WO2023188681A1 - Determination system and authenticity determination method of determination code - Google Patents
Determination system and authenticity determination method of determination code Download PDFInfo
- Publication number
- WO2023188681A1 WO2023188681A1 PCT/JP2023/000411 JP2023000411W WO2023188681A1 WO 2023188681 A1 WO2023188681 A1 WO 2023188681A1 JP 2023000411 W JP2023000411 W JP 2023000411W WO 2023188681 A1 WO2023188681 A1 WO 2023188681A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- determination
- identification information
- identifier
- feature amount
- code
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 68
- 238000012545 processing Methods 0.000 claims abstract description 29
- 239000000284 extract Substances 0.000 claims abstract description 17
- 238000010586 diagram Methods 0.000 description 39
- 238000004891 communication Methods 0.000 description 26
- 238000012986 modification Methods 0.000 description 25
- 230000004048 modification Effects 0.000 description 25
- 230000000007 visual effect Effects 0.000 description 20
- 238000003384 imaging method Methods 0.000 description 18
- 238000004364 calculation method Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 6
- 238000011179 visual inspection Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007792 addition Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/08—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code using markings of different kinds or more than one marking of the same kind in the same record carrier, e.g. one marking being sensed by optical and the other by magnetic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- One embodiment of the present invention relates to a determination system that determines the authenticity of a determination code. Further, one embodiment of the present invention relates to a method for determining the authenticity of a determination code.
- QR code registered trademark
- a QR code can contain various information, it can not only determine authenticity but also provide information about products. However, since the cells of the QR code are formed by a simple array of dots, the QR code can be easily copied using a copy machine or the like. Therefore, the authenticity determination using a determination label using a QR code has not been sufficient from the viewpoint of preventing counterfeit products.
- a hologram may be used as the determination label. Since holograms are difficult to copy using a copy machine or the like, they are widely used as a countermeasure against counterfeit products such as credit cards, banknotes, and securities. Therefore, a determination label using a hologram has higher accuracy in determining authenticity than a determination label using a QR code. Further, as a judgment label used for determining authenticity, not only a hologram but also a judgment label on which characters or a QR code are printed is known (see, for example, Patent Document 1).
- Patent Document 1 With conventional identification labels using holograms, the hologram is visually confirmed by the user making the authentication, so the results of the authentication often depend on the user.
- Patent Document 1 by associating the identification information of the hologram with the QR code, it is possible to check whether the QR code is a hologram.
- Patent Document 1 since the hologram is visually confirmed by the user, a label forged using a similar hologram and a copied QR code may be determined to be genuine. .
- a determination system includes: an image processing unit that extracts a plurality of regions from a first image obtained by photographing a first identifier of a determination code including a first identifier and a second identifier; a feature data generation unit that generates first feature data including feature quantities of each area; and an identification information acquisition unit that obtains second identification information from a second image obtained by photographing a second identifier of the determination code. and a determination unit that identifies the first identification information indicated by the first identifier based on the first feature data and determines the correspondence between the first identification information and the second identification information.
- the determination unit may generate determination result information indicating that the determination code is genuine when the first identification information and the second identification information match.
- the first identification information may be specified by determining the degree of similarity between the registered feature data registered in advance in the database and the first feature data.
- a determination system includes a first identifier divided into n areas (n is a natural number) and an n-th second identifier assigned to each of the n-th areas of the first identifier. From the image obtained by photographing the n-th area and the n-th second identifier of the included determination code, the n-th first image corresponding to the n-th area and the n-th image corresponding to the n-th second identifier are obtained. an image processing unit that extracts a second image and extracts a plurality of regions from the n-th first image; and n-th first feature amount data including feature amounts of each of the plurality of regions of the n-th first image.
- an identification information acquisition unit that acquires the n-th second identification information from the n-th second image; and an identification information acquisition unit that acquires the n-th second identification information from the n-th second image;
- a determination unit that identifies the nth first identification information and determines the correspondence between the nth first identification information and the nth second identification information.
- the determination unit may generate a determination result indicating that the determination code is genuine when the nth first identification information and the nth second identification information match in all of the n areas.
- the determination unit may generate a determination result indicating that the determination code is genuine when the nth first identification information and the nth second identification information match in a predetermined area.
- the predetermined area may be multiple areas.
- the n-th first identification information may be specified by determining the degree of similarity between the registered feature data registered in advance in the database and the n-th first feature data.
- the registered feature amount data may include a plurality of feature amounts having different angles in the photographing direction.
- the determination system further includes a sensor unit that detects the angle of the photographing direction and generates angle data, and the determination unit selects one of the plurality of angles of the registered feature amount data based on the angle data. Good too.
- the registered feature data may include a plurality of features with different light irradiation intensities.
- the feature amount may be generated based on the pixel values of multiple pixels included in the region.
- the feature amount may be expressed in RGB values. Further, the feature amount may be expressed as a grayscale value. Further, the feature amount may be expressed in black and white binary values.
- the first identifier may be a hologram.
- the second identifier may be a QR code (registered trademark).
- a method for determining the authenticity of a determination code is a method for determining the authenticity of a determination code including a first identifier and a second identifier, the first image being obtained by photographing the first identifier of the determination code.
- a plurality of regions are extracted from the plurality of regions, first feature amount data including feature amounts of each of the plurality of regions is generated, and second identification information is obtained from a second image obtained by photographing a second identifier of the determination code.
- the first identification information indicated by the first identifier is specified based on the first feature amount data, and the correspondence relationship between the first identification information and the second identification information is determined.
- determination result information indicating that the determination code is genuine may be generated.
- the first identification information may be identified by determining the degree of similarity between registered feature data registered in advance in the database and the first feature data.
- a method for determining the authenticity of a determination code includes a first identifier divided into n areas (n is a natural number) and an n-th area assigned to each of the n-th areas of the first identifier.
- a method for determining the authenticity of a determination code including a second identifier, wherein an n-th first image corresponding to the n-th area and an n-th first image corresponding to the n-th area and an n-th first image corresponding to the n-th area are Extract the n-th second image corresponding to the n-th second identifier, extract a plurality of regions from the n-th first image, and extract the n-th first feature data is generated, n-th second identification information is acquired from the n-th second image, and n-th first identification information is generated based on the n-th first feature data.
- the identification information is specified, and the correspondence relationship between the n-th first identification information and the n-th second identification information is determined.
- a determination result indicating that the determination code is genuine may be generated.
- the identification of the n-th first identification information may be performed by determining the degree of similarity between the registered feature amount data registered in advance in the database and the first feature amount data.
- a determination system generates first feature data including a histogram of pixel values of a first image obtained by photographing a first identifier of a determination code including a first identifier and a second identifier.
- an identification information acquisition section that acquires second identification information from a second image obtained by photographing the second identifier of the determination code; and a determination unit that identifies the first identification information and determines the correspondence between the first identification information and the second identification information.
- a method for determining the authenticity of a determination code is a method for determining the authenticity of a determination code including a first identifier and a second identifier, the first image being obtained by photographing the first identifier of the determination code.
- the first identification information indicated by is identified, and the correspondence relationship between the first identification information and the second identification information is determined.
- a determination system identifies first identification information indicated by a first identifier that provides visual information of a determination code, and obtains first identification information from the identified first identification information and a second identifier of the determination code. A correspondence relationship with the second identification information is determined. That is, by using the determination system, the first identification information indicated by the first identifier can be specified without depending on the user's visual observation, and the authenticity of the determination code can be determined. Therefore, user dependence (variation due to visual observation by the user) in determining authenticity is suppressed, and the accuracy of determining the authenticity of the determination code is improved. As a result, it is possible to prevent counterfeiting of products with determination codes attached.
- FIG. 1 is a block diagram illustrating an outline of a determination system according to an embodiment (first embodiment) of the present invention, and a schematic diagram showing a determination code to be authenticated by the determination system.
- 1 is a block diagram showing the configuration of a determination system according to an embodiment (first embodiment) of the present invention.
- FIG. 2 is a sequence diagram showing a process for determining the authenticity of a determination code, which is executed by the determination system according to an embodiment (first embodiment) of the present invention. It is a schematic diagram explaining a part of authenticity determination processing of the determination system concerning one embodiment (1st embodiment) of the present invention.
- FIG. 7 is a schematic diagram illustrating feature amounts of registered feature data registered in a registered feature amount database of a determination system according to an embodiment (third embodiment) of the present invention. It is a block diagram showing the composition of the judgment system concerning one embodiment (3rd embodiment) of the present invention.
- FIG. 7 is a schematic diagram illustrating feature amounts of registered feature data registered in a registered feature amount database of a determination system according to an embodiment (fourth embodiment) of the present invention. It is a sequence diagram which shows the authenticity determination process performed by the determination system based on one Embodiment (5th Embodiment) of this invention. It is a schematic diagram explaining a part of authenticity determination processing of the determination system concerning one embodiment (5th embodiment) of the present invention. It is a sequence diagram which shows the authenticity determination process of the determination code performed by the determination system based on one Embodiment (6th Embodiment) of this invention.
- FIG. 1(A) is a block diagram illustrating an outline of a determination system 10 according to an embodiment of the present invention
- FIG. 1(B) is a block diagram illustrating an outline of a determination system 10 according to an embodiment of the present invention.
- 5 is a schematic diagram showing a determination code 500.
- the determination system 10 includes an information terminal 100 and a server 200.
- Information terminal 100 is communicably connected to server 200 via network NW.
- the network NW may be wired or wireless.
- the network NW is a LAN (Local Area Network) or the Internet, but is not limited to these.
- the determination code 500 whose authenticity is determined by the determination system 10 includes a first identifier 510 and a second identifier 520.
- the first identifier 510 is an identifier that provides visual information, and is, for example, a hologram.
- the second identifier 520 is an identifier that includes identification information unique to the determination code 500, and is, for example, a QR code.
- a first identifier 510 and a second identifier 520 are integrally formed.
- the determination code 500 may be a label or electronic data. When the judgment code 500 is a label, it is attached to an article and used, and when the judgment code 500 is electronic data, it is displayed on a screen and used.
- the determination system 10 determines the authenticity of the determination code 500 by photographing the determination code 500. Furthermore, the determination system 10 can determine the authenticity of multiple types of determination codes 500.
- the first identifier 510 and second identifier 520 included in one determination code 500 have a one-to-one correspondence, and different types of determination codes 500 have not only the first identifier 510 but also the second identifier 520. It's different. Therefore, by determining the correspondence between the first identifier 510 and the second identifier 520 of the determination code 500, it is possible to determine whether the determination code 500 is genuine or forged.
- the information terminal 100 is a terminal that can photograph the determination code 500 or display the determination result.
- the information terminal 100 is, for example, a mobile phone, a smartphone, a tablet, or a personal computer, but is not limited to these. Furthermore, the information terminal 100 can generate an image corresponding to the photographed determination code 500.
- the server 200 is software or a computer that can receive images from the information terminal 100 and determine the authenticity of the determination code 500.
- the server 200 may be one computer or multiple computers.
- the determination system 10 includes the information terminal 100 and the server 200, and the image generated by the information terminal 100 is transmitted to the server 200.
- the server 200 executes an authenticity determination process based on the transmitted image, and generates determination result information.
- the determination system 10 can also perform the authenticity determination process and generate determination result information using a cloud computing method or an ASP (Application Service Provider) method.
- FIG. 2 is a block diagram showing the configuration of the determination system 10 according to an embodiment of the present invention.
- the information terminal 100 of the determination system 10 includes an imaging section 110, a display section 120, and a communication section 130.
- the server 200 of the determination system 10 includes a control section 210, a storage section 220, and a communication section 230.
- the imaging unit 110 is an imaging device that can photograph the determination code 500.
- the first identifier 510 and second identifier 520 of the determination code 500 are photographed separately.
- the imaging unit 110 can generate a first image corresponding to the first identifier 510 of the photographed determination code 500.
- the imaging unit 110 can generate a second image corresponding to the second identifier 520 of the photographed determination code 500.
- a camera, a video camera, a scanner, or the like can be used as the imaging unit 110.
- the display unit 120 is a display interface that can display the first image, the second image, or the determination result information.
- a liquid crystal display device for example, a liquid crystal display device, an OLED display device, or the like can be used.
- the communication unit 130 and the communication unit 230 are communication interfaces that can transmit or receive data or information by wire or wirelessly.
- a LAN module or a Wi-Fi (registered trademark) module can be used as the communication unit 130 and the communication unit 230.
- the control unit 210 is a computer that can perform arithmetic processing using data or information.
- the control unit 210 includes, for example, a central processing unit (CPU), a microprocessor (MPU), or a random access memory (RAM).
- CPU central processing unit
- MPU microprocessor
- RAM random access memory
- the control unit 210 can cause the image processing unit 211, feature amount data generation unit 212, identification information acquisition unit 213, and determination unit 214 to function by executing a program. Note that details of the image processing section 211, feature amount data generation section 212, identification information acquisition section 213, and determination section 214 will be described later.
- the storage unit 220 is a storage that can store data or information. Specifically, the storage unit 220 can store a registered feature database 221. In the registered feature database 221, first feature data indicated by the first identifier 510 linked to the second identification information included in the second identifier 520 is registered in advance for each different type of determination code 500. .
- a hard disk drive (HDD), a solid state drive (SSD), a read only memory (ROM), a random access memory (RAM), a flash memory, etc. can be used.
- the data or information registered in the registered feature database 221 will be The first feature amount data and the second identification information will be described as registered feature amount data and registered identification information, respectively.
- the image processing unit 211 can divide the first image into multiple regions and extract the multiple regions according to predetermined rules.
- the feature amount data generation unit 212 can generate feature amounts for each of the plurality of regions. Since the feature amounts of the plurality of regions correspond to the feature amount of the first identifier 510, the feature amounts of the plurality of regions will be described below as first feature amount data for convenience. That is, the feature amount data generation unit 212 can generate the first feature amount data of the first identifier 510.
- the identification information acquisition unit 213 can read the second image and acquire the second identification information included in the second identifier 520.
- the determination unit 214 can identify the first identification information indicated by the first identifier 510 using the first feature amount data. Further, the determination unit 214 can determine the correspondence between the identified first identification information and the acquired second identification information, and can generate determination result information.
- the image processing unit 211, the feature data generation unit 212, the identification information acquisition unit 213, and the determination unit 214 may perform functions other than those described above. .
- FIG. 3 is a sequence diagram showing the authenticity determination process of the determination code 500 executed by the determination system 10 according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram illustrating a part of the authenticity determination process of the determination system 10 according to an embodiment of the present invention.
- the authenticity determination process executed by the determination system 10 is started by executing the authenticity determination process program on the information terminal 100.
- step S100 the imaging unit 110 generates a first image corresponding to the first identifier 510 of the photographed determination code 500.
- step S110 the generated first image is transmitted from the information terminal 100 to the server 200 via the communication unit 130.
- step S120 the imaging unit 110 generates a second image corresponding to the second identifier 520 of the photographed determination code 500.
- step S130 the generated second image is transmitted from the information terminal 100 to the server 200 via the communication unit 130.
- step S140 the image processing unit 211 divides the first image into multiple regions and extracts the multiple regions. For example, as shown in FIG. 4A, the image processing unit 211 divides the first image 610 into matrix-like regions of 4 rows and 2 columns, and divides the first image 610 into 8 regions (first regions 610-1 to 610-1). An eighth region 610-8) can be generated.
- the image processing unit 211 may divide the first image according to a predetermined rule, and the number of regions is not particularly limited.
- the feature data generation unit 212 generates first feature data of the first identifier 510. That is, the feature amount data generation unit 212 generates feature amounts for each of the plurality of regions.
- the feature amount is, for example, an RGB value as shown in FIG. 4(B).
- the RGB value is each pixel value of a red pixel (R pixel), a green pixel (G pixel), and a blue pixel (B pixel). Therefore, the feature amounts expressed by RGB values include R feature amounts, G feature amounts, and B feature amounts.
- the R feature amount, G feature amount, and B feature amount shown in FIG. 4(B) are the average values of the pixel values of multiple R pixels, multiple G pixels, and multiple B pixels included in the area, respectively. be.
- the feature amount is not limited to the average value of pixel values.
- the feature amount may be an intermediate value of pixel values.
- FIG. 4B shows feature quantities of 8-bit gradations (numerical values from 0 to 255), the number of gradations is not limited to this.
- the feature amount data generation unit 212 can generate feature amounts according to a predetermined number of gradations.
- step S120 the image processing unit 211 performs up-conversion or down-conversion of the number of gradations of the first image. good. In this case, the image processing unit 211 divides the first image, which has been converted into a predetermined number of gradations, into a plurality of regions.
- step S160 the identification information acquisition unit 213 reads the second image and acquires the second identification information included in the second identifier 520.
- step S170 the determination unit 214 uses the first feature data to identify the first identification information indicated by the first identifier 510. Further, the correspondence between the identified first identification information and the second identification information acquired in step S160 is determined, and determination result information is generated.
- the process in step S170 will be described with reference to FIG. 5.
- FIG. 5 is a flowchart showing the process of step S170 of the authenticity determination process of the determination system 10 according to an embodiment of the present invention. As shown in FIG. 5, the process in step S170 includes steps S171 to S176.
- step S171 the determination unit 214 calculates the degree of coincidence between the feature amount of the first feature amount data and the feature amount of the registered feature amount data.
- the degree of matching is calculated for each region. Furthermore, the degree of matching is calculated for all registered feature data registered in the registered feature database. For example, the matching degree C n m between the feature amount of the n-th region of the first feature amount data and the feature amount of the n-th region of the m-th registered feature amount data can be calculated based on (Formula 1). Can be done.
- R n , G n , and B n are the R feature amount, G feature amount, and B feature amount of the n-th region of the first feature amount data, respectively.
- R n m , G n m , and B n m are the R feature amount, G feature amount, and B feature amount of the n-th region of the m-th registered feature amount data, respectively.
- k is a bit of the number of gradations. Note that k, m, and n are all natural numbers.
- step S172 the determination unit 214 calculates the degree of similarity using the degree of matching C n m calculated in step S171.
- the calculation of similarity is performed for each registered feature amount data.
- the degree of similarity S m between the first feature amount data and the m-th registered feature amount data can be calculated based on (Equation 2).
- the similarity S m is the average value of the matching C n m .
- step S173 the determining unit 214 identifies the registered identification information linked to the m-th registered feature data having the maximum similarity S m as the first identification information indicated by the first identifier 510. In other words, the determination unit 214 identifies the registration identification information linked to the registered feature data most similar to the first feature data as the first identification information indicated by the first identifier 510.
- step S174 the determination unit 214 determines the correspondence between the first identification information specified in step S173 and the second identification information acquired in step S160. For example, the determination unit 214 determines whether the first identification information and the second identification information match. When the first identification information and the second identification information match (step S174: YES), step S175 is executed. On the other hand, when the first identification information and the second identification information do not match (step S174: NO), step S176 is executed.
- step S175 the determination unit 214 generates determination result information indicating that the determination code 500 is genuine.
- step S176 the determination unit 214 generates determination result information indicating that the determination code 500 is a forgery.
- step S175 or step S176 is executed, the process of step S170 ends.
- step S180 steps after step S180 will be described.
- step S180 the generated determination result information is transmitted from the server 200 to the information terminal 100 via the communication unit 230.
- step S190 the display unit 120 displays the determination result on the screen based on the determination result information. For example, if the determination result information is genuine, the display unit 120 displays "determination OK" on the screen, and if the determination result information is fake, it displays "determination NG" on the screen.
- the determination system 10 uses the first feature including the feature amount of the first identifier 510 (the feature amount of a plurality of regions) based on the first image in which the first identifier 510 of the determination code 500 is photographed. Generate quantitative data. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520. Furthermore, the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
- the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500.
- the determination system 10 according to the first embodiment is not limited to the configuration described above, and can be modified in various ways. Below, several modified examples of the determination system 10 according to the first embodiment will be described. Note that, below, descriptions of configurations similar to those described above may be omitted.
- the feature amount generated by the feature amount data generation unit 212 may be a grayscale value instead of an RGB value.
- the image processing unit 211 converts the first image from RGB values to grayscale values, and then divides the first image into a plurality of regions.
- the feature amount data generation unit 212 can generate a feature amount represented by a grayscale value for each of the plurality of regions.
- the feature amount of the registered feature amount data of the registered feature amount database 221 is also a grayscale value.
- step S171 of FIG. 5 the degree of coincidence C n m between the feature amount of the n-th region of the first feature amount data and the feature amount of the n-th region of the m-th registered feature amount data is It can be calculated based on (Formula 3).
- P n is the feature amount of the n-th region of the first feature amount data expressed in gray scale value
- P n m is the feature amount of the m-th registered feature amount data expressed in gray scale value. This is the feature amount of the nth region.
- the first identification information indicated by the first identifier 510 of the determination code 500 is identified without relying on the user's visual inspection. Therefore, dependence on the user in determining authenticity is suppressed, and the determination accuracy in determining the authenticity of the determination code 500 is improved. Furthermore, since the amount of calculation for the authenticity determination process is reduced, the load on the server 200 can be reduced.
- the feature amount generated by the feature amount data generation unit 212 may be a black and white binary value instead of an RGB value.
- the image processing unit 211 converts the first image 610 from RGB values to black and white binary values, and then divides the first image 610 into a plurality of regions.
- the feature amount data generation unit 212 can generate a feature amount expressed in black and white binary values for each of the plurality of divided regions.
- the feature amount of the registered feature amount data of the registered feature amount database 221 is also black and white binary.
- the first identification information indicated by the first identifier 510 of the determination code 500 is identified without depending on the user's visual observation. Therefore, dependence on the user in determining authenticity is suppressed, and the determination accuracy in determining the authenticity of the determination code 500 is improved. Furthermore, since the amount of calculation for the authenticity determination process is reduced, the load on the server 200 can be reduced.
- Information terminal 100 may include a control unit. That is, the control unit of the information terminal 100 may execute the program and perform the same functions as the image processing unit 211 and feature amount data generation unit 212 described above.
- first feature amount data including the feature amount of the first identifier 510 is generated in the information terminal 100 based on the first image. Further, the first feature amount data generated by the information terminal 100 is transmitted to the server 200 via the communication unit 130, and steps S160 and subsequent steps in FIG. 3 are executed.
- the first identification information indicated by the first identifier 510 of the determination code 500 is identified without relying on the user's visual inspection. Therefore, dependence on the user in determining authenticity is suppressed, and the determination accuracy in determining the authenticity of the determination code 500 is improved.
- the determination system 10 may not include the server 200.
- information terminal 100 includes a control section and a storage section. That is, the control unit of the information terminal 100 may execute the program and perform the same functions as the image processing unit 211, feature amount data generation unit 212, identification information acquisition unit 213, and determination unit 214 described above. Further, the storage unit of the information terminal 100 may store the registered feature database 221.
- first feature amount data including the feature amount of the first identifier 510 is generated in the information terminal 100 based on the first image.
- the degree of similarity between the first feature data and the registered feature data in the registered feature database 221 of the storage unit of the information terminal 100 is calculated, and the first identification information of the first identifier 510 is specified in the information terminal 100.
- a second image of the second identifier 520 of the determination code 500 is read, and second identification information of the second identifier 520 is acquired.
- the correspondence relationship between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520 is determined. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
- this modification may be executed using a program installed in the information terminal 100, or may be executed by reading a program stored in a recording medium (for example, a CD-ROM or a DVD-ROM). Good too.
- the first identification information indicated by the first identifier 510 of the determination code 500 is identified without depending on the user's visual inspection. Therefore, dependence on the user in determining authenticity is suppressed, and the determination accuracy in determining the authenticity of the determination code 500 is improved. Further, since the server 200 is not used, the authenticity of the determination code 500 can be determined using the information terminal 100 without depending on the communication state or communication speed. Therefore, since the authenticity of the determination code 500 can be determined at any location, convenience for the user is improved.
- FIG. 6 is a flowchart showing the process of step S170A of the authenticity determination process of the determination system 10 according to an embodiment of the present invention.
- step S170A is executed instead of step S170 in the first embodiment.
- Step S170A includes step S172A and step S173A instead of step S172 and step S173 described above.
- step S172A the determination unit 214 calculates the number of valid areas of the first feature data with respect to the registered feature data using the degree of coincidence C n m calculated in step S171. Calculation of the number of effective areas is performed for each registered feature amount data.
- the number N m of valid regions of the first feature data with respect to the m-th registered feature data is the number of regions having a matching degree C n m that is equal to or greater than the threshold set for the m-th registered feature data.
- the determination unit 214 counts the number of regions in the m-th registered feature data having a matching degree C n m equal to or higher than the threshold, and determines the effective region of the first feature data with respect to the m-th registered feature data. Calculate the number Nm .
- the threshold value may be the same or different for each region.
- step S173A the determination unit 214 identifies the registered identification information linked to the m-th registered feature amount data for which the number Nm of valid areas has the maximum value as the first identification information indicated by the first identifier 510. In other words, the determination unit 214 identifies the registered identification information linked to the registered feature data that has the largest number of regions matching the area of the first feature data as the first identification information indicated by the first identifier 510. do.
- the determination system 10 generates first feature amount data including the feature amount of the first identifier 510 based on the first image of the first identifier 510 of the determination code 500.
- the first feature data the number of valid areas with the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified.
- the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520.
- the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
- the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500.
- the determination system 10 according to the second embodiment is not limited to the configuration described above, and can be modified in various ways. Below, several modified examples of the determination system 10 according to the second embodiment will be described. Note that, below, descriptions of configurations similar to those described above may be omitted.
- the determining unit 214 may determine whether a predetermined area is included when counting the number of valid areas. If a characteristic pattern (for example, the "SECURE" part in FIG. 1B) is included in a predetermined position of the first identifier 510, the predetermined area containing the characteristic pattern will be added to the number of valid areas. By determining that the pattern is included, it is possible to calculate the number of effective areas with weight given to the characteristic pattern. If the predetermined area is not included in counting the number of valid areas, the determination unit 214 may calculate the number of valid areas as 0. Since step S174 in FIG. 6 is not executed for registered feature amount data in which the number of effective regions is 0, the amount of calculation in step S174 can be reduced.
- a characteristic pattern for example, the "SECURE" part in FIG. 1B
- the number of predetermined areas may be one or more. Further, the number of predetermined regions may be the same or different for each registered feature amount data.
- the first identification information indicated by the first identifier 510 of the determination code 500 can be identified without depending on the user's visual observation. Therefore, dependence on the user in determining authenticity is suppressed, and the accuracy of determining the authenticity of the determination code 500 is improved. Furthermore, since the amount of calculation for the authenticity determination process is reduced, the load on the server 200 can be reduced.
- FIG. 7 is a schematic diagram illustrating feature amounts of registered feature amount data registered in the registered feature amount database 221B of the determination system 10 according to an embodiment of the present invention.
- a registered feature database 221B is stored in the storage unit 220 instead of the registered feature database 221 of the first embodiment.
- the first identifier 510 that provides visual information may have a different color tone depending on the direction in which the first identifier 510 is photographed. Therefore, the registered feature amount data in the registered feature amount database 221B includes a plurality of feature amounts having different photographing direction angles. For example, as shown in FIG. 7, the first registered feature data in the registered feature database 221B includes not only the feature data from the shooting direction at the first angle but also the feature data from the second angle different from the first angle. Contains features from the shooting direction. Note that the number of angles in the photographing direction included in the registered feature amount data is not limited to two.
- step S171 in FIG. 5 the determination unit 214 calculates not only the feature amount of the first angle but also the degree of coincidence with the feature amount of the second angle. That is, the degree of coincidence between the feature amount of the first feature amount data and the feature amount of the registered feature amount data is calculated at each of the first angle and the second angle. Further, in step S172 of FIG. 5, the degree of similarity between the first feature amount data and the registered feature amount data is calculated at each of the first angle and the second angle. In addition, in step S173 of FIG. 5, the determination unit 214 selects the first registration identification information associated with the registration feature amount data having the maximum value among all the calculated similarities, as indicated by the first identifier 510. Specify as identification information.
- the determination system 10 generates first feature amount data including the feature amount of the first identifier 510 based on the first image of the first identifier 510 of the determination code 500.
- the degree of similarity between the first feature amount data and the angles of the plurality of photographing directions of the registered feature amount data is calculated, and the first identification information of the first identifier 510 is specified.
- the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520.
- the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
- the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500. Furthermore, since the first identification information of the first identifier 510 is specified by taking into consideration the angle of the photographing direction of the first identifier 510, the accuracy of the determination of the authenticity of the determination code 500 is further improved.
- the determination system 10 according to the third embodiment is not limited to the configuration described above, and can be modified in various ways. Below, several modified examples of the determination system 10 according to the third embodiment will be described. Note that, below, descriptions of configurations similar to those described above may be omitted.
- FIG. 8 is a block diagram showing the configuration of a determination system 10 according to an embodiment of the present invention.
- the information terminal 100 of the determination system 10 includes an imaging section 110, a display section 120, a communication section 130, and a sensor section 140.
- the server 200 of the determination system 10 includes a control section 210, a storage section 220, and a communication section 230.
- the storage unit 220 stores a registered feature database 221B.
- the sensor unit 140 is a sensor that can detect the angle of the information terminal 100 and generate angle data.
- the sensor section 140 for example, a gyro sensor or the like can be used.
- FIG. 9 is a sequence diagram showing the authenticity determination process executed by the determination system 10 according to an embodiment of the present invention.
- the authenticity determination process executed by the determination system 10 according to this modification further includes step S105B and step S115B in the authenticity determination process described with reference to FIG. Moreover, the authenticity determination process of the determination system 10 according to this modification includes step S170B instead of step S170.
- step S105B the sensor unit 140 detects the angle of the information terminal 100 when generating the first image as the photographing direction of the first identifier 510, and generates angle data.
- step S115B the generated angle data is transmitted from the information terminal 100 to the server 200 via the communication unit 130.
- the server 200 can acquire angle data regarding the photographing direction of the first identifier 510.
- step S170B the determination unit 214 selects the feature amount of the angle closest to the angle data from among the plurality of angles included in the registered feature amount data, and calculates the degree of matching. That is, in step S170B, the degree of matching is calculated using one angle included in the registered feature amount data. Therefore, it is not necessary to calculate the degree of coincidence for each of the plurality of angles, and the amount of calculation for the degree of coincidence is reduced.
- the first identification information indicated by the first identifier 510 of the determination code 500 can be identified without depending on the user's visual observation. Therefore, dependence on the user in determining authenticity is suppressed, and the accuracy of determining the authenticity of the determination code 500 is improved. Furthermore, since the first identification information of the first identifier 510 is specified by taking into consideration the angle of the photographing direction of the first identifier 510, the accuracy of the determination of the authenticity of the determination code 500 is further improved. Furthermore, since the amount of calculation for the authenticity determination process is reduced, the load on the server 200 can be reduced.
- FIG. 10 is a schematic diagram illustrating feature amounts of registered feature amount data registered in the registered feature amount database 221C of the determination system 10 according to an embodiment of the present invention.
- a registered feature database 221C is stored in the storage unit 220 instead of the registered feature database 221 of the first embodiment.
- the first identifier 510 that provides visual information may have a different color tone depending on the intensity of light irradiated onto the first identifier 510. Therefore, the registered feature data in the registered feature database 221C includes a plurality of features with different light irradiation intensities. For example, as shown in FIG. 10, the first registered feature data of the registered feature database 221C includes not only the first light irradiation intensity but also the second light irradiation intensity feature different from the first light irradiation intensity. Including quantity. Note that the number of light irradiation intensities included in the registered feature amount data is not limited to two.
- step S171 in FIG. 5 the determination unit 214 calculates not only the feature amount of the first light irradiation intensity but also the degree of coincidence with the feature amount of the second light irradiation intensity. That is, the degree of coincidence between the feature amount of the first feature amount data and the feature amount of the registered feature amount data is calculated for each of the first light irradiation intensity and the second light irradiation intensity. Furthermore, in step S172 in FIG. 5, the degree of similarity between the first feature amount data and the registered feature amount data is calculated for each of the first light irradiation intensity and the second light irradiation intensity. In addition, in step S173 of FIG. 5, the determination unit 214 selects the first registration identification information associated with the registration feature amount data having the maximum value among all the calculated similarities, as indicated by the first identifier 510. Specify as identification information.
- the determination system 10 generates first feature amount data including the feature amount of the first identifier 510 based on the first image of the first identifier 510 of the determination code 500.
- the degree of similarity between the first feature amount data and the plurality of light irradiation intensities of the registered feature amount data is calculated, and the first identification information of the first identifier 510 is specified.
- the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520.
- the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
- the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500. Furthermore, since the first identification information of the first identifier 510 is specified by taking into consideration the intensity of the light irradiated to the first identifier 510, the accuracy of the determination of the authenticity of the determination code 500 is further improved.
- FIG. 11 is a sequence diagram showing the authenticity determination process of the determination code 500 executed by the determination system 10 according to an embodiment of the present invention.
- FIG. 12 is a schematic diagram explaining a part of the authenticity determination process of the determination system 10 according to an embodiment of the present invention.
- FIG. 12(A) is a schematic diagram of the first image 610
- FIG. 12(B) is a schematic diagram illustrating the first feature amount data.
- step S150D and step S170D are included.
- step S140D the image processing unit 211 extracts the first pattern area 611D-1 and the second pattern area 611D-2 from the first image 610.
- the first image 610 includes a first pattern area 611D-1 and a second pattern area 611D-2 having a characteristic pattern. Therefore, the image processing unit 211 can detect a predetermined characteristic pattern and extract the first pattern area 611D-1 and the second pattern area 611D-2. The image processing unit 211 also acquires position information of each of the first pattern area 611D-1 and the second pattern area 611D-2.
- step S150D the feature data generation unit 212 generates first feature data of the first identifier 510.
- the feature amount data generation unit 212 generates the feature amount in each of the pattern regions 611D as the first feature amount data. That is, in step S130D, feature amounts of a plurality of predetermined pattern regions 611D are generated instead of feature amounts of a plurality of regions.
- step S170D the determination unit 214 uses the first feature data to identify the first identification information indicated by the first identifier 510. Further, the correspondence between the identified first identification information and the second identification information acquired in step S160 is determined, and determination result information is generated.
- the degree of similarity between the first feature amount data and the registered feature amount data registered in the registered feature amount database is calculated.
- the calculation of similarity is performed for each registered feature amount data. For example, as shown in FIG. 12(B), the determination unit 214 calculates the degree of similarity based not only on the R feature amount, the G feature amount, and the B feature amount, but also on the position information. Further, the determining unit 214 identifies the registered identification information linked to the registered feature data having the maximum similarity as the first identification information indicated by the first identifier 510.
- the determination system 10 determines the first feature amount data including the feature amount of the first identifier 510 based on the predetermined pattern area of the first image in which the first identifier 510 of the determination code 500 is photographed. generate. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520. Furthermore, the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
- the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500. Further, since the feature amount is generated based on the characteristic pattern region 611D, variations due to imaging conditions are reduced, and variations in the generated feature amount are also suppressed. Therefore, the accuracy of determining the authenticity of the determination code 500 is further improved.
- each of the information terminal 100 and the server 200 of the determination system 10 is the same as the configuration described with reference to FIG. 8, so the description will be omitted here.
- FIG. 13 is a sequence diagram showing the authenticity determination process of the determination code 500 executed by the determination system 10 according to an embodiment of the present invention.
- step S100E the imaging unit 110 generates a first image corresponding to the first identifier 510 of the determination code 500 photographed from the first photographing direction. Furthermore, the imaging unit 110 generates a second first image corresponding to the first identifier 510 of the determination code 500, which is photographed from a second photographing direction different from the first photographing direction.
- step S105E the sensor unit 140 detects the angle of the information terminal 100 when generating the first image as the first photographing direction of the first identifier 510, and generates first angle data. Further, the sensor unit 140 detects the angle of the information terminal 100 when generating the second first image as the second photographing direction of the first identifier 510, and generates second angle data.
- step S110E the generated first first image and second first image are transmitted from the information terminal 100 to the server 200 via the communication unit 130.
- step S115E the generated first angle data and second angle data are transmitted from the information terminal 100 to the server 200 via the communication unit 130.
- Step S120 and Step S130 are the same as in the first embodiment, so their description will be omitted here.
- step S140E the image processing unit 211 divides each of the first first image and the second first image into a plurality of regions, and extracts the plurality of regions.
- the feature amount data generation unit 212 generates first feature amount data including the feature amount of the first identifier 510.
- the feature amount data generation unit 212 generates a feature amount corresponding to the rate of change in the first image with respect to the angle data.
- the feature data generation unit 212 converts the difference between the pixel value of the first image and the pixel value of the second image into the difference between the first angle data and the second angle data. The value divided by the difference is generated as a feature quantity. Feature amounts are generated for each of the plurality of regions.
- step S160 onward The steps from step S160 onward are the same as those in the first embodiment, so the description will be omitted here.
- the determination system 10 calculates the feature amount corresponding to the rate of change of the first identifier 510 based on a plurality of first images taken of the first identifier 510 of the determination code 500 from different photographing directions. First feature amount data including the first feature amount data is generated. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520.
- the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
- the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the authenticity determination does not depend on the user. This improves the accuracy of determining the authenticity of the determination code 500. Further, since the feature amount is generated based on the change between at least two first images, variations due to imaging conditions are reduced, and variations in the generated feature amount are also suppressed. Therefore, the accuracy of determining the authenticity of the determination code 500 is further improved.
- FIG. 14 is a schematic diagram showing a determination code 500F whose authenticity is determined by the determination system 10 according to an embodiment of the present invention.
- a determination code 500F is used instead of the determination code 500 used in the authenticity determination of the first embodiment.
- the determination code 500F includes a first identifier 510 and a second identifier 520F.
- the second identifier 520F is placed near the first identifier 510. Therefore, in determining the authenticity of the determination code 500F, the first identifier 510 and the second identifier 520F can be photographed simultaneously.
- FIG. 15 is a sequence diagram showing the authenticity determination process of the determination code 500F executed by the determination system 10 according to an embodiment of the present invention.
- step S100F the imaging unit 110 generates an image corresponding to the first identifier 510 and second identifier 520F of the photographed determination code 500F.
- step S110F the generated image is transmitted from the information terminal 100 to the server 200 via the communication unit 130.
- step S118F the image processing unit 211 extracts a first image corresponding to the first identifier 510 and a second image corresponding to the second identifier 520F from the image.
- step S140 onward are the same as those in the first embodiment, so the description will be omitted here.
- the determination system 10 extracts the first image corresponding to the first identifier 510 and the second image corresponding to the second identifier 520F from the image of the determination code 500F, and Based on the first identifier 510, first feature amount data including the feature amount of the first identifier 510 is generated. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads the second image and acquires second identification information of the second identifier 520F. Furthermore, the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520F. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500F is genuine.
- the first identification information indicated by the first identifier 510 of the determination code 500F can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of the authenticity determination of the determination code 500F. Furthermore, since the first identifier 510 and the second identifier 520F can be photographed at the same time, convenience for the user is improved.
- the determination system 10 according to the seventh embodiment is not limited to the configuration described above, and can be modified in various ways. Below, several modified examples of the determination system 10 according to the seventh embodiment will be described. Note that, below, descriptions of configurations similar to those described above may be omitted.
- FIG. 16 is a schematic diagram showing a determination code 500F' whose authenticity is determined by the determination system 10 according to an embodiment of the present invention.
- the determination code 500F' includes a first identifier 510, a first second identifier 520F'-1, a second second identifier 520F'-2, and a third second identifier 520F'- Contains 3.
- the first identifier 510 is divided into a first area 511F'-1, a second area 511F'-2, and a third area 511F'-3.
- the second second identifier 520F'-2 and the third second identifier 520F'-3 correspond to the first area 511F'-1, the second area 511F'-2, and the third area 511F, respectively. This is the identifier assigned to '-3.
- the first second identifier 520F'-1, the second second identifier 520F'-2, and the third second identifier 520F'-3 correspond to the first area 511F'-1 and the second area, respectively. 511F'-2 and near the third area 511F'-3. Therefore, in determining the authenticity of the determination code 500F', the first area 511F'-1 and the first second identifier 520F'-1 can be photographed simultaneously. Similarly, the second area 511F'-2 and the second second identifier 520F'-2 are photographed at the same time, and the third area 511F'-3 and the third second identifier 520F'-3 are photographed at the same time. Being photographed.
- first identifiers 510 to be classified is not limited to three.
- the number of first identifiers classified may be n (n is a natural number).
- the first first identification information indicated by the first area 511F'-1, the second first identification information indicated by the second area 511F'-2, and the third first identification information indicated by the third area 511F'-3 are the first second identifier information and the second second identifier 520F included in the first second identifier 520F'-1, respectively.
- the correspondence relationship between the second second identifier information included in '-2' and the third second identifier information included in third second identifier 520F'-3 is determined.
- the determination code 500F' is determined to be genuine.
- the determination of correspondence is not limited to this. For example, when the first identification information and the second identification information in the predetermined area 511F' match, the determination code 500F' may be determined to be genuine. Note that there may be a plurality of predetermined areas 511F' used for determination.
- the first image and the second image are generated for each of the plurality of areas 511F' of the first identifier 510 from the image taken of the area 511F' of the determination code 500. Then, first feature amount data including the feature amount of the first identifier 510 is generated based on the first image. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads the second image and obtains second identification information of the second identifier 520F'.
- the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520F'. For example, it is determined whether the first identification information and second identification information in all areas 511F' match, and when the first identification information and second identification information in all areas 511F' match, It is determined that the determination code 500F' is genuine.
- the first identification information indicated by the first identifier 510 of the determination code 500F' can be specified without depending on the user's visual observation. is suppressed, and the accuracy of the authenticity determination of the determination code 500F' is improved. Furthermore, since the authenticity determination process is performed multiple times for one determination code 500F', the accuracy of determination of the authenticity of the determination code 500F' is further improved. Further, even when the first identifier 510 is large, the authenticity can be determined by dividing into a plurality of areas 511F'.
- FIG. 17 is a block diagram showing the configuration of a determination system 20 according to an embodiment of the present invention.
- the information terminal 100 of the determination system 20 includes an imaging section 110, a display section 120, and a communication section 130.
- the server 200 of the determination system 20 includes a control section 210, a storage section 220, and a communication section 230.
- the control unit 210 executes the program and causes the feature amount data generation unit 212, the identification information acquisition unit 213, and the determination unit 214 to function.
- the storage unit 220 includes a registered feature database 222 .
- FIG. 18 is a sequence diagram showing the authenticity determination process of the determination code 500 executed by the determination system 20 according to an embodiment of the present invention. Further, FIG. 19 is a schematic diagram illustrating a part of the authenticity determination process of the determination system 20 according to an embodiment of the present invention.
- the determination process executed by the determination system 20 starts when a program for the authenticity determination process is executed on the information terminal 100.
- step S200 the imaging unit 110 generates a first image corresponding to the first identifier 510 of the photographed determination code 500.
- step S210 the generated first image is transmitted from the information terminal 100 to the server 200 via the communication unit 130.
- step S220 the imaging unit 110 generates a second image corresponding to the second identifier 520 of the photographed determination code 500.
- step S230 the generated second image is transmitted from the information terminal 100 to the server 200 via the communication unit 130.
- the feature amount data generation unit 212 generates first feature amount data including the feature amount of the first identifier 510.
- the feature amount of the entire first image is generated without dividing the first image into a plurality of regions.
- the feature amount is, for example, a histogram representing the frequency of each pixel value of an R pixel, a G pixel, and a B pixel, as shown in FIGS. 19(A) to 19(C).
- Such an RGB histogram includes features such as contrast or brightness in each of RGB of the first image, and these features are expressed as a distribution shape.
- step S250 the identification information acquisition unit 213 reads the second image and acquires the second identification information included in the second identifier 520.
- step S260 the determination unit 214 uses the first feature data to identify the first identification information indicated by the first identifier 510. Further, the correspondence between the identified first identification information and the second identification information acquired in step S260 is determined, and determination result information is generated.
- the degree of similarity between the first feature amount data and the registered feature amount data registered in the registered feature amount database is calculated.
- the calculation of similarity is performed for each registered feature amount data.
- the determination unit 214 calculates the degree of similarity based on the position or number of peaks in the histogram, the ratio of overlapping areas, the average value, the intermediate value, or the like. Further, the determining unit 214 identifies the registered identification information linked to the registered feature data having the maximum similarity as the first identification information indicated by the first identifier 510.
- the determination unit 214 determines whether the first identification information and the second identification information match. When the first identification information and the second identification information match, the determination unit 214 generates determination result information indicating that the determination code 500 is genuine. On the other hand, when the first identification information and the second identification information do not match, the determination unit 214 generates determination result information indicating that the determination code 500 is a forgery.
- step S270 the generated determination result information is transmitted from the server 200 to the information terminal 100 via the communication unit 230.
- step S280 the display unit 120 displays the determination result on the screen based on the determination result information. For example, if the determination result information is genuine, the display unit 120 displays "determination OK" on the screen, and if the determination result information is fake, it displays "determination NG" on the screen.
- the determination system 20 generates first feature amount data including the feature amount of the first identifier 510 based on the first image of the first identifier 510 of the determination code 500.
- the degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified.
- the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520.
- the determination system 20 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
- the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500. Furthermore, since the first feature amount data is generated without dividing into a plurality of regions, the amount of calculation for the authenticity determination process is reduced, and the load on the server 200 can be reduced.
- the authenticity can be determined using a histogram as the feature amount of each of the plurality of regions. For example, in a predetermined plurality of regions, or a plurality of regions divided into regions having a characteristic pattern and regions not having a characteristic pattern, the feature amount data generation unit 212 generates each of the plurality of regions. First feature amount data including a histogram can be generated.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Artificial Intelligence (AREA)
- Image Analysis (AREA)
- Collating Specific Patterns (AREA)
Abstract
This determination system comprises: an image processing unit that extracts a plurality of regions from a first image obtained by capturing a first identifier of a determination code including the first identifier and a second identifier; a feature amount data generation unit that generates first feature amount data including the feature amount of each of the plurality of regions; an identification information obtaining unit that obtains second identification information from a second image obtained by capturing the second identifier of the determination code; and a determination unit that identifies first identification information indicated by the first identifier based on the first feature amount data, and determines the correspondence relationship between the first identification information and the second identification information.
Description
本発明の一実施形態は、判定コードの真贋判定を行う判定システムに関する。また、本発明の一実施形態は、判定コードの真贋判定方法に関する。
One embodiment of the present invention relates to a determination system that determines the authenticity of a determination code. Further, one embodiment of the present invention relates to a method for determining the authenticity of a determination code.
商品のグローバル化に伴い、商品の偽造品が増加するとともに、精巧に模倣された偽造品も流通するようになっている。精巧に模倣された偽造品は、目視のみでは真正品と見分けがつかない場合が多い。そのため、商品に判定ラベルを付し、判定ラベルの真贋判定を行うことによって、判定ラベルが付された商品が真正品であるか否かの判定が行われている。
With the globalization of products, the number of counterfeit products is increasing, and elaborately imitated counterfeit products are also being distributed. Elaborately imitated counterfeits are often difficult to distinguish from genuine products by visual inspection alone. Therefore, it is determined whether or not the product to which the judgment label is attached is a genuine product by attaching a judgment label to the product and determining the authenticity of the judgment label.
このような判定ラベルとして、QRコード(登録商標)が用いられることがある。QRコードは、様々な情報を含むことができるため、真贋判定だけでなく、商品に関する情報を提供することもできる。しかしながら、QRコードのセルは、単純なドットの配列で形成されているため、QRコードは、コピー機などを用いて容易に複写することができる。そのため、QRコードを用いた判定ラベルによる真贋判定は、偽造品防止という観点では十分でなかった。
A QR code (registered trademark) is sometimes used as such a determination label. Since a QR code can contain various information, it can not only determine authenticity but also provide information about products. However, since the cells of the QR code are formed by a simple array of dots, the QR code can be easily copied using a copy machine or the like. Therefore, the authenticity determination using a determination label using a QR code has not been sufficient from the viewpoint of preventing counterfeit products.
また、判定ラベルには、ホログラムが用いられることもある。ホログラムは、コピー機などによる複写が困難であることから、クレジットカード、紙幣、または有価証券などの偽造品対策として広く用いられている。そのため、ホログラムを用いた判定ラベルは、QRコードを用いた判定ラベルよりも真贋判定の判定精度が高い。また、真贋判定に用いる判定ラベルとしては、ホログラムだけでなく、文字またはQRコードが印字された判定ラベルも知られている(例えば、特許文献1参照)。
Additionally, a hologram may be used as the determination label. Since holograms are difficult to copy using a copy machine or the like, they are widely used as a countermeasure against counterfeit products such as credit cards, banknotes, and securities. Therefore, a determination label using a hologram has higher accuracy in determining authenticity than a determination label using a QR code. Further, as a judgment label used for determining authenticity, not only a hologram but also a judgment label on which characters or a QR code are printed is known (see, for example, Patent Document 1).
従来のホログラムを用いた判定ラベルでは、真贋判定を行うユーザの目視によってホログラムを確認するため、真贋判定の結果は、ユーザに依存する場合も少なくない。特許文献1では、ホログラムの識別情報をQRコードと関連付けることにより、QRコードがホログラムの判定チェックを行うことができる。しかしながら、特許文献1においてもホログラムはユーザの目視による確認であるため、類似するホログラムと複写されたQRコードとを用いて偽造された判定ラベルに対しては、真正と判定される場合があった。
With conventional identification labels using holograms, the hologram is visually confirmed by the user making the authentication, so the results of the authentication often depend on the user. In Patent Document 1, by associating the identification information of the hologram with the QR code, it is possible to check whether the QR code is a hologram. However, in Patent Document 1 as well, since the hologram is visually confirmed by the user, a label forged using a similar hologram and a copied QR code may be determined to be genuine. .
本発明の一実施形態は、上記問題に鑑み、視覚情報を提供する識別子を含む判定コードの真贋判定を行う判定システムを提供することを目的の一つとする。また、本発明の一実施形態は、視覚情報を提供する識別子を含む判定コードの真贋判定方法を提供することを目的の一つとする。
In view of the above-mentioned problems, an embodiment of the present invention has an object to provide a determination system that determines the authenticity of a determination code that includes an identifier that provides visual information. Another object of an embodiment of the present invention is to provide a method for determining the authenticity of a determination code that includes an identifier that provides visual information.
本発明の一実施形態に係る判定システムは、第1識別子および第2識別子を含む判定コードの第1識別子を撮影して得られる第1画像から複数の領域を抽出する画像処理部と、複数の領域の各々の特徴量を含む第1特徴量データを生成する特徴量データ生成部と、判定コードの第2識別子を撮影して得られる第2画像から第2識別情報を取得する識別情報取得部と、第1特徴量データに基づき第1識別子が示す第1識別情報を特定し、第1識別情報と第2識別情報との対応関係を判定する判定部と、を含む。
A determination system according to an embodiment of the present invention includes: an image processing unit that extracts a plurality of regions from a first image obtained by photographing a first identifier of a determination code including a first identifier and a second identifier; a feature data generation unit that generates first feature data including feature quantities of each area; and an identification information acquisition unit that obtains second identification information from a second image obtained by photographing a second identifier of the determination code. and a determination unit that identifies the first identification information indicated by the first identifier based on the first feature data and determines the correspondence between the first identification information and the second identification information.
判定部は、第1識別情報と第2識別情報とが一致する場合、判定コードが真正である旨の判定結果情報を生成してもよい。
The determination unit may generate determination result information indicating that the determination code is genuine when the first identification information and the second identification information match.
第1識別情報は、予めデータベースに登録された登録特徴量データと第1特徴量データとの類似度が判定されることによって特定されてもよい。
The first identification information may be specified by determining the degree of similarity between the registered feature data registered in advance in the database and the first feature data.
本発明の一実施形態に係る判定システムは、n個(nは自然数)のエリアに区分された第1識別子および第1識別子の第nのエリアのそれぞれに割り当てられた第nの第2識別子を含む判定コードの第nのエリアおよび第nの第2識別子を撮影して得られる画像から、第nのエリアに対応する第nの第1画像および第nの第2識別子に対応する第nの第2画像を抽出し、第nの第1画像から複数の領域を抽出する画像処理部と、第nの第1画像の複数の領域の各々の特徴量を含む第nの第1特徴量データを生成する特徴量データ生成部と、第nの第2画像から第nの第2識別情報を取得する識別情報取得部と、第nの第1特徴量データに基づき第nのエリアが示す第nの第1識別情報を特定し、第nの第1識別情報と第nの第2の識別情報との対応関係を判定する判定部と、を含む。
A determination system according to an embodiment of the present invention includes a first identifier divided into n areas (n is a natural number) and an n-th second identifier assigned to each of the n-th areas of the first identifier. From the image obtained by photographing the n-th area and the n-th second identifier of the included determination code, the n-th first image corresponding to the n-th area and the n-th image corresponding to the n-th second identifier are obtained. an image processing unit that extracts a second image and extracts a plurality of regions from the n-th first image; and n-th first feature amount data including feature amounts of each of the plurality of regions of the n-th first image. an identification information acquisition unit that acquires the n-th second identification information from the n-th second image; and an identification information acquisition unit that acquires the n-th second identification information from the n-th second image; A determination unit that identifies the nth first identification information and determines the correspondence between the nth first identification information and the nth second identification information.
判定部は、第nの第1識別情報と第nの第2識別情報とがn個のエリアの全てで一致する場合、判定コードが真正である旨の判定結果を生成してもよい。
The determination unit may generate a determination result indicating that the determination code is genuine when the nth first identification information and the nth second identification information match in all of the n areas.
判定部は、第nの第1識別情報と第nの第2識別情報とが所定のエリアで一致する場合、判定コードが真正である旨の判定結果を生成してもよい。
The determination unit may generate a determination result indicating that the determination code is genuine when the nth first identification information and the nth second identification information match in a predetermined area.
所定のエリアは、複数のエリアであってもよい。
The predetermined area may be multiple areas.
第nの第1識別情報は、予めデータベースに登録された登録特徴量データと第nの第1特徴量データとの類似度が判定されることによって特定されてもよい。
The n-th first identification information may be specified by determining the degree of similarity between the registered feature data registered in advance in the database and the n-th first feature data.
登録特徴量データは、撮影方向の角度が異なる複数の特徴量を含んでいてもよい。
The registered feature amount data may include a plurality of feature amounts having different angles in the photographing direction.
判定システムは、さらに、撮影方向の角度を検出し、角度データを生成するセンサ部を含み、判定部は、角度データに基づき、登録特徴量データの複数の角度のうちの1つを選択してもよい。
The determination system further includes a sensor unit that detects the angle of the photographing direction and generates angle data, and the determination unit selects one of the plurality of angles of the registered feature amount data based on the angle data. Good too.
登録特徴量データは、光照射強度が異なる複数の特徴量を含んでいてもよい。
The registered feature data may include a plurality of features with different light irradiation intensities.
特徴量は、領域に含まれる複数の画素の画素値に基づいて生成されてもよい。
The feature amount may be generated based on the pixel values of multiple pixels included in the region.
特徴量は、RGB値で表されてもよい。また、特徴量は、グレースケール値で表されてもよい。また、特徴量は、白黒2値で表されてもよい。
The feature amount may be expressed in RGB values. Further, the feature amount may be expressed as a grayscale value. Further, the feature amount may be expressed in black and white binary values.
第1識別子は、ホログラムであってもよい。
The first identifier may be a hologram.
第2識別子は、QRコード(登録商標)であってもよい。
The second identifier may be a QR code (registered trademark).
本発明の一実施形態に係る判定コードの真贋判定方法は、第1識別子および第2識別子を含む判定コードの真贋判定方法であって、判定コードの第1識別子を撮影して得られる第1画像から複数の領域を抽出し、複数の領域の各々の特徴量を含む第1特徴量データを生成し、判定コードの第2識別子を撮影して得られる第2画像から第2識別情報を取得し、第1特徴量データに基づき第1識別子が示す第1識別情報を特定し、第1識別情報と第2識別情報との対応関係を判定する。
A method for determining the authenticity of a determination code according to an embodiment of the present invention is a method for determining the authenticity of a determination code including a first identifier and a second identifier, the first image being obtained by photographing the first identifier of the determination code. A plurality of regions are extracted from the plurality of regions, first feature amount data including feature amounts of each of the plurality of regions is generated, and second identification information is obtained from a second image obtained by photographing a second identifier of the determination code. , the first identification information indicated by the first identifier is specified based on the first feature amount data, and the correspondence relationship between the first identification information and the second identification information is determined.
対応関係の判定において、第1識別情報と第2識別情報とが一致する場合、判定コードが真正である旨の判定結果情報が生成されてもよい。
In determining the correspondence relationship, if the first identification information and the second identification information match, determination result information indicating that the determination code is genuine may be generated.
第1識別情報の特定は、予めデータベースに登録された登録特徴量データと第1特徴量データとの類似度が判定されることによって行われてもよい。
The first identification information may be identified by determining the degree of similarity between registered feature data registered in advance in the database and the first feature data.
本発明の一実施形態に係る判定コードの真贋判定方法は、n個(nは自然数)のエリアに区分された第1識別子および第1識別子の第nのエリアのそれぞれに割り当てられた第nの第2識別子を含む判定コードの真贋判定方法であって、第nのエリアおよび第nの第2識別子を撮影して得られる画像から、第nのエリアに対応する第nの第1画像および第nの第2識別子に対応する第nの第2画像を抽出し、第nの第1画像から複数の領域を抽出し、第nの第1画像の複数の領域の各々の特徴量を含む第nの第1特徴量データを生成し、第nの第2画像から第nの第2識別情報を取得し、第nの第1特徴量データに基づき第nのエリアが示す第nの第1識別情報を特定し、第nの第1識別情報と第nの第2の識別情報との対応関係を判定する。
A method for determining the authenticity of a determination code according to an embodiment of the present invention includes a first identifier divided into n areas (n is a natural number) and an n-th area assigned to each of the n-th areas of the first identifier. A method for determining the authenticity of a determination code including a second identifier, wherein an n-th first image corresponding to the n-th area and an n-th first image corresponding to the n-th area and an n-th first image corresponding to the n-th area are Extract the n-th second image corresponding to the n-th second identifier, extract a plurality of regions from the n-th first image, and extract the n-th first feature data is generated, n-th second identification information is acquired from the n-th second image, and n-th first identification information is generated based on the n-th first feature data. The identification information is specified, and the correspondence relationship between the n-th first identification information and the n-th second identification information is determined.
対応関係の判定において、第nの第1識別情報と第nの第2識別情報とがn個のエリアの全てで一致する場合、判定コードが真正である旨の判定結果情報が生成されてもよい。
In determining the correspondence relationship, if the n-th first identification information and the n-th second identification information match in all n areas, even if determination result information indicating that the determination code is genuine is generated. good.
対応関係の判定において、第nの第1識別情報と第nの第2識別情報とが所定のエリアで一致する場合、判定コードが真正である旨の判定結果が生成されてもよい。
In determining the correspondence relationship, if the n-th first identification information and the n-th second identification information match in a predetermined area, a determination result indicating that the determination code is genuine may be generated.
第nの第1識別情報の特定は、予めデータベースに登録された登録特徴量データと第1特徴量データとの類似度が判定されることによって行われてもよい。
The identification of the n-th first identification information may be performed by determining the degree of similarity between the registered feature amount data registered in advance in the database and the first feature amount data.
本発明の一実施形態に係る判定システムは、第1識別子および第2識別子を含む判定コードの第1識別子を撮影して得られる第1画像の画素値のヒストグラムを含む第1特徴量データを生成する特徴量データ生成部と、判定コードの第2識別子を撮影して得られる第2画像から第2識別情報を取得する識別情報取得部と、第1特徴量データに基づき第1識別子が示す第1識別情報を特定し、第1識別情報と第2識別情報との対応関係を判定する判定部と、を含む。
A determination system according to an embodiment of the present invention generates first feature data including a histogram of pixel values of a first image obtained by photographing a first identifier of a determination code including a first identifier and a second identifier. an identification information acquisition section that acquires second identification information from a second image obtained by photographing the second identifier of the determination code; and a determination unit that identifies the first identification information and determines the correspondence between the first identification information and the second identification information.
本発明の一実施形態に係る判定コードの真贋判定方法は、第1識別子および第2識別子を含む判定コードの真贋判定方法であって、判定コードの第1識別子を撮影して得られる第1画像の画素値のヒストグラムを含む第1特徴量データを生成し、判定コードの第2識別子を撮影して得られる第2画像から第2識別情報を取得し、第1特徴量データに基づき第1識別子が示す第1識別情報を特定し、第1識別情報と第2識別情報との対応関係を判定する。
A method for determining the authenticity of a determination code according to an embodiment of the present invention is a method for determining the authenticity of a determination code including a first identifier and a second identifier, the first image being obtained by photographing the first identifier of the determination code. generate first feature data including a histogram of pixel values, obtain second identification information from a second image obtained by photographing the second identifier of the determination code, and generate the first identifier based on the first feature data. The first identification information indicated by is identified, and the correspondence relationship between the first identification information and the second identification information is determined.
本発明の一実施形態に係る判定システムは、判定コードの視覚情報を提供する第1識別子が示す第1識別情報を特定し、特定された第1識別情報と判定コードの第2識別子から取得した第2識別情報との対応関係を判定する。すなわち、判定システムを利用することにより、ユーザの目視に依存することなく第1識別子が示す第1識別情報を特定し、判定コードの真贋判定を行うことができる。したがって、真贋判定におけるユーザ依存(ユーザの目視によるばらつき)が抑制され、判定コードの真贋判定の判定精度が向上する。その結果、判定コードが付された商品の偽造を防止することができる。
A determination system according to an embodiment of the present invention identifies first identification information indicated by a first identifier that provides visual information of a determination code, and obtains first identification information from the identified first identification information and a second identifier of the determination code. A correspondence relationship with the second identification information is determined. That is, by using the determination system, the first identification information indicated by the first identifier can be specified without depending on the user's visual observation, and the authenticity of the determination code can be determined. Therefore, user dependence (variation due to visual observation by the user) in determining authenticity is suppressed, and the accuracy of determining the authenticity of the determination code is improved. As a result, it is possible to prevent counterfeiting of products with determination codes attached.
以下に、本発明の各実施形態について、図面を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な形態で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
Each embodiment of the present invention will be described below with reference to the drawings. However, the present invention can be implemented in various forms without departing from the scope thereof, and should not be construed as being limited to the contents described in the embodiments exemplified below.
図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。
In order to make the explanation more clear, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the actual aspect, but these are merely examples and do not limit the interpretation of the present invention. It's not something you do. In addition, in this specification and each figure, elements having the same functions as those described with respect to the previously shown figures may be denoted by the same reference numerals, and redundant explanation may be omitted.
本明細書および図面において、同一または類似する複数の構成を総じて表記する際には、同一の符号または同一の符号に大文字のアルファベットを添えて表記する場合がある。一つの構成のうちの複数の部分をそれぞれ区別して表記する際には、同一の符号を用い、さらにハイフンと自然数を用いる場合がある。
In this specification and the drawings, when referring to a plurality of identical or similar configurations as a whole, the same reference numerals or the same reference numerals may be indicated with capital letters attached. When a plurality of parts of one configuration are to be expressed separately, the same code may be used, and a hyphen and a natural number may also be used.
本明細書において、各構成に付記される「第1」、「第2」、または「第3」などの文字は、各構成を区別するために用いられる便宜的な標識であり、特段の説明がない限り、それ以上の意味を有さない。
In this specification, characters such as "first," "second," or "third" appended to each configuration are convenient marks used to distinguish each configuration, and special explanations are not provided. Unless there is, it has no further meaning.
<第1実施形態>
図1~図5を参照して、本発明の一実施形態に係る判定システム10の構成について説明する。 <First embodiment>
The configuration of adetermination system 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5.
図1~図5を参照して、本発明の一実施形態に係る判定システム10の構成について説明する。 <First embodiment>
The configuration of a
[1.判定システム10の概略]
図1(A)は、本発明の一実施形態に係る判定システム10の概略を説明するブロック図であり、図1(B)は、本発明の一実施形態に係る判定システム10で真贋判定される判定コード500を示す模式図である。 [1. Outline of determination system 10]
FIG. 1(A) is a block diagram illustrating an outline of adetermination system 10 according to an embodiment of the present invention, and FIG. 1(B) is a block diagram illustrating an outline of a determination system 10 according to an embodiment of the present invention. 5 is a schematic diagram showing a determination code 500. FIG.
図1(A)は、本発明の一実施形態に係る判定システム10の概略を説明するブロック図であり、図1(B)は、本発明の一実施形態に係る判定システム10で真贋判定される判定コード500を示す模式図である。 [1. Outline of determination system 10]
FIG. 1(A) is a block diagram illustrating an outline of a
図1(A)に示すように、判定システム10は、情報端末100およびサーバ200を含む。情報端末100は、ネットワークNWを介してサーバ200と通信可能に接続される。ネットワークNWは、有線であってもよく、無線であってもよい。例えば、ネットワークNWは、LAN(Local Area Network)またはインターネットなどであるが、これらに限られない。
As shown in FIG. 1(A), the determination system 10 includes an information terminal 100 and a server 200. Information terminal 100 is communicably connected to server 200 via network NW. The network NW may be wired or wireless. For example, the network NW is a LAN (Local Area Network) or the Internet, but is not limited to these.
図1(B)に示すように、判定システム10で真贋判定される判定コード500は、第1識別子510および第2識別子520を含む。第1識別子510は、視覚情報を提供する識別子であり、例えば、ホログラムである。第2識別子520は、判定コード500に固有の識別情報を含む識別子であり、例えば、QRコードである。判定コード500は、第1識別子510と第2識別子520とが一体的に形成されている。判定コード500は、ラベルであってもよく、電子データであってもよい。判定コード500がラベルである場合は物品などに付されて使用され、判定コード500が電子データである場合は画面に表示されて使用される。
As shown in FIG. 1(B), the determination code 500 whose authenticity is determined by the determination system 10 includes a first identifier 510 and a second identifier 520. The first identifier 510 is an identifier that provides visual information, and is, for example, a hologram. The second identifier 520 is an identifier that includes identification information unique to the determination code 500, and is, for example, a QR code. In the determination code 500, a first identifier 510 and a second identifier 520 are integrally formed. The determination code 500 may be a label or electronic data. When the judgment code 500 is a label, it is attached to an article and used, and when the judgment code 500 is electronic data, it is displayed on a screen and used.
判定システム10は、判定コード500を撮影することによって、判定コード500の真贋判定を行う。また、判定システム10は、複数の種類の判定コード500の真贋判定を行うことができる。1つの判定コード500に含まれる第1識別子510と第2識別子520とは、一対一で対応しており、異なる種類の判定コード500同士は、第1識別子510だけでなく、第2識別子520も異なっている。したがって、判定コード500の第1識別子510と第2識別子520との対応関係を判定することにより、判定コード500が真正であるか、または偽造であるかを判定することができる。
The determination system 10 determines the authenticity of the determination code 500 by photographing the determination code 500. Furthermore, the determination system 10 can determine the authenticity of multiple types of determination codes 500. The first identifier 510 and second identifier 520 included in one determination code 500 have a one-to-one correspondence, and different types of determination codes 500 have not only the first identifier 510 but also the second identifier 520. It's different. Therefore, by determining the correspondence between the first identifier 510 and the second identifier 520 of the determination code 500, it is possible to determine whether the determination code 500 is genuine or forged.
情報端末100は、判定コード500を撮影し、または判定結果を表示することができる端末である。情報端末100は、例えば、携帯電話、スマートフォン、タブレット、またはパーソナルコンピュータであるが、これらに限られない。また、情報端末100は、撮影した判定コード500に対応する画像を生成することができる。
The information terminal 100 is a terminal that can photograph the determination code 500 or display the determination result. The information terminal 100 is, for example, a mobile phone, a smartphone, a tablet, or a personal computer, but is not limited to these. Furthermore, the information terminal 100 can generate an image corresponding to the photographed determination code 500.
サーバ200は、情報端末100から画像を受信し、判定コード500の真贋判定を行うことができるソフトウェアまたはコンピュータである。サーバ200がコンピュータである場合、サーバ200は、1台のコンピュータであってもよく、複数のコンピュータであってもよい。
The server 200 is software or a computer that can receive images from the information terminal 100 and determine the authenticity of the determination code 500. When the server 200 is a computer, the server 200 may be one computer or multiple computers.
上述したように、判定システム10は、情報端末100およびサーバ200を備え、情報端末100が生成した画像がサーバ200に送信される。サーバ200では、送信された画像に基づいて真贋判定処理が実行され、判定結果情報が生成される。なお、判定システム10は、クラウドコンピューティング方式またはASP(Application Service Provider)方式によっても、真贋判定処理を実行し、判定結果情報を生成することができる。
As described above, the determination system 10 includes the information terminal 100 and the server 200, and the image generated by the information terminal 100 is transmitted to the server 200. The server 200 executes an authenticity determination process based on the transmitted image, and generates determination result information. Note that the determination system 10 can also perform the authenticity determination process and generate determination result information using a cloud computing method or an ASP (Application Service Provider) method.
[2.判定システム10の構成]
図2は、本発明の一実施形態に係る判定システム10の構成を示すブロック図である。 [2. Configuration of determination system 10]
FIG. 2 is a block diagram showing the configuration of thedetermination system 10 according to an embodiment of the present invention.
図2は、本発明の一実施形態に係る判定システム10の構成を示すブロック図である。 [2. Configuration of determination system 10]
FIG. 2 is a block diagram showing the configuration of the
図2に示すように、判定システム10の情報端末100は、撮像部110、表示部120、および通信部130を含む。また、判定システム10のサーバ200は、制御部210、記憶部220、および通信部230を含む。
As shown in FIG. 2, the information terminal 100 of the determination system 10 includes an imaging section 110, a display section 120, and a communication section 130. Further, the server 200 of the determination system 10 includes a control section 210, a storage section 220, and a communication section 230.
撮像部110は、判定コード500を撮影することができる撮像装置である。判定コード500の第1識別子510と第2識別子520とは、別々に撮影される。撮像部110は、撮影された判定コード500の第1識別子510に対応する第1画像を生成することができる。同様に、撮像部110は、撮影された判定コード500の第2識別子520に対応する第2画像を生成することができる。撮像部110として、例えば、カメラ、ビデオ、またはスキャナなどを用いることができる。
The imaging unit 110 is an imaging device that can photograph the determination code 500. The first identifier 510 and second identifier 520 of the determination code 500 are photographed separately. The imaging unit 110 can generate a first image corresponding to the first identifier 510 of the photographed determination code 500. Similarly, the imaging unit 110 can generate a second image corresponding to the second identifier 520 of the photographed determination code 500. As the imaging unit 110, for example, a camera, a video camera, a scanner, or the like can be used.
表示部120は、第1画像、第2画像、または判定結果情報を表示することができる表示インターフェースである。表示部120として、例えば、液晶表示装置またはOLED表示装置などを用いることができる。
The display unit 120 is a display interface that can display the first image, the second image, or the determination result information. As the display section 120, for example, a liquid crystal display device, an OLED display device, or the like can be used.
通信部130および通信部230は、データまたは情報を有線または無線によって送信し、または受信することができる通信インターフェースである。通信部130および通信部230として、例えば、LANモジュールまたはWi-Fi(登録商標)モジュールなどを用いることができる。
The communication unit 130 and the communication unit 230 are communication interfaces that can transmit or receive data or information by wire or wirelessly. As the communication unit 130 and the communication unit 230, for example, a LAN module or a Wi-Fi (registered trademark) module can be used.
制御部210は、データまたは情報を用いて演算処理を行うことができるコンピュータである。制御部210は、例えば、中央演算処理装置(Central Processing Unit:CPU)、マイクロプロセッサ(Micro Processing Unit:MPU)、またはランダムアクセスメモリ(Random Access Memory:RAM)などを含む。具体的には、制御部210は、プログラムを実行することによって、画像処理部211、特徴量データ生成部212、識別情報取得部213、および判定部214を機能させることができる。なお、画像処理部211、特徴量データ生成部212、識別情報取得部213、および判定部214の詳細については、後述する。
The control unit 210 is a computer that can perform arithmetic processing using data or information. The control unit 210 includes, for example, a central processing unit (CPU), a microprocessor (MPU), or a random access memory (RAM). Specifically, the control unit 210 can cause the image processing unit 211, feature amount data generation unit 212, identification information acquisition unit 213, and determination unit 214 to function by executing a program. Note that details of the image processing section 211, feature amount data generation section 212, identification information acquisition section 213, and determination section 214 will be described later.
記憶部220は、データまたは情報を格納することができるストレージである。具体的には、記憶部220には、登録特徴量データベース221を格納することができる。登録特徴量データベース221には、種類の異なる判定コード500ごとに、第2識別子520に含まれる第2識別情報と紐付けられた第1識別子510が示す第1特徴量データが予め登録されている。記憶部220として、例えば、ハードディスクドライブ(Hard Disk Drive:HDD)、ソリッドステートドライブ(Solid State Drive:SSD)、リードオンリーメモリ(Read Only Memory:ROM)、ランダムアクセスメモリ(RAM)、またはフラッシュメモリなどを用いることができる。
The storage unit 220 is a storage that can store data or information. Specifically, the storage unit 220 can store a registered feature database 221. In the registered feature database 221, first feature data indicated by the first identifier 510 linked to the second identification information included in the second identifier 520 is registered in advance for each different type of determination code 500. . As the storage unit 220, for example, a hard disk drive (HDD), a solid state drive (SSD), a read only memory (ROM), a random access memory (RAM), a flash memory, etc. can be used.
なお、以下では、真贋判定で用いられる判定コード500のデータまたは情報と、登録特徴量データベース221に予め登録されたデータまたは情報とを区別するため、便宜上、登録特徴量データベース221に登録された第1特徴量データおよび第2識別情報は、それぞれ、登録特徴量データおよび登録識別情報として説明する。
In the following, in order to distinguish between the data or information of the determination code 500 used in the authenticity determination and the data or information registered in advance in the registered feature database 221, for convenience, the data or information registered in the registered feature database 221 will be The first feature amount data and the second identification information will be described as registered feature amount data and registered identification information, respectively.
画像処理部211は、予め定められた規則にしたがって、第1画像を複数の領域に分割し、複数の領域を抽出することができる。
The image processing unit 211 can divide the first image into multiple regions and extract the multiple regions according to predetermined rules.
特徴量データ生成部212は、複数の領域の各々の特徴量を生成することができる。複数の領域の特徴量は、第1識別子510の特徴量に対応するため、以下では、便宜上、複数の領域の特徴量を第1特徴量データとして説明する。すなわち、特徴量データ生成部212は、第1識別子510の第1特徴量データを生成することができる。
The feature amount data generation unit 212 can generate feature amounts for each of the plurality of regions. Since the feature amounts of the plurality of regions correspond to the feature amount of the first identifier 510, the feature amounts of the plurality of regions will be described below as first feature amount data for convenience. That is, the feature amount data generation unit 212 can generate the first feature amount data of the first identifier 510.
識別情報取得部213は、第2画像を読み取り、第2識別子520に含まれる第2識別情報を取得することができる。
The identification information acquisition unit 213 can read the second image and acquire the second identification information included in the second identifier 520.
判定部214は、第1特徴量データを用いて、第1識別子510が示す第1識別情報を特定することができる。また、判定部214は、特定された第1識別情報と取得された第2識別情報との対応関係を判定し、判定結果情報を生成することができる。
The determination unit 214 can identify the first identification information indicated by the first identifier 510 using the first feature amount data. Further, the determination unit 214 can determine the correspondence between the identified first identification information and the acquired second identification information, and can generate determination result information.
なお、後述する他の実施形態では、画像処理部211、特徴量データ生成部212、識別情報取得部213、および判定部214が、上述した機能以外の機能が発揮されて実行される場合がある。
Note that in other embodiments to be described later, the image processing unit 211, the feature data generation unit 212, the identification information acquisition unit 213, and the determination unit 214 may perform functions other than those described above. .
[3.判定システム10の真贋判定処理]
図3は、本発明の一実施形態に係る判定システム10で実行される判定コード500の真贋判定処理を示すシーケンス図である。また、図4は、本発明の一実施形態に係る判定システム10の真贋判定処理の一部を説明する模式図である。 [3. Authenticity determination process of determination system 10]
FIG. 3 is a sequence diagram showing the authenticity determination process of thedetermination code 500 executed by the determination system 10 according to an embodiment of the present invention. Further, FIG. 4 is a schematic diagram illustrating a part of the authenticity determination process of the determination system 10 according to an embodiment of the present invention.
図3は、本発明の一実施形態に係る判定システム10で実行される判定コード500の真贋判定処理を示すシーケンス図である。また、図4は、本発明の一実施形態に係る判定システム10の真贋判定処理の一部を説明する模式図である。 [3. Authenticity determination process of determination system 10]
FIG. 3 is a sequence diagram showing the authenticity determination process of the
判定システム10で実行される真贋判定処理は、情報端末100上で真贋判定処理のプログラムが実行されることによって開始される。
The authenticity determination process executed by the determination system 10 is started by executing the authenticity determination process program on the information terminal 100.
ステップS100では、撮像部110が、撮影された判定コード500の第1識別子510に対応する第1画像を生成する。
In step S100, the imaging unit 110 generates a first image corresponding to the first identifier 510 of the photographed determination code 500.
ステップS110では、生成された第1画像が、通信部130を介して情報端末100からサーバ200に送信される。
In step S110, the generated first image is transmitted from the information terminal 100 to the server 200 via the communication unit 130.
ステップS120では、撮像部110が、撮影された判定コード500の第2識別子520に対応する第2画像を生成する。
In step S120, the imaging unit 110 generates a second image corresponding to the second identifier 520 of the photographed determination code 500.
ステップS130では、生成された第2画像が、通信部130を介して情報端末100からサーバ200に送信される。
In step S130, the generated second image is transmitted from the information terminal 100 to the server 200 via the communication unit 130.
ステップS140では、画像処理部211が、第1画像を複数の領域に分割し、複数の領域を抽出する。例えば、図4(A)に示すように、画像処理部211は、第1画像610を4行×2列のマトリクス状の領域に分割し、8個の領域(第1の領域610-1~第8の領域610-8)を生成することができる。画像処理部211は、予め定められた規則にしたがって第1画像を分割すればよく、複数の領域の数は、特に限定されない。
In step S140, the image processing unit 211 divides the first image into multiple regions and extracts the multiple regions. For example, as shown in FIG. 4A, the image processing unit 211 divides the first image 610 into matrix-like regions of 4 rows and 2 columns, and divides the first image 610 into 8 regions (first regions 610-1 to 610-1). An eighth region 610-8) can be generated. The image processing unit 211 may divide the first image according to a predetermined rule, and the number of regions is not particularly limited.
ステップS150では、特徴量データ生成部212が、第1識別子510の第1特徴量データを生成する。すなわち、特徴量データ生成部212は、複数の領域の各々の特徴量を生成する。特徴量は、例えば、図4(B)に示すようなRGB値である。RGB値は、赤色画素(R画素)、緑色画素(G画素)、および青色画素(B画素)のそれぞれの画素値である。そのため、RGB値で表される特徴量は、R特徴量、G特徴量、およびB特徴量を含む。図4(B)に示すR特徴量、G特徴量、およびB特徴量は、それぞれ、領域内に含まれる複数のR画素、複数のG画素、および複数のB画素の画素値の平均値である。但し、特徴量は、画素値の平均値に限られない。特徴量は、画素値の中間値であってもよい。また、図4(B)には、8ビット階調(0~255の数値)の特徴量を示したが、階調数はこれに限られない。特徴量データ生成部212は、予め定められた階調数にしたがって特徴量を生成することができる。
In step S150, the feature data generation unit 212 generates first feature data of the first identifier 510. That is, the feature amount data generation unit 212 generates feature amounts for each of the plurality of regions. The feature amount is, for example, an RGB value as shown in FIG. 4(B). The RGB value is each pixel value of a red pixel (R pixel), a green pixel (G pixel), and a blue pixel (B pixel). Therefore, the feature amounts expressed by RGB values include R feature amounts, G feature amounts, and B feature amounts. The R feature amount, G feature amount, and B feature amount shown in FIG. 4(B) are the average values of the pixel values of multiple R pixels, multiple G pixels, and multiple B pixels included in the area, respectively. be. However, the feature amount is not limited to the average value of pixel values. The feature amount may be an intermediate value of pixel values. Further, although FIG. 4B shows feature quantities of 8-bit gradations (numerical values from 0 to 255), the number of gradations is not limited to this. The feature amount data generation unit 212 can generate feature amounts according to a predetermined number of gradations.
なお、第1画像の階調数と予め定められた階調数とが異なる場合、ステップS120において、画像処理部211は、第1画像の階調数のアップコンバートまたはダウンコンバートを実行してもよい。この場合、画像処理部211は、予め定められた階調数に変換された第1画像を、複数の領域に分割する。
Note that if the number of gradations of the first image is different from the predetermined number of gradations, in step S120, the image processing unit 211 performs up-conversion or down-conversion of the number of gradations of the first image. good. In this case, the image processing unit 211 divides the first image, which has been converted into a predetermined number of gradations, into a plurality of regions.
ステップS160では、識別情報取得部213が、第2画像を読み取り、第2識別子520に含まれる第2識別情報を取得する。
In step S160, the identification information acquisition unit 213 reads the second image and acquires the second identification information included in the second identifier 520.
ステップS170では、判定部214が、第1特徴量データを用いて、第1識別子510が示す第1識別情報を特定する。また、特定された第1識別情報とステップS160で取得された第2識別情報との対応関係を判定し、判定結果情報を生成する。ここで、図5を参照して、ステップS170の処理の詳細について説明する。
In step S170, the determination unit 214 uses the first feature data to identify the first identification information indicated by the first identifier 510. Further, the correspondence between the identified first identification information and the second identification information acquired in step S160 is determined, and determination result information is generated. Here, details of the process in step S170 will be described with reference to FIG. 5.
図5は、本発明の一実施形態に係る判定システム10の真贋判定処理のステップS170の処理を示すフローチャート図である。図5に示すように、ステップS170の処理は、ステップS171~ステップS176を含む。
FIG. 5 is a flowchart showing the process of step S170 of the authenticity determination process of the determination system 10 according to an embodiment of the present invention. As shown in FIG. 5, the process in step S170 includes steps S171 to S176.
ステップS171では、判定部214が、第1特徴量データの特徴量と登録特徴量データの特徴量との一致度を算出する。一致度の算出は、複数の領域ごとに行われる。また、一致度の算出は、登録特徴量データベースに登録された登録特徴量データの全てに対して行われる。例えば、第1特徴量データの第nの領域の特徴量と第mの登録特徴量データの第nの領域の特徴量との一致度Cn
mは、(式1)に基づいて算出することができる。
In step S171, the determination unit 214 calculates the degree of coincidence between the feature amount of the first feature amount data and the feature amount of the registered feature amount data. The degree of matching is calculated for each region. Furthermore, the degree of matching is calculated for all registered feature data registered in the registered feature database. For example, the matching degree C n m between the feature amount of the n-th region of the first feature amount data and the feature amount of the n-th region of the m-th registered feature amount data can be calculated based on (Formula 1). Can be done.
ここで、Rn、Gn、およびBnは、それぞれ、第1特徴量データの第nの領域のR特徴量、G特徴量、およびB特徴量である。また、Rn
m、Gn
m、およびBn
mは、それぞれ、第mの登録特徴量データの第nの領域のR特徴量、G特徴量、およびB特徴量である。また、kは、階調数のビットである。なお、k、m、およびnはいずれも自然数である。
Here, R n , G n , and B n are the R feature amount, G feature amount, and B feature amount of the n-th region of the first feature amount data, respectively. Furthermore, R n m , G n m , and B n m are the R feature amount, G feature amount, and B feature amount of the n-th region of the m-th registered feature amount data, respectively. Moreover, k is a bit of the number of gradations. Note that k, m, and n are all natural numbers.
ステップS172では、判定部214が、ステップS171で算出された一致度Cn
mを用いて、類似度を算出する。類似度の算出は、登録特徴量データごとに行われる。例えば、第1特徴量データと第mの登録特徴量データとの類似度Smは、(式2)に基づいて算出することができる。
In step S172, the determination unit 214 calculates the degree of similarity using the degree of matching C n m calculated in step S171. The calculation of similarity is performed for each registered feature amount data. For example, the degree of similarity S m between the first feature amount data and the m-th registered feature amount data can be calculated based on (Equation 2).
(式2)からわかるように、類似度Smは、一致度Cn
mの平均値である。
As can be seen from (Formula 2), the similarity S m is the average value of the matching C n m .
ステップS173では、判定部214が、類似度Smが最大値を有する第mの登録特徴量データに紐付けられた登録識別情報を、第1識別子510が示す第1識別情報として特定する。換言すると、判定部214は、第1特徴量データと最も類似する登録特徴量データに紐付けられた登録識別情報を、第1識別子510が示す第1識別情報として特定する。
In step S173, the determining unit 214 identifies the registered identification information linked to the m-th registered feature data having the maximum similarity S m as the first identification information indicated by the first identifier 510. In other words, the determination unit 214 identifies the registration identification information linked to the registered feature data most similar to the first feature data as the first identification information indicated by the first identifier 510.
ステップS174では、判定部214が、ステップS173で特定された第1識別情報とステップS160で取得された第2識別情報との対応関係を判定する。例えば、判定部214は、第1識別情報と第2識別情報とが一致するか否かを判定する。第1識別情報と第2識別情報とが一致するとき(ステップS174:YES)、ステップS175が実行される。一方、第1識別情報と第2識別情報とが一致しないとき(ステップS174:NO)、ステップS176が実行される。
In step S174, the determination unit 214 determines the correspondence between the first identification information specified in step S173 and the second identification information acquired in step S160. For example, the determination unit 214 determines whether the first identification information and the second identification information match. When the first identification information and the second identification information match (step S174: YES), step S175 is executed. On the other hand, when the first identification information and the second identification information do not match (step S174: NO), step S176 is executed.
ステップS175では、判定部214が、判定コード500が真正である旨の判定結果情報を生成する。
In step S175, the determination unit 214 generates determination result information indicating that the determination code 500 is genuine.
ステップS176では、判定部214が、判定コード500が偽造である旨の判定結果情報を生成する。
In step S176, the determination unit 214 generates determination result information indicating that the determination code 500 is a forgery.
ステップS175またはステップS176が実行されると、ステップS170の処理は終了する。
Once step S175 or step S176 is executed, the process of step S170 ends.
再び、図3に戻り、ステップS180以降について説明する。
Returning to FIG. 3 again, steps after step S180 will be described.
ステップS180では、生成された判定結果情報が、通信部230を介してサーバ200から情報端末100に送信される。
In step S180, the generated determination result information is transmitted from the server 200 to the information terminal 100 via the communication unit 230.
ステップS190では、表示部120が、判定結果情報に基づき、画面に判定結果を表示する。例えば、判定結果情報が真正である場合には、表示部120は、画面に「判定OK」を表示し、判定結果情報が偽造である場合には、画面に「判定NG」を表示する。
In step S190, the display unit 120 displays the determination result on the screen based on the determination result information. For example, if the determination result information is genuine, the display unit 120 displays "determination OK" on the screen, and if the determination result information is fake, it displays "determination NG" on the screen.
以上、第1実施形態に係る判定システム10は、判定コード500の第1識別子510を撮影した第1画像に基づき、第1識別子510の特徴量(複数の領域の特徴量)を含む第1特徴量データを生成する。第1特徴量データは、登録特徴量データベース221の登録特徴量データとの類似度が算出され、第1識別子510の第1識別情報が特定される。また、判定システム10は、判定コード500の第2識別子520を撮影した第2画像を読み取り、第2識別子520の第2識別情報を取得する。さらに、判定システム10は、特定された第1識別子510の第1識別情報と取得された第2識別子520の第2識別情報との対応関係を判定する。例えば、第1識別情報と第2識別情報とが一致するか否かを判定し、第1識別情報と第2識別情報とが一致するときは、判定コード500が真正であると判定される。
As described above, the determination system 10 according to the first embodiment uses the first feature including the feature amount of the first identifier 510 (the feature amount of a plurality of regions) based on the first image in which the first identifier 510 of the determination code 500 is photographed. Generate quantitative data. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520. Furthermore, the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
第1実施形態に係る判定システム10による真贋判定では、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。
In the authenticity determination by the determination system 10 according to the first embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500.
第1実施形態に係る判定システム10は、上述した構成に限定されることなく、様々な変形が可能である。以下では、第1実施形態に係る判定システム10のいくつかの変形例について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。
The determination system 10 according to the first embodiment is not limited to the configuration described above, and can be modified in various ways. Below, several modified examples of the determination system 10 according to the first embodiment will be described. Note that, below, descriptions of configurations similar to those described above may be omitted.
<第1実施形態の変形例1>
特徴量データ生成部212が生成する特徴量は、RGB値ではなく、グレースケール値であってもよい。この場合、図3のステップS140において、画像処理部211は、第1画像をRGB値からグレースケール値に変換した後、複数の領域に分割する。これにより、図3のステップS150において、特徴量データ生成部212は、複数の領域の各々について、グレースケール値で表された特徴量を生成することができる。なお、本変形例では、登録特徴量データベース221の登録特徴量データの特徴量もグレースケール値である。 <Modification 1 of the first embodiment>
The feature amount generated by the feature amountdata generation unit 212 may be a grayscale value instead of an RGB value. In this case, in step S140 of FIG. 3, the image processing unit 211 converts the first image from RGB values to grayscale values, and then divides the first image into a plurality of regions. Thereby, in step S150 in FIG. 3, the feature amount data generation unit 212 can generate a feature amount represented by a grayscale value for each of the plurality of regions. In addition, in this modification, the feature amount of the registered feature amount data of the registered feature amount database 221 is also a grayscale value.
特徴量データ生成部212が生成する特徴量は、RGB値ではなく、グレースケール値であってもよい。この場合、図3のステップS140において、画像処理部211は、第1画像をRGB値からグレースケール値に変換した後、複数の領域に分割する。これにより、図3のステップS150において、特徴量データ生成部212は、複数の領域の各々について、グレースケール値で表された特徴量を生成することができる。なお、本変形例では、登録特徴量データベース221の登録特徴量データの特徴量もグレースケール値である。 <
The feature amount generated by the feature amount
本変形例では、図5のステップS171において、第1特徴量データの第nの領域の特徴量と第mの登録特徴量データの第nの領域の特徴量との一致度Cn
mは、(式3)に基づいて算出することができる。
In this modification, in step S171 of FIG. 5, the degree of coincidence C n m between the feature amount of the n-th region of the first feature amount data and the feature amount of the n-th region of the m-th registered feature amount data is It can be calculated based on (Formula 3).
ここで、Pnは、グレースケール値で表された第1特徴量データの第nの領域の特徴量であり、Pn
mは、グレースケール値で表された第mの登録特徴量データの第nの領域の特徴量である。(式1)および(式3)からわかるように、本変形例では、一致度Cn
mの算出における計算が単純化される。
Here, P n is the feature amount of the n-th region of the first feature amount data expressed in gray scale value, and P n m is the feature amount of the m-th registered feature amount data expressed in gray scale value. This is the feature amount of the nth region. As can be seen from (Formula 1) and (Formula 3), in this modification, the calculation for calculating the degree of coincidence C n m is simplified.
以上、第1実施形態の変形例1に係る判定システム10による真贋判定では、上述したように、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。また、真贋判定処理の計算量が削減されるため、サーバ200の負荷を低減することができる。
As described above, in the authenticity determination by the determination system 10 according to the first modification of the first embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 is identified without relying on the user's visual inspection. Therefore, dependence on the user in determining authenticity is suppressed, and the determination accuracy in determining the authenticity of the determination code 500 is improved. Furthermore, since the amount of calculation for the authenticity determination process is reduced, the load on the server 200 can be reduced.
<第1実施形態の変形例2>
特徴量データ生成部212が生成する特徴量は、RGB値ではなく、白黒2値であってもよい。この場合、図3のステップS140において、画像処理部211は、第1画像610をRGB値から白黒2値に変換した後、複数の領域に分割する。これにより、図3のステップS150において、特徴量データ生成部212は、分割された複数の領域の各々について、白黒2値で表された特徴量を生成することができる。なお、本変形例では、登録特徴量データベース221の登録特徴量データの特徴量も白黒2値である。 <Modification 2 of the first embodiment>
The feature amount generated by the feature amountdata generation unit 212 may be a black and white binary value instead of an RGB value. In this case, in step S140 of FIG. 3, the image processing unit 211 converts the first image 610 from RGB values to black and white binary values, and then divides the first image 610 into a plurality of regions. Thereby, in step S150 in FIG. 3, the feature amount data generation unit 212 can generate a feature amount expressed in black and white binary values for each of the plurality of divided regions. In addition, in this modification, the feature amount of the registered feature amount data of the registered feature amount database 221 is also black and white binary.
特徴量データ生成部212が生成する特徴量は、RGB値ではなく、白黒2値であってもよい。この場合、図3のステップS140において、画像処理部211は、第1画像610をRGB値から白黒2値に変換した後、複数の領域に分割する。これにより、図3のステップS150において、特徴量データ生成部212は、分割された複数の領域の各々について、白黒2値で表された特徴量を生成することができる。なお、本変形例では、登録特徴量データベース221の登録特徴量データの特徴量も白黒2値である。 <
The feature amount generated by the feature amount
本変形例では、図5のステップS171において、第1特徴量データの第nの領域の特徴量と第mの登録特徴量データの第nの領域の特徴量との一致度Cn
mは、(式3)においてk=0とした場合に相当する。そのため、本変形例では、一致度Cn
mの算出における計算がさらに単純化される。
In this modification, in step S171 of FIG. 5, the degree of coincidence C n m between the feature amount of the n-th region of the first feature amount data and the feature amount of the n-th region of the m-th registered feature amount data is This corresponds to the case where k=0 in (Formula 3). Therefore, in this modification, the calculation for calculating the degree of coincidence C n m is further simplified.
以上、第1実施形態の変形例2に係る判定システム10による真贋判定では、上述したように、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。また、真贋判定処理の計算量が削減されるため、サーバ200の負荷を低減することができる。
As described above, in the authenticity determination by the determination system 10 according to the second modification of the first embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 is identified without depending on the user's visual observation. Therefore, dependence on the user in determining authenticity is suppressed, and the determination accuracy in determining the authenticity of the determination code 500 is improved. Furthermore, since the amount of calculation for the authenticity determination process is reduced, the load on the server 200 can be reduced.
<第1実施形態の変形例3>
情報端末100は、制御部を含んでいてもよい。すなわち、情報端末100の制御部が、プログラムを実行し、上述した画像処理部211および特徴量データ生成部212と同様の機能が発揮されてもよい。 <Variation 3 of the first embodiment>
Information terminal 100 may include a control unit. That is, the control unit of the information terminal 100 may execute the program and perform the same functions as the image processing unit 211 and feature amount data generation unit 212 described above.
情報端末100は、制御部を含んでいてもよい。すなわち、情報端末100の制御部が、プログラムを実行し、上述した画像処理部211および特徴量データ生成部212と同様の機能が発揮されてもよい。 <
本変形例では、情報端末100において、第1画像に基づき、第1識別子510の特徴量を含む第1特徴量データが生成される。また、情報端末100で生成された第1特徴量データは、通信部130を介してサーバ200に送信され、図3のステップS160以降が実行される。
In this modification, first feature amount data including the feature amount of the first identifier 510 is generated in the information terminal 100 based on the first image. Further, the first feature amount data generated by the information terminal 100 is transmitted to the server 200 via the communication unit 130, and steps S160 and subsequent steps in FIG. 3 are executed.
以上、第1実施形態の変形例3に係る判定システム10による真贋判定では、上述したように、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。
As described above, in the authenticity determination by the determination system 10 according to the third modification of the first embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 is identified without relying on the user's visual inspection. Therefore, dependence on the user in determining authenticity is suppressed, and the determination accuracy in determining the authenticity of the determination code 500 is improved.
<第1実施形態の変形例4>
判定システム10は、サーバ200を含まなくてもよい。この場合、情報端末100は、制御部および記憶部を含む。すなわち、情報端末100の制御部が、プログラムを実行し、上述した画像処理部211、特徴量データ生成部212、識別情報取得部213、および判定部214と同様の機能が発揮されてもよい。また、情報端末100の記憶部が、登録特徴量データベース221を格納していてもよい。 <Modification 4 of the first embodiment>
Thedetermination system 10 may not include the server 200. In this case, information terminal 100 includes a control section and a storage section. That is, the control unit of the information terminal 100 may execute the program and perform the same functions as the image processing unit 211, feature amount data generation unit 212, identification information acquisition unit 213, and determination unit 214 described above. Further, the storage unit of the information terminal 100 may store the registered feature database 221.
判定システム10は、サーバ200を含まなくてもよい。この場合、情報端末100は、制御部および記憶部を含む。すなわち、情報端末100の制御部が、プログラムを実行し、上述した画像処理部211、特徴量データ生成部212、識別情報取得部213、および判定部214と同様の機能が発揮されてもよい。また、情報端末100の記憶部が、登録特徴量データベース221を格納していてもよい。 <Modification 4 of the first embodiment>
The
本変形例では、情報端末100において、第1画像に基づき、第1識別子510の特徴量を含む第1特徴量データが生成される。第1特徴量データは、情報端末100の記憶部の登録特徴量データベース221の登録特徴量データとの類似度が算出され、情報端末100において、第1識別子510の第1識別情報が特定される。また、情報端末100において、判定コード500の第2識別子520を撮影した第2画像が読み取られ、第2識別子520の第2識別情報が取得される。さらに、情報端末100において、特定された第1識別子510の第1識別情報と取得された第2識別子520の第2識別情報との対応関係が判定される。例えば、第1識別情報と第2識別情報とが一致するか否かを判定し、第1識別情報と第2識別情報とが一致するときは、判定コード500が真正であると判定される。
In this modification, first feature amount data including the feature amount of the first identifier 510 is generated in the information terminal 100 based on the first image. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 of the storage unit of the information terminal 100 is calculated, and the first identification information of the first identifier 510 is specified in the information terminal 100. . Furthermore, in the information terminal 100, a second image of the second identifier 520 of the determination code 500 is read, and second identification information of the second identifier 520 is acquired. Furthermore, in the information terminal 100, the correspondence relationship between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520 is determined. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
なお、本変形例では、情報端末100にインストールされたプログラムを用いて実行されてもよく、記録媒体(例えば、CD-ROMまたはDVD-ROMなど)に格納されたプログラムを読み出すことにより実行されてもよい。
Note that this modification may be executed using a program installed in the information terminal 100, or may be executed by reading a program stored in a recording medium (for example, a CD-ROM or a DVD-ROM). Good too.
以上、第1実施形態の変形例4に係る判定システム10による真贋判定では、上述したように、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。また、サーバ200を介しないため、通信状態または通信速度に依存することなく情報端末100を用いて判定コード500の真贋判定を行うことができる。したがって、あらゆる場所で判定コード500の真贋判定を行うことができるため、ユーザの利便性が向上する。
As described above, in the authenticity determination by the determination system 10 according to the fourth modification of the first embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 is identified without depending on the user's visual inspection. Therefore, dependence on the user in determining authenticity is suppressed, and the determination accuracy in determining the authenticity of the determination code 500 is improved. Further, since the server 200 is not used, the authenticity of the determination code 500 can be determined using the information terminal 100 without depending on the communication state or communication speed. Therefore, since the authenticity of the determination code 500 can be determined at any location, convenience for the user is improved.
<第2実施形態>
図6を参照して、判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Second embodiment>
Another embodiment of thedetermination system 10 will be described with reference to FIG. 6. Note that, below, descriptions of configurations similar to those described above may be omitted.
図6を参照して、判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Second embodiment>
Another embodiment of the
図6は、本発明の一実施形態に係る判定システム10の真贋判定処理のステップS170Aの処理を示すフローチャート図である。
FIG. 6 is a flowchart showing the process of step S170A of the authenticity determination process of the determination system 10 according to an embodiment of the present invention.
本実施形態では、第1実施形態のステップS170の代わりに、ステップS170Aが実行される。ステップS170Aは、上述したステップS172およびステップS173の代わりに、ステップS172AおよびステップS173Aを含む。
In this embodiment, step S170A is executed instead of step S170 in the first embodiment. Step S170A includes step S172A and step S173A instead of step S172 and step S173 described above.
ステップS172Aでは、判定部214が、ステップS171で算出された一致度Cn
mを用いて、登録特徴量データに対する第1特徴量データの有効領域数を算出する。有効領域数の算出は、登録特徴量データごとに行われる。例えば、第mの登録特徴量データに対する第1特徴量データの有効領域数Nmは、第mの登録特徴量データに設定された閾値以上の一致度Cn
mを有する領域の数である。換言すると、判定部214は、第mの登録特徴量データにおいて、閾値以上の一致度Cn
mを有する領域の数をカウントし、第mの登録特徴量データに対する第1特徴量データの有効領域数Nmを算出する。なお、閾値は、領域ごとに同じであってもよく、異なっていてもよい。
In step S172A, the determination unit 214 calculates the number of valid areas of the first feature data with respect to the registered feature data using the degree of coincidence C n m calculated in step S171. Calculation of the number of effective areas is performed for each registered feature amount data. For example, the number N m of valid regions of the first feature data with respect to the m-th registered feature data is the number of regions having a matching degree C n m that is equal to or greater than the threshold set for the m-th registered feature data. In other words, the determination unit 214 counts the number of regions in the m-th registered feature data having a matching degree C n m equal to or higher than the threshold, and determines the effective region of the first feature data with respect to the m-th registered feature data. Calculate the number Nm . Note that the threshold value may be the same or different for each region.
ステップS173Aでは、判定部214が、有効領域数Nmが最大値を有する第mの登録特徴量データに紐付けられた登録識別情報を、第1識別子510が示す第1識別情報として特定する。換言すると、判定部214は、第1特徴量データの領域と一致する領域の数が最も多い登録特徴量データに紐付けられた登録識別情報を、第1識別子510が示す第1識別情報として特定する。
In step S173A, the determination unit 214 identifies the registered identification information linked to the m-th registered feature amount data for which the number Nm of valid areas has the maximum value as the first identification information indicated by the first identifier 510. In other words, the determination unit 214 identifies the registered identification information linked to the registered feature data that has the largest number of regions matching the area of the first feature data as the first identification information indicated by the first identifier 510. do.
以上、第2実施形態に係る判定システム10は、判定コード500の第1識別子510を撮影した第1画像に基づき、第1識別子510の特徴量を含む第1特徴量データを生成する。第1特徴量データは、登録特徴量データベース221の登録特徴量データとの有効領域数が算出され、第1識別子510の第1識別情報が特定される。また、判定システム10は、判定コード500の第2識別子520を撮影した第2画像を読み取り、第2識別子520の第2識別情報を取得する。さらに、判定システム10は、特定された第1識別子510の第1識別情報と取得された第2識別子520の第2識別情報との対応関係を判定する。例えば、第1識別情報と第2識別情報とが一致するか否かを判定し、第1識別情報と第2識別情報とが一致するときは、判定コード500が真正であると判定される。
As described above, the determination system 10 according to the second embodiment generates first feature amount data including the feature amount of the first identifier 510 based on the first image of the first identifier 510 of the determination code 500. For the first feature data, the number of valid areas with the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520. Furthermore, the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
第2実施形態に係る判定システム10による真贋判定では、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。
In the authenticity determination by the determination system 10 according to the second embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500.
第2実施形態に係る判定システム10は、上述した構成に限定されることなく、様々な変形が可能である。以下では、第2実施形態に係る判定システム10のいくつかの変形例について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。
The determination system 10 according to the second embodiment is not limited to the configuration described above, and can be modified in various ways. Below, several modified examples of the determination system 10 according to the second embodiment will be described. Note that, below, descriptions of configurations similar to those described above may be omitted.
<第2実施形態の変形例>
ステップS172Aでは、判定部214は、有効領域数をカウントするにあたり、所定の領域が含まれているか否かを判定してもよい。第1識別子510の所定の位置に特徴的なパターン(例えば、図1(B)の「SECURE」の部分など)が含まれる場合には、特徴的なパターンを含む所定の領域が有効領域数に含まれることを判定することにより、特徴的なパターンに重みをおいた有効領域数を算出することができる。判定部214は、有効領域数のカウントにおいて所定の領域が含まれない場合、有効領域数を0と算出してもよい。有効領域数が0である登録特徴量データは図6のステップS174が実行されないため、ステップS174における計算量を削減することができる。 <Modified example of second embodiment>
In step S172A, the determiningunit 214 may determine whether a predetermined area is included when counting the number of valid areas. If a characteristic pattern (for example, the "SECURE" part in FIG. 1B) is included in a predetermined position of the first identifier 510, the predetermined area containing the characteristic pattern will be added to the number of valid areas. By determining that the pattern is included, it is possible to calculate the number of effective areas with weight given to the characteristic pattern. If the predetermined area is not included in counting the number of valid areas, the determination unit 214 may calculate the number of valid areas as 0. Since step S174 in FIG. 6 is not executed for registered feature amount data in which the number of effective regions is 0, the amount of calculation in step S174 can be reduced.
ステップS172Aでは、判定部214は、有効領域数をカウントするにあたり、所定の領域が含まれているか否かを判定してもよい。第1識別子510の所定の位置に特徴的なパターン(例えば、図1(B)の「SECURE」の部分など)が含まれる場合には、特徴的なパターンを含む所定の領域が有効領域数に含まれることを判定することにより、特徴的なパターンに重みをおいた有効領域数を算出することができる。判定部214は、有効領域数のカウントにおいて所定の領域が含まれない場合、有効領域数を0と算出してもよい。有効領域数が0である登録特徴量データは図6のステップS174が実行されないため、ステップS174における計算量を削減することができる。 <Modified example of second embodiment>
In step S172A, the determining
所定の領域の数は、1つであってもよく、複数であってもよい。また、所定の領域の数は、登録特徴量データごとに同じであってもよく、異なっていてもよい。
The number of predetermined areas may be one or more. Further, the number of predetermined regions may be the same or different for each registered feature amount data.
以上、第2実施形態の変形例に係る判定システム10の真贋判定では、上述したように、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。また、真贋判定処理の計算量が削減されるため、サーバ200の負荷を低減することができる。
As described above, in the authenticity determination of the determination system 10 according to the modification of the second embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 can be identified without depending on the user's visual observation. Therefore, dependence on the user in determining authenticity is suppressed, and the accuracy of determining the authenticity of the determination code 500 is improved. Furthermore, since the amount of calculation for the authenticity determination process is reduced, the load on the server 200 can be reduced.
<第3実施形態>
図7を参照して、判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Third embodiment>
Another embodiment of thedetermination system 10 will be described with reference to FIG. Note that, below, descriptions of configurations similar to those described above may be omitted.
図7を参照して、判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Third embodiment>
Another embodiment of the
図7は、本発明の一実施形態に係る判定システム10の登録特徴量データベース221Bに登録されている登録特徴量データの特徴量を説明する模式図である。本実施形態では、第1実施形態の登録特徴量データベース221の代わりに、登録特徴量データベース221Bが記憶部220に格納されている。
FIG. 7 is a schematic diagram illustrating feature amounts of registered feature amount data registered in the registered feature amount database 221B of the determination system 10 according to an embodiment of the present invention. In this embodiment, a registered feature database 221B is stored in the storage unit 220 instead of the registered feature database 221 of the first embodiment.
視覚情報を提供する第1識別子510は、第1識別子510の撮影方向によって色合いが異なる場合がある。そのため、登録特徴量データベース221Bの登録特徴量データは、撮影方向の角度が異なる複数の特徴量を含む。例えば、図7に示すように、登録特徴量データベース221Bの第1の登録特徴量データは、第1の角度の撮影方向からの特徴量だけでなく、第1の角度と異なる第2の角度の撮影方向からの特徴量を含む。なお、登録特徴量データに含まれる撮影方向の角度の数は、2つに限られない。
The first identifier 510 that provides visual information may have a different color tone depending on the direction in which the first identifier 510 is photographed. Therefore, the registered feature amount data in the registered feature amount database 221B includes a plurality of feature amounts having different photographing direction angles. For example, as shown in FIG. 7, the first registered feature data in the registered feature database 221B includes not only the feature data from the shooting direction at the first angle but also the feature data from the second angle different from the first angle. Contains features from the shooting direction. Note that the number of angles in the photographing direction included in the registered feature amount data is not limited to two.
本実施形態では、図5のステップS171において、判定部214が、第1の角度の特徴量だけでなく、第2の角度の特徴量との一致度を算出する。すなわち、第1特徴量データの特徴量と登録特徴量データの特徴量との一致度は、第1の角度および第2の角度のそれぞれにおいて算出される。また、図5のステップS172において、第1特徴量データと登録特徴量データとの類似度が、第1の角度および第2の角度のそれぞれにおいて算出される。また、図5のステップS173において、判定部214は、算出された全ての類似度の中で最大値を有する登録特徴量データに紐付けられた登録識別情報を、第1識別子510が示す第1識別情報として特定する。
In this embodiment, in step S171 in FIG. 5, the determination unit 214 calculates not only the feature amount of the first angle but also the degree of coincidence with the feature amount of the second angle. That is, the degree of coincidence between the feature amount of the first feature amount data and the feature amount of the registered feature amount data is calculated at each of the first angle and the second angle. Further, in step S172 of FIG. 5, the degree of similarity between the first feature amount data and the registered feature amount data is calculated at each of the first angle and the second angle. In addition, in step S173 of FIG. 5, the determination unit 214 selects the first registration identification information associated with the registration feature amount data having the maximum value among all the calculated similarities, as indicated by the first identifier 510. Specify as identification information.
以上、第3実施形態に係る判定システム10は、判定コード500の第1識別子510を撮影した第1画像に基づき、第1識別子510の特徴量を含む第1特徴量データを生成する。第1特徴量データは、登録特徴量データの複数の撮影方向の角度との類似度が算出され、第1識別子510の第1識別情報が特定される。また、判定システム10は、判定コード500の第2識別子520を撮影した第2画像を読み取り、第2識別子520の第2識別情報を取得する。さらに、判定システム10は、特定された第1識別子510の第1識別情報と取得された第2識別子520の第2識別情報との対応関係を判定する。例えば、第1識別情報と第2識別情報とが一致するか否かを判定し、第1識別情報と第2識別情報とが一致するときは、判定コード500が真正であると判定される。
As described above, the determination system 10 according to the third embodiment generates first feature amount data including the feature amount of the first identifier 510 based on the first image of the first identifier 510 of the determination code 500. The degree of similarity between the first feature amount data and the angles of the plurality of photographing directions of the registered feature amount data is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520. Furthermore, the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
第3実施形態に係る判定システム10による真贋判定では、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。また、第1識別子510の撮影方向の角度が考慮されて第1識別子510の第1識別情報が特定されるため、判定コード500の真贋判定の判定精度がより向上する。
In the authenticity determination by the determination system 10 according to the third embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500. Furthermore, since the first identification information of the first identifier 510 is specified by taking into consideration the angle of the photographing direction of the first identifier 510, the accuracy of the determination of the authenticity of the determination code 500 is further improved.
第3実施形態に係る判定システム10は、上述した構成に限定されることなく、様々な変形が可能である。以下では、第3実施形態に係る判定システム10のいくつかの変形例について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。
The determination system 10 according to the third embodiment is not limited to the configuration described above, and can be modified in various ways. Below, several modified examples of the determination system 10 according to the third embodiment will be described. Note that, below, descriptions of configurations similar to those described above may be omitted.
<第3実施形態の変形例>
図8は、本発明の一実施形態に係る判定システム10の構成を示すブロック図である。 <Modification of third embodiment>
FIG. 8 is a block diagram showing the configuration of adetermination system 10 according to an embodiment of the present invention.
図8は、本発明の一実施形態に係る判定システム10の構成を示すブロック図である。 <Modification of third embodiment>
FIG. 8 is a block diagram showing the configuration of a
図8に示すように、本変形例に係る判定システム10の情報端末100は、撮像部110、表示部120、通信部130、およびセンサ部140を含む。また、判定システム10のサーバ200は、制御部210、記憶部220、および通信部230を含む。記憶部220には、登録特徴量データベース221Bが格納されている。
As shown in FIG. 8, the information terminal 100 of the determination system 10 according to this modification includes an imaging section 110, a display section 120, a communication section 130, and a sensor section 140. Further, the server 200 of the determination system 10 includes a control section 210, a storage section 220, and a communication section 230. The storage unit 220 stores a registered feature database 221B.
センサ部140は、情報端末100の角度を検出し、角度データを生成することができるセンサである。センサ部140として、例えば、ジャイロセンサなどを用いることができる。
The sensor unit 140 is a sensor that can detect the angle of the information terminal 100 and generate angle data. As the sensor section 140, for example, a gyro sensor or the like can be used.
図9は、本発明の一実施形態に係る判定システム10で実行される真贋判定処理を示すシーケンス図である。
FIG. 9 is a sequence diagram showing the authenticity determination process executed by the determination system 10 according to an embodiment of the present invention.
図9に示すように、本変形例に係る判定システム10で実行される真贋判定処理は、図3を参照して説明した真贋判定処理において、さらに、ステップS105BおよびステップS115Bを含む。また、本変形例に係る判定システム10の真贋判定処理は、ステップS170の代わりに、ステップS170Bを含む。
As shown in FIG. 9, the authenticity determination process executed by the determination system 10 according to this modification further includes step S105B and step S115B in the authenticity determination process described with reference to FIG. Moreover, the authenticity determination process of the determination system 10 according to this modification includes step S170B instead of step S170.
ステップS105Bでは、センサ部140が、第1識別子510の撮影方向として、第1画像の生成時に情報端末100の角度を検出し、角度データを生成する。
In step S105B, the sensor unit 140 detects the angle of the information terminal 100 when generating the first image as the photographing direction of the first identifier 510, and generates angle data.
ステップS115Bでは、生成された角度データが、通信部130を介して情報端末100からサーバ200に送信される。これにより、サーバ200は、第1識別子510の撮影方向に関する角度データを取得することができる。
In step S115B, the generated angle data is transmitted from the information terminal 100 to the server 200 via the communication unit 130. Thereby, the server 200 can acquire angle data regarding the photographing direction of the first identifier 510.
ステップS170Bでは、判定部214が、登録特徴量データに含まれる複数の角度の中から角度データに最も近い角度の特徴量を選択し、一致度を算出する。すなわち、ステップS170Bでは、登録特徴量データに含まれる1つの角度を用いて、一致度が算出される。そのため、複数の角度のそれぞれにおいて一致度を算出する必要がなく、一致度の計算量が削減される。
In step S170B, the determination unit 214 selects the feature amount of the angle closest to the angle data from among the plurality of angles included in the registered feature amount data, and calculates the degree of matching. That is, in step S170B, the degree of matching is calculated using one angle included in the registered feature amount data. Therefore, it is not necessary to calculate the degree of coincidence for each of the plurality of angles, and the amount of calculation for the degree of coincidence is reduced.
以上、第3実施形態の変形例に係る判定システム10による真贋判定では、上述したように、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。また、第1識別子510の撮影方向の角度が考慮されて第1識別子510の第1識別情報が特定されるため、判定コード500の真贋判定の判定精度がより向上する。また、真贋判定処理の計算量が削減されるため、サーバ200の負荷を低減することができる。
As described above, in the authenticity determination by the determination system 10 according to the modification of the third embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 can be identified without depending on the user's visual observation. Therefore, dependence on the user in determining authenticity is suppressed, and the accuracy of determining the authenticity of the determination code 500 is improved. Furthermore, since the first identification information of the first identifier 510 is specified by taking into consideration the angle of the photographing direction of the first identifier 510, the accuracy of the determination of the authenticity of the determination code 500 is further improved. Furthermore, since the amount of calculation for the authenticity determination process is reduced, the load on the server 200 can be reduced.
<第4実施形態>
図10を参照して、判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Fourth embodiment>
Another embodiment of thedetermination system 10 will be described with reference to FIG. Note that, below, descriptions of configurations similar to those described above may be omitted.
図10を参照して、判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Fourth embodiment>
Another embodiment of the
図10は、本発明の一実施形態に係る判定システム10の登録特徴量データベース221Cに登録されている登録特徴量データの特徴量を説明する模式図である。本実施形態では、第1実施形態の登録特徴量データベース221の代わりに、登録特徴量データベース221Cが記憶部220に格納されている。
FIG. 10 is a schematic diagram illustrating feature amounts of registered feature amount data registered in the registered feature amount database 221C of the determination system 10 according to an embodiment of the present invention. In this embodiment, a registered feature database 221C is stored in the storage unit 220 instead of the registered feature database 221 of the first embodiment.
視覚情報を提供する第1識別子510は、第1識別子510に照射される光の強度によって色合いが異なる場合がある。そのため、登録特徴量データベース221Cの登録特徴量データは、光照射強度が異なる複数の特徴量を含む。例えば、図10に示すように、登録特徴量データベース221Cの第1の登録特徴量データは、第1の光照射強度だけでなく、第1の光照射強度と異なる第2の光照射強度の特徴量を含む。なお、登録特徴量データに含まれる光照射強度の数は、2つに限られない。
The first identifier 510 that provides visual information may have a different color tone depending on the intensity of light irradiated onto the first identifier 510. Therefore, the registered feature data in the registered feature database 221C includes a plurality of features with different light irradiation intensities. For example, as shown in FIG. 10, the first registered feature data of the registered feature database 221C includes not only the first light irradiation intensity but also the second light irradiation intensity feature different from the first light irradiation intensity. Including quantity. Note that the number of light irradiation intensities included in the registered feature amount data is not limited to two.
本実施形態では、図5のステップS171において、判定部214が、第1の光照射強度の特徴量だけでなく、第2の光照射強度の特徴量との一致度を算出する。すなわち、第1特徴量データの特徴量と登録特徴量データの特徴量との一致度は、第1の光照射強度および第2の光照射強度のそれぞれにおいて算出される。また、図5のステップS172において、第1特徴量データと登録特徴量データとの類似度が、第1の光照射強度および第2の光照射強度のそれぞれにおいて算出される。また、図5のステップS173において、判定部214は、算出された全ての類似度の中で最大値を有する登録特徴量データに紐付けられた登録識別情報を、第1識別子510が示す第1識別情報として特定する。
In this embodiment, in step S171 in FIG. 5, the determination unit 214 calculates not only the feature amount of the first light irradiation intensity but also the degree of coincidence with the feature amount of the second light irradiation intensity. That is, the degree of coincidence between the feature amount of the first feature amount data and the feature amount of the registered feature amount data is calculated for each of the first light irradiation intensity and the second light irradiation intensity. Furthermore, in step S172 in FIG. 5, the degree of similarity between the first feature amount data and the registered feature amount data is calculated for each of the first light irradiation intensity and the second light irradiation intensity. In addition, in step S173 of FIG. 5, the determination unit 214 selects the first registration identification information associated with the registration feature amount data having the maximum value among all the calculated similarities, as indicated by the first identifier 510. Specify as identification information.
以上、第4実施形態に係る判定システム10は、判定コード500の第1識別子510を撮影した第1画像に基づき、第1識別子510の特徴量を含む第1特徴量データを生成する。第1特徴量データは、登録特徴量データの複数の光照射強度との類似度が算出され、第1識別子510の第1識別情報が特定される。また、判定システム10は、判定コード500の第2識別子520を撮影した第2画像を読み取り、第2識別子520の第2識別情報を取得する。さらに、判定システム10は、特定された第1識別子510の第1識別情報と取得された第2識別子520の第2識別情報との対応関係を判定する。例えば、第1識別情報と第2識別情報とが一致するか否かを判定し、第1識別情報と第2識別情報とが一致するときは、判定コード500が真正であると判定される。
As described above, the determination system 10 according to the fourth embodiment generates first feature amount data including the feature amount of the first identifier 510 based on the first image of the first identifier 510 of the determination code 500. The degree of similarity between the first feature amount data and the plurality of light irradiation intensities of the registered feature amount data is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520. Furthermore, the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
第4実施形態に係る判定システム10による真贋判定では、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。また、第1識別子510へ照射される光の強度が考慮されて第1識別子510の第1識別情報が特定されるため、判定コード500の真贋判定の判定精度がより向上する。
In the authenticity determination by the determination system 10 according to the fourth embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500. Furthermore, since the first identification information of the first identifier 510 is specified by taking into consideration the intensity of the light irradiated to the first identifier 510, the accuracy of the determination of the authenticity of the determination code 500 is further improved.
<第5実施形態>
図11および図12を参照して、判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Fifth embodiment>
Another embodiment of thedetermination system 10 will be described with reference to FIGS. 11 and 12. Note that, below, descriptions of configurations similar to those described above may be omitted.
図11および図12を参照して、判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Fifth embodiment>
Another embodiment of the
図11は、本発明の一実施形態に係る判定システム10で実行される判定コード500の真贋判定処理を示すシーケンス図である。また、図12は、本発明の一実施形態に係る判定システム10の真贋判定処理の一部を説明する模式図である。具体的には、図12(A)は、第1画像610の模式図であり、図12(B)は、第1特徴量データを説明する模式図である。
FIG. 11 is a sequence diagram showing the authenticity determination process of the determination code 500 executed by the determination system 10 according to an embodiment of the present invention. Moreover, FIG. 12 is a schematic diagram explaining a part of the authenticity determination process of the determination system 10 according to an embodiment of the present invention. Specifically, FIG. 12(A) is a schematic diagram of the first image 610, and FIG. 12(B) is a schematic diagram illustrating the first feature amount data.
図11に示すように、本実施形態に係る判定システム10の真贋判定処理では、図3を参照して説明した真贋判定処理のステップS140、ステップS150、およびステップS170の代わりに、ステップS140D、ステップS150D、およびステップS170Dを含む。
As shown in FIG. 11, in the authenticity determination process of the determination system 10 according to the present embodiment, instead of steps S140, S150, and S170 of the authenticity determination process described with reference to FIG. Step S150D and step S170D are included.
ステップS140Dでは、画像処理部211が、第1画像610から第1のパターン領域611D-1および第2のパターン領域611D-2を抽出する。図12(A)に示すように、第1画像610は、特徴的なパターンを有する第1のパターン領域611D-1および第2のパターン領域611D-2を含む。そのため、画像処理部211は、所定の特徴的なパターンを検出し、第1のパターン領域611D-1および第2のパターン領域611D-2を抽出することができる。また、画像処理部211は、第1のパターン領域611D-1および第2のパターン領域611D-2の各々の位置情報を取得する。
In step S140D, the image processing unit 211 extracts the first pattern area 611D-1 and the second pattern area 611D-2 from the first image 610. As shown in FIG. 12(A), the first image 610 includes a first pattern area 611D-1 and a second pattern area 611D-2 having a characteristic pattern. Therefore, the image processing unit 211 can detect a predetermined characteristic pattern and extract the first pattern area 611D-1 and the second pattern area 611D-2. The image processing unit 211 also acquires position information of each of the first pattern area 611D-1 and the second pattern area 611D-2.
ステップS150Dでは、特徴量データ生成部212が、第1識別子510の第1特徴量データを生成する。ここでは、特徴量データ生成部212は、第1特徴量データとして、パターン領域611Dの各々における特徴量を生成する。すなわち、ステップS130Dでは、複数の領域の特徴量ではなく、複数の所定のパターン領域611Dの特徴量が生成される。
In step S150D, the feature data generation unit 212 generates first feature data of the first identifier 510. Here, the feature amount data generation unit 212 generates the feature amount in each of the pattern regions 611D as the first feature amount data. That is, in step S130D, feature amounts of a plurality of predetermined pattern regions 611D are generated instead of feature amounts of a plurality of regions.
ステップS170Dでは、判定部214が、第1特徴量データを用いて、第1識別子510が示す第1識別情報を特定する。また、特定された第1識別情報とステップS160で取得された第2識別情報との対応関係を判定し、判定結果情報を生成する。
In step S170D, the determination unit 214 uses the first feature data to identify the first identification information indicated by the first identifier 510. Further, the correspondence between the identified first identification information and the second identification information acquired in step S160 is determined, and determination result information is generated.
第1識別情報の特定においては、第1特徴量データと、登録特徴量データベースに登録された登録特徴量データとの類似度を算出する。類似度の算出は、登録特徴量データごとに行われる。例えば、図12(B)に示すように、判定部214は、R特徴量、G特徴量、およびB特徴量だけでなく、位置情報にも基づいて、類似度を算出する。また、判定部214は、類似度が最大値を有する登録特徴量データに紐付けられた登録識別情報を、第1識別子510が示す第1識別情報として特定する。
In specifying the first identification information, the degree of similarity between the first feature amount data and the registered feature amount data registered in the registered feature amount database is calculated. The calculation of similarity is performed for each registered feature amount data. For example, as shown in FIG. 12(B), the determination unit 214 calculates the degree of similarity based not only on the R feature amount, the G feature amount, and the B feature amount, but also on the position information. Further, the determining unit 214 identifies the registered identification information linked to the registered feature data having the maximum similarity as the first identification information indicated by the first identifier 510.
以上、第5実施形態に係る判定システム10は、判定コード500の第1識別子510を撮影した第1画像の所定のパターン領域に基づき、第1識別子510の特徴量を含む第1特徴量データを生成する。第1特徴量データは、登録特徴量データベース221の登録特徴量データとの類似度が算出され、第1識別子510の第1識別情報が特定される。また、判定システム10は、判定コード500の第2識別子520を撮影した第2画像を読み取り、第2識別子520の第2識別情報を取得する。さらに、判定システム10は、特定された第1識別子510の第1識別情報と取得された第2識別子520の第2識別情報との対応関係を判定する。例えば、第1識別情報と第2識別情報とが一致するか否かを判定し、第1識別情報と第2識別情報とが一致するときは、判定コード500が真正であると判定される。
As described above, the determination system 10 according to the fifth embodiment determines the first feature amount data including the feature amount of the first identifier 510 based on the predetermined pattern area of the first image in which the first identifier 510 of the determination code 500 is photographed. generate. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520. Furthermore, the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
第5実施形態に係る判定システム10による真贋判定では、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。また、特徴的なパターン領域611Dに基づいて特徴量が生成されるため、撮影条件によるばらつきが小さくなり、生成される特徴量のばらつきも抑制される。そのため、判定コード500の真贋判定の判定精度がより向上する。
In the authenticity determination by the determination system 10 according to the fifth embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500. Further, since the feature amount is generated based on the characteristic pattern region 611D, variations due to imaging conditions are reduced, and variations in the generated feature amount are also suppressed. Therefore, the accuracy of determining the authenticity of the determination code 500 is further improved.
<第6実施形態>
図13を参照して、本発明の一実施形態に係る判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Sixth embodiment>
With reference to FIG. 13, another embodiment of thedetermination system 10 according to one embodiment of the present invention will be described. Note that, below, descriptions of configurations similar to those described above may be omitted.
図13を参照して、本発明の一実施形態に係る判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Sixth embodiment>
With reference to FIG. 13, another embodiment of the
第6実施形態に係る判定システム10の情報端末100およびサーバ200の各々の構成は、図8を参照して説明した構成と同様であるため、ここでは説明を省略する。
The configurations of each of the information terminal 100 and the server 200 of the determination system 10 according to the sixth embodiment are the same as the configuration described with reference to FIG. 8, so the description will be omitted here.
図13は、本発明の一実施形態に係る判定システム10で実行される判定コード500の真贋判定処理を示すシーケンス図である。
FIG. 13 is a sequence diagram showing the authenticity determination process of the determination code 500 executed by the determination system 10 according to an embodiment of the present invention.
ステップS100Eでは、撮像部110が、第1の撮影方向から撮影された判定コード500の第1識別子510に対応する第1の第1画像を生成する。また、撮像部110は、第1の撮影方向とは異なる第2の撮影方向から撮影された判定コード500の第1識別子510に対応する第2の第1画像を生成する。
In step S100E, the imaging unit 110 generates a first image corresponding to the first identifier 510 of the determination code 500 photographed from the first photographing direction. Furthermore, the imaging unit 110 generates a second first image corresponding to the first identifier 510 of the determination code 500, which is photographed from a second photographing direction different from the first photographing direction.
ステップS105Eでは、センサ部140が、第1識別子510の第1の撮影方向として、第1の第1画像の生成時に情報端末100の角度を検出し、第1の角度データを生成する。また、センサ部140は、第1識別子510の第2の撮影方向として、第2の第1画像の生成時に情報端末100の角度を検出し、第2の角度データを生成する。
In step S105E, the sensor unit 140 detects the angle of the information terminal 100 when generating the first image as the first photographing direction of the first identifier 510, and generates first angle data. Further, the sensor unit 140 detects the angle of the information terminal 100 when generating the second first image as the second photographing direction of the first identifier 510, and generates second angle data.
ステップS110Eでは、生成された第1の第1画像および第2の第1画像が、通信部130を介して情報端末100からサーバ200に送信される。
In step S110E, the generated first first image and second first image are transmitted from the information terminal 100 to the server 200 via the communication unit 130.
ステップS115Eでは、生成された第1の角度データおよび第2の角度データが、通信部130を介して情報端末100からサーバ200に送信される。
In step S115E, the generated first angle data and second angle data are transmitted from the information terminal 100 to the server 200 via the communication unit 130.
ステップS120およびステップS130は、第1実施形態と同様であるため、ここでは説明を省略する。
Step S120 and Step S130 are the same as in the first embodiment, so their description will be omitted here.
ステップS140Eでは、画像処理部211が、第1の第1画像および第2の第1画像の各々を複数の領域に分割し、複数の領域を抽出する。
In step S140E, the image processing unit 211 divides each of the first first image and the second first image into a plurality of regions, and extracts the plurality of regions.
ステップS150Eでは、特徴量データ生成部212が、第1識別子510の特徴量を含む第1特徴量データを生成する。ここでは、特徴量データ生成部212は、角度データに対する第1画像の変化の割合に相当する特徴量を生成する。具体的には、特徴量データ生成部212は、第1の第1画像の画素値と第2の第1画像の画素値との差を、第1の角度データと第2の角度データとの差で除した値を特徴量として生成する。特徴量は、複数の領域ごとに生成される。
In step S150E, the feature amount data generation unit 212 generates first feature amount data including the feature amount of the first identifier 510. Here, the feature amount data generation unit 212 generates a feature amount corresponding to the rate of change in the first image with respect to the angle data. Specifically, the feature data generation unit 212 converts the difference between the pixel value of the first image and the pixel value of the second image into the difference between the first angle data and the second angle data. The value divided by the difference is generated as a feature quantity. Feature amounts are generated for each of the plurality of regions.
ステップS160以降は、第1実施形態と同様であるため、ここでは説明を省略する。
The steps from step S160 onward are the same as those in the first embodiment, so the description will be omitted here.
以上、第6実施形態に係る判定システム10は、判定コード500の第1識別子510を異なる撮影方向から撮影した複数の第1画像に基づき、第1識別子510の変化の割合に相当する特徴量を含む第1特徴量データを生成する。第1特徴量データは、登録特徴量データベース221の登録特徴量データとの類似度が算出され、第1識別子510の第1識別情報が特定される。また、判定システム10は、判定コード500の第2識別子520を撮影した第2画像を読み取り、第2識別子520の第2識別情報を取得する。さらに、判定システム10は、特定された第1識別子510の第1識別情報と取得された第2識別子520の第2識別情報との対応関係を判定する。例えば、第1識別情報と第2識別情報とが一致するか否かを判定し、第1識別情報と第2識別情報とが一致するときは、判定コード500が真正であると判定される。
As described above, the determination system 10 according to the sixth embodiment calculates the feature amount corresponding to the rate of change of the first identifier 510 based on a plurality of first images taken of the first identifier 510 of the determination code 500 from different photographing directions. First feature amount data including the first feature amount data is generated. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520. Furthermore, the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
第6実施形態に係る判定システム10による真贋判定では、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。また、少なくとも2つの第1画像間の変化に基づいて特徴量が生成されるため、撮影条件によるばらつきが小さくなり、生成される特徴量のばらつきも抑制される。そのため、判定コード500の真贋判定の判定精度がより向上する。
In the authenticity determination by the determination system 10 according to the sixth embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the authenticity determination does not depend on the user. This improves the accuracy of determining the authenticity of the determination code 500. Further, since the feature amount is generated based on the change between at least two first images, variations due to imaging conditions are reduced, and variations in the generated feature amount are also suppressed. Therefore, the accuracy of determining the authenticity of the determination code 500 is further improved.
<第7実施形態>
図14を参照して、本発明の一実施形態に係る判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Seventh embodiment>
Another embodiment of thedetermination system 10 according to one embodiment of the present invention will be described with reference to FIG. 14. Note that, below, descriptions of configurations similar to those described above may be omitted.
図14を参照して、本発明の一実施形態に係る判定システム10の他の実施形態について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Seventh embodiment>
Another embodiment of the
図14は、本発明の一実施形態に係る判定システム10で真贋判定される判定コード500Fを示す模式図である。本実施形態では、第1実施形態の真贋判定で用いられる判定コード500の代わりに、判定コード500Fが用いられる。
FIG. 14 is a schematic diagram showing a determination code 500F whose authenticity is determined by the determination system 10 according to an embodiment of the present invention. In this embodiment, a determination code 500F is used instead of the determination code 500 used in the authenticity determination of the first embodiment.
図14に示すように、判定コード500Fは、第1識別子510および第2識別子520Fを含む。第2識別子520Fは、第1識別子510の近傍に配置されている。そのため、判定コード500Fの真贋判定においては、第1識別子510および第2識別子520Fを同時に撮影することができる。
As shown in FIG. 14, the determination code 500F includes a first identifier 510 and a second identifier 520F. The second identifier 520F is placed near the first identifier 510. Therefore, in determining the authenticity of the determination code 500F, the first identifier 510 and the second identifier 520F can be photographed simultaneously.
図15は、本発明の一実施形態に係る判定システム10で実行される判定コード500Fの真贋判定処理を示すシーケンス図である。
FIG. 15 is a sequence diagram showing the authenticity determination process of the determination code 500F executed by the determination system 10 according to an embodiment of the present invention.
ステップS100Fでは、撮像部110が、撮影された判定コード500Fの第1識別子510および第2識別子520Fに対応する画像を生成する。
In step S100F, the imaging unit 110 generates an image corresponding to the first identifier 510 and second identifier 520F of the photographed determination code 500F.
ステップS110Fでは、生成された画像が、通信部130を介して情報端末100からサーバ200に送信される。
In step S110F, the generated image is transmitted from the information terminal 100 to the server 200 via the communication unit 130.
ステップS118Fでは、画像処理部211が、画像から、第1識別子510に対応する第1画像および第2識別子520Fに対応する第2画像を抽出する。
In step S118F, the image processing unit 211 extracts a first image corresponding to the first identifier 510 and a second image corresponding to the second identifier 520F from the image.
ステップS140以降は、第1実施形態と同様であるため、ここでは説明を省略する。
The steps from step S140 onward are the same as those in the first embodiment, so the description will be omitted here.
以上、第7実施形態に係る判定システム10は、判定コード500Fを撮影した画像から第1識別子510に対応する第1画像および第2識別子520Fに対応する第2画像を抽出し、第1画像に基づき、第1識別子510の特徴量を含む第1特徴量データを生成する。第1特徴量データは、登録特徴量データベース221の登録特徴量データとの類似度が算出され、第1識別子510の第1識別情報が特定される。また、判定システム10は、第2画像を読み取り、第2識別子520Fの第2識別情報を取得する。さらに、判定システム10は、特定された第1識別子510の第1識別情報と取得された第2識別子520Fの第2識別情報との対応関係を判定する。例えば、第1識別情報と第2識別情報とが一致するか否かを判定し、第1識別情報と第2識別情報とが一致するときは、判定コード500Fが真正であると判定される。
As described above, the determination system 10 according to the seventh embodiment extracts the first image corresponding to the first identifier 510 and the second image corresponding to the second identifier 520F from the image of the determination code 500F, and Based on the first identifier 510, first feature amount data including the feature amount of the first identifier 510 is generated. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads the second image and acquires second identification information of the second identifier 520F. Furthermore, the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520F. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500F is genuine.
第7実施形態に係る判定システム10による真贋判定では、判定コード500Fの第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500Fの真贋判定の判定精度が向上する。また、第1識別子510および第2識別子520Fを同時に撮影することができるため、ユーザの利便性が向上する。
In the authenticity determination by the determination system 10 according to the seventh embodiment, the first identification information indicated by the first identifier 510 of the determination code 500F can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of the authenticity determination of the determination code 500F. Furthermore, since the first identifier 510 and the second identifier 520F can be photographed at the same time, convenience for the user is improved.
第7実施形態に係る判定システム10は、上述した構成に限定されることなく、様々な変形が可能である。以下では、第7実施形態に係る判定システム10のいくつかの変形例について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。
The determination system 10 according to the seventh embodiment is not limited to the configuration described above, and can be modified in various ways. Below, several modified examples of the determination system 10 according to the seventh embodiment will be described. Note that, below, descriptions of configurations similar to those described above may be omitted.
<第7実施形態の変形例>
図16は、本発明の一実施形態に係る判定システム10で真贋判定される判定コード500F’を示す模式図である。 <Modification of seventh embodiment>
FIG. 16 is a schematic diagram showing adetermination code 500F' whose authenticity is determined by the determination system 10 according to an embodiment of the present invention.
図16は、本発明の一実施形態に係る判定システム10で真贋判定される判定コード500F’を示す模式図である。 <Modification of seventh embodiment>
FIG. 16 is a schematic diagram showing a
図16に示すように、判定コード500F’は、第1識別子510、第1の第2識別子520F’-1、第2の第2識別子520F’-2、および第3の第2識別子520F’-3を含む。第1識別子510は、第1のエリア511F’-1、第2のエリア511F’-2、および第3のエリア511F’-3に区分されており、第1の第2識別子520F’-1、第2の第2識別子520F’-2、および第3の第2識別子520F’-3は、それぞれ、第1のエリア511F’-1、第2のエリア511F’-2、および第3のエリア511F’-3に割り当てられた識別子である。第1の第2識別子520F’-1、第2の第2識別子520F’-2、および第3の第2識別子520F’-3は、それぞれ、第1のエリア511F’-1、第2のエリア511F’-2、および第3のエリア511F’-3の近傍に配置されている。そのため、判定コード500F’の真贋判定においては、第1のエリア511F’-1と第1の第2識別子520F’-1とを同時に撮影することができる。同様に、第2のエリア511F’-2と第2の第2識別子520F’-2とが同時に撮影され、第3のエリア511F’-3と第3の第2識別子520F’-3とが同時に撮影される。
As shown in FIG. 16, the determination code 500F' includes a first identifier 510, a first second identifier 520F'-1, a second second identifier 520F'-2, and a third second identifier 520F'- Contains 3. The first identifier 510 is divided into a first area 511F'-1, a second area 511F'-2, and a third area 511F'-3. The second second identifier 520F'-2 and the third second identifier 520F'-3 correspond to the first area 511F'-1, the second area 511F'-2, and the third area 511F, respectively. This is the identifier assigned to '-3. The first second identifier 520F'-1, the second second identifier 520F'-2, and the third second identifier 520F'-3 correspond to the first area 511F'-1 and the second area, respectively. 511F'-2 and near the third area 511F'-3. Therefore, in determining the authenticity of the determination code 500F', the first area 511F'-1 and the first second identifier 520F'-1 can be photographed simultaneously. Similarly, the second area 511F'-2 and the second second identifier 520F'-2 are photographed at the same time, and the third area 511F'-3 and the third second identifier 520F'-3 are photographed at the same time. Being photographed.
なお、第1識別子510の区分される数は、3つに限られない。第1識別子の区分される数は、n個(nは自然数)であってもよい。
Note that the number of first identifiers 510 to be classified is not limited to three. The number of first identifiers classified may be n (n is a natural number).
本変形例に係る判定システム10の真贋判定処理では、第1のエリア511F’-1が示す第1の第1識別情報、第2のエリア511F’-2が示す第2の第1識別情報、および第3のエリア511F’-3が示す第3の第1識別情報が、それぞれ、第1の第2識別子520F’-1に含まれる第1の第2識別子情報、第2の第2識別子520F’-2に含まれる第2の第2識別子情報、および第3の第2識別子520F’-3に含まれる第3の第2識別子情報との対応関係が判定される。また、全ての対応関係が真正と判定された場合に、判定コード500F’が真正と判定される。但し、対応関係の判定はこれに限られない。例えば、所定のエリア511F’における第1識別情報と第2識別情報とが一致する場合、判定コード500F’が真正と判定されてもよい。なお、判定に用いられる所定のエリア511F’は、複数であってもよい。
In the authenticity determination process of the determination system 10 according to this modification, the first first identification information indicated by the first area 511F'-1, the second first identification information indicated by the second area 511F'-2, and the third first identification information indicated by the third area 511F'-3 are the first second identifier information and the second second identifier 520F included in the first second identifier 520F'-1, respectively. The correspondence relationship between the second second identifier information included in '-2' and the third second identifier information included in third second identifier 520F'-3 is determined. Further, when all the correspondence relationships are determined to be genuine, the determination code 500F' is determined to be genuine. However, the determination of correspondence is not limited to this. For example, when the first identification information and the second identification information in the predetermined area 511F' match, the determination code 500F' may be determined to be genuine. Note that there may be a plurality of predetermined areas 511F' used for determination.
以上、第7実施形態の変形例に係る判定システム10では、第1識別子510の複数のエリア511F’ごとに、判定コード500のエリア511F’を撮影した画像から第1画像および第2画像を生成し、第1画像に基づき、第1識別子510の特徴量を含む第1特徴量データを生成する。第1特徴量データは、登録特徴量データベース221の登録特徴量データとの類似度が算出され、第1識別子510の第1識別情報が特定される。また、判定システム10は、第2画像を読み取り、第2識別子520F’の第2識別情報を取得する。さらに、判定システム10は、特定された第1識別子510の第1識別情報と取得された第2識別子520F’の第2識別情報との対応関係を判定する。例えば、全てのエリア511F’における第1識別情報と第2識別情報とが一致するか否かを判定し、全てのエリア511F’における第1識別情報と第2識別情報とが一致するときは、判定コード500F’が真正であると判定される。
As described above, in the determination system 10 according to the modification of the seventh embodiment, the first image and the second image are generated for each of the plurality of areas 511F' of the first identifier 510 from the image taken of the area 511F' of the determination code 500. Then, first feature amount data including the feature amount of the first identifier 510 is generated based on the first image. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads the second image and obtains second identification information of the second identifier 520F'. Further, the determination system 10 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520F'. For example, it is determined whether the first identification information and second identification information in all areas 511F' match, and when the first identification information and second identification information in all areas 511F' match, It is determined that the determination code 500F' is genuine.
第7実施形態に係る判定システム10による真贋判定では、判定コード500F’の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500F’の真贋判定の判定精度が向上する。また、1つの判定コード500F’に対して複数回の真贋判定処理が行われるため、判定コード500F’の真贋判定の判定精度がさらに向上する。また、第1識別子510が大きい場合においても、複数のエリア511F’に区分して真贋判定を行うことができる。
In the authenticity determination by the determination system 10 according to the seventh embodiment, the first identification information indicated by the first identifier 510 of the determination code 500F' can be specified without depending on the user's visual observation. is suppressed, and the accuracy of the authenticity determination of the determination code 500F' is improved. Furthermore, since the authenticity determination process is performed multiple times for one determination code 500F', the accuracy of determination of the authenticity of the determination code 500F' is further improved. Further, even when the first identifier 510 is large, the authenticity can be determined by dividing into a plurality of areas 511F'.
<第8実施形態>
図17~図19を参照して、判定システム10の他の実施形態に係る判定システム20について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Eighth embodiment>
Adetermination system 20 according to another embodiment of the determination system 10 will be described with reference to FIGS. 17 to 19. Note that, below, descriptions of configurations similar to those described above may be omitted.
図17~図19を参照して、判定システム10の他の実施形態に係る判定システム20について説明する。なお、以下では、上述した構成と同様の構成については、説明を省略する場合がある。 <Eighth embodiment>
A
図17は、本発明の一実施形態に係る判定システム20の構成を示すブロック図である。
FIG. 17 is a block diagram showing the configuration of a determination system 20 according to an embodiment of the present invention.
図17に示すように、判定システム20の情報端末100は、撮像部110、表示部120、および通信部130を含む。また、判定システム20のサーバ200は、制御部210、記憶部220、および通信部230を含む。制御部210は、プログラムを実行し、特徴量データ生成部212、識別情報取得部213、および判定部214を機能させる。記憶部220は、登録特徴量データベース222を含む。
As shown in FIG. 17, the information terminal 100 of the determination system 20 includes an imaging section 110, a display section 120, and a communication section 130. Further, the server 200 of the determination system 20 includes a control section 210, a storage section 220, and a communication section 230. The control unit 210 executes the program and causes the feature amount data generation unit 212, the identification information acquisition unit 213, and the determination unit 214 to function. The storage unit 220 includes a registered feature database 222 .
図18は、本発明の一実施形態に係る判定システム20で実行される判定コード500の真贋判定処理を示すシーケンス図である。また、図19は、本発明の一実施形態に係る判定システム20の真贋判定処理の一部を説明する模式図である。
FIG. 18 is a sequence diagram showing the authenticity determination process of the determination code 500 executed by the determination system 20 according to an embodiment of the present invention. Further, FIG. 19 is a schematic diagram illustrating a part of the authenticity determination process of the determination system 20 according to an embodiment of the present invention.
判定システム20で実行される判定処理は、情報端末100上で真贋判定処理のプログラムが実行されることによって開始する。
The determination process executed by the determination system 20 starts when a program for the authenticity determination process is executed on the information terminal 100.
ステップS200では、撮像部110が、撮影された判定コード500の第1識別子510に対応する第1画像を生成する。
In step S200, the imaging unit 110 generates a first image corresponding to the first identifier 510 of the photographed determination code 500.
ステップS210では、生成された第1画像が、通信部130を介して情報端末100からサーバ200に送信される。
In step S210, the generated first image is transmitted from the information terminal 100 to the server 200 via the communication unit 130.
ステップS220では、撮像部110が、撮影された判定コード500の第2識別子520に対応する第2画像を生成する。
In step S220, the imaging unit 110 generates a second image corresponding to the second identifier 520 of the photographed determination code 500.
ステップS230では、生成された第2画像が、通信部130を介して情報端末100からサーバ200に送信される。
In step S230, the generated second image is transmitted from the information terminal 100 to the server 200 via the communication unit 130.
ステップS240では、特徴量データ生成部212が、第1識別子510の特徴量を含む第1特徴量データを生成する。本実施形態に係る判定システム20の真贋判定処理では、第1画像を複数の領域に分割することなく、第1画像の全体での特徴量が生成される。特徴量は、例えば、図19(A)~図19(C)に示すように、R画素、G画素、およびB画素のそれぞれの画素値の頻度を表すヒストグラムである。このようなRGBのヒストグラムは、第1画像のRGBそれぞれにおけるコントラストまたは明るさなどの特徴を含み、それらの特徴が分布形状として表されている。
In step S240, the feature amount data generation unit 212 generates first feature amount data including the feature amount of the first identifier 510. In the authenticity determination process of the determination system 20 according to this embodiment, the feature amount of the entire first image is generated without dividing the first image into a plurality of regions. The feature amount is, for example, a histogram representing the frequency of each pixel value of an R pixel, a G pixel, and a B pixel, as shown in FIGS. 19(A) to 19(C). Such an RGB histogram includes features such as contrast or brightness in each of RGB of the first image, and these features are expressed as a distribution shape.
ステップS250では、識別情報取得部213が、第2画像を読み取り、第2識別子520に含まれる第2識別情報を取得する。
In step S250, the identification information acquisition unit 213 reads the second image and acquires the second identification information included in the second identifier 520.
ステップS260では、判定部214が、第1特徴量データを用いて、第1識別子510が示す第1識別情報を特定する。また、特定された第1識別情報とステップS260で取得された第2識別情報との対応関係を判定し、判定結果情報を生成する。
In step S260, the determination unit 214 uses the first feature data to identify the first identification information indicated by the first identifier 510. Further, the correspondence between the identified first identification information and the second identification information acquired in step S260 is determined, and determination result information is generated.
第1識別情報の特定においては、第1特徴量データと、登録特徴量データベースに登録された登録特徴量データとの類似度を算出する。類似度の算出は、登録特徴量データごとに行われる。例えば、判定部214は、ヒストグラムのピークの位置もしくは数、重畳する面積の割合、平均値、または中間値などに基づいて、類似度を算出する。また、判定部214は、類似度が最大値を有する登録特徴量データに紐付けられた登録識別情報を、第1識別子510が示す第1識別情報として特定する。
In specifying the first identification information, the degree of similarity between the first feature amount data and the registered feature amount data registered in the registered feature amount database is calculated. The calculation of similarity is performed for each registered feature amount data. For example, the determination unit 214 calculates the degree of similarity based on the position or number of peaks in the histogram, the ratio of overlapping areas, the average value, the intermediate value, or the like. Further, the determining unit 214 identifies the registered identification information linked to the registered feature data having the maximum similarity as the first identification information indicated by the first identifier 510.
また、判定部214は、第1識別情報と第2識別情報とが一致するか否かを判定する。第1識別情報と第2識別情報とが一致するとき、判定部214は、判定コード500が真正である旨の判定結果情報を生成する。一方、第1識別情報と第2識別情報とが一致しないとき、判定部214は、判定コード500が偽造である旨の判定結果情報を生成する。
Additionally, the determination unit 214 determines whether the first identification information and the second identification information match. When the first identification information and the second identification information match, the determination unit 214 generates determination result information indicating that the determination code 500 is genuine. On the other hand, when the first identification information and the second identification information do not match, the determination unit 214 generates determination result information indicating that the determination code 500 is a forgery.
ステップS270では、生成された判定結果情報が、通信部230を介してサーバ200から情報端末100に送信される。
In step S270, the generated determination result information is transmitted from the server 200 to the information terminal 100 via the communication unit 230.
ステップS280では、表示部120が、判定結果情報に基づき、画面に判定結果を表示する。例えば、判定結果情報が真正である場合には、表示部120は、画面に「判定OK」を表示し、判定結果情報が偽造である場合には、画面に「判定NG」を表示する。
In step S280, the display unit 120 displays the determination result on the screen based on the determination result information. For example, if the determination result information is genuine, the display unit 120 displays "determination OK" on the screen, and if the determination result information is fake, it displays "determination NG" on the screen.
以上、第8実施形態に係る判定システム20は、判定コード500の第1識別子510を撮影した第1画像に基づき、第1識別子510の特徴量を含む第1特徴量データを生成する。第1特徴量データは、登録特徴量データベース221の登録特徴量データとの類似度が算出され、第1識別子510の第1識別情報が特定される。また、判定システム10は、判定コード500の第2識別子520を撮影した第2画像を読み取り、第2識別子520の第2識別情報を取得する。さらに、判定システム20は、特定された第1識別子510の第1識別情報と取得された第2識別子520の第2識別情報との対応関係を判定する。例えば、第1識別情報と第2識別情報とが一致するか否かを判定し、第1識別情報と第2識別情報とが一致するときは、判定コード500が真正であると判定される。
As described above, the determination system 20 according to the eighth embodiment generates first feature amount data including the feature amount of the first identifier 510 based on the first image of the first identifier 510 of the determination code 500. The degree of similarity between the first feature data and the registered feature data in the registered feature database 221 is calculated, and the first identification information of the first identifier 510 is specified. Further, the determination system 10 reads a second image of the second identifier 520 of the determination code 500 and obtains second identification information of the second identifier 520. Furthermore, the determination system 20 determines the correspondence between the first identification information of the identified first identifier 510 and the second identification information of the acquired second identifier 520. For example, it is determined whether the first identification information and the second identification information match, and when the first identification information and the second identification information match, it is determined that the determination code 500 is genuine.
第8実施形態に係る判定システム20による真贋判定では、判定コード500の第1識別子510が示す第1識別情報をユーザの目視に依存することなく特定することができるため、真贋判定におけるユーザ依存が抑制され、判定コード500の真贋判定の判定精度が向上する。また、複数の領域に分割することなく、第1特徴量データが生成されるため、真贋判定処理の計算量が削減され、サーバ200の負荷を低減することができる。
In the authenticity determination by the determination system 20 according to the eighth embodiment, the first identification information indicated by the first identifier 510 of the determination code 500 can be specified without depending on the user's visual observation, so that the user dependency in the authenticity determination is reduced. This improves the accuracy of determining the authenticity of the determination code 500. Furthermore, since the first feature amount data is generated without dividing into a plurality of regions, the amount of calculation for the authenticity determination process is reduced, and the load on the server 200 can be reduced.
なお、第8実施形態に係る判定システム20では、複数の領域の各々の特徴量として、ヒストグラムを用いて真贋判定を行うこともできる。例えば、特徴量データ生成部212は、所定の複数の領域、または特徴的なパターンを有する領域と特徴的なパターンを有しない領域とに区分された複数の領域などにおいて、複数の領域の各々のヒストグラムを含む第1特徴量データを生成することができる。
Note that in the determination system 20 according to the eighth embodiment, the authenticity can be determined using a histogram as the feature amount of each of the plurality of regions. For example, in a predetermined plurality of regions, or a plurality of regions divided into regions having a characteristic pattern and regions not having a characteristic pattern, the feature amount data generation unit 212 generates each of the plurality of regions. First feature amount data including a histogram can be generated.
本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態を基にして、当業者が適宜構成要素の追加、削除、または設計変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
The embodiments described above as embodiments of the present invention can be implemented in appropriate combinations as long as they do not contradict each other. Moreover, additions, deletions, or design changes of components made by those skilled in the art based on each embodiment are also included in the scope of the present invention as long as they have the gist of the present invention.
また、上述した各実施形態によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと理解される。
Further, even if there are other effects that are different from those brought about by each of the embodiments described above, those that are obvious from the description of this specification or that can be easily predicted by a person skilled in the art will naturally be explained. It is understood that this is provided by the present invention.
10、20:判定システム、 100:情報端末、 110:撮像部、 120:表示部、 130:通信部、 140:センサ部、 200:サーバ、 210:制御部、 211:画像処理部、 212:特徴量データ生成部、 213:識別情報取得部、 214:判定部、 220:記憶部、 221、221B、221C:登録特徴量データベース、 230:通信部、 500、500F、500F’:判定コード、 510:第1識別子、 511、511F’:エリア、 511F’-1:第1のエリア、 511F’-2:第2のエリア、 511F’-3:第3のエリア、 520、520F:第2識別子、 520F’-1:第1の第2識別子、 520F’-2:第2の第2識別子、 520F’-3:第3の第2識別子、 610:第1画像、 610-1:第1の領域、 610-8:第8の領域、 611D:パターン領域、 611D-1:第1のパターン領域、 611D-2:第2のパターン領域
10, 20: Judgment system, 100: Information terminal, 110: Imaging unit, 120: Display unit, 130: Communication unit, 140: Sensor unit, 200: Server, 210: Control unit, 211: Image processing unit, 212: Features Quantity data generation unit, 213: Identification information acquisition unit, 214: Judgment unit, 220: Storage unit, 221, 221B, 221C: Registered feature database, 230: Communication unit, 500, 500F, 500F': Judgment code, 510: First identifier, 511, 511F': Area, 511F'-1: First area, 511F'-2: Second area, 511F'-3: Third area, 520, 520F: Second identifier, 520F '-1: First second identifier, 520F'-2: Second second identifier, 520F'-3: Third second identifier, 610: First image, 610-1: First area, 610-8: Eighth area, 611D: Pattern area, 611D-1: First pattern area, 611D-2: Second pattern area
Claims (26)
- 第1識別子および第2識別子を含む判定コードの前記第1識別子を撮影して得られる第1画像から複数の領域を抽出する画像処理部と、
複数の前記領域の各々の特徴量を含む第1特徴量データを生成する特徴量データ生成部と、
前記判定コードの前記第2識別子を撮影して得られる第2画像から第2識別情報を取得する識別情報取得部と、
前記第1特徴量データに基づき前記第1識別子が示す第1識別情報を特定し、前記第1識別情報と前記第2識別情報との対応関係を判定する判定部と、を含む、判定システム。 an image processing unit that extracts a plurality of regions from a first image obtained by photographing the first identifier of the determination code including a first identifier and a second identifier;
a feature amount data generation unit that generates first feature amount data including feature amounts of each of the plurality of regions;
an identification information acquisition unit that acquires second identification information from a second image obtained by photographing the second identifier of the determination code;
A determination system comprising: a determination unit that identifies first identification information indicated by the first identifier based on the first feature amount data and determines a correspondence relationship between the first identification information and the second identification information. - 前記判定部は、前記第1識別情報と前記第2識別情報とが一致する場合、前記判定コードが真正である旨の判定結果情報を生成する、請求項1に記載の判定システム。 The determination system according to claim 1, wherein the determination unit generates determination result information indicating that the determination code is genuine when the first identification information and the second identification information match.
- 前記第1識別情報は、予めデータベースに登録された登録特徴量データと前記第1特徴量データとの類似度が判定されることによって特定される、請求項1または請求項2に記載の判定システム。 The determination system according to claim 1 or 2, wherein the first identification information is specified by determining the degree of similarity between registered feature data registered in a database in advance and the first feature data. .
- n個(nは自然数)のエリアに区分された第1識別子および前記第1識別子の第nのエリアのそれぞれに割り当てられた第nの第2識別子を含む判定コードの前記第nのエリアおよび前記第nの第2識別子を撮影して得られる画像から、前記第nのエリアに対応する第nの第1画像および前記第nの第2識別子に対応する第nの第2画像を抽出し、前記第nの第1画像から複数の領域を抽出する画像処理部と、
前記第nの第1画像の複数の前記領域の各々の特徴量を含む第nの第1特徴量データを生成する特徴量データ生成部と、
前記第nの第2画像から第nの第2識別情報を取得する識別情報取得部と、
前記第nの第1特徴量データに基づき前記第nのエリアが示す第nの第1識別情報を特定し、前記第nの第1識別情報と前記第nの第2の識別情報との対応関係を判定する判定部と、を含む、判定システム。 the n-th area of the determination code including the first identifier divided into n areas (n is a natural number) and the n-th second identifier assigned to each of the n-th area of the first identifier; extracting an n-th first image corresponding to the n-th area and an n-th second image corresponding to the n-th second identifier from an image obtained by photographing the n-th second identifier; an image processing unit that extracts a plurality of regions from the n-th first image;
a feature amount data generation unit that generates n-th first feature amount data including feature amounts of each of the plurality of regions of the n-th first image;
an identification information acquisition unit that acquires the n-th second identification information from the n-th second image;
Identifying the n-th first identification information indicated by the n-th area based on the n-th first feature amount data, and matching the n-th first identification information and the n-th second identification information. A determination system including: a determination unit that determines a relationship. - 前記判定部は、前記第nの第1識別情報と前記第nの第2識別情報とがn個のエリアの全てで一致する場合、前記判定コードが真正である旨の判定結果を生成する、請求項4に記載の判定システム。 The determination unit generates a determination result indicating that the determination code is genuine when the nth first identification information and the nth second identification information match in all n areas. The determination system according to claim 4.
- 前記判定部は、前記第nの第1識別情報と前記第nの第2識別情報とが所定のエリアで一致する場合、前記判定コードが真正である旨の判定結果を生成する、請求項4に記載の判定システム。 4 . The determination unit generates a determination result indicating that the determination code is authentic when the nth first identification information and the nth second identification information match in a predetermined area. 4 . Judgment system described in.
- 前記所定のエリアは、複数のエリアである、請求項6に記載の判定システム。 The determination system according to claim 6, wherein the predetermined area is a plurality of areas.
- 前記第nの第1識別情報は、予めデータベースに登録された登録特徴量データと前記第nの第1特徴量データとの類似度が判定されることによって特定される、請求項4乃至請求項7のいずれか一項に記載の判定システム。 The n-th first identification information is specified by determining the degree of similarity between registered feature data registered in advance in a database and the n-th first feature data. 7. The determination system according to any one of 7.
- 前記登録特徴量データは、撮影方向の角度が異なる複数の特徴量を含む、請求項3または請求項8に記載の判定システム。 The determination system according to claim 3 or 8, wherein the registered feature amount data includes a plurality of feature amounts having different angles in the photographing direction.
- さらに、前記撮影方向の角度を検出し、角度データを生成するセンサ部を含み、
前記判定部は、前記角度データに基づき、前記登録特徴量データの複数の角度のうちの1つを選択する、請求項9に記載の判定システム。 Furthermore, it includes a sensor unit that detects the angle of the photographing direction and generates angle data,
The determination system according to claim 9, wherein the determination unit selects one of the plurality of angles of the registered feature amount data based on the angle data. - 前記登録特徴量データは、光照射強度が異なる複数の特徴量を含む、請求項8に記載の判定システム。 The determination system according to claim 8, wherein the registered feature amount data includes a plurality of feature amounts having different light irradiation intensities.
- 前記特徴量は、前記領域に含まれる複数の画素の画素値に基づいて生成される、請求項1乃至請求項8のいずれか一項に記載の判定システム。 The determination system according to any one of claims 1 to 8, wherein the feature amount is generated based on pixel values of a plurality of pixels included in the area.
- 前記特徴量は、RGB値で表される、請求項12に記載の判定システム。 The determination system according to claim 12, wherein the feature amount is represented by RGB values.
- 前記特徴量は、グレースケール値で表される、請求項12に記載の判定システム。 The determination system according to claim 12, wherein the feature amount is represented by a grayscale value.
- 前記特徴量は、白黒2値で表される、請求項12に記載の判定システム。 The determination system according to claim 12, wherein the feature amount is expressed in black and white binary values.
- 前記第1識別子は、ホログラムである、請求項1乃至請求項15のいずれか一項に記載の判定システム。 The determination system according to any one of claims 1 to 15, wherein the first identifier is a hologram.
- 前記第2識別子は、QRコード(登録商標)である、請求項1乃至請求項16のいずれか一項に記載の判定システム。 The determination system according to any one of claims 1 to 16, wherein the second identifier is a QR code (registered trademark).
- 第1識別子および第2識別子を含む判定コードの真贋判定方法であって、
前記判定コードの第1識別子を撮影して得られる第1画像から複数の領域を抽出し、
複数の前記領域の各々の特徴量を含む第1特徴量データを生成し、
前記判定コードの前記第2識別子を撮影して得られる第2画像から第2識別情報を取得し、
前記第1特徴量データに基づき前記第1識別子が示す第1識別情報を特定し、
前記第1識別情報と前記第2識別情報との対応関係を判定する、判定コードの真贋判定方法。 A method for determining the authenticity of a determination code including a first identifier and a second identifier,
extracting a plurality of regions from a first image obtained by photographing the first identifier of the determination code;
generating first feature amount data including feature amounts of each of the plurality of regions;
obtaining second identification information from a second image obtained by photographing the second identifier of the determination code;
identifying first identification information indicated by the first identifier based on the first feature data;
A method for determining the authenticity of a determination code, the method comprising determining the correspondence between the first identification information and the second identification information. - 前記対応関係の判定において、前記第1識別情報と前記第2識別情報とが一致する場合、前記判定コードが真正である旨の判定結果情報が生成される、請求項18に記載の判定コードの真贋判定方法。 19. The determination code according to claim 18, wherein in determining the correspondence relationship, if the first identification information and the second identification information match, determination result information indicating that the determination code is genuine is generated. Authenticity determination method.
- 前記第1識別情報の特定は、予めデータベースに登録された登録特徴量データと前記第1特徴量データとの類似度が判定されることによって行われる、請求項18または請求項19に記載の判定コードの真贋判定方法。 The determination according to claim 18 or 19, wherein the identification of the first identification information is performed by determining the degree of similarity between registered feature data registered in advance in a database and the first feature data. How to determine the authenticity of a code.
- n個(nは自然数)のエリアに区分された第1識別子および前記第1識別子の第nのエリアのそれぞれに割り当てられた第nの第2識別子を含む判定コードの真贋判定方法であって、
前記第nのエリアおよび前記第nの第2識別子を撮影して得られる画像から、前記第nのエリアに対応する第nの第1画像および前記第nの第2識別子に対応する第nの第2画像を抽出し、
前記第nの第1画像から複数の領域を抽出し、
前記第nの第1画像の複数の前記領域の各々の特徴量を含む第nの第1特徴量データを生成し、
前記第nの第2画像から第nの第2識別情報を取得し、
前記第nの第1特徴量データに基づき前記第nのエリアが示す第nの第1識別情報を特定し、
前記第nの第1識別情報と前記第nの第2の識別情報との対応関係を判定する、判定コードの真贋判定方法。 A method for determining the authenticity of a determination code including a first identifier divided into n areas (n is a natural number) and an n-th second identifier assigned to each of the n-th areas of the first identifier,
From an image obtained by photographing the n-th area and the n-th second identifier, an n-th first image corresponding to the n-th area and an n-th image corresponding to the n-th second identifier are obtained. Extract the second image,
extracting a plurality of regions from the n-th first image;
generating n-th first feature amount data including feature amounts of each of the plurality of regions of the n-th first image;
obtaining n-th second identification information from the n-th second image;
identifying the n-th first identification information indicated by the n-th area based on the n-th first feature amount data;
A method for determining the authenticity of a determination code, the method comprising determining the correspondence between the n-th first identification information and the n-th second identification information. - 前記対応関係の判定において、前記第nの第1識別情報と前記第nの第2識別情報とがn個のエリアの全てで一致する場合、前記判定コードが真正である旨の判定結果情報が生成される、請求項21に記載の判定コードの真贋判定方法。 In determining the correspondence relationship, if the n-th first identification information and the n-th second identification information match in all n areas, determination result information indicating that the determination code is genuine is determined. The method for determining authenticity of the determination code according to claim 21, wherein the determination code is generated.
- 前記対応関係の判定において、前記第nの第1識別情報と前記第nの第2識別情報とが所定のエリアで一致する場合、前記判定コードが真正である旨の判定結果が生成される、請求項21または請求項22に記載の判定コードの真贋判定方法。 In determining the correspondence relationship, if the nth first identification information and the nth second identification information match in a predetermined area, a determination result indicating that the determination code is genuine is generated; The method for determining authenticity of a determination code according to claim 21 or 22.
- 前記第nの第1識別情報の特定は、予めデータベースに登録された登録特徴量データと前記第nの第1特徴量データとの類似度が判定されることによって行われる、請求項21乃至請求項23のいずれか一項に記載の判定コードの真贋判定方法。 The identification of the n-th first identification information is performed by determining the degree of similarity between registered feature data registered in advance in a database and the n-th first feature data. A method for determining the authenticity of the determination code according to any one of Item 23.
- 第1識別子および第2識別子を含む判定コードの前記第1識別子を撮影して得られる第1画像の画素値のヒストグラムを含む第1特徴量データを生成する特徴量データ生成部と、
前記判定コードの前記第2識別子を撮影して得られる第2画像から第2識別情報を取得する識別情報取得部と、
前記第1特徴量データに基づき前記第1識別子が示す第1識別情報を特定し、前記第1識別情報と前記第2識別情報との対応関係を判定する判定部と、を含む、判定システム。 a feature data generation unit that generates first feature data including a histogram of pixel values of a first image obtained by photographing the first identifier of a determination code including a first identifier and a second identifier;
an identification information acquisition unit that acquires second identification information from a second image obtained by photographing the second identifier of the determination code;
A determination system comprising: a determination unit that identifies first identification information indicated by the first identifier based on the first feature amount data and determines a correspondence relationship between the first identification information and the second identification information. - 第1識別子および第2識別子を含む判定コードの真贋判定方法であって、
前記判定コードの前記第1識別子を撮影して得られる第1画像の画素値のヒストグラムを含む第1特徴量データを生成し、
前記判定コードの前記第2識別子を撮影して得られる第2画像から第2識別情報を取得し、
前記第1特徴量データに基づき前記第1識別子が示す第1識別情報を特定し、
前記第1識別情報と前記第2識別情報との対応関係を判定する、判定コードの真贋判定方法。
A method for determining the authenticity of a determination code including a first identifier and a second identifier,
generating first feature data including a histogram of pixel values of a first image obtained by photographing the first identifier of the determination code;
obtaining second identification information from a second image obtained by photographing the second identifier of the determination code;
identifying first identification information indicated by the first identifier based on the first feature data;
A method for determining the authenticity of a determination code, the method comprising determining the correspondence between the first identification information and the second identification information.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022060972A JP2023151387A (en) | 2022-03-31 | 2022-03-31 | Determination system and method for determining authenticity of determination code |
JP2022-060972 | 2022-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023188681A1 true WO2023188681A1 (en) | 2023-10-05 |
Family
ID=88200125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/000411 WO2023188681A1 (en) | 2022-03-31 | 2023-01-11 | Determination system and authenticity determination method of determination code |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023151387A (en) |
WO (1) | WO2023188681A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012053550A (en) * | 2010-08-31 | 2012-03-15 | Casio Comput Co Ltd | Information reading device and program |
US20150269469A1 (en) * | 2011-10-10 | 2015-09-24 | Zortag, Inc. | Method of, and System and Label For, Authenticating Objects in situ |
US20160004955A1 (en) * | 2013-02-11 | 2016-01-07 | Novatec | Method for producing an identification and authentication label and associated device |
WO2021014537A1 (en) * | 2019-07-22 | 2021-01-28 | 楽天株式会社 | Information processing system, information code generation system, information processing method, and information code generation method |
JP2021015489A (en) * | 2019-07-12 | 2021-02-12 | 京セラドキュメントソリューションズ株式会社 | Image analysis device, image analysis system, image analysis method and image analysis program |
-
2022
- 2022-03-31 JP JP2022060972A patent/JP2023151387A/en active Pending
-
2023
- 2023-01-11 WO PCT/JP2023/000411 patent/WO2023188681A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012053550A (en) * | 2010-08-31 | 2012-03-15 | Casio Comput Co Ltd | Information reading device and program |
US20150269469A1 (en) * | 2011-10-10 | 2015-09-24 | Zortag, Inc. | Method of, and System and Label For, Authenticating Objects in situ |
US20160004955A1 (en) * | 2013-02-11 | 2016-01-07 | Novatec | Method for producing an identification and authentication label and associated device |
JP2021015489A (en) * | 2019-07-12 | 2021-02-12 | 京セラドキュメントソリューションズ株式会社 | Image analysis device, image analysis system, image analysis method and image analysis program |
WO2021014537A1 (en) * | 2019-07-22 | 2021-01-28 | 楽天株式会社 | Information processing system, information code generation system, information processing method, and information code generation method |
Also Published As
Publication number | Publication date |
---|---|
JP2023151387A (en) | 2023-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11062163B2 (en) | Iterative recognition-guided thresholding and data extraction | |
US7474761B2 (en) | System and method for generating and verifying a self-authenticating document | |
CN102663600B (en) | Anti-counterfeiting system based on digital watermarks and barcodes, anti-counterfeiting method for anti-counterfeiting system and application of anti-counterfeiting system | |
EP2382532B1 (en) | System and method for enhancing security printing | |
US20160198065A1 (en) | Method and apparatus for authenticating printed documents that contains both dark and halftone text | |
WO2021179157A1 (en) | Method and device for verifying product authenticity | |
US9681020B2 (en) | Creation and identification of unforgeable printable image information data | |
CN110427972B (en) | Certificate video feature extraction method and device, computer equipment and storage medium | |
KR101535534B1 (en) | A Creating and Verifying Method Of A Document Having Printed Means Of Preventing From Forging/Manipulating | |
CN110533704B (en) | Method, device, equipment and medium for identifying and verifying ink label | |
CN112017352A (en) | Certificate authentication method, device, equipment and readable storage medium | |
CN113392664A (en) | Anti-counterfeiting two-dimensional code generation method, anti-counterfeiting method and anti-counterfeiting device | |
US20240112484A1 (en) | Copy prevention of digital sample images | |
EP3296925B1 (en) | Document data processing including image-based tokenization | |
WO2023188681A1 (en) | Determination system and authenticity determination method of determination code | |
CN106934756B (en) | Method and system for embedding information in single-color or special-color image | |
CN110619060B (en) | Cigarette carton image database construction method and cigarette carton anti-counterfeiting query method | |
WO2023188680A1 (en) | Determination system and method for determinint authenticity of determination code | |
KR101642710B1 (en) | A Testing Method Of Forging/Manipulating Of Securities | |
KR102137944B1 (en) | Printing matter with for preventing counterfeit and manufacturing method thereof | |
CN113888198A (en) | Anti-counterfeiting method based on anti-counterfeiting characteristic correction | |
JP4958868B2 (en) | Document feature extraction apparatus and method | |
EP3687823B1 (en) | Method and device for the insertion of guilloche patterns | |
WO2024165585A1 (en) | Method of generating a secured colour image, and method of detecting tampering | |
JP2023166847A (en) | Computer program, method for processing information, and information processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23778721 Country of ref document: EP Kind code of ref document: A1 |