG. 10, a columnar portion 15A3 is also formed directly below the tip portion 15A, and this may be integrated with the columnar portion 15D2 of the main portion 15D.
 その結果、主要部15Dはr方向について、図8の第1例に比べて厚く形成されている。具体的には、主要部15Dのr方向寸法は、たとえば図10に示すように、先端部15Aの内周面から、主要部15Dの外周面までの寸法に等しい。この場合は図10に示すように、主要部15Dのr方向の内周面である空洞部15CV2が、中心部15A1の第1の空洞15CVの真下に配置されるように、第1の空洞15CVから空洞部15CV2までまっすぐ延びる態様であってもよい。ただしこれに限られない。たとえば図示されないが、先端部15Aの第1の空洞15CVの内周面よりも、放射状部15Bの空洞部15CV2の内周面の方がr方向のやや外側に配置されてもよい。すなわち図示されないが、たとえば主要部15Dのみが柱状部15D2を有し、先端部15Aの真下には柱状部15A3が形成されない構成であってもよい。このことは次の図11、図12の各例についても同様であるため以下では説明を繰り返さない。 As a result, the main portion 15D is formed thicker in the r direction than in the first example of FIG. Specifically, the r-direction dimension of the main portion 15D is equal to the dimension from the inner circumferential surface of the tip portion 15A to the outer circumferential surface of the main portion 15D, as shown in FIG. 10, for example. In this case, as shown in FIG. 10, the first cavity 15CV2, which is the inner circumferential surface of the main part 15D in the r direction, is arranged directly below the first cavity 15CV of the center part 15A1. It may be a mode in which it extends straight from to the cavity portion 15CV2. However, it is not limited to this. For example, although not shown, the inner circumferential surface of the cavity 15CV2 of the radial portion 15B may be located slightly outside in the r direction than the inner circumferential surface of the first cavity 15CV of the distal end portion 15A. That is, although not shown, for example, only the main portion 15D may have the columnar portion 15D2, and the columnar portion 15A3 may not be formed directly below the tip portion 15A. This also applies to the examples shown in FIGS. 11 and 12, so the description will not be repeated below.
 図11は、第2部品が粉体投入用部品の底部に設置された状態における、図5中のA-A線に沿う部分の第3例を示す概略断面図である。図11を参照して、ここには図10の第2例と基本的に同様の態様が示されるため、図10と同一の構成要素には同一の符号を付し、特に異なる点がない限りその説明を繰り返さない。図11では、主要部15Dに加え、底部穴11CV内に挿入される脚部15Eも、r方向について図10の第2例に比べて厚く形成されている。具体的には、主要部15D(および先端部15A)における空洞部15CV2の内壁面と、脚部15Eにおける空洞部15CV2の内壁面とが平面視にて重なるようにZ方向に沿って真っすぐ延びる。このため脚部15Eは主要部15Dに比べて、外周面の段差15Fの分だけr方向について薄い。このような態様であってもよい。 FIG. 11 is a schematic sectional view showing a third example of a portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder charging component. Referring to FIG. 11, since basically the same aspect as the second example of FIG. 10 is shown, the same components as in FIG. Don't repeat the explanation. In FIG. 11, in addition to the main portion 15D, the leg portion 15E inserted into the bottom hole 11CV is also thicker in the r direction than in the second example of FIG. 10. Specifically, it extends straight along the Z direction so that the inner wall surface of the cavity 15CV2 in the main portion 15D (and the tip portion 15A) and the inner wall surface of the cavity 15CV2 in the leg portion 15E overlap in plan view. Therefore, the leg portion 15E is thinner in the r direction than the main portion 15D by the step 15F on the outer peripheral surface. Such an embodiment may be adopted.
 図10および図11のように、放射状部15Bが図8に比べてr方向に厚く形成されれば、図8に比べて、第2部品15全体の剛性が高められる。 As shown in FIGS. 10 and 11, if the radial portion 15B is formed thicker in the r direction than in FIG. 8, the rigidity of the entire second component 15 is increased compared to FIG.
 図12は、第2部品が粉体投入用部品の底部に設置された状態における、図5中のA-A線に沿う部分の第4例を示す概略断面図である。図12を参照して、ここには図11の第3例と基本的に同様の態様が示されるため、図11と同一の構成要素には同一の符号を付し、特に異なる点がない限りその説明を繰り返さない。図12では、第2部品15と底部11とが一体として形成されている。このため第2部品15と底部11とは互いに分離できないように固定されている。このような態様で第2部品15が底部11に取り付けられている。図12では放射状部15Bとして主要部15Dのみを有する。他の各例にて脚部15Eに相当する部分は図12では底部11として形成されている。図12での底部11は他の各例と同様に、XY平面に沿うサイズが第2部品15の部分に比べて大きい。底部11として形成される領域における、第1の空洞15CVおよび空洞部15CV2に連なるように形成された空洞の部分は、図12における底部穴11CVと規定される。 FIG. 12 is a schematic sectional view showing a fourth example of the portion along line AA in FIG. 5 in a state where the second component is installed at the bottom of the powder charging component. Referring to FIG. 12, basically the same aspect as the third example of FIG. 11 is shown, so the same components as in FIG. Don't repeat the explanation. In FIG. 12, the second part 15 and the bottom part 11 are integrally formed. Therefore, the second part 15 and the bottom part 11 are fixed so that they cannot be separated from each other. The second part 15 is attached to the bottom part 11 in this manner. In FIG. 12, the radial portion 15B includes only the main portion 15D. In each of the other examples, the portion corresponding to the leg portion 15E is formed as the bottom portion 11 in FIG. The bottom portion 11 in FIG. 12 is larger in size along the XY plane than the second part 15, as in the other examples. A portion of the cavity formed so as to be continuous with the first cavity 15CV and the cavity portion 15CV2 in the region formed as the bottom portion 11 is defined as the bottom hole 11CV in FIG. 12 .
 以上の各点において図12の第4例は、第2部品15が底部11の底部穴11CVが挿入されることにより第2部品15が底部11に取り付けられる上記第1例から第3例と異なっている。 In each of the above points, the fourth example shown in FIG. 12 is different from the first to third examples in which the second component 15 is attached to the bottom part 11 by inserting the second part 15 into the bottom hole 11CV of the bottom part 11. ing.
 図示されないが、変形例として、図8および図10の各例に対して、図12と同様に第2部品15が底部11と一体として固定されるように形成されてもよい。 Although not shown, as a modification, the second component 15 may be formed to be integrally fixed to the bottom portion 11 in the same manner as in FIG. 12 in each of the examples shown in FIGS. 8 and 10.
 以上の第1例~第4例のいずれについても、第1の空洞15CVに連なるように、第1の空洞15CVの真下に、底部穴11CVが形成される。なお、ここで連なるとは、第1の空洞15CVと底部穴11CVとが単一の空洞として連なっていることを意味する。特に底部穴11CV内に配置される空洞部15CV2の部分を底部穴11CVと定義することにより、上記のようにいえる。したがって第1の空洞15CVと底部穴11CVとの間に空洞部15CV2が挟まれてもよい。上記各例においては第1の空洞15CVと空洞部15CV2と底部穴11CVとがすべて連なり単一の空洞を形成するためである。さらに、底部11の下の差込部16に形成された第2の空洞16CVが底部穴11CVに連なるように配置される。このため第1の空洞15CVと空洞部15CV2と底部穴11CVと第2の空洞16CVとがすべて連なり単一の空洞を形成することもある。 In any of the first to fourth examples above, the bottom hole 11CV is formed directly below the first cavity 15CV so as to be continuous with the first cavity 15CV. Note that the term "continuous" here means that the first cavity 15CV and the bottom hole 11CV are continuous as a single cavity. In particular, the above can be said by defining the portion of the cavity 15CV2 disposed within the bottom hole 11CV as the bottom hole 11CV. Therefore, the cavity 15CV2 may be sandwiched between the first cavity 15CV and the bottom hole 11CV. This is because in each of the above examples, the first cavity 15CV, the cavity part 15CV2, and the bottom hole 11CV are all connected to form a single cavity. Furthermore, a second cavity 16CV formed in the insertion part 16 below the bottom part 11 is arranged so as to be continuous with the bottom hole 11CV. Therefore, the first cavity 15CV, the cavity portion 15CV2, the bottom hole 11CV, and the second cavity 16CV may all be connected to form a single cavity.
 図13は、図3の第2部品の第1変形例の平面図である。図14は、図3の第2部品の第2変形例の平面図である。図13および図14を参照して、ここには図5と基本的に同様の態様が示されるため、図5と同一の構成要素には同一の符号を付し、特に異なる点がない限りその説明を繰り返さない。図13では先端部15Aの平面形状が円形ではなく矩形状(正方形状)である。図14では先端部15Aの平面形状が三角形状である。このように先端部15Aの平面形状は円形に限られない。なお図示されないが、先端部15Aはたとえば六角形、八角形などの任意の多角形の平面形状にできる。先端部15Aは図5のように円筒形状であってもよいし、図13および図14のように平面視にて多角形の筒形状であってもよい。 FIG. 13 is a plan view of a first modification of the second component in FIG. 3. FIG. 14 is a plan view of a second modification of the second part of FIG. 3. FIG. Referring to FIGS. 13 and 14, basically the same aspect as FIG. 5 is shown here, so the same components as in FIG. Don't repeat explanations. In FIG. 13, the planar shape of the tip portion 15A is not circular but rectangular (square). In FIG. 14, the planar shape of the tip portion 15A is triangular. In this way, the planar shape of the tip portion 15A is not limited to a circular shape. Although not shown, the tip portion 15A can have any polygonal planar shape, such as a hexagon or an octagon. The tip portion 15A may have a cylindrical shape as shown in FIG. 5, or may have a polygonal cylindrical shape in plan view as shown in FIGS. 13 and 14.
 図15は、図3の第2部品の第3変形例の平面図である。図15を参照して、ここには図5と基本的に同様の態様が示されるため、図5と同一の構成要素には同一の符号を付し、特に異なる点がない限りその説明を繰り返さない。図15では、主要部15Dに複数形成される、主要部表面15Dsを含んだ領域のそれぞれが、全体においてθ方向に沿う幅が等しい。このため逆に、図15の隙間15Cは、r方向の外側に向けてθ方向に沿う幅が大きくなる。このように、主要部表面15Dsと隙間15Cとの平面形状の関係が図5と逆転した構成であってもよい。 FIG. 15 is a plan view of a third modification of the second component in FIG. 3. Referring to FIG. 15, since basically the same aspect as FIG. 5 is shown here, the same components as in FIG. do not have. In FIG. 15, a plurality of regions including the main portion surface 15Ds, which are formed in the main portion 15D, have the same overall width along the θ direction. Therefore, conversely, the width of the gap 15C in FIG. 15 along the θ direction increases toward the outside in the r direction. In this way, the relationship between the planar shapes of the main portion surface 15Ds and the gap 15C may be reversed from that in FIG. 5.
 <粉体容器の構成>
 図16は、図2の粉体容器の各部を示す概略図である。図16を参照して、粉体容器2は、容器口21Aが形成された容器本体21と、容器本体21に収納された、成膜原料となる粉体22(図1参照)とを備える。容器本体21は通常円筒形状であるが、図16に示すように部分的に(特に容器口21Aに隣接する領域において)他の領域よりも径が小さくてもよい。容器口21Aを塞ぐように、たとえばアルミニウム製のフィルム23が貼り付けられている。これにより容器本体21の内部が封止されている。
<Configuration of powder container>
FIG. 16 is a schematic diagram showing each part of the powder container of FIG. 2. Referring to FIG. 16, the powder container 2 includes a container body 21 in which a container opening 21A is formed, and a powder 22 (see FIG. 1) that is housed in the container body 21 and serves as a film forming raw material. The container body 21 usually has a cylindrical shape, but as shown in FIG. 16, the diameter may be smaller in some areas (particularly in the area adjacent to the container mouth 21A) than in other areas. For example, a film 23 made of aluminum is attached to cover the container mouth 21A. As a result, the inside of the container body 21 is sealed.
 <粉体投入方法>
 本実施の形態に係る粉体投入方法は、図2の粉体セット100を用いた方法である。図17は、本実施の形態に係る粉体投入方法を示すフローチャートである。図17を参照して、フィルムが貼られた粉体容器が準備される(S10)。具体的には、図16に示す、粉体22が収納された容器本体21の容器口21Aに、アルミニウム製などのフィルム23が貼られた粉体容器2が準備される。なおここでは、容器口21Aにフィルム23が予め貼られた粉体容器2を購入してもよい。あるいはフィルム23が貼られていない粉体容器2を購入した後にフィルム23を容器口21Aに貼る処理がなされてもよい。
<How to add powder>
The powder feeding method according to this embodiment is a method using the powder set 100 shown in FIG. 2. FIG. 17 is a flowchart showing the powder charging method according to this embodiment. Referring to FIG. 17, a powder container with a film pasted thereon is prepared (S10). Specifically, as shown in FIG. 16, a powder container 2 is prepared in which a film 23 made of aluminum or the like is pasted on a container mouth 21A of a container body 21 containing powder 22. Note that here, the powder container 2 may be purchased with the film 23 pasted on the container mouth 21A in advance. Alternatively, after purchasing the powder container 2 to which the film 23 is not attached, the process of attaching the film 23 to the container mouth 21A may be performed.
 図17を再度参照して、第2部品が設置された粉体投入用部品が、粉体供給機へ取り付けられる(S20)。図18は、粉体供給機の概略図である。図18を参照して、図1に示す粉体供給機3は、粉体容器2から供給される粉体を受ける装置(受け側装置)である。粉体供給機3は、粉体収納部31と、粉体供給口32とを含む。粉体収納部31は粉体供給機3のうち実際に成膜用の粉体22(図1参照)が収納される、粉体供給機3の本体部である。粉体供給口32は、粉体収納部31に粉体22を供給するための開口部(開口を形成する部材)である。 Referring again to FIG. 17, the powder input component with the second component installed is attached to the powder feeder (S20). FIG. 18 is a schematic diagram of the powder feeder. Referring to FIG. 18, the powder feeder 3 shown in FIG. 1 is a device (receiving device) that receives powder supplied from the powder container 2. The powder supply machine 3 includes a powder storage section 31 and a powder supply port 32. The powder storage section 31 is a main body of the powder supply machine 3 in which the powder 22 (see FIG. 1) for film formation is actually stored. The powder supply port 32 is an opening (a member forming the opening) for supplying the powder 22 to the powder storage section 31.
 第2部品15は、図8、図10、図11のように、粉体投入用部品1の底部11(底部穴11CV)に挿入されるように取り付けられてもよい。あるいは第2部品15は、図12のように、粉体投入用部品1の底部11と一体となるように形成され、底部11に固定されるように取り付けられてもよい。 The second part 15 may be attached so as to be inserted into the bottom part 11 (bottom hole 11CV) of the powder charging part 1, as shown in FIGS. 8, 10, and 11. Alternatively, the second part 15 may be formed integrally with the bottom part 11 of the powder charging part 1 and fixedly attached to the bottom part 11, as shown in FIG.
 たとえば後述の図21に示すように、粉体供給口32の内周面に差込部16が挿入される場合を考える。この場合、たとえば粉体供給口32の内周面に雌ネジが、差込部16の外周面に雄ネジが形成されてもよい。これにより、粉体投入用部品1(図6参照)の差込部16が粉体供給口32に挿入されることで、差込部16の雄ネジと粉体供給口32の雌ネジとが締結されてもよい。あるいはネジ以外の手段(たとえば突起部と溝)により、差込部16が粉体供給口32に取り付けられてもよい。 For example, as shown in FIG. 21, which will be described later, consider a case where the insertion part 16 is inserted into the inner peripheral surface of the powder supply port 32. In this case, for example, a female thread may be formed on the inner peripheral surface of the powder supply port 32 and a male thread may be formed on the outer peripheral surface of the insertion portion 16. As a result, the insertion part 16 of the powder input part 1 (see FIG. 6) is inserted into the powder supply port 32, and the male thread of the insertion part 16 and the female thread of the powder supply port 32 are connected. It may be concluded. Alternatively, the insert portion 16 may be attached to the powder supply port 32 by means other than screws (for example, a protrusion and a groove).
 図19は、第2部品が設置された粉体投入用部品が粉体供給機へ取り付けられたところへ、粉体容器が挿入される直前の態様を示す概略図である。図19を参照して、上記の手順により、たとえば粉体供給機3の最上部に重畳するように、粉体投入用部品1が取り付けられる。 FIG. 19 is a schematic diagram illustrating a state immediately before the powder container is inserted into the powder supplying part in which the second part is installed and is attached to the powder supply machine. Referring to FIG. 19, the powder feeding component 1 is attached, for example, so as to overlap the top of the powder feeder 3 by the above-described procedure.
 再度図17を参照して、次に、粉体投入用部品へ、粉体容器が挿入される(S30)。図20は、図19の後に、粉体容器が挿入された態様を示す概略図である。図19および図20を参照して、粉体供給機3に取り付けられた粉体投入用部品1のうち、外枠12の内周面の内側に、粉体容器2が挿入される。このとき、粉体容器2は上下反転され、容器口21Aが下側、容器本体21の底が上側とされる。この状態で、容器口21Aが先端部15A(図4参照)の最上面より下方に位置するまで、粉体容器2が下降される。 Referring again to FIG. 17, next, the powder container is inserted into the powder input component (S30). FIG. 20 is a schematic diagram showing a state in which the powder container is inserted after FIG. 19. Referring to FIGS. 19 and 20, powder container 2 is inserted inside the inner peripheral surface of outer frame 12 of powder charging component 1 attached to powder feeder 3. As shown in FIG. At this time, the powder container 2 is turned upside down so that the container mouth 21A is on the lower side and the bottom of the container body 21 is on the upper side. In this state, the powder container 2 is lowered until the container mouth 21A is located below the uppermost surface of the tip 15A (see FIG. 4).
 図19を再度参照して、容器口21Aの径φ1(直径。以下同じ)は、先端部15A(図7参照)の径φ2よりも大きい。先端部15Aの径φ2は、中心部15A1の外径を意味する。この中でも特に、容器口21Aの径φ1は、(先端部15Aよりも径が大きい)放射状部15B(図7参照)の径φ3よりも大きいことが好ましい。また、容器本体21の径φ4よりも、外枠12の内周面12Aの径φ5の方が大きい。ここで径φ4は、容器本体21のうち、特に容器口21Aに近いくびれた領域以外の、最も太い領域の径を意味する。 Referring again to FIG. 19, the diameter φ1 (diameter; the same applies hereinafter) of the container mouth 21A is larger than the diameter φ2 of the tip 15A (see FIG. 7). The diameter φ2 of the tip portion 15A means the outer diameter of the center portion 15A1. Among these, it is particularly preferable that the diameter φ1 of the container mouth 21A is larger than the diameter φ3 of the radial portion 15B (see FIG. 7) (which has a larger diameter than the tip portion 15A). Further, the diameter φ5 of the inner peripheral surface 12A of the outer frame 12 is larger than the diameter φ4 of the container body 21. Here, the diameter φ4 refers to the diameter of the thickest region of the container body 21 other than the constricted region particularly near the container mouth 21A.
 図21は、図20における内部態様を示す断面図である。なお図21では説明の便宜上、第2部品15のみ側面図であり、他の部分は断面図である。図21を参照して、ここでは一例として図19の径φ1が径φ3よりも大きい。このため、容器口21Aに貼られたフィルム23(図16参照)は、先端部15Aを含む第2部品15に突き破られた後、外枠12に囲まれる領域内に入り込み、底部11に達している。このとき上下反転された容器本体21が、上方から第2部品15を覆う。 FIG. 21 is a sectional view showing the internal aspect in FIG. 20. In addition, in FIG. 21, for convenience of explanation, only the second component 15 is a side view, and the other parts are sectional views. Referring to FIG. 21, as an example, the diameter φ1 in FIG. 19 is larger than the diameter φ3. Therefore, the film 23 (see FIG. 16) attached to the container mouth 21A is penetrated by the second part 15 including the tip 15A, enters the area surrounded by the outer frame 12, and reaches the bottom 11. ing. At this time, the container main body 21, which has been turned upside down, covers the second component 15 from above.
 しかし図19の径φ1は少なくとも40mm以上であればよい。図5におけるφeはたとえば33mmであり、φhはたとえば61mmである。このため図19の径φ1は径φ2より大きく径φ3より小さくてもよい。この場合は図21のように容器口21Aは底部11に達せず、たとえば主要部表面15Ds上に留まる。このとき容器本体21は第2部品15の先端部15Aおよび放射状部15Bの一部のみを覆う。 However, the diameter φ1 in FIG. 19 may be at least 40 mm or more. φe in FIG. 5 is, for example, 33 mm, and φh is, for example, 61 mm. Therefore, the diameter φ1 in FIG. 19 may be larger than the diameter φ2 and smaller than the diameter φ3. In this case, the container opening 21A does not reach the bottom 11 as shown in FIG. 21, but remains on the main part surface 15Ds, for example. At this time, the container body 21 covers only a portion of the tip portion 15A and the radial portion 15B of the second component 15.
 次に、図19の径φ4よりも径φ5が大きいことにより、容器本体21は外枠12内に挿入可能となる。ただし径φ5は径φ4よりも僅かだけ大きいことがより好ましい。具体的には、たとえば径φ5は径φ4よりも1%以上2%以下だけ大きいことがより好ましい。これにより、粉体容器2が粉体投入用部品1に挿入された図21における、外枠12の内周面12Aと、容器本体21の最も径が大きい部分との隙間が小さくなる。また外枠12が底部11の表面11A(第2部品15が設置される面)から第1方向(Z方向)に延びる高さは、容器本体21の底側の太い部分以外の部分(くびれた部分)のZ方向の高さ以上であることがより好ましい。これにより、図21の状態において、外枠12の内周面12Aと、容器本体21の最も径が大きい部分とが対向する領域が存在する。当該対向する領域の径方向の隙間は比較的小さい。このため、後述する粉体22(図1参照)の飛散を抑制する効果がいっそう高められる。 Next, since the diameter φ5 is larger than the diameter φ4 in FIG. 19, the container main body 21 can be inserted into the outer frame 12. However, it is more preferable that the diameter φ5 is slightly larger than the diameter φ4. Specifically, for example, it is more preferable that the diameter φ5 is larger than the diameter φ4 by 1% or more and 2% or less. This reduces the gap between the inner circumferential surface 12A of the outer frame 12 and the largest diameter portion of the container body 21 in FIG. 21 when the powder container 2 is inserted into the powder charging component 1. Further, the height at which the outer frame 12 extends in the first direction (Z direction) from the surface 11A of the bottom part 11 (the surface on which the second component 15 is installed) is the height of the outer frame 12 other than the thick part on the bottom side of the container body 21 It is more preferable that the height is greater than or equal to the height of the part) in the Z direction. As a result, in the state shown in FIG. 21, there is a region where the inner circumferential surface 12A of the outer frame 12 and the largest diameter portion of the container body 21 face each other. The radial gap between the opposing regions is relatively small. Therefore, the effect of suppressing the scattering of powder 22 (see FIG. 1), which will be described later, is further enhanced.
 再度図17を参照して、工程(S30)による粉体供給機3内への粉体22の投入の後、粉体投入用部品1の粉体22の残渣が、集塵部17(図6参照)から粉体投入用部品1の外部へ回収される(S40)。容器形状の第1部品10の内部の、たとえば第2部品15およびその周囲の底部11の表面11A上に滞留する粉体22の残渣が、集塵部17から吸収され廃棄される。 Referring again to FIG. 17, after the powder 22 is introduced into the powder feeder 3 in the step (S30), the residue of the powder 22 in the powder input component 1 is collected in the dust collecting section 17 (see FIG. (see) to the outside of the powder charging part 1 (S40). The residue of the powder 22 that remains inside the container-shaped first part 10, for example, on the second part 15 and the surface 11A of the bottom part 11 around it, is absorbed from the dust collecting section 17 and discarded.
 <作用効果>
 本開示に係る粉体投入用部品1は、底部11と、外枠12とを含む第1部品10と、第2部品15とを備える。底部11は底部穴11CVが形成される。外枠12は底部11の外周から底部11に交差する第1方向(Z方向)に延びる。第2部品15は外枠12に囲まれるように底部11に(挿入または固定により)取り付けられる。第2部品15は、平面視において幅を有する先端部15Aを含む。先端部15Aは、第1方向に延び、第1の空洞15CVが形成された筒形状の部分(中心部15A1)を有する。
<Effect>
The powder charging component 1 according to the present disclosure includes a first component 10 including a bottom portion 11 and an outer frame 12, and a second component 15. The bottom portion 11 is formed with a bottom hole 11CV. The outer frame 12 extends from the outer periphery of the bottom portion 11 in a first direction (Z direction) intersecting the bottom portion 11 . The second part 15 is attached (by insertion or fixation) to the bottom part 11 so as to be surrounded by the outer frame 12 . The second component 15 includes a tip portion 15A having a width in plan view. The distal end portion 15A has a cylindrical portion (center portion 15A1) that extends in the first direction and has a first cavity 15CV formed therein.
 粉体容器2から粉体供給機3への粉体22の移し替え時にたとえば特開平7-256081号公報に開示される先端部が1点による突起形状のカッターを用いれば、粉体22が粉体容器2から飛散するリスクがある。また当該突起形状のカッターの上部に粉体が付着および蓄積し、粉体容器2から粉体供給機3への粉体22の移し替えの効率が低下する可能性がある。コールドスプレー法にて用いられる粉体22(図1参照)は、粒径が1μm以上60μm以下と比較的小さい。粒径が小さければ粉体22は凝集および飛散しやすく、粉体容器2の内周面および1点の突起形状の近傍に付着しやすくなるためである。 When transferring the powder 22 from the powder container 2 to the powder feeder 3, for example, if a cutter having a protruding tip with a single point as disclosed in JP-A-7-256081 is used, the powder 22 will be transferred to the powder feeder 3. There is a risk of scattering from the body container 2. Further, powder may adhere and accumulate on the upper part of the protrusion-shaped cutter, reducing the efficiency of transferring the powder 22 from the powder container 2 to the powder feeder 3. The powder 22 (see FIG. 1) used in the cold spray method has a relatively small particle size of 1 μm or more and 60 μm or less. This is because if the particle size is small, the powder 22 tends to aggregate and scatter, and is likely to adhere to the inner circumferential surface of the powder container 2 and the vicinity of one protrusion.
 そこで本実施の形態では、第2部品15の先端部15Aが筒形状の中心部15A1を有し、平面視にて幅を有する。先端部15Aが1点ではなく広範囲に配置される。このため先端部15Aは、粉体容器2のフィルム23を少し下降させるだけで、フィルム23を容易に広範囲に破る。また粉体22の投入時において、容器口21Aの周囲は外枠12に囲まれる。これにより、投入中に粉体22が粉体投入用部品1の外側に飛散するリスクを低減できる。 Therefore, in this embodiment, the distal end portion 15A of the second component 15 has a cylindrical center portion 15A1, and has a width in a plan view. The tip portion 15A is arranged not at one point but over a wide range. Therefore, the tip portion 15A easily tears the film 23 over a wide range by simply lowering the film 23 of the powder container 2 a little. Furthermore, when the powder 22 is introduced, the container opening 21A is surrounded by the outer frame 12. Thereby, the risk of the powder 22 scattering to the outside of the powder charging component 1 during charging can be reduced.
 また先端部15Aが筒形状の中心部15A1を有するため、粉体容器2内の粉体22は、先端部15Aにより広範囲にフィルム23が破られた破損部から第1の空洞15CV内へ容易に導入できる。 Further, since the tip 15A has a cylindrical center portion 15A1, the powder 22 in the powder container 2 can easily flow into the first cavity 15CV from the damaged part where the film 23 is extensively torn by the tip 15A. Can be introduced.
 再度図21を参照して、容器口21Aに貼られたフィルム23(図示せず)が、矢印Mに示す粉体容器2の下降により破られる。第2部品15の先端部15Aおよび放射状部15Bが粉体容器2内に差し込まれた状態となれば、粉体22(図示せず)は、矢印Fのように、Z方向に延びる第1の空洞15CV内を落下する。図21のように第1の空洞15CVが粉体供給機3内に通じていれば、粉体22を先端部15Aの第1の空洞15CVの内部へ導入させることで、そこから粉体供給機3内に効率よく移し替えることができる。 Referring again to FIG. 21, the film 23 (not shown) attached to the container mouth 21A is torn as the powder container 2 descends as indicated by arrow M. When the tip portion 15A and the radial portion 15B of the second component 15 are inserted into the powder container 2, the powder 22 (not shown) is transferred to the first portion extending in the Z direction as shown by the arrow F. Falling inside the cavity 15CV. If the first cavity 15CV is connected to the inside of the powder feeder 3 as shown in FIG. 3 can be transferred efficiently.
 先端部15Aが筒形状の中心部15A1を有するため、先端部が1点のみの突起形状である場合に比べて、フィルム23が先端部15Aを突き破るための下降すべき距離を短くできる。このため、先端部15Aに粉体が接触しても、狭い範囲に多量の粉体22が凝集したり、先端部15Aの表面に付着したりする可能性を低減できる。このことからも効率よく粉体22を粉体供給機3内などへ供給できる。 Since the tip portion 15A has a cylindrical center portion 15A1, the distance that the film 23 must descend to break through the tip portion 15A can be shortened compared to the case where the tip portion has a protrusion shape with only one point. Therefore, even if powder comes into contact with the tip 15A, it is possible to reduce the possibility that a large amount of powder 22 will aggregate in a narrow range or adhere to the surface of the tip 15A. From this point of view, the powder 22 can be efficiently supplied into the powder feeder 3 and the like.
 上記粉体投入用部品1において、第1の空洞15CVに連なるように底部穴11CVが配置されることが好ましい。図21のように第1の空洞15CVが底部穴11CVに通じていれば、第1の空洞15CVから底部穴11CVを経由し粉体供給機3内に通じる構成となる。このため粉体22を先端部15A(第1の空洞15CV)から粉体供給機3内に効率よく移し替えることができる。 In the powder charging component 1, the bottom hole 11CV is preferably arranged so as to be continuous with the first cavity 15CV. If the first cavity 15CV communicates with the bottom hole 11CV as shown in FIG. 21, the structure is such that the first cavity 15CV communicates with the inside of the powder feeder 3 via the bottom hole 11CV. Therefore, the powder 22 can be efficiently transferred from the tip portion 15A (first cavity 15CV) into the powder feeder 3.
 上記粉体投入用部品1において、第2部品15は、先端部15Aから放射状に延びる複数の放射状部15Bが周方向(θ方向)に隙間15Cをあけて配置されることが好ましい。これにより、図21のように、放射状部15Bに落下した粉体22の一部を隙間15Cからたとえば(第1の空洞15CVに連なりこれと同一の空洞と考えられる)空洞部15CV2内に導入し、そこから粉体供給機3内に効率よく移し替えることができる。このため落下した粉体22が第2部品15上に積層する可能性を低減できる。また隙間15Cの存在により、放射状部15Bの外周面15Dcも、θ方向について主要部15Dおよび脚部15Eが配置されない隙間15Cの部分が空いた状態となる。このため隙間15Cのr方向外側から粉末を第1の空洞15CVに導入し、粉体供給機3内に落下させることができる。 In the powder injection component 1, the second component 15 is preferably arranged such that a plurality of radial portions 15B extending radially from the tip portion 15A are arranged with gaps 15C in the circumferential direction (θ direction). As a result, as shown in FIG. 21, a part of the powder 22 that has fallen into the radial portion 15B is introduced from the gap 15C into the cavity 15CV2 (which is continuous with and is considered to be the same cavity as the first cavity 15CV). From there, it can be efficiently transferred into the powder feeder 3. Therefore, the possibility that the fallen powder 22 will be stacked on the second component 15 can be reduced. Further, due to the existence of the gap 15C, the outer circumferential surface 15Dc of the radial portion 15B is also left open in the gap 15C where the main portion 15D and the leg portions 15E are not arranged in the θ direction. Therefore, the powder can be introduced into the first cavity 15CV from the outside of the gap 15C in the r direction and allowed to fall into the powder feeder 3.
 たとえば図5のように、主要部表面15Dsの外周面15Dcのθ方向に沿う幅が8mmであり、隙間15Cの幅wが8mmである場合、主要部15Dの外周面の隙間15Cによる開口率は約50%となる。開口率を高くすることにより、第1の空洞15CV(に連なる空洞部15CV2)への粉体の集積率をいっそう高められる。 For example, as shown in FIG. 5, when the width along the θ direction of the outer circumferential surface 15Dc of the main part surface 15Ds is 8 mm, and the width w of the gap 15C is 8 mm, the aperture ratio due to the gap 15C on the outer circumferential surface of the main part 15D is It will be about 50%. By increasing the aperture ratio, the accumulation rate of powder in the first cavity 15CV (the cavity 15CV2 connected thereto) can be further increased.
 上記粉体投入用部品1において、上記放射状部15Bは、先端部15Aに繋がる主要部15Dと、主要部15Dの先端部15Aと反対側(Z方向の下側)に繋がる脚部15Eとを有してもよい。主要部15Dのうち脚部15Eから最も離れた主要部表面15Dsは、主要部15Dの先端部15Aから離れる側(外側)が脚部15Eに近づくように傾斜することが好ましい。これにより、たとえば主要部表面15Ds上に落下した粉体22を、スムーズに空洞部15CV2内へ落下させることができ、そこから粉体供給機3内に効率よく移し替えることができる。 In the powder charging component 1, the radial portion 15B has a main portion 15D connected to the tip 15A, and a leg portion 15E connected to the opposite side (lower side in the Z direction) of the main portion 15D from the tip 15A. You may. The main part surface 15Ds of the main part 15D that is farthest from the leg part 15E is preferably inclined so that the side (outside) away from the tip part 15A of the main part 15D approaches the leg part 15E. Thereby, for example, the powder 22 that has fallen onto the main part surface 15Ds can be smoothly dropped into the cavity 15CV2, and can be efficiently transferred from there into the powder feeder 3.
 上記粉体投入用部品1において、隙間15Cが複数形成され、個々の隙間15Cは、全体において周方向に沿う幅が等しくてもよい。図5のように隙間15Cの幅を等しくすることにより、隙間15Cを容易に加工できる。粉体投入用部品1の製造方法については後述する。 In the powder charging component 1, a plurality of gaps 15C are formed, and each gap 15C may have the same width along the circumferential direction as a whole. By making the width of the gap 15C equal as shown in FIG. 5, the gap 15C can be easily processed. A method of manufacturing the powder charging part 1 will be described later.
 上記粉体投入用部品1において、放射状部15Bは第1方向に沿う柱状部15D2を含んでもよい。これにより、隙間15Cに入り込んだ粉体22を容易にZ方向に沿って落下させ、粉体供給機3内に容易に導入できる。 In the powder injection component 1, the radial portion 15B may include a columnar portion 15D2 extending in the first direction. Thereby, the powder 22 that has entered the gap 15C can be easily dropped along the Z direction and easily introduced into the powder feeder 3.
 上記粉体投入用部品1において、先端部15Aは円形の平面形状の部分(中心部15A1)を有する。円筒形状とすることにより、先端部15Aを容易に加工できる。 In the powder charging component 1, the tip portion 15A has a circular planar portion (center portion 15A1). By having a cylindrical shape, the tip portion 15A can be easily processed.
 上記粉体投入用部品1において、底部11の外側(Z方向の下側)の面上に、底部穴11CVに連なる第2の空洞16CVが形成された差込部16をさらに備えてもよい。図21のように第1の空洞15CVが底部穴11CVに通じていれば、第1の空洞15CVから底部穴11CVを経由し第2の空洞16CVまで連なる空間を形成できる。第2の空洞16CVは外枠12に囲まれた領域の外側に存在するため、そこから粉体供給機3内に通じる構成とできる。このため粉体22を先端部15A(第1の空洞15CV)から粉体供給機3内に効率よく移し替えることができる。 The powder input component 1 may further include an insertion portion 16 in which a second cavity 16CV connected to the bottom hole 11CV is formed on the outside (lower side in the Z direction) of the bottom portion 11. If the first cavity 15CV communicates with the bottom hole 11CV as shown in FIG. 21, it is possible to form a continuous space from the first cavity 15CV to the second cavity 16CV via the bottom hole 11CV. Since the second cavity 16CV exists outside the area surrounded by the outer frame 12, it can be configured to communicate into the powder feeder 3 from there. Therefore, the powder 22 can be efficiently transferred from the tip portion 15A (first cavity 15CV) into the powder feeder 3.
 本開示に係る粉体セット100は、上記の粉体投入用部品1と、粉体22が収納された粉体容器2とを備える。当該粉体容器2は、容器口21Aが形成された容器本体21を含む。容器口21Aにはフィルム23が貼り付けられることにより容器本体21内が封止されている。容器口21Aにフィルム23が貼り付けられている。これにより、粉体22の投入前、および投入直前に粉体容器2を上下反転させた時点での粉体容器2内からの粉体22の飛散および漏出を抑制できる。 A powder set 100 according to the present disclosure includes the above-mentioned powder input component 1 and a powder container 2 in which powder 22 is stored. The powder container 2 includes a container body 21 in which a container opening 21A is formed. The inside of the container body 21 is sealed by pasting a film 23 on the container mouth 21A. A film 23 is attached to the container mouth 21A. Thereby, it is possible to suppress scattering and leakage of the powder 22 from inside the powder container 2 when the powder container 2 is turned upside down before and immediately before charging the powder 22.
 上記粉体セット100において、容器口の径は、上記先端部の径よりも大きいことが好ましい。これにより、粉体22の投入時に上下反転させた粉体容器2を、容器口21Aが放射状部15Bおよび隙間15Cの少なくとも一部に重なるように設置できる。このため上記のように隙間15Cによる粉体供給機3への粉体22の落下の効率を向上できる。 In the powder set 100, the diameter of the container mouth is preferably larger than the diameter of the tip. Thereby, the powder container 2, which is turned upside down when the powder 22 is introduced, can be installed so that the container opening 21A overlaps at least a portion of the radial portion 15B and the gap 15C. Therefore, as described above, the efficiency with which the powder 22 falls onto the powder feeder 3 through the gap 15C can be improved.
 図22は、粉体容器内の粉体を落下させる際のブリッジが起こった状態を示す概略図である。図22を参照して、容器本体21の直径に比べて容器口21Aの直径が非常に小さい場合を考える。この場合、容器本体21内の粉体22を落下させるために容器本体21を上下反転すれば、粉体22は容器本体21のくびれた部分にて上に凸となるように湾曲したアーチ25を形成する。これによりアーチ25の部分が下方から抵抗を受け、粉体22の落下が困難となるブリッジと呼ばれる現象が起こりやすくなる。このような現象を防止する観点から、たとえば先端部15Aの直径が33mm、放射状部15Bの直径が61mmの第2部品15を用いる場合、容積が2リットルの粉体容器2のポリエチレン製の容器本体21は、容器口21Aの直径が40mm以上とされることが好ましい。 FIG. 22 is a schematic diagram showing a state in which bridging occurs when powder in a powder container is dropped. Referring to FIG. 22, consider a case where the diameter of the container mouth 21A is very small compared to the diameter of the container body 21. In this case, if the container body 21 is turned upside down in order to drop the powder 22 inside the container body 21, the powder 22 will form an upwardly curved arch 25 at the constricted part of the container body 21. Form. As a result, the arch 25 receives resistance from below, and a phenomenon called bridging, which makes it difficult for the powder 22 to fall, tends to occur. From the viewpoint of preventing such a phenomenon, for example, when using the second part 15 in which the diameter of the tip part 15A is 33 mm and the diameter of the radial part 15B is 61 mm, the container body made of polyethylene of the powder container 2 with a volume of 2 liters is 21, it is preferable that the diameter of the container opening 21A is 40 mm or more.
 上記粉体セット100において、外枠12の内周面12Aの径は、上記容器本体21の径よりも大きいことが好ましい。これにより、容器本体21の最も径が大きい部分(図19の径φ4の部分)が外枠12に囲まれるように粉体容器2を設置できる。これにより、粉体22の外枠12の外側への飛散をより確実に抑制できる。 In the powder set 100, the diameter of the inner peripheral surface 12A of the outer frame 12 is preferably larger than the diameter of the container body 21. Thereby, the powder container 2 can be installed so that the part with the largest diameter of the container body 21 (the part with the diameter φ4 in FIG. 19) is surrounded by the outer frame 12. Thereby, scattering of the powder 22 to the outside of the outer frame 12 can be suppressed more reliably.
 本開示に係る粉体投入方法は、上記の粉体セット100を用いる。当該粉体投入方法では、容器口21Aにフィルム23を貼り付けられた粉体容器2が準備される。粉体22を供給すべき粉体供給機3へ、第2部品15が(挿入または固定により)設置された粉体投入用部品1が取り付けられる。粉体容器2が粉体投入用部品1の外枠12内に挿入される。挿入する工程では、粉体容器2が上下反転された状態で容器口21Aが先端部15Aの最上面より下方に位置するまで、粉体容器2が下降される。 The powder feeding method according to the present disclosure uses the powder set 100 described above. In this powder charging method, a powder container 2 with a film 23 attached to the container mouth 21A is prepared. The powder feeding part 1, on which the second part 15 is installed (by insertion or fixation), is attached to the powder feeder 3 to which powder 22 is to be fed. The powder container 2 is inserted into the outer frame 12 of the powder charging component 1. In the insertion process, the powder container 2 is lowered until the container opening 21A is located below the uppermost surface of the tip portion 15A while the powder container 2 is upside down.
 粉体容器2を下降すれば、先端部15Aがフィルム23に接触し下方からフィルム23に力を加えることで、容器口21Aに貼り付けられたフィルム23を広範囲に破ることができる。また上記のように、粉体22の飛散、凝集、付着を抑制し、高効率に粉体供給機3内へ供給できる。 When the powder container 2 is lowered, the tip 15A contacts the film 23 and applies force to the film 23 from below, making it possible to break the film 23 attached to the container mouth 21A over a wide range. Further, as described above, scattering, aggregation, and adhesion of the powder 22 can be suppressed, and the powder 22 can be fed into the powder feeder 3 with high efficiency.
 その他、粉体投入用部品1が集塵部17を有している。集塵部17はたとえば円筒形状であり、第3の空洞17CVを有している。外枠12の一部に形成された開口部に第3の空洞17CVが連なるように集塵部17が配置される。これにより、たとえば粉体22の投入時に粉体供給機3側へ流れずに底部11上または第2部品15上に残った粉末を、集塵部17から粉体投入用部品1の外部へ回収できる。具体的には、図19および図20を再度参照して、集塵部17に取り付けられた集塵ダクト17Aを介して、粉体投入用部品1の粉体22の残差を回収できる。したがって、粉体投入用部品1が集塵部17を有することにより、粉体供給機3への粉体22の投入作業の終了後も、粉体投入用部品1の外部への粉体22の飛散を抑制できる。 In addition, the powder input component 1 has a dust collection section 17. The dust collecting section 17 has a cylindrical shape, for example, and has a third cavity 17CV. The dust collecting section 17 is arranged so that the third cavity 17CV is connected to an opening formed in a part of the outer frame 12. As a result, for example, when the powder 22 is charged, powder that does not flow toward the powder feeder 3 side and remains on the bottom part 11 or the second part 15 is collected from the dust collection part 17 to the outside of the powder supply part 1. can. Specifically, referring again to FIGS. 19 and 20, the residual amount of the powder 22 of the powder input component 1 can be collected through the dust collection duct 17A attached to the dust collection section 17. Therefore, since the powder feeding part 1 has the dust collection part 17, even after the feeding work of the powder 22 to the powder feeding machine 3 is completed, the powder 22 is not released to the outside of the powder feeding part 1. Scattering can be suppressed.
 以上をまとめると、粉体供給機3への粉体22の投入前はフィルム23により、投入中は第2部品15および外枠12により、投入後は集塵部17により、粉体22の飛散を抑制できる。 To summarize the above, the powder 22 is scattered by the film 23 before being introduced into the powder feeder 3, by the second part 15 and the outer frame 12 while being introduced, and by the dust collector 17 after being introduced. can be suppressed.
 <粉体投入用部品の製造方法>
 本実施の形態に係る粉体投入用部品1は、基本的に、フィルム23を破れる材質であればよい。つまり粉体投入用部品1は、たとえば金属材料および樹脂材料のいずれかから形成される。金属材料から形成される粉体投入用部品1は、たとえば一般公知のステンレス鋼(SUS304)の材料を切削加工することにより得られる。切削加工の中でも、たとえばマシニングセンターを用いた旋削加工がなされることが好ましい。また、樹脂材料から形成される粉体投入用部品1は、上記のような切削加工の他に、金型を用いた樹脂成型により得られてもよい。
<Method for manufacturing powder input parts>
Basically, the powder charging component 1 according to the present embodiment may be made of any material that can tear the film 23. That is, the powder charging component 1 is formed from either a metal material or a resin material, for example. The powder charging component 1 made of a metal material is obtained by cutting a material such as generally known stainless steel (SUS304), for example. Among the cutting processes, it is preferable to perform turning using a machining center, for example. Moreover, the powder injection part 1 formed from a resin material may be obtained by resin molding using a metal mold, in addition to the cutting process as described above.
 図23は、本実施の形態の比較例として準備されたカッターの概略図である。図23の左側にはカッターと貫通用部品とからなる比較例の第2部品の態様を示す概略図が示される。図23の右側にはカッターを抜き取り拡大した概略図が示される。図23を参照して、比較例では、三角形の刃(三角刃150A)を4枚組み合わせたカッター150が準備された。カッター150はおおよそ本実施の形態の先端部15Aに相当する。三角形の刃はステンレス鋼の切削加工により形成された。4枚の三角刃150Aは、それぞれの頂点が1点の突起部150Pにて集合するよう、互いの面の間が直角となるように組み立てられた。カッター150の真下に、貫通用部品151が取り付けられた。貫通用部品151はステンレス鋼からなり、おおよそ本実施の形態の放射状部15Bに相当する。平面視での中央にて貫通孔としての第4の空洞151CVが形成された。第4の空洞151CVは突起部150Pと重なるように配置された。第4の空洞151CV内を粉体22が落下可能な態様である。 FIG. 23 is a schematic diagram of a cutter prepared as a comparative example of this embodiment. On the left side of FIG. 23 is shown a schematic diagram illustrating an aspect of a second component of a comparative example consisting of a cutter and a penetrating component. The right side of FIG. 23 shows an enlarged schematic view of the cutter. Referring to FIG. 23, in a comparative example, a cutter 150 was prepared in which four triangular blades (triangular blades 150A) were combined. The cutter 150 roughly corresponds to the tip portion 15A of this embodiment. The triangular blade was formed by cutting stainless steel. The four triangular blades 150A were assembled so that their respective apexes were gathered at one protrusion 150P and their surfaces were at right angles. A penetrating component 151 was attached directly below the cutter 150. The penetrating component 151 is made of stainless steel and roughly corresponds to the radial portion 15B of this embodiment. A fourth cavity 151CV as a through hole was formed at the center in plan view. The fourth cavity 151CV was arranged to overlap with the protrusion 150P. This is an embodiment in which the powder 22 can fall inside the fourth cavity 151CV.
 一方、本実施の形態のサンプルとして、図8に示す粉体投入用部品1が形成された。第2部品15は、切削加工により形成された。 On the other hand, a powder charging part 1 shown in FIG. 8 was formed as a sample of this embodiment. The second part 15 was formed by cutting.
 上記の2種類のサンプルを用いて、粉体供給機3へ粉体22(図22参照)が投入された。ここで移し替えされた粉体22は、アルミニウムと、酸化アルミニウムとの混合粉である。また粉体容器2は容積が2リットルのポリエチレン製の容器本体21を有するものが用いられた。粉体22は1kg投入され、投入速度は毎分400gであった。 Powder 22 (see FIG. 22) was fed into the powder feeder 3 using the above two types of samples. The powder 22 transferred here is a mixed powder of aluminum and aluminum oxide. Further, the powder container 2 used had a container body 21 made of polyethylene and having a volume of 2 liters. 1 kg of powder 22 was charged, and the charging speed was 400 g/min.
 図24は、比較例のカッターを用いたときの、容器本体に貼られたアルミニウム製のフィルムの破損部の態様を示す写真である。図25は、本実施の形態の第2部品を備える粉体投入用部品を用いたときの、容器本体に貼られたアルミニウム製のフィルムの破損部の態様を示す写真である。図24および図25を参照して、本実施の形態の粉体投入用部品1を用いることにより、比較例のカッター150を用いるよりも、広範囲にわたってフィルムが破損することがわかった。また本実施の形態の粉体投入用部品1を用いれば、比較例に比べて、粉体22の飛散、凝集および付着(粉体22の積層)が抑えられた。 FIG. 24 is a photograph showing a damaged part of the aluminum film attached to the container body when the cutter of the comparative example was used. FIG. 25 is a photograph showing a damaged part of the aluminum film attached to the container body when the powder charging component including the second component of this embodiment is used. Referring to FIGS. 24 and 25, it was found that by using the powder charging component 1 of this embodiment, the film was damaged over a wider range than by using the cutter 150 of the comparative example. Furthermore, when the powder charging part 1 of the present embodiment was used, scattering, aggregation, and adhesion (stacking of the powder 22) of the powder 22 were suppressed compared to the comparative example.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態中の少なくとも2つの例を適宜組み合わせてもよい。本開示の基本的な範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. Unless there is a contradiction, at least two examples of the embodiments disclosed herein may be combined as appropriate. The basic scope of the present disclosure is indicated by the claims rather than the above description, and it is intended that all changes within the meaning and range equivalent to the claims are included.
 1 粉体投入用部品、2 粉体容器、3 粉体供給機、4 ガス供給部、5 スプレーガン、5a スプレーガン本体部、5b ノズル、5c ヒータ、5d 温度センサ、6 マスク治具、7 バルブ、8 圧力センサ、9 配管、11 底部、11A 表面、11CV 底部穴、12 外枠、12A 内周面、15 第2部品、15A 先端部、15A1 中心部、15A2 周囲部、15Aa 先端部最上面、15A2a 周囲部表面、15B 放射状部、15C 隙間、15CV 第1の空洞、15CV2 空洞部、15D 主要部、15D1 傾斜部、15D2,15A3,15E2 柱状部、15Dc 外周面、15Ds 主要部表面、15E 脚部、15F 段差、16 差込部、16CV 第2の空洞、17 集塵部、17CV 第3の空洞、21 容器本体、21A 容器口、22 粉体、31 粉体収納部、32 粉体供給口、40,41,42 矢印、50 基材、100 粉体セット、150 カッター、150A 三角刃、150P カッター先端部、151 貫通用部品、151CV 第4の空洞部、200 成膜装置。 1 Powder input parts, 2 Powder container, 3 Powder feeder, 4 Gas supply section, 5 Spray gun, 5a Spray gun main body, 5b Nozzle, 5c Heater, 5d Temperature sensor, 6 Mask jig, 7 Valve , 8 Pressure sensor, 9 Piping, 11 Bottom, 11A Surface, 11CV Bottom hole, 12 Outer frame, 12A Inner peripheral surface, 15 Second part, 15A Tip, 15A1 Center, 15A2 Surroundings, 15Aa Tip top surface, 15A2a Surrounding part surface, 15B Radial part, 15C Gap, 15CV first cavity, 15CV2 Cavity part, 15D Main part, 15D1 Inclined part, 15D2, 15A3, 15E2 Column part, 15Dc Outer peripheral surface, 15Ds Main part surface, 15E Legs , 15F step, 16 insertion part, 16CV second cavity, 17 dust collection part, 17CV third cavity, 21 container body, 21A container mouth, 22 powder, 31 powder storage part, 32 powder supply port, 40, 41, 42 arrow, 50 base material, 100 powder set, 150 cutter, 150A triangular blade, 150P cutter tip, 151 penetration part, 151CV fourth cavity, 200 film forming device.

Claims (12)

  1.  底部穴が形成された底部と、前記底部の外周から前記底部に交差する第1方向に延びる外枠とを含む第1部品と、
     前記外枠に囲まれるように前記底部に取り付けられた第2部品とを備え、
     前記第2部品は、平面視において幅を有する先端部を含み、
     前記先端部は、前記第1方向に延び、第1の空洞が形成された筒形状の部分を有する、粉体投入用部品。
    a first part including a bottom in which a bottom hole is formed; and an outer frame extending from an outer periphery of the bottom in a first direction intersecting the bottom;
    a second component attached to the bottom so as to be surrounded by the outer frame,
    The second component includes a tip portion having a width in a plan view,
    The tip portion is a part for introducing powder, and has a cylindrical portion extending in the first direction and having a first cavity formed therein.
  2.  前記第1の空洞に連なるように前記底部穴が配置される、請求項1に記載の粉体投入用部品。 The powder charging component according to claim 1, wherein the bottom hole is arranged so as to be continuous with the first cavity.
  3.  前記第2部品は、前記先端部から放射状に延びる複数の放射状部が周方向に隙間をあけて配置される、請求項1または2に記載の粉体投入用部品。 The powder feeding component according to claim 1 or 2, wherein the second component has a plurality of radial portions extending radially from the tip portion and arranged with gaps in the circumferential direction.
  4.  前記放射状部は、前記先端部に繋がる主要部と、前記主要部の前記先端部と反対側に繋がる脚部とを有し、
     前記主要部のうち前記脚部から最も離れた主要部表面は、前記主要部の前記先端部から離れる側が前記脚部に近づくように傾斜している、請求項3に記載の粉体投入用部品。
    The radial part has a main part connected to the tip part, and a leg part connected to the opposite side of the main part from the tip part,
    The powder feeding component according to claim 3, wherein a surface of the main part that is farthest from the leg of the main part is inclined such that a side of the main part that is away from the tip approaches the leg. .
  5.  前記隙間が複数形成され、
     個々の前記隙間は、全体において前記周方向に沿う幅が等しい、請求項3または4に記載の粉体投入用部品。
    A plurality of the gaps are formed,
    The powder feeding component according to claim 3 or 4, wherein each of the gaps has the same width along the circumferential direction as a whole.
  6.  前記放射状部は前記第1方向に沿う柱状部を含む、請求項3~5のいずれか1項に記載の粉体投入用部品。 The powder feeding component according to any one of claims 3 to 5, wherein the radial part includes a columnar part along the first direction.
  7.  前記先端部は円形の平面形状の部分を有する、請求項1~6のいずれか1項に記載の粉体投入用部品。 The powder feeding component according to any one of claims 1 to 6, wherein the tip portion has a circular planar portion.
  8.  前記底部の外側の面上に、前記底部穴に連なる第2の空洞が形成された差込部をさらに備える、請求項1~7のいずれか1項に記載の粉体投入用部品。 The powder charging component according to any one of claims 1 to 7, further comprising an insertion part in which a second cavity connected to the bottom hole is formed on an outer surface of the bottom part.
  9.  請求項1~8のいずれか1項に記載の粉体投入用部品と、
     粉体が収納された粉体容器とを備え、
     前記粉体容器は、容器口が形成された容器本体を含み、
     前記容器口にはフィルムが貼り付けられることにより前記容器本体内が封止されている、粉体セット。
    The powder feeding part according to any one of claims 1 to 8,
    A powder container containing powder,
    The powder container includes a container body in which a container opening is formed,
    A powder set, wherein the inside of the container body is sealed by pasting a film on the container opening.
  10.  前記容器口の径は、前記先端部の径よりも大きい、請求項9に記載の粉体セット。 The powder set according to claim 9, wherein the diameter of the container opening is larger than the diameter of the tip.
  11.  前記外枠の内周面の径は、前記容器本体の径よりも大きい、請求項9または10に記載の粉体セット。 The powder set according to claim 9 or 10, wherein the diameter of the inner peripheral surface of the outer frame is larger than the diameter of the container body.
  12.  請求項9~11のいずれか1項に記載の粉体セットを用いた粉体投入方法であって、
     前記容器口に前記フィルムを貼り付けられた前記粉体容器を準備する工程と、
     前記粉体を供給すべき粉体供給機へ、前記第2部品が設置された前記粉体投入用部品を取り付ける工程と、
     前記粉体容器を前記粉体投入用部品の前記外枠内に挿入する工程とを備え、
     前記挿入する工程では、前記粉体容器が上下反転された状態で前記容器口が前記先端部の最上面より下方に位置するまで、前記粉体容器が下降される、粉体投入方法。
    A powder charging method using the powder set according to any one of claims 9 to 11,
    preparing the powder container with the film attached to the container mouth;
    a step of attaching the powder input component, in which the second component is installed, to a powder feeder that is to supply the powder;
    inserting the powder container into the outer frame of the powder input component,
    In the inserting step, the powder container is lowered until the container opening is located below the uppermost surface of the tip part while the powder container is upside down.
PCT/JP2023/004716 2022-03-30 2023-02-13 Powder charging component, powder set, and powder charging method WO2023188874A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022056559 2022-03-30
JP2022-056559 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023188874A1 true WO2023188874A1 (en) 2023-10-05

Family

ID=88201032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004716 WO2023188874A1 (en) 2022-03-30 2023-02-13 Powder charging component, powder set, and powder charging method

Country Status (1)

Country Link
WO (1) WO2023188874A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882834A (en) * 1981-10-31 1983-05-18 株式会社松井製作所 Method and device for supplying powdered and granular body
JPS58109750U (en) * 1982-01-20 1983-07-26 株式会社リコー container
JPS61175259U (en) * 1985-04-19 1986-10-31
JPS6231007U (en) * 1985-03-25 1987-02-24
JPS62140690A (en) * 1985-12-13 1987-06-24 Colpo Co Ltd Automatic supplying device for granular material or the like
JP2000279797A (en) * 1999-03-30 2000-10-10 Fuji Photo Film Co Ltd Treating agent dissolving device
JP2004161367A (en) * 2002-11-11 2004-06-10 Shikoku Anho Kk Bag opening machine for flexible container
JP2018131260A (en) * 2017-02-17 2018-08-23 ユーグロップ株式会社 Opening method for flexible container and opening device for flexible container
JP2018192382A (en) * 2017-05-12 2018-12-06 タツタ電線株式会社 Spray nozzle, coating formation device and coating formation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882834A (en) * 1981-10-31 1983-05-18 株式会社松井製作所 Method and device for supplying powdered and granular body
JPS58109750U (en) * 1982-01-20 1983-07-26 株式会社リコー container
JPS6231007U (en) * 1985-03-25 1987-02-24
JPS61175259U (en) * 1985-04-19 1986-10-31
JPS62140690A (en) * 1985-12-13 1987-06-24 Colpo Co Ltd Automatic supplying device for granular material or the like
JP2000279797A (en) * 1999-03-30 2000-10-10 Fuji Photo Film Co Ltd Treating agent dissolving device
JP2004161367A (en) * 2002-11-11 2004-06-10 Shikoku Anho Kk Bag opening machine for flexible container
JP2018131260A (en) * 2017-02-17 2018-08-23 ユーグロップ株式会社 Opening method for flexible container and opening device for flexible container
JP2018192382A (en) * 2017-05-12 2018-12-06 タツタ電線株式会社 Spray nozzle, coating formation device and coating formation method

Similar Documents

Publication Publication Date Title
US8641279B2 (en) Packaging bag with fastener
KR101607351B1 (en) Container for refill
US9943998B2 (en) Method for molding a bi-material cap
WO2023188874A1 (en) Powder charging component, powder set, and powder charging method
US20200172298A1 (en) Spout assembly and packaging container having the spout assembly
US20200282489A1 (en) Heat transfer plate manufacturing method and friction stir welding method
TW201524855A (en) Container and seal bar
CN103515571A (en) Sealed battery
US10961025B2 (en) Pouring spout of container
JP4934330B2 (en) Composite spout and injection molding apparatus for forming composite spout
WO2021225024A1 (en) Closed impeller and method for producing closed impeller
EP3888820B1 (en) Method of manufacturing fabricated object
JP5730011B2 (en) Refill container stopper
JP6779533B2 (en) Flexible container manufacturing equipment and manufacturing method
EP3666678B1 (en) Spout stopper and packaging container provided with spout stopper
JP2006240245A (en) Method for adhering filter and liquid discharge head cartridge
JP3316102B2 (en) cap
JP5683036B2 (en) Container and manufacturing method thereof
JP7089156B2 (en) Laminated peeling container
CN217387483U (en) Annotate liquid hole seal structure and battery package
JP3046954B2 (en) Manufacturing method of bag container
JP2024013028A (en) tube container
WO2019182093A1 (en) Culture vessel
JPH08167405A (en) Manufacture of sealing body for alkaline battery
JPS5822939Y2 (en) container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778908

Country of ref document: EP

Kind code of ref document: A1