WO2023188570A1 - Motor system - Google Patents

Motor system Download PDF

Info

Publication number
WO2023188570A1
WO2023188570A1 PCT/JP2022/045746 JP2022045746W WO2023188570A1 WO 2023188570 A1 WO2023188570 A1 WO 2023188570A1 JP 2022045746 W JP2022045746 W JP 2022045746W WO 2023188570 A1 WO2023188570 A1 WO 2023188570A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
motor
rotation axis
power module
module
Prior art date
Application number
PCT/JP2022/045746
Other languages
French (fr)
Japanese (ja)
Inventor
茂樹 森永
磊 季
一男 石塚
学 宮山
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Publication of WO2023188570A1 publication Critical patent/WO2023188570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to a motor system.
  • a conventional motor system includes, for example, a three-phase AC motor and a power control unit (see, for example, Patent Document 1).
  • a support shelf is provided on the casing of the multiphase motor, and the power control unit is mounted on the support shelf.
  • a polyphase motor requires a power module to supply current corresponding to each phase.
  • the power module is generally built into the power control unit. That is, in the conventional motor system described above, the power module is placed outside the motor. Therefore, in the conventional motor system described above, it is necessary to manufacture (develop) the multiphase motor and the power module separately. In addition, in the conventional motor system described above, the power module is disposed outside the motor, so there is room for improvement in making the motor system smaller (space saving).
  • An object of the present invention is to provide a motor system that is downsized by incorporating a power module inside a polyphase motor.
  • a motor system is a motor system for inverter control of a multi-phase motor, in which a coil is wound around a plurality of teeth arranged at intervals in the circumferential direction around a motor rotation axis. It includes a stator module, and a power module in which a plurality of upper and lower arm device sets, each corresponding to each phase, are attached to a base member, and the stator module and the power module are connected to a motor rotation axis.
  • the stator module is attached to one side of the base member in the motor rotation axis direction, and the plurality of upper and lower arm device sets are attached to one side of the base member in the motor rotation axis direction. attached to the other side.
  • the stator module is constituted by a plurality of phase stator modules that are divided into phases in the circumferential direction around the motor rotation axis, and the power module is configured to control the motor rotation. It is preferable that the power module is composed of a plurality of phase power modules that are divided into phases in the circumferential direction around the axis.
  • the phase stator module and the phase power module corresponding to the phase stator module are aligned with each other in the circumferential direction around the motor rotation axis when viewed from the motor rotation axis direction. It is preferable that the
  • phase stator module may be divided into phases.
  • the phase power module may be divided into phases.
  • the motor system according to the present invention further includes a power module control unit that controls the power module, and the power module control unit connects the stator module with the power module in between in the motor rotation axis direction. Preferably, they are located at opposite positions.
  • the polyphase motor is a brushless three-phase AC motor with the number of poles P and the number of slots S, and the number of poles P and the number of slots S are expressed by the following relational expression (A brushless three-phase AC motor that satisfies (1) and (2) is preferable.
  • P 3n ⁇ 1 (n: positive odd number excluding 1)...(1)
  • S 3n (n: positive odd number excluding 1)...(2)
  • each of the coils may be wound around one of the teeth by concentrated winding.
  • the stator module is constituted by a plurality of phase stator modules that are divided into phases in the circumferential direction around the motor rotation axis, and the upper and lower arms correspond to each phase.
  • the device and the corresponding phase stator module are paired.
  • each of the coils may be wound around the plurality of teeth using distributed winding.
  • the multiphase motor may be an axial gap motor.
  • the multiphase motor may be a radial gap motor.
  • the motor system according to the present invention may be provided with an additional transmission.
  • FIG. 1 is a diagram schematically showing an example of a control equipment system to which the motor system of the present invention can be applied.
  • 1 is a diagram schematically showing a motor system according to a first embodiment of the present invention in a cross section including a motor rotation axis;
  • FIG. 3 is a diagram schematically showing a stator module provided in the motor system of FIG. 2 from one side in the motor rotation axis direction.
  • FIG. 4 is a diagram schematically showing one of a plurality of phase stator modules forming the stator module of FIG. 3 from one side in the motor rotation axis direction.
  • FIG. 4 is a diagram schematically showing a core block forming the stator module of FIG. 3 from one side in the motor rotation axis direction.
  • FIG. 6 is a diagram schematically showing one of a plurality of phase core blocks forming the core block of FIG. 5 from one side in the motor rotation axis direction.
  • FIG. 3 is a diagram schematically showing a power module provided in the motor system of FIG. 2 from the other side in the motor rotation axis direction.
  • FIG. 8 is a diagram schematically showing one of the plurality of phase power modules forming the power module of FIG. 7 from the other side in the motor rotation axis direction.
  • FIG. 3 is an enlarged view showing the relationship among a stator module, a power module, and a base member in the motor system of FIG. 2.
  • FIG. FIG. 3 is an enlarged view showing still another relationship among the stator module, power module, and base member in the motor system of FIG. 2; FIG.
  • FIG. 3 is a diagram schematically showing a power module control driver provided in the motor system of FIG. 2 from one side in the motor rotation axis direction.
  • FIG. 3 is a diagram schematically showing the basic circuit configuration included in the motor system of FIG. 2 and the relationship among a stator module, a power module, and a power module control section.
  • the relationship between the magnetic pole arrangement of the rotor and the tooth arrangement of the stator module is schematically shown along with each phase power module, based on the cycle of one revolution of the motor rotor.
  • FIG. 3 is a diagram schematically showing the relationship between the arrangement of the magnetic poles of the rotor and the arrangement of the coils of the stator module at positions in the circumferential direction around the motor rotation axis in the motor system of FIG. 2.
  • FIG. FIG. 6 is a diagram schematically showing a motor system in a cross section including a motor rotation axis according to a second embodiment of the present invention.
  • FIG. 16 is a diagram schematically showing the stator module provided in the motor system of FIG. 15 in a state where it is attached to a base member from one side in the direction of the motor rotation axis.
  • FIG. 17 is a diagram schematically showing one of the plurality of phase stator modules forming the stator module of FIG. 16 from one side in the motor rotation axis direction.
  • FIG. 18 is a diagram schematically showing a phase core block forming the phase stator module of FIG. 17 from the direction of the motor rotation axis.
  • 16 is an enlarged view showing the relationship among the stator module, power module, and base member in the motor system of FIG. 15.
  • FIG. It is a figure which shows roughly an example when distributed winding of a coil is carried out.
  • FIG. 1 schematically shows an example of a control equipment system to which the motor system of the present invention can be applied.
  • reference numeral 1 indicates the basic configuration of a motor system according to the present invention.
  • the motor system 1 is a motor system for inverter control of a polyphase motor 2 (hereinafter also referred to as "motor 2").
  • the motor system 1 can be additionally equipped with a transmission 50.
  • transmission 50 is a reduction gear.
  • FIG. 1 exemplarily shows a basic planetary gear reducer that includes a sun gear 51, a ring gear 52, and a planetary carrier 54 that rotatably supports a pinion gear 53.
  • the transmission 50 can use any one of the sun gear 51, the ring gear 52, and the planetary carrier 54 as an input element, and can connect the input element to the motor shaft 2d of the motor 2.
  • the transmission 50 can be connected to a load 60 driven by the transmission 50, with elements other than the input element being fixed elements, and the remaining elements being output elements.
  • An example of the load 60 is a robot arm.
  • the transmission 50 can be of various configurations other than the planetary gear transmission.
  • various loads such as automobile wheels, machine tools, etc. can be used as the load 60 as long as they can be operated by using the transmission 50.
  • a motor system 1 includes a motor 2 and a control driver 3 that electrically controls the motor 2.
  • the motor 2 is a three-phase AC motor.
  • the motor 2 includes a stator 2a, a rotor 2b, and a motor case 2c.
  • Stator 2a and rotor 2b are housed inside a motor case 2c.
  • the motor 2 is a brushless three-phase AC motor with a number of poles of P and a number of slots of S.
  • the number of poles P and the number of slots S satisfy the following relational expressions (1) and (2).
  • S is the number of coils in the entire motor 2
  • n is the number of teeth grouped for each phase (hereinafter also referred to as “number of teeth”).
  • a motor that satisfies the conditions (1) and (2) above is also referred to as a series II motor.
  • the motor 2 according to this embodiment is an 8P9S brushless three-phase AC motor.
  • control driver 3 is also housed inside the motor case 2c.
  • control driver 3 includes a power module 30 for supplying current corresponding to each phase, and a power module control section 40 for controlling the power module 30.
  • FIG. 2 schematically shows a motor system 1A according to the first embodiment of the present invention in a cross section including the motor rotation axis O.
  • the cross section in FIG. 2 is shown to include an upper and lower arm device set 31, which will be described later.
  • the motor 2 is an axial gap motor.
  • the teeth 22 of the stator 2a extend in the direction in which the motor rotation axis O extends (hereinafter also referred to as "motor rotation axis direction").
  • the stator 2a includes a stator module 20A.
  • the stator module 20A is a stator module in which a coil 24 is wound around a plurality of teeth 22 arranged at intervals in the circumferential direction around the motor rotation axis O.
  • the stator module 20A includes a plurality of teeth 22 arranged at intervals in the circumferential direction around the motor rotation axis O, and a back core 23 in which the plurality of teeth 22 are provided.
  • the back core 23 is an annular back core disposed at a position whose central axis is the motor rotation axis O.
  • the back core 23 is configured to be larger than the teeth 22.
  • the back core 23 functions as a yoke.
  • the teeth 22 and the back core 23 are integrally formed to form one core block 21. Therefore, in the present disclosure, the core block 21 as a whole functions as a yoke.
  • stator module 20A includes a plurality of coils 24.
  • each coil 24 is wound around one tooth 22 by concentrated winding.
  • stator module 20A includes nine teeth 22. That is, in the present disclosure, the stator module 20A includes nine coils 24.
  • stator module 20A there can be at least one stator module 20A.
  • the stator 2a includes two stator modules 20A.
  • the two stator modules 20A are spaced apart in the motor rotation axis direction.
  • the rotor 2b is arranged at a position adjacent to the stator module 20A in the motor rotation axis direction. In the present disclosure, the rotor 2b is arranged between the two stator modules 20A in the motor rotation axis direction.
  • the rotor 2b includes a rotor main body 2b1 fixed to the motor shaft 2d and a plurality of permanent magnets 2b2.
  • the rotor main body 2b1 is an annular rotor main body disposed at a position with the motor rotation axis O as the central axis.
  • the plurality of permanent magnets 2b2 are respectively attached to the rotor main body 2b1 at intervals in the circumferential direction around the motor rotation axis O.
  • the plurality of permanent magnets 2b2 are arranged such that circumferentially adjacent permanent magnets 2b2 have different magnetic poles (N, S).
  • the power module 30 is a power module in which a plurality of upper and lower arm device sets 31, each corresponding to each phase, are attached to a base member 34.
  • the power module 30 includes a plurality of upper and lower arm device sets 31 and a base member 34 to which the upper and lower arm device sets 31 are attached.
  • the power module 30 includes three upper and lower arm device sets 31.
  • the upper and lower arm device set 31 includes an upper arm power device (hereinafter also referred to as “upper arm device”) 32 and a lower arm power device (hereinafter also referred to as “lower arm device”) 33.
  • the upper arm device 32 is a switch circuit element for supplying current from the power supply + (plus) side to the coil 24 of the stator module 20A
  • the lower arm device 33 is a switch circuit element for supplying current from the power supply + (plus) side to the coil 24 of the stator module 20A. This is a switch circuit element for supplying current from the - (minus) side.
  • the switch circuit element can be formed by combining various circuit elements as long as they have a configuration that can perform an ON/OFF switch function and a rectification function.
  • the upper arm device 32 and the lower arm device 33 are electrically connected to the corresponding coils 24 via conductive wires 5.
  • the base member 34 is an annular base member disposed at a position whose central axis is the motor rotation axis O.
  • the base member 34 is formed by a thin base plate.
  • the three upper and lower arm device sets 31 are arranged on the other side of the base member 34 in the motor rotation axis direction at intervals in the circumferential direction around the motor rotation axis O.
  • the power module 30 further includes a base 35.
  • the upper and lower arm device set 31 is attached to a base 35.
  • the upper and lower arm device set 31 can be attached to the base member 34 via the base plate 35.
  • a ceramic base is used for the base 35 in consideration of the influence of heat transmitted to the upper and lower arm device set 31.
  • the ceramic base has a heat insulating function.
  • the substrate 35 is not limited to a ceramic substrate.
  • the power module 30 further includes at least one intermediate member 36 between the base member 34 and the substrate 35.
  • the intermediate member 36 for example, a member having a heat insulation function, a magnetic or electrical insulation function can be used.
  • the intermediate member 36 is an arbitrary member and can be omitted.
  • the upper arm device 32 and the lower arm device 33 are each controlled to be turned on/off as appropriate by the power module control section 40.
  • the power module 30 can function as an inverter circuit for controlling the current supplied to the motor 2.
  • the stator module 20A and the power module 30 are arranged at positions aligned in the direction of the motor rotation axis.
  • the stator module 20A and the power module 30 are arranged on the same axis with the motor rotation axis O as a common central axis. Furthermore, in the present disclosure, the stator module 20A is arranged on one side in the motor rotation axis direction, and the power module 30 is arranged on the other side in the motor rotation axis direction. That is, in the present disclosure, "arranged in a position aligned in the motor rotation axis direction" means that the stator module 20A and the power module 30 are adjacent to each other in the motor rotation axis direction with the motor rotation axis O as the central axis. It means that they are placed in a matching position.
  • stator module 20A is attached to one side of the base member 34 in the motor rotation axis direction.
  • the upper and lower arm device set 31 of the power module 30 is attached to the other side of the base member 34 in the motor rotation axis direction.
  • the stator 2a includes two stator modules 20A, and of the two stator modules 20A, the stator module 20A disposed on the other side in the motor rotation axis direction is attached to the power module 30. There is.
  • the stator module 20A which is disposed on the other side in the motor rotation axis direction, is attached to one surface of the base member 34 in the motor rotation axis direction in the power module 30.
  • the stator module 20A can be attached not only directly to the base member 34 but also indirectly via another member. That is, stator module 20A can be attached to base member 34 of power module 30 directly or indirectly.
  • the attachment means include adhesive means such as adhesive, fastening elements such as screws, and welding.
  • the upper and lower arm device set 31 is attached to at least the other surface of the base member 34 in the motor rotation axis direction via the base 35.
  • the upper and lower arm device set 31 can also be attached directly or indirectly to the base member 34.
  • the attachment means include adhesive means such as adhesive, fastening elements such as screws, and soldering.
  • the motor system 1A of the present disclosure includes the stator module of the motor 2 in addition to the upper and lower arm device set 31 on the base member 34 of the power module 30. 20A are integrally connected.
  • the power module 30 can be arranged at a position adjacent to the stator module 20A in the direction of the motor rotation axis, as shown in FIG.
  • the power module 30 can be housed inside the motor case 2c together with the stator module 20A.
  • the motor system 1A is a motor system that is downsized by incorporating the power module 30 inside the motor 2, as shown in FIG.
  • the wiring between the stator module 20A and the power module 30 can be shortened.
  • the wiring (conductor wire 5) between the stator module 20A and the power module 30 is shortened, the motor system becomes more resistant to external noise.
  • the wiring (conducting wire 5) between the stator module 20A and the power module 30 is shortened, incorrect wiring during wiring work can be reduced.
  • the stator module 20A is configured by a plurality of phase stator modules 201 that are divided into phases in the circumferential direction around the motor rotation axis O.
  • the power module 30 is also configured by a plurality of phase power modules 301 that are divided into phases in the circumferential direction around the motor rotation axis.
  • FIG. 3 schematically shows a stator module 20A in the motor system 1A of the present disclosure from one side in the motor rotation axis direction.
  • the stator module 20A is divided into three phase stator modules 201 at intervals of 120 degrees around the motor rotation axis O.
  • the stator module 20A is configured by three phase stator modules 201: a U-phase stator module 201U, a V-phase stator module 201V, and a W-phase stator module 201W.
  • the three phase stator modules 201 are arranged counterclockwise around the motor rotation axis O when viewed from one side in the motor rotation axis direction.
  • the phase stator module 201V and the W-phase stator module 201W are arranged in this order.
  • each of the three phase stator modules 201 includes n teeth 22.
  • n 3. That is, in the present disclosure, one phase stator module 201 includes three teeth 22. Accordingly, in the present disclosure, the stator module 20A includes nine teeth 22 as a whole.
  • one coil 24 is wound around one tooth 22 in a concentrated manner. That is, in the present disclosure, one phase stator module 201 includes three coils 24. Accordingly, in the present disclosure, the stator module 20A includes nine coils 24 in total. In the present disclosure, when one of the winding directions is designated as "+”, the coil 24 wound in the + direction is marked with "+”, and the other of the winding directions is designated as "-". In this case, the coil 24 wound in the - direction is marked with "-".
  • the U-phase stator module 201U includes three U-phase teeth 22U.
  • a U-phase current is supplied by the power module 30 to the U-phase coil 24U wound around the U-phase teeth 22U.
  • the U-phase coil 24U includes two types of coils 24U with different winding directions.
  • the U-phase stator module 201U includes one U-phase coil 24U+ wound in the + direction and two U-phase coils 24U- wound in the ⁇ direction.
  • the U-phase coils 24U+ and the U-phase coils 24U- are arranged alternately in the circumferential direction around the motor rotation axis O.
  • the V-phase stator module 201V also includes three V-phase teeth 22V.
  • a V-phase current is supplied by the power module 30 to the V-phase coil 24V wound around the V-phase teeth 22V.
  • the V-phase coil 24V also includes two types of coils 24V with different winding directions.
  • the V-phase stator module 201V also includes one V-phase coil 24V+ wound in the + direction and two V-phase coils 24V- wound in the ⁇ direction.
  • the V-phase coils 24V+ and the V-phase coils 24V- are also arranged alternately in the circumferential direction around the motor rotation axis O.
  • the W-phase stator module 201W also includes three W-phase teeth 22W.
  • a W-phase current is supplied by the power module 30 to the W-phase coil 24W wound around the W-phase teeth 22W.
  • the W-phase coil 24W also includes two types of coils 24W with different winding directions.
  • the W-phase stator module 201W also includes one W-phase coil 24W+ wound in the + direction and two W-phase coils 24W- wound in the ⁇ direction.
  • the W-phase coil 24W+ and the V-phase coil 24W- are also arranged alternately in the circumferential direction around the motor rotation axis O.
  • FIG. 4 exemplarily shows a U-phase stator module 201U.
  • the annular stator module 20A can be divided into three phase stator modules 201 at intervals of 120 degrees around the motor rotation axis O.
  • the V-phase stator module 201V and the W-phase stator module 201W differ only in the type of phase current that is supplied. This is the same as the child module 201U.
  • FIG. 5 schematically shows the core block 21 of the stator module 20A.
  • FIG. 5 shows the stator module 20A of FIG. 3 with the coil 24 removed.
  • the core block 21 is also divided into three phase core blocks 210 at intervals of 120 degrees around the motor rotation axis O, as shown in FIG. Specifically, the core block 21 is configured by three phase core blocks 210: a U-phase core block 210U, a V-phase core block 210V, and a W-phase core block 210W.
  • FIG. 6 exemplarily shows a U-phase core block 210U.
  • FIG. 6 shows a state in which the U-phase coil 24U is removed from the U-phase stator module 201U of FIG. 4.
  • the core block 21 can be divided into three phase core blocks 210 at intervals of 120 degrees around the motor rotation axis O.
  • the V-phase core block 210V and the W-phase core block 210W differ only in the types of phase coils wound around them, and the configurations of the V-phase core block 210V and W-phase core block 210W are the same as the U-phase core block 210U in FIG. be.
  • FIG. 7 schematically shows the power module 30 in the motor system 1A of the present disclosure from the other side in the motor rotation axis direction.
  • the power module 30 is divided into three phase power modules 301 at intervals of 120 degrees around the motor rotation axis O.
  • the power module 30 is configured by three phase power modules 301: a U-phase power module 301U, a V-phase power module 301V, and a W-phase power module 301W.
  • the three phase power modules 301 are arranged clockwise around the motor rotation axis O, a U-phase power module 301U, a V-phase power module, when viewed from the other side in the motor rotation axis direction.
  • 301V, W-phase power modules 301W are arranged in this order.
  • the U-phase power module 301U includes one U-phase upper and lower arm device set 31U.
  • the U-phase upper and lower arm device set 31U includes one U-phase upper arm device 32U and one U-phase lower arm device 33U.
  • the U-phase upper arm device 32U supplies the U-phase current from the power supply + side to the U-phase coil 24U of the U-phase stator module 201U through the conductor 5U.
  • the U-phase lower arm device 33U supplies the U-phase current from the power supply side to the U-phase coil 24U through the conductor 5U.
  • the U-phase power module 301U is provided with a U-phase connector 37U3.
  • the V-phase power module 301V includes one V-phase upper and lower arm device set 31V.
  • the V-phase upper and lower arm device set 31V includes one V-phase upper arm device 32V and one V-phase lower arm device 33V.
  • the V-phase upper arm device 32V supplies the U-phase current from the power supply + side to the V-phase coil 24V of the V-phase stator module 201V through a conductive wire 5V.
  • the V-phase lower arm device 33V supplies the V-phase current from the power source ⁇ side to the V-phase coil 24V through a conductive wire 5V.
  • the V-phase power module 301V is provided with a V-phase connector 37V3.
  • the W-phase power module 301W includes one W-phase upper and lower arm device set 31W.
  • the W-phase upper and lower arm device set 31W includes one W-phase upper arm device 32W and one W-phase lower arm device 33W.
  • the W-phase upper arm device 32W supplies the U-phase current from the power supply + side to the W-phase coil 24W of the W-phase stator module 201W through the conductor 5W.
  • the W-phase lower arm device 33W supplies the W-phase current from the power source ⁇ side to the W-phase coil 24W through the conductor 5W.
  • the W-phase power module 301W is provided with a W-phase connector 37W3.
  • the power module 30 can also be divided into three phase power modules 301 at intervals of 120 degrees around the motor rotation axis O.
  • the three-phase power module 301 includes an annular base member 34, a U-phase base member 34U, a V-phase base member 34V, and a W-phase base member at intervals of 120 degrees around the motor rotation axis O. It can be formed by dividing into three phase base members, 34W and .
  • the three phase base members 34U to 34W are arranged clockwise around the motor rotation axis O when viewed from the other side in the motor rotation axis direction.
  • the phase base members 34V and the W-phase base members 34W are arranged in this order.
  • FIG. 8 exemplarily shows a U-phase power module 301U.
  • the V-phase power module 301V and W-phase power module 301W differ only in the types of corresponding phase coils, and the configurations of the V-phase power module 301V and W-phase power module 301W are the same as the U-phase power module 301U in FIG. be.
  • the stator module 20A is composed of a plurality of phase stator modules 201 that are divided into phases in the circumferential direction around the motor rotation axis O, and as shown in FIG. If the module 30 is constituted by a plurality of phase power modules 301 divided into phases in the circumferential direction around the motor rotation axis O, the coils 24 and the upper and lower arm device sets 31 can be easily associated for each phase. I can do it. Accordingly, in the present disclosure, the conducting wire 5 connecting the coil 24 of one phase stator module 201 and the upper and lower arm device set 31 corresponding to the coil 24 can be easily wired for each phase.
  • the conductor wire 5U connecting the phase coils (24U-, 24U+, 24U-) of the U-phase stator module 201U and the U-phase upper and lower arm device set 31U can be easily wired as a U-phase set. I can do it.
  • the stator module 20A and the power module 30 for each phase maintenance for each phase is also facilitated.
  • one phase stator module 201 and the phase power module 301 corresponding to the one phase stator module 201 are different from each other when viewed from the motor rotation axis direction. , are arranged in positions aligned with each other in the circumferential direction around the motor rotation axis O.
  • stator module 20A and the power module 30 in mutually aligned positions in the circumferential direction around the motor rotation axis O when viewed from the motor rotation axis direction
  • stator module 20A and the power module 30 are One phase stator module 201 and a phase power module 301 corresponding to the one phase stator module 201 are arranged at positions adjacent to each other in the direction of the motor rotation axis with axis O as the center axis. When viewed from the direction of the rotation axis, they are arranged at overlapping positions in the circumferential direction around the motor rotation axis O.
  • one phase stator module 201 and the upper and lower arm device set 31 corresponding to the one phase stator module 201 are mutually arranged with the base member 34 in between in the circumferential direction around the motor rotation axis O. It will be placed almost directly behind it.
  • the U-phase stator module 201U and the U-phase upper and lower arm device set 31U are located almost directly behind each other with the base member 34 in between in the circumferential direction around the motor rotation axis O. It will be placed at the position of
  • One phase stator module 201 and the phase power module 301 corresponding to the one phase stator module 201 are in a position where they are aligned with each other in the circumferential direction around the motor rotation axis O when viewed from the motor rotation axis direction.
  • the wiring (conductor wire 5) between the phase stator module 201 and the upper and lower arm device set 31 corresponding to the one phase stator module 201 can be made the shortest.
  • the wiring (conductor wire 5) is the shortest, the motor system becomes more resistant to external noise.
  • the wiring (conducting wire 5) becomes shorter, incorrect wiring during wiring work can be further reduced.
  • the stator module 20A can be divided into phases. Specifically, as described above, the stator module 20A can be divided into a plurality of phase stator modules 201 in the circumferential direction around the motor rotation axis O. In this case, when laying out the phase stator modules 201 according to each phase in the stator module 20A, the layout regarding the arrangement of the phase stator modules 201 can be freely changed. In addition, phase-by-phase maintenance is also easier in this case.
  • the power module 30 can also be divided into phases as described above. Specifically, as described above, the power module 30 can also be divided into a plurality of phase power modules 301 in the circumferential direction around the motor rotation axis O. In this case, when laying out the upper and lower arm device sets 31 according to each phase in the power module 30, the layout regarding the arrangement of the upper and lower device arm sets 31 can be freely changed. In addition, phase-by-phase maintenance is also easier in this case.
  • the phase stator module 201 and phase power module 301 of the same phase can be easily arranged at positions almost directly behind each other with the base member 34U in between. .
  • the power module control unit 40 is located on the opposite side of the stator module 20A with the power module 30 in between (in the present disclosure, the other side in the motor rotation axis direction). side).
  • the power module control unit 40 is disposed inside the motor case 2c at the other end in the motor rotation axis direction.
  • the power module control unit 40 includes control hardware 41 such as a microcomputer and an FPGA (Field-Programmable Gate Array).
  • the power module control section 40 includes, in addition to control hardware 41, a printed circuit board 42 to which the control hardware 41 is attached. Further, in the present disclosure, the power module control section 40 is connected to the power module 30 by a communication cable 37.
  • the power module control section 40 When the power module control section 40 is disposed at a position on the other side of the motor rotation axis direction with the power module 30 interposed therebetween, the power module control section 40 is placed in a position on the other side of the motor rotation axis direction, with the power module 30 interposed therebetween. It can be arranged at a position adjacent to the power module 30 in the direction. Thereby, as shown in FIG. 2, the power module control section 40 can also be housed inside the motor case 2c. Therefore, the motor system 1A becomes a motor system that is further miniaturized by incorporating the power module control section 40 inside the motor 2, as shown in FIG.
  • the wiring between the power module 30 and the power module control section 40 can be shortened.
  • the wiring (communication cable 37) is shortened, the motor system becomes more resistant to external noise.
  • the wiring (communication cable 37) is shortened, incorrect wiring during wiring work can be reduced.
  • the power module control section 40 is schematically shown from one side in the direction of the motor rotation axis.
  • the power module control unit 40 includes a plurality of control hardware 41 and an annular printed circuit board 42 to which these control hardware 41 are attached.
  • the control hardware 41 includes, for example, a microcomputer 41a and an FPGA 41b.
  • the power module control unit 40 is provided with a U-phase connector 37U4, a V-phase connector 37V4, and a W-phase connector 37W4 on the printed circuit board 42.
  • One terminal of the U-phase communication cable 37 is connected to the U-phase connector 37W3 of the U-phase power module 301U in FIG. 7, and the other terminal of the U-phase communication cable 37 is connected to the U-phase connector 37U4 in FIG. connected to.
  • one terminal of the V-phase communication cable 37 is connected to the V-phase connector 37V3 of the V-phase power module 301V in FIG. 7, and the other terminal of the V-phase communication cable 37 is connected to the V-phase connector 37V3 in FIG. Connected to phase connector 37V4.
  • One terminal of the W-phase communication cable 37 is connected to the W-phase connector 37W3 of the W-phase power module 301W in FIG. 7, and the other terminal of the W-phase communication cable 37 is connected to the W-phase connector 37W4 in FIG. Connected.
  • the U-phase connector 37U3, V-phase connector 37V3, and W-phase connector 37W3 of the power module 30, and the U-phase connector 37U4, V When the phase connector 37V4 and the W-phase connector 37W4 face each other in the motor rotation axis direction, they are arranged in positions that are aligned with each other in the circumferential direction around the motor rotation axis O.
  • the phase connector of the power module and the phase connector of the power module control section are arranged at positions substantially facing each other in the circumferential direction around the motor rotation axis O.
  • the wiring (communication cable 37) between the power module 30 and the power module control section 40 can be made the shortest.
  • the wiring between the power module 30 and the power module control unit 40 is the shortest, the motor system becomes more resistant to external noise. Furthermore, as the wiring between the power module 30 and the power module control unit 40 becomes shorter, incorrect wiring during wiring work can be further reduced.
  • FIG. 12 schematically shows the basic circuit configuration included in the motor system 1A and the relationship among the stator module 20A, power module 30, and power module control section 40 in the motor system 1A.
  • the basic configuration of the drive circuit for driving the motor 2 includes a U-phase upper and lower arm device set 31U, a V-phase upper and lower arm device set 31V, and a W-phase upper and lower arm device set 31W. It includes an inverter circuit formed by three upper and lower arm device sets 31.
  • each of the upper arm and lower arm of the inverter circuit is controlled by a gate drive signal from the power module control section 40.
  • the rotational position of the motor shaft 2d of the motor 2 is fed back to the power module control unit 40 using a Hall IC signal or an encoder signal.
  • a DC power supply or an AC power supply can be used as the power supply connected to the inverter circuit. That is, the drive circuit for driving the motor 2 can use either a direct current inverter (DC/AC converter) or an alternating current inverter (AC/AC converter).
  • DC/AC converter direct current inverter
  • AC/AC converter alternating current inverter
  • the motor 2 is a brushless three-phase AC motor with the number of poles P and the number of slots S.
  • the number of poles P and the number of slots S satisfy the following relational expressions (1) and (2).
  • a brushless three-phase AC motor that satisfies the conditions (1) and (2) above falls under a type called "Series II".
  • each of the three phases, U-phase, V-phase, and W-phase can be divided into a range of 120 degrees in the circumferential direction around the motor rotation axis O.
  • phase stator modules 201 corresponding to each phase of U phase, V phase, and W phase in stator module 20A for any one phase of U phase, V phase, and W phase, It is not necessary to configure two or more phase stator modules 201 to correspond to each other, but it is possible to correspond by configuring only one phase stator module 201.
  • phase stator modules 201 corresponding to each phase, U-phase, V-phase, and W-phase, in the stator module 20A.
  • phase slots phase coils
  • the motor 2 of the present disclosure is an 8P9S brushless three-phase AC motor, which is a representative example of Series II.
  • the rotor 2b (motor shaft 2d) of the motor 2 in the motor system 1A is shown with reference to the period (one rotation period) Tm until the rotor 2b (motor shaft 2d) of the motor 2 makes one rotation in the circumferential direction around the motor rotation axis O.
  • the relationship between the arrangement of the magnetic poles (N, S) of the stator module 2b and the arrangement of the coil 24 (teeth 22) of the stator module 20A is schematically shown together with the power module 301 of each phase.
  • the symbols "U”, “V”, and “W” are the coils 24 (teeth 22) of each phase
  • the symbols "+" and "-” are the coils 24, as described above.
  • FIG. 14 shows the relationship between the arrangement of the magnetic poles (N, S) of the rotor 2b and the arrangement of the phase stator module 201 at positions in the circumferential direction around the motor rotation axis O in the motor system 1A. Shown schematically.
  • phase stator modules 201 corresponding to the U-phase, V-phase, and W-phase
  • the U-phase, V-phase It is not necessary to configure two or more phase stator modules 201 to correspond to any one of the W phases, but it is possible to correspond by configuring only one phase stator module 201. It turns out that you can.
  • the stator module 20A is constituted by a plurality of phase stator modules 201 that are divided into phases in the circumferential direction around the motor rotation axis O, and has upper and lower arm devices corresponding to each phase.
  • the set 31 and the corresponding phase stator module 201 are a pair.
  • the U phase upper and lower arm device set 31U and the corresponding U phase stator module 201U are paired.
  • the V-phase upper and lower arm device set 31V and the corresponding V-phase stator module 201V form a pair.
  • the W-phase upper and lower arm device set 31W and the corresponding W-phase stator module 201W form a pair.
  • the phase stator module 201 and the one phase stator module 201 can be made the shortest.
  • the wiring (conductor wire 5) is the shortest, the motor system becomes more resistant to external noise.
  • the wiring (conducting wire 5) becomes shorter, incorrect wiring during wiring work can be further reduced.
  • the motor 2 can be a brushless three-phase AC motor in which the number of poles P and the number of slots S satisfy the following relationships (3) and (4).
  • This brushless three-phase AC motor falls under a type called "Series III."
  • This brushless three-phase AC motor falls under a type called "Series I."
  • a typical example of series I is a 6P9S brushless three-phase AC motor.
  • FIG. 15 schematically shows a motor system 1B according to a second embodiment of the present invention in a cross section including the motor rotation axis O.
  • the motor 2 is a radial gap motor.
  • the teeth 27 of the stator 2a extend in a direction perpendicular to the motor rotation axis direction (hereinafter also referred to as the motor radial direction).
  • the stator 2a includes one stator module 20B.
  • the stator module 20B is a stator module in which a coil 24 is wound around a plurality of teeth 27 arranged at intervals in the circumferential direction around the motor rotation axis O.
  • the stator module 20B includes a plurality of teeth 27 arranged at intervals in the circumferential direction around the motor rotation axis O, and a ring core 28 in which the plurality of teeth 27 are provided.
  • the ring core 28 is an annular ring core disposed at a position whose center axis is the motor rotation axis O.
  • the ring core 28 includes an outer ring core 28a and an inner ring core 28b.
  • the teeth 27 are arranged between the outer ring core 28a and the inner ring core 28b, and are coupled to each of the outer ring core 28a and the inner ring core 28b.
  • the teeth 27 and the ring core 28 are integrally formed, and form one core block 21 similarly to the stator module 20A. Therefore, also in the present disclosure, the core block 21 as a whole functions as a yoke.
  • stator module 20B also includes nine teeth 27, similar to stator module 20A. That is, in the present disclosure, stator module 20B also includes nine coils 24, like stator module 20A.
  • the rotor 2b is arranged at a position adjacent to the stator module 20A in the motor rotation axis direction.
  • the rotor 2b is arranged at a position on one side of the motor rotation axis direction than the stator module 20B.
  • the rotor main body 2b1 is formed so as to circumferentially surround the stator module 20B from the outside in the radial direction around the motor rotation axis O.
  • the rotor main body 2b1 is a cylindrical rotor main body with a bottom, disposed at a position with the motor rotation axis O as the central axis.
  • the rotor main body two b1 includes a cylindrical main body part two b11 and a bottom part two b12 that closes one end of the cylindrical main body part two b11.
  • the plurality of permanent magnets 2b2 are respectively attached to the inner circumferential surface of the cylindrical main body part 2b11 at intervals in the circumferential direction around the motor rotation axis O.
  • the plurality of permanent magnets 2b2 are arranged such that circumferentially adjacent permanent magnets 2b2 have different magnetic poles (N, S).
  • the power module 30 includes a plurality of upper and lower arm device sets 31 and a base member 34 to which the upper and lower arm device sets 31 are attached. Also in the present disclosure, the power module 30 includes three upper and lower arm device sets 31. However, in the present disclosure, the base member 34 is different from the motor system 1A.
  • the base member 34 includes an annular plate portion 34a and a cylindrical portion 34b continuous to the annular plate portion 34a.
  • the cylindrical portion 34b protrudes from one surface of the annular plate portion 34a in the motor rotation axis direction.
  • the base member 34 is arranged at a position with the motor rotation axis O as the central axis.
  • the annular plate portion 34a is formed of a thin plate.
  • the three upper and lower arm device sets 31 are arranged at intervals in the circumferential direction around the motor rotation axis O on the other side of the annular plate portion 34a in the motor rotation axis direction.
  • stator module 20B and the power module 30 are arranged at positions aligned in the motor rotation axis direction.
  • stator module 20B and the power module 30 are arranged on the same axis with the motor rotation axis O as a common central axis. Furthermore, in the present disclosure as well, the stator module 20B is arranged on one side in the motor rotation axis direction, and the power module 30 is arranged on the other side in the motor rotation axis direction. That is, in the present disclosure, "arranged in a position aligned in the motor rotation axis direction" means that the stator module 20B and the power module 30 are adjacent to each other in the motor rotation axis direction with the motor rotation axis O as the center axis. It means that they are placed in a matching position.
  • stator module 20B is also attached to one side of the base member 34 in the motor rotation axis direction.
  • stator module 20B is attached to the outer peripheral surface of the cylindrical portion 34b of the base member 34.
  • the upper and lower arm device set 31 of the power module 30 is also attached to the other side of the base member 34 in the motor rotation axis direction.
  • the upper and lower arm device set 31 is attached to the other surface of the annular plate portion 34a of the base member 34 in the motor rotation axis direction.
  • the motor system 1B of the present disclosure also shares the base member 34 of the power module 30, so that in addition to the upper and lower arm device set 31, the stator module 20B of the motor 2 is integrated into the base member 34 of the power module 30. are combined in a specific manner.
  • the power module 30 can be arranged at a position adjacent to the stator module 20A in the direction of the motor rotation axis, as shown in FIG. 15.
  • the power module 30 can be housed inside the motor case 2c together with the stator module 20B.
  • the motor system 1B is also a motor system that is downsized by incorporating the power module 30 inside the motor 2, as shown in FIG.
  • the wiring (conducting wire 5) between the stator module 20B and the power module 30 is can be shortened.
  • the motor system becomes more resistant to external noise.
  • the wiring (conducting wire 5) between the stator module 20B and the power module 30 is shortened, incorrect wiring during wiring work can be reduced.
  • stator module 20 provided in the motor system 1B is schematically shown from one side in the direction of the motor rotation axis, with the stator module 20 attached to the base member 34.
  • the stator module 20B is also constituted by a plurality of phase stator modules 201 divided into phases in the circumferential direction around the motor rotation axis O.
  • the power module 30 is also constituted by a plurality of phase power modules 301 divided into phases in the circumferential direction around the motor rotation axis.
  • the stator module 20B is also divided into three phase stator modules 201 at intervals of 120 degrees around the motor rotation axis O. Also in the present disclosure, as shown in FIG. 16, the three phase stator modules 201 are arranged counterclockwise around the motor rotation axis O when viewed from one side in the motor rotation axis direction: the U-phase stator module 201U, The V-phase stator module 201V and the W-phase stator module 201W are arranged in this order.
  • FIG. 17 schematically shows one of the plurality of phase stator modules 201 forming the stator module 20B provided in the motor system 1B from one side in the motor rotation axis direction.
  • FIG. 17 exemplarily shows a U-phase stator module 201U.
  • the annular stator module 20B can be divided into three phase stator modules 201 at intervals of 120 degrees around the motor rotation axis O.
  • the V-phase stator module 201V and the W-phase stator module 201W differ only in the types of phase currents supplied, and the configurations of the V-phase stator module 201V and the W-phase stator module 201W are as shown in FIG. This is the same as No. 17 U-phase stator module 201U.
  • FIG. 18 schematically shows a phase core block 210 forming the phase stator module 201 of FIG. 17 from the direction of the motor rotation axis.
  • FIG. 18 shows a state in which the U-phase coil 24U is removed from the phase stator module 201U of FIG. 17.
  • the core block 21 is divided into three phase core blocks 210 at intervals of 120 degrees around the motor rotation axis O.
  • the core block 21 is configured by three phase core blocks 210: a U-phase core block 210U, a V-phase core block 210V, and a W-phase core block 210W.
  • the core block 21 can be divided into three phase core blocks 210 at intervals of 120 degrees around the motor rotation axis O.
  • the V-phase core block 210V and the W-phase core block 210W differ only in the types of phase coils wound around them, and the configurations of the V-phase core block 210V and W-phase core block 210W are the same as the U-phase core block 210U in FIG. be.
  • the power module 30 has three upper and lower arm device sets 31, and each of the three upper and lower arm device sets 31 has the same arrangement as in FIG. 7 when viewed from the other side in the motor rotation axis direction. It is attached to the other surface of the annular plate portion 34a of the base member 34 in the motor rotation axis direction.
  • the stator module 20B is constituted by a plurality of phase stator modules 201 that are divided into phases in the circumferential direction around the motor rotation axis O, and as shown in FIG. , if the power module 30 is constituted by a plurality of phase power modules 301 partitioned into phases in the circumferential direction around the motor rotation axis O, the coil 24 and the upper and lower arm device set 31 can be combined as in the motor system 1A. , can be easily related to each phase. Accordingly, in the present disclosure, the conducting wire 5 connecting the coil 24 of one phase stator module 201 and the upper and lower arm device set 31 corresponding to the coil 24 can be easily wired for each phase.
  • the conductor wire 5U connecting the phase coils (24U-, 24U+, 24U-) of the U-phase stator module 201U and the U-phase upper and lower arm device set 31U can be easily wired as a U-phase set. be able to.
  • the stator module 20B and the power module 30 are configured for each phase, maintenance for each phase is also facilitated.
  • one phase stator module 201 and the phase power module 301 corresponding to the one phase stator module 201 are used for the motor system 1A as well as the motor system 1A.
  • they When viewed from the rotational axis direction, they are arranged at positions aligned with each other in the circumferential direction around the motor rotational axis O.
  • "arranged in positions aligned with each other in the circumferential direction around the motor rotation axis O when viewed from the motor rotation axis direction” means that the stator module 20B and the power module 30 are mutually aligned with each other in the circumferential direction around the motor rotation axis O.
  • One phase stator module 201 and a phase power module 301 corresponding to the one phase stator module 201 are arranged at positions adjacent to each other in the direction of the motor rotation axis with the rotation axis O as the center axis. When viewed from the direction of the motor rotation axis, they are arranged at overlapping positions in the circumferential direction around the motor rotation axis O.
  • one phase stator module 201 and the upper and lower arm device set 31 corresponding to the one phase stator module 201 are arranged around the motor rotation axis O. In this direction, they are arranged at positions substantially directly behind each other with the base member 34 in between. As a specific example, as shown in FIG.
  • the U-phase stator module 201U and the U-phase upper and lower arm device set 31U sandwich the annular plate portion 34a of the base member 34 in the circumferential direction around the motor rotation axis O. Therefore, they are placed almost directly behind each other.
  • the wiring (conductor wire 5) between the phase stator module 201 and the upper and lower arm device set 31 corresponding to the one phase stator module 201 can be made the shortest.
  • the wiring (conductor wire 5) is the shortest, the motor system becomes more resistant to external noise. Furthermore, as the wiring (conducting wire 5) becomes shorter, incorrect wiring during wiring work can be further reduced.
  • the stator module 20B can also be divided into phases as shown in FIG. 17. Also in this case, when laying out the phase stator modules 201 corresponding to each phase in the stator module 20A, the layout regarding the arrangement of the phase stator modules 201 can be freely changed, as in the motor system 1A. . In addition, in this case, also in the present disclosure, maintenance for each phase becomes easier.
  • the power module 30 can also be divided into phases as described above. Specifically, as described above, the power module 30 can also be divided into a plurality of phase power modules 301 in the circumferential direction around the motor rotation axis O. Also in this case, similarly to the motor system 1A, when laying out the upper and lower arm device sets 31 according to each phase in the power module 30, the layout regarding the arrangement of the upper and lower arm device sets 31 can be freely changed. In addition, in this case, also in the present disclosure, maintenance for each phase becomes easier.
  • the phase stator module 201 and phase power module 301 of the same phase can be easily positioned almost directly behind each other with the annular plate portion 34a of the base member 34U sandwiched between them. can be placed.
  • the power module control section 40 also has the same configuration as in FIG. 11. Therefore, the motor system 1B also becomes a motor system that is further miniaturized by incorporating the power module control section 40 inside the motor 2, as shown in FIG. Also in the present disclosure, the wiring (communication cable 37) between the power module 30 and the power module control section 40 can be shortened, similar to the motor system 1A. In addition, in the present disclosure as well, the shorter the wiring (communication cable 37), the greater the motor system's resistance to external noise. Furthermore, in the present disclosure as well, incorrect wiring during wiring work can be reduced by the length of the wiring (communication cable 37).
  • the motor 2 of the present disclosure is also a brushless three-phase AC motor with the number of poles P and the number of slots S.
  • the number of poles P and the number of slots S satisfy the following relational expressions (1) and (2).
  • the motor 2 of the present disclosure is also a series II brushless three-phase AC motor. Therefore, in the present disclosure as well, as described above, each of the three phases, U phase, V phase, and W phase, can be divided into a range of 120 degrees in the circumferential direction around the motor rotation axis O. Therefore, in the motor system 1B of the present disclosure, similarly to the motor system 1A, when laying out the phase stator modules 201 according to each phase of the U phase, V phase, and W phase in the stator module 20A, There is no need to configure two or more phase stator modules 201 to correspond to any one of the phase, V phase, and W phase, and only one phase stator module 201 can be configured.
  • the motor system 1B of the present disclosure can also easily lay out the phase stator modules 201 according to each phase of the U phase, V phase, and W phase in the stator module 20A.
  • the series II brushless three-phase AC motor has an odd number of phase slots (phase coils) arranged in each of the three phases, U phase, V phase, and W phase. be able to.
  • the motor 2 of the present disclosure is also an 8P9S brushless three-phase AC motor, which is a representative example of Series II.
  • phase stator modules 201 corresponding to each phase of U phase, V phase, and W phase are laid out.
  • the stator module 20A is configured by a plurality of phase stator modules 201 that are divided into phases in the circumferential direction around the motor rotation axis O.
  • the upper and lower arm device sets 31 corresponding to each phase and the corresponding phase stator modules 201 are paired.
  • the motor system 1B of the present disclosure also includes the upper and lower arm device set 31 corresponding to each phase and the corresponding phase stator module 201 as a pair, so that the phase stator module 201 and the corresponding one
  • the wiring (conductor wires 5) between the two phase stator modules 201 and the corresponding upper and lower arm device sets 31 can be made the shortest.
  • the wiring (conductor wire 5) is the shortest, the motor system becomes more resistant to external noise.
  • the wiring (conducting wire 5) becomes shorter, incorrect wiring during wiring work can be further reduced.
  • each coil 24 may be wound around a plurality of teeth 22 (27) using distributed winding.
  • FIG. 20 schematically shows a state in which the coil 24 is wound with cloth around the teeth 22 (27).
  • the coil 24 is wound across a plurality of teeth 22 (28).
  • the distributed winding described above can be employed in each of the above embodiments.
  • 1 Motor system (basic configuration), 1A: Motor system (first embodiment), 1B: Motor system (second embodiment), 2: Motor (polyphase motor), 2a: Stator, 2b: Rotor, 2b1: Rotor main body, 2b2: Permanent magnet, 2c: Motor case, 2d: motor shaft, 3: control driver, 5: conducting wire, 20A, stator module (first embodiment), 20B, stator module (second embodiment), 21: core block, 22: teeth, 23: back core, 24: coil, 27: teeth, 28: ring core, 28a: outer ring core, 28b: inner ring core, 201: phase stator module, 210: phase core block, 30: power module, 31 : Upper and lower arm device set, 32: Upper arm power device, 33: Lower arm power device, 34: Base member, 34a: Annular plate portion 3, 34b: Cylindrical portion, 34U: U phase base member, 34V: V phase base Component, 34W: W phase base member, 35: Base, 36: Intermediate member, 37: Communication cable,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

This motor system inverter-controls a motor (2). The motor system comprises: a stator module (20A) in which coils (24) are wound around a plurality of teeth (22) disposed at intervals in the circumferential direction around the motor rotating shaft line (0); and a power module (30) in which a plurality of upper/lower arm device sets (31) each corresponding to each phase are attached to a base member (34). The module (20A) and the module (30A) are disposed at positions aligned in the motor rotating shaft line direction. The module (20A) is attached to the base member (34) on one side, and the upper/lower arm device sets (31) are attached to the base member (34) on the other side.

Description

モータシステムmotor system
 本発明は、モータシステムに関する。 The present invention relates to a motor system.
 従来のモータシステムには、例えば、三相交流モータと、パワーコントロールユニットと、を備えるものが知られている(例えば、特許文献1参照。)。上記従来のモータシステムは、多相モータのケーシングに支持棚を設けることによって、当該支持棚上に、パワーコントロールユニットを搭載している。 A conventional motor system is known that includes, for example, a three-phase AC motor and a power control unit (see, for example, Patent Document 1). In the conventional motor system described above, a support shelf is provided on the casing of the multiphase motor, and the power control unit is mounted on the support shelf.
特開2021-35261号公報JP2021-35261A
 一方で、多相モータには、各相に対応した電流を供給するためのパワーモジュールが必要である。 On the other hand, a polyphase motor requires a power module to supply current corresponding to each phase.
 しかしながら、パワーモジュールは一般的に、前記パワーコントロールユニットに内蔵されている。即ち、上記従来のモータシステムにおいて、パワーモジュールは、モータの外側に配置されている。このため、上記従来のモータシステムは、多相モータと、パワーモジュールとを別々に製造(開発)する必要がある。加えて、上記従来のモータシステムには、パワーモジュールがモータの外側に配置されるため、モータシステムの小型化(省スペース化)に改善の余地があった。 However, the power module is generally built into the power control unit. That is, in the conventional motor system described above, the power module is placed outside the motor. Therefore, in the conventional motor system described above, it is necessary to manufacture (develop) the multiphase motor and the power module separately. In addition, in the conventional motor system described above, the power module is disposed outside the motor, so there is room for improvement in making the motor system smaller (space saving).
 本発明の目的は、多相モータの内部にパワーモジュールを組み込むことによって小型化が実現されたモータシステムを提供することである。 An object of the present invention is to provide a motor system that is downsized by incorporating a power module inside a polyphase motor.
 本発明に係る、モータシステムは、多相モータをインバータ制御するための、モータシステムであって、モータ回転軸線の周りで周方向に間隔を置いて配置された複数のティースにコイルが巻き付けられた固定子モジュールと、それぞれが各相に対応している複数の上下アームデバイスセットがベース部材に取り付けられたパワーモジュールと、を備えており、前記固定子モジュールと前記パワーモジュールとは、モータ回転軸線方向に整列する位置に配置されており、前記固定子モジュールは、前記ベース部材のモータ回転軸線方向一方側に取り付けられており、前記複数の上下アームデバイスセットは、前記ベース部材のモータ回転軸線方向他方側に取り付けられている。 A motor system according to the present invention is a motor system for inverter control of a multi-phase motor, in which a coil is wound around a plurality of teeth arranged at intervals in the circumferential direction around a motor rotation axis. It includes a stator module, and a power module in which a plurality of upper and lower arm device sets, each corresponding to each phase, are attached to a base member, and the stator module and the power module are connected to a motor rotation axis. The stator module is attached to one side of the base member in the motor rotation axis direction, and the plurality of upper and lower arm device sets are attached to one side of the base member in the motor rotation axis direction. attached to the other side.
 本発明に係る、モータシステムにおいて、前記固定子モジュールは、モータ回転軸線の周りで周方向に相ごとに区画された、複数の相固定子モジュールによって構成されており、前記パワーモジュールは、モータ回転軸線の周りで周方向に相ごとに区画された、複数の相パワーモジュールによって構成されていることが好ましい。 In the motor system according to the present invention, the stator module is constituted by a plurality of phase stator modules that are divided into phases in the circumferential direction around the motor rotation axis, and the power module is configured to control the motor rotation. It is preferable that the power module is composed of a plurality of phase power modules that are divided into phases in the circumferential direction around the axis.
 本発明に係る、モータシステムにおいて、前記相固定子モジュールと、当該相固定子モジュールに対応する前記相パワーモジュールとは、モータ回転軸線方向からみたとき、モータ回転軸線の周りの周方向で互いに整列する位置に配置されていることが好ましい。 In the motor system according to the present invention, the phase stator module and the phase power module corresponding to the phase stator module are aligned with each other in the circumferential direction around the motor rotation axis when viewed from the motor rotation axis direction. It is preferable that the
 本発明に係る、モータシステムにおいて、前記相固定子モジュールは、相ごとに分割されているものとすることができる。 In the motor system according to the present invention, the phase stator module may be divided into phases.
 本発明に係る、モータシステムにおいて、前記相パワーモジュールは、相ごとに分割されているものとすることができる。 In the motor system according to the present invention, the phase power module may be divided into phases.
 本発明に係る、モータシステムは、前記パワーモジュールを制御するパワーモジュール制御部をさらに備えており、前記パワーモジュール制御部は、モータ回転軸線方向において、前記パワーモジュールを挟んで、前記固定子モジュールと反対側の位置に配置されていることが好ましい。 The motor system according to the present invention further includes a power module control unit that controls the power module, and the power module control unit connects the stator module with the power module in between in the motor rotation axis direction. Preferably, they are located at opposite positions.
 本発明に係る、モータシステムにおいて、前記多相モータは、極数がPであり、スロット数がSである、ブラシレス三相交流モータであり、極数Pおよびスロット数Sが以下の関係式(1)および(2)を満たすブラシレス三相交流モータであることが好ましい。
 P=3n±1 (n:1を除く正の奇数)・・・(1)
 S=3n   (n:1を除く正の奇数)・・・(2)
In the motor system according to the present invention, the polyphase motor is a brushless three-phase AC motor with the number of poles P and the number of slots S, and the number of poles P and the number of slots S are expressed by the following relational expression ( A brushless three-phase AC motor that satisfies (1) and (2) is preferable.
P=3n±1 (n: positive odd number excluding 1)...(1)
S=3n (n: positive odd number excluding 1)...(2)
 本発明に係る、モータシステムにおいて、前記コイルは、それぞれ、1つの前記ティースに対して集中巻によって巻線されているものとすることができる。 In the motor system according to the present invention, each of the coils may be wound around one of the teeth by concentrated winding.
 本発明に係るモータシステムにおいて、前記固定子モジュールは、モータ回転軸線の周りで周方向に相ごとに区画された、複数の相固定子モジュールによって構成されており、各相に応じた前記上下アームデバイスとそれに対応する前記相固定子モジュールとが一対になっていることが好ましい。 In the motor system according to the present invention, the stator module is constituted by a plurality of phase stator modules that are divided into phases in the circumferential direction around the motor rotation axis, and the upper and lower arms correspond to each phase. Preferably, the device and the corresponding phase stator module are paired.
 本発明に係る、モータシステムにおいて、前記コイルは、それぞれ、複数の前記ティースに対して分布巻によって巻線されているものとすることができる。 In the motor system according to the present invention, each of the coils may be wound around the plurality of teeth using distributed winding.
 本発明に係る、モータシステムにおいて、前記多相モータは、アキシャルギャップモータであるものとすることができる。 In the motor system according to the present invention, the multiphase motor may be an axial gap motor.
 本発明に係る、モータシステムにおいて、前記多相モータは、ラジアルギャップモータであるものとすることができる。 In the motor system according to the present invention, the multiphase motor may be a radial gap motor.
 本発明に係る、モータシステムは、変速機を付加して備えるものとすることができる。 The motor system according to the present invention may be provided with an additional transmission.
 本発明によれば、多相モータの内部にパワーモジュールを組み込むことによって小型化が実現されたモータシステムを提供することができる。 According to the present invention, it is possible to provide a motor system that is downsized by incorporating a power module inside a multiphase motor.
本発明のモータシステムを適用可能な制御機器システムの一例を概略的に示す図である。1 is a diagram schematically showing an example of a control equipment system to which the motor system of the present invention can be applied. 本発明の第1実施形態に係る、モータシステムを、モータ回転軸線を含んだ断面で概略的に示す図である。1 is a diagram schematically showing a motor system according to a first embodiment of the present invention in a cross section including a motor rotation axis; FIG. 図2のモータシステムに設けられた固定子モジュールをモータ回転軸線方向一方側から概略的に示す図である。FIG. 3 is a diagram schematically showing a stator module provided in the motor system of FIG. 2 from one side in the motor rotation axis direction. 図3の固定子モジュールを形成する複数の相固定子モジュールのうちの1つをモータ回転軸線方向一方側から概略的に示す図である。FIG. 4 is a diagram schematically showing one of a plurality of phase stator modules forming the stator module of FIG. 3 from one side in the motor rotation axis direction. 図3の固定子モジュールを形成するコアブロックをモータ回転軸線方向一方側から概略的に示す図である。FIG. 4 is a diagram schematically showing a core block forming the stator module of FIG. 3 from one side in the motor rotation axis direction. 図5のコアブロックを形成する複数の相コアブロックのうちの1つをモータ回転軸線方向一方側から概略的に示す図である。FIG. 6 is a diagram schematically showing one of a plurality of phase core blocks forming the core block of FIG. 5 from one side in the motor rotation axis direction. 図2のモータシステムに設けられたパワーモジュールをモータ回転軸線方向他方側から概略的に示す図である。FIG. 3 is a diagram schematically showing a power module provided in the motor system of FIG. 2 from the other side in the motor rotation axis direction. 図7のパワーモジュールを形成する複数の相パワーモジュールのうちの1つをモータ回転軸線方向他方側から概略的に示す図である。FIG. 8 is a diagram schematically showing one of the plurality of phase power modules forming the power module of FIG. 7 from the other side in the motor rotation axis direction. 図2のモータシステムにおける、固定子モジュール、パワーモジュールおよびベース部材の関係を拡大して示す図である。FIG. 3 is an enlarged view showing the relationship among a stator module, a power module, and a base member in the motor system of FIG. 2. FIG. 図2のモータシステムにおける、固定子モジュール、パワーモジュールおよびベース部材の、さらに他の関係を拡大して示す図である。FIG. 3 is an enlarged view showing still another relationship among the stator module, power module, and base member in the motor system of FIG. 2; 図2のモータシステムに設けられたパワーモジュール制御ドライバをモータ回転軸線方向一方側から概略的に示す図である。FIG. 3 is a diagram schematically showing a power module control driver provided in the motor system of FIG. 2 from one side in the motor rotation axis direction. 図2のモータシステムに含まれる基本的な回路構成と、固定子モジュール、パワーモジュールおよびパワーモジュール制御部との関係を概略的に示す図である。FIG. 3 is a diagram schematically showing the basic circuit configuration included in the motor system of FIG. 2 and the relationship among a stator module, a power module, and a power module control section. 図2のモータシステムにおける、モータの回転子が1回転するまでの周期を基準として、当該回転子の磁極の配列と、固定子モジュールのティースの配列との関係を、各相パワーモジュールとともに概略的に示す図である。In the motor system of FIG. 2, the relationship between the magnetic pole arrangement of the rotor and the tooth arrangement of the stator module is schematically shown along with each phase power module, based on the cycle of one revolution of the motor rotor. FIG. 図2のモータシステムにおける、モータ回転軸線の周りの周方向の位置で、回転子の磁極の配列と、固定子モジュールのコイルの配列との関係を、概略的に示す図である。3 is a diagram schematically showing the relationship between the arrangement of the magnetic poles of the rotor and the arrangement of the coils of the stator module at positions in the circumferential direction around the motor rotation axis in the motor system of FIG. 2. FIG. 本発明の第2実施形態に係る、モータシステムを、モータ回転軸線を含んだ断面で概略的に示す図である。FIG. 6 is a diagram schematically showing a motor system in a cross section including a motor rotation axis according to a second embodiment of the present invention. 図15のモータシステムに設けられた固定子モジュールを、ベース部材に取り付けた状態で、モータ回転軸線方向一方側から概略的に示す図である。FIG. 16 is a diagram schematically showing the stator module provided in the motor system of FIG. 15 in a state where it is attached to a base member from one side in the direction of the motor rotation axis. 図16の固定子モジュールを形成する複数の相固定子モジュールのうちの1つをモータ回転軸線方向一方側から概略的に示す図である。FIG. 17 is a diagram schematically showing one of the plurality of phase stator modules forming the stator module of FIG. 16 from one side in the motor rotation axis direction. 図17の相固定子モジュールを形成する、相コアブロックをモータ回転軸線方向から概略的に示す図である。FIG. 18 is a diagram schematically showing a phase core block forming the phase stator module of FIG. 17 from the direction of the motor rotation axis. 図15のモータシステムにおける、固定子モジュール、パワーモジュールおよびベース部材の関係を拡大して示す図である。16 is an enlarged view showing the relationship among the stator module, power module, and base member in the motor system of FIG. 15. FIG. コイルを分布巻きしたときの一例を、概略的に示す図である。It is a figure which shows roughly an example when distributed winding of a coil is carried out.
 以下、図面を参照することによって、本発明の実施形態に係る、モータシステムについて説明する。 Hereinafter, a motor system according to an embodiment of the present invention will be described with reference to the drawings.
 図1には、本発明のモータシステムを適用可能な制御機器システムの一例が概略的に示されている。 FIG. 1 schematically shows an example of a control equipment system to which the motor system of the present invention can be applied.
 図1中、符号1は、本発明に係る、モータシステムの基本構成を示したものである。モータシステム1は、多相モータ2(以下、「モータ2」ともいう。)をインバータ制御するための、モータシステムである。図1に示すように、モータシステム1は、変速機50を付加して備えることができる。本開示において、変速機50は、減速機である。図1には例示的に、サンギア51と、リングギア52と、ピニオンギア53を回転可能に支持するプラネタリキャリア54とを備える、基本的な遊星歯車減速機が例示されている。 In FIG. 1, reference numeral 1 indicates the basic configuration of a motor system according to the present invention. The motor system 1 is a motor system for inverter control of a polyphase motor 2 (hereinafter also referred to as "motor 2"). As shown in FIG. 1, the motor system 1 can be additionally equipped with a transmission 50. In the present disclosure, transmission 50 is a reduction gear. FIG. 1 exemplarily shows a basic planetary gear reducer that includes a sun gear 51, a ring gear 52, and a planetary carrier 54 that rotatably supports a pinion gear 53.
 本開示において、変速機50は、サンギア51、リングギア52およびプラネタリキャリア54のいずれかを入力要素とし、当該入力要素をモータ2のモータ軸2dに接続することができる。変速機50は、前記入力要素以外の他の要素を固定要素とするとともに、残りの要素を出力要素として、変速機50が駆動させる負荷60に接続することができる。負荷60としては、例えば、ロボットアームが挙げられる。ただし、変速機50には、遊星歯車変速機以外の、様々な構成の変速機を用いることができる。また、負荷60には、変速機50を用いることによって動作させることができるものであれば、自動車の車輪、工作機械等の、様々な負荷を用いることができる。 In the present disclosure, the transmission 50 can use any one of the sun gear 51, the ring gear 52, and the planetary carrier 54 as an input element, and can connect the input element to the motor shaft 2d of the motor 2. The transmission 50 can be connected to a load 60 driven by the transmission 50, with elements other than the input element being fixed elements, and the remaining elements being output elements. An example of the load 60 is a robot arm. However, the transmission 50 can be of various configurations other than the planetary gear transmission. Moreover, various loads such as automobile wheels, machine tools, etc. can be used as the load 60 as long as they can be operated by using the transmission 50.
 本開示において、モータシステム1は、モータ2と、当該モータ2を電気的に制御する制御ドライバ3とを備えている。 In the present disclosure, a motor system 1 includes a motor 2 and a control driver 3 that electrically controls the motor 2.
 本開示において、モータ2は、三相交流モータである。モータ2は、固定子2aと、回転子2bと、モータケース2cと、を備えている。固定子2aおよび回転子2bは、モータケース2cの内部に収容されている。 In the present disclosure, the motor 2 is a three-phase AC motor. The motor 2 includes a stator 2a, a rotor 2b, and a motor case 2c. Stator 2a and rotor 2b are housed inside a motor case 2c.
 本開示において、モータ2は、極数がPであり、スロット数がSである、ブラシレス三相交流モータである。モータ2は、極数Pおよびスロット数Sが以下の関係式(1)および(2)を満たす。 In the present disclosure, the motor 2 is a brushless three-phase AC motor with a number of poles of P and a number of slots of S. In the motor 2, the number of poles P and the number of slots S satisfy the following relational expressions (1) and (2).
 P=3n±1 (n:1を除く正の奇数)・・・(1)
 S=3n   (n:1を除く正の奇数)・・・(2)
P=3n±1 (n: positive odd number excluding 1)...(1)
S=3n (n: positive odd number excluding 1)...(2)
 ここで、「S」は、モータ2全体のコイル数であり、「n」は、相ごとにまとめられたティースの数(以下、「ティース数」ともいう。)をいう。本開示では、極数Pは、P=8であり、スロット数SはS=9である。また、相ごとのティース数nは、n=3である。上記(1)および(2)の条件を満たす、モータは系列IIモータともいう。本実施形態に係る、モータ2は、8P9Sの、ブラシレス三相交流モータである。 Here, "S" is the number of coils in the entire motor 2, and "n" is the number of teeth grouped for each phase (hereinafter also referred to as "number of teeth"). In the present disclosure, the number of poles P is P=8, and the number S of slots is S=9. Further, the number n of teeth for each phase is n=3. A motor that satisfies the conditions (1) and (2) above is also referred to as a series II motor. The motor 2 according to this embodiment is an 8P9S brushless three-phase AC motor.
 本開示において、制御ドライバ3もまた、モータケース2cの内部に収容されている。本開示において、制御ドライバ3は、各相に対応する電流を供給するためのパワーモジュール30と、パワーモジュール30を制御するパワーモジュール制御部40とを備えている。 In the present disclosure, the control driver 3 is also housed inside the motor case 2c. In the present disclosure, the control driver 3 includes a power module 30 for supplying current corresponding to each phase, and a power module control section 40 for controlling the power module 30.
 図2には、本発明の第1実施形態に係る、モータシステム1Aが、モータ回転軸線Оを含んだ断面で概略的に示されている。ただし、図2の断面は、後述する、上下アームデバイスセット31を含むように示されている。 FIG. 2 schematically shows a motor system 1A according to the first embodiment of the present invention in a cross section including the motor rotation axis O. However, the cross section in FIG. 2 is shown to include an upper and lower arm device set 31, which will be described later.
 本開示において、モータ2は、アキシャルギャップモータである。本開示において、固定子2aのティース22は、モータ回転軸線Оの延在方向(以下、「モータ回転軸線方向」ともいう。)に延びている。 In the present disclosure, the motor 2 is an axial gap motor. In the present disclosure, the teeth 22 of the stator 2a extend in the direction in which the motor rotation axis O extends (hereinafter also referred to as "motor rotation axis direction").
 固定子2aは、固定子モジュール20Aを備えている。固定子モジュール20Aは、モータ回転軸線Оの周りで周方向に間隔を置いて配置された複数のティース22にコイル24が巻き付けられた固定子モジュールである。 The stator 2a includes a stator module 20A. The stator module 20A is a stator module in which a coil 24 is wound around a plurality of teeth 22 arranged at intervals in the circumferential direction around the motor rotation axis O.
 本開示において、固定子モジュール20Aは、モータ回転軸線Оの周りで周方向に間隔を置いて配置された複数のティース22と、当該複数のティース22が設けられたバックコア23とを備えている。本開示において、バックコア23は、モータ回転軸線Оを中心軸線とする位置に配置された、環状のバックコアである。本開示において、バックコア23は、ティース22よりも大きく構成されている。本開示において、バックコア23は、ヨーク(継鉄)として機能する。また、本開示において、ティース22およびバックコア23は、一体に形成されており、1つのコアブロック21を形成している。このため、本開示において、コアブロック21は全体として、ヨーク(継鉄)として機能する。 In the present disclosure, the stator module 20A includes a plurality of teeth 22 arranged at intervals in the circumferential direction around the motor rotation axis O, and a back core 23 in which the plurality of teeth 22 are provided. . In the present disclosure, the back core 23 is an annular back core disposed at a position whose central axis is the motor rotation axis O. In the present disclosure, the back core 23 is configured to be larger than the teeth 22. In the present disclosure, the back core 23 functions as a yoke. Further, in the present disclosure, the teeth 22 and the back core 23 are integrally formed to form one core block 21. Therefore, in the present disclosure, the core block 21 as a whole functions as a yoke.
 また、固定子モジュール20Aは、複数のコイル24を備えている。本開示において、コイル24は、それぞれ、1つのティース22に対して集中巻によって巻線されている。本開示において、固定子モジュール20Aは、9つのティース22を備えている。即ち、本開示において、固定子モジュール20Aは、9つのコイル24を備えている。 Furthermore, the stator module 20A includes a plurality of coils 24. In the present disclosure, each coil 24 is wound around one tooth 22 by concentrated winding. In the present disclosure, the stator module 20A includes nine teeth 22. That is, in the present disclosure, the stator module 20A includes nine coils 24.
 本開示において、固定子モジュール20Aは、少なくとも1つとすることができる。本開示において、固定子2aは、2つの固定子モジュール20Aを備えている。本開示において、2つの固定子モジュール20Aは、モータ回転軸線方向に間隔を置いて配置されている。 In the present disclosure, there can be at least one stator module 20A. In the present disclosure, the stator 2a includes two stator modules 20A. In the present disclosure, the two stator modules 20A are spaced apart in the motor rotation axis direction.
 一方、本開示において、回転子2bは、モータ回転軸線方向において、固定子モジュール20Aと隣り合う位置に配置されている。本開示において、回転子2bは、モータ回転軸線方向において、2つの固定子モジュール20Aの間に配置されている。 On the other hand, in the present disclosure, the rotor 2b is arranged at a position adjacent to the stator module 20A in the motor rotation axis direction. In the present disclosure, the rotor 2b is arranged between the two stator modules 20A in the motor rotation axis direction.
 回転子2bは、モータ軸2dに固定された回転子本体2b1と、複数の永久磁石2b2とを備えている。本開示において、回転子本体2b1は、モータ回転軸線Оを中心軸線とする位置に配置された、環状の回転子本体である。複数の永久磁石2b2は、それぞれ、モータ回転軸線Оの周りを周方向に間隔をおいて、回転子本体2b1に取り付けられている。複数の永久磁石2b2は、それぞれ、周方向に隣り合う永久磁石2b2の磁極(N、S)が異なるように配置されている。本開示において、回転子2bは、8つの永久磁石2b2を備えている。即ち、本開示において、回転子2bは、極数8(P=8)の回転子である。 The rotor 2b includes a rotor main body 2b1 fixed to the motor shaft 2d and a plurality of permanent magnets 2b2. In the present disclosure, the rotor main body 2b1 is an annular rotor main body disposed at a position with the motor rotation axis O as the central axis. The plurality of permanent magnets 2b2 are respectively attached to the rotor main body 2b1 at intervals in the circumferential direction around the motor rotation axis O. The plurality of permanent magnets 2b2 are arranged such that circumferentially adjacent permanent magnets 2b2 have different magnetic poles (N, S). In the present disclosure, the rotor 2b includes eight permanent magnets 2b2. That is, in the present disclosure, the rotor 2b is a rotor with eight poles (P=8).
 パワーモジュール30は、それぞれが各相に対応している複数の上下アームデバイスセット31が、ベース部材34に取り付けられたパワーモジュールである。 The power module 30 is a power module in which a plurality of upper and lower arm device sets 31, each corresponding to each phase, are attached to a base member 34.
 本開示において、パワーモジュール30は、複数の上下アームデバイスセット31と、当該上下アームデバイスセット31が取り付けられたベース部材34と、を備えている。 In the present disclosure, the power module 30 includes a plurality of upper and lower arm device sets 31 and a base member 34 to which the upper and lower arm device sets 31 are attached.
 本開示において、パワーモジュール30は、3つの上下アームデバイスセット31を備えている。上下アームデバイスセット31は、上アームパワーデバイス(以下、「上アームデバイス」ともいう。)32と、下アームパワーデバイス(以下、「下アームデバイス」ともいう。)33と、を備えている。ここで、上アームデバイス32は、固定子モジュール20Aのコイル24に、電源+(プラス)側からの電流を供給するためのスイッチ回路素子であり、下アームデバイス33は、前記コイル24に、電源-(マイナス)側からの電流を供給するためのスイッチ回路素子である。前記スイッチ回路素子は、ON/OFFスイッチ機能と整流機能とを発揮できる構成であれば、様々な回路素子を組み合わせることによって形成することができる。上アームデバイス32よび下アームデバイス33は、対応するコイル24に導線5を介して電気的に接続されている。 In the present disclosure, the power module 30 includes three upper and lower arm device sets 31. The upper and lower arm device set 31 includes an upper arm power device (hereinafter also referred to as "upper arm device") 32 and a lower arm power device (hereinafter also referred to as "lower arm device") 33. Here, the upper arm device 32 is a switch circuit element for supplying current from the power supply + (plus) side to the coil 24 of the stator module 20A, and the lower arm device 33 is a switch circuit element for supplying current from the power supply + (plus) side to the coil 24 of the stator module 20A. This is a switch circuit element for supplying current from the - (minus) side. The switch circuit element can be formed by combining various circuit elements as long as they have a configuration that can perform an ON/OFF switch function and a rectification function. The upper arm device 32 and the lower arm device 33 are electrically connected to the corresponding coils 24 via conductive wires 5.
 ベース部材34は、モータ回転軸線Оを中心軸線とする位置に配置された、環状のベース部材である。本開示において、ベース部材34は、薄板のベース板によって形成されている。本開示において、3つの上下アームデバイスセット31は、ベース部材34のモータ回転軸線方向の他方側に、モータ回転軸線Оの周りで周方向に間隔を置いて配置されている。 The base member 34 is an annular base member disposed at a position whose central axis is the motor rotation axis O. In the present disclosure, the base member 34 is formed by a thin base plate. In the present disclosure, the three upper and lower arm device sets 31 are arranged on the other side of the base member 34 in the motor rotation axis direction at intervals in the circumferential direction around the motor rotation axis O.
 本開示において、パワーモジュール30はさらに、基盤35を備えている。本開示において、上下アームデバイスセット31は、基盤35に取り付けられている。これによって、上下アームデバイスセット31は、基盤35を介して、ベース部材34に取り付けることができる。本開示において、基盤35には、上下アームデバイスセット31に伝達される熱の影響を考慮して、セラミック基盤が用いられている。前記セラミック基盤は、断熱機能を有する。ただし、基盤35は、セラミック基板に限定されるものではない。また、本開示において、パワーモジュール30はさらに、ベース部材34と基盤35との間に、少なくとも1つの中間部材36を備えている。中間部材36としては、例えば、断熱機能、磁気的又は電気的な絶縁機能を有する部材を用いることができる。ただし、中間部材36は、任意の部材であり、省略することも可能である。 In the present disclosure, the power module 30 further includes a base 35. In the present disclosure, the upper and lower arm device set 31 is attached to a base 35. Thereby, the upper and lower arm device set 31 can be attached to the base member 34 via the base plate 35. In the present disclosure, a ceramic base is used for the base 35 in consideration of the influence of heat transmitted to the upper and lower arm device set 31. The ceramic base has a heat insulating function. However, the substrate 35 is not limited to a ceramic substrate. In addition, in the present disclosure, the power module 30 further includes at least one intermediate member 36 between the base member 34 and the substrate 35. As the intermediate member 36, for example, a member having a heat insulation function, a magnetic or electrical insulation function can be used. However, the intermediate member 36 is an arbitrary member and can be omitted.
 本開示において、上アームデバイス32および下アームデバイス33はそれぞれ、パワーモジュール制御部40によって、適宜ON/OFF制御される。これによって、本開示において、パワーモジュール30は、モータ2に供給する電流を制御するためのインバータ回路として機能させることができる。 In the present disclosure, the upper arm device 32 and the lower arm device 33 are each controlled to be turned on/off as appropriate by the power module control section 40. Thereby, in the present disclosure, the power module 30 can function as an inverter circuit for controlling the current supplied to the motor 2.
 固定子モジュール20Aとパワーモジュール30とは、モータ回転軸線方向に整列する位置に配置されている。 The stator module 20A and the power module 30 are arranged at positions aligned in the direction of the motor rotation axis.
 具体的には、本開示において、固定子モジュール20Aとパワーモジュール30とは、モータ回転軸線Оを共通の中心軸線とする、同一軸線上に配置されている。さらに、本開示において、固定子モジュール20Aは、モータ回転軸線方向の一方側に配置されており、パワーモジュール30は、モータ回転軸線方向の他方側に配置されている。即ち、本開示において、「モータ回転軸線方向に整列する位置に配置されている」とは、固定子モジュール20Aとパワーモジュール30とが、互いにモータ回転軸線Оを中心軸線としてモータ回転軸線方向に隣り合う位置に配置されていることをいう。 Specifically, in the present disclosure, the stator module 20A and the power module 30 are arranged on the same axis with the motor rotation axis O as a common central axis. Furthermore, in the present disclosure, the stator module 20A is arranged on one side in the motor rotation axis direction, and the power module 30 is arranged on the other side in the motor rotation axis direction. That is, in the present disclosure, "arranged in a position aligned in the motor rotation axis direction" means that the stator module 20A and the power module 30 are adjacent to each other in the motor rotation axis direction with the motor rotation axis O as the central axis. It means that they are placed in a matching position.
 さらに、固定子モジュール20Aは、ベース部材34のモータ回転軸線方向一方側に取り付けられている。その一方で、パワーモジュール30の上下アームデバイスセット31は、ベース部材34のモータ回転軸線方向他方側に取り付けられている。 Further, the stator module 20A is attached to one side of the base member 34 in the motor rotation axis direction. On the other hand, the upper and lower arm device set 31 of the power module 30 is attached to the other side of the base member 34 in the motor rotation axis direction.
 本開示において、固定子2aは、2つの固定子モジュール20Aを含み、当該2つの固定子モジュール20Aのうち、モータ回転軸線方向他方側に配置された固定子モジュール20Aがパワーモジュール30に取り付けられている。モータ回転軸線方向他方側に配置された当該固定子モジュール20Aは、パワーモジュール30におけるベース部材34のモータ回転軸線方向一方側表面に取り付けられている。ただし、固定子モジュール20Aは、ベース部材34に対して直接的に取り付けることのほか、他の部材を介して間接的に取り付けることもできる。即ち、固定子モジュール20Aは、パワーモジュール30のベース部材34に対して直接的または間接的に取り付けることができる。取付手段としては、例えば、接着剤等の接着手段、ねじ等の締結要素、溶接が挙げられる。 In the present disclosure, the stator 2a includes two stator modules 20A, and of the two stator modules 20A, the stator module 20A disposed on the other side in the motor rotation axis direction is attached to the power module 30. There is. The stator module 20A, which is disposed on the other side in the motor rotation axis direction, is attached to one surface of the base member 34 in the motor rotation axis direction in the power module 30. However, the stator module 20A can be attached not only directly to the base member 34 but also indirectly via another member. That is, stator module 20A can be attached to base member 34 of power module 30 directly or indirectly. Examples of the attachment means include adhesive means such as adhesive, fastening elements such as screws, and welding.
 その一方で、本開示において、上下アームデバイスセット31は、少なくとも、基盤35を介して、ベース部材34のモータ回転軸線方向他方側表面に取り付けられている。ただし、上下アームデバイスセット31もまた、ベース部材34に対して直接的または間接的に取り付けることができる。取付手段としては、例えば、接着剤等の接着手段、ねじ等の締結要素、ハンダ付けが挙げられる。 On the other hand, in the present disclosure, the upper and lower arm device set 31 is attached to at least the other surface of the base member 34 in the motor rotation axis direction via the base 35. However, the upper and lower arm device set 31 can also be attached directly or indirectly to the base member 34. Examples of the attachment means include adhesive means such as adhesive, fastening elements such as screws, and soldering.
 上述のとおり、本開示のモータシステム1Aは、パワーモジュール30のベース部材34を共用することによって、当該パワーモジュール30のベース部材34に、上下アームデバイスセット31に加えて、モータ2の固定子モジュール20Aを一体的に結合させている。これによって、パワーモジュール30は、図2に示すように、モータ回転軸線方向において、固定子モジュール20Aと隣接する位置に配置することができる。また、パワーモジュール30が、モータ回転軸線方向において、固定子モジュール20Aと隣接する位置に配置されることによって、パワーモジュール30を、固定子モジュール20Aとともに、モータケース2cの内部に収容させることができる。したがって、モータシステム1Aは、図2に示すように、モータ2の内部にパワーモジュール30を組み込むことによって小型化が実現されたモータシステムとなる。 As described above, by sharing the base member 34 of the power module 30, the motor system 1A of the present disclosure includes the stator module of the motor 2 in addition to the upper and lower arm device set 31 on the base member 34 of the power module 30. 20A are integrally connected. Thereby, the power module 30 can be arranged at a position adjacent to the stator module 20A in the direction of the motor rotation axis, as shown in FIG. Moreover, by disposing the power module 30 at a position adjacent to the stator module 20A in the direction of the motor rotation axis, the power module 30 can be housed inside the motor case 2c together with the stator module 20A. . Therefore, the motor system 1A is a motor system that is downsized by incorporating the power module 30 inside the motor 2, as shown in FIG.
 また、本開示のモータシステム1Aによれば、従来のように、多相モータの外側にパワーコントロールユニットを配置する場合に比べて、固定子モジュール20Aとパワーモジュール30との間の配線(導線5)を短くすることができる。加えて、固定子モジュール20Aとパワーモジュール30との間の配線(導線5)が短くなる分だけ、外部からのノイズに対する耐性が強いモータシステムとなる。さらに、固定子モジュール20Aとパワーモジュール30との間の配線(導線5)が短くなる分だけ、配線作業時における誤配線を軽減することができる。 Furthermore, according to the motor system 1A of the present disclosure, the wiring between the stator module 20A and the power module 30 (conductor 5 ) can be shortened. In addition, as the wiring (conductor wire 5) between the stator module 20A and the power module 30 is shortened, the motor system becomes more resistant to external noise. Furthermore, since the wiring (conducting wire 5) between the stator module 20A and the power module 30 is shortened, incorrect wiring during wiring work can be reduced.
 特に、本開示において、固定子モジュール20Aは、モータ回転軸線Оの周りで周方向に相ごとに区画された、複数の相固定子モジュール201によって構成されている。加えて、本開示において、パワーモジュール30もまた、モータ回転軸線の周りで周方向に相ごとに区画された、複数の相パワーモジュール301によって構成されている。 In particular, in the present disclosure, the stator module 20A is configured by a plurality of phase stator modules 201 that are divided into phases in the circumferential direction around the motor rotation axis O. In addition, in the present disclosure, the power module 30 is also configured by a plurality of phase power modules 301 that are divided into phases in the circumferential direction around the motor rotation axis.
 図3には、本開示のモータシステム1Aにおける、固定子モジュール20Aがモータ回転軸線方向一方側から概略的に示されている。 FIG. 3 schematically shows a stator module 20A in the motor system 1A of the present disclosure from one side in the motor rotation axis direction.
 図3を参照すれば、本開示において、固定子モジュール20Aは、モータ回転軸線Оを中心に120度の間隔で、3つの相固定子モジュール201に区画されている。具体的には、固定子モジュール20Aは、U相固定子モジュール201Uと、V相固定子モジュール201Vと、W相固定子モジュール201Wと、の、3つの相固定子モジュール201によって構成されている。本開示では、3つの相固定子モジュール201は、図3に示すように、モータ回転軸線方向一方側からみたとき、モータ回転軸線Оを中心に反時計回りに、U相固定子モジュール201U、V相固定子モジュール201V、W相固定子モジュール201W、の順番で配列されている。 Referring to FIG. 3, in the present disclosure, the stator module 20A is divided into three phase stator modules 201 at intervals of 120 degrees around the motor rotation axis O. Specifically, the stator module 20A is configured by three phase stator modules 201: a U-phase stator module 201U, a V-phase stator module 201V, and a W-phase stator module 201W. In the present disclosure, as shown in FIG. 3, the three phase stator modules 201 are arranged counterclockwise around the motor rotation axis O when viewed from one side in the motor rotation axis direction. The phase stator module 201V and the W-phase stator module 201W are arranged in this order.
 また、本開示において、3つの相固定子モジュール201はそれぞれ、n個のティース22を備えている。本開示では、n=3である。即ち、本開示において、1つの相固定子モジュール201は、3つのティース22を備えている。これによって、本開示において、固定子モジュール20Aは全体として、9つのティース22を備えている。 Furthermore, in the present disclosure, each of the three phase stator modules 201 includes n teeth 22. In this disclosure, n=3. That is, in the present disclosure, one phase stator module 201 includes three teeth 22. Accordingly, in the present disclosure, the stator module 20A includes nine teeth 22 as a whole.
 本開示において、1つのティース22には、1つのコイル24が集中巻きされている。即ち、本開示において、1つの相固定子モジュール201は、3つのコイル24を備えている。これによって、本開示において、固定子モジュール20Aは全体として、9つのコイル24を備えている。本開示では、巻き方向のうちの一方を「+」とした場合、+方向に巻かれたコイル24には、「+」の表記を付し、巻き方向のうちの他方を「-」とした場合、-方向に巻かれたコイル24には、「-」の表記を付している。 In the present disclosure, one coil 24 is wound around one tooth 22 in a concentrated manner. That is, in the present disclosure, one phase stator module 201 includes three coils 24. Accordingly, in the present disclosure, the stator module 20A includes nine coils 24 in total. In the present disclosure, when one of the winding directions is designated as "+", the coil 24 wound in the + direction is marked with "+", and the other of the winding directions is designated as "-". In this case, the coil 24 wound in the - direction is marked with "-".
 図3に示すように、U相固定子モジュール201Uは、3つのU相ティース22Uを備えている。U相ティース22Uに巻かれたU相コイル24Uには、パワーモジュール30によって、U相の電流が供給される。ただし、本開示において、U相コイル24Uには、巻き方向の異なる2種類のコイル24Uが含まれている。本開示において、U相固定子モジュール201Uは、+方向に巻かれた1つのU相コイル24U+と、-方向に巻かれた2つのU相コイル24U-と、を備えている。本開示において、U相コイル24U+と、U相コイル24U-とは、モータ回転軸線Оの周りで周方向に交互に配置されている。 As shown in FIG. 3, the U-phase stator module 201U includes three U-phase teeth 22U. A U-phase current is supplied by the power module 30 to the U-phase coil 24U wound around the U-phase teeth 22U. However, in the present disclosure, the U-phase coil 24U includes two types of coils 24U with different winding directions. In the present disclosure, the U-phase stator module 201U includes one U-phase coil 24U+ wound in the + direction and two U-phase coils 24U- wound in the − direction. In the present disclosure, the U-phase coils 24U+ and the U-phase coils 24U- are arranged alternately in the circumferential direction around the motor rotation axis O.
 V相固定子モジュール201Vもまた、3つのV相ティース22Vを備えている。V相ティース22Vに巻かれたV相コイル24Vには、パワーモジュール30によって、V相の電流が供給される。ただし、本開示において、V相コイル24Vにもまた、巻き方向の異なる2種類のコイル24Vが含まれている。本開示において、V相固定子モジュール201Vもまた、+方向に巻かれた1つのV相コイル24V+と、-方向に巻かれた2つのV相コイル24V-と、を備えている。本開示において、V相コイル24V+と、V相コイル24V-ともまた、モータ回転軸線Оの周りで周方向に交互に配置されている。 The V-phase stator module 201V also includes three V-phase teeth 22V. A V-phase current is supplied by the power module 30 to the V-phase coil 24V wound around the V-phase teeth 22V. However, in the present disclosure, the V-phase coil 24V also includes two types of coils 24V with different winding directions. In the present disclosure, the V-phase stator module 201V also includes one V-phase coil 24V+ wound in the + direction and two V-phase coils 24V- wound in the − direction. In the present disclosure, the V-phase coils 24V+ and the V-phase coils 24V- are also arranged alternately in the circumferential direction around the motor rotation axis O.
 W相固定子モジュール201Wもまた、3つのW相ティース22Wを備えている。W相ティース22Wに巻かれたW相コイル24Wには、パワーモジュール30によって、W相の電流が供給される。ただし、本開示において、W相コイル24Wにもまた、巻き方向の異なる2種類のコイル24Wが含まれている。本開示において、W相固定子モジュール201Wもまた、+方向に巻かれた1つのW相コイル24W+と、-方向に巻かれた2つのW相コイル24W-と、を備えている。本開示において、W相コイル24W+と、V相コイル24W-ともまた、モータ回転軸線Оの周りで周方向に交互に配置されている。 The W-phase stator module 201W also includes three W-phase teeth 22W. A W-phase current is supplied by the power module 30 to the W-phase coil 24W wound around the W-phase teeth 22W. However, in the present disclosure, the W-phase coil 24W also includes two types of coils 24W with different winding directions. In the present disclosure, the W-phase stator module 201W also includes one W-phase coil 24W+ wound in the + direction and two W-phase coils 24W- wound in the − direction. In the present disclosure, the W-phase coil 24W+ and the V-phase coil 24W- are also arranged alternately in the circumferential direction around the motor rotation axis O.
 図4には、U相固定子モジュール201Uが例示的に示されている。図4に示すように、本開示において、環状の固定子モジュール20Aは、モータ回転軸線Оを中心に120度の間隔で、3つの相固定子モジュール201に分割することができる。V相固定子モジュール201VおよびW相固定子モジュール201Wは、供給される相電流の種類が異なるだけで、V相固定子モジュール201VおよびW相固定子モジュール201Wの構成は、図4のU相固定子モジュール201Uと同じである。 FIG. 4 exemplarily shows a U-phase stator module 201U. As shown in FIG. 4, in the present disclosure, the annular stator module 20A can be divided into three phase stator modules 201 at intervals of 120 degrees around the motor rotation axis O. The V-phase stator module 201V and the W-phase stator module 201W differ only in the type of phase current that is supplied. This is the same as the child module 201U.
 また、図5には、固定子モジュール20Aのコアブロック21が概略的に示されている。図5は、図3の固定子モジュール20Aからコイル24を取り除いた状態を示している。本開示において、コアブロック21もまた、図5に示すように、モータ回転軸線Оを中心に120度の間隔で、3つの相コアブロック210に区画されている。具体的には、コアブロック21は、U相コアブロック210Uと、V相コアブロック210Vと、W相コアブロック210Wと、の、3つの相コアブロック210によって構成されている。 Further, FIG. 5 schematically shows the core block 21 of the stator module 20A. FIG. 5 shows the stator module 20A of FIG. 3 with the coil 24 removed. In the present disclosure, the core block 21 is also divided into three phase core blocks 210 at intervals of 120 degrees around the motor rotation axis O, as shown in FIG. Specifically, the core block 21 is configured by three phase core blocks 210: a U-phase core block 210U, a V-phase core block 210V, and a W-phase core block 210W.
 図6には、U相コアブロック210Uが例示的に示されている。図6は、図4のU相固定子モジュール201UからU相コイル24Uを取り除いた状態を示している。図6に示すように、本開示において、コアブロック21は、モータ回転軸線Оを中心に120度の間隔で、3つの相コアブロック210に分割することができる。V相コアブロック210VおよびW相コアブロック210Wは、巻き付けられる相コイルの種類が異なるだけで、V相コアブロック210VおよびW相コアブロック210Wの構成は、図6のU相コアブロック210Uと同じである。 FIG. 6 exemplarily shows a U-phase core block 210U. FIG. 6 shows a state in which the U-phase coil 24U is removed from the U-phase stator module 201U of FIG. 4. As shown in FIG. 6, in the present disclosure, the core block 21 can be divided into three phase core blocks 210 at intervals of 120 degrees around the motor rotation axis O. The V-phase core block 210V and the W-phase core block 210W differ only in the types of phase coils wound around them, and the configurations of the V-phase core block 210V and W-phase core block 210W are the same as the U-phase core block 210U in FIG. be.
 図7には、本開示のモータシステム1Aにおける、パワーモジュール30がモータ回転軸線方向他方側から概略的に示されている。 FIG. 7 schematically shows the power module 30 in the motor system 1A of the present disclosure from the other side in the motor rotation axis direction.
 図7を参照すれば、本開示において、パワーモジュール30は、モータ回転軸線Оを中心に120度の間隔で、3つの相パワーモジュール301に区画されている。具体的には、パワーモジュール30は、U相パワーモジュール301Uと、V相パワーモジュール301Vと、W相パワーモジュール301Wと、の、3つの相パワーモジュール301によって構成されている。本開示では、3つの相パワーモジュール301は、図7に示すように、モータ回転軸線方向他方側からみたとき、モータ回転軸線Оを中心に時計回りに、U相パワーモジュール301U、V相パワーモジュール301V、W相パワーモジュール301Wの順番で配列されている。 Referring to FIG. 7, in the present disclosure, the power module 30 is divided into three phase power modules 301 at intervals of 120 degrees around the motor rotation axis O. Specifically, the power module 30 is configured by three phase power modules 301: a U-phase power module 301U, a V-phase power module 301V, and a W-phase power module 301W. In the present disclosure, as shown in FIG. 7, the three phase power modules 301 are arranged clockwise around the motor rotation axis O, a U-phase power module 301U, a V-phase power module, when viewed from the other side in the motor rotation axis direction. 301V, W-phase power modules 301W are arranged in this order.
 U相パワーモジュール301Uは、1つのU相上下アームデバイスセット31Uを備えている。U相上下アームデバイスセット31Uは、1つのU相上アームデバイス32Uと、1つのU相下アームデバイス33Uとを備えている。U相上アームデバイス32Uは、導線5Uを通して、U相固定子モジュール201UのU相コイル24Uに、電源+側からのU相電流を供給する。U相下アームデバイス33Uは、導線5Uを通して、U相コイル24Uに、電源-側からのU相電流を供給する。さらに、本開示において、U相パワーモジュール301Uには、U相コネクタ37U3が設けられている。 The U-phase power module 301U includes one U-phase upper and lower arm device set 31U. The U-phase upper and lower arm device set 31U includes one U-phase upper arm device 32U and one U-phase lower arm device 33U. The U-phase upper arm device 32U supplies the U-phase current from the power supply + side to the U-phase coil 24U of the U-phase stator module 201U through the conductor 5U. The U-phase lower arm device 33U supplies the U-phase current from the power supply side to the U-phase coil 24U through the conductor 5U. Furthermore, in the present disclosure, the U-phase power module 301U is provided with a U-phase connector 37U3.
 V相パワーモジュール301Vは、1つのV相上下アームデバイスセット31Vを備えている。V相上下アームデバイスセット31Vは、1つのV相上アームデバイス32Vと、1つのV相下アームデバイス33Vとを備えている。V相上アームデバイス32Vは、導線5Vを通して、V相固定子モジュール201VのV相コイル24Vに、電源+側からのU相電流を供給する。V相下アームデバイス33Vは、導線5Vを通して、V相コイル24Vに、電源-側からのV相電流を供給する。さらに、本開示において、V相パワーモジュール301Vには、V相コネクタ37V3が設けられている。 The V-phase power module 301V includes one V-phase upper and lower arm device set 31V. The V-phase upper and lower arm device set 31V includes one V-phase upper arm device 32V and one V-phase lower arm device 33V. The V-phase upper arm device 32V supplies the U-phase current from the power supply + side to the V-phase coil 24V of the V-phase stator module 201V through a conductive wire 5V. The V-phase lower arm device 33V supplies the V-phase current from the power source − side to the V-phase coil 24V through a conductive wire 5V. Furthermore, in the present disclosure, the V-phase power module 301V is provided with a V-phase connector 37V3.
 W相パワーモジュール301Wは、1つのW相上下アームデバイスセット31Wを備えている。W相上下アームデバイスセット31Wは、1つのW相上アームデバイス32Wと、1つのW相下アームデバイス33Wとを備えている。W相上アームデバイス32Wは、導線5Wを通して、W相固定子モジュール201WのW相コイル24Wに、電源+側からのU相電流を供給する。W相下アームデバイス33Wは、導線5Wを通して、W相コイル24Wに、電源-側からのW相電流を供給する。さらに、本開示において、W相パワーモジュール301Wには、W相コネクタ37W3が設けられている。 The W-phase power module 301W includes one W-phase upper and lower arm device set 31W. The W-phase upper and lower arm device set 31W includes one W-phase upper arm device 32W and one W-phase lower arm device 33W. The W-phase upper arm device 32W supplies the U-phase current from the power supply + side to the W-phase coil 24W of the W-phase stator module 201W through the conductor 5W. The W-phase lower arm device 33W supplies the W-phase current from the power source − side to the W-phase coil 24W through the conductor 5W. Furthermore, in the present disclosure, the W-phase power module 301W is provided with a W-phase connector 37W3.
 加えて、本開示において、パワーモジュール30もまた、モータ回転軸線Оを中心に120度の間隔で、3つの相パワーモジュール301に分割することができる。具体的には、3つの相パワーモジュール301は、環状のベース部材34を、モータ回転軸線Оを中心に120度の間隔で、U相ベース部材34Uと、V相ベース部材34V、W相ベース部材34Wと、の、3つの相ベース部材に分割することによって形成することができる。本開示の場合、3つの相ベース部材34U~34Wは、図7に示すように、モータ回転軸線方向他方側からみたとき、モータ回転軸線Оを中心に時計回りに、U相ベース部材34U、V相ベース部材34V、W相ベース部材34Wの順番で配列されることになる。 Additionally, in the present disclosure, the power module 30 can also be divided into three phase power modules 301 at intervals of 120 degrees around the motor rotation axis O. Specifically, the three-phase power module 301 includes an annular base member 34, a U-phase base member 34U, a V-phase base member 34V, and a W-phase base member at intervals of 120 degrees around the motor rotation axis O. It can be formed by dividing into three phase base members, 34W and . In the case of the present disclosure, as shown in FIG. 7, the three phase base members 34U to 34W are arranged clockwise around the motor rotation axis O when viewed from the other side in the motor rotation axis direction. The phase base members 34V and the W-phase base members 34W are arranged in this order.
 図8には、U相パワーモジュール301Uが例示的に示されている。V相パワーモジュール301VおよびW相パワーモジュール301Wは、対応する相コイルの種類が異なるだけで、V相パワーモジュール301VおよびW相パワーモジュール301Wの構成は、図8のU相パワーモジュール301Uと同じである。 FIG. 8 exemplarily shows a U-phase power module 301U. The V-phase power module 301V and W-phase power module 301W differ only in the types of corresponding phase coils, and the configurations of the V-phase power module 301V and W-phase power module 301W are the same as the U-phase power module 301U in FIG. be.
 図3に示すように、固定子モジュール20Aを、モータ回転軸線Оの周りで周方向に相ごとに区画された、複数の相固定子モジュール201によって構成するとともに、図7に示すように、パワーモジュール30を、モータ回転軸線Оの周りで周方向に、相ごとに区画された複数の相パワーモジュール301によって構成すれば、コイル24と上下アームデバイスセット31とを、相ごとに容易に関連付けることができる。これによって、本開示において、1つの相固定子モジュール201のコイル24と当該コイル24に対応する上下アームデバイスセット31とを接続する導線5は、相ごとに容易に配線することができる。具体例としては、U相固定子モジュール201Uの相コイル(24U-、24U+、24U-)と、U相上下アームデバイスセット31Uとを接続する導線5Uは、U相の組として容易に配線することができる。加えて、固定子モジュール20Aおよびパワーモジュール30を相ごとに構成したことにより、相ごとのメンテナンスも容易となる。 As shown in FIG. 3, the stator module 20A is composed of a plurality of phase stator modules 201 that are divided into phases in the circumferential direction around the motor rotation axis O, and as shown in FIG. If the module 30 is constituted by a plurality of phase power modules 301 divided into phases in the circumferential direction around the motor rotation axis O, the coils 24 and the upper and lower arm device sets 31 can be easily associated for each phase. I can do it. Accordingly, in the present disclosure, the conducting wire 5 connecting the coil 24 of one phase stator module 201 and the upper and lower arm device set 31 corresponding to the coil 24 can be easily wired for each phase. As a specific example, the conductor wire 5U connecting the phase coils (24U-, 24U+, 24U-) of the U-phase stator module 201U and the U-phase upper and lower arm device set 31U can be easily wired as a U-phase set. I can do it. In addition, by configuring the stator module 20A and the power module 30 for each phase, maintenance for each phase is also facilitated.
 特に、図3および図7から明らかように、本開示において、1つの相固定子モジュール201と、当該1つの相固定子モジュール201に対応する相パワーモジュール301とは、モータ回転軸線方向からみたとき、モータ回転軸線Оの周りの周方向で互いに整列する位置に配置されている。 In particular, as is clear from FIGS. 3 and 7, in the present disclosure, one phase stator module 201 and the phase power module 301 corresponding to the one phase stator module 201 are different from each other when viewed from the motor rotation axis direction. , are arranged in positions aligned with each other in the circumferential direction around the motor rotation axis O.
 本開示において、「モータ回転軸線方向からみたとき、モータ回転軸線Оの周りの周方向で互いに整列する位置に配置されている」とは、固定子モジュール20Aとパワーモジュール30とが、互いにモータ回転軸線Оを中心軸線としてモータ回転軸線方向に隣り合う位置に配置されており、かつ、1つの相固定子モジュール201と、当該1つの相固定子モジュール201に対応する相パワーモジュール301とが、モータ回転軸線方向からみたとき、モータ回転軸線Оの周りの周方向で重複する位置に配置されていることをいう。この場合、1つの相固定子モジュール201と、当該1つの相固定子モジュール201に対応する上下アームデバイスセット31とは、モータ回転軸線Оの周りの周方向において、ベース部材34を挟んで、互いにほぼ真裏の位置に配置されることとなる。具体例としては、図9に示すように、U相固定子モジュール201UとU相上下アームデバイスセット31Uとは、モータ回転軸線Оの周りの周方向において、ベース部材34を挟んで、互いにほぼ真裏の位置に配置されることとなる。 In the present disclosure, "arranging the stator module 20A and the power module 30 in mutually aligned positions in the circumferential direction around the motor rotation axis O when viewed from the motor rotation axis direction" means that the stator module 20A and the power module 30 are One phase stator module 201 and a phase power module 301 corresponding to the one phase stator module 201 are arranged at positions adjacent to each other in the direction of the motor rotation axis with axis O as the center axis. When viewed from the direction of the rotation axis, they are arranged at overlapping positions in the circumferential direction around the motor rotation axis O. In this case, one phase stator module 201 and the upper and lower arm device set 31 corresponding to the one phase stator module 201 are mutually arranged with the base member 34 in between in the circumferential direction around the motor rotation axis O. It will be placed almost directly behind it. As a specific example, as shown in FIG. 9, the U-phase stator module 201U and the U-phase upper and lower arm device set 31U are located almost directly behind each other with the base member 34 in between in the circumferential direction around the motor rotation axis O. It will be placed at the position of
 1つの相固定子モジュール201と、当該1つの相固定子モジュール201に対応する相パワーモジュール301とが、モータ回転軸線方向からみたとき、モータ回転軸線Оの周りの周方向で互いに整列する位置に配置されている場合、相固定子モジュール201と当該1つの相固定子モジュール201に対応する上下アームデバイスセット31との間の配線(導線5)を最も短くすることができる。加えて、前記配線(導線5)が最も短くなるため、外部からのノイズに対する耐性にもより強いモータシステムとなる。さらに、前記配線(導線5)がより短くなる分だけ、配線作業時における誤配線をより軽減することができる。 One phase stator module 201 and the phase power module 301 corresponding to the one phase stator module 201 are in a position where they are aligned with each other in the circumferential direction around the motor rotation axis O when viewed from the motor rotation axis direction. When arranged, the wiring (conductor wire 5) between the phase stator module 201 and the upper and lower arm device set 31 corresponding to the one phase stator module 201 can be made the shortest. In addition, since the wiring (conductor wire 5) is the shortest, the motor system becomes more resistant to external noise. Furthermore, as the wiring (conducting wire 5) becomes shorter, incorrect wiring during wiring work can be further reduced.
 また、上述のとおり、固定子モジュール20Aは、相ごとに分割することができる。具体的には、上述のとおり、固定子モジュール20Aは、モータ回転軸線Оの周りで周方向に、複数の相固定子モジュール201に分割することができる。この場合、固定子モジュール20Aに各相に応じた相固定子モジュール201をレイアウトするときに、当該相固定子モジュール201の配列に関するレイアウトを自由に変更することができる。加えて、この場合、相ごとのメンテナンスもより容易となる。 Additionally, as described above, the stator module 20A can be divided into phases. Specifically, as described above, the stator module 20A can be divided into a plurality of phase stator modules 201 in the circumferential direction around the motor rotation axis O. In this case, when laying out the phase stator modules 201 according to each phase in the stator module 20A, the layout regarding the arrangement of the phase stator modules 201 can be freely changed. In addition, phase-by-phase maintenance is also easier in this case.
 同様に、パワーモジュール30もまた、上述のとおり、相ごとに分割することができる。具体的には、上述のとおり、パワーモジュール30もまた、モータ回転軸線Оの周りで周方向に、複数の相パワーモジュール301に分割することができる。この場合、パワーモジュール30に各相に応じた上下アームデバイスセット31をレイアウトするときに、当該上下デバイスアームセット31の配列に関するレイアウトを自由に変更することができる。加えて、この場合、相ごとのメンテナンスもより容易となる。 Similarly, the power module 30 can also be divided into phases as described above. Specifically, as described above, the power module 30 can also be divided into a plurality of phase power modules 301 in the circumferential direction around the motor rotation axis O. In this case, when laying out the upper and lower arm device sets 31 according to each phase in the power module 30, the layout regarding the arrangement of the upper and lower device arm sets 31 can be freely changed. In addition, phase-by-phase maintenance is also easier in this case.
 固定子モジュール20Aおよびパワーモジュール30の少なくともいずれか一方を分割した場合の具体例としては、図10に示すように、3つの分割させたうちのU相固定子モジュール201Uと、同じく3つの分割させたうちのU相パワーモジュール301Uとを組み合わせることによって、同じ相の相固定子モジュール201と相パワーモジュール301とを、ベース部材34Uを挟んで、互いにほぼ真裏の位置に容易に配置することができる。 As a specific example of the case where at least one of the stator module 20A and the power module 30 is divided, as shown in FIG. By combining Tauchi's U-phase power module 301U, the phase stator module 201 and phase power module 301 of the same phase can be easily arranged at positions almost directly behind each other with the base member 34U in between. .
 また、図2を参照すれば、本開示において、パワーモジュール制御部40は、モータ回転軸線方向において、パワーモジュール30を挟んで、固定子モジュール20Aと反対側(本開示では、モータ回転軸線方向他方側)の位置に配置されている。 Further, referring to FIG. 2, in the present disclosure, the power module control unit 40 is located on the opposite side of the stator module 20A with the power module 30 in between (in the present disclosure, the other side in the motor rotation axis direction). side).
 本開示において、パワーモジュール制御部40は、モータケース2cの内部の最もモータ回転軸線方向他方に配置されている。パワーモジュール制御部40は、マイクロコンピュータ、FPGA(Field-Programmable Gate Array)などの制御ハードウェア41を備えている。本開示において、パワーモジュール制御部40は、制御ハードウェア41に加えて、当該制御ハードウェア41が取り付けられたプリント基板42を備えている。また、本開示において、パワーモジュール制御部40は、通信ケーブル37によってパワーモジュール30に接続されている。 In the present disclosure, the power module control unit 40 is disposed inside the motor case 2c at the other end in the motor rotation axis direction. The power module control unit 40 includes control hardware 41 such as a microcomputer and an FPGA (Field-Programmable Gate Array). In the present disclosure, the power module control section 40 includes, in addition to control hardware 41, a printed circuit board 42 to which the control hardware 41 is attached. Further, in the present disclosure, the power module control section 40 is connected to the power module 30 by a communication cable 37.
 パワーモジュール制御部40を、モータ回転軸線方向において、パワーモジュール30を挟んで、モータ回転軸線方向他方側の位置に配置した場合、パワーモジュール制御部40は、図2に示すように、モータ回転軸線方向において、パワーモジュール30と隣接する位置に配置することができる。これによって、図2に示すように、パワーモジュール制御部40もまた、モータケース2cの内部に収容させることができる。したがって、モータシステム1Aは、図2に示すように、モータ2の内部にパワーモジュール制御部40を組み込むことによって、さらに小型化が実現されたモータシステムとなる。 When the power module control section 40 is disposed at a position on the other side of the motor rotation axis direction with the power module 30 interposed therebetween, the power module control section 40 is placed in a position on the other side of the motor rotation axis direction, with the power module 30 interposed therebetween. It can be arranged at a position adjacent to the power module 30 in the direction. Thereby, as shown in FIG. 2, the power module control section 40 can also be housed inside the motor case 2c. Therefore, the motor system 1A becomes a motor system that is further miniaturized by incorporating the power module control section 40 inside the motor 2, as shown in FIG.
 また、パワーモジュール制御部40を、モータ回転軸線方向において、パワーモジュール30を挟んで、モータ回転軸線方向他方側の位置に配置した場合、パワーモジュール30とパワーモジュール制御部40との間の配線(通信ケーブル37)を短くすることができる。加えて、前記配線(通信ケーブル37)が短くなる分だけ、外部からのノイズに対する耐性が強いモータシステムとなる。さらに、前記配線(通信ケーブル37)が短くなる分だけ、配線作業時における誤配線を軽減することができる。 Furthermore, when the power module control section 40 is placed at a position on the other side in the motor rotation axis direction with the power module 30 interposed therebetween, the wiring between the power module 30 and the power module control section 40 ( The communication cable 37) can be shortened. In addition, since the wiring (communication cable 37) is shortened, the motor system becomes more resistant to external noise. Furthermore, since the wiring (communication cable 37) is shortened, incorrect wiring during wiring work can be reduced.
 図11には、パワーモジュール制御部40がモータ回転軸線方向一方側から概略的に示されている。 In FIG. 11, the power module control section 40 is schematically shown from one side in the direction of the motor rotation axis.
 本開示において、パワーモジュール制御部40は、複数の制御ハードウェア41と、これらの制御ハードウェア41が取り付けられた環状のプリント基板42と、を備えている。本開示において、制御ハードウェア41には、例えば、マイクロコンピュータ41a、FPGA41bが含まれる。 In the present disclosure, the power module control unit 40 includes a plurality of control hardware 41 and an annular printed circuit board 42 to which these control hardware 41 are attached. In the present disclosure, the control hardware 41 includes, for example, a microcomputer 41a and an FPGA 41b.
 さらに、本開示において、パワーモジュール制御部40には、プリント基板42上に、U相コネクタ37U4、V相コネクタ37V4、W相コネクタ37W4が設けられている。U相用の通信ケーブル37の一方の端子は、図7のU相パワーモジュール301UのU相コネクタ37W3に接続され、U相用の通信ケーブル37の他方の端子は、図11のU相コネクタ37U4に接続される。同様に、V相用の通信ケーブル37の一方の端子は、図7のV相パワーモジュール301VのV相コネクタ37V3に接続され、V相用の通信ケーブル37の他方の端子は、図11のV相コネクタ37V4に接続される。W相用の通信ケーブル37の一方の端子は、図7のW相パワーモジュール301WのW相コネクタ37W3に接続され、W相用の通信ケーブル37の他方の端子は、図11のWコネクタ37W4に接続される。 Furthermore, in the present disclosure, the power module control unit 40 is provided with a U-phase connector 37U4, a V-phase connector 37V4, and a W-phase connector 37W4 on the printed circuit board 42. One terminal of the U-phase communication cable 37 is connected to the U-phase connector 37W3 of the U-phase power module 301U in FIG. 7, and the other terminal of the U-phase communication cable 37 is connected to the U-phase connector 37U4 in FIG. connected to. Similarly, one terminal of the V-phase communication cable 37 is connected to the V-phase connector 37V3 of the V-phase power module 301V in FIG. 7, and the other terminal of the V-phase communication cable 37 is connected to the V-phase connector 37V3 in FIG. Connected to phase connector 37V4. One terminal of the W-phase communication cable 37 is connected to the W-phase connector 37W3 of the W-phase power module 301W in FIG. 7, and the other terminal of the W-phase communication cable 37 is connected to the W-phase connector 37W4 in FIG. Connected.
 特に、図7および図11から明らかように、本開示において、パワーモジュール30の、U相コネクタ37U3、V相コネクタ37V3、W相コネクタ37W3と、パワーモジュール制御部40の、U相コネクタ37U4、V相コネクタ37V4、W相コネクタ37W4とはそれぞれ、モータ回転軸線方向で向かい合ったとき、モータ回転軸線Оの周りの周方向で互いに整列する位置に配置されている。この場合、パワーモジュールの相コネクタと、パワーモジュール制御部の相コネクタとは、モータ回転軸線Оの周りの周方向において、互いにほぼ向かい合う位置に配置されることとなる。この場合、パワーモジュール30とパワーモジュール制御部40との間の配線(通信ケーブル37)を最も短くすることができる。加えて、パワーモジュール30とパワーモジュール制御部40との間の配線が最も短くなるため、外部からのノイズに対する耐性にもより強いモータシステムとなる。さらに、パワーモジュール30とパワーモジュール制御部40との間の配線がより短くなる分だけ、配線作業時における誤配線をより軽減することができる。 In particular, as is clear from FIGS. 7 and 11, in the present disclosure, the U-phase connector 37U3, V-phase connector 37V3, and W-phase connector 37W3 of the power module 30, and the U-phase connector 37U4, V When the phase connector 37V4 and the W-phase connector 37W4 face each other in the motor rotation axis direction, they are arranged in positions that are aligned with each other in the circumferential direction around the motor rotation axis O. In this case, the phase connector of the power module and the phase connector of the power module control section are arranged at positions substantially facing each other in the circumferential direction around the motor rotation axis O. In this case, the wiring (communication cable 37) between the power module 30 and the power module control section 40 can be made the shortest. In addition, since the wiring between the power module 30 and the power module control unit 40 is the shortest, the motor system becomes more resistant to external noise. Furthermore, as the wiring between the power module 30 and the power module control unit 40 becomes shorter, incorrect wiring during wiring work can be further reduced.
 図12には、モータシステム1Aに含まれる基本的な回路構成と、モータシステム1Aにおける、固定子モジュール20A、パワーモジュール30およびパワーモジュール制御部40との関係が概略的に示されている。 FIG. 12 schematically shows the basic circuit configuration included in the motor system 1A and the relationship among the stator module 20A, power module 30, and power module control section 40 in the motor system 1A.
 図12に示すように、本開示において、モータ2を駆動させるための駆動回路の基本構成は、U相上下アームデバイスセット31U、V相上下アームデバイスセット31VおよびW相上下アームデバイスセット31Wの、3つの上下アームデバイスセット31によって形成されたインバータ回路を含んでいる。本開示において、前記インバータ回路の上アームおよび下アームのそれぞれは、パワーモジュール制御部40からのゲート駆動信号によって制御されている。本開示において、パワーモジュール制御部40には、モータ2のモータ軸2dの回転位置がホールIC信号またはエンコーダ信号によってフィードバックされている。 As shown in FIG. 12, in the present disclosure, the basic configuration of the drive circuit for driving the motor 2 includes a U-phase upper and lower arm device set 31U, a V-phase upper and lower arm device set 31V, and a W-phase upper and lower arm device set 31W. It includes an inverter circuit formed by three upper and lower arm device sets 31. In the present disclosure, each of the upper arm and lower arm of the inverter circuit is controlled by a gate drive signal from the power module control section 40. In the present disclosure, the rotational position of the motor shaft 2d of the motor 2 is fed back to the power module control unit 40 using a Hall IC signal or an encoder signal.
 上記インバータ回路に接続される電源には、直流電源または交流電源を使用することができる。即ち、モータ2を駆動させるための駆動回路は、直流インバータ(DC/ACコンバータ)、交流インバータ(AC/ACコンバータ)のいずれか一方を使用することができる。 A DC power supply or an AC power supply can be used as the power supply connected to the inverter circuit. That is, the drive circuit for driving the motor 2 can use either a direct current inverter (DC/AC converter) or an alternating current inverter (AC/AC converter).
 上述のとおり、本開示において、モータ2は、極数がPであり、スロット数がSである、ブラシレス三相交流モータである。モータ2は、極数Pおよびスロット数Sが以下の関係式(1)および(2)を満たしている。 As described above, in the present disclosure, the motor 2 is a brushless three-phase AC motor with the number of poles P and the number of slots S. In the motor 2, the number of poles P and the number of slots S satisfy the following relational expressions (1) and (2).
 P=3n±1 (n:1を除く正の奇数)・・・(1)
 S=3n   (n:1を除く正の奇数)・・・(2)
P=3n±1 (n: positive odd number excluding 1)...(1)
S=3n (n: positive odd number excluding 1)...(2)
 上記(1)および(2)の条件を満たす、ブラシレス三相交流モータは、「系列II」と呼ばれる種類に該当する。系列IIのブラシレス三相交流モータは、U相、V相、W相の、三相のそれぞれを、モータ回転軸線Оの周りを周方向に120度の範囲で区画することができる。この場合、固定子モジュール20Aに、U相、V相、W相の、各相に応じた相固定子モジュール201をレイアウトするとき、U相、V相、W相のいずれか1つの相に対して2つ以上の相固定子モジュール201を構成することによって対応させるような必要はなく、1つの相固定子モジュール201のみを構成することによって対応させることができる。これによって、固定子モジュール20Aに、U相、V相、W相の、各相に応じた相固定子モジュール201を容易にレイアウトすることができる。加えて、系列IIのブラシレス三相交流モータは、U相、V相、W相の、三相のそれぞれに、奇数個の相スロット(相コイル)を配置することができる。 A brushless three-phase AC motor that satisfies the conditions (1) and (2) above falls under a type called "Series II". In the series II brushless three-phase AC motor, each of the three phases, U-phase, V-phase, and W-phase, can be divided into a range of 120 degrees in the circumferential direction around the motor rotation axis O. In this case, when laying out the phase stator modules 201 corresponding to each phase of U phase, V phase, and W phase in stator module 20A, for any one phase of U phase, V phase, and W phase, It is not necessary to configure two or more phase stator modules 201 to correspond to each other, but it is possible to correspond by configuring only one phase stator module 201. Thereby, it is possible to easily lay out phase stator modules 201 corresponding to each phase, U-phase, V-phase, and W-phase, in the stator module 20A. In addition, in the series II brushless three-phase AC motor, an odd number of phase slots (phase coils) can be arranged in each of the three phases: U phase, V phase, and W phase.
 上述のとおり、本開示のモータ2は、系列IIの代表例である、8P9Sのブラシレス三相交流モータである。 As described above, the motor 2 of the present disclosure is an 8P9S brushless three-phase AC motor, which is a representative example of Series II.
 図13には、モータシステム1Aにおける、モータ2の回転子2b(モータ軸2d)がモータ回転軸線Оの周りを周方向に1回転するまでの周期(1回転周期)Tmを基準として、回転子2bの磁極(N、S)の配列と、固定子モジュール20Aのコイル24(ティース22)の配列との関係が、各相パワーモジュール301とともに概略的に示されている。なお、図13中、符号「U」、「V」および「W」はそれぞれ、各相のコイル24(ティース22)であり、符号「+」および「-」は、上述のとおり、コイル24の巻き方向を示している。また、図14には、モータシステム1Aにおける、モータ回転軸線Оの周りの周方向の位置で、回転子2bの磁極(N、S)の配列と、相固定子モジュール201の配列との関係が概略的に示されている。 In FIG. 13, the rotor 2b (motor shaft 2d) of the motor 2 in the motor system 1A is shown with reference to the period (one rotation period) Tm until the rotor 2b (motor shaft 2d) of the motor 2 makes one rotation in the circumferential direction around the motor rotation axis O. The relationship between the arrangement of the magnetic poles (N, S) of the stator module 2b and the arrangement of the coil 24 (teeth 22) of the stator module 20A is schematically shown together with the power module 301 of each phase. In addition, in FIG. 13, the symbols "U", "V", and "W" are the coils 24 (teeth 22) of each phase, and the symbols "+" and "-" are the coils 24, as described above. Indicates the winding direction. Further, FIG. 14 shows the relationship between the arrangement of the magnetic poles (N, S) of the rotor 2b and the arrangement of the phase stator module 201 at positions in the circumferential direction around the motor rotation axis O in the motor system 1A. Shown schematically.
 図13および図14を参照すれば、本開示において、固定子モジュール20Aに、U相、V相、W相の、各相に応じた相固定子モジュール201をレイアウトするとき、U相、V相、W相のいずれか1つの相に対して2つ以上の相固定子モジュール201を構成することによって対応させるような必要はなく、1つの相固定子モジュール201のみを構成することによって対応させることができることがわかる。 Referring to FIGS. 13 and 14, in the present disclosure, when the stator module 20A is laid out with phase stator modules 201 corresponding to the U-phase, V-phase, and W-phase, the U-phase, V-phase It is not necessary to configure two or more phase stator modules 201 to correspond to any one of the W phases, but it is possible to correspond by configuring only one phase stator module 201. It turns out that you can.
 即ち、本開示において、固定子モジュール20Aは、モータ回転軸線Оの周りで周方向に相ごとに区画された、複数の相固定子モジュール201によって構成されており、各相に応じた上下アームデバイスセット31とそれに対応する相固定子モジュール201とが一対になっている。 That is, in the present disclosure, the stator module 20A is constituted by a plurality of phase stator modules 201 that are divided into phases in the circumferential direction around the motor rotation axis O, and has upper and lower arm devices corresponding to each phase. The set 31 and the corresponding phase stator module 201 are a pair.
 具体的には、U相において、U相上下アームデバイスセット31Uと、それに対応するU相固定子モジュール201Uとは、一対になっている。また、V相において、V相上下アームデバイスセット31Vと、それに対応するV相固定子モジュール201Vとは、一対になっている。さらに、W相において、W相上下アームデバイスセット31Wと、それに対応するW相固定子モジュール201Wとは、一対になっている。 Specifically, in the U phase, the U phase upper and lower arm device set 31U and the corresponding U phase stator module 201U are paired. Further, in the V-phase, the V-phase upper and lower arm device set 31V and the corresponding V-phase stator module 201V form a pair. Furthermore, in the W-phase, the W-phase upper and lower arm device set 31W and the corresponding W-phase stator module 201W form a pair.
 本開示のように、各相に応じた上下アームデバイスセット31とそれに対応する相固定子モジュール201とを一対とすれば、上述のとおり、相固定子モジュール201と当該1つの相固定子モジュール201に対応する上下アームデバイスセット31との間の配線(導線5)を最も短くすることができる。加えて、前記配線(導線5)が最も短くなるため、外部からのノイズに対する耐性にもより強いモータシステムとなる。さらに、前記配線(導線5)がより短くなる分だけ、配線作業時における誤配線をより軽減することができる。 As in the present disclosure, if the upper and lower arm device set 31 corresponding to each phase and the corresponding phase stator module 201 are paired, as described above, the phase stator module 201 and the one phase stator module 201 The wiring (conducting wire 5) between the corresponding upper and lower arm device set 31 can be made the shortest. In addition, since the wiring (conductor wire 5) is the shortest, the motor system becomes more resistant to external noise. Furthermore, as the wiring (conducting wire 5) becomes shorter, incorrect wiring during wiring work can be further reduced.
 ただし、モータ2は、極数Pおよびスロット数Sが以下の、(3)および(4)の関係を満たす、ブラシレス三相交流モータを採用することができる。このブラシレス三相交流モータは、「系列III」と呼ばれる種類に該当する。系列IIIの代表例には、10P12S(n=2)のブラシレス三相交流モータが挙げられる。 However, the motor 2 can be a brushless three-phase AC motor in which the number of poles P and the number of slots S satisfy the following relationships (3) and (4). This brushless three-phase AC motor falls under a type called "Series III." A typical example of series III is a 10P12S (n=2) brushless three-phase AC motor.
 P=6n±2 (n:偶数)・・・(3)
 S=6n   (n:偶数)・・・(4)
P=6n±2 (n: even number)...(3)
S=6n (n: even number)...(4)
 また、モータ2には、極数P、スロット数SがP:S=4:3の関係を満たす、ブラシレス三相交流モータを採用することができる。このブラシレス三相交流モータは、「系列I」と呼ばれる種類に該当する。系列Iの代表例には、6P9Sのブラシレス三相交流モータが挙げられる。 Further, the motor 2 can be a brushless three-phase AC motor in which the number of poles P and the number of slots S satisfy the relationship of P:S=4:3. This brushless three-phase AC motor falls under a type called "Series I." A typical example of series I is a 6P9S brushless three-phase AC motor.
 次いで、図15には、本発明の第2実施形態に係る、モータシステム1Bがモータ回転軸線Оを含んだ断面で概略的に示されている。 Next, FIG. 15 schematically shows a motor system 1B according to a second embodiment of the present invention in a cross section including the motor rotation axis O.
 本開示において、モータ2は、ラジアルギャップモータである。本開示において、固定子2aのティース27は、モータ回転軸線方向に対して直交する方向(以下、モータ径方向」ともいう。)に延びている。 In the present disclosure, the motor 2 is a radial gap motor. In the present disclosure, the teeth 27 of the stator 2a extend in a direction perpendicular to the motor rotation axis direction (hereinafter also referred to as the motor radial direction).
 本開示において、固定子2aは、1つの固定子モジュール20Bを備えている。固定子モジュール20Bは、モータシステム1Aと同様、モータ回転軸線Оの周りで周方向に間隔を置いて配置された複数のティース27にコイル24が巻き付けられた固定子モジュールである。 In the present disclosure, the stator 2a includes one stator module 20B. Like the motor system 1A, the stator module 20B is a stator module in which a coil 24 is wound around a plurality of teeth 27 arranged at intervals in the circumferential direction around the motor rotation axis O.
 本開示において、固定子モジュール20Bは、モータ回転軸線Оの周りで周方向に間隔を置いて配置された複数のティース27と、当該複数のティース27が設けられたリングコア28とを備えている。本開示において、リングコア28は、モータ回転軸線Оを中心軸線とする位置に配置された、環状のリングコアである。本開示において、リングコア28には、外側リングコア28aと、内側リングコア28bとが含まれている。本開示において、ティース27は、外側リングコア28aと、内側リングコア28bとの間に配置されており、外側リングコア28aおよび内側リングコア28bのそれぞれに結合している。また、本開示において、ティース27およびリングコア28は、一体に形成されており、固定子モジュール20Aと同様、1つのコアブロック21を形成している。このため、本開示においても、コアブロック21は全体として、ヨーク(継鉄)として機能する。 In the present disclosure, the stator module 20B includes a plurality of teeth 27 arranged at intervals in the circumferential direction around the motor rotation axis O, and a ring core 28 in which the plurality of teeth 27 are provided. In the present disclosure, the ring core 28 is an annular ring core disposed at a position whose center axis is the motor rotation axis O. In the present disclosure, the ring core 28 includes an outer ring core 28a and an inner ring core 28b. In the present disclosure, the teeth 27 are arranged between the outer ring core 28a and the inner ring core 28b, and are coupled to each of the outer ring core 28a and the inner ring core 28b. Further, in the present disclosure, the teeth 27 and the ring core 28 are integrally formed, and form one core block 21 similarly to the stator module 20A. Therefore, also in the present disclosure, the core block 21 as a whole functions as a yoke.
 また、本開示においても、コイル24は、それぞれ、1つのティース27に対して集中巻によって巻線されている。本開示において、固定子モジュール20Bもまた、固定子モジュール20Aと同様、9つのティース27を備えている。即ち、本開示において、固定子モジュール20Bもまた、固定子モジュール20Aと同様、9つのコイル24を備えている。 Also in the present disclosure, each coil 24 is wound around one tooth 27 by concentrated winding. In the present disclosure, stator module 20B also includes nine teeth 27, similar to stator module 20A. That is, in the present disclosure, stator module 20B also includes nine coils 24, like stator module 20A.
 一方、本開示において、回転子2bは、モータ回転軸線方向において、固定子モジュール20Aと隣り合う位置に配置されている。本開示において、回転子2bは、固定子モジュール20Bよりも、モータ回転軸線方向一方側の位置に配置されている。ただし、本開示において、回転子本体2b1は、モータ回転軸線Оの周りで周方向に、固定子モジュール20Bを径方向外側から取り囲むように形成されている。 On the other hand, in the present disclosure, the rotor 2b is arranged at a position adjacent to the stator module 20A in the motor rotation axis direction. In the present disclosure, the rotor 2b is arranged at a position on one side of the motor rotation axis direction than the stator module 20B. However, in the present disclosure, the rotor main body 2b1 is formed so as to circumferentially surround the stator module 20B from the outside in the radial direction around the motor rotation axis O.
 本開示において、回転子本体2b1は、モータ回転軸線Оを中心軸線とする位置に配置された、有底円筒形状の回転子本体である。回転子本体2b1は、円筒本体部2b11と、当該円筒本体部2b11の一端を閉じる底部2b12とを備えている。複数の永久磁石2b2は、それぞれ、モータ回転軸線Оの周りを周方向に間隔をおいて、円筒本体部2b11の内周面に取り付けられている。複数の永久磁石2b2は、それぞれ、周方向に隣り合う永久磁石2b2の磁極(N、S)が異なるように配置されている。本開示において、回転子2bは、モータシステム1Aと同様、8つの永久磁石2b2を備えている。即ち、本開示において、回転子2bもまた、極数8(P=8)の回転子である。 In the present disclosure, the rotor main body 2b1 is a cylindrical rotor main body with a bottom, disposed at a position with the motor rotation axis O as the central axis. The rotor main body two b1 includes a cylindrical main body part two b11 and a bottom part two b12 that closes one end of the cylindrical main body part two b11. The plurality of permanent magnets 2b2 are respectively attached to the inner circumferential surface of the cylindrical main body part 2b11 at intervals in the circumferential direction around the motor rotation axis O. The plurality of permanent magnets 2b2 are arranged such that circumferentially adjacent permanent magnets 2b2 have different magnetic poles (N, S). In the present disclosure, the rotor 2b includes eight permanent magnets 2b2 similarly to the motor system 1A. That is, in the present disclosure, the rotor 2b is also a rotor with eight poles (P=8).
 本開示においてもまた、パワーモジュール30は、複数の上下アームデバイスセット31と、当該上下アームデバイスセット31が取り付けられたベース部材34と、を備えている。本開示においても、パワーモジュール30は、3つの上下アームデバイスセット31を備えている。ただし、本開示において、ベース部材34は、モータシステム1Aとは異なる。 Also in the present disclosure, the power module 30 includes a plurality of upper and lower arm device sets 31 and a base member 34 to which the upper and lower arm device sets 31 are attached. Also in the present disclosure, the power module 30 includes three upper and lower arm device sets 31. However, in the present disclosure, the base member 34 is different from the motor system 1A.
 本開示において、ベース部材34は、環状板部34aと、当該環状板部34aに連なる円筒部34bとを備えている。本開示において、円筒部34bは、環状板部34aのモータ回転軸線方向一方側表面から突出している。本開示において、ベース部材34は、モータ回転軸線Оを中心軸線とする位置に配置されている。本開示において、環状板部34aは、薄板によって形成されている。本開示において、3つの上下アームデバイスセット31は、環状板部34aのモータ回転軸線方向の他方側に、モータ回転軸線Оの周りで周方向に間隔を置いて配置されている。 In the present disclosure, the base member 34 includes an annular plate portion 34a and a cylindrical portion 34b continuous to the annular plate portion 34a. In the present disclosure, the cylindrical portion 34b protrudes from one surface of the annular plate portion 34a in the motor rotation axis direction. In the present disclosure, the base member 34 is arranged at a position with the motor rotation axis O as the central axis. In the present disclosure, the annular plate portion 34a is formed of a thin plate. In the present disclosure, the three upper and lower arm device sets 31 are arranged at intervals in the circumferential direction around the motor rotation axis O on the other side of the annular plate portion 34a in the motor rotation axis direction.
 本開示においてもまた、固定子モジュール20Bとパワーモジュール30とは、モータ回転軸線方向に整列する位置に配置されている。 Also in the present disclosure, the stator module 20B and the power module 30 are arranged at positions aligned in the motor rotation axis direction.
 具体的には、本開示においてもまた、固定子モジュール20Bとパワーモジュール30とは、モータ回転軸線Оを共通の中心軸線とする、同一軸線上に配置されている。さらに、本開示においても、固定子モジュール20Bは、モータ回転軸線方向の一方側に配置されており、パワーモジュール30は、モータ回転軸線方向の他方側に配置されている。即ち、本開示において、「モータ回転軸線方向に整列する位置に配置されている」とは、固定子モジュール20Bとパワーモジュール30とが、互いにモータ回転軸線Оを中心軸線としてモータ回転軸線方向に隣り合う位置に配置されていることをいう。 Specifically, also in the present disclosure, the stator module 20B and the power module 30 are arranged on the same axis with the motor rotation axis O as a common central axis. Furthermore, in the present disclosure as well, the stator module 20B is arranged on one side in the motor rotation axis direction, and the power module 30 is arranged on the other side in the motor rotation axis direction. That is, in the present disclosure, "arranged in a position aligned in the motor rotation axis direction" means that the stator module 20B and the power module 30 are adjacent to each other in the motor rotation axis direction with the motor rotation axis O as the center axis. It means that they are placed in a matching position.
 さらに、固定子モジュール20Bもまた、モータシステム1Aと同様、ベース部材34のモータ回転軸線方向一方側に取り付けられている。ただし、本開示において、固定子モジュール20Bは、ベース部材34の円筒部34bの外周面に取り付けられている。その一方で、パワーモジュール30の上下アームデバイスセット31もまた、ベース部材34のモータ回転軸線方向他方側に取り付けられている。ただし、本開示において、上下アームデバイスセット31は、ベース部材34の環状板部34aのモータ回転軸線方向他方側表面に取り付けられている。 Furthermore, like the motor system 1A, the stator module 20B is also attached to one side of the base member 34 in the motor rotation axis direction. However, in the present disclosure, the stator module 20B is attached to the outer peripheral surface of the cylindrical portion 34b of the base member 34. On the other hand, the upper and lower arm device set 31 of the power module 30 is also attached to the other side of the base member 34 in the motor rotation axis direction. However, in the present disclosure, the upper and lower arm device set 31 is attached to the other surface of the annular plate portion 34a of the base member 34 in the motor rotation axis direction.
 本開示のモータシステム1Bもまた、パワーモジュール30のベース部材34を共用することによって、当該パワーモジュール30のベース部材34に、上下アームデバイスセット31に加えて、モータ2の固定子モジュール20Bを一体的に結合させている。これによって、パワーモジュール30は、図15に示すように、モータ回転軸線方向において、固定子モジュール20Aと隣接する位置に配置することができる。また、パワーモジュール30が、モータ回転軸線方向において、固定子モジュール20Bと隣接する位置に配置されることによって、パワーモジュール30を、固定子モジュール20Bとともに、モータケース2cの内部に収容させることができる。したがって、モータシステム1Bもまた、図15に示すように、モータ2の内部にパワーモジュール30を組み込むことによって小型化が実現されたモータシステムとなる。 The motor system 1B of the present disclosure also shares the base member 34 of the power module 30, so that in addition to the upper and lower arm device set 31, the stator module 20B of the motor 2 is integrated into the base member 34 of the power module 30. are combined in a specific manner. Thereby, the power module 30 can be arranged at a position adjacent to the stator module 20A in the direction of the motor rotation axis, as shown in FIG. 15. Further, by arranging the power module 30 at a position adjacent to the stator module 20B in the direction of the motor rotation axis, the power module 30 can be housed inside the motor case 2c together with the stator module 20B. . Therefore, the motor system 1B is also a motor system that is downsized by incorporating the power module 30 inside the motor 2, as shown in FIG.
 また、本開示のモータシステム1Bによっても、従来のように、多相モータの外側にパワーコントロールユニットを配置する場合に比べて、固定子モジュール20Bとパワーモジュール30との間の配線(導線5)を短くすることができる。加えて、固定子モジュール20Bとパワーモジュール30との間の配線(導線5)が短くなる分だけ、外部からのノイズに対する耐性が強いモータシステムとなる。さらに、固定子モジュール20Bとパワーモジュール30との間の配線(導線5)が短くなる分だけ、配線作業時における誤配線を軽減することができる。 Also, with the motor system 1B of the present disclosure, the wiring (conducting wire 5) between the stator module 20B and the power module 30 is can be shortened. In addition, as the wiring (conductor wire 5) between the stator module 20B and the power module 30 is shortened, the motor system becomes more resistant to external noise. Furthermore, since the wiring (conducting wire 5) between the stator module 20B and the power module 30 is shortened, incorrect wiring during wiring work can be reduced.
 図16には、モータシステム1Bに設けられた固定子モジュール20が、ベース部材34に取り付けた状態で、モータ回転軸線方向一方側から概略的に示されている。 In FIG. 16, the stator module 20 provided in the motor system 1B is schematically shown from one side in the direction of the motor rotation axis, with the stator module 20 attached to the base member 34.
 図16を参照すれば、本開示において、固定子モジュール20Bもまた、モータ回転軸線Оの周りで周方向に、相ごとに区画された複数の相固定子モジュール201によって構成されている。また、本開示において、パワーモジュール30もまた、モータ回転軸線の周りで周方向に、相ごとに区画された複数の相パワーモジュール301によって構成されている。 Referring to FIG. 16, in the present disclosure, the stator module 20B is also constituted by a plurality of phase stator modules 201 divided into phases in the circumferential direction around the motor rotation axis O. Further, in the present disclosure, the power module 30 is also constituted by a plurality of phase power modules 301 divided into phases in the circumferential direction around the motor rotation axis.
 図16を参照すれば、本開示において、固定子モジュール20Bもまた、モータ回転軸線Оを中心に120度の間隔で、3つの相固定子モジュール201に区画されている。本開示においても、3つの相固定子モジュール201は、図16に示すように、モータ回転軸線方向一方側からみたとき、モータ回転軸線Оを中心に反時計回りに、U相固定子モジュール201U、V相固定子モジュール201V、W相固定子モジュール201W、の順番で配列されている。 Referring to FIG. 16, in the present disclosure, the stator module 20B is also divided into three phase stator modules 201 at intervals of 120 degrees around the motor rotation axis O. Also in the present disclosure, as shown in FIG. 16, the three phase stator modules 201 are arranged counterclockwise around the motor rotation axis O when viewed from one side in the motor rotation axis direction: the U-phase stator module 201U, The V-phase stator module 201V and the W-phase stator module 201W are arranged in this order.
 また、図17は、モータシステム1Bに設けられた固定子モジュール20Bを形成する複数の相固定子モジュール201のうちの1つがモータ回転軸線方向一方側から概略的に示されている。 Further, FIG. 17 schematically shows one of the plurality of phase stator modules 201 forming the stator module 20B provided in the motor system 1B from one side in the motor rotation axis direction.
 図17には、U相固定子モジュール201Uが例示的に示されている。図17に示すように、本開示においても、環状の固定子モジュール20Bは、モータ回転軸線Оを中心に120度の間隔で、3つの相固定子モジュール201に分割することができる。本開示においても、V相固定子モジュール201VおよびW相固定子モジュール201Wは、供給される相電流の種類が異なるだけで、V相固定子モジュール201VおよびW相固定子モジュール201Wの構成は、図17のU相固定子モジュール201Uと同じである。 FIG. 17 exemplarily shows a U-phase stator module 201U. As shown in FIG. 17, also in the present disclosure, the annular stator module 20B can be divided into three phase stator modules 201 at intervals of 120 degrees around the motor rotation axis O. Also in the present disclosure, the V-phase stator module 201V and the W-phase stator module 201W differ only in the types of phase currents supplied, and the configurations of the V-phase stator module 201V and the W-phase stator module 201W are as shown in FIG. This is the same as No. 17 U-phase stator module 201U.
 さらに、図18には、図17の相固定子モジュール201を形成する、相コアブロック210がモータ回転軸線方向から概略的に示されている。図18には、図17の相固定子モジュール201UからU相コイル24Uを取り除いた状態を示している。 Further, FIG. 18 schematically shows a phase core block 210 forming the phase stator module 201 of FIG. 17 from the direction of the motor rotation axis. FIG. 18 shows a state in which the U-phase coil 24U is removed from the phase stator module 201U of FIG. 17.
 本開示においても、コアブロック21は、モータ回転軸線Оを中心に120度の間隔で、3つの相コアブロック210に区画されている。具体的には、本開示においても、コアブロック21は、U相コアブロック210Uと、V相コアブロック210Vと、W相コアブロック210Wと、の、3つの相コアブロック210によって構成されている。 Also in the present disclosure, the core block 21 is divided into three phase core blocks 210 at intervals of 120 degrees around the motor rotation axis O. Specifically, in the present disclosure as well, the core block 21 is configured by three phase core blocks 210: a U-phase core block 210U, a V-phase core block 210V, and a W-phase core block 210W.
 図18に示すように、本開示において、コアブロック21は、モータ回転軸線Оを中心に120度の間隔で、3つの相コアブロック210に分割することができる。V相コアブロック210VおよびW相コアブロック210Wは、巻き付けられる相コイルの種類が異なるだけで、V相コアブロック210VおよびW相コアブロック210Wの構成は、図18のU相コアブロック210Uと同じである。 As shown in FIG. 18, in the present disclosure, the core block 21 can be divided into three phase core blocks 210 at intervals of 120 degrees around the motor rotation axis O. The V-phase core block 210V and the W-phase core block 210W differ only in the types of phase coils wound around them, and the configurations of the V-phase core block 210V and W-phase core block 210W are the same as the U-phase core block 210U in FIG. be.
 また、本開示においても、パワーモジュール30は、3つの上下アームデバイスセット31を有し、当該3つの上下アームデバイスセット31はそれぞれ、モータ回転軸線方向他方側からみたとき、図7と同様の配列によって、ベース部材34における環状板部34aのモータ回転軸線方向他方側表面に取り付けられている。 Also in the present disclosure, the power module 30 has three upper and lower arm device sets 31, and each of the three upper and lower arm device sets 31 has the same arrangement as in FIG. 7 when viewed from the other side in the motor rotation axis direction. It is attached to the other surface of the annular plate portion 34a of the base member 34 in the motor rotation axis direction.
 したがって、図16に示すように、固定子モジュール20Bを、モータ回転軸線Оの周りで周方向に相ごとに区画された、複数の相固定子モジュール201によって構成するとともに、図7に示すように、パワーモジュール30を、モータ回転軸線Оの周りで周方向に、相ごとに区画された複数の相パワーモジュール301によって構成すれば、モータシステム1Aと同様、コイル24と上下アームデバイスセット31とを、相ごとに容易に関連付けることができる。これによって、本開示において、1つの相固定子モジュール201のコイル24と当該コイル24に対応する上下アームデバイスセット31とを接続する導線5は、相ごとに容易に配線することができる。具体例としては、U相固定子モジュール201Uの相コイル(24U-、24U+、24U-)と、U相上下アームデバイスセット31Uとを接続する導線5Uは、U相の組として、容易に配線することができる。加えて、本開示においても、固定子モジュール20Bおよびパワーモジュール30を相ごとに構成したことにより、相ごとのメンテナンスも容易となる。 Therefore, as shown in FIG. 16, the stator module 20B is constituted by a plurality of phase stator modules 201 that are divided into phases in the circumferential direction around the motor rotation axis O, and as shown in FIG. , if the power module 30 is constituted by a plurality of phase power modules 301 partitioned into phases in the circumferential direction around the motor rotation axis O, the coil 24 and the upper and lower arm device set 31 can be combined as in the motor system 1A. , can be easily related to each phase. Accordingly, in the present disclosure, the conducting wire 5 connecting the coil 24 of one phase stator module 201 and the upper and lower arm device set 31 corresponding to the coil 24 can be easily wired for each phase. As a specific example, the conductor wire 5U connecting the phase coils (24U-, 24U+, 24U-) of the U-phase stator module 201U and the U-phase upper and lower arm device set 31U can be easily wired as a U-phase set. be able to. In addition, also in the present disclosure, since the stator module 20B and the power module 30 are configured for each phase, maintenance for each phase is also facilitated.
 特に、図16および図7から明らかように、本開示において、1つの相固定子モジュール201と、当該1つの相固定子モジュール201に対応する相パワーモジュール301とは、モータシステム1Aと同様、モータ回転軸線方向からみたとき、モータ回転軸線Оの周りの周方向で互いに整列する位置に配置されている。本開示においても、「モータ回転軸線方向からみたとき、モータ回転軸線Оの周りの周方向で互いに整列する位置に配置されている」とは、固定子モジュール20Bとパワーモジュール30とが、互いにモータ回転軸線Оを中心軸線としてモータ回転軸線方向に隣り合う位置に配置されており、かつ、1つの相固定子モジュール201と、当該1つの相固定子モジュール201に対応する相パワーモジュール301とが、モータ回転軸線方向からみたとき、モータ回転軸線Оの周りの周方向で重複する位置に配置されていることをいう。この場合、本開示においても、モータシステム1Aと同様、1つの相固定子モジュール201と、当該1つの相固定子モジュール201に対応する上下アームデバイスセット31とは、モータ回転軸線Оの周りの周方向において、ベース部材34を挟んで、互いにほぼ真裏の位置に配置されることとなる。具体例としては、図19に示すように、U相固定子モジュール201UとU相上下アームデバイスセット31Uとは、モータ回転軸線Оの周りの周方向において、ベース部材34の環状板部34aを挟んで、互いにほぼ真裏の位置に配置されることとなる。この場合、相固定子モジュール201と当該1つの相固定子モジュール201に対応する上下アームデバイスセット31との間の配線(導線5)を最も短くすることができる。加えて、前記配線(導線5)が最も短くなるため、外部からのノイズに対する耐性にもより強いモータシステムとなる。さらに、前記配線(導線5)がより短くなる分だけ、配線作業時における誤配線をより軽減することができる。 Particularly, as is clear from FIGS. 16 and 7, in the present disclosure, one phase stator module 201 and the phase power module 301 corresponding to the one phase stator module 201 are used for the motor system 1A as well as the motor system 1A. When viewed from the rotational axis direction, they are arranged at positions aligned with each other in the circumferential direction around the motor rotational axis O. Also in the present disclosure, "arranged in positions aligned with each other in the circumferential direction around the motor rotation axis O when viewed from the motor rotation axis direction" means that the stator module 20B and the power module 30 are mutually aligned with each other in the circumferential direction around the motor rotation axis O. One phase stator module 201 and a phase power module 301 corresponding to the one phase stator module 201 are arranged at positions adjacent to each other in the direction of the motor rotation axis with the rotation axis O as the center axis. When viewed from the direction of the motor rotation axis, they are arranged at overlapping positions in the circumferential direction around the motor rotation axis O. In this case, in the present disclosure as well, like the motor system 1A, one phase stator module 201 and the upper and lower arm device set 31 corresponding to the one phase stator module 201 are arranged around the motor rotation axis O. In this direction, they are arranged at positions substantially directly behind each other with the base member 34 in between. As a specific example, as shown in FIG. 19, the U-phase stator module 201U and the U-phase upper and lower arm device set 31U sandwich the annular plate portion 34a of the base member 34 in the circumferential direction around the motor rotation axis O. Therefore, they are placed almost directly behind each other. In this case, the wiring (conductor wire 5) between the phase stator module 201 and the upper and lower arm device set 31 corresponding to the one phase stator module 201 can be made the shortest. In addition, since the wiring (conductor wire 5) is the shortest, the motor system becomes more resistant to external noise. Furthermore, as the wiring (conducting wire 5) becomes shorter, incorrect wiring during wiring work can be further reduced.
 また、上述のとおり、固定子モジュール20Bもまた、図17に示すように、相ごとに分割することができる。この場合もまた、モータシステム1Aと同様、固定子モジュール20Aに各相に応じた相固定子モジュール201をレイアウトするときに、当該相固定子モジュール201の配列に関するレイアウトを自由に変更することができる。加えて、この場合、本開示においても、相ごとのメンテナンスもより容易となる。 Further, as described above, the stator module 20B can also be divided into phases as shown in FIG. 17. Also in this case, when laying out the phase stator modules 201 corresponding to each phase in the stator module 20A, the layout regarding the arrangement of the phase stator modules 201 can be freely changed, as in the motor system 1A. . In addition, in this case, also in the present disclosure, maintenance for each phase becomes easier.
 同様に、パワーモジュール30もまた、上述のとおり、相ごとに分割することができる。具体的には、上述のとおり、パワーモジュール30もまた、モータ回転軸線Оの周りで周方向に、複数の相パワーモジュール301に分割することができる。この場合もまた、モータシステム1Aと同様、パワーモジュール30に各相に応じた上下アームデバイスセット31をレイアウトするときに、当該上下アームデバイスセット31の配列に関するレイアウトを自由に変更することができる。加えて、この場合、本開示においても、相ごとのメンテナンスもより容易となる。 Similarly, the power module 30 can also be divided into phases as described above. Specifically, as described above, the power module 30 can also be divided into a plurality of phase power modules 301 in the circumferential direction around the motor rotation axis O. Also in this case, similarly to the motor system 1A, when laying out the upper and lower arm device sets 31 according to each phase in the power module 30, the layout regarding the arrangement of the upper and lower arm device sets 31 can be freely changed. In addition, in this case, also in the present disclosure, maintenance for each phase becomes easier.
 固定子モジュール20Bおよびパワーモジュール30の少なくともいずれか一方を分割した場合の具体例としては、図19に示すように、3つの分割させたうちのU相固定子モジュール201Uと、同じく3つの分割させたうちのU相パワーモジュール301Uとを組み合わせることによって、同じ相の相固定子モジュール201と相パワーモジュール301とを、ベース部材34Uの環状板部34aを挟んで、互いにほぼ真裏の位置に容易に配置することができる。 As a specific example of dividing at least one of the stator module 20B and the power module 30, as shown in FIG. By combining the U-phase power module 301U with the U-phase power module 301U, the phase stator module 201 and phase power module 301 of the same phase can be easily positioned almost directly behind each other with the annular plate portion 34a of the base member 34U sandwiched between them. can be placed.
 なお、本開示において、パワーモジュール制御部40もまた、図11と同様の構成である。このため、モータシステム1Bもまた、図15に示すように、モータ2の内部にパワーモジュール制御部40を組み込むことによって、さらに小型化が実現されたモータシステムとなる。本開示においても、モータシステム1Aと同様、パワーモジュール30とパワーモジュール制御部40との間の配線(通信ケーブル37)を短くすることができる。加えて、本開示においても、前記配線(通信ケーブル37)が短くなる分だけ、外部からのノイズに対する耐性が強いモータシステムとなる。さらに、本開示においても、前記配線(通信ケーブル37)が短くなる分だけ、配線作業時における誤配線を軽減することができる。 Note that in the present disclosure, the power module control section 40 also has the same configuration as in FIG. 11. Therefore, the motor system 1B also becomes a motor system that is further miniaturized by incorporating the power module control section 40 inside the motor 2, as shown in FIG. Also in the present disclosure, the wiring (communication cable 37) between the power module 30 and the power module control section 40 can be shortened, similar to the motor system 1A. In addition, in the present disclosure as well, the shorter the wiring (communication cable 37), the greater the motor system's resistance to external noise. Furthermore, in the present disclosure as well, incorrect wiring during wiring work can be reduced by the length of the wiring (communication cable 37).
 本開示のモータ2もまた、極数がPであり、スロット数がSである、ブラシレス三相交流モータである。モータ2は、極数Pおよびスロット数Sが以下の関係式(1)および(2)を満たしている。 The motor 2 of the present disclosure is also a brushless three-phase AC motor with the number of poles P and the number of slots S. In the motor 2, the number of poles P and the number of slots S satisfy the following relational expressions (1) and (2).
 P=3n±1 (n:1を除く正の奇数)・・・(1)
 S=3n   (n:1を除く正の奇数)・・・(2)
P=3n±1 (n: positive odd number excluding 1)...(1)
S=3n (n: positive odd number excluding 1)...(2)
 即ち、本開示のモータ2もまた、系列IIのブラシレス三相交流モータである。このため、本開示においても、上述のとおり、U相、V相、W相の、三相のそれぞれを、モータ回転軸線Оの周りを周方向に120度の範囲で区画することができる。このため、本開示のモータシステム1Bもまた、モータシステム1Aと同様、固定子モジュール20Aに、U相、V相、W相の、各相に応じた相固定子モジュール201をレイアウトするとき、U相、V相、W相のいずれか1つの相に対して2つ以上の相固定子モジュール201を構成することによって対応させるような必要はなく、1つの相固定子モジュール201のみを構成することによって対応させることができる。これによって、本開示のモータシステム1Bもまた、固定子モジュール20Aに、U相、V相、W相の、各相に応じた相固定子モジュール201を容易にレイアウトすることができる。加えて、本開示のモータシステム1Bもまた、系列IIのブラシレス三相交流モータは、U相、V相、W相の、三相のそれぞれに、奇数個の相スロット(相コイル)を配置することができる。 That is, the motor 2 of the present disclosure is also a series II brushless three-phase AC motor. Therefore, in the present disclosure as well, as described above, each of the three phases, U phase, V phase, and W phase, can be divided into a range of 120 degrees in the circumferential direction around the motor rotation axis O. Therefore, in the motor system 1B of the present disclosure, similarly to the motor system 1A, when laying out the phase stator modules 201 according to each phase of the U phase, V phase, and W phase in the stator module 20A, There is no need to configure two or more phase stator modules 201 to correspond to any one of the phase, V phase, and W phase, and only one phase stator module 201 can be configured. It can be made to correspond by Thereby, the motor system 1B of the present disclosure can also easily lay out the phase stator modules 201 according to each phase of the U phase, V phase, and W phase in the stator module 20A. In addition, in the motor system 1B of the present disclosure, the series II brushless three-phase AC motor has an odd number of phase slots (phase coils) arranged in each of the three phases, U phase, V phase, and W phase. be able to.
 上述のとおり、本開示のモータ2もまた、系列IIの代表例である、8P9Sのブラシレス三相交流モータである。 As described above, the motor 2 of the present disclosure is also an 8P9S brushless three-phase AC motor, which is a representative example of Series II.
 このため、本開示のモータ2もまた、図13および図14に示すように、固定子モジュール20Aに、U相、V相、W相の、各相に応じた相固定子モジュール201をレイアウトするとき、U相、V相、W相のいずれか1つの相に対して2つ以上の相固定子モジュール201を構成することによって対応させるような必要はなく、1つの相固定子モジュール201のみを構成することによって対応させることができる。 Therefore, in the motor 2 of the present disclosure, as shown in FIGS. 13 and 14, in the stator module 20A, phase stator modules 201 corresponding to each phase of U phase, V phase, and W phase are laid out. In this case, there is no need to configure two or more phase stator modules 201 to correspond to any one of the U-phase, V-phase, and W-phase, and only one phase stator module 201 is required. It can be made compatible by configuring.
 即ち、本開示のモータシステム1Bもまた、モータシステム1Aと同様、固定子モジュール20Aは、モータ回転軸線Оの周りで周方向に相ごとに区画された、複数の相固定子モジュール201によって構成されており、各相に応じた上下アームデバイスセット31とそれに対応する相固定子モジュール201とが一対になっている。 That is, in the motor system 1B of the present disclosure, similarly to the motor system 1A, the stator module 20A is configured by a plurality of phase stator modules 201 that are divided into phases in the circumferential direction around the motor rotation axis O. The upper and lower arm device sets 31 corresponding to each phase and the corresponding phase stator modules 201 are paired.
 したがって、本開示のモータシステム1Bもまた、各相に応じた上下アームデバイスセット31とそれに対応する相固定子モジュール201とを一対とすることにより、上述のとおり、相固定子モジュール201と当該1つの相固定子モジュール201に対応する上下アームデバイスセット31との間の配線(導線5)を最も短くすることができる。加えて、前記配線(導線5)が最も短くなるため、外部からのノイズに対する耐性にもより強いモータシステムとなる。さらに、前記配線(導線5)がより短くなる分だけ、配線作業時における誤配線をより軽減することができる。 Therefore, the motor system 1B of the present disclosure also includes the upper and lower arm device set 31 corresponding to each phase and the corresponding phase stator module 201 as a pair, so that the phase stator module 201 and the corresponding one The wiring (conductor wires 5) between the two phase stator modules 201 and the corresponding upper and lower arm device sets 31 can be made the shortest. In addition, since the wiring (conductor wire 5) is the shortest, the motor system becomes more resistant to external noise. Furthermore, as the wiring (conducting wire 5) becomes shorter, incorrect wiring during wiring work can be further reduced.
 また、上記の各実施形態において、コイル24は、それぞれ、複数のティース22(27)に対して分布巻によって巻線されているものとすることができる。 Furthermore, in each of the above embodiments, each coil 24 may be wound around a plurality of teeth 22 (27) using distributed winding.
 図20には、ティース22(27)に対してコイル24を布巻きで巻き付けた状態が概略的に示されている。 FIG. 20 schematically shows a state in which the coil 24 is wound with cloth around the teeth 22 (27).
 図20に示すように、分布巻は、コイル24が複数のティース22(28)にまたがって巻き付けられたものである。上記の各実施形態には、前記分布巻を採用することができる。 As shown in FIG. 20, in distributed winding, the coil 24 is wound across a plurality of teeth 22 (28). The distributed winding described above can be employed in each of the above embodiments.
 上述したところは、本発明に係る、例示的な実施形態を示したにすぎず、特許請求の範囲に従えば、様々な変更が可能となる。例えば、上記の各実施形態に含まれる構成又は機能等は論理的に矛盾しないように再配置可能である。また、上記の一実施形態に含まれる構成又は機能等は、他の実施形態に組み合わせて用いることができ、複数の構成又は機能等を1つに組み合わせたり、分割したり、或いは一部を省略したりすることが可能である。 What has been described above merely shows exemplary embodiments of the present invention, and various modifications are possible within the scope of the claims. For example, the configurations, functions, etc. included in each of the above embodiments can be rearranged so as not to be logically contradictory. In addition, the configurations or functions included in the above embodiment can be used in combination with other embodiments, and multiple configurations or functions can be combined into one, divided, or partially omitted. It is possible to do this.
 1:モータシステム(基本構成), 1A:モータシステム(第1実施形態), 1B:モータシステム(第2実施形態), 2:モータ(多相モータ), 2a:固定子, 2b:回転子, 2b1:回転子本体部, 2b2:永久磁石, 2c:モータケース,
 2d:モータ軸, 3:制御ドライバ, 5:導線, 20A,固定子モジュール(第1実施形態), 20B,固定子モジュール(第2実施形態), 21:コアブロック,
 22:ティース, 23:バックコア, 24:コイル, 27:ティース, 28:リングコア, 28a:外側リングコア, 28b:内側リングコア, 201:相固定子モジュール, 210:相コアブロック, 30:パワーモジュール, 31:上下アームデバイスセット, 32:上アームパワーデバイス, 33:下アームパワーデバイス, 34:ベース部材, 34a:環状板部3, 34b:円筒状部, 34U:U相ベース部材, 34V:V相ベース部材, 34W:W相ベース部材, 35:基盤, 36:中間部材, 37:通信ケーブル, 301:相パワーモジュール, 40:パワーモジュール制御部, 41:制御ハードウェア, 41a:マイクロコンピュータ, 41b:FPGA, 42:プリント基板, 50:変速機, О:モータ回転軸線
 
 
1: Motor system (basic configuration), 1A: Motor system (first embodiment), 1B: Motor system (second embodiment), 2: Motor (polyphase motor), 2a: Stator, 2b: Rotor, 2b1: Rotor main body, 2b2: Permanent magnet, 2c: Motor case,
2d: motor shaft, 3: control driver, 5: conducting wire, 20A, stator module (first embodiment), 20B, stator module (second embodiment), 21: core block,
22: teeth, 23: back core, 24: coil, 27: teeth, 28: ring core, 28a: outer ring core, 28b: inner ring core, 201: phase stator module, 210: phase core block, 30: power module, 31 : Upper and lower arm device set, 32: Upper arm power device, 33: Lower arm power device, 34: Base member, 34a: Annular plate portion 3, 34b: Cylindrical portion, 34U: U phase base member, 34V: V phase base Component, 34W: W phase base member, 35: Base, 36: Intermediate member, 37: Communication cable, 301: Phase power module, 40: Power module control section, 41: Control hardware, 41a: Microcomputer, 41b: FPGA , 42: Printed circuit board, 50: Transmission, О: Motor rotation axis

Claims (13)

  1.  多相モータをインバータ制御するための、モータシステムであって、
     モータ回転軸線の周りで周方向に間隔を置いて配置された複数のティースにコイルが巻き付けられた固定子モジュールと、それぞれが各相に対応している複数の上下アームデバイスセットが、ベース部材に取り付けられたパワーモジュールと、を備えており、
     前記固定子モジュールと前記パワーモジュールとは、モータ回転軸線方向に整列する位置に配置されており、
     前記固定子モジュールは、前記ベース部材のモータ回転軸線方向一方側に取り付けられており、前記複数の上下アームデバイスセットは、前記ベース部材のモータ回転軸線方向他方側に取り付けられている、モータシステム。
    A motor system for controlling a polyphase motor with an inverter,
    A stator module in which coils are wound around multiple teeth arranged at intervals in the circumferential direction around the motor rotation axis, and multiple upper and lower arm device sets, each corresponding to each phase, are attached to the base member. with an installed power module,
    The stator module and the power module are arranged in alignment in the motor rotation axis direction,
    The stator module is attached to one side of the base member in the direction of the motor rotation axis, and the plurality of upper and lower arm device sets are attached to the other side of the base member in the motor rotation axis direction.
  2.  前記固定子モジュールは、モータ回転軸線の周りで周方向に相ごとに区画された、複数の相固定子モジュールによって構成されており、
     前記パワーモジュールは、モータ回転軸線の周りで周方向に相ごとに区画された、複数の相パワーモジュールによって構成されている、請求項1に記載されたモータシステム。
    The stator module is composed of a plurality of phase stator modules partitioned into phases in the circumferential direction around the motor rotation axis,
    The motor system according to claim 1, wherein the power module is constituted by a plurality of phase power modules partitioned into phases in the circumferential direction around the motor rotation axis.
  3.  前記相固定子モジュールと、当該相固定子モジュールに対応する前記相パワーモジュールとは、モータ回転軸線方向からみたとき、モータ回転軸線の周りの周方向で互いに整列する位置に配置されている、請求項2に記載されたモータシステム。 The phase stator module and the phase power module corresponding to the phase stator module are arranged at positions aligned with each other in the circumferential direction around the motor rotation axis when viewed from the motor rotation axis direction. The motor system described in item 2.
  4.  前記相固定子モジュールは、相ごとに分割されている、請求項2または3に記載されたモータシステム。 The motor system according to claim 2 or 3, wherein the phase stator module is divided for each phase.
  5.  前記相パワーモジュールは、相ごとに分割されている、請求項2~4のいずれか1項に記載されたモータシステム。 The motor system according to any one of claims 2 to 4, wherein the phase power module is divided into phases.
  6.  前記パワーモジュールを制御するパワーモジュール制御部をさらに備えており、前記パワーモジュール制御部は、モータ回転軸線方向において、前記パワーモジュールを挟んで、前記固定子モジュールと反対側の位置に配置されている、請求項1~5のいずれか1項に記載されたモータシステム。 The power module control unit further includes a power module control unit that controls the power module, and the power module control unit is arranged at a position opposite to the stator module with the power module in between in the motor rotation axis direction. , a motor system according to any one of claims 1 to 5.
  7.  前記多相モータは、極数がPであり、スロット数がSである、ブラシレス三相交流モータであり、極数Pおよびスロット数Sが以下の関係式(1)および(2)を満たす、請求項1~6のいずれか1項に記載されたモータシステム。
     P=3n±1 (n:1を除く正の奇数)・・・(1)
     S=3n   (n:1を除く正の奇数)・・・(2)
    The polyphase motor is a brushless three-phase AC motor having a number of poles P and a number of slots S, and the number P of poles and the number S of slots satisfy the following relational expressions (1) and (2). A motor system according to any one of claims 1 to 6.
    P=3n±1 (n: positive odd number excluding 1)...(1)
    S=3n (n: positive odd number excluding 1)...(2)
  8.  前記コイルは、それぞれ、1つの前記ティースに対して集中巻によって巻線されている、請求項1~7のいずれか1項に記載されたモータシステム。 The motor system according to any one of claims 1 to 7, wherein each of the coils is wound around one of the teeth by concentrated winding.
  9.  前記固定子モジュールは、モータ回転軸線の周りで周方向に相ごとに区画された、複数の相固定子モジュールによって構成されており、各相に応じた前記上下アームデバイスとそれに対応する前記相固定子モジュールとが一対になっている請求項7または8に記載されたモータシステム。 The stator module is composed of a plurality of phase stator modules that are divided into phases in the circumferential direction around the motor rotation axis, and includes the upper and lower arm devices corresponding to each phase and the corresponding phase fixing device. The motor system according to claim 7 or 8, wherein the motor system is paired with a child module.
  10.  前記コイルは、それぞれ、複数の前記ティースに対して分布巻によって巻線されている、請求項1~7のいずれか1項に記載されたモータシステム。 The motor system according to any one of claims 1 to 7, wherein each of the coils is wound around the plurality of teeth using distributed winding.
  11.  前記多相モータは、アキシャルギャップモータである、請求項1~10のいずれか1項に記載されたモータシステム。 The motor system according to any one of claims 1 to 10, wherein the polyphase motor is an axial gap motor.
  12.  前記多相モータは、ラジアルギャップモータである、請求項1~10のいずれか1項に記載されたモータシステム。 The motor system according to any one of claims 1 to 10, wherein the polyphase motor is a radial gap motor.
  13.  変速機を付加して備える、請求項1~12のいずれか1項に記載されたモータシステム。
     
    The motor system according to claim 1, further comprising a transmission.
PCT/JP2022/045746 2022-03-29 2022-12-12 Motor system WO2023188570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-054658 2022-03-29
JP2022054658A JP7375083B2 (en) 2022-03-29 2022-03-29 motor system

Publications (1)

Publication Number Publication Date
WO2023188570A1 true WO2023188570A1 (en) 2023-10-05

Family

ID=88200001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045746 WO2023188570A1 (en) 2022-03-29 2022-12-12 Motor system

Country Status (3)

Country Link
JP (1) JP7375083B2 (en)
TW (1) TW202349835A (en)
WO (1) WO2023188570A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201181A (en) * 1997-01-13 1998-07-31 Toshiba Corp Flat motor with control circuit
JPH10234144A (en) * 1997-02-19 1998-09-02 Hitachi Ltd Concentrated winding electric rotating machine
WO2010007672A1 (en) * 2008-07-16 2010-01-21 三菱電機株式会社 Electric power steering apparatus and control device integrated type electric motor
WO2015122069A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Control-device-equipped rotating electrical machine, electric power steering device, and production method for control-device-equipped rotating electrical machine
WO2015170383A1 (en) * 2014-05-08 2015-11-12 三菱電機株式会社 Electric power steering device
JP2021158763A (en) * 2020-03-26 2021-10-07 日本電産エレシス株式会社 Motor control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201181A (en) * 1997-01-13 1998-07-31 Toshiba Corp Flat motor with control circuit
JPH10234144A (en) * 1997-02-19 1998-09-02 Hitachi Ltd Concentrated winding electric rotating machine
WO2010007672A1 (en) * 2008-07-16 2010-01-21 三菱電機株式会社 Electric power steering apparatus and control device integrated type electric motor
WO2015122069A1 (en) * 2014-02-14 2015-08-20 三菱電機株式会社 Control-device-equipped rotating electrical machine, electric power steering device, and production method for control-device-equipped rotating electrical machine
WO2015170383A1 (en) * 2014-05-08 2015-11-12 三菱電機株式会社 Electric power steering device
JP2021158763A (en) * 2020-03-26 2021-10-07 日本電産エレシス株式会社 Motor control device

Also Published As

Publication number Publication date
JP2023147096A (en) 2023-10-12
JP7375083B2 (en) 2023-11-07
TW202349835A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
JP5624330B2 (en) motor
US9539909B2 (en) Inverter-integrated driving module and manufacturing method therefor
CN105634225B (en) Brushless DC motor and electric power steering system using the same
JP4899819B2 (en) Power conversion device for motor / electric motor
EP2180580A2 (en) Motor
US20110273128A1 (en) Synchronous motor and system for driving synchronous motor
CN105515286B (en) winding system
CN109428407B (en) Stator core
EP2928048A1 (en) Electric motor
WO2013145459A1 (en) Coil
US10633017B2 (en) Brushless direct current motor and electric power steering system comprising same
CN101253668A (en) Motor of flat stator containing inclined teeth
WO2018135375A1 (en) Electric motor
WO2017168574A1 (en) Electric motor
WO2023188570A1 (en) Motor system
CN114450871B (en) Stator and motor
JP5281768B2 (en) Planetary magnetic pole rotating machine
JP4052168B2 (en) Wiring method between motor and power converter
US10886807B2 (en) Brushless motor and brushless motor control device
TW201739148A (en) Rotating electric motor
JP3624897B2 (en) Coil feeding structure of synchronous motor
KR101961339B1 (en) Dual winding dc motor
JP7172635B2 (en) drive
CN112152364A (en) Multi-phase winding EPS motor stator structure
CN110868032B (en) Multi-rotor motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935699

Country of ref document: EP

Kind code of ref document: A1