WO2023188623A1 - Linker and kit - Google Patents

Linker and kit Download PDF

Info

Publication number
WO2023188623A1
WO2023188623A1 PCT/JP2022/047326 JP2022047326W WO2023188623A1 WO 2023188623 A1 WO2023188623 A1 WO 2023188623A1 JP 2022047326 W JP2022047326 W JP 2022047326W WO 2023188623 A1 WO2023188623 A1 WO 2023188623A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
linker
site
hybridization
hybridization site
Prior art date
Application number
PCT/JP2022/047326
Other languages
French (fr)
Japanese (ja)
Inventor
宏紀 安齋
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2023188623A1 publication Critical patent/WO2023188623A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B30/00Methods of screening libraries
    • C40B30/04Methods of screening libraries by measuring the ability to specifically bind a target molecule, e.g. antibody-antigen binding, receptor-ligand binding
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms

Definitions

  • the present invention relates to a linker and a kit.
  • the cDNA display method which is a technique that associates a polypeptide (phenotype) with a polynucleotide (genotype) that preserves the sequence information of the polypeptide.
  • a linker is used that connects a polypeptide (phenotype), mRNA encoding the polypeptide, and cDNA (genotype) obtained by reverse transcription of the mRNA.
  • Patent Document 1 describes a main chain comprising a solid-phase binding site, a solid-phase cleavage site, a side chain linking site, a high-speed photocrosslinking site, and a reverse transcription initiation region, a fluorescent label, and a protein binding site. and a side chain with a linkage formation site.
  • One aspect of the present invention aims to provide a novel linker that connects a protein or peptide and a polynucleotide, and its related technology.
  • a linker is a linker comprising a first segment and a second segment, and has a polynucleotide sequence contained in the first segment.
  • the first hybridization site and the second hybridization site having a polynucleotide sequence contained in the second segment hybridize to form a double-stranded region, and the first hybridization site is bonded to the 5' end side as viewed from the first hybridization site, and is located between a binding site that binds to a protein or peptide, and the first hybridization site and the binding site.
  • a 5'-5' bond between nucleotides, and the second segment includes a single-stranded polynucleotide region on the 3' end side as viewed from the second hybridization site.
  • a kit according to one aspect of the present invention is a kit for producing a linker including a first segment and a second segment, the kit including the first segment and the second segment.
  • the first hybridization site having a polynucleotide sequence contained in the first segment and the second hybridization site having a polynucleotide sequence contained in the second segment are capable of hybridizing.
  • the first segment has a sequence capable of forming a double-stranded region, the first segment is bound to the 5' end side as viewed from the first hybridization site, and a binding site that binds to a protein or peptide; a 5'-5' bond between nucleotides located between the first hybridization site and the binding site, and the second segment is located between the first hybridization site and the binding site; Contains a single-stranded polynucleotide region at the 3' end.
  • a novel linker that connects a protein or peptide and a polynucleotide, and its related technology can be provided.
  • FIG. 1 is a schematic diagram illustrating the configuration of a linker according to an embodiment of the present invention.
  • 2 is a schematic diagram illustrating the configuration of a linker that is a modification of the linker shown in FIG. 1.
  • FIG. FIG. 1 is a schematic diagram illustrating the configuration of a composite body according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating the configuration of the linker manufacturing method shown in FIG. 1.
  • FIG. FIG. 2 is a schematic diagram illustrating the configuration of a cDNA display method using the linker shown in FIG. 1.
  • FIG. 1 is a schematic diagram showing the structure of the mRNA-linker complex of Example 1 of the present invention.
  • Example 1 is a gel electrophoresis photograph showing the verification results of the formation of an mRNA-linker complex in Example 1 of the present invention. These are gel electrophoresis photographs showing the results of the cDNA display method when the linker of Reference Example 1 of the present invention was used (left figure) and when the linker of Example 1 of the present invention was used (right figure).
  • linker refers to mRNA-linker complex, linker-protein/peptide complex, mRNA-linker-protein/peptide complex, mRNA-linker-cDNA complex, and mRNA-linker-protein/peptide complex.
  • - refers to a compound capable of binding with mRNA, protein/peptide, cDNA, etc. to form at least one complex selected from the group consisting of: -cDNA complex.
  • polynucleotide sequence refers to a base sequence of a constituent unit in a polynucleotide, and here, the term “polynucleotide” refers to a linear polymer containing nucleotides as constituent units.
  • expressions such as "X has a polynucleotide sequence” and "X has a polynucleotide sequence” are intended to mean that the structure of X includes a polynucleotide having a specific base sequence. Ru.
  • each base may be a natural base such as A (adenine), T (thymine), G (guanine), C (cytosine) and U (uracil), or derivative bases derived from natural bases. It may also be an artificially synthesized synthetic base.
  • each nucleotide is independently selected from ribonucleotides, deoxyribonucleotides, and derivatives thereof.
  • Polynucleotides may include structural units derived from sources other than nucleotides. Examples of structural units derived from other than nucleotides include synthetic amino acids such as CNV-D phosphoramidites.
  • the polynucleotide preferably contains 50% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more of a portion having nucleotides as a constituent unit, based on the total mass of the polynucleotide. .
  • hybridization means that the single-stranded regions of two polynucleotides form a double-stranded region through hydrogen bonding between complementary base pairs.
  • the complementarity between single-stranded regions is preferably 20% or more, more preferably 40% or more, and even more preferably 45% or more.
  • protein/peptide means a protein or a peptide. As used herein, each of protein and peptide has the meaning commonly understood in the art. Further, in this specification, any one or both of a protein and a peptide may be referred to as a "polypeptide.”
  • a linker is a linker comprising a first segment and a second segment, wherein a first hybridization site having a polynucleotide sequence contained in the first segment and a second The second hybridization site having a polynucleotide sequence contained in the segment hybridizes to form a double-stranded region, and the first segment is 5' as viewed from the first hybridization site.
  • the second segment includes a single-stranded region of the polynucleotide at the 3' end as viewed from the second hybridization site.
  • a linker includes a first segment and a second segment.
  • the same main chain may contain both the first segment and the second segment, and each of the two main chains may contain each of the first segment and the second segment. It's okay.
  • each of the two main chains contains the first segment and the second segment, each of the first segment and the second segment can be synthesized at low cost, and therefore the linker can be synthesized at low cost. can do.
  • both the first segment and the second segment are included in the same main chain, the 3' end of the first segment and the 5' end of the second segment are directly bonded. They may also be connected indirectly through other members.
  • the first segment is a segment that has the property of forming a bond between the linker and the protein/peptide in a complex that the linker can form.
  • the first segment includes a first hybridization site, a binding site, and a 5'-5' bond.
  • the first segment may further include at least one selected from the group consisting of a first spacer site, a second spacer site, and a fluorescent label site.
  • the first hybridization site is a site located on the backbone of the first segment and has a polynucleotide sequence.
  • the first hybridization site hybridizes with the second hybridization site described below in the linker to form a double-stranded region.
  • the polynucleotide sequence possessed by the first hybridization site can be appropriately selected by a person skilled in the art, as long as the first hybridization site and the second hybridization site can hybridize to form a double-stranded region. can be done.
  • the length of the polynucleotide sequence is preferably 5 nucleotides or more, more preferably 10 nucleotides or more, and even more preferably 15 nucleotides or more.
  • the length of the polynucleotide sequence is within such a numerical range, the efficiency of forming a double-stranded region by the first hybridization site and the second hybridization site is improved.
  • the length of the polynucleotide sequence is preferably 90 nucleotides or less, more preferably 60 nucleotides or less, and even more preferably 40 nucleotides or less. When the length of the polynucleotide sequence is within such a numerical range, the linker can be manufactured at low cost.
  • the G/C content of the first hybridization site is preferably 20% or more, more preferably 30% or more, even more preferably 40% or more, and even more preferably 50% or more. Even more preferred.
  • the G/C content of the first hybridization site is within such a numerical range, the efficiency of forming a double-stranded region by the first hybridization site and the second hybridization site is improved.
  • the G/C content of the first hybridization site is preferably 99% or less, more preferably 98% or less, even more preferably 90% or less, and even more preferably 80% or less. Even more preferred. By having the G/C content of the first hybridization site within such a numerical range, nonspecific adsorption by the first hybridization site is reduced.
  • G/C content refers to the amount of G (guanine) bases, C (cytosine) bases, and these bases contained in a polynucleotide sequence relative to the total number of all bases contained in the polynucleotide sequence. means the percentage of the total number of derivative bases derived from.
  • the binding site is bound to the 5' end side as viewed from the first hybridization site, and is a site that binds to a protein or peptide.
  • the binding site is a site that has the property of binding to the C-terminus of a protein or peptide that is being elongated by translation of mRNA by ribosomes.
  • the binding site has the property of specifically binding to the protein/peptide, for example under conditions that allow ribosomes to translate mRNA.
  • the binding site can have any structure as long as it has the above properties.
  • Examples of the binding site include puromycin, 3'-N-aminoacylpuromycin aminonucleoside (PANS-amino acid), 3'-N-aminoacyladenosine aminonucleoside (AANS-amino acid), ribocytidyl puromycin (rCpPur), Examples include aminoacyl-tRNA 3'-terminal analogs such as deoxydylpuromycin (dCpPur) and deoxyuridylpuromycin (dUpPur).
  • Examples of PANS-amino acids include PANS-Gly whose amino acid portion is glycine, PANS-Val whose amino acid portion is valine, PANS-Ala whose amino acid portion is alanine, and all amino acids. PANS-amino acid mixture.
  • Examples of AANS-amino acids include AANS-Gly where the amino acid part is glycine, AANS-Val where the amino acid part is valine, AANS-Ala where the amino acid part is alanine, and the amino acid part corresponds to all amino acids.
  • AANS-amino acid mixture examples include AANS-Gly where the amino acid part is glycine, AANS-Val where the amino acid part is valine, AANS-Ala where the amino acid part is alanine, and the amino acid part corresponds to all amino acids. AANS-amino acid mixture.
  • the binding site is at least one selected from the group consisting of puromycin, 3'-N-aminoacylpuromycin aminonucleoside (PANS-amino acid), and 3'-N-aminoacyladenosine aminonucleoside (AANS-amino acid). is preferred.
  • a binding site with such a configuration has a high binding capacity for proteins and peptides, and therefore the linker can form the desired complex with high efficiency.
  • the binding site may be located on the 5' end side in the first segment as viewed from the first hybridization site.
  • the binding site may be located, for example, at the free end of the first segment and may be further bound to any other member.
  • a 5'-5' bond is a 5'-5' bond between nucleotides located between the first hybridization site and the binding site.
  • the linker according to one aspect of the present invention has such a configuration, the 3' end-(first hybridization site)-(5'-5' bond)- (Binding site) Three members are located linearly in the order of -3' end. Therefore, in one aspect of the present invention, the first hybridization site, 5'-5' bond and binding site included in the first segment have a single-stranded structure, so that the first segment and It is easy to manufacture a linker comprising this.
  • the binding site is located at the 3' end, an aminoacyl-tRNA 3' end analog containing puromycin, which has excellent binding ability to proteins/peptides, can be employed as the structure of the binding site. Therefore, the linker comprising the first segment can form a complex with the protein/peptide with high efficiency.
  • a 5'-5' bond is a bond between a 5' carbon atom of a nucleotide and a 5' carbon atom of another nucleotide through a phosphodiester bond.
  • the two nucleotides forming the 5'-5' bond can be appropriately selected by those skilled in the art, and may be different types of nucleotides or the same type of nucleotides.
  • the two nucleotides forming the 5'-5' bond are preferably a pair of T and T. According to such a configuration, non-specific hybridization within the linker can be reduced.
  • the first spacer site is located between the first hybridization site and the 5'-5' bond and has a polyA m sequence (where m represents an integer of 2 or more and 50 or less). It is.
  • polyA m sequence refers to a polynucleotide sequence consisting of m consecutive A's (adenylic acids).
  • the inclusion of the first spacer site in the first segment favorably adjusts the distance between the binding site and the reactive site of the ribosome that translates the mRNA, allowing the linker to complex with the protein/peptide with high efficiency. can be formed.
  • m is preferably 2 or more, more preferably 6 or more, and even more preferably 8 or more. By having m within such a numerical range, the linker can form a complex with the protein/peptide with high efficiency.
  • m is preferably 40 or less, more preferably 30 or less, and even more preferably 20 or less. By having m within such a numerical range, the linker can form a complex with the protein/peptide with high efficiency.
  • the difference between m and the number of nucleotides contained in the polynucleotide of the single-stranded region described below is preferably 20 or less, more preferably 10 or less, and even more preferably 0. According to such a configuration, the positional relationship between the binding site and the ribosome that has reached the end point of mRNA translation is suitably adjusted, so that the linker forms a complex with the protein/peptide with high efficiency. be able to.
  • the first spacer site may be directly bonded to the first hybridization site, or may be indirectly bonded to the first hybridization site via any other member.
  • the first spacer site and the 5'-5' bond may or may not be adjacent to each other.
  • the A at the 5' end of the first spacer site may or may not be one of the two nucleotides forming a 5'-5' bond.
  • the first spacer site is not limited to a site having a polyA m sequence.
  • the first spacer region may be, for example, a region having a poly G m sequence, a poly C m sequence, a poly T m sequence, or a poly U m sequence, and does not or hardly hybridizes with the single-stranded region described below.
  • a site having a sequence that does not occur can be suitably used as the first spacer site.
  • the second spacer moiety is located between the binding site and the 5'-5' bond and is (PEG) n , where PEG represents polyethylene glycol (-[CH 2 CH 2 O]-) and n represents an integer from 1 to 20).
  • PEG represents polyethylene glycol (-[CH 2 CH 2 O]-)
  • n represents an integer from 1 to 20).
  • n is preferably 1 or more, more preferably 2 or more, and even more preferably 3 or more. By having n within such a numerical range, the linker can form a complex with the protein/peptide with high efficiency. In the second spacer region, n is preferably 18 or less, more preferably 10 or less, and even more preferably 6 or less. By having n within such a numerical range, the linker can form a complex with the protein/peptide with high efficiency.
  • the second spacer region may further include other members in addition to (PEG) n .
  • Other members included in the second spacer site include, for example, arbitrary nucleotides.
  • the second spacer portion may have other members at both ends of (PEG) n , or may have other members at only one end of (PEG) n .
  • Other members include, for example, nucleotides and polynucleotides.
  • the second spacer moiety is not limited to a moiety having (PEG) n .
  • the second spacer moiety may be, for example, a moiety with a biocompatible polymer in place of (PEG) n .
  • biocompatible polymers include water-soluble polymers such as polypropylene glycol and polyvinylpyrrolidone, and polysaccharides.
  • first segment includes at least one of a first spacer site and a second spacer site
  • efficiency of complex formation between linker and protein/peptide can be adjusted.
  • the fluorescent labeling site is a site that has properties as a probe for detecting the linker or the complex formed by the linker.
  • the inclusion of the fluorescent label site in the first segment allows the linker and the linker-containing complex to be detected by fluorescence observation.
  • the fluorescent labeling site may have any structure as long as it has the above properties.
  • fluorescent labeling sites include FAM (carboxyfluorescein), JOE (6-carboxy-4',5'-dichloro2',7'-dimethoxyfluorescein), FITC (fluorescein isothiocyanate), and TET (tetrachlorofluorescein).
  • FAM carboxyfluorescein
  • JOE 6-carboxy-4',5'-dichloro2',7'-dimethoxyfluorescein
  • FITC fluorescein isothiocyanate
  • TET tetrachlorofluorescein
  • the position of the fluorescent labeling site can be appropriately selected by those skilled in the art as long as the linker can form a complex.
  • the fluorescent label moiety may be located on a side chain attached to any position of the main chain of the first segment, including, for example, the first hybridization site, the 5'-5' bond, and the binding site.
  • the positions to which the side chain binds include, for example, the first hybridization site, the first spacer site, and the second spacer site.
  • the second segment may be a segment that has the property of forming a bond between the linker and at least one of mRNA and cDNA in a complex that the linker is capable of forming.
  • the second segment includes a second hybridization site and a single-stranded region.
  • the second segment may also include a reverse transcription initiation site.
  • the second hybridization site is a site located on the backbone of the second segment and has a polynucleotide sequence.
  • the second hybridization site hybridizes with the first hybridization site described above in the linker to form a double-stranded region.
  • the polynucleotide sequence possessed by the second hybridization site can be appropriately selected by those skilled in the art, as long as the first hybridization site and the second hybridization site can hybridize to form a double-stranded region. can be done.
  • the length of the polynucleotide sequence is preferably 5 nucleotides or more, more preferably 10 nucleotides or more, and even more preferably 15 nucleotides or more.
  • the length of the polynucleotide sequence is within such a numerical range, the efficiency of forming a double-stranded region by the first hybridization site and the second hybridization site is improved.
  • the length of the polynucleotide sequence is preferably 90 nucleotides or less, more preferably 60 nucleotides or less, and even more preferably 40 nucleotides or less. When the length of the polynucleotide sequence is within such a numerical range, the linker can be manufactured at low cost.
  • the single-stranded region is a polynucleotide located on the 3' end side when viewed from the second hybridization site.
  • the single-stranded region can be a region that hybridizes with mRNA.
  • mRNA that hybridizes with the single-stranded region may be subject to genetic engineering techniques such as screening, qualitative analysis, and quantitative analysis.
  • the structure of the mRNA may be appropriately selected by the user of the linker depending on the polynucleotide sequence of the single-stranded region of the linker. Alternatively, the user may select the polynucleotide sequence of the single-stranded region depending on the polynucleotide sequence of the target mRNA.
  • the length of the polynucleotide sequence is preferably 5 nucleotides or more, more preferably 6 nucleotides or more, and even more preferably 8 nucleotides or more.
  • the single-stranded region can hybridize with mRNA with high efficiency.
  • the length of the polynucleotide sequence is preferably 90 nucleotides or less, more preferably 60 nucleotides or less, and even more preferably 40 nucleotides or less.
  • the linker can be manufactured at low cost.
  • the polynucleotide in the single-stranded region does not match the polynucleotide contained in the second hybridization site. According to such a configuration, it is possible to reduce the occurrence of hybridization between the single-stranded region and the first hybridization site that is complementary to the second hybridization site.
  • the single-stranded region may be directly bound to the second hybridization site, or may be indirectly bound to the second hybridization site via any other member.
  • the single-stranded region may include a site that can form a crosslinked structure with a part of mRNA.
  • a site that can form a crosslinked structure with a part of mRNA in the mRNA-linker complex, the bond between the linker and mRNA is stabilized, so that a stable complex can be realized.
  • sites that can form a cross-linked structure with a portion of mRNA include photoreactive nucleotides.
  • the single-stranded region can exhibit a desired function, such as the function of hybridizing with mRNA, and form a double-stranded region.
  • Single-stranded regions may also be protected when no linker is used, by methods known to those skilled in the art.
  • the reverse transcription initiation site is a site for initiating synthesis of cDNA complementary to mRNA hybridized to the single-stranded region.
  • the reverse transcription initiation site has a polynucleotide sequence and is located within the single-stranded region, eg, at the 3' end of the single-stranded region.
  • the polynucleotide sequence of the reverse transcription initiation site can be appropriately selected by those skilled in the art.
  • Examples of the polynucleotide sequence possessed by the reverse transcription initiation site include a 5'-TCCT-3' sequence.
  • the first hybridization site included in the first segment and the second hybridization site included in the second segment hybridize to form a double-stranded region.
  • the linker can form a complex with at least one selected from the group consisting of mRNA, cDNA, protein, and peptide.
  • the first segment has the property of forming a bond between the linker and the protein or peptide
  • the second segment has the property of forming a bond between the linker and at least one of mRNA and cDNA. have a property. Therefore, a user using a linker can design each of the first segment and the second segment according to conditions such as desired binding characteristics and detection method. Therefore, the linker can be applied to a wide range of applications by designing each of the first segment and the second segment according to the user's needs.
  • the linker the conformation between the first segment and the second segment is stabilized by hybridization between at least the first hybridization site and the second hybridization site. . Therefore, compared to prior art linkers in which the conformation is stabilized by introducing side chains to the segment using a cross-linking agent, the linker according to one aspect of the present invention uses a cross-linking agent to stabilize the conformation. It can be produced without any treatment (for example, crosslinking reaction, reduction reaction of the crosslinking site, etc.). Therefore, the linker according to one aspect of the present invention can be produced in a shorter time.
  • first segment and the second segment included in the linker may each be single-stranded.
  • both the first segment and the second segment are easy to manufacture.
  • the linker itself is also easy to manufacture, since the linker can be manufactured by hybridizing the first segment and the second segment to each other.
  • a part of the first hybridization site and a part of the second hybridization site may be linked to each other by a covalent bond.
  • the double-stranded region is more stabilized, and therefore the distance between the binding site included in the first segment and the single-stranded region included in the second segment is more stabilized. Therefore, the ability of the linker to form a complex is further improved.
  • the mode of covalent bonding between the first hybridization site and the second hybridization site can be appropriately selected by those skilled in the art.
  • Examples of the mode of covalent bonding include photocrosslinking formed by photoreactive bases, click chemistry, and crosslinking reactions such as Diels-Alder reactions.
  • photoreactive bases include 3-cyanovinylcarbazole (also referred to as cnv K).
  • 3-cyanovinylcarbal is, for example, CNV-K phosphoramidite (5'-O-(4,4'-dimethoxytrityl)-1'-(3-cyanovinylcarbazol-9-yl)-2'- deoxy- ⁇ -D-ribofuranosyl-3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite) and CNV-D phosphoramidite (3-O-(4,4'-dimethoxy trityl)-2-N-(N-carboxy-3-cyanovinylcarbazole)-D-threonin-1-yl-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite), etc. can be introduced into a polynucleotide sequence by using
  • the base adjacent to the 3' end of the A/G purine ring base complementary to 3-cyanovinylcarbazole is preferably a T/C/U pyrimidine ring base. According to such a configuration, 3-cyanovinylcarbazole not only hybridizes with the complementary purine ring base, but also cross-links with the adjacent base at the 3' end of the purine ring base with high efficiency. can be formed.
  • the photoreactive base is preferably located in the middle region of the double-stranded region. Although not limited to this, it is preferred that the photoreactive base is two or more bases away from each of the 3' and 5' ends of the first hybridization site or the second hybridization site. According to such a configuration, the efficiency of forming photocrosslinks by the photoreactive base is further improved.
  • the number of covalent bonds between the first hybridization site and the second hybridization site may be 0 or 1, or may be 2 or more, and may be appropriately selected by those skilled in the art.
  • the linker may include other members than those described above.
  • Other members that the linker may include include, for example, a third segment.
  • the third segment connects the 3' end of the first segment and the 5' end of the second segment so that the same single main chain contains both the first segment and the second segment. It can be a segment to be connected.
  • the third segment may be a polynucleotide having a hairpin structure, and may include two cleavage sites positioned to sandwich the hairpin structure.
  • the third segment may also include a solid phase binding site within the hairpin structure.
  • the two cleavage sites are sites that can be selectively cleaved in order to separate the third segment from the linker at a desired timing in the method of using the linker.
  • the cleavage site may be at least one selected from the group consisting of deoxyinosine, riboG, and ribopyrimidine, but is not limited thereto.
  • the solid phase binding site is a site that binds to a solid phase in order to immobilize the linker on a solid phase, such as a substrate or a carrier, in the method of using the linker.
  • the solid phase binding site can be appropriately selected by those skilled in the art depending on the solid phase used.
  • As the solid phase binding site for example, a compound selected from the group consisting of biotin, streptavidin, alkynes, azides by click chemistry, amino groups, N-hydroxysuccinimide esters (NHS), SH groups, and Au; Examples include a site consisting of polyA bound to.
  • FIG. 1 is a schematic diagram illustrating the configuration of a linker 100 according to an embodiment of the present invention.
  • the linker 100 includes a first segment 10 and a second segment 20.
  • the linker 100 is a linker that can be used, for example, in a phenotype-genotype mapping method such as a cDNA display method.
  • the first segment 10 includes a first hybridization site 11, a binding site 12, a 5'-5' bond 13, a first spacer site 14, and a second spacer site 15. , and a fluorescent labeling site 16.
  • the first hybridization site 11 has the polynucleotide sequence set forth in SEQ ID NO:1.
  • Binding site 12 is puromycin.
  • the 5'-5' bond 13 is a 5'-5' bond between A at the 5' end of the first spacer site 14 and T at the 5' end of the second spacer site 15.
  • the first spacer site 14 is a site having the polyA12 sequence set forth in SEQ ID NO:2.
  • the second spacer site 15 is a site having the sequence 3'-CC(PEG) 3 CTCT * CT-5'.
  • Fluorescent labeling moiety 16 is FITC bound to T * of second spacer moiety 15 as a side chain.
  • the second segment 20 includes a second hybridization site 21 and a single-stranded region 22.
  • the second segment 20 also includes a reverse transcription initiation site 23 at the 3' end of the single-stranded region 22.
  • the second hybridization site 21 has the polynucleotide sequence set forth in SEQ ID NO:3.
  • Single-stranded region 22 is a site having the polynucleotide sequence set forth in SEQ ID NO: 4.
  • the reverse transcription start site 23 is TCCT at the 3' end of the single-stranded region 22.
  • the first hybridization site 11 and the second hybridization site 21 hybridize to form a double-stranded region. Furthermore, in the double-stranded region, cnv K contained in the first hybridization site 11 and T contained in the second hybridization site 21 are linked to each other by a covalent bond CB1.
  • FIG. 2 is a schematic diagram illustrating the configuration of a linker 101 that is a modification of the linker 100 shown in FIG.
  • the linker 101 includes a first segment 10, a second segment 20, and a third segment 30.
  • the linker 101 is a linker that can be used, for example, in a phenotype-genotype mapping method such as a cDNA display method, in particular for solid phase synthesis.
  • the first segment 10 and the second segment 20 have the same functions and configurations as those included in the linker 100, so a detailed description thereof will be omitted.
  • the third segment 30 includes cleavage sites 31 and 32 and a solid phase binding site 33.
  • Each of the cleavage sites 31 and 32 is riboG.
  • the solid phase binding site is biotin.
  • the 3' end of the first segment 10 and the 5' end of the second segment 20 are indirectly coupled via the third segment 30, thereby The segment, the second segment, and the third segment share one main chain.
  • a complex according to one aspect of the present invention is an mRNA that hybridizes with a linker according to one aspect of the present invention and a single-stranded region included in a second segment provided by the linker to form a double-stranded region. and. According to such a configuration, an mRNA-linker complex containing a novel linker can be realized.
  • the complex according to this aspect may be referred to as a "first complex.”
  • part of the single-stranded region and part of the mRNA may be linked to each other by a covalent bond.
  • a covalent bond in the mRNA-linker complex, the bond between the linker and mRNA is stabilized, so that a stable complex can be realized.
  • Examples of the mode of covalent bonding include photocrosslinking formed by photoreactive nucleotides, click chemistry, and crosslinking reactions such as Diels-Alder reactions.
  • the complex according to one embodiment of the present invention may further include a protein or peptide bound to a binding site included in the first segment.
  • the protein or peptide bound to the binding site can be a protein or peptide encoded by the mRNA included in the complex. According to such a configuration, it is possible to realize a complex that can be used to perform a method of associating a phenotype (protein or peptide) with a genotype (mRNA), such as an mRNA display method.
  • the complex according to one embodiment of the present invention may further include cDNA that is bound to the 3' end of the second segment and is complementary to the mRNA.
  • cDNA can be synthesized by reverse transcribing mRNA hybridizing to single-stranded regions. According to such a configuration, it is possible to realize a complex that can be used for performing a method of associating a phenotype (protein or peptide) with a genotype (cDNA), such as a cDNA display method.
  • FIG. 3 is a schematic diagram illustrating the configuration of a composite body 200 according to an embodiment of the present invention.
  • the complex 200 includes a linker comprising a first segment 10 and a second segment 20, mRNA 40, polypeptide 50, and cDNA 60. A portion of the second segment 20 and a portion of the mRNA 40 are linked to each other by a covalent bond CB2.
  • a method for producing a linker according to one embodiment of the present invention is a method for producing a linker according to one embodiment of the present invention, and includes a hybridization step. Moreover, the method for producing a linker may further include a purification step and a chemical modification step.
  • hybridization process In the hybridization step, the first segment and the second segment are subjected to an annealing treatment, whereby the first hybridization site contained in the first segment and the second hybridization site contained in the second segment are combined. This is the step of hybridizing with the target region to form a double-stranded region.
  • Each of the first segment and the second segment may be manufactured by manufacturing methods known to those skilled in the art.
  • the production of each of the first segment and the second segment may be outsourced to, for example, a polynucleotide synthesis company.
  • the annealing treatment can be performed by methods known to those skilled in the art for annealing polynucleotides.
  • a solution containing the first segment and the second segment is heated at 60° C. to 100° C. for 2 minutes to 60 minutes using a heating device such as a heat block, an aluminum block, or a water bath. This can be carried out by allowing the solution to stand at room temperature for 2 to 60 minutes to gently lower the temperature of the solution, and further cooling to -5°C to 10°C.
  • the solution containing the first segment and the second segment is heated at 90°C for 5 minutes on an aluminum block, then at 70°C for 5 minutes on an aluminum block, and finally at room temperature. It is preferable to carry out the test by allowing the test to stand still for 10 minutes, and then cooling it by placing it on ice.
  • the solution containing the first segment and the second segment may further contain at least one selected from the group consisting of an inorganic salt, a salt of an organic compound, and a pH buffer.
  • the hybridization step forms the covalent bond. It may also include processing for If the covalent bond is photocrosslinking, the treatment to form the covalent bond may be UV irradiation. The duration of UV irradiation can be, for example, 0.5 minutes to 5 minutes. In the hybridization step, the annealing treatment and the treatment for forming a covalent bond may be performed simultaneously or sequentially.
  • FIG. 4 is a schematic diagram illustrating the configuration of the method S1 for manufacturing the linker 100 shown in FIG. 1.
  • the method S1 for manufacturing the linker 100 includes a hybridization step S11.
  • the first segment 10 and the second segment 20 are subjected to an annealing treatment and a UV irradiation treatment to produce a linker 100 containing a covalent bond CB1 in the double-stranded region.
  • linkers are used in functional polypeptide search techniques known to those skilled in the art. Techniques for searching for functional polypeptides include, for example, phenotype-genotype mapping methods such as cDNA display methods and mRNA display methods.
  • the linker can be applied to a wide range of applications without dedicated optimization. Therefore, users can use the linker without laborious optimization.
  • FIG. 5 is a schematic diagram illustrating the configuration of cDNA display method S2 using the linker 100 shown in FIG. 1.
  • the cDNA display method S2 includes a hybridization step S21, a translation step S22, and a reverse transcription step S23.
  • the hybridization step S21 is a step of forming an mRNA-linker complex 202 by hybridizing the single-stranded region 22 included in the linker 100 and the mRNA 40.
  • linker 100 and mRNA 40 are subjected to annealing treatment and UV irradiation treatment to form mRNA-linker complex 202 containing covalent bond CB2.
  • the translation step S22 is a step of translating the mRNA 40 and binding the generated polypeptide 50 to the binding site 12 included in the linker 100 to form an mRNA-linker-polypeptide complex 203.
  • translation of mRNA 40 can be performed by a method known to those skilled in the art.
  • the generated polypeptide 50 may have its C-terminus bound to the binding site 12, thereby forming an mRNA-linker-polypeptide complex 203.
  • the reverse transcription step S23 is a step in which cDNA 60 complementary to mRNA 40 is synthesized by reverse transcription of mRNA 40, and an mRNA-linker-polypeptide-cDNA complex 200 is formed.
  • reverse transcription of mRNA 40 can be performed by a method known to those skilled in the art. Further, the reverse transcription step S23 may include a purification treatment as appropriate.
  • kits One aspect of the invention relates to a kit.
  • a kit according to one aspect of the present invention is a kit for manufacturing a linker including a first segment and a second segment, the kit including the first segment and the second segment, and the kit includes the first segment and the second segment.
  • a first hybridization site containing a polynucleotide sequence contained in one segment and a second hybridization site containing a polynucleotide sequence contained in a second segment hybridize to form a double-stranded region.
  • the first segment has a sequence capable of forming a protein or peptide, and the first segment is bonded to the 5' end side when viewed from the first hybridization site, and has a binding site that binds to a protein or peptide and a first hybridization site. a 5'-5' bond between the nucleotides located between the second segment and the second hybridization site; Contains areas. According to such a configuration, a kit for producing a novel linker that connects a protein or peptide and a polynucleotide can be realized.
  • first segment and the second segment included in the kit according to an embodiment of the present invention has the same function and configuration as the first segment and the second segment included in the linker according to an embodiment of the present invention. Therefore, detailed explanation thereof will be omitted.
  • the first hybridization site included in the first segment and the second hybridization site included in the second segment have sequences that can hybridize to form a double-stranded region. It is enough if you have it. In other words, in the kit, the first hybridization site and the second hybridization site do not need to form a double-stranded region.
  • the kit may include a container in which both the first segment and the second segment are enclosed, or may include a container in which each is enclosed separately.
  • the kit may include a solvent for dissolving at least one of the first segment and the second segment, or materials for preparing the solvent.
  • the solvent include: water; alcohols such as methanol, ethanol and mercaptoethanol; and dimethylacetamide and dimethylformamide.
  • the solvent may be encapsulated in a container in which the first segment and the second segment are encapsulated, so that the first segment and the second segment are dissolved in a solution of the first segment and the second segment.
  • the segment may be enclosed in a container.
  • the kit may include members for carrying out the uses of the linker described above.
  • members include ribosomes and enzymes such as reverse transcriptase, salts for adjusting ionic strength, pH buffers, preservatives, and the like.
  • the kit may include instructions that instruct the user on how to use the kit.
  • the manual may be a paper medium on which instructions for the user are printed, or may be an electronic medium that stores instructions for the user.
  • the instruction manual may be an instruction manual that explains how to access the method of using the kit (for example, a URL of a medium that can be viewed on the Internet).
  • the linker according to the first aspect of the present invention is a linker comprising a first segment and a second segment, and which includes a polynucleotide sequence contained in the first segment.
  • the first hybridization site having a polynucleotide sequence and the second hybridization site having a polynucleotide sequence contained in the second segment hybridize to form a double-stranded region, and the first hybridization site has a polynucleotide sequence contained in the second segment.
  • the segment is bonded to the 5' end side when viewed from the first hybridization site, and is located between a binding site that binds to a protein or a peptide, and the first hybridization site and the binding site. and a 5'-5' bond between nucleotides, and the second segment includes a single-stranded polynucleotide region on the 3' end side as viewed from the second hybridization site.
  • a part of the first hybridization site and a part of the second hybridization site share connected to each other by bonds.
  • the first segment connects the first hybridization site with the 5'-5' bond. and a first spacer region having a polyA m sequence (where m represents an integer of 2 or more and 50 or less).
  • the G/C content of the first hybridization site is 20%. The above is 99% or less.
  • the single-stranded region of the second segment hybridizes with mRNA.
  • the second segment includes a reverse transcription initiation site for initiating synthesis of cDNA complementary to the mRNA.
  • the linker according to the sixth aspect of the present invention has the structure that the binding site is puromycin, 3'-N-aminoacylpuromycin amino It is at least one selected from the group consisting of nucleosides (PANS-amino acids) and 3'-N-aminoacyladenosine aminonucleosides (AANS-amino acids).
  • PANS-amino acids nucleosides
  • AANS-amino acids 3'-N-aminoacyladenosine aminonucleosides
  • the linker according to the seventh aspect of the present invention has the structure that the first segment is connected to the binding site and the 5'-5' A second spacer moiety having (PEG) n (wherein PEG represents polyethylene glycol and n represents an integer of 1 or more and 20 or less) is included between the bond and the bond.
  • PEG polyethylene glycol
  • n represents an integer of 1 or more and 20 or less
  • a kit according to an eighth aspect of the present invention is a kit for producing a linker comprising a first segment and a second segment, the kit comprising: the first segment and the second segment.
  • a first hybridization site having a polynucleotide sequence contained in the first segment and a second hybridization site having a polynucleotide sequence contained in the second segment are hybridization sites.
  • the first segment has a sequence capable of forming a double-stranded region by soybean, and the first segment is bound to the 5' end side when viewed from the first hybridization site, and has a binding site that binds to a protein or peptide.
  • Linker L1 used in this example was synthesized. First, a compound FS1 having the following sequence was synthesized as a first segment. In addition, a compound SS1 having the following sequence was synthesized as a second segment. The synthesis was entrusted to Tsukuba Oligo Service Co., Ltd. and was carried out using an automatic nucleic acid synthesizer according to the phosphoramidite method.
  • X4 represents the following sequence. 5'-GC * C * A cnv KGC * C * TCCT-3' (SEQ ID NO: 4, 12mer)
  • cnv K represents 3-cyanovinylcarbazole and C * represents 5-methyl-dC.
  • Compound FS1 final concentration 500 ⁇ M
  • compound SS1 final concentration 500 ⁇ M
  • 4 ⁇ L of 0.25 M Tris-HCl buffer (pH 7.5) and 4 ⁇ L of 1 M NaCl aqueous solution The resulting mixed solution was maintained at 90°C for 2 minutes, then cooled to 70°C for 1 minute, maintained at 70°C for 1 minute, and then cooled to 25°C for 15 minutes to perform an annealing treatment.
  • Compound FS1 and compound SS1 were hybridized.
  • the mixed solution was irradiated with UV at a wavelength of 365 nm, an intensity of 500 mJ/ cm2 , and an irradiation time of 60 seconds to form a covalent bond between compound FS1 and compound SS1 by photocrosslinking, and linker L1 of Example 1 was formed. Obtained.
  • Linker L1 (final concentration 100 ⁇ M) and mRNA encoding interleukin-17A (IL-17A) (prepared by Tsukuba Oligo Service Co., Ltd.) were added to 25 mM Tris-HCl buffer (pH 7.5) containing 100 mM NaCl. , SEQ ID NO: 5) (final concentration 100 ⁇ M) was added.
  • the mixed solution was subjected to an annealing treatment by incubating at 90°C for 1 minute, then at 70°C for 1 minute, and decreasing the temperature to 25°C at a rate of 0.08°C/sec. The 3' end and the 3' end of the mRNA were hybridized.
  • FIG. 6 shows the structure of the mRNA-linker L1 complex.
  • FIG. 6 is a schematic diagram showing the structure of the mRNA-linker L1 complex of Example 1 of the present invention.
  • FIG. 7 is a gel electrophoresis photograph showing the verification results of the formation of mRNA-linker complex L1 in Example 1 of the present invention.
  • lane 1 shows the 100bp DNA ladder
  • lane 2 shows the 10bp DNA ladder
  • lane 3 shows the linker L1 obtained by HPLC purification
  • lane 4 shows the mRNA
  • lane 5 shows the annealing treatment
  • UV Figure 2 shows a mixed solution containing mRNA, linker L1 and mRNA-linker L1 complex that has been subjected to irradiation.
  • the formation efficiency of the mRNA-linker L1 complex calculated from the ratio of the fluorescence intensity of FITC contained in linker L1, was 78% to 80%. This value of the formation efficiency is comparable to the value of the formation efficiency of the mRNA-linker LR1 complex by the linker LR1 used in Reference Example 1 (60% to 90%, catalog value).
  • mRNA display (Formation of mRNA-linker-polypeptide complex (mRNA display))
  • the mRNA-linker L1 complex obtained by HPLC purification was translated using a cell-free translation system to form an mRNA-linker-polypeptide complex (hereinafter sometimes referred to as mRNA display).
  • the composition of the reaction solution used for cell-free translation was Translation Mix 0.5 ⁇ L, Retic Lysate 1 17.5 ⁇ L, RNase inhibitor 0.5 ⁇ L, mRNA-linker L1 complex 3 pmol, and ultrapure water (added to a final volume of 25 ⁇ L). Met.
  • the tube containing the above translation reaction solution was incubated at 30°C for 20 minutes, then 12 ⁇ L of 3M KCl and 3 ⁇ L of 1M MgCl 2 were added to the translation reaction solution, and the tube was further incubated at 37°C for 60 minutes. Next, 10 ⁇ L of ethylenediaminetetraacetic acid (pH 8.0) was added to the translation reaction solution, incubated at 37°C for 10 minutes, and then 50 ⁇ L of 2x binding buffer was added to transform the IL-1 synthesized using the free translation system.
  • mRNA display L1 was obtained in which 17A was bound to the mRNA-linker L1 complex.
  • the purified mRNA display L1 was reverse transcribed to form an mRNA-linker-polypeptide-cDNA complex (hereinafter sometimes referred to as cDNA display).
  • the composition of the reaction solution used for reverse transcription was: 20 ⁇ L of 5x ReverTra Ace (manufactured by Toyobo) attached buffer, 10 ⁇ L of 10 mM dNTP mixed solution, 2 ⁇ L of Rever Tra Ace (100 U/ ⁇ L), and 30 ⁇ L of the solution containing mRNA display L1 obtained above. , and ultrapure water (added to a final volume of 100 ⁇ L).
  • the above reaction solution for reverse transcription was incubated at 42° C. for 90 minutes while stirring with a rotator to obtain cDNA display L1 in which cDNA complementary to mRNA was bound to mRNA display L1.
  • the solution containing cDNA display L1 contains an mRNA-linker L1-cDNA complex to which no IL17-A is bound, and an mRNA-linker L1-polypeptide-cDNA complex to which IL17-A is bound (i.e., cDNA display L1). including both.
  • His-tag purification was performed. First, His Mag sepharose Ni was added to the solution containing the above cDNA display L1, and the solution was incubated at 25° C. for 1 hour while shaking using a shaker. The solution was centrifuged at 5000 rpm and the supernatant (His sup.) was removed.
  • Linker LR1 of Reference Example 1 of the present invention was prepared according to the description of Example 1 of WO 2016/159211. An mRNA-linker LR1 complex, an mRNA-linker LR1-polypeptide complex (mRNA display LR1), and an mRNA-linker LR1- Formation and purification of a polypeptide-cDNA complex (cDNA display LR1) was performed.
  • FIG. Figure 8 is a gel showing the results of the cDNA display method when linker LR1 of Reference Example 1 of the present invention was used (left figure) and when linker L1 of Example 1 of the present invention was used (right figure). This is an electrophoresis photograph.
  • mRNA display L1 and cDNA display L1 could be formed.
  • mRNA display, cDNA display (including complexes to which IL-17A is not bound), and cDNA display (complexes to which IL-17A is not bound) calculated from the ratio of the fluorescence intensity of FITC contained in linker L1.
  • the formation efficiency of (not including) was as shown in Table 1 below.
  • the formation efficiency of mRNA display and cDNA display when linker L1 of Example 1 of the present invention was used was comparable or higher than that of linker LR1 of Reference Example 1. Furthermore, the reverse transcription efficiency when linker L1 was used was also comparable or higher than that using linker LR1. From this, it is expected that the linker L1 of Example 1 of the present invention can be used as an excellent linker in functional polypeptide search techniques such as cDNA display methods.
  • the present invention can be utilized, for example, in searching for functional polypeptides.
  • Second segment 11
  • First hybridization site 12
  • Binding site 13 5'-5' bond 14
  • First spacer site 15
  • Second spacer site 20
  • Second segment 21
  • Second hybridization site 22
  • Single strand Region 23
  • Reverse transcription start site 40
  • mRNA 50
  • polypeptide 60
  • cDNA 100 linker

Abstract

Provided is a linker (100) including a first segment (10) and a second segment (20), wherein: a first hybridization site (11) included in the first segment (10) and a second hybridization site (21) included in the second segment (20) hybridize to form a double-stranded region; the first segment (10) includes a binding site (12) and a 5'-5' bond (13) between nucleotides; and the second segment (20) includes a polynucleotide single-stranded region (22).

Description

リンカー、およびキットlinkers and kits
 本発明は、リンカー、およびキットに関する。 The present invention relates to a linker and a kit.
 新規な機能性ポリペプチドの探索技術の一つとして、ポリペプチド(表現型)と、当該ポリペプチドの配列情報を保存するポリヌクレオチド(遺伝子型)とを対応付ける技術であるcDNAディスプレイ法が知られている。cDNAディスプレイ法においては、ポリペプチド(表現型)と、当該ポリペプチドをコードするmRNAと、当該mRNAを逆転写して得られるcDNA(遺伝子型)とを結合させるリンカーが用いられる。 As one of the techniques for searching for novel functional polypeptides, the cDNA display method, which is a technique that associates a polypeptide (phenotype) with a polynucleotide (genotype) that preserves the sequence information of the polypeptide, is known. There is. In the cDNA display method, a linker is used that connects a polypeptide (phenotype), mRNA encoding the polypeptide, and cDNA (genotype) obtained by reverse transcription of the mRNA.
 このようなリンカーとして、例えば、特許文献1には、固相結合部位、固相切断部位、側鎖連結部位、高速光架橋部位および逆転写開始領域を備える主鎖と、蛍光標識、タンパク質結合部位および連結形成部位を備える側鎖とを有する高速光架橋型共用リンカーが記載されている。 As such a linker, for example, Patent Document 1 describes a main chain comprising a solid-phase binding site, a solid-phase cleavage site, a side chain linking site, a high-speed photocrosslinking site, and a reverse transcription initiation region, a fluorescent label, and a protein binding site. and a side chain with a linkage formation site.
国際公開第2016/159211号International Publication No. 2016/159211
 機能性ポリペプチドの探索を行うために使用可能な、タンパク質またはペプチドとポリヌクレオチドとを結合させるリンカーへの需要は高く、新規のリンカーが求められている。 There is a high demand for linkers that connect proteins or peptides and polynucleotides that can be used to search for functional polypeptides, and new linkers are needed.
 本発明の一態様は、タンパク質またはペプチドとポリヌクレオチドとを結合させる新規なリンカー、およびその関連技術を提供することを目的とする。 One aspect of the present invention aims to provide a novel linker that connects a protein or peptide and a polynucleotide, and its related technology.
 上記の課題を解決するために、本発明の一態様に係るリンカーは、第1のセグメントと第2のセグメントとを備えるリンカーであって、前記第1のセグメントに含まれる、ポリヌクレオチド配列を有する第1のハイブリダイゼーション部位と、前記第2のセグメントに含まれる、ポリヌクレオチド配列を有する第2のハイブリダイゼーション部位とは、ハイブリダイズして二本鎖領域を形成しており、前記第1のセグメントは、前記第1のハイブリダイゼーション部位からみて5’末端側に結合しており、タンパク質またはペプチドと結合する結合部位と、前記第1のハイブリダイゼーション部位と前記結合部位との間に位置している、ヌクレオチド間の5’-5’結合と、を含み、前記第2のセグメントは、前記第2のハイブリダイゼーション部位からみて3’末端側にポリヌクレオチドの一本鎖領域を含む。 In order to solve the above problems, a linker according to one aspect of the present invention is a linker comprising a first segment and a second segment, and has a polynucleotide sequence contained in the first segment. The first hybridization site and the second hybridization site having a polynucleotide sequence contained in the second segment hybridize to form a double-stranded region, and the first hybridization site is bonded to the 5' end side as viewed from the first hybridization site, and is located between a binding site that binds to a protein or peptide, and the first hybridization site and the binding site. , a 5'-5' bond between nucleotides, and the second segment includes a single-stranded polynucleotide region on the 3' end side as viewed from the second hybridization site.
 本発明の一態様に係るキットは、第1のセグメントと第2のセグメントとを備えるリンカーを製造するためのキットであって、前記キットは、前記第1のセグメントと前記第2のセグメントとを備え、前記第1のセグメントに含まれる、ポリヌクレオチド配列を有する第1のハイブリダイゼーション部位と、前記第2のセグメントに含まれる、ポリヌクレオチド配列を有する第2のハイブリダイゼーション部位とは、ハイブリダイズして二本鎖領域を形成可能な配列を有し、前記第1のセグメントは、前記第1のハイブリダイゼーション部位からみて5’末端側に結合しており、タンパク質またはペプチドと結合する結合部位と、前記第1のハイブリダイゼーション部位と前記結合部位との間に位置している、ヌクレオチド間の5’-5’結合と、を含み、前記第2のセグメントは、前記第2のハイブリダイゼーション部位からみて3’末端側にポリヌクレオチドの一本鎖領域を含む。 A kit according to one aspect of the present invention is a kit for producing a linker including a first segment and a second segment, the kit including the first segment and the second segment. The first hybridization site having a polynucleotide sequence contained in the first segment and the second hybridization site having a polynucleotide sequence contained in the second segment are capable of hybridizing. the first segment has a sequence capable of forming a double-stranded region, the first segment is bound to the 5' end side as viewed from the first hybridization site, and a binding site that binds to a protein or peptide; a 5'-5' bond between nucleotides located between the first hybridization site and the binding site, and the second segment is located between the first hybridization site and the binding site; Contains a single-stranded polynucleotide region at the 3' end.
 本発明の一態様によれば、タンパク質またはペプチドとポリヌクレオチドとを結合させる新規なリンカー、およびその関連技術を提供することができる。 According to one aspect of the present invention, a novel linker that connects a protein or peptide and a polynucleotide, and its related technology can be provided.
本発明の一実施形態に係るリンカーの構成を説明する模式図である。FIG. 1 is a schematic diagram illustrating the configuration of a linker according to an embodiment of the present invention. 図1に示すリンカーの変形例であるリンカーの構成を説明する模式図である。2 is a schematic diagram illustrating the configuration of a linker that is a modification of the linker shown in FIG. 1. FIG. 本発明の一実施形態に係る複合体の構成を説明する模式図である。FIG. 1 is a schematic diagram illustrating the configuration of a composite body according to an embodiment of the present invention. 図1に示すリンカーの製造方法の構成を説明する模式図である。FIG. 2 is a schematic diagram illustrating the configuration of the linker manufacturing method shown in FIG. 1. FIG. 図1に示すリンカーを用いる、cDNAディスプレイ法の構成を説明する模式図である。FIG. 2 is a schematic diagram illustrating the configuration of a cDNA display method using the linker shown in FIG. 1. 本発明の実施例1のmRNA-リンカー複合体の構成を示す模式図である。FIG. 1 is a schematic diagram showing the structure of the mRNA-linker complex of Example 1 of the present invention. 本発明の実施例1におけるmRNA-リンカー複合体の形成の検証結果を示すゲル電気泳動写真である。1 is a gel electrophoresis photograph showing the verification results of the formation of an mRNA-linker complex in Example 1 of the present invention. 本発明の参考例1のリンカーを使用した場合(左図)、および本発明の実施例1のリンカーを使用した場合(右図)、のcDNAディスプレイ法の結果を表すゲル電気泳動写真である。These are gel electrophoresis photographs showing the results of the cDNA display method when the linker of Reference Example 1 of the present invention was used (left figure) and when the linker of Example 1 of the present invention was used (right figure).
 本発明の一態様について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能である。また、実施形態および実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態および実施例についても本発明の技術的範囲に含まれる。また、本明細書において「A~B」とは、特に指定しない限りA以上B以下であることを示している。 One embodiment of the present invention will be described below, but the present invention is not limited thereto. The present invention is not limited to each configuration described below, and various changes can be made within the scope of the claims. Further, embodiments and examples obtained by appropriately combining the technical means disclosed in the embodiments and examples are also included in the technical scope of the present invention. Further, in this specification, "A to B" indicates that the number is greater than or equal to A and less than or equal to B, unless otherwise specified.
 本明細書において、「リンカー」とは、mRNA-リンカー複合体、リンカー-タンパク質/ペプチド複合体、mRNA-リンカー-タンパク質/ペプチド複合体、mRNA-リンカー-cDNA複合体およびmRNA-リンカー-タンパク質/ペプチド-cDNA複合体からなる群より選択される少なくとも1つの複合体を形成するために、mRNA、タンパク質/ペプチドおよびcDNAなどと結合し得る化合物を意味する。 As used herein, "linker" refers to mRNA-linker complex, linker-protein/peptide complex, mRNA-linker-protein/peptide complex, mRNA-linker-cDNA complex, and mRNA-linker-protein/peptide complex. - refers to a compound capable of binding with mRNA, protein/peptide, cDNA, etc. to form at least one complex selected from the group consisting of: -cDNA complex.
 本明細書において、「ポリヌクレオチド配列」とは、ポリヌクレオチドにおける構成単位の塩基配列を意味し、ここで、「ポリヌクレオチド」とは、ヌクレオチドを構成単位として含む直鎖状重合体を意味する。本明細書において、「Xはポリヌクレオチド配列を有する」および「ポリヌクレオチド配列を有するX」などの表現は、Xの構造に、特定の塩基配列を有するポリヌクレオチドが含まれていることが意図される。ポリヌクレオチド配列において、塩基それぞれは、A(アデニン)、T(チミン)、G(グアニン)、C(シトシン)およびU(ウラシル)などの天然塩基であってもよく、天然塩基に由来する誘導体塩基であってもよく、人工的に合成された合成塩基であってもよい。ポリヌクレオチド配列において、ヌクレオチドそれぞれは、リボヌクレオチド、デオキシリボヌクレオチド、およびこれらの誘導体から独立して選択される。ポリヌクレオチドは、ヌクレオチド以外に由来する構成単位を含んでもよい。ヌクレオチド以外に由来する構成単位としては、例えば、CNV-Dホスホロアミダイト等の合成アミノ酸等が挙げられる。ポリヌクレオチドは、ポリヌクレオチドの総質量に対して、ヌクレオチドを構成単位とする部分を、50質量%以上含むことが好ましく、70質量%以上含むことがより好ましく、90質量%以上含むことがさらに好ましい。 As used herein, the term "polynucleotide sequence" refers to a base sequence of a constituent unit in a polynucleotide, and here, the term "polynucleotide" refers to a linear polymer containing nucleotides as constituent units. As used herein, expressions such as "X has a polynucleotide sequence" and "X has a polynucleotide sequence" are intended to mean that the structure of X includes a polynucleotide having a specific base sequence. Ru. In a polynucleotide sequence, each base may be a natural base such as A (adenine), T (thymine), G (guanine), C (cytosine) and U (uracil), or derivative bases derived from natural bases. It may also be an artificially synthesized synthetic base. In a polynucleotide sequence, each nucleotide is independently selected from ribonucleotides, deoxyribonucleotides, and derivatives thereof. Polynucleotides may include structural units derived from sources other than nucleotides. Examples of structural units derived from other than nucleotides include synthetic amino acids such as CNV-D phosphoramidites. The polynucleotide preferably contains 50% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more of a portion having nucleotides as a constituent unit, based on the total mass of the polynucleotide. .
 本明細書において、「ハイブリダイズ」とは、2つのポリヌクレオチドの一本鎖領域同士が、相補性を有する塩基対間の水素結合によって二本鎖領域を形成することを意味する。一本鎖領域同士の相補性は、20%以上であることが好ましく、40%以上であることがより好ましく、45%以上であることがさらに好ましい。 As used herein, "hybridization" means that the single-stranded regions of two polynucleotides form a double-stranded region through hydrogen bonding between complementary base pairs. The complementarity between single-stranded regions is preferably 20% or more, more preferably 40% or more, and even more preferably 45% or more.
 本明細書において、「タンパク質/ペプチド」とは、タンパク質またはペプチドを意味する。本明細書において、タンパク質およびペプチドのそれぞれは、当技術分野において一般的に理解される意味を有する。また、本明細書において、タンパク質およびペプチドのうち任意の一方または両方を「ポリペプチド」と記載することがある。 As used herein, "protein/peptide" means a protein or a peptide. As used herein, each of protein and peptide has the meaning commonly understood in the art. Further, in this specification, any one or both of a protein and a peptide may be referred to as a "polypeptide."
 〔リンカー〕
 本発明の一態様は、リンカーに関する。本発明の一態様に係るリンカーは、第1のセグメントと第2のセグメントとを備えるリンカーであって、第1のセグメントに含まれる、ポリヌクレオチド配列を有する第1のハイブリダイゼーション部位と、第2のセグメントに含まれる、ポリヌクレオチド配列を有する第2のハイブリダイゼーション部位とは、ハイブリダイズして二本鎖領域を形成しており、第1のセグメントは、第1のハイブリダイゼーション部位からみて5’末端側に結合しており、タンパク質またはペプチドと結合する結合部位と、第1のハイブリダイゼーション部位と結合部位との間に位置している、ヌクレオチド間の5’-5’結合と、を含み、第2のセグメントは、第2のハイブリダイゼーション部位からみて3’末端側にポリヌクレオチドの一本鎖領域を含む。このような構成によれば、タンパク質またはペプチドとポリヌクレオチドとを結合させる新規なリンカーを提供できる。
[Linker]
One aspect of the present invention relates to a linker. A linker according to one aspect of the present invention is a linker comprising a first segment and a second segment, wherein a first hybridization site having a polynucleotide sequence contained in the first segment and a second The second hybridization site having a polynucleotide sequence contained in the segment hybridizes to form a double-stranded region, and the first segment is 5' as viewed from the first hybridization site. a binding site that is attached to the terminal side and that binds to a protein or peptide, and a 5'-5' bond between nucleotides that is located between the first hybridization site and the binding site, The second segment includes a single-stranded region of the polynucleotide at the 3' end as viewed from the second hybridization site. According to such a configuration, a novel linker that connects a protein or peptide and a polynucleotide can be provided.
 本発明の一態様に係るリンカーは、第1のセグメントと第2のセグメントとを備える。リンカーにおいて、同一の一本の主鎖に第1のセグメントおよび第2のセグメントの両方が含まれてもよく、二本の主鎖それぞれに第1のセグメントおよび第2のセグメントのそれぞれが含まれてもよい。二本の主鎖それぞれに第1のセグメントおよび第2のセグメントのそれぞれが含まれる場合には、第1のセグメントおよび第2のセグメントそれぞれを安価に合成することができ、したがってリンカーを安価に合成することができる。同一の一本の主鎖に第1のセグメントおよび第2のセグメントの両方が含まれる場合、第1のセグメントの3’末端と、第2のセグメントの5’末端とが、直接的に結合していてもよく、他の部材を介して間接的に結合していてもよい。 A linker according to one aspect of the present invention includes a first segment and a second segment. In the linker, the same main chain may contain both the first segment and the second segment, and each of the two main chains may contain each of the first segment and the second segment. It's okay. When each of the two main chains contains the first segment and the second segment, each of the first segment and the second segment can be synthesized at low cost, and therefore the linker can be synthesized at low cost. can do. When both the first segment and the second segment are included in the same main chain, the 3' end of the first segment and the 5' end of the second segment are directly bonded. They may also be connected indirectly through other members.
 (第1のセグメント)
 第1のセグメントは、リンカーが形成し得る複合体において、当該リンカーとタンパク質/ペプチドとの間の結合を形成する性質を有するセグメントである。本発明の一態様において、第1のセグメントは、第1のハイブリダイゼーション部位と、結合部位と、5’-5’結合とを含む。また、第1のセグメントは、第1のスペーサー部位、第2のスペーサー部位および蛍光標識部位からなる群より選択される少なくとも1つをさらに含んでもよい。
(1st segment)
The first segment is a segment that has the property of forming a bond between the linker and the protein/peptide in a complex that the linker can form. In one aspect of the invention, the first segment includes a first hybridization site, a binding site, and a 5'-5' bond. Further, the first segment may further include at least one selected from the group consisting of a first spacer site, a second spacer site, and a fluorescent label site.
 (第1のハイブリダイゼーション部位)
 第1のハイブリダイゼーション部位は、第1のセグメントの主鎖上に位置し、ポリヌクレオチド配列を有する部位である。第1のハイブリダイゼーション部位は、リンカーにおいて、後述する第2のハイブリダイゼーション部位とハイブリダイズして二本鎖領域を形成する。第1のハイブリダイゼーション部位が有するポリヌクレオチド配列は、第1のハイブリダイゼーション部位と第2のハイブリダイゼーション部位とがハイブリダイズして二本鎖領域を形成可能である限りにおいて、当業者によって適宜に選択され得る。
(First hybridization site)
The first hybridization site is a site located on the backbone of the first segment and has a polynucleotide sequence. The first hybridization site hybridizes with the second hybridization site described below in the linker to form a double-stranded region. The polynucleotide sequence possessed by the first hybridization site can be appropriately selected by a person skilled in the art, as long as the first hybridization site and the second hybridization site can hybridize to form a double-stranded region. can be done.
 第1のハイブリダイゼーション部位において、ポリヌクレオチド配列の長さは、5ヌクレオチド長以上であることが好ましく、10ヌクレオチド長以上であることがより好ましく、15ヌクレオチド長以上であることがさらに好ましい。ポリヌクレオチド配列の長さがこのような数値範囲内であることによって、第1のハイブリダイゼーション部位および第2のハイブリダイゼーション部位による二本鎖領域の形成効率が向上する。また、第1のハイブリダイゼーション部位において、ポリヌクレオチド配列の長さは、90ヌクレオチド長以下であることが好ましく、60ヌクレオチド長以下であることがより好ましく、40ヌクレオチド長以下であることがさらに好ましい。ポリヌクレオチド配列の長さがこのような数値範囲内であることによって、リンカーを安価に製造することができる。 At the first hybridization site, the length of the polynucleotide sequence is preferably 5 nucleotides or more, more preferably 10 nucleotides or more, and even more preferably 15 nucleotides or more. When the length of the polynucleotide sequence is within such a numerical range, the efficiency of forming a double-stranded region by the first hybridization site and the second hybridization site is improved. Further, at the first hybridization site, the length of the polynucleotide sequence is preferably 90 nucleotides or less, more preferably 60 nucleotides or less, and even more preferably 40 nucleotides or less. When the length of the polynucleotide sequence is within such a numerical range, the linker can be manufactured at low cost.
 第1のハイブリダイゼーション部位のG/C含有量は、20%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることがさらに好ましく、50%以上であることがよりさらに好ましい。第1のハイブリダイゼーション部位のG/C含有量がこのような数値範囲内であることによって、第1のハイブリダイゼーション部位および第2のハイブリダイゼーション部位による二本鎖領域の形成効率が向上する。また、第1のハイブリダイゼーション部位のG/C含有量は、99%以下であることが好ましく、98%以下であることがより好ましく、90%以下であることがさらに好ましく、80%以下であることがよりさらに好ましい。第1のハイブリダイゼーション部位のG/C含有量がこのような数値範囲内であることによって、第1のハイブリダイゼーション部位による非特異的な吸着が減少する。なお、本明細書において、「G/C含有量」とは、ポリヌクレオチド配列に含まれるすべての塩基の合計数に対する、ポリヌクレオチド配列に含まれるG(グアニン)塩基、C(シトシン)塩基およびこれらに由来する誘導体塩基の合計数の割合を意味する。 The G/C content of the first hybridization site is preferably 20% or more, more preferably 30% or more, even more preferably 40% or more, and even more preferably 50% or more. Even more preferred. When the G/C content of the first hybridization site is within such a numerical range, the efficiency of forming a double-stranded region by the first hybridization site and the second hybridization site is improved. Further, the G/C content of the first hybridization site is preferably 99% or less, more preferably 98% or less, even more preferably 90% or less, and even more preferably 80% or less. Even more preferred. By having the G/C content of the first hybridization site within such a numerical range, nonspecific adsorption by the first hybridization site is reduced. In this specification, "G/C content" refers to the amount of G (guanine) bases, C (cytosine) bases, and these bases contained in a polynucleotide sequence relative to the total number of all bases contained in the polynucleotide sequence. means the percentage of the total number of derivative bases derived from.
 (結合部位)
 結合部位は、第1のハイブリダイゼーション部位からみて5’末端側に結合しており、タンパク質またはペプチドと結合する部位である。結合部位は、リボソームによるmRNAの翻訳によって伸長している最中のタンパク質またはペプチドのC末端に対して結合する性質を有する部位である。結合部位は、例えばリボソームがmRNAを翻訳することができる条件において、タンパク質/ペプチドに特異的に結合する性質を有することが好ましい。
(Binding site)
The binding site is bound to the 5' end side as viewed from the first hybridization site, and is a site that binds to a protein or peptide. The binding site is a site that has the property of binding to the C-terminus of a protein or peptide that is being elongated by translation of mRNA by ribosomes. Preferably, the binding site has the property of specifically binding to the protein/peptide, for example under conditions that allow ribosomes to translate mRNA.
 結合部位は、上記の性質を有する限りにおいて、任意の構造を有し得る。結合部位としては、例えば、ピューロマイシン、3’-N-アミノアシルピューロマイシンアミノヌクレオシド(PANS-アミノ酸)、3’-N-アミノアシルアデノシンアミノヌクレオシド(AANS-アミノ酸)、リボシチジルピューロマイシン(rCpPur)、デオキシジルピューロマイシン(dCpPur)およびデオキシウリジルピューロマイシン(dUpPur)などのアミノアシルtRNA3’末端アナログ等が挙げられる。 The binding site can have any structure as long as it has the above properties. Examples of the binding site include puromycin, 3'-N-aminoacylpuromycin aminonucleoside (PANS-amino acid), 3'-N-aminoacyladenosine aminonucleoside (AANS-amino acid), ribocytidyl puromycin (rCpPur), Examples include aminoacyl-tRNA 3'-terminal analogs such as deoxydylpuromycin (dCpPur) and deoxyuridylpuromycin (dUpPur).
 PANS-アミノ酸としては、例えば、アミノ酸部分がグリシンであるPANS-Gly、アミノ酸部分がバリンであるPANS-Val、アミノ酸部分がアラニンであるPANS-Ala、および、アミノ酸部分がすべてのアミノ酸それぞれに対応するPANS-アミノ酸混合物、が挙げられる。AANS-アミノ酸としては、例えば、アミノ酸部分がグリシンであるAANS-Gly、アミノ酸部分がバリンであるAANS-Val、アミノ酸部分がアラニンであるAANS-Ala、および、アミノ酸部分がすべてのアミノ酸それぞれに対応するAANS-アミノ酸混合物、が挙げられる。 Examples of PANS-amino acids include PANS-Gly whose amino acid portion is glycine, PANS-Val whose amino acid portion is valine, PANS-Ala whose amino acid portion is alanine, and all amino acids. PANS-amino acid mixture. Examples of AANS-amino acids include AANS-Gly where the amino acid part is glycine, AANS-Val where the amino acid part is valine, AANS-Ala where the amino acid part is alanine, and the amino acid part corresponds to all amino acids. AANS-amino acid mixture.
 結合部位は、ピューロマイシン、3’-N-アミノアシルピューロマイシンアミノヌクレオシド(PANS-アミノ酸)および3’-N-アミノアシルアデノシンアミノヌクレオシド(AANS-アミノ酸)からなる群より選択される少なくとも1種であることが好ましい。このような構成を有する結合部位は、タンパク質およびペプチドに対して高い結合能を有し、したがってリンカーが高い効率で所望の複合体を形成することができる。 The binding site is at least one selected from the group consisting of puromycin, 3'-N-aminoacylpuromycin aminonucleoside (PANS-amino acid), and 3'-N-aminoacyladenosine aminonucleoside (AANS-amino acid). is preferred. A binding site with such a configuration has a high binding capacity for proteins and peptides, and therefore the linker can form the desired complex with high efficiency.
 結合部位は、第1のセグメントにおいて、第1のハイブリダイゼーション部位からみて5’末端側に位置していればよい。結合部位は、例えば、第1のセグメントの遊離末端に位置してもよく、任意の他の部材とさらに結合していてもよい。 The binding site may be located on the 5' end side in the first segment as viewed from the first hybridization site. The binding site may be located, for example, at the free end of the first segment and may be further bound to any other member.
 (5’-5’結合)
 5’-5’結合は、第1のハイブリダイゼーション部位と結合部位との間に位置している、ヌクレオチド間の5’-5’結合である。本発明の一態様に係るリンカーがこのような構成を有することによって、第1のセグメントの主鎖上に、3’末端-(第1のハイブリダイゼーション部位)-(5’-5’結合)-(結合部位)-3’末端の順に、3つの部材が直線的に位置する。したがって、本発明の一態様では、第1のセグメントに含まれる第1のハイブリダイゼーション部位、5’-5’結合および結合部位は、一本鎖構造を有しているため、第1のセグメントおよびこれを備えるリンカーを製造することは容易である。また、結合部位が3’末端に位置していることにより、結合部位の構造として、タンパク質/ペプチドへの結合能に優れた、ピューロマイシンを含むアミノアシルtRNA3’末端アナログを採用することができる。したがって、第1のセグメントを備えるリンカーは、高い効率でタンパク質/ペプチドと複合体を形成することができる。
(5'-5' bond)
A 5'-5' bond is a 5'-5' bond between nucleotides located between the first hybridization site and the binding site. When the linker according to one aspect of the present invention has such a configuration, the 3' end-(first hybridization site)-(5'-5' bond)- (Binding site) Three members are located linearly in the order of -3' end. Therefore, in one aspect of the present invention, the first hybridization site, 5'-5' bond and binding site included in the first segment have a single-stranded structure, so that the first segment and It is easy to manufacture a linker comprising this. Furthermore, since the binding site is located at the 3' end, an aminoacyl-tRNA 3' end analog containing puromycin, which has excellent binding ability to proteins/peptides, can be employed as the structure of the binding site. Therefore, the linker comprising the first segment can form a complex with the protein/peptide with high efficiency.
 5’-5’結合は、ヌクレオチドの5’位の炭素原子と、当該ヌクレオチドとは別のヌクレオチドの5’位の炭素原子との間の、ホスホジエステル結合を介した結合である。5’-5’結合を形成する2つのヌクレオチドは、当業者によって適宜に選択され得、互いに異なる種類のヌクレオチドであってもよく、同一の種類のヌクレオチドであってもよい。5’-5’結合を形成する2つのヌクレオチドは、TとTとの組であることが好ましい。このような構成によれば、リンカー内の非特異的なハイブリダイゼーションを減じることができる。 A 5'-5' bond is a bond between a 5' carbon atom of a nucleotide and a 5' carbon atom of another nucleotide through a phosphodiester bond. The two nucleotides forming the 5'-5' bond can be appropriately selected by those skilled in the art, and may be different types of nucleotides or the same type of nucleotides. The two nucleotides forming the 5'-5' bond are preferably a pair of T and T. According to such a configuration, non-specific hybridization within the linker can be reduced.
 (第1のスペーサー部位)
 第1のスペーサー部位は、第1のハイブリダイゼーション部位と5’-5’結合との間に位置し、ポリA配列(式中、mは2以上、50以下の整数を表す)を有する部位である。本明細書において、「ポリA配列」とは、連続したm個のA(アデニル酸)からなるポリヌクレオチド配列を意味する。第1のセグメントが第1のスペーサー部位を含むことによって、結合部位と、mRNAを翻訳するリボソームの反応点との距離が好適に調整されるため、リンカーは、高い効率でタンパク質/ペプチドと複合体を形成することができる。
(First spacer part)
The first spacer site is located between the first hybridization site and the 5'-5' bond and has a polyA m sequence (where m represents an integer of 2 or more and 50 or less). It is. As used herein, the term "polyA m sequence" refers to a polynucleotide sequence consisting of m consecutive A's (adenylic acids). The inclusion of the first spacer site in the first segment favorably adjusts the distance between the binding site and the reactive site of the ribosome that translates the mRNA, allowing the linker to complex with the protein/peptide with high efficiency. can be formed.
 第1のスペーサー部位において、mは、2以上であることが好ましく、6以上であることがより好ましく、8以上であることがさらに好ましい。mがこのような数値範囲内であることによって、リンカーは、高い効率でタンパク質/ペプチドと複合体を形成することができる。第1のスペーサー部位において、mは、40以下であることが好ましく、30以下であることがより好ましく、20以下であることがさらに好ましい。mがこのような数値範囲内であることによって、リンカーは、高い効率でタンパク質/ペプチドと複合体を形成することができる。 In the first spacer portion, m is preferably 2 or more, more preferably 6 or more, and even more preferably 8 or more. By having m within such a numerical range, the linker can form a complex with the protein/peptide with high efficiency. In the first spacer region, m is preferably 40 or less, more preferably 30 or less, and even more preferably 20 or less. By having m within such a numerical range, the linker can form a complex with the protein/peptide with high efficiency.
 また、mと、後述する一本鎖領域のポリヌクレオチドに含まれるヌクレオチドの数との差は、20以下であることが好ましく、10以下であることがより好ましく、0であることがさらに好ましい。このような構成によれば、結合部位と、mRNAの翻訳終了点に到達したリボソームとの間の位置関係が好適に調整されるため、リンカーは、高い効率でタンパク質/ペプチドと複合体を形成することができる。 Furthermore, the difference between m and the number of nucleotides contained in the polynucleotide of the single-stranded region described below is preferably 20 or less, more preferably 10 or less, and even more preferably 0. According to such a configuration, the positional relationship between the binding site and the ribosome that has reached the end point of mRNA translation is suitably adjusted, so that the linker forms a complex with the protein/peptide with high efficiency. be able to.
 第1のスペーサー部位は、第1のハイブリダイゼーション部位と直接的に結合していてもよく、任意の他の部材を介して第1のハイブリダイゼーション部位と間接的に結合していてもよい。 The first spacer site may be directly bonded to the first hybridization site, or may be indirectly bonded to the first hybridization site via any other member.
 第1のスペーサー部位と5’-5’結合とは、隣接していてもよく、していなくともよい。換言すれば、第1のスペーサー部位の5’末端のAは、5’-5’結合を形成する2つのヌクレオチドのうちの1つであってもよく、そうでなくともよい。 The first spacer site and the 5'-5' bond may or may not be adjacent to each other. In other words, the A at the 5' end of the first spacer site may or may not be one of the two nucleotides forming a 5'-5' bond.
 本発明の一態様に係るリンカーにおいて、第1のスペーサー部位は、ポリA配列を有する部位に限定されない。第1のスペーサー部位は、例えば、ポリG配列、ポリC配列、ポリT配列またはポリU配列を有する部位であってもよく、後述する一本鎖領域とハイブリダイズしない、またはほとんどしない配列を有する部位を第1のスペーサー部位として好適に使用することができる。 In the linker according to one aspect of the present invention, the first spacer site is not limited to a site having a polyA m sequence. The first spacer region may be, for example, a region having a poly G m sequence, a poly C m sequence, a poly T m sequence, or a poly U m sequence, and does not or hardly hybridizes with the single-stranded region described below. A site having a sequence that does not occur can be suitably used as the first spacer site.
 (第2のスペーサー部位)
 第2のスペーサー部位は、結合部位と5’-5’結合との間に位置し、(PEG)(式中、PEGはポリエチレングリコール(-[CHCHO]-)を表し、nは1以上、20以下の整数を表す)を有する部位である。第1のセグメントが第2のスペーサー部位を含むことによって、結合部位と、mRNAを翻訳するリボソームの反応点との距離が好適に調整されるため、リンカーは、高い効率でタンパク質/ペプチドと複合体を形成することができる。
(Second spacer part)
The second spacer moiety is located between the binding site and the 5'-5' bond and is (PEG) n , where PEG represents polyethylene glycol (-[CH 2 CH 2 O]-) and n represents an integer from 1 to 20). The inclusion of the second spacer site in the first segment favorably adjusts the distance between the binding site and the reactive site of the ribosome that translates the mRNA, allowing the linker to complex with proteins/peptides with high efficiency. can be formed.
 第2のスペーサー部位において、nは、1以上であることが好ましく、2以上であることがより好ましく、3以上であることがさらに好ましい。nがこのような数値範囲内であることによって、リンカーは、高い効率でタンパク質/ペプチドと複合体を形成することができる。第2のスペーサー部位において、nは、18以下であることが好ましく、10以下であることがより好ましく、6以下であることがさらに好ましい。nがこのような数値範囲内であることによって、リンカーは、高い効率でタンパク質/ペプチドと複合体を形成することができる。 In the second spacer portion, n is preferably 1 or more, more preferably 2 or more, and even more preferably 3 or more. By having n within such a numerical range, the linker can form a complex with the protein/peptide with high efficiency. In the second spacer region, n is preferably 18 or less, more preferably 10 or less, and even more preferably 6 or less. By having n within such a numerical range, the linker can form a complex with the protein/peptide with high efficiency.
 第2のスペーサー部位は、(PEG)に加えて、他の部材をさらに有してもよい。第2のスペーサー部位が有する他の部材としては、例えば、任意のヌクレオチドが挙げられる。第2のスペーサー部位は、(PEG)の両末端に他の部材を有してもよく、(PEG)の一方の末端のみに他の部材を有してもよい。他の部材としては、例えば、ヌクレオチドおよびポリヌクレオチドが挙げられる。 The second spacer region may further include other members in addition to (PEG) n . Other members included in the second spacer site include, for example, arbitrary nucleotides. The second spacer portion may have other members at both ends of (PEG) n , or may have other members at only one end of (PEG) n . Other members include, for example, nucleotides and polynucleotides.
 本発明の一態様に係るリンカーにおいて、第2のスペーサー部位は、(PEG)を有する部位に限定されない。第2のスペーサー部位は、例えば、(PEG)の代わりに生体適合性高分子を有する部位であってもよい。生体適合性高分子としては、例えば、ポリプロピレングリコール、ポリビニルピロリドンなどの水溶性ポリマーおよび多糖類などが挙げられる。 In the linker according to one aspect of the present invention, the second spacer moiety is not limited to a moiety having (PEG) n . The second spacer moiety may be, for example, a moiety with a biocompatible polymer in place of (PEG) n . Examples of biocompatible polymers include water-soluble polymers such as polypropylene glycol and polyvinylpyrrolidone, and polysaccharides.
 (第1のスペーサー部位および第2のスペーサー部位の長さの合計)
 第1のセグメントが第1のスペーサー部位および第2のスペーサー部位のうち少なくとも1つを含む態様において、第1のスペーサー部位および第2のスペーサー部位の長さの合計を適宜に選択することによって、リンカーとタンパク質/ペプチドとの複合体の形成効率を調整することができる。
(Total length of first spacer part and second spacer part)
In embodiments where the first segment includes at least one of a first spacer site and a second spacer site, by appropriately selecting the sum of the lengths of the first spacer site and the second spacer site, The efficiency of complex formation between linker and protein/peptide can be adjusted.
 (蛍光標識部位)
 蛍光標識部位は、リンカーまたはリンカーが形成する複合体を検出するためのプローブとしての性質を有する部位である。第1のセグメントが蛍光標識部位を含むことによって、蛍光観察によって、リンカーおよびリンカーを含む複合体を検出することが可能になる。
(fluorescent labeling site)
The fluorescent labeling site is a site that has properties as a probe for detecting the linker or the complex formed by the linker. The inclusion of the fluorescent label site in the first segment allows the linker and the linker-containing complex to be detected by fluorescence observation.
 蛍光標識部位は、上記の性質を有する限りにおいて、任意の構造を有していてもよい。蛍光標識部位としては、例えば、FAM(カルボキシフルオレセイン)、JOE(6-カルボキシ-4’,5’-ジクロロ2’,7’-ジメトキシフルオレセイン)、FITC(フルオレセインイソチオシアネート)、TET(テトラクロロフルオレセイン)、HEX(5’-ヘキサクロロ-フルオレセイン-CEホスホロアミダイト)、Cy3、Cy5、Alexa568、Alexa647、フィコビリタンパク質、希土類金属キレート、ダンシルクロライドおよびテトラメチルローダミンイソチオシアネートなどが挙げられる。 The fluorescent labeling site may have any structure as long as it has the above properties. Examples of fluorescent labeling sites include FAM (carboxyfluorescein), JOE (6-carboxy-4',5'-dichloro2',7'-dimethoxyfluorescein), FITC (fluorescein isothiocyanate), and TET (tetrachlorofluorescein). , HEX (5'-hexachloro-fluorescein-CE phosphoramidite), Cy3, Cy5, Alexa568, Alexa647, phycobiliprotein, rare earth metal chelate, dansyl chloride, and tetramethylrhodamine isothiocyanate.
 蛍光標識部位の位置は、リンカーが複合体を形成することができる限りにおいて、当業者によって適宜に選択され得る。蛍光標識部位は、例えば、第1のハイブリダイゼーション部位、5’-5’結合および結合部位を含む、第1のセグメントの主鎖の任意の位置に結合した側鎖上に位置してもよい。蛍光標識部位が側鎖上に位置する場合、当該側鎖が結合する位置としては、例えば、第1のハイブリダイゼーション部位、第1のスペーサー部位および第2のスペーサー部位が挙げられる。 The position of the fluorescent labeling site can be appropriately selected by those skilled in the art as long as the linker can form a complex. The fluorescent label moiety may be located on a side chain attached to any position of the main chain of the first segment, including, for example, the first hybridization site, the 5'-5' bond, and the binding site. When the fluorescent label site is located on a side chain, the positions to which the side chain binds include, for example, the first hybridization site, the first spacer site, and the second spacer site.
 (第2のセグメント)
 第2のセグメントは、リンカーが形成することができる複合体において、当該リンカーと、mRNAおよびcDNAのうち少なくとも1つとの間の結合を形成する性質を有するセグメントであり得る。本発明の一態様において、第2のセグメントは、第2のハイブリダイゼーション部位と、一本鎖領域とを含む。また、第2のセグメントは、逆転写開始部位を含んでもよい。
(Second segment)
The second segment may be a segment that has the property of forming a bond between the linker and at least one of mRNA and cDNA in a complex that the linker is capable of forming. In one aspect of the invention, the second segment includes a second hybridization site and a single-stranded region. The second segment may also include a reverse transcription initiation site.
 (第2のハイブリダイゼーション部位)
 第2のハイブリダイゼーション部位は、第2のセグメントの主鎖上に位置し、ポリヌクレオチド配列を有する部位である。第2のハイブリダイゼーション部位は、リンカーにおいて、上述した第1のハイブリダイゼーション部位とハイブリダイズして二本鎖領域を形成する。第2のハイブリダイゼーション部位が有するポリヌクレオチド配列は、第1のハイブリダイゼーション部位と第2のハイブリダイゼーション部位とがハイブリダイズして二本鎖領域を形成可能である限りにおいて、当業者によって適宜に選択され得る。
(Second hybridization site)
The second hybridization site is a site located on the backbone of the second segment and has a polynucleotide sequence. The second hybridization site hybridizes with the first hybridization site described above in the linker to form a double-stranded region. The polynucleotide sequence possessed by the second hybridization site can be appropriately selected by those skilled in the art, as long as the first hybridization site and the second hybridization site can hybridize to form a double-stranded region. can be done.
 第2のハイブリダイゼーション部位において、ポリヌクレオチド配列の長さは、5ヌクレオチド長以上であることが好ましく、10ヌクレオチド長以上であることがより好ましく、15ヌクレオチド長以上であることがさらに好ましい。ポリヌクレオチド配列の長さがこのような数値範囲内であることによって、第1のハイブリダイゼーション部位および第2のハイブリダイゼーション部位による二本鎖領域の形成効率が向上する。また、第2のハイブリダイゼーション部位において、ポリヌクレオチド配列の長さは、90ヌクレオチド長以下であることが好ましく、60ヌクレオチド長以下であることがより好ましく、40ヌクレオチド長以下であることがさらに好ましい。ポリヌクレオチド配列の長さがこのような数値範囲内であることによって、リンカーを安価に製造することができる。 In the second hybridization site, the length of the polynucleotide sequence is preferably 5 nucleotides or more, more preferably 10 nucleotides or more, and even more preferably 15 nucleotides or more. When the length of the polynucleotide sequence is within such a numerical range, the efficiency of forming a double-stranded region by the first hybridization site and the second hybridization site is improved. Further, in the second hybridization site, the length of the polynucleotide sequence is preferably 90 nucleotides or less, more preferably 60 nucleotides or less, and even more preferably 40 nucleotides or less. When the length of the polynucleotide sequence is within such a numerical range, the linker can be manufactured at low cost.
 (一本鎖領域)
 一本鎖領域は、第2のハイブリダイゼーション部位からみて3’末端側に位置するポリヌクレオチドである。
(single-stranded region)
The single-stranded region is a polynucleotide located on the 3' end side when viewed from the second hybridization site.
 一本鎖領域は、mRNAとハイブリダイズする領域であり得る。ここで、一本鎖領域とハイブリダイズするmRNAは、スクリーニング、定性分析、および定量分析などの遺伝子工学技術の適用対象であり得る。当該mRNAの構成は、リンカーを使用するユーザーが、リンカーの一本鎖領域が有するポリヌクレオチド配列に応じて、適宜に選択してもよい。あるいは、ユーザーは、対象であるmRNAが有するポリヌクレオチド配列に応じて、一本鎖領域が有するポリヌクレオチド配列を選択してもよい。 The single-stranded region can be a region that hybridizes with mRNA. Here, mRNA that hybridizes with the single-stranded region may be subject to genetic engineering techniques such as screening, qualitative analysis, and quantitative analysis. The structure of the mRNA may be appropriately selected by the user of the linker depending on the polynucleotide sequence of the single-stranded region of the linker. Alternatively, the user may select the polynucleotide sequence of the single-stranded region depending on the polynucleotide sequence of the target mRNA.
 一本鎖領域において、ポリヌクレオチド配列の長さは5ヌクレオチド長以上であることが好ましく、6ヌクレオチド長以上であることがより好ましく、8ヌクレオチド長以上であることがさらに好ましい。ポリヌクレオチド配列の長さがこのような数値範囲内であることによって、一本鎖領域は、高い効率でmRNAとハイブリダイズすることができる。また、一本鎖領域において、ポリヌクレオチド配列の長さは、90ヌクレオチド長以下であることが好ましく、60ヌクレオチド長以下であることがより好ましく、40ヌクレオチド長以下であることがさらに好ましい。ポリヌクレオチド配列の長さがこのような数値範囲内であることによって、リンカーを安価に製造することができる。 In the single-stranded region, the length of the polynucleotide sequence is preferably 5 nucleotides or more, more preferably 6 nucleotides or more, and even more preferably 8 nucleotides or more. By having the length of the polynucleotide sequence within such a numerical range, the single-stranded region can hybridize with mRNA with high efficiency. Furthermore, in the single-stranded region, the length of the polynucleotide sequence is preferably 90 nucleotides or less, more preferably 60 nucleotides or less, and even more preferably 40 nucleotides or less. When the length of the polynucleotide sequence is within such a numerical range, the linker can be manufactured at low cost.
 限定するものではないが、一本鎖領域のポリヌクレオチドは、第2のハイブリダイゼーション部位に含まれるポリヌクレオチドと一致しないことが好ましい。このような構成によれば、一本鎖領域と、第2のハイブリダイゼーション部位に相補的な第1のハイブリダイゼーション部位との間でハイブリダイゼーションが生じることを減じることができる。 Although not limited to this, it is preferred that the polynucleotide in the single-stranded region does not match the polynucleotide contained in the second hybridization site. According to such a configuration, it is possible to reduce the occurrence of hybridization between the single-stranded region and the first hybridization site that is complementary to the second hybridization site.
 一本鎖領域は、第2のハイブリダイゼーション部位と直接的に結合していてもよく、任意の他の部材を介して第2のハイブリダイゼーション部位と間接的に結合していてもよい。 The single-stranded region may be directly bound to the second hybridization site, or may be indirectly bound to the second hybridization site via any other member.
 一本鎖領域は、mRNAの一部と架橋構造を形成することができる部位を含んでもよい。このような構成によれば、mRNA-リンカー複合体において、リンカーとmRNAとの結合が安定化されるため、安定した複合体を実現することができる。mRNAの一部と架橋構造を形成することができる部位としては、光反応性ヌクレオチドが挙げられる。 The single-stranded region may include a site that can form a crosslinked structure with a part of mRNA. According to such a configuration, in the mRNA-linker complex, the bond between the linker and mRNA is stabilized, so that a stable complex can be realized. Examples of sites that can form a cross-linked structure with a portion of mRNA include photoreactive nucleotides.
 なお、一本鎖領域は、リンカーが使用されるときには、所望の機能、例えばmRNAとハイブリダイズする機能を発揮し、二本鎖領域を形成し得る。また、一本鎖領域は、リンカーが使用されていないときには、当業者に公知の方法によって、保護されていてもよい。 Note that when a linker is used, the single-stranded region can exhibit a desired function, such as the function of hybridizing with mRNA, and form a double-stranded region. Single-stranded regions may also be protected when no linker is used, by methods known to those skilled in the art.
 (逆転写開始部位)
 逆転写開始部位は、一本鎖領域にハイブリダイズするmRNAと相補的なcDNAの合成を開始するための部位である。逆転写開始部位は、ポリヌクレオチド配列を有し、一本鎖領域の内部に位置し、例えば一本鎖領域の3’末端に位置する。
(reverse transcription start site)
The reverse transcription initiation site is a site for initiating synthesis of cDNA complementary to mRNA hybridized to the single-stranded region. The reverse transcription initiation site has a polynucleotide sequence and is located within the single-stranded region, eg, at the 3' end of the single-stranded region.
 逆転写開始部位が有するポリヌクレオチド配列は、当業者によって適宜に選択され得る。逆転写開始部位が有するポリヌクレオチド配列としては、例えば、5’-TCCT-3’配列が挙げられる。 The polynucleotide sequence of the reverse transcription initiation site can be appropriately selected by those skilled in the art. Examples of the polynucleotide sequence possessed by the reverse transcription initiation site include a 5'-TCCT-3' sequence.
 (第1のセグメントと第2のセグメントとの間の構成)
 本発明の一態様において、第1のセグメントに含まれる第1のハイブリダイゼーション部位と、第2のセグメントに含まれる第2のハイブリダイゼーション部位とは、ハイブリダイズして二本鎖領域を形成している。このような構成によれば、リンカーは、mRNA、cDNA、タンパク質およびペプチドからなる群より選択される少なくとも1つと複合体を形成することができる。
(Configuration between first segment and second segment)
In one aspect of the present invention, the first hybridization site included in the first segment and the second hybridization site included in the second segment hybridize to form a double-stranded region. There is. According to such a configuration, the linker can form a complex with at least one selected from the group consisting of mRNA, cDNA, protein, and peptide.
 リンカーにおいて、第1のセグメントは、リンカーとタンパク質またはペプチドとの間の結合を形成する性質を有し、第2のセグメントは、リンカーとmRNAおよびcDNAのうち少なくとも1つとの間の結合を形成する性質を有する。したがって、リンカーを使用するユーザーは、所望の結合特性および検出方法などの条件に応じて、第1のセグメントおよび第2のセグメントそれぞれを設計可能である。そのため、リンカーは、ユーザーの需要に応じて第1のセグメントおよび第2のセグメントそれぞれが設計されることによって、広範な用途に適用可能である。 In the linker, the first segment has the property of forming a bond between the linker and the protein or peptide, and the second segment has the property of forming a bond between the linker and at least one of mRNA and cDNA. have a property. Therefore, a user using a linker can design each of the first segment and the second segment according to conditions such as desired binding characteristics and detection method. Therefore, the linker can be applied to a wide range of applications by designing each of the first segment and the second segment according to the user's needs.
 また、リンカーにおいて、第1のセグメントと第2のセグメントとの間の立体配座は、少なくとも第1のハイブリダイゼーション部位と第2のハイブリダイゼーション部位との間のハイブリダイゼーションによって、安定化されている。したがって、セグメントに対して架橋剤を用いて側鎖を導入することによって立体配座が安定化されている従来技術のリンカーと比較して、本発明の一態様に係るリンカーは、架橋剤を使用するための処理(例えば、架橋反応、および架橋部位の還元反応など)無しに、製造することができる。したがって、本発明の一態様に係るリンカーは、より短時間で製造することができる。 Further, in the linker, the conformation between the first segment and the second segment is stabilized by hybridization between at least the first hybridization site and the second hybridization site. . Therefore, compared to prior art linkers in which the conformation is stabilized by introducing side chains to the segment using a cross-linking agent, the linker according to one aspect of the present invention uses a cross-linking agent to stabilize the conformation. It can be produced without any treatment (for example, crosslinking reaction, reduction reaction of the crosslinking site, etc.). Therefore, the linker according to one aspect of the present invention can be produced in a shorter time.
 また、リンカーが備える第1のセグメントおよび第2のセグメントは、それぞれ一本鎖であってもよい。このような場合、第1のセグメントおよび第2のセグメントは、共に、製造することが容易である。リンカーは、第1のセグメントと第2のセグメントとを互いにハイブリダイズさせることによって製造できるため、リンカー自体もまた、製造することが容易である。 Furthermore, the first segment and the second segment included in the linker may each be single-stranded. In such a case, both the first segment and the second segment are easy to manufacture. The linker itself is also easy to manufacture, since the linker can be manufactured by hybridizing the first segment and the second segment to each other.
 二本鎖領域において、第1のハイブリダイゼーション部位の一部と第2のハイブリダイゼーション部位の一部とは、共有結合により互いに連結されていてもよい。このような構成によれば、二本鎖領域がより安定化され、したがって第1のセグメントに含まれる結合部位と、第2のセグメントに含まれる一本鎖領域との間の距離がより安定化するため、リンカーが複合体を形成する能力がより向上する。 In the double-stranded region, a part of the first hybridization site and a part of the second hybridization site may be linked to each other by a covalent bond. According to such a configuration, the double-stranded region is more stabilized, and therefore the distance between the binding site included in the first segment and the single-stranded region included in the second segment is more stabilized. Therefore, the ability of the linker to form a complex is further improved.
 第1のハイブリダイゼーション部位と第2のハイブリダイゼーション部位との間の共有結合の様式は、当業者によって適宜に選択され得る。共有結合の様式としては、例えば、光反応性塩基によって形成される光架橋、クリックケミストリーおよびディールスアルダー反応等の架橋反応が挙げられる。 The mode of covalent bonding between the first hybridization site and the second hybridization site can be appropriately selected by those skilled in the art. Examples of the mode of covalent bonding include photocrosslinking formed by photoreactive bases, click chemistry, and crosslinking reactions such as Diels-Alder reactions.
 光反応性塩基としては、例えば、3-シアノビニルカルバゾール(cnvKとも呼ばれる)が挙げられる。3-シアノビニルカルバールは、例えば、CNV-Kホスホロアミダイト(5’-O-(4,4’-ジメトキシトリチル)-1’-(3-シアノビニルカルバゾール-9-イル)-2’-デオキシ-β-D-リボフラノシル-3’-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)およびCNV-Dホスホロアミダイト(3-O-(4,4’-ジメトキシトリチル)-2-N-(N-カルボキシ-3-シアノビニルカルバゾール)-D-スレオニン-1-イル-O-[(2-シアノエチル)-(N,N-ジイソプロピル)]-ホスホロアミダイト)などの3-シアノビニルカルバゾール化合物を用いることによって、ポリヌクレオチド配列に導入することができる。光反応性塩基は、第1のハイブリダイゼーション部位および第2のハイブリダイゼーション部位のいずれに含まれてもよく、両方に含まれてもよい。 Examples of photoreactive bases include 3-cyanovinylcarbazole (also referred to as cnv K). 3-cyanovinylcarbal is, for example, CNV-K phosphoramidite (5'-O-(4,4'-dimethoxytrityl)-1'-(3-cyanovinylcarbazol-9-yl)-2'- deoxy-β-D-ribofuranosyl-3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite) and CNV-D phosphoramidite (3-O-(4,4'-dimethoxy trityl)-2-N-(N-carboxy-3-cyanovinylcarbazole)-D-threonin-1-yl-O-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite), etc. can be introduced into a polynucleotide sequence by using a 3-cyanovinylcarbazole compound. The photoreactive base may be contained in either the first hybridization site or the second hybridization site, or in both.
 二本鎖領域において、3-シアノビニルカルバゾールと相補的なA/Gプリン環塩基の3’末端側で隣接している塩基は、T/C/Uピリミジン環塩基であることが好ましい。このような構成によれば、3-シアノビニルカルバゾールは、相補的なプリン環塩基とハイブリダイズすると共に、当該プリン環塩基の3’末端側で隣接している塩基との間に高い効率で架橋を形成することができる。 In the double-stranded region, the base adjacent to the 3' end of the A/G purine ring base complementary to 3-cyanovinylcarbazole is preferably a T/C/U pyrimidine ring base. According to such a configuration, 3-cyanovinylcarbazole not only hybridizes with the complementary purine ring base, but also cross-links with the adjacent base at the 3' end of the purine ring base with high efficiency. can be formed.
 光反応性塩基は、二本鎖領域における中間領域に位置していることが好ましい。限定するものではないが、光反応性塩基は、第1のハイブリダイゼーション部位または第2のハイブリダイゼーション部位の3’末端および5’末端それぞれから2塩基以上離れていることが好ましい。このような構成によれば、光反応性塩基による光架橋の形成効率がより向上する。 The photoreactive base is preferably located in the middle region of the double-stranded region. Although not limited to this, it is preferred that the photoreactive base is two or more bases away from each of the 3' and 5' ends of the first hybridization site or the second hybridization site. According to such a configuration, the efficiency of forming photocrosslinks by the photoreactive base is further improved.
 第1のハイブリダイゼーション部位と第2のハイブリダイゼーション部位との間の共有結合の数は、0または1であってもよく、2以上であってもよく、当業者によって適宜に選択され得る。 The number of covalent bonds between the first hybridization site and the second hybridization site may be 0 or 1, or may be 2 or more, and may be appropriately selected by those skilled in the art.
 (リンカーにおける他の部材)
 本発明の一態様において、リンカーは、上述した部材以外の、他の部材を含んでもよい。リンカーが含み得る他の部材として、例えば、第3のセグメントが挙げられる。
(Other members in the linker)
In one aspect of the present invention, the linker may include other members than those described above. Other members that the linker may include include, for example, a third segment.
 第3のセグメントは、同一の一本の主鎖に第1のセグメントおよび第2のセグメントの両方が含まれるように、第1のセグメントの3’末端と第2のセグメントの5’末端とを連結させるセグメントであり得る。第3のセグメントは、ヘアピン構造を有するポリヌクレオチドであり得、当該ヘアピン構造を挟むように位置する2つの切断部位を含み得る。また、第3のセグメントは、ヘアピン構造中に、固相結合部位を含んでもよい。 The third segment connects the 3' end of the first segment and the 5' end of the second segment so that the same single main chain contains both the first segment and the second segment. It can be a segment to be connected. The third segment may be a polynucleotide having a hairpin structure, and may include two cleavage sites positioned to sandwich the hairpin structure. The third segment may also include a solid phase binding site within the hairpin structure.
 2つの切断部位は、リンカーの使用方法において、所望のタイミングで第3のセグメントをリンカーから切り離すために、選択的に切断されることができる部位である。切断部位は、デオキシイノシン、リボGおよびリボピリミジンからなる群より選択される少なくとも1つであり得るが、これらに限定されない。 The two cleavage sites are sites that can be selectively cleaved in order to separate the third segment from the linker at a desired timing in the method of using the linker. The cleavage site may be at least one selected from the group consisting of deoxyinosine, riboG, and ribopyrimidine, but is not limited thereto.
 固相結合部位は、リンカーの使用方法において、例えば基板または担体などの固相上にリンカーを固定するために、固相に結合する部位である。固相結合部位は、使用される固相に応じて、当業者によって適宜に選択され得る。固相結合部位としては、例えば、ビオチン、ストレプトアビジン、アルキン、クリックケミストリーによるアジ化物、アミノ基、N-ヒドロキシスクシンイミドエステル(NHS)、SH基およびAuからなる群より選択される化合物と、当該化合物に結合したポリAとからなる部位が挙げられる。 The solid phase binding site is a site that binds to a solid phase in order to immobilize the linker on a solid phase, such as a substrate or a carrier, in the method of using the linker. The solid phase binding site can be appropriately selected by those skilled in the art depending on the solid phase used. As the solid phase binding site, for example, a compound selected from the group consisting of biotin, streptavidin, alkynes, azides by click chemistry, amino groups, N-hydroxysuccinimide esters (NHS), SH groups, and Au; Examples include a site consisting of polyA bound to.
 (本発明の一実施形態に係るリンカー)
 本発明の一実施形態に係るリンカー100について、図1を参照して説明する。図1は、本発明の一実施形態に係るリンカー100の構成を説明する模式図である。
(Linker according to one embodiment of the present invention)
A linker 100 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating the configuration of a linker 100 according to an embodiment of the present invention.
 図1に示すように、リンカー100は、第1のセグメント10と第2のセグメント20とを備える。リンカー100は、例えばcDNAディスプレイ法などの表現型-遺伝子型対応付け法において使用することができるリンカーである。 As shown in FIG. 1, the linker 100 includes a first segment 10 and a second segment 20. The linker 100 is a linker that can be used, for example, in a phenotype-genotype mapping method such as a cDNA display method.
 本実施形態において、第1のセグメント10は、第1のハイブリダイゼーション部位11と、結合部位12と、5’-5’結合13と、第1のスペーサー部位14と、第2のスペーサー部位15と、蛍光標識部位16とを含む。第1のハイブリダイゼーション部位11は、配列番号1に記載のポリヌクレオチド配列を有する。結合部位12は、ピューロマイシンである。5’-5’結合13は、第1のスペーサー部位14の5’末端のAと、第2のスペーサー部位15の5’末端のTとの間の5’-5’結合である。第1のスペーサー部位14は、配列番号2に記載のポリA12配列を有する部位である。第2のスペーサー部位15は、3’-CC(PEG)CTCTCT-5’の配列を有する部位である。蛍光標識部位16は、第2のスペーサー部位15のTに側鎖として結合しているFITCである。 In this embodiment, the first segment 10 includes a first hybridization site 11, a binding site 12, a 5'-5' bond 13, a first spacer site 14, and a second spacer site 15. , and a fluorescent labeling site 16. The first hybridization site 11 has the polynucleotide sequence set forth in SEQ ID NO:1. Binding site 12 is puromycin. The 5'-5' bond 13 is a 5'-5' bond between A at the 5' end of the first spacer site 14 and T at the 5' end of the second spacer site 15. The first spacer site 14 is a site having the polyA12 sequence set forth in SEQ ID NO:2. The second spacer site 15 is a site having the sequence 3'-CC(PEG) 3 CTCT * CT-5'. Fluorescent labeling moiety 16 is FITC bound to T * of second spacer moiety 15 as a side chain.
 本実施形態において、第2のセグメント20は、第2のハイブリダイゼーション部位21と、一本鎖領域22とを含む。また、第2のセグメント20は、一本鎖領域22の3’末端に、逆転写開始部位23を含む。第2のハイブリダイゼーション部位21は、配列番号3に記載のポリヌクレオチド配列を有する。一本鎖領域22は、配列番号4に記載のポリヌクレオチド配列を有する部位である。逆転写開始部位23は、一本鎖領域22の3’末端のTCCTである。 In this embodiment, the second segment 20 includes a second hybridization site 21 and a single-stranded region 22. The second segment 20 also includes a reverse transcription initiation site 23 at the 3' end of the single-stranded region 22. The second hybridization site 21 has the polynucleotide sequence set forth in SEQ ID NO:3. Single-stranded region 22 is a site having the polynucleotide sequence set forth in SEQ ID NO: 4. The reverse transcription start site 23 is TCCT at the 3' end of the single-stranded region 22.
 第1のハイブリダイゼーション部位11と第2のハイブリダイゼーション部位21とは、ハイブリダイズして二本鎖領域を形成している。また、二本鎖領域において、第1のハイブリダイゼーション部位11に含まれるcnvKと、第2のハイブリダイゼーション部位21に含まれるTとが、共有結合CB1により互いに連結されている。 The first hybridization site 11 and the second hybridization site 21 hybridize to form a double-stranded region. Furthermore, in the double-stranded region, cnv K contained in the first hybridization site 11 and T contained in the second hybridization site 21 are linked to each other by a covalent bond CB1.
 リンカー100の変形例であるリンカー101について、図2を参照して説明する。図2は、図1に示すリンカー100の変形例であるリンカー101の構成を説明する模式図である。 A linker 101, which is a modification of the linker 100, will be described with reference to FIG. 2. FIG. 2 is a schematic diagram illustrating the configuration of a linker 101 that is a modification of the linker 100 shown in FIG.
 図2に示すように、リンカー101は、第1のセグメント10と、第2のセグメント20と、第3のセグメント30とを備える。リンカー101は、例えばcDNAディスプレイ法などの表現型-遺伝子型対応付け法において、特には固相合成のために使用することができるリンカーである。第1のセグメント10および第2のセグメント20は、リンカー100に含まれるものと同一の機能および構成を有するため、その詳細な説明を省略する。 As shown in FIG. 2, the linker 101 includes a first segment 10, a second segment 20, and a third segment 30. The linker 101 is a linker that can be used, for example, in a phenotype-genotype mapping method such as a cDNA display method, in particular for solid phase synthesis. The first segment 10 and the second segment 20 have the same functions and configurations as those included in the linker 100, so a detailed description thereof will be omitted.
 本実施形態において、第3のセグメント30は、切断部位31、32と、固相結合部位33とを含む。切断部位31、32それぞれは、リボGである。固相結合部位は、ビオチンである。 In this embodiment, the third segment 30 includes cleavage sites 31 and 32 and a solid phase binding site 33. Each of the cleavage sites 31 and 32 is riboG. The solid phase binding site is biotin.
 本実施形態において、第1のセグメント10の3’末端と、第2のセグメント20の5’末端とが、第3のセグメント30を介して間接的に結合しており、これによって、第1のセグメントと、第2のセグメントと、第3のセグメントとは、1つの主鎖を共有している。 In this embodiment, the 3' end of the first segment 10 and the 5' end of the second segment 20 are indirectly coupled via the third segment 30, thereby The segment, the second segment, and the third segment share one main chain.
 〔第1の複合体〕
 本発明の一態様は、複合体に関する。本発明の一態様に係る複合体は、本発明の一態様に係るリンカーと、リンカーが備える第2のセグメントに含まれる一本鎖領域とハイブリダイズして二本鎖領域を形成しているmRNAと、を備える。このような構成によれば、新規なリンカーを含むmRNA-リンカー複合体を実現することができる。以下、本明細書において、本態様に係る複合体を「第1の複合体」と記載することがある。
[First complex]
One aspect of the present invention relates to composites. A complex according to one aspect of the present invention is an mRNA that hybridizes with a linker according to one aspect of the present invention and a single-stranded region included in a second segment provided by the linker to form a double-stranded region. and. According to such a configuration, an mRNA-linker complex containing a novel linker can be realized. Hereinafter, in this specification, the complex according to this aspect may be referred to as a "first complex."
 本発明の一実施形態に係る複合体において、一本鎖領域の一部とmRNAの一部とが、共有結合により互いに連結されていてもよい。このような構成によれば、mRNA-リンカー複合体において、リンカーとmRNAとの結合が安定化されるため、安定した複合体を実現することができる。共有結合の様式としては、例えば、光反応性ヌクレオチドによって形成される光架橋、クリックケミストリーおよびディールスアルダー反応等の架橋反応が挙げられる。 In the complex according to one embodiment of the present invention, part of the single-stranded region and part of the mRNA may be linked to each other by a covalent bond. According to such a configuration, in the mRNA-linker complex, the bond between the linker and mRNA is stabilized, so that a stable complex can be realized. Examples of the mode of covalent bonding include photocrosslinking formed by photoreactive nucleotides, click chemistry, and crosslinking reactions such as Diels-Alder reactions.
 本発明の一実施形態に係る複合体は、第1のセグメントに含まれる結合部位に結合したタンパク質またはペプチドをさらに備えてもよい。結合部位に結合したタンパク質またはペプチドは、複合体が備えるmRNAによってコードされるタンパク質またはペプチドであり得る。このような構成によれば、例えばmRNAディスプレイ法などの、表現型(タンパク質またはペプチド)と遺伝子型(mRNA)とを対応付ける手法を行うために使用可能な複合体を実現することができる。 The complex according to one embodiment of the present invention may further include a protein or peptide bound to a binding site included in the first segment. The protein or peptide bound to the binding site can be a protein or peptide encoded by the mRNA included in the complex. According to such a configuration, it is possible to realize a complex that can be used to perform a method of associating a phenotype (protein or peptide) with a genotype (mRNA), such as an mRNA display method.
 本発明の一実施形態に係る複合体は、第2のセグメントの3’末端に結合しており、mRNAと相補的なcDNAをさらに備えてもよい。cDNAは、一本鎖領域とハイブリダイズしているmRNAを逆転写することによって合成され得る。このような構成によれば、例えばcDNAディスプレイ法などの、表現型(タンパク質またはペプチド)と遺伝子型(cDNA)とを対応付ける手法を行うために使用可能な複合体を実現することができる。 The complex according to one embodiment of the present invention may further include cDNA that is bound to the 3' end of the second segment and is complementary to the mRNA. cDNA can be synthesized by reverse transcribing mRNA hybridizing to single-stranded regions. According to such a configuration, it is possible to realize a complex that can be used for performing a method of associating a phenotype (protein or peptide) with a genotype (cDNA), such as a cDNA display method.
 (本発明の一実施形態に係る複合体)
 本発明の一実施形態に係る複合体200について、図3を参照して説明する。図3は、本発明の一実施形態に係る複合体200の構成を説明する模式図である。
(Composite according to one embodiment of the present invention)
A composite body 200 according to an embodiment of the present invention will be described with reference to FIG. 3. FIG. 3 is a schematic diagram illustrating the configuration of a composite body 200 according to an embodiment of the present invention.
 図3に示すように、複合体200は、第1のセグメント10および第2のセグメント20を備えるリンカーと、mRNA40と、ポリペプチド50と、cDNA60とを備える。第2のセグメント20の一部と、mRNA40の一部とは、共有結合CB2により互いに連結されている。 As shown in FIG. 3, the complex 200 includes a linker comprising a first segment 10 and a second segment 20, mRNA 40, polypeptide 50, and cDNA 60. A portion of the second segment 20 and a portion of the mRNA 40 are linked to each other by a covalent bond CB2.
 〔リンカーの製造方法〕
 本発明の一態様は、リンカーの製造方法に関する。本発明の一態様に係るリンカーの製造方法は、本発明の一態様に係るリンカーを製造するための方法であって、ハイブリダイゼーション工程を含む。また、リンカーの製造方法は、精製工程および化学修飾工程をさらに含んでもよい。
[Method for manufacturing linker]
One aspect of the present invention relates to a method for manufacturing a linker. A method for producing a linker according to one embodiment of the present invention is a method for producing a linker according to one embodiment of the present invention, and includes a hybridization step. Moreover, the method for producing a linker may further include a purification step and a chemical modification step.
 (ハイブリダイゼーション工程)
 ハイブリダイゼーション工程は、第1のセグメントと第2のセグメントとをアニーリング処理に供することによって、第1のセグメントに含まれる第1のハイブリダイゼーション部位と、第2のセグメントに含まれる第2のハイブリダイゼーション部位とをハイブリダイズさせ二本鎖領域を形成させる工程である。
(Hybridization process)
In the hybridization step, the first segment and the second segment are subjected to an annealing treatment, whereby the first hybridization site contained in the first segment and the second hybridization site contained in the second segment are combined. This is the step of hybridizing with the target region to form a double-stranded region.
 第1のセグメントおよび第2のセグメントそれぞれは、当業者に公知の製造方法によって製造され得る。第1のセグメントおよび第2のセグメントそれぞれの製造は、例えば、ポリヌクレオチド合成を行う事業者に委託され、実施されてもよい。 Each of the first segment and the second segment may be manufactured by manufacturing methods known to those skilled in the art. The production of each of the first segment and the second segment may be outsourced to, for example, a polynucleotide synthesis company.
 アニーリング処理は、ポリヌクレオチドをアニーリングするための当業者に公知の方法によって、実施することができる。アニーリング処理は、例えば、第1のセグメントおよび第2のセグメントを含む溶液を、60℃~100℃にて2分間~60分間、ヒートブロック、アルミブロックまたはウォーターバスなどの加温用器具にて温めた後、室温にて2分間~60分間静置して液温を穏やかに低下させ、さらに-5℃~10℃まで冷却することによって、実施することができる。アニーリング処理は、例えば、第1のセグメントおよび第2のセグメントを含む溶液を、90℃にて5分間アルミブロック上にて温め、次いで70℃にて5分間アルミブロック上にて温め、最後に室温にて10分間静置した後、氷上に置いて冷却することによって、実施することが好ましい。 The annealing treatment can be performed by methods known to those skilled in the art for annealing polynucleotides. In the annealing process, for example, a solution containing the first segment and the second segment is heated at 60° C. to 100° C. for 2 minutes to 60 minutes using a heating device such as a heat block, an aluminum block, or a water bath. This can be carried out by allowing the solution to stand at room temperature for 2 to 60 minutes to gently lower the temperature of the solution, and further cooling to -5°C to 10°C. In the annealing process, for example, the solution containing the first segment and the second segment is heated at 90°C for 5 minutes on an aluminum block, then at 70°C for 5 minutes on an aluminum block, and finally at room temperature. It is preferable to carry out the test by allowing the test to stand still for 10 minutes, and then cooling it by placing it on ice.
 アニーリング処理においては、第1のセグメントおよび第2のセグメントを含む溶液は、無機塩、有機化合物の塩およびpH緩衝剤からなる群より選択される少なくとも1種をさらに含み得る。 In the annealing treatment, the solution containing the first segment and the second segment may further contain at least one selected from the group consisting of an inorganic salt, a salt of an organic compound, and a pH buffer.
 所望のリンカーにおいて、第1のハイブリダイゼーション部位の一部と第2のハイブリダイゼーション部位の一部とが、共有結合により互いに連結されている場合には、ハイブリダイゼーション工程は、当該共有結合を形成するための処理を含んでもよい。共有結合が光架橋である場合には、共有結合を形成するための処理は、UV照射であり得る。UV照射の時間は、例えば、0.5分間~5分間であり得る。ハイブリダイゼーション工程において、アニーリング処理と共有結合を形成するための処理とは、同時に実施されてもよく、順番に実施されてもよい。 In the desired linker, if a portion of the first hybridization site and a portion of the second hybridization site are linked to each other by a covalent bond, the hybridization step forms the covalent bond. It may also include processing for If the covalent bond is photocrosslinking, the treatment to form the covalent bond may be UV irradiation. The duration of UV irradiation can be, for example, 0.5 minutes to 5 minutes. In the hybridization step, the annealing treatment and the treatment for forming a covalent bond may be performed simultaneously or sequentially.
 (本発明の一実施形態に係るリンカーの製造方法)
 本発明の一実施形態に係るリンカーの製造方法S1について、図4を参照して説明する。図4は、図1に示すリンカー100の製造方法S1の構成を説明する模式図である。
(Method for manufacturing a linker according to an embodiment of the present invention)
A linker manufacturing method S1 according to an embodiment of the present invention will be described with reference to FIG. 4. FIG. 4 is a schematic diagram illustrating the configuration of the method S1 for manufacturing the linker 100 shown in FIG. 1.
 図4に示すように、リンカー100の製造方法S1は、ハイブリダイゼーション工程S11を含む。ハイブリダイゼーション工程において、第1のセグメント10と第2のセグメント20とは、アニーリング処理およびUV照射処理に供され、二本鎖領域に共有結合CB1を含むリンカー100が製造される。 As shown in FIG. 4, the method S1 for manufacturing the linker 100 includes a hybridization step S11. In the hybridization step, the first segment 10 and the second segment 20 are subjected to an annealing treatment and a UV irradiation treatment to produce a linker 100 containing a covalent bond CB1 in the double-stranded region.
 〔リンカーの用途〕
 本発明の一態様は、リンカーの用途に関する。限定されるものではないが、本発明の一態様に係るリンカーは、当業者に公知の、機能性ポリペプチドの探索技術において、使用することができる。機能性ポリペプチドの探索技術としては、例えば、cDNAディスプレイ法およびmRNAディスプレイ法などの表現型-遺伝子型対応付け法が挙げられる。
[Uses of linker]
One aspect of the present invention relates to the use of linkers. Although not limited to, linkers according to one aspect of the present invention can be used in functional polypeptide search techniques known to those skilled in the art. Techniques for searching for functional polypeptides include, for example, phenotype-genotype mapping methods such as cDNA display methods and mRNA display methods.
 リンカーは、従来のリンカーを本発明の一態様に係るリンカーに置換することによって、専用の最適化を伴わずに、広範な用途に適用可能である。したがって、ユーザーは、労力がかかる最適化を行わずに、リンカーを使用することができる。 By replacing a conventional linker with a linker according to one embodiment of the present invention, the linker can be applied to a wide range of applications without dedicated optimization. Therefore, users can use the linker without laborious optimization.
 (本発明の一実施形態に係るリンカーの用途)
 本発明の一実施形態に係るリンカーの用途について、図5を参照して説明する。図5は、図1に示すリンカー100を用いる、cDNAディスプレイ法S2の構成を説明する模式図である。
(Application of linker according to one embodiment of the present invention)
Applications of the linker according to one embodiment of the present invention will be described with reference to FIG. 5. FIG. 5 is a schematic diagram illustrating the configuration of cDNA display method S2 using the linker 100 shown in FIG. 1.
 図5に示すように、cDNAディスプレイ法S2は、ハイブリダイゼーション工程S21と、翻訳工程S22と、逆転写工程S23とを含む。 As shown in FIG. 5, the cDNA display method S2 includes a hybridization step S21, a translation step S22, and a reverse transcription step S23.
 ハイブリダイゼーション工程S21は、リンカー100に含まれる一本鎖領域22とmRNA40とをハイブリダイズさせることによって、mRNA-リンカー複合体202を形成する工程である。ハイブリダイゼーション工程において、リンカー100とmRNA40とは、アニーリング処理およびUV照射処理に供され、共有結合CB2を含むmRNA-リンカー複合体202が形成される。 The hybridization step S21 is a step of forming an mRNA-linker complex 202 by hybridizing the single-stranded region 22 included in the linker 100 and the mRNA 40. In the hybridization step, linker 100 and mRNA 40 are subjected to annealing treatment and UV irradiation treatment to form mRNA-linker complex 202 containing covalent bond CB2.
 翻訳工程S22は、mRNA40を翻訳し、生成されるポリペプチド50をリンカー100に含まれる結合部位12に結合させることによって、mRNA-リンカー-ポリペプチド複合体203を形成する工程である。翻訳工程S22において、mRNA40の翻訳は、当業者に公知の方法によって実施することができる。限定するものではないが、生成されるポリペプチド50は、例えばC末端が結合部位12に結合し、これによってmRNA-リンカー-ポリペプチド複合体203が形成され得る。 The translation step S22 is a step of translating the mRNA 40 and binding the generated polypeptide 50 to the binding site 12 included in the linker 100 to form an mRNA-linker-polypeptide complex 203. In the translation step S22, translation of mRNA 40 can be performed by a method known to those skilled in the art. Although not limited to this, the generated polypeptide 50 may have its C-terminus bound to the binding site 12, thereby forming an mRNA-linker-polypeptide complex 203.
 逆転写工程S23は、mRNA40を逆転写することによって、mRNA40に相補的なcDNA60を合成し、mRNA-リンカー-ポリペプチド-cDNA複合体200を形成する工程である。逆転写工程S23において、mRNA40の逆転写は、当業者に公知の方法によって実施することができる。また、逆転写工程S23は、適宜に精製処理を含んでもよい。 The reverse transcription step S23 is a step in which cDNA 60 complementary to mRNA 40 is synthesized by reverse transcription of mRNA 40, and an mRNA-linker-polypeptide-cDNA complex 200 is formed. In the reverse transcription step S23, reverse transcription of mRNA 40 can be performed by a method known to those skilled in the art. Further, the reverse transcription step S23 may include a purification treatment as appropriate.
 〔キット〕
 本発明の一態様は、キットに関する。本発明の一態様に係るキットは、第1のセグメントと第2のセグメントとを備えるリンカーを製造するためのキットであって、キットは、第1のセグメントと第2のセグメントとを備え、第1のセグメントに含まれる、ポリヌクレオチド配列を有する第1のハイブリダイゼーション部位と、第2のセグメントに含まれる、ポリヌクレオチド配列を有する第2のハイブリダイゼーション部位とは、ハイブリダイズして二本鎖領域を形成可能な配列を有し、第1のセグメントは、第1のハイブリダイゼーション部位からみて5’末端側に結合しており、タンパク質またはペプチドと結合する結合部位と、第1のハイブリダイゼーション部位と結合部位との間に位置している、ヌクレオチド間の5’-5’結合と、を含み、第2のセグメントは、第2のハイブリダイゼーション部位からみて3’末端側にポリヌクレオチドの一本鎖領域を含む。このような構成によれば、タンパク質またはペプチドとポリヌクレオチドとを結合させる新規なリンカーを製造するためのキットを実現することができる。
〔kit〕
One aspect of the invention relates to a kit. A kit according to one aspect of the present invention is a kit for manufacturing a linker including a first segment and a second segment, the kit including the first segment and the second segment, and the kit includes the first segment and the second segment. A first hybridization site containing a polynucleotide sequence contained in one segment and a second hybridization site containing a polynucleotide sequence contained in a second segment hybridize to form a double-stranded region. The first segment has a sequence capable of forming a protein or peptide, and the first segment is bonded to the 5' end side when viewed from the first hybridization site, and has a binding site that binds to a protein or peptide and a first hybridization site. a 5'-5' bond between the nucleotides located between the second segment and the second hybridization site; Contains areas. According to such a configuration, a kit for producing a novel linker that connects a protein or peptide and a polynucleotide can be realized.
 本発明の一実施形態に係るキットが備える第1のセグメントおよび第2のセグメントのそれぞれは、本発明の一実施形態に係るリンカーが備える第1のセグメントおよび第2のセグメントと同一の機能および構成を有するため、その詳細な説明を省略する。なお、キットにおいて、第1のセグメントに含まれる第1のハイブリダイゼーション部位と、第2のセグメントに含まれる第2のハイブリダイゼーション部位とは、ハイブリダイズして二本鎖領域を形成可能な配列を有していればよい。換言すれば、キットにおいて、第1のハイブリダイゼーション部位と、第2のハイブリダイゼーション部位とは、二本鎖領域を形成している状態でなくともよい。 Each of the first segment and the second segment included in the kit according to an embodiment of the present invention has the same function and configuration as the first segment and the second segment included in the linker according to an embodiment of the present invention. Therefore, detailed explanation thereof will be omitted. In addition, in the kit, the first hybridization site included in the first segment and the second hybridization site included in the second segment have sequences that can hybridize to form a double-stranded region. It is enough if you have it. In other words, in the kit, the first hybridization site and the second hybridization site do not need to form a double-stranded region.
 キットは、第1のセグメントおよび第2のセグメントの両方が封入された容器を含んでもよく、それぞれが別々に封入された容器を含んでもよい。 The kit may include a container in which both the first segment and the second segment are enclosed, or may include a container in which each is enclosed separately.
 キットは、第1のセグメントおよび第2のセグメントのうち少なくとも1つを溶解するための溶媒、または当該溶媒を調製するための材料を含んでもよい。溶媒としては、例えば:水;メタノール、エタノールおよびメルカプトエタノール等のアルコール類;ならびに、ジメチルアセトアミドおよびジメチルホルムアミド等が挙げられる。溶媒は、第1のセグメントおよび第2のセグメントが封入された容器に封入されてもよく、したがって、第1のセグメントおよび第2のセグメントが溶媒に溶解した溶液として、第1のセグメントおよび第2のセグメントが容器に封入されていてもよい。 The kit may include a solvent for dissolving at least one of the first segment and the second segment, or materials for preparing the solvent. Examples of the solvent include: water; alcohols such as methanol, ethanol and mercaptoethanol; and dimethylacetamide and dimethylformamide. The solvent may be encapsulated in a container in which the first segment and the second segment are encapsulated, so that the first segment and the second segment are dissolved in a solution of the first segment and the second segment. The segment may be enclosed in a container.
 キットは、上述したリンカーの用途を実施するための部材を含んでもよい。このような部材としては、例えば、リボソームおよび逆転写酵素などの酵素、イオン強度を調製するための塩類、pH緩衝剤および防腐剤等が挙げられる。 The kit may include members for carrying out the uses of the linker described above. Examples of such members include ribosomes and enzymes such as reverse transcriptase, salts for adjusting ionic strength, pH buffers, preservatives, and the like.
 キットは、キットの使用方法をユーザーに対して説明する説明書を含んでもよい。説明書は、紙面上にユーザーへの説明が印刷された紙媒体であってもよく、ユーザーへの説明を記憶する電子媒体であってもよい。また、説明書は、キットの使用方法を説明する代わりに、キットの使用方法へのアクセス方法(例えばインターネット上で閲覧可能な媒体のURLなど)を説明する説明書であってもよい。 The kit may include instructions that instruct the user on how to use the kit. The manual may be a paper medium on which instructions for the user are printed, or may be an electronic medium that stores instructions for the user. Further, instead of explaining how to use the kit, the instruction manual may be an instruction manual that explains how to access the method of using the kit (for example, a URL of a medium that can be viewed on the Internet).
 〔まとめ〕
 上記から理解されるように、本発明の第1の態様に係るリンカーは、第1のセグメントと第2のセグメントとを備えるリンカーであって、前記第1のセグメントに含まれる、ポリヌクレオチド配列を有する第1のハイブリダイゼーション部位と、前記第2のセグメントに含まれる、ポリヌクレオチド配列を有する第2のハイブリダイゼーション部位とは、ハイブリダイズして二本鎖領域を形成しており、前記第1のセグメントは、前記第1のハイブリダイゼーション部位からみて5’末端側に結合しており、タンパク質またはペプチドと結合する結合部位と、前記第1のハイブリダイゼーション部位と前記結合部位との間に位置している、ヌクレオチド間の5’-5’結合と、を含み、前記第2のセグメントは、前記第2のハイブリダイゼーション部位からみて3’末端側にポリヌクレオチドの一本鎖領域を含む。
〔summary〕
As understood from the above, the linker according to the first aspect of the present invention is a linker comprising a first segment and a second segment, and which includes a polynucleotide sequence contained in the first segment. The first hybridization site having a polynucleotide sequence and the second hybridization site having a polynucleotide sequence contained in the second segment hybridize to form a double-stranded region, and the first hybridization site has a polynucleotide sequence contained in the second segment. The segment is bonded to the 5' end side when viewed from the first hybridization site, and is located between a binding site that binds to a protein or a peptide, and the first hybridization site and the binding site. and a 5'-5' bond between nucleotides, and the second segment includes a single-stranded polynucleotide region on the 3' end side as viewed from the second hybridization site.
 本発明の第2の態様に係るリンカーは、第1の態様に係るリンカーの構成に加えて、前記第1のハイブリダイゼーション部位の一部と前記第2のハイブリダイゼーション部位の一部とが、共有結合により互いに連結されている。 In the linker according to the second aspect of the present invention, in addition to the structure of the linker according to the first aspect, a part of the first hybridization site and a part of the second hybridization site share connected to each other by bonds.
 本発明の第3の態様に係るリンカーは、第1または第2の態様に係るリンカーの構成に加えて、前記第1のセグメントは、前記第1のハイブリダイゼーション部位と前記5’-5’結合との間に、ポリA配列(式中、mは2以上、50以下の整数を表す)を有する第1のスペーサー部位を含む。 In the linker according to the third aspect of the present invention, in addition to the structure of the linker according to the first or second aspect, the first segment connects the first hybridization site with the 5'-5' bond. and a first spacer region having a polyA m sequence (where m represents an integer of 2 or more and 50 or less).
 本発明の第4の態様に係るリンカーは、第1~第3の態様のいずれか一態様に係るリンカーの構成に加えて、前記第1のハイブリダイゼーション部位のG/C含有量は、20%以上、99%以下である。 In the linker according to the fourth aspect of the present invention, in addition to the structure of the linker according to any one of the first to third aspects, the G/C content of the first hybridization site is 20%. The above is 99% or less.
 本発明の第5の態様に係るリンカーは、第1~第4の態様のいずれか一態様に係るリンカーの構成に加えて、前記第2のセグメントの前記一本鎖領域は、mRNAとハイブリダイズする領域であり、前記第2のセグメントは、当該mRNAと相補的なcDNAの合成を開始するための逆転写開始部位を含む。 In the linker according to the fifth aspect of the present invention, in addition to the structure of the linker according to any one of the first to fourth aspects, the single-stranded region of the second segment hybridizes with mRNA. The second segment includes a reverse transcription initiation site for initiating synthesis of cDNA complementary to the mRNA.
 本発明の第6の態様に係るリンカーは、第1~第5の態様のいずれか一態様に係るリンカーの構成に加えて、前記結合部位は、ピューロマイシン、3’-N-アミノアシルピューロマイシンアミノヌクレオシド(PANS-アミノ酸)および3’-N-アミノアシルアデノシンアミノヌクレオシド(AANS-アミノ酸)からなる群より選択される少なくとも1種である。 In addition to the structure of the linker according to any one of the first to fifth aspects, the linker according to the sixth aspect of the present invention has the structure that the binding site is puromycin, 3'-N-aminoacylpuromycin amino It is at least one selected from the group consisting of nucleosides (PANS-amino acids) and 3'-N-aminoacyladenosine aminonucleosides (AANS-amino acids).
 本発明の第7の態様に係るリンカーは、第1~第6の態様のいずれか一態様に係るリンカーの構成に加えて、前記第1のセグメントは、前記結合部位と前記5’-5’結合との間に、(PEG)(式中、PEGはポリエチレングリコールを表し、nは1以上、20以下の整数を表す)を有する第2のスペーサー部位を含む。 In addition to the structure of the linker according to any one of the first to sixth aspects, the linker according to the seventh aspect of the present invention has the structure that the first segment is connected to the binding site and the 5'-5' A second spacer moiety having (PEG) n (wherein PEG represents polyethylene glycol and n represents an integer of 1 or more and 20 or less) is included between the bond and the bond.
 本発明の第8の態様に係るキットは、第1のセグメントと第2のセグメントとを備えるリンカーを製造するためのキットであって、前記キットは、前記第1のセグメントと前記第2のセグメントとを備え、前記第1のセグメントに含まれる、ポリヌクレオチド配列を有する第1のハイブリダイゼーション部位と、前記第2のセグメントに含まれる、ポリヌクレオチド配列を有する第2のハイブリダイゼーション部位とは、ハイブリダイズして二本鎖領域を形成可能な配列を有し、前記第1のセグメントは、前記第1のハイブリダイゼーション部位からみて5’末端側に結合しており、タンパク質またはペプチドと結合する結合部位と、前記第1のハイブリダイゼーション部位と前記結合部位との間に位置している、ヌクレオチド間の5’-5’結合と、を含み、前記第2のセグメントは、前記第2のハイブリダイゼーション部位からみて3’末端側にポリヌクレオチドの一本鎖領域を含む。 A kit according to an eighth aspect of the present invention is a kit for producing a linker comprising a first segment and a second segment, the kit comprising: the first segment and the second segment. A first hybridization site having a polynucleotide sequence contained in the first segment and a second hybridization site having a polynucleotide sequence contained in the second segment are hybridization sites. The first segment has a sequence capable of forming a double-stranded region by soybean, and the first segment is bound to the 5' end side when viewed from the first hybridization site, and has a binding site that binds to a protein or peptide. and an internucleotide 5'-5' bond located between the first hybridization site and the binding site, and the second segment is located between the second hybridization site and the binding site. It contains a single-stranded polynucleotide region at the 3' end when viewed from above.
 〔付記事項〕
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、上述した実施形態に開示された各技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Additional notes]
The present invention is not limited to the embodiments described above, and various modifications can be made within the scope shown in the claims, and embodiments obtained by appropriately combining each technical means disclosed in the embodiments described above. are also included within the technical scope of the present invention.
 本発明の一実施例について以下に説明する。 An embodiment of the present invention will be described below.
 〔実施例1〕
 (リンカーの製造)
 本実施例で使用するリンカーL1を合成した。まず、第1のセグメントとして、以下の配列を有する化合物FS1を合成した。また、第2のセグメントとして、以下の配列を有する化合物SS1を合成した。合成は、つくばオリゴサービス株式会社に委託され、自動核酸合成装置を使用して、ホスホロアミダイト法に従って実施した。
[Example 1]
(Production of linker)
Linker L1 used in this example was synthesized. First, a compound FS1 having the following sequence was synthesized as a first segment. In addition, a compound SS1 having the following sequence was synthesized as a second segment. The synthesis was entrusted to Tsukuba Oligo Service Co., Ltd. and was carried out using an automatic nucleic acid synthesizer according to the phosphoramidite method.
 化合物FS1〔配列:3’-PCCZZZCTC(FT)CT-5’-5’-(X2)-(X1)-3’〕
 化合物SS1〔配列:5’-(X3)-(X4)-3’〕
ここで、Pはピューロマイシンを表し、ZはPEG(-[CHCHO]-)を表し、FTはFITC-dTを表す。
X1は、以下の配列を表す。
5’-CGGTATAGGCAcnvKGCGTGGAAA-3’(配列番号1、21mer)
X2は、以下の配列を表す。
5’-AAAAAAAAAAAA-3’(配列番号2、12mer)
X3は、以下の配列を表す。
5’-TTTCCACGCGTGCCTATACCG-3’(配列番号3、21mer)X4は、以下の配列を表す。
5’-GCcnvKGCTCCT-3’(配列番号4、12mer)
ここで、cnvKは3-シアノビニルカルバゾールを表し、Cは5-メチル-dCを表す。
Compound FS1 [Sequence: 3'-PCCZZZCTC(FT * )CT-5'-5'-(X2)-(X1)-3']
Compound SS1 [Sequence: 5'-(X3)-(X4)-3']
Here, P represents puromycin, Z represents PEG (-[CH 2 CH 2 O]-), and FT * represents FITC-dT.
X1 represents the following array.
5'-CGGTATAGGCA cnv KGCGTGGAAA-3' (SEQ ID NO: 1, 21mer)
X2 represents the following array.
5'-AAAAAAAAAAAAA-3' (SEQ ID NO: 2, 12mer)
X3 represents the following array.
5'-TTTCCACGCGTGCCCTATAACCG-3' (SEQ ID NO: 3, 21mer) X4 represents the following sequence.
5'-GC * C * A cnv KGC * C * TCCT-3' (SEQ ID NO: 4, 12mer)
Here, cnv K represents 3-cyanovinylcarbazole and C * represents 5-methyl-dC.
 0.25M Tris-HCl緩衝液(pH7.5)4μLおよび1M NaCl水溶液4μLの混合溶液に、化合物FS1(最終濃度500μM)および化合物SS1(最終濃度500μM)を添加した。得られた混合溶液を、90℃にて2分間維持し、次いで70℃まで1分間で降温し、70℃にて1分間維持し、次いで25℃まで15分間で降温させることによって、アニーリング処理を行い、化合物FS1と化合物SS1とをハイブリダイズさせた。次いで、波長365nm、強度500mJ/cmおよび照射時間60秒間の条件で混合溶液にUV照射し、化合物FS1と化合物SS1との間に光架橋による共有結合を形成し、実施例1のリンカーL1を得た。 Compound FS1 (final concentration 500 μM) and compound SS1 (final concentration 500 μM) were added to a mixed solution of 4 μL of 0.25 M Tris-HCl buffer (pH 7.5) and 4 μL of 1 M NaCl aqueous solution. The resulting mixed solution was maintained at 90°C for 2 minutes, then cooled to 70°C for 1 minute, maintained at 70°C for 1 minute, and then cooled to 25°C for 15 minutes to perform an annealing treatment. Compound FS1 and compound SS1 were hybridized. Next, the mixed solution was irradiated with UV at a wavelength of 365 nm, an intensity of 500 mJ/ cm2 , and an irradiation time of 60 seconds to form a covalent bond between compound FS1 and compound SS1 by photocrosslinking, and linker L1 of Example 1 was formed. Obtained.
 (mRNA-リンカー複合体の形成)
 100mM NaClを含む25mM Tris-HCl緩衝液(pH7.5)に、リンカーL1(最終濃度100μM)、およびインターロイキン-17A(IL-17A)をコードするmRNA(つくばオリゴサービス株式会社によって調製されたもの、配列番号5)(最終濃度100μM)を添加した。混合溶液を、90℃で1分間インキュベートし、次いで70℃で1分間インキュベートし、0.08℃/秒の速度で25℃まで降温させることによって、アニーリング処理を行い、リンカーL1が備える化合物SS1の3’末端とmRNAの3’末端とをハイブリダイズさせた。次いで、次いで、波長365nm、強度500mJ/cmおよび照射時間60秒間の条件で混合溶液にUV照射し、リンカーL1とmRNAとの間に光架橋による共有結合を形成し、mRNA-リンカーL1複合体を得た。図6に、mRNA-リンカーL1複合体の構成を示す。図6は、本発明の実施例1のmRNA-リンカーL1複合体の構成を示す模式図である。
(Formation of mRNA-linker complex)
Linker L1 (final concentration 100 μM) and mRNA encoding interleukin-17A (IL-17A) (prepared by Tsukuba Oligo Service Co., Ltd.) were added to 25 mM Tris-HCl buffer (pH 7.5) containing 100 mM NaCl. , SEQ ID NO: 5) (final concentration 100 μM) was added. The mixed solution was subjected to an annealing treatment by incubating at 90°C for 1 minute, then at 70°C for 1 minute, and decreasing the temperature to 25°C at a rate of 0.08°C/sec. The 3' end and the 3' end of the mRNA were hybridized. Next, the mixed solution is irradiated with UV at a wavelength of 365 nm, an intensity of 500 mJ/cm 2 , and an irradiation time of 60 seconds to form a covalent bond between linker L1 and mRNA by photocrosslinking, thereby forming an mRNA-linker L1 complex. I got it. FIG. 6 shows the structure of the mRNA-linker L1 complex. FIG. 6 is a schematic diagram showing the structure of the mRNA-linker L1 complex of Example 1 of the present invention.
 8Mの尿素を含む4%スタッキングゲル-6%分離ゲルのSDS-PAGEにより、mRNA-リンカーL1複合体が形成されたことを検証した。検証結果を図7に示す。図7は、本発明の実施例1におけるmRNA-リンカー複合体L1の形成の検証結果を示すゲル電気泳動写真である。図7において、レーン1は100bp DNAラダーを示し、レーン2は10bp DNAラダーを示し、レーン3はHPLC精製によって得られたリンカーL1を示し、レーン4はmRNAを示し、レーン5はアニーリング処理およびUV照射に供された、mRNA、リンカーL1およびmRNA-リンカーL1複合体を含む混合溶液を示す。 Formation of the mRNA-linker L1 complex was verified by SDS-PAGE of 4% stacking gel-6% separation gel containing 8M urea. The verification results are shown in FIG. FIG. 7 is a gel electrophoresis photograph showing the verification results of the formation of mRNA-linker complex L1 in Example 1 of the present invention. In Figure 7, lane 1 shows the 100bp DNA ladder, lane 2 shows the 10bp DNA ladder, lane 3 shows the linker L1 obtained by HPLC purification, lane 4 shows the mRNA, and lane 5 shows the annealing treatment and UV Figure 2 shows a mixed solution containing mRNA, linker L1 and mRNA-linker L1 complex that has been subjected to irradiation.
 図7のレーン5に示すように、mRNA-リンカーL1複合体が形成されていることが確認できた。また、リンカーL1に含有されるFITCの蛍光強度の比率によって算出したmRNA-リンカーL1複合体の形成効率は、78%~80%であった。この形成効率の値は、参考例1において用いられたリンカーLR1によるmRNA-リンカーLR1複合体の形成効率の値(60%~90%、カタログ値)と比較して、同程度である。 As shown in lane 5 of FIG. 7, it was confirmed that an mRNA-linker L1 complex was formed. Furthermore, the formation efficiency of the mRNA-linker L1 complex, calculated from the ratio of the fluorescence intensity of FITC contained in linker L1, was 78% to 80%. This value of the formation efficiency is comparable to the value of the formation efficiency of the mRNA-linker LR1 complex by the linker LR1 used in Reference Example 1 (60% to 90%, catalog value).
 (mRNA-リンカー-ポリペプチド複合体(mRNAディスプレイ)の形成)
 HPLC精製によって得られたmRNA-リンカーL1複合体を、無細胞翻訳系で翻訳し、mRNA-リンカー-ポリペプチド複合体(以下、mRNAディスプレイと記載することがある)を形成させた。無細胞翻訳に用いた反応液の組成は、Translation Mix 0.5μL、Retic Lysate1 17.5μL、RNaseインヒビター 0.5μL、mRNA-リンカーL1複合体 3pmol、および超純水(最終25μLとなるよう添加)であった。上記の翻訳用反応液を添加したチューブを30℃にて20分間インキュベートし、次いで翻訳用反応液に3M KCl 12μLおよび1M MgCl 3μ Lを添加し、37℃にてさらに60分間インキュベートした。次いで、翻訳用反応液にエチレンジアミン四酢酸(pH8.0)10μ Lを添加し、37℃にて10分間インキュベートし、次いで2x結合バッファー50μLを添加して、無細翻訳系で合成されたIL-17AがmRNA-リンカーL1複合体に結合した、mRNAディスプレイL1を得た。
(Formation of mRNA-linker-polypeptide complex (mRNA display))
The mRNA-linker L1 complex obtained by HPLC purification was translated using a cell-free translation system to form an mRNA-linker-polypeptide complex (hereinafter sometimes referred to as mRNA display). The composition of the reaction solution used for cell-free translation was Translation Mix 0.5 μL, Retic Lysate 1 17.5 μL, RNase inhibitor 0.5 μL, mRNA-linker L1 complex 3 pmol, and ultrapure water (added to a final volume of 25 μL). Met. The tube containing the above translation reaction solution was incubated at 30°C for 20 minutes, then 12 μL of 3M KCl and 3 μL of 1M MgCl 2 were added to the translation reaction solution, and the tube was further incubated at 37°C for 60 minutes. Next, 10 µL of ethylenediaminetetraacetic acid (pH 8.0) was added to the translation reaction solution, incubated at 37°C for 10 minutes, and then 50 µL of 2x binding buffer was added to transform the IL-1 synthesized using the free translation system. mRNA display L1 was obtained in which 17A was bound to the mRNA-linker L1 complex.
 (mRNA-リンカー-ポリペプチド-cDNA複合体(cDNAディスプレイ)の形成)
 精製したmRNAディスプレイL1を逆転写し、mRNA-リンカー-ポリペプチド-cDNA複合体(以下、cDNAディスプレイと記載することがある)を形成させた。逆転写に用いた反応液の組成は、5x ReverTra Ace(東洋紡社製)付属バッファー20μL、10mM dNTP混合溶液10μL、Rever Tra Ace(100U/μL)2μL、上記で得たmRNAディスプレイL1を含む溶液30μL、および超純水(最終100μLとなるよう添加)であった。上記の逆転写用反応液を42℃にて90分間、ローテーターで攪拌しながらインキュベートし、mRNAに相補的なcDNAがmRNAディスプレイL1に結合した、cDNAディスプレイL1を得た。
(Formation of mRNA-linker-polypeptide-cDNA complex (cDNA display))
The purified mRNA display L1 was reverse transcribed to form an mRNA-linker-polypeptide-cDNA complex (hereinafter sometimes referred to as cDNA display). The composition of the reaction solution used for reverse transcription was: 20 μL of 5x ReverTra Ace (manufactured by Toyobo) attached buffer, 10 μL of 10 mM dNTP mixed solution, 2 μL of Rever Tra Ace (100 U/μL), and 30 μL of the solution containing mRNA display L1 obtained above. , and ultrapure water (added to a final volume of 100 μL). The above reaction solution for reverse transcription was incubated at 42° C. for 90 minutes while stirring with a rotator to obtain cDNA display L1 in which cDNA complementary to mRNA was bound to mRNA display L1.
 (cDNAディスプレイの精製)
 cDNAディスプレイL1を含む溶液は、IL17-Aが結合していないmRNA-リンカーL1-cDNA複合体、および、IL17-Aが結合したmRNA-リンカーL1-ポリペプチド-cDNA複合体(すなわちcDNAディスプレイL1)の両方を含む。この2種類の複合体を単離するため、His-tag精製を実施した。まず、上記のcDNAディスプレイL1を含む溶液にHis Mag sepharose Niを添加し、25℃にて1時間、シェーカーを用いて振盪しながらインキュベートした。溶液を5000rpmで遠心分離し、上清(His sup.)を除去した。次いで、沈殿した残渣に、50μLのHis tag溶出バッファー(高濃度のイミダゾールを含む)を添加して、室温にて30分間、シェーカーを用いて振盪しながらインキュベートした。次いで、溶液を5000rpmで遠心分離し、上清(His Elute)を回収してIL-17Aが結合したcDNAディスプレイL1を得た。
(CDNA display purification)
The solution containing cDNA display L1 contains an mRNA-linker L1-cDNA complex to which no IL17-A is bound, and an mRNA-linker L1-polypeptide-cDNA complex to which IL17-A is bound (i.e., cDNA display L1). including both. In order to isolate these two types of complexes, His-tag purification was performed. First, His Mag sepharose Ni was added to the solution containing the above cDNA display L1, and the solution was incubated at 25° C. for 1 hour while shaking using a shaker. The solution was centrifuged at 5000 rpm and the supernatant (His sup.) was removed. Next, 50 μL of His tag elution buffer (containing a high concentration of imidazole) was added to the precipitated residue, and the mixture was incubated at room temperature for 30 minutes with shaking using a shaker. Then, the solution was centrifuged at 5000 rpm, and the supernatant (His Elute) was collected to obtain IL-17A-bound cDNA display L1.
 〔参考例1〕
 本発明の参考例1のリンカーLR1を、国際公開第2016/159211号の実施例1の記載に従って、調製した。リンカーL1の代わりにリンカーLR1を用いたことを除いて実施例1と同様にして、mRNA-リンカーLR1複合体、mRNA-リンカーLR1-ポリペプチド複合体(mRNAディスプレイLR1)、およびmRNA-リンカーLR1-ポリペプチド-cDNA複合体(cDNAディスプレイLR1)の形成および精製を実施した。
[Reference example 1]
Linker LR1 of Reference Example 1 of the present invention was prepared according to the description of Example 1 of WO 2016/159211. An mRNA-linker LR1 complex, an mRNA-linker LR1-polypeptide complex (mRNA display LR1), and an mRNA-linker LR1- Formation and purification of a polypeptide-cDNA complex (cDNA display LR1) was performed.
 〔結果〕
 8Mの尿素を含む4%スタッキングゲル-6%分離ゲルのSDS-PAGEにより、リンカーL1およびリンカーLR1のmRNAディスプレイおよびcDNAディスプレイの形成効率を検証した。検証結果を図8に示す。図8は、本発明の参考例1のリンカーLR1を使用した場合(左図)、および本発明の実施例1のリンカーL1を使用した場合(右図)、のcDNAディスプレイ法の結果を表すゲル電気泳動写真である。
〔result〕
The efficiency of forming mRNA and cDNA display of linker L1 and linker LR1 was verified by SDS-PAGE of 4% stacking gel-6% separating gel containing 8M urea. The verification results are shown in FIG. Figure 8 is a gel showing the results of the cDNA display method when linker LR1 of Reference Example 1 of the present invention was used (left figure) and when linker L1 of Example 1 of the present invention was used (right figure). This is an electrophoresis photograph.
 図8に示すように、リンカーL1を用いることによって、mRNAディスプレイL1およびcDNAディスプレイL1を形成できた。また、リンカーL1に含有されるFITCの蛍光強度の比率によって算出したmRNAディスプレイ、cDNAディスプレイ(IL-17Aが結合していない複合体を含む)およびcDNAディスプレイ(IL-17Aが結合していない複合体を含まない)の形成効率は、下記表1の通りであった。 As shown in FIG. 8, by using linker L1, mRNA display L1 and cDNA display L1 could be formed. In addition, mRNA display, cDNA display (including complexes to which IL-17A is not bound), and cDNA display (complexes to which IL-17A is not bound) calculated from the ratio of the fluorescence intensity of FITC contained in linker L1. The formation efficiency of (not including) was as shown in Table 1 below.
 表1に示すように、本発明の実施例1のリンカーL1を用いた場合のmRNAディスプレイおよびcDNAディスプレイの形成効率は、参考例1のリンカーLR1と比較して、同程度以上であった。また、リンカーL1を用いた場合の逆転写効率もまた、リンカーLR1と比較して、同程度以上であった。このことから、本発明の実施例1のリンカーL1は、cDNAディスプレイ法などの機能性ポリペプチドの探索技術において、優れたリンカーとして使用することができると期待される。 As shown in Table 1, the formation efficiency of mRNA display and cDNA display when linker L1 of Example 1 of the present invention was used was comparable or higher than that of linker LR1 of Reference Example 1. Furthermore, the reverse transcription efficiency when linker L1 was used was also comparable or higher than that using linker LR1. From this, it is expected that the linker L1 of Example 1 of the present invention can be used as an excellent linker in functional polypeptide search techniques such as cDNA display methods.
 本発明は、例えば、機能性ポリペプチドの探索において、利用することができる。 The present invention can be utilized, for example, in searching for functional polypeptides.
 10  第1のセグメント
 11  第1のハイブリダイゼーション部位
 12  結合部位
 13  5’-5’結合
 14  第1のスペーサー部位
 15  第2のスペーサー部位
 20  第2のセグメント
 21  第2のハイブリダイゼーション部位
 22  一本鎖領域
 23  逆転写開始部位
 40  mRNA
 50  ポリペプチド
 60  cDNA
 100 リンカー
10 First segment 11 First hybridization site 12 Binding site 13 5'-5' bond 14 First spacer site 15 Second spacer site 20 Second segment 21 Second hybridization site 22 Single strand Region 23 Reverse transcription start site 40 mRNA
50 polypeptide 60 cDNA
100 linker

Claims (8)

  1.  第1のセグメントと第2のセグメントとを備えるリンカーであって、
     前記第1のセグメントに含まれる、ポリヌクレオチド配列を有する第1のハイブリダイゼーション部位と、前記第2のセグメントに含まれる、ポリヌクレオチド配列を有する第2のハイブリダイゼーション部位とは、ハイブリダイズして二本鎖領域を形成しており、
     前記第1のセグメントは、
      前記第1のハイブリダイゼーション部位からみて5’末端側に結合しており、タンパク質またはペプチドと結合する結合部位と、
      前記第1のハイブリダイゼーション部位と前記結合部位との間に位置している、ヌクレオチド間の5’-5’結合と、を含み、
     前記第2のセグメントは、
      前記第2のハイブリダイゼーション部位からみて3’末端側にポリヌクレオチドの一本鎖領域を含む、
     リンカー。
    A linker comprising a first segment and a second segment,
    A first hybridization site having a polynucleotide sequence contained in the first segment and a second hybridization site having a polynucleotide sequence contained in the second segment hybridize to each other. It forms a main chain region,
    The first segment is
    A binding site that is bonded to the 5′ end side as viewed from the first hybridization site and that binds to a protein or peptide;
    a 5'-5' internucleotide bond located between the first hybridization site and the binding site;
    The second segment is
    comprising a single-stranded polynucleotide region on the 3' end side as viewed from the second hybridization site;
    linker.
  2.  前記第1のハイブリダイゼーション部位の一部と前記第2のハイブリダイゼーション部位の一部とが、共有結合により互いに連結されている、
     請求項1に記載のリンカー。
    A portion of the first hybridization site and a portion of the second hybridization site are linked to each other by a covalent bond,
    A linker according to claim 1.
  3.  前記第1のセグメントは、前記第1のハイブリダイゼーション部位と前記5’-5’結合との間に、ポリA配列(式中、mは2以上、50以下の整数を表す)を有する第1のスペーサー部位を含む、
     請求項1または2に記載のリンカー。
    The first segment has a polyA m sequence (where m represents an integer of 2 or more and 50 or less) between the first hybridization site and the 5'-5' bond. 1 spacer portion,
    The linker according to claim 1 or 2.
  4.  前記第1のハイブリダイゼーション部位のG/C含有量は、20%以上、99%以下である、
     請求項1または2に記載のリンカー。
    The G/C content of the first hybridization site is 20% or more and 99% or less,
    The linker according to claim 1 or 2.
  5.  前記第2のセグメントの前記一本鎖領域は、mRNAとハイブリダイズする領域であり、
     前記第2のセグメントは、当該mRNAと相補的なcDNAの合成を開始するための逆転写開始部位を含む、
     請求項1または2に記載のリンカー。
    The single-stranded region of the second segment is a region that hybridizes with mRNA,
    The second segment includes a reverse transcription initiation site for initiating synthesis of cDNA complementary to the mRNA.
    The linker according to claim 1 or 2.
  6.  前記結合部位は、ピューロマイシン、3’-N-アミノアシルピューロマイシンアミノヌクレオシド(PANS-アミノ酸)および3’-N-アミノアシルアデノシンアミノヌクレオシド(AANS-アミノ酸)からなる群より選択される少なくとも1種である、
     請求項1または2に記載のリンカー。
    The binding site is at least one selected from the group consisting of puromycin, 3'-N-aminoacylpuromycin aminonucleoside (PANS-amino acid), and 3'-N-aminoacyladenosine aminonucleoside (AANS-amino acid). ,
    The linker according to claim 1 or 2.
  7.  前記第1のセグメントは、前記結合部位と前記5’-5’結合との間に、(PEG)(式中、PEGはポリエチレングリコールを表し、nは1以上、20以下の整数を表す)を有する第2のスペーサー部位を含む、
     請求項1または2に記載のリンカー。
    The first segment has (PEG) n (wherein, PEG represents polyethylene glycol, and n represents an integer of 1 or more and 20 or less) between the binding site and the 5'-5' bond. a second spacer portion having
    The linker according to claim 1 or 2.
  8.  第1のセグメントと第2のセグメントとを備えるリンカーを製造するためのキットであって、
     前記キットは、前記第1のセグメントと前記第2のセグメントとを備え、
     前記第1のセグメントに含まれる、ポリヌクレオチド配列を有する第1のハイブリダイゼーション部位と、前記第2のセグメントに含まれる、ポリヌクレオチド配列を有する第2のハイブリダイゼーション部位とは、ハイブリダイズして二本鎖領域を形成可能な配列を有し、
     前記第1のセグメントは、
      前記第1のハイブリダイゼーション部位からみて5’末端側に結合しており、タンパク質またはペプチドと結合する結合部位と、
      前記第1のハイブリダイゼーション部位と前記結合部位との間に位置している、ヌクレオチド間の5’-5’結合と、を含み、
     前記第2のセグメントは、
      前記第2のハイブリダイゼーション部位からみて3’末端側にポリヌクレオチドの一本鎖領域を含む、
     キット。
    A kit for manufacturing a linker comprising a first segment and a second segment, the kit comprising:
    The kit includes the first segment and the second segment,
    A first hybridization site having a polynucleotide sequence contained in the first segment and a second hybridization site having a polynucleotide sequence contained in the second segment hybridize to each other. has a sequence capable of forming a full-stranded region,
    The first segment is:
    A binding site that is bonded to the 5′ end side as viewed from the first hybridization site and that binds to a protein or peptide;
    a 5'-5' internucleotide bond located between the first hybridization site and the binding site;
    The second segment is
    comprising a single-stranded polynucleotide region on the 3' end side as viewed from the second hybridization site;
    kit.
PCT/JP2022/047326 2022-03-29 2022-12-22 Linker and kit WO2023188623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-054618 2022-03-29
JP2022054618 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023188623A1 true WO2023188623A1 (en) 2023-10-05

Family

ID=88200153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047326 WO2023188623A1 (en) 2022-03-29 2022-12-22 Linker and kit

Country Status (1)

Country Link
WO (1) WO2023188623A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024018A1 (en) * 2003-09-08 2005-03-17 Zoegene Corporation Nucleic acid construct and process for producing the same
JP2013039060A (en) * 2011-08-12 2013-02-28 Saitama Univ Linker for evolving protein with enzyme-like activity, and method for screening such protein using the linker
WO2016159211A1 (en) * 2015-03-31 2016-10-06 国立大学法人埼玉大学 Common high-speed photo-cross-linking linker for molecular interaction analysis and in vitro selection, and in vitro selection method using linker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024018A1 (en) * 2003-09-08 2005-03-17 Zoegene Corporation Nucleic acid construct and process for producing the same
JP2013039060A (en) * 2011-08-12 2013-02-28 Saitama Univ Linker for evolving protein with enzyme-like activity, and method for screening such protein using the linker
WO2016159211A1 (en) * 2015-03-31 2016-10-06 国立大学法人埼玉大学 Common high-speed photo-cross-linking linker for molecular interaction analysis and in vitro selection, and in vitro selection method using linker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Genotype Phenotype Coupling : Methods and Protocols", vol. 2070, 1 January 2020, SPRINGER US, New York, NY, ISBN: 978-1-4939-9853-1, article ARAI HIDENAO, KUMACHI SHIGEFUMI, NEMOTO NAOTO: "Chapter 3: cDNA Display: A Stable and Simple Genotype–Phenotype Coupling Using a Cell-Free Translation System : Methods and Protocols", pages: 43 - 56, XP009549245, DOI: 10.1007/978-1-4939-9853-1_3 *

Similar Documents

Publication Publication Date Title
JP4808315B2 (en) DNA / protein fusion and its use
JP3279503B2 (en) Modified nucleotides and their preparation and use
US6794499B2 (en) Oligonucleotide analogues
US8637650B2 (en) Macromolecular nucleotide compounds and methods for using the same
JP3022967B2 (en) Stereoregular polynucleotide binding polymer
US7615629B2 (en) Methods and compositions for the tandem synthesis of two or more oligonucleotides on the same solid support
US6436665B1 (en) Methods for encoding and sorting in vitro translated proteins
US8153365B2 (en) Oligonucleotide analogues
JPH07504087A (en) Applications of fluorescent N-nucleosides and fluorescent N-nucleoside structural analogs
JP2003505094A (en) Peptide acceptor ligation method
JP6057185B2 (en) Nucleic acid linker
JP2008253176A (en) Linker for obtaining highly affinitive molecule
WO2023188623A1 (en) Linker and kit
WO2003062417A1 (en) Rna-dna ligation product and utilization thereof
JP2003502013A (en) Process for the preparation of morpholino-nucleotides and its use for the analysis and labeling of nucleic acid sequences
WO2012102616A1 (en) Heterodirectional polynucleotides
JPWO2005024018A1 (en) Nucleic acid construct and method for producing the same
WO2020161187A1 (en) Method and products for producing functionalised single stranded oligonucleotides
JP2002291491A (en) Rna-dna conjugate
US8153361B1 (en) Dynamic and combinatorial synthesis of polymerase primers
JP6429264B2 (en) Boranophosphate compounds and nucleic acid oligomers
US20210238643A1 (en) Enzymatic Processes for Synthesizing RNA Containing Certain Non-Standard Nucleotides
JP2005013173A5 (en)
WO2022111536A1 (en) Dna-encoded compound library and compound screening method
JP2004337022A (en) Functional molecule and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935749

Country of ref document: EP

Kind code of ref document: A1