WO2023188749A1 - Combustor and gas turbine - Google Patents

Combustor and gas turbine Download PDF

Info

Publication number
WO2023188749A1
WO2023188749A1 PCT/JP2023/002252 JP2023002252W WO2023188749A1 WO 2023188749 A1 WO2023188749 A1 WO 2023188749A1 JP 2023002252 W JP2023002252 W JP 2023002252W WO 2023188749 A1 WO2023188749 A1 WO 2023188749A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
mixing tube
wall surface
combustor
central axis
Prior art date
Application number
PCT/JP2023/002252
Other languages
French (fr)
Japanese (ja)
Inventor
信一 福場
志 張
圭祐 三浦
朋 川上
喜敏 藤本
拓 江川
健太 谷口
Original Assignee
三菱パワー株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社, 三菱重工業株式会社 filed Critical 三菱パワー株式会社
Publication of WO2023188749A1 publication Critical patent/WO2023188749A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air

Definitions

  • Patent Document 1 discloses a cluster combustor as an example of a combustor used in a gas turbine.
  • the cluster combustor has a plurality of mixing tubes that are arranged in parallel with each other and into which air is introduced, and a fuel nozzle that injects fuel from the tips inserted into these mixing tubes.
  • the fuel nozzle injects fuel along the central axis of the mixing tube.
  • a mixed gas of air and fuel flows through the mixing pipe and is ejected downstream.
  • a plurality of small-scale flames are formed at the outlet of each mixing tube.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a combustor and a gas turbine that can avoid misfires while suppressing flashback.
  • a combustor has a mixing tube that extends through an upstream end surface and a downstream end surface that are perpendicular to the combustor axis, and into which air is introduced from the upstream end surface side.
  • a first fuel injector capable of injecting a first fuel along the central axis of the mixing tube inside the mixing tube; and a second fuel injection section capable of injecting two fuels.
  • a gas turbine includes: a compressor that generates air; the above-mentioned combustor that generates combustion gas by combusting a premixed gas generated by mixing fuel into the air compressed by the compressor; A turbine driven by combustion gas.
  • misfire can be avoided while suppressing flashback.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a gas turbine according to a first embodiment of the present disclosure.
  • FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a combustor according to a first embodiment of the present disclosure.
  • FIG. 2 is a vertical cross-sectional view of a main part of a combustor plate of a combustor according to a first embodiment of the present disclosure.
  • FIG. 3 is a perspective view of the inside of the mixing tube of the combustor plate of the combustor according to the first embodiment of the present disclosure.
  • FIG. 7 is a vertical cross-sectional view of a main part of a combustor plate of a combustor according to a second embodiment of the present disclosure.
  • FIG. 7 is a vertical cross-sectional view of a main part of a combustor plate of a combustor according to a third embodiment of the present disclosure, also showing the cross-sectional shape of a stru
  • the gas turbine 1 includes a compressor 2 that compresses air A, a combustor 3 that generates combustion gas C, and a turbine 4 that is driven by the combustion gas C. have.
  • a plurality of combustors 3 are provided around the rotating shaft of the gas turbine 1 at intervals in the circumferential direction.
  • the combustor 3 mixes fuel with the air A compressed by the compressor 2 and combusts the mixture to generate high-temperature, high-pressure combustion gas C.
  • the configuration of the combustor 3 will be described below with reference to FIGS. 2 to 4.
  • the combustor 3 includes an outer cylinder 10, an end cover 11, an inner cylinder 15, a support part 17, a combustor plate 20, a first fuel injection part 40, and a second fuel injection part 70.
  • the outer cylinder 10 has a cylindrical shape centered on a combustor axis O1 (hereinafter simply referred to as axis O1), which is the center of the combustor 3.
  • the end cover 11 has a disc shape that closes one end (the left side in FIG. 2) of the outer cylinder 10 in the direction of the axis O1. An end portion of the outer cylinder 10 on one side in the direction of the axis O1 is in contact with the end cover 11.
  • the inner cylinder 15 is arranged coaxially inside the outer cylinder 10.
  • the inner cylinder 15 has a cylindrical shape extending in the direction of the axis O1 inside the outer cylinder 10.
  • An end portion of the inner cylinder 15 on one side in the direction of the axis O1 is spaced apart from the end cover 11 in the direction of the axis O1.
  • the outer diameter of the inner cylinder 15 is smaller than the inner diameter of the outer cylinder 10.
  • Air A compressed by the compressor 2 flows through the flow path from the other side in the axis O1 direction (the right side in FIG. 2) toward the one side in the axis O1 direction.
  • the support portions 17 are members extending in the direction of the axis O1, and a plurality of support portions 17 are provided at intervals in the circumferential direction.
  • An end portion of the support portion 17 on one side in the axis O1 direction is fixed to a surface of the end plate facing the other side in the axis O1 direction on the inner peripheral side of the outer cylinder 10.
  • the air A that has flown between the outer cylinder 10 and the inner cylinder 15 on one side in the direction of the axis O1 reverses its flow direction to the other side in the direction of the axis O1 when passing between the mutually adjacent support parts 17.
  • the combustor plate 20 has a disk shape centered on the axis O1.
  • the combustor plate 20 is provided so as to be coaxially fitted inside the inner cylinder 15.
  • Combustor plate 20 has an upstream end surface 21 and a downstream end surface 22.
  • the upstream end surface 21 is an end surface of the combustor plate 20 facing one side in the direction of the axis O1, and has a planar shape orthogonal to the axis O1.
  • the upstream end surface 21 is arranged at the same position in the axis O1 direction as the end surface of the inner cylinder 15 on one side in the axis O1 direction.
  • the downstream end surface 22 is an end surface of the combustor plate 20 facing the other side in the direction of the axis O1, and has a planar shape orthogonal to the axis O1.
  • the downstream end surface 22 is located on one side in the direction of the axis O1 than the end surface of the inner cylinder 15 on the other side in the direction of the axis O1.
  • a space is defined by the inner peripheral surface of the inner cylinder 15 and the downstream end surface 22 of the combustor plate 20. This space is the combustion space of the combustor 3.
  • the mixing tube 30 is a tube extending in the direction of the axis O1, and air A flows into it from the upstream side (one side in the direction of the axis O1, the left side in FIG. 2).
  • the mixing pipe 30 of this embodiment is formed as a hole extending in the direction of the axis O1 so as to pass through the upstream end surface 21 and the downstream end surface 22 of the combustor plate 20.
  • the mixing tubes 30 extend linearly in the direction of the axis O1, and a plurality of mixing tubes 30 are arranged in parallel at intervals in a direction perpendicular to the axis O1.
  • the opening on the upstream end surface 21 side of the mixing tube 30 is an upstream inlet opening 31 into which air A flows.
  • the opening on the downstream end surface 22 side of the mixing tube 30 is a downstream outlet opening 32 through which a premixed gas M of air A and fuel is ejected.
  • the cross section of the flow path of the mixing tube 30 has a circular shape centered on the central axis O2 of the mixing tube 30.
  • the inner wall surface 33 which is the inner circumferential surface of the mixing tube 30, is composed of three parts: an upstream wall surface 33a, a reduced diameter wall surface 33b, and a downstream wall surface 33c.
  • the upstream wall surface 33a is the most upstream portion of the inner wall surface 33 of the mixing tube 30.
  • the upstream wall surface 33a has a circular cross-sectional shape perpendicular to the axis O1 at any central axis O2 position.
  • the upstream wall surface 33a has a uniform inner diameter along the central axis O2 direction.
  • the upstream end of the upstream wall surface 33a is the inlet opening 31.
  • the reduced diameter wall surface 33b is connected to the downstream end of the upstream wall surface 33a.
  • the diameter-reducing wall surface 33b has a tapered shape whose diameter gradually decreases toward the downstream side.
  • the inner diameter of the upstream end of the reduced diameter wall surface 33b is the same as the inner diameter of the downstream end of the upstream wall surface 33a.
  • the diameter-reduced wall surface 33b may have a conical shape or may have a convex curved shape that is convex toward the inner wall surface 33 of the mixing tube 30.
  • the diameter-reduced wall surface 33b has a circular cross-sectional shape perpendicular to the center axis O2 at any position of the center axis O2.
  • the downstream wall surface 33c is connected to the downstream end of the reduced diameter wall surface 33b.
  • the downstream wall surface 33c has a circular cross-sectional shape perpendicular to the axis O1 at any central axis O2 position.
  • the inner diameter of the upstream end of the downstream wall surface 33c is the same as the inner diameter of the downstream end of the reduced diameter wall surface 33b. Thereby, the diameter-reduced wall surface 33b and the downstream wall surface 33c are smoothly connected to each other without forming a step at their boundary.
  • the downstream wall surface 33c has a uniform inner diameter along the central axis O2 direction.
  • the inner diameter of the downstream wall surface 33c is one size smaller than that of the upstream wall surface 33a.
  • the downstream end of the downstream wall surface 33c is the outlet opening 32.
  • a first plenum 35 and a second plenum 36 are formed inside the combustor plate 20 so as to avoid the mixing pipe 30.
  • the first plenum 35 and the second plenum 36 are separated from the flow path within the mixing tube 30 via a wall that forms the inner wall surface 33 of the mixing tube 30.
  • the first plenum 35 and the second plenum 36 are not in communication with each other. That is, the first plenum 35 and the second plenum 36 are defined in the combustor plate 20 independently from each other so as not to interfere with each other.
  • the first fuel F1 is supplied into the first plenum 35 via a first fuel supply system 38 passed through a connecting member 37 that connects the outer cylinder 10 and the inner cylinder 15, for example.
  • a first fuel supply system 38 passed through a connecting member 37 that connects the outer cylinder 10 and the inner cylinder 15, for example.
  • a second fuel F2 is supplied into the second plenum 36, for example, via a second fuel supply system 39 passed through the support portion 17.
  • the space within the second plenum 36 is filled with the second fuel F2.
  • the first fuel supply system 38 may be passed through the support portion 17, and the second fuel supply system 39 may be passed through the connection member 37.
  • the first fuel supply system 38 and the second fuel supply system 39 may be provided at arbitrary locations.
  • the first fuel F1 is a fuel that is more flammable than the second fuel F2. That is, the first fuel F1 has higher combustibility than the second fuel F2.
  • hydrogen is used as the first fuel F1.
  • natural gas is used as the second fuel F2.
  • Hydrogen is a more flammable fuel than natural gas.
  • the first fuel injection section 40 injects the first fuel F1 into the mixing tube 30 along the central axis O2 of the mixing tube 30.
  • the first fuel injection section 40 has a fuel nozzle 41, a strut 50, and a fuel introduction section 60.
  • the fuel nozzle 41 is a long member disposed within the mixing tube 30 and extending in the direction of the central axis O2 of the mixing tube 30.
  • the fuel nozzle 41 is provided coaxially with the inner wall surface 33 of the mixing tube 30 and spaced apart from the inner wall surface 33 in the radial direction of the mixing tube 30 .
  • the fuel nozzle 41 has a cylindrical shape with a bottom that is closed on the upstream side and open on the downstream side.
  • the upstream end of the fuel nozzle 41 has a tapered shape that decreases in diameter toward the upstream side. That is, the upstream end of the fuel nozzle 41 has a tapered shape toward the upstream side.
  • the outer circumferential surface of the fuel nozzle 41 which is connected to the downstream end of the upstream end of the fuel nozzle 41, has a cylindrical shape extending in the direction of the central axis O2 and centered on the central axis O2.
  • the outer circumferential surface of the fuel nozzle 41 may have a tapered shape that decreases in diameter toward the downstream side, that is, may have a tapered shape toward the downstream side.
  • the upstream end of the fuel nozzle 41 is located at the location where the upstream wall surface 33a is formed on the inner wall surface 33 of the mixing pipe 30.
  • the downstream end of the fuel nozzle 41 is located at the boundary between the diameter-reduced wall surface 33b and the downstream wall surface 33c on the inner wall surface 33 of the mixing tube 30.
  • the cross-sectional shape of the fuel nozzle 41 perpendicular to the central axis O2 has a circular shape centered on the central axis O2 at any position in the direction of the central axis O2. Thereby, an annular flow path centered on the central axis O2 is formed between the fuel nozzle 41 and the inner wall surface 33.
  • the upstream portion of the space inside the fuel nozzle 41 is a cavity 42 that opens into the mixing pipe 30 at the downstream end of the fuel nozzle 41.
  • the opening of the cavity 42 is the tip opening 45 of the fuel nozzle 41.
  • the tip opening 45 has a circular shape centered on the central axis O2.
  • a plurality of struts 50 are provided in the flow path between the inner wall surface 33 of the mixing pipe 30 and the fuel nozzle 41 at intervals in the circumferential direction.
  • the strut 50 has the role of holding the fuel nozzle 41 within the mixing tube 30.
  • the strut 50 has its radially outer end connected to the inner wall surface 33 of the mixing tube 30 with respect to the central axis O2, and the strut 50 with its radially inner end connected to the fuel nozzle 41.
  • the strut 50 has an airfoil-shaped cross section perpendicular to the radial direction of the central axis O2. That is, the strut 50 has a shape in which an airfoil is extended in the radial direction of the central axis O2. In other words, the strut 50 has a blade shape with the radial direction of the central axis O2 being the blade height direction.
  • the upstream end of the strut 50 is a front edge 51 that extends in the radial direction.
  • the leading edge 51 extends radially inward of the central axis O2 toward the downstream side. Thereby, the upstream end of the leading edge 51 is connected to the inner wall surface 33 of the mixing pipe 30, and the downstream end of the leading edge 51 is connected to the fuel nozzle 41.
  • the downstream end of the strut 50 is a radially extending trailing edge 52 .
  • the rear edge 52 extends in a radial direction of the central axis O2.
  • the shape of the airfoil in a cross section perpendicular to the radial direction of the central axis O2 of the strut 50 becomes larger toward the outside in the radial direction.
  • the strut 50 has a shape in which airfoils gradually become smaller from the outside in the radial direction to the inside in the radial direction of the central axis O2.
  • a pair of surfaces facing in the circumferential direction of the central axis O2 connecting the leading edge 51 and the trailing edge 52 of the strut 50 are blade surfaces 53.
  • the pair of blade surfaces 53 are in contact with each other at the leading edge 51, and are gradually separated in the circumferential direction of the center axis O2 as they go downstream, and then gradually spaced apart in the circumferential direction of the center axis O2 as they go further downstream. They are adjacent to each other and connected to each other at trailing edges 52.
  • such struts 50 are provided at equal intervals in the circumferential direction.
  • the fuel introduction section 60 introduces the first fuel F1 into the fuel nozzle 41.
  • the fuel introduction part 60 passes through the wall separating the inner wall surface 33 of the mixing tube 30 of the combustor plate 20 and the cavity 42 and the inside of the strut 50, and connects the first plenum 35 and the cavity 42 in the mixing tube 30. It communicates with
  • the fuel introduction part 60 is a hole extending in the radial direction of the central axis O2 of the mixing tube 30, and its radially outer end of the central axis O2 is connected to the first plenum 35. The inner end in the direction is connected to the cavity 42 .
  • a plurality of fuel introduction sections 60 may be provided corresponding to the plurality of struts 50, or may be provided only on some of the struts 50 among the plurality of struts 50.
  • the second fuel injection section 70 supplies the second fuel F2 into the mixing tube 30 at a location radially outward from the central axis O2 of the mixing tube 30.
  • the second fuel injection section 70 of this embodiment has a wall hole 71 that can inject the second fuel F2 into the mixing tube 30 from the inner wall surface 33 of the mixing tube 30.
  • the wall hole 71 is a hole extending linearly in the radial direction of the central axis O2, and has an end portion radially inside the central axis O2 that opens into the inner wall surface 33 of the inner wall surface 33, and a radially inner end of the central axis O2.
  • the outer end opens into the second plenum 36 .
  • the wall hole 71 allows the flow path in the mixing tube 30 and the second plenum 36 to communicate with each other.
  • the wall hole 71 extends radially inward from the second plenum 36 toward the downstream side. That is, the wall hole 71 is formed so as to be inclined from the radial direction of the mixing tube 30 and the central axis O2.
  • the angle of inclination of the wall hole 71 with respect to the central axis O2 is set to, for example, 30 to 80 degrees, preferably 40 to 70 degrees, and more preferably 45 degrees to 65 degrees.
  • a plurality of second fuel injection parts 70 may be formed spaced apart in the circumferential direction of the central axis O2, or only one second fuel injection part 70 may be formed.
  • the position of the second fuel injection section 70 in the direction of the central axis O2 is on the upstream side of the first fuel injection section 40. That is, the opening of the second fuel injection section 70 into the inner wall surface 33 of the mixing tube 30 is located upstream of the tip opening 45 of the fuel nozzle 41 of the first fuel injection section 40 .
  • the opening point of the second fuel injection part 70 to the inner wall surface 33 of the mixing tube 30 is on the upstream wall surface 33a of the inner wall surface 33 of the mixing tube 30, and is closer to the upstream end of the strut 50. is also formed further upstream.
  • the first fuel F1 which is a more flammable fuel
  • the first fuel F1 is supplied into the mixing pipe 30 via the first fuel injection section 40. That is, the fuel introduced into the cavity 42 of the fuel nozzle 41 from the first fuel F1 plenum via the fuel introduction part 60 is supplied into the mixing tube 30 via the tip opening 45. Since the tip opening 45 of the fuel nozzle 41 is arranged along the central axis O2 of the mixing tube 30, the first fuel F1 ejected from the tip opening 45 flows inside the mixing tube 30 along the central axis O2. circulate.
  • the first fuel F1 is prevented from diffusing radially outward within the mixing tube 30, and the first fuel F1 is concentrated in the center of the mixing tube 30. That is, the fuel concentration distribution within the mixing tube 30 is higher on the radially inner side and lower on the radially outer side. Therefore, the fuel concentration near the inner wall surface 33 of the mixing tube 30 can be suppressed, thereby avoiding the occurrence of flashback in which the flame formed on the downstream end surface 22 flows backward along the inner wall surface 33 of the mixing tube 30. becomes possible.
  • the second fuel F2 which is a relatively hard-to-flammable fuel
  • the risk of misfire will increase. That is, in the outlet opening 32 of the mixing tube 30, the outer edge of the opening becomes the starting point of flame stabilization. Therefore, if the hard-to-flammable fuel gathers in the center of the mixing tube 30, the starting point of flame holding in an area with high fuel concentration moves away from the fuel, making it impossible to hold a stable flame and causing a misfire. there is a possibility.
  • the second fuel F2 which is more difficult to burn, is injected, it is not ejected along the central axis O2 of the mixing tube 30, but at a point spaced apart in the radial direction from the central axis O2. erupts from. That is, the second fuel F2 is injected into the mixing tube 30 from the inner wall surface 33 of the mixing tube 30 by the second fuel injection section 70. Therefore, an extreme drop in fuel concentration near the wall surface of the mixing tube 30 can be avoided.
  • the fuel concentration on the inner wall surface 33 can be increased. Therefore, the fuel concentration near the inner wall surface 33 also increases near the outlet of the mixing tube 30, and the combustion rate at the outer edge of the outlet opening 32 of the mixing tube 30, which is the starting point of flame stabilization, can be increased. As a result, the flame can be continuously stabilized.
  • the second fuel injection section 70 is arranged on the upstream side within the mixing pipe 30, and the first fuel injection section 40 is arranged on the downstream side within the mixing pipe 30.
  • the flow path of the second fuel F2 from being injected to reaching the outlet opening 32 becomes sufficiently long. Therefore, the second fuel F2 can be sufficiently diffused and spread over the entire area in the cross section of the flow path of the mixing tube 30.
  • the fuel concentration near the inner wall surface 33 of the mixing tube 30 can be ensured, and the occurrence of misfire can be avoided and stable flame holding can be performed.
  • the flow path from where the first fuel F1 is injected from the first fuel injection unit 40 to the outlet of the mixing pipe 30 becomes shorter. Therefore, since the straightness of the first fuel F1 can be ensured, it is possible to prevent the first fuel F1 from diffusing and reaching the inner wall surface 33 of the mixing pipe 30. As a result, the occurrence of flashback can be suppressed.
  • the struts 50 have an airfoil shape, the air A within the mixing tube 30 can be smoothly circulated. Therefore, an increase in pressure loss can be suppressed. Furthermore, in this embodiment, since the second fuel injection section 70 is provided on the upstream side of the strut 50, the ejected second fuel F2 also flows smoothly along the airfoil of the strut 50. Therefore, it is also possible to suppress an increase in pressure loss due to the generation of unintended vortices due to the jet flow of the second fuel F2. It is also possible to suppress imbalances in fuel distribution, such as local increases in fuel concentration.
  • the flow velocity within the mixing tube 30 can be increased. Thereby, it is possible to avoid unintentional flame holding due to unintentional accumulation of fuel in the mixing tube 30.
  • the same components as those in the first embodiment are given the same reference numerals, and detailed description thereof will be omitted.
  • the configuration of the second fuel injection section 70 is different from the first embodiment. That is, the second fuel injection section 70 has a surface hole 72 through which the second fuel F2 is injected from the wing surface 53, which is the surface of the strut 50.
  • the surface hole 72 opens at the radially inner end of the mixing tube 30 into the blade surface 53 of the strut 50. A radially outer end of the surface hole 72 opens into the second plenum 36 . Thereby, the surface hole 72 communicates the inside of the mixing pipe 30 and the second plenum 36 via the blade surface 53 of the strut 50.
  • the surface hole 72 may be formed in each of the pair of wing surfaces 53 of the strut 50, or may be formed in only one of the pair of wing surfaces 53. Furthermore, the surface holes 72 may be formed in each of the plurality of struts 50, or may be formed in only some of the struts 50.
  • the second fuel F2 can be injected into the mixing pipe 30 at a position radially outward from the central axis O2, similarly to the first embodiment. Therefore, compared to the case where the second fuel F2 is ejected along the central axis O2, the fuel concentration near the inner wall surface 33 of the mixing tube 30 can be increased, and flame stability can be ensured.
  • the second fuel F2 can be appropriately mixed with the air A flowing through the wing surface 53, the mixing of the air A and the second fuel F2 can be promoted, and NOx can be reduced. can.
  • the diameter-reduced wall surface 33b of the mixing tube 30 in the third embodiment is formed over a wider range than in the first embodiment.
  • the upstream end of the reduced diameter wall surface 33b is located at the same position in the central axis O2 direction as the upstream end of the strut 50.
  • the downstream end of the reduced diameter wall surface 33b is located at the same position in the central axis O2 direction as the tip opening 45 of the fuel nozzle 41 of the first fuel injection section 40.
  • the diameter-reducing wall surface 33b has a tapered shape that gradually reduces in diameter from the upstream end to the downstream end.
  • the diameter-reduced wall surface 33b of the mixing tube 30 is provided at the position where the strut 50 is formed.
  • the cross-sectional area of the flow path of the mixing tube 30 can be configured to match the change in the shape of the strut 50. Therefore, it is possible to avoid the occurrence of a low speed region within the mixing tube 30, and it is possible to prevent flame holding from occurring inadvertently within the mixing tube 30.
  • the present invention is not limited to this.
  • Various fuels can be employed as the first fuel F1 and the second fuel F2.
  • at least one of the first fuel F1 and the second fuel F2 may be a mixed fuel of hydrogen and natural gas.
  • the combustibility of the first fuel F1 can be made higher than that of the second fuel F2 depending on the mixture ratio of hydrogen and natural gas. Therefore, by employing the configuration of this embodiment, it is possible to realize a configuration of the combustor 3 that is suitable for both the first fuel F1 and the second fuel F2. Furthermore, by adjusting the fuel compositions of the first fuel F1 and the second fuel F2 in this way, flame stability can be ensured while reducing the occurrence of flashback.
  • the second fuel F2 is injected more upstream of the mixing pipe 30 than the first fuel F1, but the present invention is not limited to this.
  • the configuration may be such that the first fuel F1 is injected more upstream of the mixing tube 30 than the second fuel F2, or the first fuel F1 and the second fuel F2 are injected at the same position in the direction of the central axis O2. It's okay.
  • the combustor 3 includes a mixing pipe 30 that extends through an upstream end surface 21 and a downstream end surface 22 that are perpendicular to the combustor axis O1, and into which air A is introduced from the upstream end surface 21 side.
  • a first fuel injection part 40 capable of injecting the first fuel F1 along the central axis O2 of the mixing tube 30 inside the mixing tube 30, and the central axis O2 of the mixing tube 30.
  • the combustor 3 includes a second fuel injection part 70 that can inject the second fuel F2 into the mixing pipe 30 on the outside in the radial direction of O2.
  • the first fuel injection part 40 injects fuel along the central axis O2 of the mixing tube 30, it is possible to suppress an increase in the fuel concentration of the first fuel F1 on the wall surface of the mixing tube 30.
  • the second fuel F2 is injected from the second fuel injection part 70 at a position away from the center axis O2 of the mixing tube 30, an extreme drop in the fuel concentration near the wall surface of the mixing tube 30 can be avoided. . This makes it possible to perform stable combustion while suppressing flashback.
  • the combustor 3 according to the second aspect is the combustor 3 according to the first aspect, in which the first fuel injection section 40 is arranged in the mixing pipe 30 more than the second fuel injection section 70.
  • the first fuel F1 may be injected on the downstream side.
  • the second fuel F2 is injected by the second fuel injection unit 70 at a position away from the center axis O2 of the mixing tube 30, thereby spreading and spreading the second fuel F2 over the entire area in the cross section of the flow path of the mixing tube 30.
  • the first fuel injection part 40 in which the first fuel F1 is injected along the central axis O2 of the mixing tube 30, is located downstream of the second fuel injection part 70, so that the first fuel F1 is injected.
  • the path from the point to the outlet of the mixing tube 30 is short. Therefore, it is possible to prevent the first fuel F1 from diffusing and reaching the inner wall surface 33 of the mixing tube 30.
  • the combustor 3 according to the third aspect is the combustor 3 according to the first aspect or the second aspect, in which the second fuel injection part 70 is connected to the inner wall surface of the mixing pipe 30. 33 into the mixing tube 30 may have a wall hole 71 through which the second fuel F2 can be injected.
  • the fuel concentration on the inner wall surface 33 at the outlet of the mixing tube 30 can be increased. This increases the combustion speed at the starting point of flame stabilization, making it possible to stabilize the flame.
  • the combustor 3 according to the fourth aspect is the combustor 3 according to any one of the first to third aspects, and the first fuel injection section 40 is connected to the mixing pipe. 30, a fuel nozzle 41 extending in the direction of the central axis O2 and having a tip opening 45 formed at the downstream end for injecting the first fuel F1; A strut 50 extends in the radial direction of the center axis O2 between the fuel nozzle 41 and the inner wall surface 33 of the mixing pipe 30, and connects the fuel nozzle to the fuel nozzle via the inside of the strut 50. 41 may include a fuel introduction path for introducing the first fuel F1.
  • the first fuel F1 can be appropriately injected by the first fuel injection unit 40 along the central axis O2 of the mixing tube 30.
  • the combustor 3 according to the fifth aspect is the combustor 3 according to the fourth aspect, in which the strut 50 has an upstream end as a leading edge 51 and a downstream end. It may have an airfoil shape with a trailing edge 52.
  • the air A in the mixing tube 30 can be smoothly circulated, and an increase in pressure loss can be suppressed.
  • the combustor 3 according to the sixth aspect is the combustor 3 according to the fourth aspect or the fifth aspect, in which the inner wall surface 33 of the mixing pipe 30 is connected to the upstream end surface 21.
  • an upstream wall surface 33a extending downstream with a uniform inner diameter
  • a decreasing diameter wall surface 33b connected to the downstream side of the upstream wall surface 33a and decreasing in diameter toward the downstream side
  • the downstream wall surface 33c may be connected to the downstream side and have a smaller diameter than the upstream wall surface 33a and reach the downstream end surface 22 with a uniform inner diameter.
  • a part of the mixing tube 30 has a diameter-reduced wall surface 33b, and by forming a constricted flow path, the flow velocity within the mixing tube 30 can be increased. Thereby, it is possible to avoid flame holding at an unintended location within the mixing tube 30.
  • the combustor 3 according to the seventh aspect is the combustor 3 according to the sixth aspect, in which the diameter-reducing wall surface 33b is located at the position of the upstream end of the strut 50 in the central axis O2 direction. It may extend from the tip opening 45 to a position in the direction of the central axis O2.
  • the combustor 3 according to the eighth aspect is the combustor 3 according to any one of the fourth to seventh aspects, and the second fuel injection section 70 is connected to the strut 50. It may have a surface hole 72 through which the second fuel F2 can be injected into the mixing tube 30 from the surface thereof.
  • the combustor 3 according to the ninth aspect is the combustor 3 according to any one of the first to eighth aspects, in which the first fuel F1 is the second fuel F2. It may be said that it is a more flammable component.
  • the gas turbine 1 has a compressor 2 that generates air A, and a premixed gas M that is generated by mixing fuel with the air A compressed by the compressor 2.
  • the combustor 3 includes a combustor 3 of any one of the first to ninth modes that generates gas C, and a turbine 4 that is driven by the combustion gas C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

This combustor comprises: a combustor plate that has a mixing tube which extends so as to penetrate the combustor plate upstream end face and downstream end face perpendicular to the combustor axis and into which air is introduced from the upstream end face side; a first fuel injection part that is capable of injecting a first fuel along the center axis of the mixing tube on the inner side of the mixing tube; and a second fuel injection part that is capable of injecting a second fuel within the mixing tube radially outward of the center axis of the mixing tube.

Description

燃焼器及びガスタービンCombustor and gas turbine
 本開示は、燃焼器及びガスタービンに関する。
 本願は、2022年3月30日に日本に出願された特願2022-56200号について優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD This disclosure relates to combustors and gas turbines.
This application claims priority to Japanese Patent Application No. 2022-56200 filed in Japan on March 30, 2022, the contents of which are incorporated herein.
 例えば特許文献1には、ガスタービンに用いられる燃焼器の一例としてのクラスタ燃焼器が開示されている。 For example, Patent Document 1 discloses a cluster combustor as an example of a combustor used in a gas turbine.
 上記クラスタ燃焼器は、クラスタ燃焼器は、互いに並設されて空気が導入される複数の混合管と、これら混合管内に挿入された先端から燃料を噴射する燃料ノズルとを有している。燃料ノズルは、混合管の中心軸線に沿って燃料を噴射する。
 燃料ノズルからの燃料の噴射に伴って空気と燃料との混合ガスが混合管を流通して下流側に噴出される。この際、混合ガスが着火することで、各混合管の出口に複数の小規模の火炎が形成される。
The cluster combustor has a plurality of mixing tubes that are arranged in parallel with each other and into which air is introduced, and a fuel nozzle that injects fuel from the tips inserted into these mixing tubes. The fuel nozzle injects fuel along the central axis of the mixing tube.
As fuel is injected from the fuel nozzle, a mixed gas of air and fuel flows through the mixing pipe and is ejected downstream. At this time, by igniting the mixed gas, a plurality of small-scale flames are formed at the outlet of each mixing tube.
米国特許出願公開第2013/0067926号明細書US Patent Application Publication No. 2013/0067926
 ところで上記のような燃焼器では、火炎が混合管内の壁面に沿って逆流するフラッシュバックを抑制するために、混合管の内壁面の燃料濃度の上昇を抑える必要がある。特に比較的燃え易い燃料を用いた場合にはこの傾向が顕著となる。
 一方で、特に比較的燃え難い燃料を用いた場合には、内壁面の燃料濃度が低いと、失火のリスクがあり、安定的な燃焼を行うことができない場合がある。
In the combustor as described above, it is necessary to suppress an increase in the fuel concentration on the inner wall surface of the mixing tube in order to suppress flashback in which the flame flows back along the wall surface within the mixing tube. This tendency is particularly noticeable when relatively easily flammable fuel is used.
On the other hand, especially when a relatively hard-to-flammable fuel is used, if the fuel concentration on the inner wall surface is low, there is a risk of misfire, and stable combustion may not be possible.
 本開示は上記課題を解決するためになされたものであって、フラッシュバックを抑制しながら失火を回避することができる燃焼器及びガスタービンを提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a combustor and a gas turbine that can avoid misfires while suppressing flashback.
 上記課題を解決するために、本開示に係る燃焼器は、燃焼器軸線に直交する上流端面及び下流端面を貫通するように延びるとともに前記上流端面側から空気が導入される混合管を有する燃焼器プレートと、前記混合管の内側で前記混合管の中心軸線に沿って第一燃料を噴射可能な第一燃料噴射部と、前記混合管の前記中心軸線の径方向外側で、前記混合管内に第二燃料を噴射可能な第二燃料噴射部と、を備える。 In order to solve the above problems, a combustor according to the present disclosure has a mixing tube that extends through an upstream end surface and a downstream end surface that are perpendicular to the combustor axis, and into which air is introduced from the upstream end surface side. a first fuel injector capable of injecting a first fuel along the central axis of the mixing tube inside the mixing tube; and a second fuel injection section capable of injecting two fuels.
 本開示に係るガスタービンは、空気を生成する圧縮機と、圧縮機が圧縮した空気に燃料を混合して生成した予混合ガスを燃焼させることで燃焼ガスを生成する上記の燃焼器と、前記燃焼ガスによって駆動されるタービンと、を備える。 A gas turbine according to the present disclosure includes: a compressor that generates air; the above-mentioned combustor that generates combustion gas by combusting a premixed gas generated by mixing fuel into the air compressed by the compressor; A turbine driven by combustion gas.
 本開示の燃焼器及びガスタービンによれば、フラッシュバックを抑制しながら失火を回避することができる。 According to the combustor and gas turbine of the present disclosure, misfire can be avoided while suppressing flashback.
本開示の第一実施形態に係るガスタービンの概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of a gas turbine according to a first embodiment of the present disclosure. 本開示の第一実施形態に係る燃焼器の概略構成を示す縦断面図である。FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a combustor according to a first embodiment of the present disclosure. 本開示の第一実施形態に係る燃焼器の燃焼器プレートの要部の縦断面図である。FIG. 2 is a vertical cross-sectional view of a main part of a combustor plate of a combustor according to a first embodiment of the present disclosure. 本開示の第一実施形態に係る燃焼器の燃焼器プレートの混合管内の斜視図である。FIG. 3 is a perspective view of the inside of the mixing tube of the combustor plate of the combustor according to the first embodiment of the present disclosure. 本開示の第二実施形態に係る燃焼器の燃焼器プレートの要部の縦断面図である。FIG. 7 is a vertical cross-sectional view of a main part of a combustor plate of a combustor according to a second embodiment of the present disclosure. 本開示の第三実施形態に係る燃焼器の燃焼器プレートの要部の縦断面図であって、ストラットの断面形状を合わせて記載した図である。FIG. 7 is a vertical cross-sectional view of a main part of a combustor plate of a combustor according to a third embodiment of the present disclosure, also showing the cross-sectional shape of a strut.
[第一実施形態]
 以下、本発明の第一実施形態について図1~図4を参照して詳細に説明する。図1に示すように、本実施形態に係るガスタービン1は、空気Aを圧縮する圧縮機2と、燃焼ガスCを生成する燃焼器3と、燃焼ガスCによって駆動されるタービン4と、を有している。
 燃焼器3は、ガスタービン1の回転軸の周囲に周方向に間隔をあけて複数が設けられている。燃焼器3は、圧縮機2が圧縮した空気Aに燃料を混合させて燃焼させ、高温高圧の燃焼ガスCを生成する。
[First embodiment]
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS. 1 to 4. As shown in FIG. 1, the gas turbine 1 according to the present embodiment includes a compressor 2 that compresses air A, a combustor 3 that generates combustion gas C, and a turbine 4 that is driven by the combustion gas C. have.
A plurality of combustors 3 are provided around the rotating shaft of the gas turbine 1 at intervals in the circumferential direction. The combustor 3 mixes fuel with the air A compressed by the compressor 2 and combusts the mixture to generate high-temperature, high-pressure combustion gas C.
(燃焼器)
 以下、図2~図4を参照して燃焼器3の構成について説明する。
 燃焼器3は、外筒10、エンドカバー11、内筒15、支持部17、燃焼器プレート20、第一燃料噴射部40及び第二燃料噴射部70を備えている。
(combustor)
The configuration of the combustor 3 will be described below with reference to FIGS. 2 to 4.
The combustor 3 includes an outer cylinder 10, an end cover 11, an inner cylinder 15, a support part 17, a combustor plate 20, a first fuel injection part 40, and a second fuel injection part 70.
(外筒)
 外筒10は、燃焼器3の中心となる燃焼器軸線O1(以下、単に軸線O1と称する。)を中心とした円筒状をなしている。
(outer cylinder)
The outer cylinder 10 has a cylindrical shape centered on a combustor axis O1 (hereinafter simply referred to as axis O1), which is the center of the combustor 3.
(エンドカバー)
 エンドカバー11は、外筒10の軸線O1方向の一方側(図2における左側)の端部を閉塞する円盤状をなしている。エンドカバー11には、外筒10の軸線O1方向一方側の端部が当接されている。
(end cover)
The end cover 11 has a disc shape that closes one end (the left side in FIG. 2) of the outer cylinder 10 in the direction of the axis O1. An end portion of the outer cylinder 10 on one side in the direction of the axis O1 is in contact with the end cover 11.
(内筒)
 内筒15は、外筒10の内側に同軸に配置されている。内筒15は、外筒10の内側で軸線O1方向に延びる円筒状をなしている。内筒15の軸線O1方向一方側の端部は、エンドカバー11と軸線O1方向に離間している。内筒15の外径は外筒10の内径よりも小さい。これにより、内筒15の外周面と外筒10の内周面との間には、環状の流路が形成されている。当該流路には、圧縮機2によって圧縮された空気Aが軸線O1方向他方側(図2における右側)から軸線O1方向一方側に向かって流通する。
(inner cylinder)
The inner cylinder 15 is arranged coaxially inside the outer cylinder 10. The inner cylinder 15 has a cylindrical shape extending in the direction of the axis O1 inside the outer cylinder 10. An end portion of the inner cylinder 15 on one side in the direction of the axis O1 is spaced apart from the end cover 11 in the direction of the axis O1. The outer diameter of the inner cylinder 15 is smaller than the inner diameter of the outer cylinder 10. Thereby, an annular flow path is formed between the outer peripheral surface of the inner cylinder 15 and the inner peripheral surface of the outer cylinder 10. Air A compressed by the compressor 2 flows through the flow path from the other side in the axis O1 direction (the right side in FIG. 2) toward the one side in the axis O1 direction.
(支持部)
 支持部17は、軸線O1方向に延びる部材であって、周方向に間隔をあけて複数が設けられている。支持部17の軸線O1方向一方側の端部は、外筒10の内周側でエンドプレートの軸線O1方向他方側を向く面に固定されている。外筒10と内筒15との間を軸線O1方向一方側に流通してきた空気Aは、互いに隣り合う支持部17の間を通過する際に、流通方向を軸線O1方向他方側に反転させる。
(Support part)
The support portions 17 are members extending in the direction of the axis O1, and a plurality of support portions 17 are provided at intervals in the circumferential direction. An end portion of the support portion 17 on one side in the axis O1 direction is fixed to a surface of the end plate facing the other side in the axis O1 direction on the inner peripheral side of the outer cylinder 10. The air A that has flown between the outer cylinder 10 and the inner cylinder 15 on one side in the direction of the axis O1 reverses its flow direction to the other side in the direction of the axis O1 when passing between the mutually adjacent support parts 17.
(燃焼器プレート)
 燃焼器プレート20は、軸線O1を中心とした円盤状をなしている。燃焼器プレート20は、内筒15の内側に同軸に嵌め込まれるように設けられている。燃焼器プレート20は、上流端面21と下流端面22とを有する。
(combustor plate)
The combustor plate 20 has a disk shape centered on the axis O1. The combustor plate 20 is provided so as to be coaxially fitted inside the inner cylinder 15. Combustor plate 20 has an upstream end surface 21 and a downstream end surface 22.
(上流端面)
 上流端面21は、燃焼器プレート20における軸線O1方向一方側を向く端面であって、軸線O1に直交する平面状をなしている。上流端面21は、内筒15の軸線O1方向一方側の端面と同一の軸線O1方向位置に配置されている。
(Upstream end face)
The upstream end surface 21 is an end surface of the combustor plate 20 facing one side in the direction of the axis O1, and has a planar shape orthogonal to the axis O1. The upstream end surface 21 is arranged at the same position in the axis O1 direction as the end surface of the inner cylinder 15 on one side in the axis O1 direction.
(下流端面)
 下流端面22は、燃焼器プレート20における軸線O1方向他方側を向く端面であって、軸線O1に直交する平面状をなしている。下流端面22は、内筒15の軸線O1方向他方側の端面よりも軸線O1方向一方側に位置している。これにより内筒15の内周面と燃焼器プレート20の下流端面22とによって空間が区画形成されている。当該空間は燃焼器3の燃焼空間とされている。
(Downstream end face)
The downstream end surface 22 is an end surface of the combustor plate 20 facing the other side in the direction of the axis O1, and has a planar shape orthogonal to the axis O1. The downstream end surface 22 is located on one side in the direction of the axis O1 than the end surface of the inner cylinder 15 on the other side in the direction of the axis O1. As a result, a space is defined by the inner peripheral surface of the inner cylinder 15 and the downstream end surface 22 of the combustor plate 20. This space is the combustion space of the combustor 3.
(混合管)
 混合管30は、軸線O1方向に延びる管であって、上流側(軸線O1方向一方側、図2の左側)から空気Aが流入する。本実施形態の混合管30は、燃焼器プレート20の上流端面21と下流端面22とにわたって貫通するように軸線O1方向に延びる孔部として形成されている。混合管30は、軸線O1方向に直線状に延びており、軸線O1に直交する方向に互いに間隔をあけて複数が並設されている。混合管30の上流端面21側の開口は、空気Aが流入する上流側の入口開口31とされている。混合管30の下流端面22側の開口は、空気Aと燃料との予混合ガスMが噴出される下流側の出口開口32とされている。混合管30の流路断面は、該混合管30の中心軸線O2を中心とした円形をなしている。
(mixing tube)
The mixing tube 30 is a tube extending in the direction of the axis O1, and air A flows into it from the upstream side (one side in the direction of the axis O1, the left side in FIG. 2). The mixing pipe 30 of this embodiment is formed as a hole extending in the direction of the axis O1 so as to pass through the upstream end surface 21 and the downstream end surface 22 of the combustor plate 20. The mixing tubes 30 extend linearly in the direction of the axis O1, and a plurality of mixing tubes 30 are arranged in parallel at intervals in a direction perpendicular to the axis O1. The opening on the upstream end surface 21 side of the mixing tube 30 is an upstream inlet opening 31 into which air A flows. The opening on the downstream end surface 22 side of the mixing tube 30 is a downstream outlet opening 32 through which a premixed gas M of air A and fuel is ejected. The cross section of the flow path of the mixing tube 30 has a circular shape centered on the central axis O2 of the mixing tube 30.
 詳しくは図3に示すように、混合管30の内周面である内壁面33は、上流壁面33a、縮径壁面33b及び下流壁面33cの3つの部分から構成されている。 Specifically, as shown in FIG. 3, the inner wall surface 33, which is the inner circumferential surface of the mixing tube 30, is composed of three parts: an upstream wall surface 33a, a reduced diameter wall surface 33b, and a downstream wall surface 33c.
 上流壁面33aは、混合管30の内壁面33における最も上流側の部分である。上流壁面33aは、軸線O1に直交する断面形状がいずれの中心軸線O2位置でも円形をなしている。上流壁面33aは中心軸線O2方向にわたって一様の内径を有している。上流壁面33aの上流側の端部は、上記入口開口31である。 The upstream wall surface 33a is the most upstream portion of the inner wall surface 33 of the mixing tube 30. The upstream wall surface 33a has a circular cross-sectional shape perpendicular to the axis O1 at any central axis O2 position. The upstream wall surface 33a has a uniform inner diameter along the central axis O2 direction. The upstream end of the upstream wall surface 33a is the inlet opening 31.
 縮径壁面33bは、上流壁面33aの下流側の端部に接続されている。縮径壁面33bは、下流側に向かうに従って徐々に縮径するテーパ状をなしている。縮径壁面33bの上流側の端部の内径は上流壁面33aの下流側の端部の内径と同一とされている。これにより、上流壁面33aと縮径壁面33bとは互いの境界で段差を形成することなく滑らかに接続されている。縮径壁面33bは、円錐面状をなしていてもよいし、混合管30の内壁面33に向かって凸となる凸曲面状をなしていてもよい。縮径壁面33bは、中心軸線O2に直交する断面形状が、いずれの中心軸線O2位置でも円形をなしている。 The reduced diameter wall surface 33b is connected to the downstream end of the upstream wall surface 33a. The diameter-reducing wall surface 33b has a tapered shape whose diameter gradually decreases toward the downstream side. The inner diameter of the upstream end of the reduced diameter wall surface 33b is the same as the inner diameter of the downstream end of the upstream wall surface 33a. Thereby, the upstream wall surface 33a and the reduced diameter wall surface 33b are smoothly connected to each other without forming a step at the boundary. The diameter-reduced wall surface 33b may have a conical shape or may have a convex curved shape that is convex toward the inner wall surface 33 of the mixing tube 30. The diameter-reduced wall surface 33b has a circular cross-sectional shape perpendicular to the center axis O2 at any position of the center axis O2.
 下流壁面33cは、縮径壁面33bの下流側の端部に接続されている。下流壁面33cは、軸線O1に直交する断面形状がいずれの中心軸線O2位置でも円形をなしている。下流壁面33cの上流側の端部の内径は縮径壁面33bの下流側の端部の内径と同一とされている。これにより、縮径壁面33bと下流壁面33cとは互いの境界で段差を形成することなく滑らかに接続されている。下流壁面33cは中心軸線O2方向にわたって一様の内径を有している。下流壁面33cの内径は上流壁面33aよりも一回り小さい。下流壁面33cの下流側の端部は上記出口開口32である。 The downstream wall surface 33c is connected to the downstream end of the reduced diameter wall surface 33b. The downstream wall surface 33c has a circular cross-sectional shape perpendicular to the axis O1 at any central axis O2 position. The inner diameter of the upstream end of the downstream wall surface 33c is the same as the inner diameter of the downstream end of the reduced diameter wall surface 33b. Thereby, the diameter-reduced wall surface 33b and the downstream wall surface 33c are smoothly connected to each other without forming a step at their boundary. The downstream wall surface 33c has a uniform inner diameter along the central axis O2 direction. The inner diameter of the downstream wall surface 33c is one size smaller than that of the upstream wall surface 33a. The downstream end of the downstream wall surface 33c is the outlet opening 32.
(第一プレナム、第二プレナム)
 図2及び図3に示すように、燃焼器プレート20の内部には、混合管30を避けるように形成された空間である第一プレナム35及び第二プレナム36が形成されている。第一プレナム35及び第二プレナム36は、混合管30の内壁面33を形成する壁を介して混合管30内の流路と隔離されている。第一プレナム35と第二プレナム36とは互いに非連通状態とされている。即ち、第一プレナム35と第二プレナム36とは、互いに干渉しないように互いに独立して燃焼器プレート20内に区画形成されている。
(First plenum, second plenum)
As shown in FIGS. 2 and 3, a first plenum 35 and a second plenum 36 are formed inside the combustor plate 20 so as to avoid the mixing pipe 30. The first plenum 35 and the second plenum 36 are separated from the flow path within the mixing tube 30 via a wall that forms the inner wall surface 33 of the mixing tube 30. The first plenum 35 and the second plenum 36 are not in communication with each other. That is, the first plenum 35 and the second plenum 36 are defined in the combustor plate 20 independently from each other so as not to interfere with each other.
 第一プレナム35内には、例えば外筒10と内筒15とを接続する接続部材37内に通された第一燃料供給系統38を介して第一燃料F1が供給される。これにより、第一プレナム35内の空間には第一燃料F1が充填されている。
 第二プレナム36内には、例えば支持部17内に通された第二燃料供給系統39を介して第二燃料F2が供給される。これにより、第二プレナム36内の空間には第二燃料F2が充填されている。
 なお、第一燃料供給系統38が支持部17内に通されていてもよいし、第二燃料供給系統39が接続部材37内に通されていてもよい。その他、第一燃料供給系統38、第二燃料供給系統39は任意の箇所に設けられていてもよい。
The first fuel F1 is supplied into the first plenum 35 via a first fuel supply system 38 passed through a connecting member 37 that connects the outer cylinder 10 and the inner cylinder 15, for example. As a result, the space within the first plenum 35 is filled with the first fuel F1.
A second fuel F2 is supplied into the second plenum 36, for example, via a second fuel supply system 39 passed through the support portion 17. As a result, the space within the second plenum 36 is filled with the second fuel F2.
Note that the first fuel supply system 38 may be passed through the support portion 17, and the second fuel supply system 39 may be passed through the connection member 37. In addition, the first fuel supply system 38 and the second fuel supply system 39 may be provided at arbitrary locations.
 ここで本実施形態では、第一燃料F1の方が第二燃料F2よりも燃え易い燃料とされている。即ち、第一燃料F1の方が第二燃料F2よりも燃焼性が高い。第一燃料F1としては、例えば水素が用いられる。第二燃料F2としては、例えば天然ガスが用いられる。水素は、天然ガスよりも燃え易い燃料である。 Here, in this embodiment, the first fuel F1 is a fuel that is more flammable than the second fuel F2. That is, the first fuel F1 has higher combustibility than the second fuel F2. For example, hydrogen is used as the first fuel F1. For example, natural gas is used as the second fuel F2. Hydrogen is a more flammable fuel than natural gas.
(第一燃料噴射部)
 第一燃料噴射部40は、混合管30内に該混合管30の中心軸線O2に沿って第一燃料F1を噴射する。第一燃料噴射部40は、燃料ノズル41、ストラット50及び燃料導入部60を有している。
(First fuel injection part)
The first fuel injection section 40 injects the first fuel F1 into the mixing tube 30 along the central axis O2 of the mixing tube 30. The first fuel injection section 40 has a fuel nozzle 41, a strut 50, and a fuel introduction section 60.
 燃料ノズル41は、混合管30内に配置されて混合管30の中心軸線O2方向に延びる長尺状をなす部材である。燃料ノズル41は、混合管30の内壁面33と同軸かつ、内壁面33と混合管30の径方向に間隔をあけて設けられている。 The fuel nozzle 41 is a long member disposed within the mixing tube 30 and extending in the direction of the central axis O2 of the mixing tube 30. The fuel nozzle 41 is provided coaxially with the inner wall surface 33 of the mixing tube 30 and spaced apart from the inner wall surface 33 in the radial direction of the mixing tube 30 .
 燃料ノズル41は、上流側が閉塞されて下流側が開放された有底円筒状をなしている。燃料ノズル41の上流側の端部は、上流側に向かうに従って縮径するテーパ状をなしている。即ち、燃料ノズル41の上流側の端部は、上流側に向かっての先細り形状をなしている。燃料ノズル41の上流側の端部の下流側に連なる燃料ノズル41の外周面は、中心軸線O2方向にわたって中心軸線O2を中心とした円筒面状をなしている。燃料ノズル41の外周面は、下流側に向かって縮径するテーパ状をなしていてもよく、即ち、下流側に向かって先細り形状をなしていてもよい。 The fuel nozzle 41 has a cylindrical shape with a bottom that is closed on the upstream side and open on the downstream side. The upstream end of the fuel nozzle 41 has a tapered shape that decreases in diameter toward the upstream side. That is, the upstream end of the fuel nozzle 41 has a tapered shape toward the upstream side. The outer circumferential surface of the fuel nozzle 41, which is connected to the downstream end of the upstream end of the fuel nozzle 41, has a cylindrical shape extending in the direction of the central axis O2 and centered on the central axis O2. The outer circumferential surface of the fuel nozzle 41 may have a tapered shape that decreases in diameter toward the downstream side, that is, may have a tapered shape toward the downstream side.
 本実施形態では、燃料ノズル41の上流側の端部は、混合管30の内壁面33における上流壁面33aの形成箇所に位置している。燃料ノズル41の下流側の端部は、混合管30の内壁面33における縮径壁面33bと下流壁面33cとの境界に位置している。 In this embodiment, the upstream end of the fuel nozzle 41 is located at the location where the upstream wall surface 33a is formed on the inner wall surface 33 of the mixing pipe 30. The downstream end of the fuel nozzle 41 is located at the boundary between the diameter-reduced wall surface 33b and the downstream wall surface 33c on the inner wall surface 33 of the mixing tube 30.
 燃料ノズル41の中心軸線O2に直交する断面形状は、いずれの中心軸線O2方向位置でも中心軸線O2を中心とした円形をなしている。これにより、燃料ノズル41と内壁面33との間には、中心軸線O2を中心とした円環状の流路が形成されている。 The cross-sectional shape of the fuel nozzle 41 perpendicular to the central axis O2 has a circular shape centered on the central axis O2 at any position in the direction of the central axis O2. Thereby, an annular flow path centered on the central axis O2 is formed between the fuel nozzle 41 and the inner wall surface 33.
 燃料ノズル41の内側の空間における上流側の部分は、燃料ノズル41の下流側の端部で混合管30内に開口するキャビティ42とされている。当該キャビティ42の開口が燃料ノズル41の先端開口45とされている。先端開口45は、中心軸線O2を中心とした円形状をなしている。 The upstream portion of the space inside the fuel nozzle 41 is a cavity 42 that opens into the mixing pipe 30 at the downstream end of the fuel nozzle 41. The opening of the cavity 42 is the tip opening 45 of the fuel nozzle 41. The tip opening 45 has a circular shape centered on the central axis O2.
(ストラット)
 ストラット50は、混合管30の内壁面33と燃料ノズル41との間の流路に、周方向に間隔をあけて複数が設けられている。ストラット50は、燃料ノズル41を混合管30内に保持する役割を有する。ストラット50は、中心軸線O2の径方向外側の端部が混合管30の内壁面33に接続されており、中心軸線O2の径方向内側の端部が燃料ノズル41に接続されている。
(Strut)
A plurality of struts 50 are provided in the flow path between the inner wall surface 33 of the mixing pipe 30 and the fuel nozzle 41 at intervals in the circumferential direction. The strut 50 has the role of holding the fuel nozzle 41 within the mixing tube 30. The strut 50 has its radially outer end connected to the inner wall surface 33 of the mixing tube 30 with respect to the central axis O2, and the strut 50 with its radially inner end connected to the fuel nozzle 41.
 ストラット50は、中心軸線O2の径方向に直交する断面形状が、翼型をなしている。即ち、ストラット50は、翼型を中心軸線O2の径方向に延ばした形状をなしている。言い換えれば、ストラット50は、中心軸線O2の径方向を翼高さ方向とした翼形状をなしている。 The strut 50 has an airfoil-shaped cross section perpendicular to the radial direction of the central axis O2. That is, the strut 50 has a shape in which an airfoil is extended in the radial direction of the central axis O2. In other words, the strut 50 has a blade shape with the radial direction of the central axis O2 being the blade height direction.
 ストラット50の上流側の端部は、径方向に延びる前縁51とされている。前縁51は、下流側に向かうに従って中心軸線O2の径方向内側に延びている。これにより、前縁51における上流側の端部は、混合管30の内壁面33に接続されており、前縁51の下流側の端部は燃料ノズル41に接続されている。 The upstream end of the strut 50 is a front edge 51 that extends in the radial direction. The leading edge 51 extends radially inward of the central axis O2 toward the downstream side. Thereby, the upstream end of the leading edge 51 is connected to the inner wall surface 33 of the mixing pipe 30, and the downstream end of the leading edge 51 is connected to the fuel nozzle 41.
 ストラット50の下流側の端部は、径方向に延びる後縁52とされている。後縁52は中心軸線O2の径方向に一致して延びている。
 ストラット50の中心軸線O2の径方向に直交する断面での翼型は、上記前縁51の形状に伴い、径方向外側程、大きな形状となる。ストラット50は、中心軸線O2の径方向外側から径方向内側に向かうに従って、徐々に小さくなる翼型を重ねた形状をなしている。
The downstream end of the strut 50 is a radially extending trailing edge 52 . The rear edge 52 extends in a radial direction of the central axis O2.
In accordance with the shape of the leading edge 51, the shape of the airfoil in a cross section perpendicular to the radial direction of the central axis O2 of the strut 50 becomes larger toward the outside in the radial direction. The strut 50 has a shape in which airfoils gradually become smaller from the outside in the radial direction to the inside in the radial direction of the central axis O2.
 ストラット50の前縁51と後縁52とを接続する中心軸線O2の周方向を向く一対の面は、翼面53とされている。一対の翼面53は、前縁51で互いに接しており、下流側に向かうにしたがって徐々に中心軸線O2の周方向に離間した後、さらに下流側に向かうに従って徐々に中心軸線O2の周方向で互いに近接して後縁52で互いに接続されている。
 このようなストラット50は、本実施形態では、周方向に等間隔に設けられている。
A pair of surfaces facing in the circumferential direction of the central axis O2 connecting the leading edge 51 and the trailing edge 52 of the strut 50 are blade surfaces 53. The pair of blade surfaces 53 are in contact with each other at the leading edge 51, and are gradually separated in the circumferential direction of the center axis O2 as they go downstream, and then gradually spaced apart in the circumferential direction of the center axis O2 as they go further downstream. They are adjacent to each other and connected to each other at trailing edges 52.
In this embodiment, such struts 50 are provided at equal intervals in the circumferential direction.
(燃料導入部)
 燃料導入部60は、燃料ノズル41内に第一燃料F1を導入する。燃料導入部60は、燃焼器プレート20の混合管30の内壁面33とキャビティ42とを隔てる壁部、及び、ストラット50の内部を通過して、第一プレナム35と混合管30内のキャビティ42とを連通させている。燃料導入部60は、混合管30の中心軸線O2の径方向に延びる孔部であって、中心軸線O2の径方向外側の端部が第一プレナム35に接続されており、中心軸線O2の径方向内側の端部がキャビティ42に接続されている。燃料導入部60は、複数のストラット50に対応して複数が設けられていてもよいし、複数のストラット50のうちの一部のストラット50のみに設けられていてもよい。
(Fuel introduction part)
The fuel introduction section 60 introduces the first fuel F1 into the fuel nozzle 41. The fuel introduction part 60 passes through the wall separating the inner wall surface 33 of the mixing tube 30 of the combustor plate 20 and the cavity 42 and the inside of the strut 50, and connects the first plenum 35 and the cavity 42 in the mixing tube 30. It communicates with The fuel introduction part 60 is a hole extending in the radial direction of the central axis O2 of the mixing tube 30, and its radially outer end of the central axis O2 is connected to the first plenum 35. The inner end in the direction is connected to the cavity 42 . A plurality of fuel introduction sections 60 may be provided corresponding to the plurality of struts 50, or may be provided only on some of the struts 50 among the plurality of struts 50.
(第二燃料噴射部)
 第二燃料噴射部70は、混合管30の中心軸線O2よりも径方向外側の箇所で、混合管30内に第二燃料F2を供給する。
 本実施形態の第二燃料噴射部70は、混合管30の内壁面33から混合管30内に第二燃料F2を噴射可能な壁面孔71を有する。壁面孔71は、中心軸線O2の径方向に直線状に延びる孔部であって、中心軸線O2の径方向内側の端部が内壁面33の内壁面33に開口する一方、中心軸線O2の径方向外側の端部が第二プレナム36に開口している。これにより、壁面孔71は、混合管30内の流路と第二プレナム36とを連通させている。
(Second fuel injection part)
The second fuel injection section 70 supplies the second fuel F2 into the mixing tube 30 at a location radially outward from the central axis O2 of the mixing tube 30.
The second fuel injection section 70 of this embodiment has a wall hole 71 that can inject the second fuel F2 into the mixing tube 30 from the inner wall surface 33 of the mixing tube 30. The wall hole 71 is a hole extending linearly in the radial direction of the central axis O2, and has an end portion radially inside the central axis O2 that opens into the inner wall surface 33 of the inner wall surface 33, and a radially inner end of the central axis O2. The outer end opens into the second plenum 36 . Thereby, the wall hole 71 allows the flow path in the mixing tube 30 and the second plenum 36 to communicate with each other.
 壁面孔71は、第二プレナム36から径方向内側に向かうに従って下流側に向かって延びている。即ち、壁面孔71は、混合管30の径方向及び中心軸線O2から傾斜するように形成されている。壁面孔71の中心軸線O2に対する傾斜角度は、例えば、30~80°、好ましくは、40~70°、より好ましくは45°~65°に設定されている。 The wall hole 71 extends radially inward from the second plenum 36 toward the downstream side. That is, the wall hole 71 is formed so as to be inclined from the radial direction of the mixing tube 30 and the central axis O2. The angle of inclination of the wall hole 71 with respect to the central axis O2 is set to, for example, 30 to 80 degrees, preferably 40 to 70 degrees, and more preferably 45 degrees to 65 degrees.
 第二燃料噴射部70は、中心軸線O2の周方向に離間して複数が形成されていてもよいし、一のみが形成されていてもよい。
 第二燃料噴射部70の中心軸線O2方向位置は、第一燃料噴射部40よりも上流側とされている。即ち、第二燃料噴射部70における混合管30の内壁面33への開口箇所は、第一燃料噴射部40の燃料ノズル41の先端開口45よりも上流側とされている。
 本実施形態では、第二燃料噴射部70における混合管30の内壁面33への開口箇所は、混合管30の内壁面33における上流壁面33a上であって、ストラット50の上流側の端部よりもさらに上流側の部分に形成されている。
A plurality of second fuel injection parts 70 may be formed spaced apart in the circumferential direction of the central axis O2, or only one second fuel injection part 70 may be formed.
The position of the second fuel injection section 70 in the direction of the central axis O2 is on the upstream side of the first fuel injection section 40. That is, the opening of the second fuel injection section 70 into the inner wall surface 33 of the mixing tube 30 is located upstream of the tip opening 45 of the fuel nozzle 41 of the first fuel injection section 40 .
In this embodiment, the opening point of the second fuel injection part 70 to the inner wall surface 33 of the mixing tube 30 is on the upstream wall surface 33a of the inner wall surface 33 of the mixing tube 30, and is closer to the upstream end of the strut 50. is also formed further upstream.
(作用・効果)
 次に本実施形態に係る燃焼器3の動作及び作用・効果について説明する。
 図3に示すように、ガスタービン1の運転時には、燃焼器プレート20の各混合管30内に上流側から空気Aが入り込み、該混合管30内を下流側に向かって空気Aが流通する。その状態で、第一燃料噴射部40により第一燃料F1が混合管30内に噴射され、または第二燃料噴射部70により第二燃料F2が混合管30内に噴射されると、混合管30内で空気Aと燃料が混合することで予混合ガスMが生成される。予混合ガスMは燃焼器プレート20の下流端面22での混合管30の出口開口32から噴射されて、着火される。これによって予混合ガスMが燃焼することで燃焼ガスCが発生し、当該燃焼ガスCがタービン4に送られることでタービン4が回転駆動される。
(action/effect)
Next, the operation, effects, and effects of the combustor 3 according to this embodiment will be explained.
As shown in FIG. 3, during operation of the gas turbine 1, air A enters into each mixing tube 30 of the combustor plate 20 from the upstream side, and air A flows through the mixing tube 30 toward the downstream side. In this state, when the first fuel F1 is injected into the mixing tube 30 by the first fuel injection section 40 or the second fuel F2 is injected into the mixing tube 30 by the second fuel injection section 70, the mixing tube 30 A premixed gas M is generated by mixing air A and fuel within. The premixed gas M is injected from the outlet opening 32 of the mixing tube 30 at the downstream end face 22 of the combustor plate 20 and ignited. As a result, the premixed gas M is combusted to generate a combustion gas C, and the combustion gas C is sent to the turbine 4, so that the turbine 4 is rotationally driven.
 ここでガスタービン1の運転に際しては、比較的燃え易い燃料である第一燃料F1のみが燃焼器3に投入される場合と、比較的燃え難い燃料である第二燃料F2のみが燃焼器3に投入される場合がある。即ち、ガスタービン1の運用によって燃料の種類が切り替えられる場合がある。 Here, when operating the gas turbine 1, there are cases in which only the first fuel F1, which is a relatively easily flammable fuel, is input into the combustor 3, and cases where only the second fuel F2, which is a relatively hard to combustible fuel, is input into the combustor 3. It may be thrown in. That is, the type of fuel may be switched depending on the operation of the gas turbine 1.
 本実施形態では、より燃え易い燃料である第一燃料F1は、第一燃料噴射部40を介して混合管30内に供給される。即ち、第一燃料F1プレナムから燃料導入部60を介して燃料ノズル41のキャビティ42に導入された燃料は、先端開口45を介して混合管30内に供給される。燃料ノズル41の先端開口45は、混合管30の中心軸線O2に沿って配置されているため、当該先端開口45から噴出される第一燃料F1は、混合管30内を中心軸線O2に沿って流通する。 In this embodiment, the first fuel F1, which is a more flammable fuel, is supplied into the mixing pipe 30 via the first fuel injection section 40. That is, the fuel introduced into the cavity 42 of the fuel nozzle 41 from the first fuel F1 plenum via the fuel introduction part 60 is supplied into the mixing tube 30 via the tip opening 45. Since the tip opening 45 of the fuel nozzle 41 is arranged along the central axis O2 of the mixing tube 30, the first fuel F1 ejected from the tip opening 45 flows inside the mixing tube 30 along the central axis O2. circulate.
 そのため、第一燃料F1が混合管30内で径方向外側に拡散してしまうことが抑制され、第一燃料F1は混合管30の中心部に集まった状態となる。即ち、混合管30内での燃料濃度分布は、径方向内側で高く、径方向外側で低くなる。そのため、混合管30の内壁面33近傍における燃料濃度を抑えることができるため、下流端面22に形成された火炎が混合管30の内壁面33に沿って逆流してしまうフラッシュバックの発生を回避することが可能となる。特に燃料が燃え易い種類の場合には、フラッシュバックが発生し易くなるが、本実施形態のように中心軸線O2に沿って第一燃料F1を噴射することで、このような場合であってもフラッシュバックの発生を適切に回避することができる。 Therefore, the first fuel F1 is prevented from diffusing radially outward within the mixing tube 30, and the first fuel F1 is concentrated in the center of the mixing tube 30. That is, the fuel concentration distribution within the mixing tube 30 is higher on the radially inner side and lower on the radially outer side. Therefore, the fuel concentration near the inner wall surface 33 of the mixing tube 30 can be suppressed, thereby avoiding the occurrence of flashback in which the flame formed on the downstream end surface 22 flows backward along the inner wall surface 33 of the mixing tube 30. becomes possible. In particular, if the fuel is of a type that is easily flammable, flashback is likely to occur, but by injecting the first fuel F1 along the central axis O2 as in this embodiment, even in such a case, The occurrence of flashback can be appropriately avoided.
 一方で、比較的燃えにくい燃料である第二燃料F2を投入する場合、仮に第一燃料F1と同様に混合管30の中心軸線O2に沿って噴射してしまえば、失火のリスクが上昇する。即ち、混合管30の出口開口32では、当該開口の外縁部が保炎の起点となる。そのため、燃え難い燃料が混合管30の中心に集まってしまえば、燃料濃度が高い領域が保炎の起点が燃料から遠ざかってしまう結果、安定した保炎を行うことができず、失火してしまう可能性がある。 On the other hand, when injecting the second fuel F2, which is a relatively hard-to-flammable fuel, if it is injected along the central axis O2 of the mixing tube 30 like the first fuel F1, the risk of misfire will increase. That is, in the outlet opening 32 of the mixing tube 30, the outer edge of the opening becomes the starting point of flame stabilization. Therefore, if the hard-to-flammable fuel gathers in the center of the mixing tube 30, the starting point of flame holding in an area with high fuel concentration moves away from the fuel, making it impossible to hold a stable flame and causing a misfire. there is a possibility.
 これに対して本実施形態では、より燃え難い第二燃料F2を投入する場合には、混合管30の中心軸線O2に沿って噴出するのではなく、当該中心軸線O2から径方向に離間した箇所から噴出する。即ち、第二燃料F2は、第二燃料噴射部70によって、混合管30の内壁面33から混合管30内に噴射される。そのため、混合管30の壁面付近での燃料濃度の極端な低下を回避できる。 On the other hand, in this embodiment, when the second fuel F2, which is more difficult to burn, is injected, it is not ejected along the central axis O2 of the mixing tube 30, but at a point spaced apart in the radial direction from the central axis O2. erupts from. That is, the second fuel F2 is injected into the mixing tube 30 from the inner wall surface 33 of the mixing tube 30 by the second fuel injection section 70. Therefore, an extreme drop in fuel concentration near the wall surface of the mixing tube 30 can be avoided.
 より詳細には、第二燃料噴射部70により混合管30の内壁面33から第二燃料F2が噴射されることで、内壁面33の燃料濃度を上昇させることができる。そのため、混合管30の出口付近でも内壁面33近傍の燃料濃度が高まり、保炎の起点となる混合管30の出口開口32の外縁部での燃焼速度を上昇させることができる。その結果、火炎を継続的に安定化させることができる。 More specifically, by injecting the second fuel F2 from the inner wall surface 33 of the mixing tube 30 by the second fuel injection section 70, the fuel concentration on the inner wall surface 33 can be increased. Therefore, the fuel concentration near the inner wall surface 33 also increases near the outlet of the mixing tube 30, and the combustion rate at the outer edge of the outlet opening 32 of the mixing tube 30, which is the starting point of flame stabilization, can be increased. As a result, the flame can be continuously stabilized.
 以上から、燃焼性が異なる燃料のそれぞれを用いる場合であっても、フラッシュバックを抑えながら、安定燃焼を行うことが可能となる。 From the above, even when using fuels with different combustibility, it is possible to perform stable combustion while suppressing flashback.
 なお、第二燃料F2で燃焼器3を運用する場合、保炎性を担保するために燃料濃度が高い保炎用の燃焼器ノズルを別途設けることも考えられる。しかしながら、この場合には局所的に火炎に温度が上昇し、NOxの発生量が増加してしまう可能性がある。
 本実施形態の構成を取ることで、別途燃焼器ノズルを設けずとも保炎性を担保することができるため、NOxの発生を抑えることが可能となる。
In addition, when operating the combustor 3 with the second fuel F2, it is also possible to separately provide a combustor nozzle for flame stabilization with a high fuel concentration in order to ensure flame stabilization. However, in this case, there is a possibility that the temperature of the flame locally increases and the amount of NOx generated increases.
By adopting the configuration of this embodiment, flame stability can be ensured without providing a separate combustor nozzle, so it is possible to suppress the generation of NOx.
 ここで本実施形態では、第二燃料噴射部70が混合管30内の上流側に配置され、第一燃料噴射部40が混合管30内の下流側に配置された構成とされている。これにより、第二燃料F2は噴射されてから出口開口32に至るまでの流通経路が十分に長くなる。そのため、混合管30の流路断面における全域に第二燃料F2を十分に拡散させて行き渡らせることができる。その結果、混合管30の内壁面33近傍での燃料濃度を確保することができ、失火の発生を回避して安定した保炎を行うことができる。 Here, in this embodiment, the second fuel injection section 70 is arranged on the upstream side within the mixing pipe 30, and the first fuel injection section 40 is arranged on the downstream side within the mixing pipe 30. Thereby, the flow path of the second fuel F2 from being injected to reaching the outlet opening 32 becomes sufficiently long. Therefore, the second fuel F2 can be sufficiently diffused and spread over the entire area in the cross section of the flow path of the mixing tube 30. As a result, the fuel concentration near the inner wall surface 33 of the mixing tube 30 can be ensured, and the occurrence of misfire can be avoided and stable flame holding can be performed.
 一方で、第一燃料噴射部40から第一燃料F1が噴射されて混合管30の出口に至るまでの流通経路は短くなる。そのため、第一燃料F1の直進性を担保することができるため、該第一燃料F1が拡散して混合管30の内壁面33に至ってしまうことを回避できる。その結果、フラッシュバックの発生を抑制することができる。 On the other hand, the flow path from where the first fuel F1 is injected from the first fuel injection unit 40 to the outlet of the mixing pipe 30 becomes shorter. Therefore, since the straightness of the first fuel F1 can be ensured, it is possible to prevent the first fuel F1 from diffusing and reaching the inner wall surface 33 of the mixing pipe 30. As a result, the occurrence of flashback can be suppressed.
 さらに、ストラット50が翼型をなしているため、混合管30内の空気Aを円滑に混合管30内の空気Aを円滑に流通させることができる。そのため、圧損の増加を抑制できる。
 また、本実施形態では、ストラット50の上流側に第二燃料噴射部70が設けられた構成のため、噴出された第二燃料F2もストラット50の翼型に沿って円滑に流通する。そのため、第二燃料F2の噴流によって意図せぬ渦が発生して圧損が増加しまうことも抑制することができる。また、燃料濃度が局所的に高まってしまう等の燃料分布の偏りも抑制することができる。
Furthermore, since the struts 50 have an airfoil shape, the air A within the mixing tube 30 can be smoothly circulated. Therefore, an increase in pressure loss can be suppressed.
Furthermore, in this embodiment, since the second fuel injection section 70 is provided on the upstream side of the strut 50, the ejected second fuel F2 also flows smoothly along the airfoil of the strut 50. Therefore, it is also possible to suppress an increase in pressure loss due to the generation of unintended vortices due to the jet flow of the second fuel F2. It is also possible to suppress imbalances in fuel distribution, such as local increases in fuel concentration.
 また、混合管30の一部が縮径壁面33bとされており、絞り流路が形成されているため、混合管30内で流速を増加させることができる。これにより、混合管30内で不用意に燃料が滞留して意図せぬ保炎が発生してしまうことを回避できる。 Further, since a part of the mixing tube 30 is made into a diameter-reduced wall surface 33b and a constricted flow path is formed, the flow velocity within the mixing tube 30 can be increased. Thereby, it is possible to avoid unintentional flame holding due to unintentional accumulation of fuel in the mixing tube 30.
[第二実施形態]
 次に本発明の第二実施形態について、図5を参照して説明する。第二実施形態では第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
 第二実施形態では、第二燃料噴射部70の構成が第一実施形態と相違する。即ち、第二燃料噴射部70は、ストラット50の表面となる翼面53から第二燃料F2を噴射する表面孔72を有している。
[Second embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. 5. In the second embodiment, the same components as those in the first embodiment are given the same reference numerals, and detailed description thereof will be omitted.
In the second embodiment, the configuration of the second fuel injection section 70 is different from the first embodiment. That is, the second fuel injection section 70 has a surface hole 72 through which the second fuel F2 is injected from the wing surface 53, which is the surface of the strut 50.
 表面孔72は、混合管30の径方向内側の端部がストラット50の翼面53に開口している。表面孔72における径方向外側の端部は、第二プレナム36に開口している。これにより、表面孔72は、ストラット50の翼面53を介して混合管30内と第二プレナム36とを連通させている。表面孔72は、ストラット50の一対の翼面53のそれぞれに形成されていてもよいし、一対の翼面53の一方のみに形成されていてもよい。また、表面孔72は、複数のストラット50にそれぞれ形成されていてもよいし、一部のストラット50のみに形成されていてもよい。 The surface hole 72 opens at the radially inner end of the mixing tube 30 into the blade surface 53 of the strut 50. A radially outer end of the surface hole 72 opens into the second plenum 36 . Thereby, the surface hole 72 communicates the inside of the mixing pipe 30 and the second plenum 36 via the blade surface 53 of the strut 50. The surface hole 72 may be formed in each of the pair of wing surfaces 53 of the strut 50, or may be formed in only one of the pair of wing surfaces 53. Furthermore, the surface holes 72 may be formed in each of the plurality of struts 50, or may be formed in only some of the struts 50.
 この構成により、第一実施形態と同様に、中心軸線O2から径方向外側に離れた位置で第二燃料F2を混合管30内に噴出することができる。したがって、中心軸線O2に沿って第二燃料F2を噴出する場合に比べて、混合管30の内壁面33近傍での燃料濃度を増加させることができ、保炎性を担保することができる。 With this configuration, the second fuel F2 can be injected into the mixing pipe 30 at a position radially outward from the central axis O2, similarly to the first embodiment. Therefore, compared to the case where the second fuel F2 is ejected along the central axis O2, the fuel concentration near the inner wall surface 33 of the mixing tube 30 can be increased, and flame stability can be ensured.
 さらに、翼面53を円滑に流通する空気Aの流れに第二燃料F2が噴出されることで、第二燃料F2の噴流によって不用意に渦が発生してしまうことを抑制できる。そのため、混合管30内での圧損の増加を抑制することができるとともに、燃料分布の偏りを回避することができる。
 一方で、翼面53を流通する空気Aに適切に第二燃料F2を混合させることができるため、空気Aと第二燃料F2との混合を促進することができ、NOxの低減を図ることができる。
Furthermore, by ejecting the second fuel F2 into the flow of the air A that smoothly flows through the blade surface 53, it is possible to suppress the inadvertent generation of vortices due to the jet of the second fuel F2. Therefore, it is possible to suppress an increase in pressure loss within the mixing tube 30, and to avoid uneven fuel distribution.
On the other hand, since the second fuel F2 can be appropriately mixed with the air A flowing through the wing surface 53, the mixing of the air A and the second fuel F2 can be promoted, and NOx can be reduced. can.
[第三実施形態]
 次に本発明の第二実施形態について、図6を参照して説明する。第三実施形態では第一実施形態と同様の構成要素には同一の符号を付して詳細な説明を省略する。
 第三実施形態では、混合管30の形状が第一実施形態と相違する。
[Third embodiment]
Next, a second embodiment of the present invention will be described with reference to FIG. In the third embodiment, the same reference numerals are given to the same components as in the first embodiment, and detailed description thereof will be omitted.
In the third embodiment, the shape of the mixing tube 30 is different from the first embodiment.
 第三実施形態の混合管30の縮径壁面33bは、第一実施形態よりも広範囲にわたって形成されている。縮径壁面33bの上流側の端部は、ストラット50の上流側の端部と同一の中心軸線O2方向位置とされている。縮径壁面33bの下流側の端部は、第一実施形態同様、第一燃料噴射部40の燃料ノズル41の先端開口45と同一の中心軸線O2方向位置とされている。縮径壁面33bは、上流側の端部から下流側の端部にわたって漸次縮径するテーパ状をなしている。 The diameter-reduced wall surface 33b of the mixing tube 30 in the third embodiment is formed over a wider range than in the first embodiment. The upstream end of the reduced diameter wall surface 33b is located at the same position in the central axis O2 direction as the upstream end of the strut 50. As in the first embodiment, the downstream end of the reduced diameter wall surface 33b is located at the same position in the central axis O2 direction as the tip opening 45 of the fuel nozzle 41 of the first fuel injection section 40. The diameter-reducing wall surface 33b has a tapered shape that gradually reduces in diameter from the upstream end to the downstream end.
 このように本実施形態では、混合管30の縮径壁面33bはストラット50の形成位置に設けられている。これにより、混合管30の流路断面積をストラット50の形状変化に合わせた構成とすることができる。そのため、混合管30内で低速域が発生してしまうことを回避することができ、混合管30内で不用意に保炎が発生してしまうことを防止することができる。 As described above, in this embodiment, the diameter-reduced wall surface 33b of the mixing tube 30 is provided at the position where the strut 50 is formed. Thereby, the cross-sectional area of the flow path of the mixing tube 30 can be configured to match the change in the shape of the strut 50. Therefore, it is possible to avoid the occurrence of a low speed region within the mixing tube 30, and it is possible to prevent flame holding from occurring inadvertently within the mixing tube 30.
(その他の実施形態)
 以上、本発明の実施の形態について説明したが、本発明はこれに限定されることなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
(Other embodiments)
Although the embodiments of the present invention have been described above, the present invention is not limited thereto, and can be modified as appropriate without departing from the technical idea of the invention.
 例えば、実施形態では、第一燃料F1として水素、第二燃料F2として天然ガスを用いた例について説明したが、これに限定されることはない。第一燃料F1、第二燃料F2として種々の燃料を採用することができる。
 また、第一燃料F1と第二燃料F2とのうち、少なくとも一方を水素と天然ガスとの混合燃料としてもよい。この場合も、水素と天然ガスとの混合比によって、第一燃料F1の方を第二燃料F2よりも燃焼性を高くすることができる。したがって、本実施形態の構成を採用することで、第一燃料F1、第二燃料F2双方に適した燃焼器3の構成を実現することができる。さらに、このように第一燃料F1及び第二燃料F2の燃料組成を調整することで、フラッシュバックの発生を低減しつつ、保炎性を担保することができる。
For example, in the embodiment, an example has been described in which hydrogen is used as the first fuel F1 and natural gas is used as the second fuel F2, but the present invention is not limited to this. Various fuels can be employed as the first fuel F1 and the second fuel F2.
Alternatively, at least one of the first fuel F1 and the second fuel F2 may be a mixed fuel of hydrogen and natural gas. In this case as well, the combustibility of the first fuel F1 can be made higher than that of the second fuel F2 depending on the mixture ratio of hydrogen and natural gas. Therefore, by employing the configuration of this embodiment, it is possible to realize a configuration of the combustor 3 that is suitable for both the first fuel F1 and the second fuel F2. Furthermore, by adjusting the fuel compositions of the first fuel F1 and the second fuel F2 in this way, flame stability can be ensured while reducing the occurrence of flashback.
 実施形態では、第一燃料F1よりも第二燃料F2の方を混合管30の上流側で噴射する構成としたがこれに限定されることはない。第二燃料F2よりも第一燃料F1の方を混合管30の上流側で噴射する構成であってもよいし、第一燃料F1及び第二燃料F2を同一の中心軸線O2方向位置で噴射してもよい。 In the embodiment, the second fuel F2 is injected more upstream of the mixing pipe 30 than the first fuel F1, but the present invention is not limited to this. The configuration may be such that the first fuel F1 is injected more upstream of the mixing tube 30 than the second fuel F2, or the first fuel F1 and the second fuel F2 are injected at the same position in the direction of the central axis O2. It's okay.
[付記]
 各実施形態に記載の燃焼器3及びガスタービン1は、例えば以下のように把握される。
[Additional notes]
The combustor 3 and gas turbine 1 described in each embodiment are understood as follows, for example.
(1)第1の態様に係る燃焼器3は、燃焼器軸線O1に直交する上流端面21及び下流端面22を貫通するように延びるとともに前記上流端面21側から空気Aが導入される混合管30を有する燃焼器プレート20と、前記混合管30の内側で前記混合管30の中心軸線O2に沿って第一燃料F1を噴射可能な第一燃料噴射部40と、前記混合管30の前記中心軸線O2の径方向外側で、前記混合管30内に第二燃料F2を噴射可能な第二燃料噴射部70と、を備える燃焼器3である。 (1) The combustor 3 according to the first aspect includes a mixing pipe 30 that extends through an upstream end surface 21 and a downstream end surface 22 that are perpendicular to the combustor axis O1, and into which air A is introduced from the upstream end surface 21 side. a first fuel injection part 40 capable of injecting the first fuel F1 along the central axis O2 of the mixing tube 30 inside the mixing tube 30, and the central axis O2 of the mixing tube 30. The combustor 3 includes a second fuel injection part 70 that can inject the second fuel F2 into the mixing pipe 30 on the outside in the radial direction of O2.
 第一燃料噴射部40は混合管30の中心軸線O2に沿って燃料が噴射されるため、第一燃料F1の混合管30壁面での燃料濃度の上昇を抑えることができる。一方で、第二燃料噴射部70からは混合管30の中心軸線O2から離れた位置で第二燃料F2が噴射されるため、混合管30の壁面付近での燃料濃度の極端な低下を回避できる。
 これにより、フラッシュバックを抑えながら、安定燃焼を行うことが可能となる。
Since the first fuel injection part 40 injects fuel along the central axis O2 of the mixing tube 30, it is possible to suppress an increase in the fuel concentration of the first fuel F1 on the wall surface of the mixing tube 30. On the other hand, since the second fuel F2 is injected from the second fuel injection part 70 at a position away from the center axis O2 of the mixing tube 30, an extreme drop in the fuel concentration near the wall surface of the mixing tube 30 can be avoided. .
This makes it possible to perform stable combustion while suppressing flashback.
(2)第2の態様に係る燃焼器3は、前記第1の態様に係る燃焼器3であって、前記第一燃料噴射部40は、前記第二燃料噴射部70よりも前記混合管30内の下流側で前記第一燃料F1を噴射してもよい。 (2) The combustor 3 according to the second aspect is the combustor 3 according to the first aspect, in which the first fuel injection section 40 is arranged in the mixing pipe 30 more than the second fuel injection section 70. The first fuel F1 may be injected on the downstream side.
 混合管30の中心軸線O2から離れた位置で第二燃料噴射部70により第二燃料F2が噴射されることで、混合管30の流路断面における全域に第二燃料F2を拡散させて行き渡らせることができる。混合管30の中心軸線O2に沿って第一燃料F1が噴射される第一燃料噴射部40は、第二燃料噴射部70よりも下流側に位置しているため、第一燃料F1が噴射されてから混合管30の出口に至るまでの経路は短い。そのため、第一燃料F1が拡散してしまい混合管30の内壁面33に至ってしまうことを回避できる。 The second fuel F2 is injected by the second fuel injection unit 70 at a position away from the center axis O2 of the mixing tube 30, thereby spreading and spreading the second fuel F2 over the entire area in the cross section of the flow path of the mixing tube 30. be able to. The first fuel injection part 40, in which the first fuel F1 is injected along the central axis O2 of the mixing tube 30, is located downstream of the second fuel injection part 70, so that the first fuel F1 is injected. The path from the point to the outlet of the mixing tube 30 is short. Therefore, it is possible to prevent the first fuel F1 from diffusing and reaching the inner wall surface 33 of the mixing tube 30.
(3)第3の態様に係る燃焼器3は、前記第1の態様又は前記第2の態様に係る燃焼器3であって、前記第二燃料噴射部70は、前記混合管30の内壁面33から前記混合管30内に第二燃料F2を噴射可能な壁面孔71を有してもよい。 (3) The combustor 3 according to the third aspect is the combustor 3 according to the first aspect or the second aspect, in which the second fuel injection part 70 is connected to the inner wall surface of the mixing pipe 30. 33 into the mixing tube 30 may have a wall hole 71 through which the second fuel F2 can be injected.
 第二燃料噴射部70により混合管30の内壁面33から第二燃料F2が噴射されることで、混合管30の出口における内壁面33の燃料濃度を上昇させることができる。これによって、保炎の起点での燃焼速度が上昇し、火炎を安定化させることができる。 By injecting the second fuel F2 from the inner wall surface 33 of the mixing tube 30 by the second fuel injection part 70, the fuel concentration on the inner wall surface 33 at the outlet of the mixing tube 30 can be increased. This increases the combustion speed at the starting point of flame stabilization, making it possible to stabilize the flame.
(4)第4の態様に係る燃焼器3は、前記第1の態様から前記第3の態様のうちいずれか1つの燃焼器3であって、前記第一燃料噴射部40は、前記混合管30の内側で前記中心軸線O2方向に延びるとともに前記下流側の端部に前記第一燃料F1を噴射する先端開口45が形成された燃料ノズル41と、前記燃料ノズル41と前記混合管30の内壁面33との間で前記中心軸線O2の径方向に延びて、前記燃料ノズル41と前記混合管30の内壁面33とを接続するストラット50と、前記ストラット50の内部を経由して前記燃料ノズル41に前記第一燃料F1を導入する燃料導入路と、を有してもよい。 (4) The combustor 3 according to the fourth aspect is the combustor 3 according to any one of the first to third aspects, and the first fuel injection section 40 is connected to the mixing pipe. 30, a fuel nozzle 41 extending in the direction of the central axis O2 and having a tip opening 45 formed at the downstream end for injecting the first fuel F1; A strut 50 extends in the radial direction of the center axis O2 between the fuel nozzle 41 and the inner wall surface 33 of the mixing pipe 30, and connects the fuel nozzle to the fuel nozzle via the inside of the strut 50. 41 may include a fuel introduction path for introducing the first fuel F1.
 これにより、第一燃料噴射部40によって、混合管30の中心軸線O2に沿うように第一燃料F1を適切に噴射することができる。 Thereby, the first fuel F1 can be appropriately injected by the first fuel injection unit 40 along the central axis O2 of the mixing tube 30.
(5)第5の態様に係る燃焼器3は、前記第4の態様に係る燃焼器3であって、前記ストラット50は、上流側の端部を前縁51とするとともに下流側の端部を後縁52とした翼型をなしていてもよい。 (5) The combustor 3 according to the fifth aspect is the combustor 3 according to the fourth aspect, in which the strut 50 has an upstream end as a leading edge 51 and a downstream end. It may have an airfoil shape with a trailing edge 52.
 これにより、混合管30内の空気Aを円滑に流通させることができ、圧損の増加を抑制できる。 Thereby, the air A in the mixing tube 30 can be smoothly circulated, and an increase in pressure loss can be suppressed.
(6)第6の態様に係る燃焼器3は、前記第4の態様または前記第5の態様に係る燃焼器3であって、前記混合管30の内壁面33は、前記上流端面21に接続されて下流側に向かって一様の内径で延びる上流壁面33aと、前記上流壁面33aの下流側に接続されて、下流側に向かうに従って縮径する縮径壁面33bと、前記縮径壁面33bの下流側に接続されて前記上流壁面33aよりも小径をなして一様の内径で前記下流端面22まで至る下流壁面33cと、を有してもよい。 (6) The combustor 3 according to the sixth aspect is the combustor 3 according to the fourth aspect or the fifth aspect, in which the inner wall surface 33 of the mixing pipe 30 is connected to the upstream end surface 21. an upstream wall surface 33a extending downstream with a uniform inner diameter; a decreasing diameter wall surface 33b connected to the downstream side of the upstream wall surface 33a and decreasing in diameter toward the downstream side; The downstream wall surface 33c may be connected to the downstream side and have a smaller diameter than the upstream wall surface 33a and reach the downstream end surface 22 with a uniform inner diameter.
 混合管30の一部が縮径壁面33bとされており、絞り流路が形成されることで、混合管30内で流速を増加させることができる。これにより、混合管30内の意図せぬ箇所で保炎してしまうことを回避することができる。 A part of the mixing tube 30 has a diameter-reduced wall surface 33b, and by forming a constricted flow path, the flow velocity within the mixing tube 30 can be increased. Thereby, it is possible to avoid flame holding at an unintended location within the mixing tube 30.
(7)第7の態様に係る燃焼器3は、前記第6の態様に係る燃焼器3であって、前記縮径壁面33bは、前記ストラット50の上流側の端部の中心軸線O2方向位置から前記先端開口45の中心軸線O2方向位置にわたって延びていてもよい。 (7) The combustor 3 according to the seventh aspect is the combustor 3 according to the sixth aspect, in which the diameter-reducing wall surface 33b is located at the position of the upstream end of the strut 50 in the central axis O2 direction. It may extend from the tip opening 45 to a position in the direction of the central axis O2.
 ストラット50の配置位置に併せて混合管30の流路を絞ることで、混合管30内での低速域の発生を回避することができる。これにより、混合管30内での意図せぬ保炎をより回避することができる。 By narrowing the flow path of the mixing tube 30 in accordance with the arrangement position of the strut 50, it is possible to avoid the occurrence of a low speed region within the mixing tube 30. Thereby, unintended flame holding within the mixing tube 30 can be further avoided.
(8)第8の態様に係る燃焼器3は、前記第4の態様から前記第7の態様のうちいずれか1つの燃焼器3であって、前記第二燃料噴射部70は、前記ストラット50の表面から前記混合管30内に第二燃料F2を噴射可能な表面孔72を有してもよい。 (8) The combustor 3 according to the eighth aspect is the combustor 3 according to any one of the fourth to seventh aspects, and the second fuel injection section 70 is connected to the strut 50. It may have a surface hole 72 through which the second fuel F2 can be injected into the mixing tube 30 from the surface thereof.
 これによっても、混合管30の中心軸線O2から離れた位置で第二燃料F2を噴射することができるため、混合管30の出口における内壁面33の燃料濃度を上昇させることができる。これによって、保炎の起点での燃焼速度が上昇し、火炎を安定化させることが可能となる。 This also allows the second fuel F2 to be injected at a position away from the central axis O2 of the mixing tube 30, so that the fuel concentration on the inner wall surface 33 at the outlet of the mixing tube 30 can be increased. This increases the combustion speed at the starting point of flame stabilization, making it possible to stabilize the flame.
(9)第9の態様に係る燃焼器3は、前記第1の態様から前記第8の態様のうちいずれか1つの燃焼器3であって、前記第一燃料F1の方が第二燃料F2よりも燃えやすい成分とされていてもよい。 (9) The combustor 3 according to the ninth aspect is the combustor 3 according to any one of the first to eighth aspects, in which the first fuel F1 is the second fuel F2. It may be said that it is a more flammable component.
 燃え易い第一燃料F1を用いる場合には、混合管30の中心軸線O2に沿って噴射することで、当該第一燃料F1が混合管30の内壁面33に到達することを抑制できる。これにより、混合管30の内壁面33付近での燃料濃度の上昇を抑え、フラッシュバックの発生を抑制することができる。
 一方で燃え難い第二燃料F2を用いる場合には、混合管30の内壁面33から噴射することで、内壁面33付近での燃料濃度を上昇させることができる。これにより、混合管30の出口における保炎の起点での燃焼速度を上昇させ、安定的な保炎を行うことが可能となる。
When using the easily flammable first fuel F1, by injecting it along the central axis O2 of the mixing tube 30, it is possible to suppress the first fuel F1 from reaching the inner wall surface 33 of the mixing tube 30. Thereby, it is possible to suppress an increase in fuel concentration near the inner wall surface 33 of the mixing tube 30, and to suppress the occurrence of flashback.
On the other hand, when using the second fuel F2 that is difficult to burn, by injecting it from the inner wall surface 33 of the mixing tube 30, the fuel concentration near the inner wall surface 33 can be increased. This increases the combustion speed at the starting point of flame holding at the outlet of the mixing tube 30, making it possible to perform stable flame holding.
(10)第10の態様に係るガスタービン1は、空気Aを生成する圧縮機2と、圧縮機2が圧縮した空気Aに燃料を混合して生成した予混合ガスMを燃焼させることで燃焼ガスCを生成する前記第1の態様から前記第9の態様のうちいずれか1つの燃焼器3と、前記燃焼ガスCによって駆動されるタービン4と、を備える。 (10) The gas turbine 1 according to the tenth aspect has a compressor 2 that generates air A, and a premixed gas M that is generated by mixing fuel with the air A compressed by the compressor 2. The combustor 3 includes a combustor 3 of any one of the first to ninth modes that generates gas C, and a turbine 4 that is driven by the combustion gas C.
 本開示によれば、フラッシュバックを抑制しながら失火を回避することができる燃焼器及びガスタービンを提供することができる。 According to the present disclosure, it is possible to provide a combustor and a gas turbine that can avoid misfire while suppressing flashback.
1 ガスタービン
2 圧縮機
3 燃焼器
4 タービン
10 外筒
11 エンドカバー
15 内筒
17 支持部
20 燃焼器プレート
21 上流端面
22 下流端面
30 混合管
31 入口開口
32 出口開口
33 内壁面
33a 上流壁面
33b 縮径壁面
33c 下流壁面
35 第一プレナム
36 第二プレナム
37 接続部材
38 第一燃料供給系統
39 第二燃料供給系統
40 第一燃料噴射部
41 燃料ノズル
42 キャビティ
45 先端開口
50 ストラット
51 前縁
52 後縁
53 翼面
60 燃料導入部
70 第二燃料噴射部
71 壁面孔
72 表面孔
A 空気
M 予混合ガス
C 燃焼ガス
O1 燃焼器軸線
O2 中心軸線
F1 第一燃料
F2 第二燃料
1 Gas turbine 2 Compressor 3 Combustor 4 Turbine 10 Outer cylinder 11 End cover 15 Inner cylinder 17 Support part 20 Combustor plate 21 Upstream end face 22 Downstream end face 30 Mixing tube 31 Inlet opening 32 Outlet opening 33 Inner wall surface 33a Upstream wall surface 33b Reduction Diameter wall surface 33c Downstream wall surface 35 First plenum 36 Second plenum 37 Connection member 38 First fuel supply system 39 Second fuel supply system 40 First fuel injection section 41 Fuel nozzle 42 Cavity 45 Tip opening 50 Strut 51 Leading edge 52 Trailing edge 53 Wing surface 60 Fuel introduction part 70 Second fuel injection part 71 Wall hole 72 Surface hole A Air M Premixed gas C Combustion gas O1 Combustor axis O2 Center axis F1 First fuel F2 Second fuel

Claims (10)

  1.  燃焼器軸線に直交する上流端面及び下流端面を貫通するように延びるとともに前記上流端面側から空気が導入される混合管を有する燃焼器プレートと、
     前記混合管の内側で前記混合管の中心軸線に沿って第一燃料を噴射可能な第一燃料噴射部と、
     前記混合管の前記中心軸線の径方向外側で、前記混合管内に第二燃料を噴射可能な第二燃料噴射部と、
     を備える燃焼器。
    a combustor plate having a mixing tube extending through an upstream end face and a downstream end face perpendicular to the combustor axis and into which air is introduced from the upstream end face side;
    a first fuel injection part capable of injecting a first fuel along the central axis of the mixing tube inside the mixing tube;
    a second fuel injection part capable of injecting a second fuel into the mixing tube at a radially outer side of the central axis of the mixing tube;
    A combustor equipped with a
  2.  前記第一燃料噴射部は、前記第二燃料噴射部よりも前記混合管内の下流側で前記第一燃料を噴射する請求項1に記載の燃焼器。 The combustor according to claim 1, wherein the first fuel injection section injects the first fuel on the downstream side of the mixing tube rather than the second fuel injection section.
  3.  前記第二燃料噴射部は、
     前記混合管の内壁面から前記混合管内に第二燃料を噴射可能な壁面孔を有する請求項1又は2に記載の燃焼器。
    The second fuel injection section is
    The combustor according to claim 1 or 2, further comprising a wall hole through which the second fuel can be injected into the mixing tube from the inner wall surface of the mixing tube.
  4.  前記第一燃料噴射部は、
     前記混合管の内側で前記中心軸線方向に延びるとともに前記下流側の端部に前記第一燃料を噴射する先端開口が形成された燃料ノズルと、
     前記燃料ノズルと前記混合管の内壁面との間で前記中心軸線の径方向に延びて、前記燃料ノズルと前記混合管の内壁面とを接続するストラットと、
     前記ストラットの内部を経由して前記燃料ノズルに前記第一燃料を導入する燃料導入路と、
     を有する請求項1又は2に記載の燃焼器。
    The first fuel injection section is
    a fuel nozzle extending in the central axis direction inside the mixing tube and having a tip opening formed at the downstream end for injecting the first fuel;
    a strut that extends in a radial direction of the central axis between the fuel nozzle and the inner wall surface of the mixing tube and connects the fuel nozzle and the inner wall surface of the mixing tube;
    a fuel introduction path for introducing the first fuel into the fuel nozzle via the inside of the strut;
    The combustor according to claim 1 or 2, comprising:
  5.  前記ストラットは、上流側の端部を前縁とするとともに下流側の端部を後縁とした翼型をなしている請求項4に記載の燃焼器。 The combustor according to claim 4, wherein the strut has an airfoil shape with an upstream end serving as a leading edge and a downstream end serving as a trailing edge.
  6.  前記混合管の内壁面は、
     前記上流端面に接続されて下流側に向かって一様の内径で延びる上流壁面と、
     前記上流壁面の下流側に接続されて、下流側に向かうに従って縮径する縮径壁面と、
     前記縮径壁面の下流側に接続されて前記上流壁面よりも小径をなして一様の内径で前記下流端面まで至る下流壁面と、
     を有する請求項4に記載の燃焼器。
    The inner wall surface of the mixing tube is
    an upstream wall surface connected to the upstream end surface and extending toward the downstream side with a uniform inner diameter;
    a diameter-reducing wall surface connected to the downstream side of the upstream wall surface and decreasing in diameter toward the downstream side;
    a downstream wall surface that is connected to the downstream side of the reduced diameter wall surface, has a smaller diameter than the upstream wall surface, and has a uniform inner diameter and reaches the downstream end surface;
    The combustor according to claim 4, having:
  7.  前記縮径壁面は、前記ストラットの上流側の端部の中心軸線方向位置から前記先端開口の中心軸線方向位置にわたって延びている請求項6に記載の燃焼器。 The combustor according to claim 6, wherein the reduced diameter wall surface extends from the upstream end of the strut in the central axial direction to the tip opening in the central axial direction.
  8.  前記第二燃料噴射部は、
     前記ストラットの表面から前記混合管内に第二燃料を噴射可能な表面孔を有する請求項4に記載の燃焼器。
    The second fuel injection section is
    The combustor according to claim 4, further comprising surface holes through which a second fuel can be injected into the mixing tube from the surface of the strut.
  9.  前記第一燃料の方が第二燃料よりも燃えやすい成分とされている請求項1又は2に記載の燃焼器。 The combustor according to claim 1 or 2, wherein the first fuel has a more combustible component than the second fuel.
  10.  空気を生成する圧縮機と、
     圧縮機が圧縮した空気に燃料を混合して生成した予混合ガスを燃焼させることで燃焼ガスを生成する請求項1又は2に記載の燃焼器と、
     前記燃焼ガスによって駆動されるタービンと、
     を備えるガスタービン。
    a compressor that generates air;
    The combustor according to claim 1 or 2, which generates combustion gas by combusting a premixed gas generated by mixing fuel with air compressed by a compressor;
    a turbine driven by the combustion gas;
    A gas turbine equipped with
PCT/JP2023/002252 2022-03-30 2023-01-25 Combustor and gas turbine WO2023188749A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-056200 2022-03-30
JP2022056200 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023188749A1 true WO2023188749A1 (en) 2023-10-05

Family

ID=88200256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002252 WO2023188749A1 (en) 2022-03-30 2023-01-25 Combustor and gas turbine

Country Status (1)

Country Link
WO (1) WO2023188749A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227745A (en) * 1999-12-08 2001-08-24 General Electric Co <Ge> Fuel system configuration and method for staging fuel for gas turbines utilizing both gaseous and liquid fuels
JP2010032201A (en) * 2008-07-29 2010-02-12 General Electric Co <Ge> Hybrid fuel nozzle
JP2010181137A (en) * 2009-02-04 2010-08-19 General Electric Co <Ge> Premixing direct injection nozzle
JP2014077627A (en) * 2012-10-09 2014-05-01 General Electric Co <Ge> Fuel nozzle and method of assembling the same
JP2014202465A (en) * 2013-04-10 2014-10-27 株式会社日立製作所 Combustor
US20180023812A1 (en) * 2015-01-29 2018-01-25 Siemens Energy, Inc. Fuel injector including tandem vanes for injecting alternate fuels in a gas turbine
WO2022176302A1 (en) * 2021-02-19 2022-08-25 三菱パワー株式会社 Premixed combustion burner, fuel injector, and gas turbine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227745A (en) * 1999-12-08 2001-08-24 General Electric Co <Ge> Fuel system configuration and method for staging fuel for gas turbines utilizing both gaseous and liquid fuels
JP2010032201A (en) * 2008-07-29 2010-02-12 General Electric Co <Ge> Hybrid fuel nozzle
JP2010181137A (en) * 2009-02-04 2010-08-19 General Electric Co <Ge> Premixing direct injection nozzle
JP2014077627A (en) * 2012-10-09 2014-05-01 General Electric Co <Ge> Fuel nozzle and method of assembling the same
JP2014202465A (en) * 2013-04-10 2014-10-27 株式会社日立製作所 Combustor
US20180023812A1 (en) * 2015-01-29 2018-01-25 Siemens Energy, Inc. Fuel injector including tandem vanes for injecting alternate fuels in a gas turbine
WO2022176302A1 (en) * 2021-02-19 2022-08-25 三菱パワー株式会社 Premixed combustion burner, fuel injector, and gas turbine

Similar Documents

Publication Publication Date Title
EP2530384B1 (en) Fuel injector
KR102201125B1 (en) Fuel injector assembly for gas turbine engine
JP5400936B2 (en) Method and apparatus for burning fuel in a gas turbine engine
JP5380488B2 (en) Combustor
US9429324B2 (en) Fuel injector with radial and axial air inflow
JP5364275B2 (en) Method and system for enabling NOx emissions to be reduced in a combustion system
JP3183053B2 (en) Gas turbine combustor and gas turbine
JP5663216B2 (en) Lean direct injection in premixed pilot applications
JP2005345094A (en) Premix burner equipped with impingement cooling type center body, and cooling method for center body
AU2007203536A1 (en) Liquid fuel enhancement for natural gas swirl stabilized nozzle and method
KR102165972B1 (en) Burner assembly, combustor, and gas turbine
WO2020259919A1 (en) Combustor for a gas turbine
EP3425281B1 (en) Pilot nozzle with inline premixing
US20170009994A1 (en) Combustor
JP7257358B2 (en) gas turbine combustor
WO2021215458A1 (en) Cluster burner, gas turbine combustor, and gas turbine
WO2023188749A1 (en) Combustor and gas turbine
JP7476424B2 (en) Combustor and gas turbine
WO2020259918A1 (en) Combustor for a gas turbine
JP2003279043A (en) LOW NOx COMBUSTOR FOR GAS TURBINE
WO2024085093A1 (en) Burner, combustor provided with same, and gas turbine provided with combustor
WO2023140180A1 (en) Combustor and gas turbine
JP5931468B2 (en) Gas turbine combustor
JP7165545B2 (en) Combustor for gas turbine
JP2024080498A (en) Combustor and combustion nozzle suitable for hydrogen gas turbine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778787

Country of ref document: EP

Kind code of ref document: A1