WO2023188564A1 - Train control system and train control method - Google Patents

Train control system and train control method Download PDF

Info

Publication number
WO2023188564A1
WO2023188564A1 PCT/JP2022/045558 JP2022045558W WO2023188564A1 WO 2023188564 A1 WO2023188564 A1 WO 2023188564A1 JP 2022045558 W JP2022045558 W JP 2022045558W WO 2023188564 A1 WO2023188564 A1 WO 2023188564A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
time
display
block section
control system
Prior art date
Application number
PCT/JP2022/045558
Other languages
French (fr)
Japanese (ja)
Inventor
大志 服部
正博 青山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023188564A1 publication Critical patent/WO2023188564A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/40Adaptation of control equipment on vehicle for remote actuation from a stationary place
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/08Control, warning, or like safety means along the route or between vehicles or vehicle trains for controlling traffic in one direction only
    • B61L23/14Control, warning, or like safety means along the route or between vehicles or vehicle trains for controlling traffic in one direction only automatically operated

Definitions

  • the present invention relates to a train control system and a train control method.
  • ATO Automatic Train Operation
  • a train control system that assigns operational targets such as the target arrival time to the next station to the train and causes the train to run according to these targets. It is being considered.
  • ATO Automatic Train Operation
  • Patent Document 1 when a train is operated automatically, a target speed is automatically calculated from the reference travel time between stations and the travel time of the own train in order to run according to the schedule, and By taking into consideration weather conditions, train delays, etc., and issuing commands such as power running, braking, and elliptical running, it is possible to change the driving method according to the situation and drive according to the situation. It is disclosed that
  • the signal appearance of a traffic light installed on the ground is recognized by a camera, and the relationship between the traffic light position registered in a database, the traffic light appearance, and the speed limit, and the position detection means are used.
  • the system calculates the speed at which the train should run, but since it is not possible to grasp the relationship between the train in front and the oncoming train on a single track, it is difficult to maintain the distance between trains in the event of a delay.
  • a train control system is a train control system that is installed on a train moving on a predetermined route and controls the train, and includes a position acquisition unit that acquires the position of the train, and a plurality of train A database that stores the pattern, the relationship between the signal display of the wayside signal and the speed limit, a plurality of wayside signals and a plurality of block sections on the route, and a photographic representation of the wayside signal of the block section at the line location.
  • a camera that outputs display information and the speed limit corresponding to the display information, calculates a drive permission position and a driveable route that allows travel to the drive permission position, and an on-board control unit that controls traveling of the train based on a travelable route, and the on-board control unit is configured to control the change when the display of the display information changes to a display other than progress.
  • a measuring unit that measures a time interval from when the current state of the current information changes again, and a block section in which the preceding train is located is searched from the database based on the current state information at the time of the measurement.
  • the prediction unit predicts the average speed predicted by the prediction unit.
  • the running of the train is controlled based on.
  • the display of the display information of the wayside signal in the block section where the train is on the track changes to a display other than progress
  • the display information is changed from the time of the change.
  • the time interval until the indication changes again is measured, and based on the indication information at the time of the measurement, the block section where the preceding train is located is searched from a database that stores a plurality of block sections on the route. Then, the average speed of the preceding train is predicted based on the time interval and the searched block section, and the running of the train is controlled based on the predicted average speed.
  • the average speed of preceding trains can be predicted, deviations in train spacing from the plan can be suppressed, and the occurrence of congestion can be reduced.
  • FIG. 1 is a diagram showing an embodiment of a train control system according to the present invention.
  • FIG. 2 is a diagram showing the relationship among a train, a travelable route, and a travel permission position when stopping points are set between stations up to a predetermined stop station.
  • FIG. 3 is a diagram showing the relationship between the running positions of the preceding train and the own train and the display of the wayside signal at time t1.
  • FIG. 5 is a diagram showing an example of the running pattern of the own train and the preceding train from time t11 to time t13.
  • FIG. 6 is a diagram showing another example of the running pattern of the own train and the preceding train from time t11 to time t13.
  • FIG. 7 is a flowchart illustrating an example of control processing.
  • FIG. 8 is a flowchart showing processing subsequent to the processing of FIG.
  • FIG. 9 is a flowchart illustrating an example of control processing in Modification 1.
  • FIG. 10 is a flowchart showing processing subsequent to the processing of FIG.
  • FIG. 11 is a flowchart for explaining modification example 2.
  • FIG. 1 is a diagram showing an embodiment of a train control system according to the present invention, and is a block diagram showing a schematic configuration of the train control system 10.
  • the train control system 10 of this embodiment is an on-board control device mounted on a train 11, and causes the train 11 traveling on a track 121 to drive along a travel trajectory 126.
  • the train control system 10 includes an on-board control section 100, a camera 110, a database 111, and a position acquisition section 112.
  • the camera 110 is equipped with an imaging device such as a CMOS image sensor, and photographs the ground signal 124 in the direction of travel of the block section where the line is located. Then, the camera 110 recognizes the photographed appearance of the ground signal 124 and outputs the recognized appearance information to the on-board control unit 100.
  • the position acquisition unit 112 acquires the position of the train 11 on the line. As the position acquisition unit 112, for example, a GPS device mounted on the train 11 is used. Alternatively, the position may be calculated by acquiring speed information from a speedometer included in the train 11 and integrating the speed over time.
  • the database 111 includes driving patterns, information regarding ground signals (positions of traffic lights and types of traffic lights), block sections on driving routes, the relationship between signal indications and the speed limit 125, and points where the speed limit is 0 km/h ( (stopping point) etc. are stored.
  • the on-board control unit 100 includes a measurement unit 101, a calculation unit 102, and a search unit 103. The functions and operations of the measurement section 101, the calculation section 102, and the search section 103 will be described later.
  • the on-board control unit 100 operates the train at a speed lower than the speed limit 125 and the speed at which the travel permission position 123 is set to 0 km/h based on the arrival station 122, the travel permission position 123, and the driving pattern stored in the database 111. Control.
  • the travel trajectory 126 represents the trajectory on which the train 11 actually travels (or has traveled), with the vertical axis representing the speed of the train 11 and the horizontal axis representing the position of the train 11. Note that in the speed limit 125 as well, the vertical axis is the speed of the train 11 and the horizontal axis is the position of the train 11.
  • the on-vehicle control unit 100 includes a microcomputer, a processor, and a similar arithmetic device, and a ROM, a RAM, a flash memory, a hard disk, an SSD, a memory card, an optical disk, and a similar storage device.
  • the functions of the measurement section 101, calculation section 102, search section 103, etc. are realized by executing the program.
  • FIG. 2 is a diagram showing the relationship among trains, possible travel routes, and travel permission positions when stopping points are set between stations up to a predetermined stop station.
  • FIG. 2 shows a case where the above ground signal 124A is displayed as stopped (hereinafter referred to as a stopped signal) due to the presence of a preceding train (not shown). If the ground signal is in a stopped state, there is a point in the block section where the line is located where the speed limit is 0 km/h. That is, there is a point where the speed limit is 0 km/h closer to the train 11 than the ground signal 124A indicating a stop signal.
  • the on-board control unit 100 determines the point where the speed limit is 0 km/h.
  • the travel permission position 123A before updating is set further outward than the stop point, that is, on the side where the train 11 is on the line rather than the stopping point. Then, the on-board control unit 100 sets a travelable route 120A between the train 11's on-track position and the travel permission position 123A.
  • the wayside signal 124B changes to a stop indication and the wayside signal 124A changes from a stop indication to a caution indication, and the speed limit changes from the pre-update speed limit 125A to the post-update speed limit 125B. do.
  • the on-board control unit 100 sets an updated travel-permitted position 123B with the reached station 122 as the upper limit, and a travel-permitted route 120B after the updated travel-permitted position. Then, the on-vehicle control unit 100 performs driving according to the updated travel trajectory 126B at the updated travel permission position at a speed less than the updated speed limit 125B.
  • FIG. 3 and 4 are diagrams showing the relationship between changes in the running positions of the preceding train and the own train and changes in the signal display of wayside signals.
  • the ground signal has three indications (blue, yellow, red), but regardless of the number and types of indications that can be expressed, for example, in addition to block signals, departure signals and Includes all ground signals such as traffic lights, relay signals, and shunting signals.
  • the own train 11A and the preceding train 11B are traveling on the track 121 in the right direction in the figure.
  • FIG. 3 is a diagram showing the relationship between the running positions of the preceding train 11B and the own train 11A and the display of the wayside signal at time t1.
  • a wayside signal indicates the progress of a train if the route ahead is open (hereinafter referred to as a progress indicator), and if the preceding train is on the track, it indicates the progress of the train ahead.
  • a progress indicator indicates the progress of the train ahead.
  • the ground signal indicates the next lowest speed limit (in the case of three indications, a caution indication) after the stop indication.
  • the speed limit basically differs by one step.
  • Ground signals 124A, 124D, and 124E indicate progress.
  • the ground signal 124C indicates a stop condition.
  • the ground signal 124B indicates a caution condition.
  • ground signals 124B and 124D are showing a stop indication.
  • Ground signals 124A and 124C indicate caution conditions.
  • the ground signal 124E shows the progress status.
  • the onboard control unit 100 constantly recognizes the display of a wayside signal in front of the train in the block section where the train is running using the camera 110, and the train runs in a driving pattern that is less than the speed limit indicated by the wayside signal.
  • the indication shown by the ground signal indicates the speed limit for the section inside the ground signal.
  • the indication shown by the ground signal 124A indicates the speed limit of the block section between the ground signal 124A and the ground signal 124B.
  • the onboard control unit 100 When the train enters the next block section by running, if it is recognized that the above ground signal is indicating something other than proceeding due to the influence of the preceding train 11B, the onboard control unit 100 operates as follows. .
  • the onboard control unit 100 changes the driving pattern of the own train 11A to a driving pattern in which the speed is less than the current speed limit by the time the own train 11A enters the block section corresponding to the above ground signal.
  • the onboard control unit 100 starts time measurement by the measurement unit 101 at the time when the camera 110 recognizes that the above-ground signal indicates that the signal is not proceeding, and within the range of the block section where the own train 11A is located, Next, we measure the time it takes to recognize a change in the appearance of ground signals.
  • the first case is when the block section in which the own train 11A is located changes and the recognized wayside signal changes to another wayside signal with a different presentation, regardless of the influence of the running of the preceding train 11B.
  • the second case is a case where the block section where the preceding train 11B is located changes and the display of the ground signal recognized by the camera 110 changes.
  • the display of the ground signal recognized by the camera 110 changes from a progress display to a caution display. Since the ground signal 124B at which the vehicle enters is in a caution display, the measurement unit 101 measures the time from the time of entry until the next change in the display of the ground signal.
  • the search unit 103 of the onboard control unit 100 searches for the block section where the preceding train 11B is located based on the recognized display of the wayside signal and the block section information registered in the database. Then, the calculation unit 102 of the on-board control unit 100 predicts the average speed of the preceding train 11B based on the distance of the block section B4 in which the preceding train 11B traveled and the measured time between the changes in the display measured by the measuring unit 101. do. Further, the onboard control unit 100 changes the driving pattern of the own train 11A based on the average speed of the preceding train 11B predicted by the calculation unit 102, in order to avoid the driving interval between the preceding train 11B and the preceding train 11B being narrowed. .
  • the time measurement by the measurement unit 101 starts from the time when the camera 110 recognizes a change in the appearance of the ground signal. Therefore, the prediction accuracy when measuring time based on the change in appearance recognized by the camera 110 increases as the time from when the ground signal changes to when the change in appearance is recognized by the camera 110 is shorter. This will be explained in detail using FIG. 5.
  • FIG. 5 shows that at time t11 the preceding train 11B moves from block section B3 to block section B4 and the wayside signal 124B changes to a caution indication, and then at time t13 the preceding train 11B leaves block section B4 and the wayside signal 124B is a diagram illustrating the situation until the display changes to the progress display.
  • the ground signal 124B changes from a stop indication to a caution indication at time t11 when the preceding train 11B enters the block section B4.
  • the camera 110 does not recognize the ground signal 124B.
  • the camera 110 recognizes the display (caution display) of the ground signal 124B at time t12 when the own train 11A enters the block section B2.
  • the camera 110 recognizes that the display of the wayside signal 124B changes from a caution display to a progress display at time t13 when the preceding train 11B leaves the block section B4.
  • the time from when the ground signal 124B changes to the warning indication until it changes to the proceeding indication is t13-t11.
  • the camera 110 watches as the indication on the wayside signal 124B changes from a caution indication to a progress indication.
  • the time it takes for this to be recognized is t13-t12.
  • the time measurement by the measurement unit 101 is performed only within the range of the block section where the train is located, the time measurement ends midway when the own train 11A leaves the block section where the train is located. Therefore, the shorter the time from the end of the measurement until the preceding train 11B leaves the block section and the wayside signal changes its appearance, the higher the average speed prediction accuracy becomes. This will be explained in detail using FIG. 6.
  • the preceding train 11B moves from block section B3 to block section B4, and the wayside signal 124B changes from a stop indication to a caution indication.
  • the camera 110 of the own train 11A located in the block section B2 recognizes the change in the display.
  • the own train 11A moves from the block section B2 to the block section B3. Since the ground signal recognized by the camera 110 changes from the ground signal 124B indicating a caution indication to the ground signal 124C indicating a stop indication, the camera 110 recognizes that the indication has changed from a caution indication to a stop indication.
  • the wayside signal 124C changes from a stop indication to a caution indication.
  • the timing of the measuring unit 101 based on the recognition of the change in the appearance of the camera 110 is the time when the own train 11A recognizes the caution indication of the wayside signal 124B (that is, the change in indication from the stop indication to the caution indication).
  • This is carried out in the on-line section (block section B2) at t11. Therefore, at time t12 when the own train 11A finishes traveling in the block section B2, the time measurement by the measuring unit 101 ends midway.
  • the measured time when the process ends halfway is t12-t11.
  • FIGS. 7 and 8 are flowcharts showing an example of the control process executed by the on-vehicle control unit 100.
  • the control processing shown in FIGS. 7 and 8 is repeatedly executed again even after it is once finished. Note that supplementary explanation will be given as appropriate using FIG. 5 as a specific example.
  • the on-board control unit 100 acquires display information of ground signals from the camera 110 .
  • the display information is information indicating whether the display recognized by the camera 110 is a progress display, a caution display, or a stop display.
  • the on-vehicle control unit 100 is equipped with a storage device as described above, and it is assumed that the storage device is provided with a first memory and a second memory for storing display information. When the display information is acquired in step S200, the display information stored in the first memory is moved to the second memory, and then the data in the first memory is rewritten with the acquired display information.
  • step S201 the on-vehicle control unit 100 determines whether the display information acquired in step S200 and stored in the first memory described above is a progress display. In step S201, if it is determined that the display information is a progress display (Y), the series of control processing ends. When the ground signal indicates progress, it is possible to travel as planned, so the current travel permitted position and driving pattern are maintained. On the other hand, if it is determined in step S201 that the display information is a display other than progress (N), step S202 is executed.
  • step S201 at time t11 (progress display), after the determination in step S201 is (Y) and the series of control processing is once completed, it is restarted from START. If it is determined (N) in step S201 at time t12 (attention indication), the process advances to step S202. At this time, the above-mentioned first memory stores the currently recognized caution indication, and the second memory stores the previously recognized progress indication.
  • step S202 the on-vehicle control unit 100 determines whether the display information is a stop display. In step S202, if it is determined that the display information is a stop display (Y), the process advances to step S203. If the ground signal is in a stopped state, there is a point in the block section where the line is located where the speed limit is 0 km/h. Therefore, in step S203, the on-board control unit 100 changes the current travel permission position and driving pattern to a travel permission position and driving pattern that allow the vehicle to travel to the outside of the ground signal where the speed limit is 0 km/h. On the other hand, if it is determined in step S202 that the display information indicates a state other than stop (N), the process advances to step S204.
  • step S204 the on-vehicle control unit 100 determines whether the display information stored in the first memory is different from the display information stored in the second memory, that is, whether the recognized display has changed. Determine whether or not. In step S204, if it is determined that the presentation has changed (Y), the process advances to step S205, and if it is determined that the presentation has not changed (N), the series of control processing ends.
  • step S204 since the first memory stores the caution indication and the second memory stores the progress indication, it is determined in step S204 that the indication has changed (Y), and the process advances to step S205.
  • step S205 the on-board control unit 100 determines whether the ground signal recognized by the camera 110 is an applicable ground signal. In step S205, if it is determined that the traffic light is applicable (Y), the process advances to step S206, and if it is determined that the traffic signal is not applicable (N), the series of control processing is ended. In the next control process that starts again, the measurement operation is restarted from the beginning.
  • the applicable ground signal is a ground signal that is placed near the station where you arrive, and whose display always changes, such that the stop display is inward of the station you arrive at.
  • a ground signal inside signal
  • the own train 11A approaches the arriving station, it will stop moving regardless of the presence or absence of the preceding train 11B. It becomes a manifestation of. If changes in the display of signals such as station signals are used as timing start and end conditions for predicting the average speed of preceding trains, incorrect judgments will be made.
  • the ground signal is an applicable ground signal (a ground signal other than a ground signal that always displays an indication other than progress).
  • step S206 the on-vehicle control unit 100 starts time measurement by the measurement unit 101.
  • timing is started when the own train 11A enters the block section B2 (time t12).
  • step S301 the process advances to step S301 in FIG.
  • step S301 in FIG. 8 the onboard control unit 100 determines whether the own train 11A has completed the block section in which it is located, that is, whether it has entered the next block section. In step S301, if it is determined that the current block section has not been completed (N), the process proceeds to step S304, and if it is determined that the current block section has been completed (Y), the process proceeds to step S302.
  • step S ⁇ b>304 the on-board control unit 100 acquires the ground signal display information from the camera 110 .
  • the display information stored in the first memory is moved to the second memory, and then the data in the first memory is rewritten with the acquired display information.
  • step S305 the on-vehicle control unit 100 compares the display information in the first memory with the display information in the second memory and determines whether the display recognized by the camera 110 has changed. do.
  • step S305 if it is determined that the presentation has changed (Y), the process proceeds to step S306, and if it is determined that the presentation has not changed (Y), the process returns to step S301.
  • step S301 to step S304 will be explained using FIG. 5 as an example.
  • time measurement is started at time t12 as described above.
  • the preceding train 11B passes through the block section B4 at time t13, and the wayside signal 124B changes from a caution indication to a proceed indication. Therefore, the process advances from step S301 to step S304, and display information is acquired from the camera 110.
  • the display information in the first memory is a progress display and the display information in the second memory is a caution display, and it is determined in step S305 that the display has changed (Y), and the process advances to step S306.
  • step S301 the block section B2 in which the train is currently running is finished in step S301 before it is determined that the current status has changed in step S305 ( (Y), and the process proceeds to step S302.
  • step S306 as in step S205 described above, the on-board control unit 100 determines whether the ground signal recognized by the camera 110 is an applicable ground signal. If it is determined in step S306 that the signal is an applicable traffic signal (Y), the process advances to step S307, and the time measurement by the measuring unit 101 is ended. On the other hand, if it is determined in step S306 that the traffic signal is not an applicable traffic signal (N), the series of control processing ends.
  • step S308 the onboard control unit 100 determines whether or not a low level signal is expected in the next block section when traveling using the current driving pattern, that is, compares it with the block section where the line is currently located. Whether or not the speed limit in the next block section is expected to be lower is determined by considering the distance of the block section where the preceding train 11B is located, the speed of the own train 11A, the distance of the block section where the train is located, etc. do.
  • step S308 if it is determined that a low-level manifestation is expected (Y), the process advances to step S310, and if it is determined that a low-level manifestation is not expected (N), the process advances to step S309.
  • step S309 the on-board control unit 100 changes the current driving pattern to a driving pattern that can reduce delays within the speed limit, and continuously The control process ends.
  • step S310 the calculation unit 102 of the onboard control unit 100 searches the database 111 for the distance of the block section where the preceding train 11B is located, and calculates the distance of the block section and the measurement unit 101.
  • the average speed of the preceding train 11B is predicted based on the measured time.
  • step S311 the on-board control unit 100 changes the driving pattern to one that can reduce the approach to the preceding train 11B (shortening the driving interval) based on the average speed predicted in step S310, and ends the series of control processing.
  • step S301 determines that the block section in which the own train 11A is located has ended (Y) and the process proceeds to step S302.
  • step S302 the on-vehicle control unit 100 ends the time measurement by the measurement unit 101 midway.
  • step S303 the on-board control unit 100 selects the average speed prediction value that is the highest speed from among the plurality of average speeds predicted by the calculation unit 102 while traveling on the track 121, and sets the average speed prediction value to the highest average speed prediction value. Based on this, the current driving pattern is changed to one that can reduce the shortening of the driving interval with the preceding train 11B.
  • step S303 the series of control processing ends.
  • the train control system 10 of the present embodiment when a delay occurs, etc., by monitoring changes in the display of wayside signals, the approximate position and average speed of the preceding train can be predicted, and the own train and the preceding train can be predicted. It becomes possible to calculate a driving pattern that does not shorten the driving interval between the two. As a result, even in an ATO system in which the operation management device and the on-board control device are not linked, it is possible to prevent train intervals from deviating from the plan and reduce the occurrence of congestion.
  • step S303 in FIG. 8 is deleted and control is changed to proceed from step S302 to step S206 in FIG. 9.
  • the other processes in FIGS. 9 and 10 are the same as those in the flowcharts shown in FIGS. 7 and 8, so the different processes will be described below with reference to FIG. 6.
  • step S204 of FIG. 9 when the indication recognized by the camera 110 (the indication of the ground signal 124B) changes from the stop indication to the caution indication at time t11, it is determined (Y) in step S204 of FIG. 9, and step S205 ⁇ Proceeding to step S206, time measurement by the measuring unit 101 starts. Then, from time t11 to time t12, the process of step S301 ⁇ step S304 ⁇ step S305 ⁇ step S301 is repeated.
  • step S301 the process proceeds from step S301 in FIG. 10 to step S302, and timekeeping is interrupted.
  • timekeeping is interrupted.
  • the own train 11A passed through the block section B2, so the camera 110 recognizes the stop indication of the wayside signal 124C. Therefore, a stop indication is stored in the first memory, and a caution indication is stored in the second memory.
  • step S302 When the process in step S302 is completed, the process advances to step S206 in FIG. 9, and measurement by the measurement unit 101 is started again. Thereafter, the process proceeds from step S301 to step S304, and display information is acquired in step S304.
  • the display information acquired from the camera 110 is a stop display, so when step S304 is executed, the data in the second memory is rewritten from a caution display to a stop display, and the data in the first memory and Both of the data in the 2 memories are in a stopped state. Therefore, it is determined (N) in step S305 and the process advances to step S301.
  • step S301 the display information recognized by the camera 110 is a stopped display, so the processing of step S301 ⁇ step S304 ⁇ step S305 ⁇ step S301 is repeated until time t13 is reached. Then, at time t13 when the preceding train 11B moves from the block section B4 to the block section B5, the recognized display information (display of the wayside signal 124C) changes from a stop display to a caution display. As a result, it is determined (Y) in step S305, and the process proceeds from step S305 to step S306 to step S307, and the time measurement by the measuring unit 101 ends in step S307.
  • the measurement result when the time measurement is interrupted in step S302 is (t12-t11), and the measurement result when the time measurement is finished in step S307 is (t13-t12).
  • the on-vehicle control unit 100 determines that the measurement results (t12-t11) and measurement results (t13-t12) obtained in this way are temporally continuous data. Then, the value obtained by adding these values (t13-t11) is regarded as the time that the preceding train 11B traveled in one block section B4, and is used to calculate the average speed of the preceding train 11B.
  • Modification Example 1 is applied to the case where the own train 11A is in block section B3 instead of block section B2 at time t13, as shown by the broken line in FIG. 5, the following will occur. It will behave like this.
  • the preceding train 11B runs from one end of the block section B4 to the other end
  • the own train 11A runs from the block section B1 to the block section B3. Therefore, after time measurement starts at time t11, the end of the block section running of the own train 11A occurs twice: from B1 to B2 and from B2 to B3. That is, the time measurement interruption process in step S302 occurs twice.
  • the preceding train 11B travels from one end of one block section B4 to the other end by adding the two measured times obtained by the two time measurement interruptions and the measured time obtained when the measurement ends at time t13.
  • FIG. 11 is a flowchart for explaining modification example 2.
  • the measurement is not ended midway through time measurement, but the measurement unit 101 performs measurement over consecutive block sections. Therefore, in the second modification, FIG. 11 is used in place of FIG. 8 among the flowcharts of FIGS. 7 and 8 described above.
  • FIG. 11 is the flowchart of FIG. 8, with steps S302 and S303 deleted and step S302B added. Since the other processes are the same as those in FIG. 8, the parts that are controlled differently will be explained below. Note that this will be explained with reference to FIGS. 5 and 6.
  • step S302B the on-vehicle control unit 100 acquires display information from the camera 110. Since the indication recognized by the camera 110 changes from the caution indication to the stop indication at time t12, the stop indication is stored in the first memory, and the caution indication is stored in the second memory.
  • step S302B When the process of step S302B is completed, the process advances to step S304 and the display information is acquired again. As a result, the data in the first memory and the second memory both show a stopped state, and it is determined in step S305 that the state has not changed (N). That is, when the own train 11A moves to the block section B3 at time t12, the process proceeds as follows: step S301 ⁇ step S302B ⁇ step S304 ⁇ step S305 ⁇ step S301. From time t12 to time t13, the process of step S301 ⁇ step S304 ⁇ step S305 ⁇ step S301 is repeated.
  • step S305 the display recognized by the camera 110 of the own train 11A changes, so it is determined in step S305 that the display has changed (Y), and the process proceeds from step S306 to step S307, and the time measurement by the measurement unit 101 ends.
  • the measured time at this time is t13-t11, which means that the time during which the preceding train 11B traveled in the block section B4 has been measured. Therefore, the average speed calculation in step S310 can be performed with high accuracy.
  • the time measurement by the measurement unit 101 was performed across two block sections B2 and B3, but the time measurement may be performed over more than two block sections. be.
  • this is a case where the own train 11A is located in the block section B3 instead of the block section B2 at time t13, like the own train 11A indicated by the broken line in FIG.
  • step S301 when the own train 11A passes through the block section B2, the process proceeds from step S301 in FIG.
  • the attention indication is memorized.
  • step S304 when the display information is acquired in step S304, the data in the first memory and the second memory both become a stopped display.
  • step S301 ⁇ step S304 ⁇ step S305 ⁇ step S301 are repeated until time t13 when the preceding train 11B passes through the block section B4 and the wayside signal 124C changes to a caution display.
  • step S305 time measurement by the measurement unit 101 ends. That is, time measurement by the measurement unit 101 is performed across three block sections from block section B1 to block section B3, and a measured time (t13-t11) is obtained.
  • the present invention may further combine these modifications.
  • a signal given by a staff member may be used instead of a ground signal.
  • the on-board control device learns the optimal driving pattern for reducing the shortening of driving intervals and reducing the increase in delays in driving when delays occur based on past driving results by season, day of the week, time of day, and driving section, and stores it in a database. However, if conditions such as date and time and average speed prediction of preceding trains match, the optimal driving pattern may be selected from the prediction range based on the learned results.
  • the train control system 10 is a train control system 10 that is installed on a train 11 moving on a predetermined route (track 121) and controls the train 11.
  • a position acquisition unit 112 that acquires the on-track position of the train 11, and stores a plurality of driving patterns, a relationship between the signal display of a wayside signal and a speed limit, a plurality of wayside signals 124 on the track 121, and a plurality of block sections.
  • a camera 110 that photographs ground signals in the block section at the track location and outputs current information, and a travel permission position 123 and a travel permission position 123 based on the speed limit corresponding to the current information.
  • an on-board control unit 100 that calculates a travelable route 120 that allows the train to travel, and controls the travel of the train 11 based on the travel permission position 123 and the travelable route 120;
  • a measurement unit 101 that measures a time interval (measured time) from the time of change to the time when the presentation of the presentation information changes again when the presentation of the presentation information changes to a presentation other than progress;
  • a search unit 103 searches the database 111 for the block section in which the preceding train is located based on current information at the time of the train. and a calculation unit 102 that predicts the average speed of the train 11, and controls the running of the train 11 based on the average speed predicted by the calculation unit 102.
  • the average speed of the preceding train is predicted from the time from when the current information changes until the current state of the current information changes again and from the block section where the preceding train is located. Therefore, based on the predicted average speed of the preceding train 11B, for example, it is possible to control the running of the own train 11A so that the driving interval between the own train 11A and the preceding train 11B does not become short.
  • the onboard control unit 100 determines the driving interval between the preceding train and the preceding train based on the predicted average speed from a plurality of driving patterns stored in the database 111. A driving pattern that can reduce shortening is selected, and the driving pattern of the own train 11A is changed to the selected driving pattern (steps S303, S311). As a result, it is possible to prevent the train 11A from shortening the driving interval, which would cause the own train 11A to get too close to the preceding train 11B.
  • the onboard control unit 100 determines whether the preceding train Predict the average speed of 11B. For example, in the own train 11A shown in FIG. 5, the measurement unit 101 starts timing at time t12 when it enters block section B2, and starts timing at time t13 while the train is in the same block section B2 based on a change in the state of the wayside signal 124B. finish. Then, the calculation unit 102 calculates the average speed of the preceding train 11B from the obtained measurement time and the distance of the block section B4 in which the preceding train 11B traveled.
  • the on-board control unit 100 determines whether or not the signal is a ground signal whose signal appearance always changes, and if it is determined that the signal appearance is a ground signal whose signal appearance always changes, it restarts the measurement operation by the measurement unit 101 from the beginning. If changes in the appearance of a signal such as an in-house signal are used as timing start and end conditions for predicting the average speed of the preceding train, incorrect judgments will be made. Therefore, as in steps S205 and S306, be sure to If it is determined that it is a ground signal that changes, the control is terminated, and the control is restarted to start the measurement operation from the beginning.
  • the onboard control unit 100 excludes changes in the display information of the display information before and after the own train 11A passes through the block section. Then, the measurement unit 101 measures the time interval until the change in appearance.
  • modification 2 by adopting the processes from step S301 to step S305 in FIG. 11, for example, the change in appearance before and after time t12 in FIGS. 5 and 6 is not recognized as a change in appearance, and the change in appearance is The time measurement is performed after being excluded from the Thereby, the time measurement by the measurement unit 101 is performed over a plurality of block sections, and more accurate time measurement can be performed.
  • the onboard control unit 100 calculates the average speed predicted by the calculation unit 102 while the own train 11A is moving on the route.
  • the fastest average speed is selected, and based on the selected fastest average speed, a driving pattern that can reduce the shortening of the driving interval with the preceding train 11B is selected.

Abstract

This train control system that is provided to a train movable on a prescribed route and that controls said train comprises: a position acquisition unit that acquires an on-rail position of the train; a database that stores therein a plurality of operation patterns, relationships between signal aspects of ground traffic lights and speed limits, and the plurality of ground traffic lights and a plurality of blocking sections on said route; a camera that captures an image of a ground traffic light in a blocking section at the on-rail position and that outputs aspect information; and an on-board control unit for calculating, on the basis of the speed limits corresponding to the aspect information, a traveling permitted position and a travelable route that enables travel to said traveling permitted position, and for controlling the traveling of the train on the basis of the traveling permitted position and the travelable route.

Description

列車制御システムおよび列車制御方法Train control system and train control method
 本発明は、列車制御システムおよび列車制御方法に関する。 The present invention relates to a train control system and a train control method.
 自動運転による列車の運行を行うため、列車に次駅への到着目標とする時刻などの運転目標を与え、列車がこの目標に従って走行する列車制御システム、すなわちATO(Automatic Train Operation)システムの導入が検討されている。ATOシステムの多くは、特定の列車がダイヤ上の時刻よりも遅れたと判断した場合、もしくは、運行管理システムから、いつ(時刻)、どこに(位置)、どのくらいの速さ(速度)で到達するように目標(時刻、位置、速度)を与えられたとき、その列車は、目標ランカーブ(運転パターン)を再作成し、目標を達するように速度制御を行う。 In order to operate trains automatically, it is necessary to introduce an ATO (Automatic Train Operation) system, which is a train control system that assigns operational targets such as the target arrival time to the next station to the train and causes the train to run according to these targets. It is being considered. In many ATO systems, when a particular train is determined to be delayed from the time on the timetable, or when the train operation management system determines when (time), where (position), and how fast (speed) it will arrive, When a train is given a target (time, position, speed), it recreates the target run curve (driving pattern) and controls its speed to reach the target.
 例えば、特許文献1では、列車を自動走行運転する際に、ダイヤ通りに走行するために駅間の基準走行時間と、自列車の走行時間から自動的に目標速度を演算し、これに対して天候や列車の遅延状態などを考慮に入れた上で、力行・ブレーキ・楕行などの指令を出すことにより、その場の状況に合わせて運転方法を変更し、その場に合わせた運転が可能であることが開示されている。 For example, in Patent Document 1, when a train is operated automatically, a target speed is automatically calculated from the reference travel time between stations and the travel time of the own train in order to run according to the schedule, and By taking into consideration weather conditions, train delays, etc., and issuing commands such as power running, braking, and elliptical running, it is possible to change the driving method according to the situation and drive according to the situation. It is disclosed that
日本国特開平11-255126号公報Japanese Patent Application Publication No. 11-255126
 ところで、地方線区など一日当たりの乗車人口が少ない線区においては、都市部の乗車人口が多い線区と同じような、連続的な在線検知と列車内に表示する信号現示を用いて列車制御を行うATC(Automatic Train Control:自動列車制御装置)などの保安装置を導入することが費用面で難しい。そのため、地上子と地上信号機を用いた任意地点での列車制御を行うATS(Automatic Train Stop:自動列車停止装置)を用いるのが、一般的である。また、ATOシステムも、各列車の運行状態を把握し、運行計画に対して実際の運行状態を比較することができる運行管理装置との連携を行うことはせず、列車に搭載する車上制御装置だけを用いた自動運転を行うことが考えられる。 By the way, in railway sections where the number of passengers per day is small, such as in rural areas, trains can be detected using continuous track detection and signal indications displayed inside the train, similar to those in railway sections with a large number of passengers in urban areas. It is difficult to introduce safety devices such as ATC (Automatic Train Control) for cost reasons. For this reason, it is common to use an ATS (Automatic Train Stop) that controls trains at arbitrary points using beacons and wayside signals. In addition, the ATO system does not cooperate with an operation management device that can grasp the operation status of each train and compare the actual operation status with the operation plan. It is conceivable to perform automatic operation using only the device.
 特許文献1に記載の技術では、地上に設置された信号機の信号現示をカメラで認識し、データベースに登録されている信号機位置と信号機の現示と制限速度の関係及び、位置検出手段を用いて列車が走行するべき速度を算出するが、先行列車や単線における対向列車と自列車の関係が把握できないため、遅延が発生した際に列車間隔を保った運転を行うことが難しい。 In the technology described in Patent Document 1, the signal appearance of a traffic light installed on the ground is recognized by a camera, and the relationship between the traffic light position registered in a database, the traffic light appearance, and the speed limit, and the position detection means are used. The system calculates the speed at which the train should run, but since it is not possible to grasp the relationship between the train in front and the oncoming train on a single track, it is difficult to maintain the distance between trains in the event of a delay.
 本発明の態様による列車制御システムは、所定の経路上を移動する列車に設けられて該列車を制御する列車制御システムであって、前記列車の在線位置を取得する位置取得部と、複数の運転パターン、地上信号機の信号現示と制限速度との関係、および、前記経路上の複数の地上信号機および複数の閉そく区間を記憶するデータベースと、前記在線位置の閉そく区間の地上信号機を撮影して現示情報を出力するカメラと、前記現示情報に対応する前記制限速度に基づいて、走行許可位置および該走行許可位置までの走行を可能とする走行可能経路を算出し、前記走行許可位置および前記走行可能経路に基づいて前記列車の走行を制御する車上制御部と、を備え、前記車上制御部は、前記現示情報の現示が進行以外の現示に変化した場合に、前記変化のときから前記現示情報の現示が再び変化するまでの時間間隔を計測する計測部と、前記計測の際の前記現示情報に基づいて、先行列車が在線する閉そく区間を前記データベースから検索する検索部と、前記時間間隔と前記検索部で検索された前記閉そく区間とに基づいて、前記先行列車の平均速度を予測する予測部と、を備え、前記予測部で予測された前記平均速度に基づいて前記列車の走行を制御する。
 本発明の態様による列車制御方法であって、列車が在線する閉そく区間の地上信号機の現示情報の現示が進行以外の現示に変化した場合に、前記変化のときから前記現示情報の現示が再び変化するまでの時間間隔を計測し、前記計測の際の前記現示情報に基づいて、先行列車が在線する閉そく区間を、前記経路上の複数の閉そく区間を記憶するデータベースから検索し、前記時間間隔と検索された前記閉そく区間とに基づいて、前記先行列車の平均速度を予測し、予測した前記平均速度に基づいて前記列車の走行を制御する。
A train control system according to an aspect of the present invention is a train control system that is installed on a train moving on a predetermined route and controls the train, and includes a position acquisition unit that acquires the position of the train, and a plurality of train A database that stores the pattern, the relationship between the signal display of the wayside signal and the speed limit, a plurality of wayside signals and a plurality of block sections on the route, and a photographic representation of the wayside signal of the block section at the line location. Based on a camera that outputs display information and the speed limit corresponding to the display information, calculates a drive permission position and a driveable route that allows travel to the drive permission position, and an on-board control unit that controls traveling of the train based on a travelable route, and the on-board control unit is configured to control the change when the display of the display information changes to a display other than progress. a measuring unit that measures a time interval from when the current state of the current information changes again, and a block section in which the preceding train is located is searched from the database based on the current state information at the time of the measurement. and a prediction unit that predicts the average speed of the preceding train based on the time interval and the block section searched by the search unit, the prediction unit predicts the average speed predicted by the prediction unit. The running of the train is controlled based on.
In the train control method according to an aspect of the present invention, when the display of the display information of the wayside signal in the block section where the train is on the track changes to a display other than progress, the display information is changed from the time of the change. The time interval until the indication changes again is measured, and based on the indication information at the time of the measurement, the block section where the preceding train is located is searched from a database that stores a plurality of block sections on the route. Then, the average speed of the preceding train is predicted based on the time interval and the searched block section, and the running of the train is controlled based on the predicted average speed.
 本発明によれば、先行列車の平均速度が予測できるので、列車間隔が計画と乖離することを抑制し、混雑の発生を低減することができる。 According to the present invention, since the average speed of preceding trains can be predicted, deviations in train spacing from the plan can be suppressed, and the occurrence of congestion can be reduced.
図1は、本発明に係る列車制御システムの一実施の形態を示す図である。FIG. 1 is a diagram showing an embodiment of a train control system according to the present invention. 図2は、所定停車駅までの駅間に停止点が設定された際の、列車、走行可能経路および走行許可位置の間の関係を示す図である。FIG. 2 is a diagram showing the relationship among a train, a travelable route, and a travel permission position when stopping points are set between stations up to a predetermined stop station. 図3は、時刻t1における先行列車と自列車の走行位置と地上信号機の現示との関係を示す図である。FIG. 3 is a diagram showing the relationship between the running positions of the preceding train and the own train and the display of the wayside signal at time t1. 図4は、時刻t2=t1+Δtにおける先行列車と自列車の走行位置と地上信号機の現示との関係を示す図である。FIG. 4 is a diagram showing the relationship between the running positions of the preceding train and the own train and the display of the wayside signal at time t2=t1+Δt. 図5は、時刻t11~時刻t13までの自列車および先行列車の走行パターンの一例を示す図である。FIG. 5 is a diagram showing an example of the running pattern of the own train and the preceding train from time t11 to time t13. 図6は、時刻t11~時刻t13までの自列車および先行列車の走行パターンの他の例を示す図である。FIG. 6 is a diagram showing another example of the running pattern of the own train and the preceding train from time t11 to time t13. 図7は、制御処理の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of control processing. 図8は、図7の処理に続く処理を示すフローチャートである。FIG. 8 is a flowchart showing processing subsequent to the processing of FIG. 図9は、変形例1における制御処理の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of control processing in Modification 1. 図10は、図9の処理に続く処理を示すフローチャートである。FIG. 10 is a flowchart showing processing subsequent to the processing of FIG. 図11は、変形例2を説明するためのフローチャートである。FIG. 11 is a flowchart for explaining modification example 2.
 以下、図を参照して本発明を実施するための形態について説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。また、以下の説明では、同一または類似の要素および処理には同一の符号を付し、重複説明を省略する場合がある。なお、以下に記載する内容はあくまでも本発明の実施の形態の一例を示すものであって、本発明は下記の実施の形態に限定されるものではなく、他の種々の形態でも実施する事が可能である。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and are omitted and simplified as appropriate for clarity of explanation. Furthermore, in the following description, the same or similar elements and processes may be denoted by the same reference numerals, and redundant explanations may be omitted. The content described below is merely an example of the embodiment of the present invention, and the present invention is not limited to the embodiment described below, and can be implemented in various other embodiments. It is possible.
 図1は、本発明に係る列車制御システムの一実施の形態を示す図であり、列車制御システム10の概略構成を示すブロック図である。本実施の形態の列車制御システム10は列車11に搭載される車上制御装置であり、線路121上を走行する列車11に走行軌跡126の運転を行わせる。列車制御システム10は、車上制御部100、カメラ110、データベース111および位置取得部112を備える。 FIG. 1 is a diagram showing an embodiment of a train control system according to the present invention, and is a block diagram showing a schematic configuration of the train control system 10. As shown in FIG. The train control system 10 of this embodiment is an on-board control device mounted on a train 11, and causes the train 11 traveling on a track 121 to drive along a travel trajectory 126. The train control system 10 includes an on-board control section 100, a camera 110, a database 111, and a position acquisition section 112.
 カメラ110はCMOSイメージセンサ等の撮像素子を備え、在線する閉そく区間の進行方向の地上信号機124を撮影する。そして、カメラ110は、撮影した地上信号機124の現示を認識し、認識した現示情報を車上制御部100へ出力する。位置取得部112は、列車11の在線位置を取得する。位置取得部112としては、例えば、列車11に搭載されたGPS装置が用いられる。また、列車11が備える速度計から速度情報を取得し、速度を時間積分することで位置を算出しても良い。データベース111には、運転パターン、地上信号機に関する情報(信号機の位置と信号機の種類)、走行経路上の閉そく区間、信号現示と制限速度125との関係、制限速度が0km/hとなる地点(停止点)等が記憶されている。 The camera 110 is equipped with an imaging device such as a CMOS image sensor, and photographs the ground signal 124 in the direction of travel of the block section where the line is located. Then, the camera 110 recognizes the photographed appearance of the ground signal 124 and outputs the recognized appearance information to the on-board control unit 100. The position acquisition unit 112 acquires the position of the train 11 on the line. As the position acquisition unit 112, for example, a GPS device mounted on the train 11 is used. Alternatively, the position may be calculated by acquiring speed information from a speedometer included in the train 11 and integrating the speed over time. The database 111 includes driving patterns, information regarding ground signals (positions of traffic lights and types of traffic lights), block sections on driving routes, the relationship between signal indications and the speed limit 125, and points where the speed limit is 0 km/h ( (stopping point) etc. are stored.
 車上制御部100は、計測部101、演算部102および検索部103を備える。計測部101、演算部102および検索部103の機能・動作については後述する。車上制御部100は、到着する駅122と走行許可位置123、データベース111に搭載する運転パターンに基づいて、制限速度125および走行許可位置123を速度0km/hとした速度未満で列車の運転を制御する。走行軌跡126は、実際に列車11が走行する(または、走行した)軌跡を表しており、縦軸は列車11の速度で横軸は列車11の位置である。なお、制限速度125も、縦軸は列車11の速度で横軸は列車11の位置である。 The on-board control unit 100 includes a measurement unit 101, a calculation unit 102, and a search unit 103. The functions and operations of the measurement section 101, the calculation section 102, and the search section 103 will be described later. The on-board control unit 100 operates the train at a speed lower than the speed limit 125 and the speed at which the travel permission position 123 is set to 0 km/h based on the arrival station 122, the travel permission position 123, and the driving pattern stored in the database 111. Control. The travel trajectory 126 represents the trajectory on which the train 11 actually travels (or has traveled), with the vertical axis representing the speed of the train 11 and the horizontal axis representing the position of the train 11. Note that in the speed limit 125 as well, the vertical axis is the speed of the train 11 and the horizontal axis is the position of the train 11.
 なお、車上制御部100は、マイコン、プロセッサおよびこれらに類する演算装置と、ROM、RAM、フラッシュメモリ、ハードディスク、SSD、メモリカード、光ディスク及びこれらに類する記憶装置とを備え、記憶装置に格納されるプログラムを実行することにより計測部101、演算部102および検索部103等の機能を実現している。 The on-vehicle control unit 100 includes a microcomputer, a processor, and a similar arithmetic device, and a ROM, a RAM, a flash memory, a hard disk, an SSD, a memory card, an optical disk, and a similar storage device. The functions of the measurement section 101, calculation section 102, search section 103, etc. are realized by executing the program.
 図2は、所定停車駅までの駅間に停止点が設定された際の列車、走行可能経路および走行許可位置の間の関係を示す図である。図2では、先行列車(不図示)の在線によって、地上信号機124Aの現示が停止(以下では、停止現示と呼ぶことにする)の場合を示す。地上信号機が停止現示である場合は、在線する閉そく区間に制限速度が0km/hとなる地点が存在する。すなわち、停止現示の地上信号機124Aよりも列車11側に、制限速度が0km/hとなる地点が存在する。 FIG. 2 is a diagram showing the relationship among trains, possible travel routes, and travel permission positions when stopping points are set between stations up to a predetermined stop station. FIG. 2 shows a case where the above ground signal 124A is displayed as stopped (hereinafter referred to as a stopped signal) due to the presence of a preceding train (not shown). If the ground signal is in a stopped state, there is a point in the block section where the line is located where the speed limit is 0 km/h. That is, there is a point where the speed limit is 0 km/h closer to the train 11 than the ground signal 124A indicating a stop signal.
 車上制御部100は、このように先行列車(不図示)の在線によって到着する駅122までの走行区間に制限速度が0km/hとなる地点が存在すると、制限速度が0km/hとなる地点よりも外方、すなわち、停止点よりも列車11の在線側に更新前の走行許可位置123Aを設定する。そして、車上制御部100は、列車11の在線位置から走行許可位置123Aまでの間に走行可能経路120Aを設定する。 If there is a point where the speed limit is 0 km/h in the travel section up to the arriving station 122 due to the presence of the preceding train (not shown), the on-board control unit 100 determines the point where the speed limit is 0 km/h. The travel permission position 123A before updating is set further outward than the stop point, that is, on the side where the train 11 is on the line rather than the stopping point. Then, the on-board control unit 100 sets a travelable route 120A between the train 11's on-track position and the travel permission position 123A.
 その後、先行列車の走行によって、地上信号機124Bが停止現示になり地上信号機124Aが停止現示から注意現示に変化すると、制限速度は更新前の制限速度125Aから更新後の制限速度125Bに変化する。制限速度125Bへの変化に伴って、車上制御部100は、到着する駅122を上限とした更新後の走行許可位置123B、および、走行許可位置更新後の走行可能経路120Bを設定する。そして、車上制御部100は、更新後の制限速度125B未満の速度で、走行許可位置更新後の走行軌跡126Bによる運転を行う。 After that, when the preceding train runs, the wayside signal 124B changes to a stop indication and the wayside signal 124A changes from a stop indication to a caution indication, and the speed limit changes from the pre-update speed limit 125A to the post-update speed limit 125B. do. In accordance with the change to the speed limit 125B, the on-board control unit 100 sets an updated travel-permitted position 123B with the reached station 122 as the upper limit, and a travel-permitted route 120B after the updated travel-permitted position. Then, the on-vehicle control unit 100 performs driving according to the updated travel trajectory 126B at the updated travel permission position at a speed less than the updated speed limit 125B.
 図3,4は、先行列車と自列車の走行位置の変化と地上信号機の信号現示変化の関係を示す図である。本実施の形態では、地上信号機が3現示(青,黄,赤)の場合を例に説明するが、表現できる現示の数や種類を問わず、例えば、閉そく信号機以外に出発信号機や場内信号機、中継信号機、入換信号機などのあらゆる地上信号機を含む。自列車11Aおよび先行列車11Bは、線路121上を図示右方向に進行している。図3は、時刻t1における先行列車11Bおよび自列車11Aの走行位置と地上信号機の現示との関係を示す図である。図4は、時刻t2=t1+Δtにおける先行列車11Bおよび自列車11Aの走行位置と地上信号機の現示との関係を示す図である。 3 and 4 are diagrams showing the relationship between changes in the running positions of the preceding train and the own train and changes in the signal display of wayside signals. In this embodiment, explanation will be given using an example where the ground signal has three indications (blue, yellow, red), but regardless of the number and types of indications that can be expressed, for example, in addition to block signals, departure signals and Includes all ground signals such as traffic lights, relay signals, and shunting signals. The own train 11A and the preceding train 11B are traveling on the track 121 in the right direction in the figure. FIG. 3 is a diagram showing the relationship between the running positions of the preceding train 11B and the own train 11A and the display of the wayside signal at time t1. FIG. 4 is a diagram showing the relationship between the running positions of the preceding train 11B and the own train 11A and the display of the wayside signal at time t2=t1+Δt.
 一般に、地上信号機は、先の進路が開通している場合には進行の現示(以下では、進行現示と呼ぶことにする)を示し、先行列車が在線している場合などには、先行列車の在線する閉そく区間への侵入に対して停止現示を示す。また、停止現示の外方に位置する閉そく区間に関しては、地上信号機は、停止現示の次に低位の制限速度(3現示の場合には注意現示)となる現示を示す。このように、停止現示と進行現示の間の閉そく区間では、基本的に1段階ずつ制限速度が異なる現示を示す。 In general, a wayside signal indicates the progress of a train if the route ahead is open (hereinafter referred to as a progress indicator), and if the preceding train is on the track, it indicates the progress of the train ahead. Indicates a stop sign when a train enters the block section where the train is located. Furthermore, for block sections located outside of the stop indication, the ground signal indicates the next lowest speed limit (in the case of three indications, a caution indication) after the stop indication. In this way, in the block section between the stop indication and the progress indication, the speed limit basically differs by one step.
 図3に示す時刻t1では、自列車11Aは閉そく区間B1に在線し、先行列車11Bは閉そく区間B4に在線している。地上信号機124A,124D,124Eは進行現示を示している。地上信号機124Cは停止現示を示している。地上信号機124Bは注意現示を示している。 At time t1 shown in FIG. 3, the own train 11A is on the block section B1, and the preceding train 11B is on the block section B4. Ground signals 124A, 124D, and 124E indicate progress. The ground signal 124C indicates a stop condition. The ground signal 124B indicates a caution condition.
 図4に示す時刻t2=t1+Δtにおいては、先行列車11Bは閉そく区間B5に移動しており、自列車11Aは閉そく区間B3に移動している。この状況では、地上信号機124Bおよび124Dは停止現示を示している。地上信号機124Aおよび124Cは注意現示を示している。地上信号機124Eは進行現示を示している。 At time t2=t1+Δt shown in FIG. 4, the preceding train 11B has moved to block section B5, and the own train 11A has moved to block section B3. In this situation, ground signals 124B and 124D are showing a stop indication. Ground signals 124A and 124C indicate caution conditions. The ground signal 124E shows the progress status.
(動作説明)
 次に、先行列車の影響によって、図2に示すように列車の在線位置から到着する駅までの間に制限速度0km/hの地点が存在する場合の、車上制御部100の動作について説明する。車上制御部100は、列車が在線する閉そく区間において走行前方の地上信号機の現示をカメラ110により常時認識し、その地上信号機の現示する制限速度未満の運転パターンで走行する。なお、地上信号機が示す現示は、その地上信号機よりも内方の区間に対する制限速度を示している。例えば、図2の場合に、地上信号機124Aが示す現示は、地上信号機124Aと地上信号機124Bとの間の閉そく区間の制限速度を示す。
(Operation explanation)
Next, we will explain the operation of the onboard control unit 100 when there is a point where the speed limit is 0 km/h between the train's location on the line and the station it arrives at, as shown in FIG. 2, due to the influence of the preceding train. . The onboard control unit 100 constantly recognizes the display of a wayside signal in front of the train in the block section where the train is running using the camera 110, and the train runs in a driving pattern that is less than the speed limit indicated by the wayside signal. Note that the indication shown by the ground signal indicates the speed limit for the section inside the ground signal. For example, in the case of FIG. 2, the indication shown by the ground signal 124A indicates the speed limit of the block section between the ground signal 124A and the ground signal 124B.
 走行により次の閉そく区間に進入した際に、先行列車11Bの影響により進入した先の地上信号機の現示が進行以外であることを認識した場合、車上制御部100は以下のように動作する。車上制御部100は、自列車11Aの運転パターンを、自列車11Aが当該地上信号機に対応する閉そく区間に進入するまでに現示する制限速度未満となる運転パターンへ変更する。また、車上制御部100は、地上信号機の現示が進行以外であることをカメラ110が認識した時点で計測部101による計時を開始して、自列車11Aが在線する閉そく区間の範囲において、次に地上信号機の現示変化を認識するまでの時間を計測する。 When the train enters the next block section by running, if it is recognized that the above ground signal is indicating something other than proceeding due to the influence of the preceding train 11B, the onboard control unit 100 operates as follows. . The onboard control unit 100 changes the driving pattern of the own train 11A to a driving pattern in which the speed is less than the current speed limit by the time the own train 11A enters the block section corresponding to the above ground signal. In addition, the onboard control unit 100 starts time measurement by the measurement unit 101 at the time when the camera 110 recognizes that the above-ground signal indicates that the signal is not proceeding, and within the range of the block section where the own train 11A is located, Next, we measure the time it takes to recognize a change in the appearance of ground signals.
 ここで、カメラ110により現示変化が認識される状況としては、以下の2つの場合がある。1つ目は、先行列車11Bの走行の影響にかかわらず、自列車11Aの在線する閉そく区間が変化して、認識される地上信号機が現示の異なる別の地上信号機に変化した場合である。2つ目は、先行列車11Bの在線する閉そく区間が変化して、カメラ110が認識している地上信号機の現示が変化した場合である。 Here, there are the following two situations in which a change in appearance is recognized by the camera 110. The first case is when the block section in which the own train 11A is located changes and the recognized wayside signal changes to another wayside signal with a different presentation, regardless of the influence of the running of the preceding train 11B. The second case is a case where the block section where the preceding train 11B is located changes and the display of the ground signal recognized by the camera 110 changes.
 例えば、上記1つ目の現示変化を図3で説明すると、先行列車11Bが閉そく区間B4に在線しているときに自列車11Aが次の閉そく区間B2に進入した場合が対応する。この場合、カメラ110が認識する地上信号機の現示は、進行現示から注意現示に変化する。進入した先の地上信号機124Bは注意現示なので、進入した時点から次に地上信号機の現示が変化するまでの時間を、計測部101により計測する。 For example, to explain the above-mentioned first display change with reference to FIG. 3, it corresponds to a case where the own train 11A enters the next block section B2 while the preceding train 11B is on the block section B4. In this case, the display of the ground signal recognized by the camera 110 changes from a progress display to a caution display. Since the ground signal 124B at which the vehicle enters is in a caution display, the measurement unit 101 measures the time from the time of entry until the next change in the display of the ground signal.
 車上制御部100の検索部103は、認識する地上信号機の現示とデータベースに登録されている閉そく区間の情報とに基づいて、先行列車11Bの在線する閉そく区間を検索する。そして、車上制御部100の演算部102は、先行列車11Bが走行した閉そく区間B4の距離と計測部101により計測される現示変化間の計測時間とから、先行列車11Bの平均速度を予測する。さらに、車上制御部100は、先行列車11Bとの運転間隔が詰まってしまうことを避けるために、演算部102で予測した先行列車11Bの平均速度に基づいて自列車11Aの運転パターンを変更する。 The search unit 103 of the onboard control unit 100 searches for the block section where the preceding train 11B is located based on the recognized display of the wayside signal and the block section information registered in the database. Then, the calculation unit 102 of the on-board control unit 100 predicts the average speed of the preceding train 11B based on the distance of the block section B4 in which the preceding train 11B traveled and the measured time between the changes in the display measured by the measuring unit 101. do. Further, the onboard control unit 100 changes the driving pattern of the own train 11A based on the average speed of the preceding train 11B predicted by the calculation unit 102, in order to avoid the driving interval between the preceding train 11B and the preceding train 11B being narrowed. .
 ところで、計測部101の時間計測は、地上信号機の現示変化をカメラ110で認識した時点から開始される。そのため、カメラ110で認識される現示変化により時間計測する場合の予測精度は、地上信号機が現示変化してからその現示変化をカメラ110で認識するまでの時間が短いほど高くなる。図5を用いて具体的に説明する。 Incidentally, the time measurement by the measurement unit 101 starts from the time when the camera 110 recognizes a change in the appearance of the ground signal. Therefore, the prediction accuracy when measuring time based on the change in appearance recognized by the camera 110 increases as the time from when the ground signal changes to when the change in appearance is recognized by the camera 110 is shorter. This will be explained in detail using FIG. 5.
 図5は、時刻t11に先行列車11Bが閉そく区間B3から閉そく区間B4に移動して地上信号機124Bが注意現示に変化してから、時刻t13に先行列車11Bが閉そく区間B4から出て地上信号機124Bが進行現示に変化するまでの状況を説明する図である。地上信号機124Bは、先行列車11Bが閉そく区間B4に進入した時刻t11に停止現示から注意現示に変化する。この時、自列車11Aは閉そく区間B1に在線しているので、カメラ110は地上信号機124Bを認識していない。カメラ110は、自列車11Aが閉そく区間B2に進入した時刻t12において、地上信号機124Bの現示(注意現示)を認識することになる。そして、カメラ110は、先行列車11Bが閉そく区間B4から出る時刻t13において、地上信号機124Bの現示が注意現示から進行現示に変化するのを認識する。 FIG. 5 shows that at time t11 the preceding train 11B moves from block section B3 to block section B4 and the wayside signal 124B changes to a caution indication, and then at time t13 the preceding train 11B leaves block section B4 and the wayside signal 124B is a diagram illustrating the situation until the display changes to the progress display. The ground signal 124B changes from a stop indication to a caution indication at time t11 when the preceding train 11B enters the block section B4. At this time, since the own train 11A is in the block section B1, the camera 110 does not recognize the ground signal 124B. The camera 110 recognizes the display (caution display) of the ground signal 124B at time t12 when the own train 11A enters the block section B2. Then, the camera 110 recognizes that the display of the wayside signal 124B changes from a caution display to a progress display at time t13 when the preceding train 11B leaves the block section B4.
 この場合、地上信号機124Bが注意現示に変化してから進行現示に変化するまでの時間は、t13-t11である。一方、自列車11Aが閉そく区間B2に進入してカメラ110が地上信号機124Bの注意現示を認識してから、地上信号機124Bの現示が注意現示から進行現示に変化するのをカメラ110が認識するまでの時間は、t13-t12となる。この2つの時間の差は、差=(t13-t11)-(t13-t12)=t12-t11である。すなわち、地上信号機124Bの現示が注意現示に変化してからそれをカメラ110が認識するまでの時間である差=t12-t11が短いほど、先行列車11Bの平均速度の予測精度は高くなる。 In this case, the time from when the ground signal 124B changes to the warning indication until it changes to the proceeding indication is t13-t11. On the other hand, after the own train 11A enters the block section B2 and the camera 110 recognizes the caution indication on the wayside signal 124B, the camera 110 watches as the indication on the wayside signal 124B changes from a caution indication to a progress indication. The time it takes for this to be recognized is t13-t12. The difference between these two times is: difference=(t13-t11)-(t13-t12)=t12-t11. In other words, the shorter the difference = t12 - t11, which is the time from when the display on the wayside signal 124B changes to a caution display until the camera 110 recognizes it, the higher the prediction accuracy of the average speed of the preceding train 11B. .
 また、計測部101の時間計測は在線する閉そく区間の範囲でしか行われないので、自列車11Aが在線する閉そく区間を出ると時間計測が途中で終了となる。そのため、その計測終了から先行列車11Bが閉そく区間を出て地上信号機が現示変化するまでの時間が短いほど、平均速度の予測精度は高くなる。図6を用いて具体的に説明する。 Moreover, since the time measurement by the measurement unit 101 is performed only within the range of the block section where the train is located, the time measurement ends midway when the own train 11A leaves the block section where the train is located. Therefore, the shorter the time from the end of the measurement until the preceding train 11B leaves the block section and the wayside signal changes its appearance, the higher the average speed prediction accuracy becomes. This will be explained in detail using FIG. 6.
 図6では、時刻t11において、先行列車11Bが閉そく区間B3から閉そく区間B4に移動して地上信号機124Bが停止現示から注意現示に変化する。その現示変化時(t11)に、閉そく区間B2に在線する自列車11Aのカメラ110が現示変化を認識する。その後、先行列車11Bが閉そく区間B4に在線している時刻t12に、自列車11Aが閉そく区間B2から閉そく区間B3に移動する。カメラ110の認識する地上信号機は、注意現示の地上信号機124Bから停止現示の地上信号機124Cに変化するので、カメラ110は、現示が注意現示から停止現示に変化したと認識する。その後、時刻t13に先行列車11Bが閉そく区間B4を出ると、地上信号機124Cが停止現示から注意現示に変化する。 In FIG. 6, at time t11, the preceding train 11B moves from block section B3 to block section B4, and the wayside signal 124B changes from a stop indication to a caution indication. At the time of the display change (t11), the camera 110 of the own train 11A located in the block section B2 recognizes the change in the display. Thereafter, at time t12 when the preceding train 11B is on the block section B4, the own train 11A moves from the block section B2 to the block section B3. Since the ground signal recognized by the camera 110 changes from the ground signal 124B indicating a caution indication to the ground signal 124C indicating a stop indication, the camera 110 recognizes that the indication has changed from a caution indication to a stop indication. After that, when the preceding train 11B leaves the block section B4 at time t13, the wayside signal 124C changes from a stop indication to a caution indication.
 この場合、カメラ110の現示変化認識に基づく計測部101の計時は、自列車11Aが地上信号機124Bの注意現示(すなわち、停止現示から注意現示への現示変化)を認識した時刻t11の在線区間(閉そく区間B2)において行われる。そのため、自列車11Aが閉そく区間B2の走行を終了する時刻t12において、計測部101の計時が途中で終了することになる。その途中終了したときの計測時間はt12-t11である。しかし、地上信号機124Bが注意現示から進行現示に変化するのは時刻t13なので、計測時間は差=t13-t12だけ短くなる。すなわち、時間計測が途中終了してから地上信号機124Bが進行現示に現示変化するまでの時間が短いほど、平均速度の予測精度は高くなることが分かる。 In this case, the timing of the measuring unit 101 based on the recognition of the change in the appearance of the camera 110 is the time when the own train 11A recognizes the caution indication of the wayside signal 124B (that is, the change in indication from the stop indication to the caution indication). This is carried out in the on-line section (block section B2) at t11. Therefore, at time t12 when the own train 11A finishes traveling in the block section B2, the time measurement by the measuring unit 101 ends midway. The measured time when the process ends halfway is t12-t11. However, since the ground signal 124B changes from the caution indication to the proceed indication at time t13, the measurement time is shortened by the difference=t13-t12. That is, it can be seen that the shorter the time from when the time measurement ends midway until the ground signal 124B changes to the progress indicator, the higher the prediction accuracy of the average speed becomes.
 図7,8は、車上制御部100によって実行される制御処理の一例を示すフローチャートである。図7,8に示す制御処理は、いったん終了した後も、再び繰り返し実行される。なお、図5を具体例として、適宜、補足説明する。図7のステップS200では、車上制御部100は、カメラ110から地上信号機の現示情報を取得する。現示情報とは、カメラ110で認識された現示が、進行現示、注意現示および停止現示のいずれであるかの情報である。車上制御部100は前述したように記憶装置を備えているが、記憶装置には現示情報を記憶するための第1メモリおよび第2メモリが設けられているものとする。ステップS200で現示情報が取得されると、第1メモリに記憶されている現示情報を第2メモリに移動した後に、第1メモリのデータを取得した現示情報で書き換える。 FIGS. 7 and 8 are flowcharts showing an example of the control process executed by the on-vehicle control unit 100. The control processing shown in FIGS. 7 and 8 is repeatedly executed again even after it is once finished. Note that supplementary explanation will be given as appropriate using FIG. 5 as a specific example. In step S<b>200 in FIG. 7 , the on-board control unit 100 acquires display information of ground signals from the camera 110 . The display information is information indicating whether the display recognized by the camera 110 is a progress display, a caution display, or a stop display. The on-vehicle control unit 100 is equipped with a storage device as described above, and it is assumed that the storage device is provided with a first memory and a second memory for storing display information. When the display information is acquired in step S200, the display information stored in the first memory is moved to the second memory, and then the data in the first memory is rewritten with the acquired display information.
 ステップS201では、車上制御部100は、上述の第1メモリに記憶されているステップS200で取得した現示情報が進行現示であるか否かを判定する。ステップS201において、現示情報が進行現示である(Y)と判定されると、一連の制御処理を終了する。地上信号機が進行を示す現示である場合には、計画通りに走行することが可能であるので、現状の走行許可位置と運転パターンが維持される。一方、ステップS201において現示情報が進行以外の現示である(N)と判定されると、ステップS202を実行する。 In step S201, the on-vehicle control unit 100 determines whether the display information acquired in step S200 and stored in the first memory described above is a progress display. In step S201, if it is determined that the display information is a progress display (Y), the series of control processing ends. When the ground signal indicates progress, it is possible to travel as planned, so the current travel permitted position and driving pattern are maintained. On the other hand, if it is determined in step S201 that the display information is a display other than progress (N), step S202 is executed.
 図5に示す例では、時刻t11(進行現示)においては、ステップS201で(Y)と判定されて一連の制御処理がいったん終了した後に、再びSTARTから開始される。そして、時刻t12(注意現示)においてステップS201で(N)と判定されると、ステップS202へ進む。このとき、上述した第1メモリには今回認識された注意現示が記憶され、第2メモリには前回認識された進行現示が記憶されていることになる。 In the example shown in FIG. 5, at time t11 (progress display), after the determination in step S201 is (Y) and the series of control processing is once completed, it is restarted from START. If it is determined (N) in step S201 at time t12 (attention indication), the process advances to step S202. At this time, the above-mentioned first memory stores the currently recognized caution indication, and the second memory stores the previously recognized progress indication.
 ステップS202では、車上制御部100は、現示情報が停止現示であるか否かを判定する。ステップS202において、現示情報が停止現示である(Y)と判定されるとステップS203へ進む。地上信号機が停止現示である場合は、在線する閉そく区間に制限速度が0km/hとなる地点が存在する。そのため、ステップS203では、車上制御部100は、現在の走行許可位置と運転パターンを、制限速度0km/h地点となる地上信号機外方までの走行可能な走行許可位置と運転パターンに変更する。一方、ステップS202において現示情報が停止以外を示す現示である(N)と判定されると、ステップS204へ進む。 In step S202, the on-vehicle control unit 100 determines whether the display information is a stop display. In step S202, if it is determined that the display information is a stop display (Y), the process advances to step S203. If the ground signal is in a stopped state, there is a point in the block section where the line is located where the speed limit is 0 km/h. Therefore, in step S203, the on-board control unit 100 changes the current travel permission position and driving pattern to a travel permission position and driving pattern that allow the vehicle to travel to the outside of the ground signal where the speed limit is 0 km/h. On the other hand, if it is determined in step S202 that the display information indicates a state other than stop (N), the process advances to step S204.
 ステップS204では、車上制御部100は、第1メモリに記憶されている現示情報が第2メモリに記憶されている現示情報と異なるか否か、すなわち、認識される現示が変化したか否かを判定する。ステップS204において、現示が変化した(Y)と判定されるとステップS205へ進み、現示が変化していない(N)と判定されると一連の制御処理を終了する。 In step S204, the on-vehicle control unit 100 determines whether the display information stored in the first memory is different from the display information stored in the second memory, that is, whether the recognized display has changed. Determine whether or not. In step S204, if it is determined that the presentation has changed (Y), the process advances to step S205, and if it is determined that the presentation has not changed (N), the series of control processing ends.
 図5に示す例で説明すると、時刻t12に自列車11Aが閉そく区間B2に進入すると、ステップS201→ステップS202→ステップS204と進む。このとき、第1メモリには注意現示が、第2メモリには進行現示がそれぞれ記憶されているので、ステップS204において現示が変化した(Y)と判定され、ステップS205へ進む。 To explain using the example shown in FIG. 5, when the own train 11A enters the block section B2 at time t12, the process proceeds from step S201 to step S202 to step S204. At this time, since the first memory stores the caution indication and the second memory stores the progress indication, it is determined in step S204 that the indication has changed (Y), and the process advances to step S205.
 ステップS205では、車上制御部100は、カメラ110が認識している地上信号機について、適用対象の地上信号機であるか否かを判断する。ステップS205において、適用対象信号機である(Y)と判定されるとステップS206へ進み、適用対象信号機でない(N)と判定されると、一連の制御処理を終了する。再度スタートする次の制御処理において、計測動作を初めからやり直す。 In step S205, the on-board control unit 100 determines whether the ground signal recognized by the camera 110 is an applicable ground signal. In step S205, if it is determined that the traffic light is applicable (Y), the process advances to step S206, and if it is determined that the traffic signal is not applicable (N), the series of control processing is ended. In the next control process that starts again, the measurement operation is restarted from the beginning.
 ここで、適用対象の地上信号機とは、到着する駅の近傍に配置され、到着する駅の内方が停止現示となるような、必ず現示が変化する地上信号機のことである。ターミナル駅等では、到着する駅の内方が必ず停止を現示する地上信号機(場内信号機)が設けられており、自列車11Aが到着する駅に接近すると先行列車11Bの有無によらず進行以外の現示となる。場内信号機のような信号機の現示変化を、先行列車の平均速度予測における計時の開始、終了条件に使用すると誤った判定を行うことになるので、列車制御システム10のデータベース111に登録する地上信号機情報から、適用対象の地上信号機(必ず進行以外の現示となる地上信号機以外の地上信号機)であるか否かを判別するようにしている。 Here, the applicable ground signal is a ground signal that is placed near the station where you arrive, and whose display always changes, such that the stop display is inward of the station you arrive at. At terminal stations, there is a ground signal (inside signal) that always indicates a stop on the inside of the arriving station, and when the own train 11A approaches the arriving station, it will stop moving regardless of the presence or absence of the preceding train 11B. It becomes a manifestation of. If changes in the display of signals such as station signals are used as timing start and end conditions for predicting the average speed of preceding trains, incorrect judgments will be made. Based on the information, it is determined whether the ground signal is an applicable ground signal (a ground signal other than a ground signal that always displays an indication other than progress).
 ステップS206では、車上制御部100は、計測部101による計時を開始する。図5の例では、自列車11Aが閉そく区間B2に進入した時点(時刻t12)で計時を開始する。ステップS206で計時を開始したならば、図8のステップS301へ進む。 In step S206, the on-vehicle control unit 100 starts time measurement by the measurement unit 101. In the example of FIG. 5, timing is started when the own train 11A enters the block section B2 (time t12). After starting time measurement in step S206, the process advances to step S301 in FIG.
 図8のステップS301では、車上制御部100は、自列車11Aが、在線する閉そく区間を終了したか否か、すなわち、次の閉そく区間に進入したか否かを判定する。ステップS301において、在線する閉そく区間を終了していない(N)と判定されるとステップS304へ進み、在線する閉そく区間を終了した(Y)と判定されるとステップS302へ進む。 In step S301 in FIG. 8, the onboard control unit 100 determines whether the own train 11A has completed the block section in which it is located, that is, whether it has entered the next block section. In step S301, if it is determined that the current block section has not been completed (N), the process proceeds to step S304, and if it is determined that the current block section has been completed (Y), the process proceeds to step S302.
 まず、ステップS301からステップS304へ進んだ場合について説明する。ステップS304では、車上制御部100は、カメラ110から地上信号機の現示情報を取得する。ステップS304で現示情報が取得されると、第1メモリに記憶されている現示情報を第2メモリに移動した後に、第1メモリのデータを取得した現示情報で書き換える。次いで、ステップS305では、車上制御部100は、第1メモリの現示情報と第2メモリの現示情報とを比較して、カメラ110により認識される現示が変化したか否かを判定する。ステップS305において、現示が変化した(Y)と判定されるとステップS306へ進み、現示が変化していない(Y)と判定されるとステップS301へ戻る。 First, the case where the process proceeds from step S301 to step S304 will be described. In step S<b>304 , the on-board control unit 100 acquires the ground signal display information from the camera 110 . When the display information is acquired in step S304, the display information stored in the first memory is moved to the second memory, and then the data in the first memory is rewritten with the acquired display information. Next, in step S305, the on-vehicle control unit 100 compares the display information in the first memory with the display information in the second memory and determines whether the display recognized by the camera 110 has changed. do. In step S305, if it is determined that the presentation has changed (Y), the process proceeds to step S306, and if it is determined that the presentation has not changed (Y), the process returns to step S301.
 ステップS301からステップS304までの処理を、図5を例に説明する。図5に示す例では、上述のように時刻t12に計時を開始する。自列車11Aが閉そく区間B2を通過するよりも先に、時刻t13に先行列車11Bが閉そく区間B4を通過して、地上信号機124Bが注意現示から進行現示に変化する。そのため、ステップS301からステップS304へ進み、カメラ110から現示情報が取得される。その結果、第1メモリの現示情報は進行現示かつ第2メモリの現示情報は注意現示となり、ステップS305で現示が変化した(Y)と判定されてステップS306へ進む。 The processing from step S301 to step S304 will be explained using FIG. 5 as an example. In the example shown in FIG. 5, time measurement is started at time t12 as described above. Before the own train 11A passes through the block section B2, the preceding train 11B passes through the block section B4 at time t13, and the wayside signal 124B changes from a caution indication to a proceed indication. Therefore, the process advances from step S301 to step S304, and display information is acquired from the camera 110. As a result, the display information in the first memory is a progress display and the display information in the second memory is a caution display, and it is determined in step S305 that the display has changed (Y), and the process advances to step S306.
 なお、仮に、自列車11Aが時刻t13よりも前に閉そく区間B2を走行終了した場合には、ステップS305で現示変化と判定される前に、ステップS301において在線する閉そく区間B2を終了した(Y)と判定されて、ステップS302へ進むことになる。 In addition, if the own train 11A finishes running in the block section B2 before time t13, the block section B2 in which the train is currently running is finished in step S301 before it is determined that the current status has changed in step S305 ( (Y), and the process proceeds to step S302.
 ステップS306では、上述したステップS205の場合と同様に、車上制御部100は、カメラ110が認識している地上信号機について、適用対象の地上信号機であるか否かを判断する。ステップS306において適用対象信号機である(Y)と判定されるとステップS307へ進み、計測部101による計時を終了する。一方、ステップS306で適用対象信号機でない(N)と判定されると、一連の制御処理を終了する。 In step S306, as in step S205 described above, the on-board control unit 100 determines whether the ground signal recognized by the camera 110 is an applicable ground signal. If it is determined in step S306 that the signal is an applicable traffic signal (Y), the process advances to step S307, and the time measurement by the measuring unit 101 is ended. On the other hand, if it is determined in step S306 that the traffic signal is not an applicable traffic signal (N), the series of control processing ends.
 ステップS308では、車上制御部100は、現在の運転パターンを使用して走行した場合に、次の閉そく区間で低位現示が予想されるか否か、すなわち、在線中の閉そく区間と比較して次の閉そく区間における制限速度が低くなることが予想されるか否かを、先行列車11Bの在線する閉そく区間の距離、自列車11Aの速度や在線する閉そく区間の距離等を考慮して判断する。ステップS308において、低位現示が予想される(Y)と判定されるとステップS310へ進み、低位現示が予想されない(N)と判定されるとステップS309へ進む。 In step S308, the onboard control unit 100 determines whether or not a low level signal is expected in the next block section when traveling using the current driving pattern, that is, compares it with the block section where the line is currently located. Whether or not the speed limit in the next block section is expected to be lower is determined by considering the distance of the block section where the preceding train 11B is located, the speed of the own train 11A, the distance of the block section where the train is located, etc. do. In step S308, if it is determined that a low-level manifestation is expected (Y), the process advances to step S310, and if it is determined that a low-level manifestation is not expected (N), the process advances to step S309.
 ステップS308からステップS309へ進んだ場合、次の閉そく区間で低位現示が予想されないので、車上制御部100は、現在の運転パターンを制限速度内で遅延を低減できる運転パターンに変更し、一連の制御処理を終了する。 When the process advances from step S308 to step S309, since a low level indication is not expected in the next block section, the on-board control unit 100 changes the current driving pattern to a driving pattern that can reduce delays within the speed limit, and continuously The control process ends.
 ステップS308からステップS310へ進んだ場合には、車上制御部100の演算部102は、データベース111から先行列車11Bの在線する閉そく区間の距離を検索し、その閉そく区間の距離と計測部101で計測された計測時間とに基づいて先行列車11Bの平均速度を予測する。ステップS311では、車上制御部100は、ステップS310で予測した平均速度に基づいて、先行列車11Bへの接近(運転間隔短縮)を低減できる運転パターンに変更し、一連の制御処理を終了する。 When the process advances from step S308 to step S310, the calculation unit 102 of the onboard control unit 100 searches the database 111 for the distance of the block section where the preceding train 11B is located, and calculates the distance of the block section and the measurement unit 101. The average speed of the preceding train 11B is predicted based on the measured time. In step S311, the on-board control unit 100 changes the driving pattern to one that can reduce the approach to the preceding train 11B (shortening the driving interval) based on the average speed predicted in step S310, and ends the series of control processing.
 一方、ステップS301において、自列車11Aが在線する閉そく区間を終了した(Y)と判定されてステップS302へ進んだ場合について説明する。ステップS302では、車上制御部100は、計測部101による時間計測を途中で終了する。ステップS303では、車上制御部100は、線路121上を走行中に演算部102で予測された複数の平均速度の中から最高速となる平均速度予測値を選択し、その平均速度予測値に基づいて、現在の運転パターンを、先行列車11Bとの運転間隔の短縮を低減できる運転パターンに変更する。 On the other hand, a case will be described in which it is determined in step S301 that the block section in which the own train 11A is located has ended (Y) and the process proceeds to step S302. In step S302, the on-vehicle control unit 100 ends the time measurement by the measurement unit 101 midway. In step S303, the on-board control unit 100 selects the average speed prediction value that is the highest speed from among the plurality of average speeds predicted by the calculation unit 102 while traveling on the track 121, and sets the average speed prediction value to the highest average speed prediction value. Based on this, the current driving pattern is changed to one that can reduce the shortening of the driving interval with the preceding train 11B.
 図7,8に示す制御処理は、線路121上を走行中に繰り返し実行されるので、時間計測が繰り返される度に平均速度予測値が得られる。予測可能な範囲の中から最も高速条件の平均速度予測値を選択するのは、予測精度のバラつきにより、誤った判定で運転パターンを変更することによる遅延を防止するためである。ステップS303を実行したならば、一連の制御処理を終了する。 The control processing shown in FIGS. 7 and 8 is repeatedly executed while the vehicle is traveling on the track 121, so an average speed prediction value is obtained each time the time measurement is repeated. The reason why the average speed predicted value for the highest speed condition is selected from the predictable range is to prevent delays due to changes in driving pattern due to incorrect determination due to variations in prediction accuracy. Once step S303 is executed, the series of control processing ends.
 本実施の形態の列車制御システム10によれば、遅延が発生した場合等において地上信号機の現示変化を監視することで、先行列車のおおよその位置と平均速度を予測し、自列車と先行列車との運転間隔が短くならないような運転パターンを算出することが可能となる。これにより、運行管理装置と車上制御装置が連携していないATOシステムであっても、列車間隔が計画と乖離することを抑制し、混雑の発生を低減することができる。 According to the train control system 10 of the present embodiment, when a delay occurs, etc., by monitoring changes in the display of wayside signals, the approximate position and average speed of the preceding train can be predicted, and the own train and the preceding train can be predicted. It becomes possible to calculate a driving pattern that does not shorten the driving interval between the two. As a result, even in an ATO system in which the operation management device and the on-board control device are not linked, it is possible to prevent train intervals from deviating from the plan and reduce the occurrence of congestion.
(変形例1)
 上述した実施の形態では、自列車11Aが在線する閉そく区間の範囲において現示変化間の時間を計測し、一つの閉そく区間において計測された計測時間に基づいて先行列車の平均速度を算出した。そのため、図8のステップS301→ステップS302のように、自列車11Aが在線する閉そく区間の走行を終了した場合には、計測部101による計時を中途で終了していた。
(Modification 1)
In the embodiment described above, the time between indication changes was measured in the range of the block section where the own train 11A was located, and the average speed of the preceding train was calculated based on the measurement time measured in one block section. Therefore, as shown in step S301→step S302 in FIG. 8, when the own train 11A finishes traveling in the block section in which it is located, the time measurement by the measuring unit 101 ends midway.
 変形例1では、先行列車が1つの閉そく区間の一端から他端まで走行する間に、自列車が複数の閉そく区間を走行する場合、各閉そく区間で計測された時間を加算して先行列車の走行時間を推定するようにした。図9,10は、変形例1における制御処理の一例を示すフローチャートである。変形例1では、図10に示すように、図8におけるステップS303を削除して、ステップS302から図9のステップS206へ進むような制御に変更した。なお、図9,10のその他の処理は、図7,8に示したフローチャートと同じであるので、以下では処理が異なる部分について図6を参照しながら説明する。 In modification example 1, when the own train runs through multiple block sections while the preceding train runs from one end of one block section to the other, the time measured in each block section is added up to determine the time of the preceding train. Estimated travel time. 9 and 10 are flowcharts illustrating an example of control processing in the first modification. In modification 1, as shown in FIG. 10, step S303 in FIG. 8 is deleted and control is changed to proceed from step S302 to step S206 in FIG. 9. Note that the other processes in FIGS. 9 and 10 are the same as those in the flowcharts shown in FIGS. 7 and 8, so the different processes will be described below with reference to FIG. 6.
 図6において、時刻t11にカメラ110が認識する現示(地上信号機124Bの現示)が停止現示から注意現示に変化すると、図9のステップS204において(Y)と判定され、ステップS205→ステップS206と進んで計測部101による計時が開始する。そして、時刻t11から時刻t12までは、ステップS301→ステップS304→ステップS305→ステップS301の処理が繰り返される。 In FIG. 6, when the indication recognized by the camera 110 (the indication of the ground signal 124B) changes from the stop indication to the caution indication at time t11, it is determined (Y) in step S204 of FIG. 9, and step S205→ Proceeding to step S206, time measurement by the measuring unit 101 starts. Then, from time t11 to time t12, the process of step S301→step S304→step S305→step S301 is repeated.
 時刻t12に自列車11Aが閉そく区間B2から閉そく区間B3へ移動すると、図10のステップS301からステップS302へ進み、計時が中断される。中断した場合の計測時間は、後に計算に使用するので記憶しておく。中断時においては、自列車11Aは閉そく区間B2を通過したので、カメラ110は地上信号機124Cの停止現示を認識することになる。そのため、第1メモリには停止現示が記憶され、第2メモリには注意現示が記憶されている。 When the own train 11A moves from block section B2 to block section B3 at time t12, the process proceeds from step S301 in FIG. 10 to step S302, and timekeeping is interrupted. Remember the measurement time when the process is interrupted, as it will be used for calculations later. At the time of suspension, the own train 11A passed through the block section B2, so the camera 110 recognizes the stop indication of the wayside signal 124C. Therefore, a stop indication is stored in the first memory, and a caution indication is stored in the second memory.
 ステップS302の処理が終了すると、図9のステップS206へ進み、計測部101による計測が再び開始される。その後、ステップS301→ステップS304と処理が進み、ステップS304において現示情報が取得される。カメラ110から取得される現示情報は図6から分かるように停止現示なので、ステップS304が実行されると第2メモリのデータが注意現示から停止現示に書き換えられ、第1メモリおよび第2メモリのデータはいずれも停止現示となる。そのため、ステップS305で(N)と判定されてステップS301へ進む。 When the process in step S302 is completed, the process advances to step S206 in FIG. 9, and measurement by the measurement unit 101 is started again. Thereafter, the process proceeds from step S301 to step S304, and display information is acquired in step S304. As can be seen from FIG. 6, the display information acquired from the camera 110 is a stop display, so when step S304 is executed, the data in the second memory is rewritten from a caution display to a stop display, and the data in the first memory and Both of the data in the 2 memories are in a stopped state. Therefore, it is determined (N) in step S305 and the process advances to step S301.
 図6の時刻t12から時刻t13までは、カメラ110で認識される現示情報は停止現示なので、時刻t13に達するまでは、ステップS301→ステップS304→ステップS305→ステップS301の処理が繰り返される。そして、先行列車11Bが閉そく区間B4から閉そく区間B5に移動する時刻t13において、認識される現示情報(地上信号機124Cの現示)は停止現示から注意現示に変化する。その結果、ステップS305で(Y)と判定されて、ステップS305→ステップS306→ステップS307と処理が進み、ステップS307において計測部101による計時が終了する。 From time t12 to time t13 in FIG. 6, the display information recognized by the camera 110 is a stopped display, so the processing of step S301 → step S304 → step S305 → step S301 is repeated until time t13 is reached. Then, at time t13 when the preceding train 11B moves from the block section B4 to the block section B5, the recognized display information (display of the wayside signal 124C) changes from a stop display to a caution display. As a result, it is determined (Y) in step S305, and the process proceeds from step S305 to step S306 to step S307, and the time measurement by the measuring unit 101 ends in step S307.
 ステップS302で計時中断した時の計測結果は(t12-t11)であり、ステップS307で計時終了した計測結果は(t13-t12)となる。車上制御部100は、このようにして得られた計測結果(t12-t11)と計測結果(t13-t12)とを、時間的に連続性のあるデータであると判断する。そして、それらを加算した値(t13-t11)を、先行列車11Bが一つの閉そく区間B4を走行した時間であるとみなし、先行列車11Bの平均速度算出に使用する。 The measurement result when the time measurement is interrupted in step S302 is (t12-t11), and the measurement result when the time measurement is finished in step S307 is (t13-t12). The on-vehicle control unit 100 determines that the measurement results (t12-t11) and measurement results (t13-t12) obtained in this way are temporally continuous data. Then, the value obtained by adding these values (t13-t11) is regarded as the time that the preceding train 11B traveled in one block section B4, and is used to calculate the average speed of the preceding train 11B.
 また、図5の破線で示した自列車11Aのように、自列車11Aが時刻t13のときに閉そく区間B2ではなく閉そく区間B3に在線している場合について変形例1を適用すると、以下のような動作になる。この場合、先行列車11Bが閉そく区間B4の一端から他端まで走行する間に、自列車11Aは閉そく区間B1から閉そく区間B3まで走行する。そのため、時刻t11に計時が開始された後に、自列車11Aの閉そく区間走行終了は、B1→B2の場合とB2→B3の場合の2回発生する。すなわち、ステップS302の計時中断処理が2回発生する。2回の計時中断により得られる2つの計測時間と、時刻t13に計測終了したときに得られる計測時間とを加算することで、先行列車11Bが1つの閉そく区間B4の一端から他端まで走行するのに要する時間が得られる。 In addition, if Modification Example 1 is applied to the case where the own train 11A is in block section B3 instead of block section B2 at time t13, as shown by the broken line in FIG. 5, the following will occur. It will behave like this. In this case, while the preceding train 11B runs from one end of the block section B4 to the other end, the own train 11A runs from the block section B1 to the block section B3. Therefore, after time measurement starts at time t11, the end of the block section running of the own train 11A occurs twice: from B1 to B2 and from B2 to B3. That is, the time measurement interruption process in step S302 occurs twice. The preceding train 11B travels from one end of one block section B4 to the other end by adding the two measured times obtained by the two time measurement interruptions and the measured time obtained when the measurement ends at time t13. The time required for
 このように、自列車11Aが複数の閉そく区間に跨って走行する際に、それぞれの閉そく区間で計測される時間を加算することでより精度の高い計測時間が得られ、先行列車11Bの平均速度をより精度良く予測することができる。 In this way, when the own train 11A runs across multiple block sections, more accurate measurement time can be obtained by adding the time measured in each block section, and the average speed of the preceding train 11B can be calculated by adding up the time measured in each block section. can be predicted with higher accuracy.
(変形例2)
 図11は、変形例2を説明するためのフローチャートである。変形例2では、閉そく区間を通過した場合に計時途中で計測を終了せず、連続する閉そく区間に跨って計測部101による計測を行うようにした。そのため、変形例2では、上述した図7,8のフローチャートの内、図8に代えて図11を用いる。なお、図11は、図8のフローチャートのステップS302,S303を削除しステップS302Bを追加したものである。その他の処理は図8の場合と同様であるので、以下では制御が異なる部分について説明する。なお、図5,6を参照しながら説明する。
(Modification 2)
FIG. 11 is a flowchart for explaining modification example 2. In the second modification, when the vehicle passes through a block section, the measurement is not ended midway through time measurement, but the measurement unit 101 performs measurement over consecutive block sections. Therefore, in the second modification, FIG. 11 is used in place of FIG. 8 among the flowcharts of FIGS. 7 and 8 described above. Note that FIG. 11 is the flowchart of FIG. 8, with steps S302 and S303 deleted and step S302B added. Since the other processes are the same as those in FIG. 8, the parts that are controlled differently will be explained below. Note that this will be explained with reference to FIGS. 5 and 6.
 計測部101による計時は、図6において先行列車11Bが閉そく区間B3から閉そく区間B4に移動した時刻t11に開始される。図6の時刻t12において自列車11Aが閉そく区間B2を出ると、図11のステップS301からステップS302Bへ進む。そして、ステップS302Bにおいて、車上制御部100はカメラ110から現示情報を取得する。カメラ110が認識する現示は時刻t12において注意現示から停止現示に変化するので、第1メモリには停止現示が記憶され、第2メモリには注意現示が記憶される。 Timing by the measuring unit 101 starts at time t11 when the preceding train 11B moves from the block section B3 to the block section B4 in FIG. When the own train 11A leaves the block section B2 at time t12 in FIG. 6, the process proceeds from step S301 in FIG. 11 to step S302B. Then, in step S302B, the on-vehicle control unit 100 acquires display information from the camera 110. Since the indication recognized by the camera 110 changes from the caution indication to the stop indication at time t12, the stop indication is stored in the first memory, and the caution indication is stored in the second memory.
 ステップS302Bの処理が終了すると、ステップS304へ進んで再び現示情報が取得される。その結果、第1メモリおよび第2メモリのデータはいずれも停止現示となり、ステップS305において現示が変化していない(N)と判定される。すなわち、時刻t12において自列車11Aが閉そく区間B3に移動すると、ステップS301→ステップS302B→ステップS304→ステップS305→ステップS301のように進むことになる。そして、時刻t12から時刻t13までは、ステップS301→ステップS304→ステップS305→ステップS301の処理が繰り返される。 When the process of step S302B is completed, the process advances to step S304 and the display information is acquired again. As a result, the data in the first memory and the second memory both show a stopped state, and it is determined in step S305 that the state has not changed (N). That is, when the own train 11A moves to the block section B3 at time t12, the process proceeds as follows: step S301 → step S302B → step S304 → step S305 → step S301. From time t12 to time t13, the process of step S301→step S304→step S305→step S301 is repeated.
 図6の時刻t13において、先行列車11Bが閉そく区間B4から閉そく区間B5へ移動すると、地上信号機124Cの現示が停止現示から注意現示へと変化する。その結果、自列車11Aのカメラ110の認識する現示が変化するので、ステップS305において現示が変化した(Y)と判定され、ステップS306→ステップS307と進んで計測部101による計時が終了する。この時の計測時間はt13-t11となり、先行列車11Bが閉そく区間B4を走行した時間が計測されたことになる。そのため、ステップS310における平均速度の算出を精度良く行うことができる。 At time t13 in FIG. 6, when the preceding train 11B moves from the block section B4 to the block section B5, the display on the wayside signal 124C changes from a stop display to a caution display. As a result, the display recognized by the camera 110 of the own train 11A changes, so it is determined in step S305 that the display has changed (Y), and the process proceeds from step S306 to step S307, and the time measurement by the measurement unit 101 ends. . The measured time at this time is t13-t11, which means that the time during which the preceding train 11B traveled in the block section B4 has been measured. Therefore, the average speed calculation in step S310 can be performed with high accuracy.
 図6に示す例の場合には、計測部101による時間計測が2つの閉そく区間B2,B3に跨って行われたが、2つよりも多数の閉そく区間に跨って時間計測が行われる場合もある。例えば、図5の破線で示した自列車11Aのように、自列車11Aが時刻t13のときに閉そく区間B2ではなく閉そく区間B3に在線している場合である。 In the case of the example shown in FIG. 6, the time measurement by the measurement unit 101 was performed across two block sections B2 and B3, but the time measurement may be performed over more than two block sections. be. For example, this is a case where the own train 11A is located in the block section B3 instead of the block section B2 at time t13, like the own train 11A indicated by the broken line in FIG.
 この場合、自列車11Aが閉そく区間B2を通過した際に図11のステップS301からステップS302Bに進み、ステップS302Bで現示情報が取得され、第1メモリに停止現示が記憶され第2メモリには注意現示が記憶される。その後、ステップS304で現示情報が取得されと、第1メモリおよび第2メモリのデータはいずれも停止現示となる。その結果、先行列車11Bが閉そく区間B4を通過して地上信号機124Cが注意現示に変化する時刻t13まで、ステップS301→ステップS304→ステップS305→ステップS301の処理が繰り返される。 In this case, when the own train 11A passes through the block section B2, the process proceeds from step S301 in FIG. The attention indication is memorized. After that, when the display information is acquired in step S304, the data in the first memory and the second memory both become a stopped display. As a result, the processes of step S301→step S304→step S305→step S301 are repeated until time t13 when the preceding train 11B passes through the block section B4 and the wayside signal 124C changes to a caution display.
 図5の時刻t13において、先行列車11Bが閉そく区間B4から閉そく区間B5へ移動すると、ステップS305→ステップS306→ステップS307と処理が進み、計測部101による計時が終了する。すなわち、計測部101による時間計測が、閉そく区間B1から閉そく区間B3までの3つの閉そく区間に跨って行われ、計測時間(t13-t11)が得られる。 At time t13 in FIG. 5, when the preceding train 11B moves from block section B4 to block section B5, the process proceeds from step S305 to step S306 to step S307, and time measurement by the measuring unit 101 ends. That is, time measurement by the measurement unit 101 is performed across three block sections from block section B1 to block section B3, and a measured time (t13-t11) is obtained.
 さらに、以下に、具体的な変形例(代替例)をいくつか挙げるが、本発明は、これらの変形例をさらに組み合わせてもよい。例えば、地上信号機に代わって係員が示す合図を使用しても良い。また、車上制御装置は時期や曜日、時間帯、運転区間別に、過去の運転実績から遅延発生時の運転における運転間隔縮小の低減及び遅延増加の低減に最適な運転パターンを学習、データベースに蓄積し、日時や先行列車の平均速度予測などの条件が一致した場合に、学習した結果を基に予測範囲から最適な運転パターンを選択しても良い。 Furthermore, although some specific modifications (alternatives) are listed below, the present invention may further combine these modifications. For example, a signal given by a staff member may be used instead of a ground signal. In addition, the on-board control device learns the optimal driving pattern for reducing the shortening of driving intervals and reducing the increase in delays in driving when delays occur based on past driving results by season, day of the week, time of day, and driving section, and stores it in a database. However, if conditions such as date and time and average speed prediction of preceding trains match, the optimal driving pattern may be selected from the prediction range based on the learned results.
 以上説明した本発明の実施の形態および変形例によれば、以下の作用効果を奏する。 According to the embodiments and modifications of the present invention described above, the following effects are achieved.
(C1)図1~8等に示すように、列車制御システム10は、所定の経路(線路121)上を移動する列車11に設けられて該列車11を制御する列車制御システム10であって、列車11の在線位置を取得する位置取得部112と、複数の運転パターン、地上信号機の信号現示と制限速度との関係、および、線路121上の複数の地上信号機124および複数の閉そく区間を記憶するデータベース111と、在線位置の閉そく区間の地上信号機を撮影して現示情報を出力するカメラ110と、現示情報に対応する制限速度に基づいて、走行許可位置123および該走行許可位置123までの走行を可能とする走行可能経路120を算出し、走行許可位置123および走行可能経路120に基づいて列車11の走行を制御する車上制御部100と、を備え、車上制御部100は、現示情報の現示が進行以外の現示に変化した場合に、変化のときから現示情報の現示が再び変化するまでの時間間隔(計測時間)を計測する計測部101と、計測の際の現示情報に基づいて、先行列車が在線する閉そく区間をデータベース111から検索する検索部103と、計測部101の計測時間と検索部103で検索された閉そく区間とに基づいて、先行列車の平均速度を予測する演算部102と、を備え、演算部102で予測された平均速度に基づいて列車11の走行を制御する。 (C1) As shown in FIGS. 1 to 8, etc., the train control system 10 is a train control system 10 that is installed on a train 11 moving on a predetermined route (track 121) and controls the train 11. A position acquisition unit 112 that acquires the on-track position of the train 11, and stores a plurality of driving patterns, a relationship between the signal display of a wayside signal and a speed limit, a plurality of wayside signals 124 on the track 121, and a plurality of block sections. A camera 110 that photographs ground signals in the block section at the track location and outputs current information, and a travel permission position 123 and a travel permission position 123 based on the speed limit corresponding to the current information. an on-board control unit 100 that calculates a travelable route 120 that allows the train to travel, and controls the travel of the train 11 based on the travel permission position 123 and the travelable route 120; A measurement unit 101 that measures a time interval (measured time) from the time of change to the time when the presentation of the presentation information changes again when the presentation of the presentation information changes to a presentation other than progress; A search unit 103 searches the database 111 for the block section in which the preceding train is located based on current information at the time of the train. and a calculation unit 102 that predicts the average speed of the train 11, and controls the running of the train 11 based on the average speed predicted by the calculation unit 102.
 このように、現示情報の変化のときから現示情報の現示が再び変化するまでの時間と先行列車の在線する閉そく区間とから、先行列車の平均速度を予測している。そのため、その予測した先行列車11Bの平均速度に基づいて、例えば、自列車11Aと先行列車11Bとの運転間隔が短くならないように自列車11Aの走行を制御することが可能となる。 In this way, the average speed of the preceding train is predicted from the time from when the current information changes until the current state of the current information changes again and from the block section where the preceding train is located. Therefore, based on the predicted average speed of the preceding train 11B, for example, it is possible to control the running of the own train 11A so that the driving interval between the own train 11A and the preceding train 11B does not become short.
(C2)上記(C1)において、図1~8等に示すように、車上制御部100は、データベース111が記憶する複数の運転パターンから、予測した平均速度に基づいて先行列車との運転間隔短縮が低減可能な運転パターンを選択し、自列車11Aの運転パターンを選択された運転パターンに変更する(ステップS303,S311)。その結果、自列車11Aが先行列車11Bに近づき過ぎてしまう運転間隔短縮を防止することができる。 (C2) In (C1) above, as shown in FIGS. 1 to 8, the onboard control unit 100 determines the driving interval between the preceding train and the preceding train based on the predicted average speed from a plurality of driving patterns stored in the database 111. A driving pattern that can reduce shortening is selected, and the driving pattern of the own train 11A is changed to the selected driving pattern (steps S303, S311). As a result, it is possible to prevent the train 11A from shortening the driving interval, which would cause the own train 11A to get too close to the preceding train 11B.
(C3)上記(C1)において、図5~8等に示すように、車上制御部100は、自列車11Aが在線する閉そく区間内を走行中に計測される計測時間に基づいて、先行列車11Bの平均速度を予測する。例えば、図5に示す自列車11Aは、閉そく区間B2に入った時刻t12において計測部101は計時を開始し、同じ閉そく区間B2に在線中の時刻t13に地上信号機124Bの現示変化により計時を終了する。そして、演算部102は、得られた計測時間と先行列車11Bが走行した閉そく区間B4の距離とから、先行列車11Bの平均速度を算出する。 (C3) In (C1) above, as shown in FIGS. 5 to 8, the onboard control unit 100 determines whether the preceding train Predict the average speed of 11B. For example, in the own train 11A shown in FIG. 5, the measurement unit 101 starts timing at time t12 when it enters block section B2, and starts timing at time t13 while the train is in the same block section B2 based on a change in the state of the wayside signal 124B. finish. Then, the calculation unit 102 calculates the average speed of the preceding train 11B from the obtained measurement time and the distance of the block section B4 in which the preceding train 11B traveled.
(C4)上記(C1)において、図1,7,8等に示すように、車上制御部100は、データベース111に基づいて、カメラ110が撮影している地上信号機124が、閉そく区間進入により必ず信号現示が変化する地上信号機か否かを判定し、車上制御部100は、必ず信号現示が変化する地上信号機であると判定すると、計測部101による計測動作を初めからやり直す。場内信号機のような信号機の現示変化を、先行列車の平均速度予測における計時の開始、終了条件に使用すると誤った判定を行うことになるので、ステップS205,S306のように、必ず信号現示が変化する地上信号機であると判定されると制御を終了し、改めて制御を開始して計測動作を最初から始める。 (C4) In (C1) above, as shown in FIGS. The on-board control unit 100 determines whether or not the signal is a ground signal whose signal appearance always changes, and if it is determined that the signal appearance is a ground signal whose signal appearance always changes, it restarts the measurement operation by the measurement unit 101 from the beginning. If changes in the appearance of a signal such as an in-house signal are used as timing start and end conditions for predicting the average speed of the preceding train, incorrect judgments will be made. Therefore, as in steps S205 and S306, be sure to If it is determined that it is a ground signal that changes, the control is terminated, and the control is restarted to start the measurement operation from the beginning.
(C5)上記(C1)において、図1,6,9,10等に示すように、車上制御部100は、連続する2つの閉そく区間B2,B3毎に計測された2つの計測時間(t12-t11)、(t13-t12)に連続性が認められる場合に、連続する2つの閉そく区間B2,B3で得られた2つの計測時間(t12-t11)、(t13-t12)を加算し、演算部102はその加算結果に基づいて先行列車11Bの平均速度を予測する。このように、連続する2つの閉そく区間B2,B3で得られた2つの計測時間を加算することで、先行列車11Bの平均速度をより精度良く予測することができる。 (C5) In (C1) above, as shown in FIGS. -t11) and (t13-t12), add the two measurement times (t12-t11) and (t13-t12) obtained in the two consecutive block sections B2 and B3, The calculation unit 102 predicts the average speed of the preceding train 11B based on the addition result. In this way, by adding the two measurement times obtained in the two consecutive block sections B2 and B3, the average speed of the preceding train 11B can be predicted with higher accuracy.
(C6)上記(C1)において、図1,6,7,11等に示すように、車上制御部100は、自列車11Aの閉そく区間通過前後における現示情報の現示の変化を除外して、計測部101による現示変化までの時間間隔の計測を行わせる。変形例2において、図11のステップS301からステップS305までの処理を採用することで、例えば、図5や図6における時刻t12の前後における現示変化は現示変化として認識されず、現示変化から除外されて時間計測が行われる。それにより、計測部101による時間計測が複数の閉そく区間に跨って行われ、より精度の高い時間計測を行うことができる。 (C6) In (C1) above, as shown in FIGS. 1, 6, 7, 11, etc., the onboard control unit 100 excludes changes in the display information of the display information before and after the own train 11A passes through the block section. Then, the measurement unit 101 measures the time interval until the change in appearance. In modification 2, by adopting the processes from step S301 to step S305 in FIG. 11, for example, the change in appearance before and after time t12 in FIGS. 5 and 6 is not recognized as a change in appearance, and the change in appearance is The time measurement is performed after being excluded from the Thereby, the time measurement by the measurement unit 101 is performed over a plurality of block sections, and more accurate time measurement can be performed.
(C7)上記(C2)において、図1,6~8等に示すように、車上制御部100は、自列車11Aが経路上を移動中に演算部102により予測される複数の平均速度から最も速い平均速度を選択し、選択した最も速い平均速度に基づいて、先行列車11Bとの運転間隔短縮が低減可能な運転パターンを選択する。予測可能な範囲の中から最も高速条件の平均速度予測値を選択することで、予測精度のバラつきにより誤った判定で運転パターンを変更することによる遅延を防止することができる。 (C7) In (C2) above, as shown in FIGS. 1, 6 to 8, etc., the onboard control unit 100 calculates the average speed predicted by the calculation unit 102 while the own train 11A is moving on the route. The fastest average speed is selected, and based on the selected fastest average speed, a driving pattern that can reduce the shortening of the driving interval with the preceding train 11B is selected. By selecting the predicted average speed value for the highest speed condition from the predictable range, it is possible to prevent delays caused by changing the driving pattern due to incorrect determination due to variations in prediction accuracy.
(C8)図1~8等に示すように、所定の経路上を移動する列車の制御方法であって、自列車11Aが在線する閉そく区間の地上信号機の現示情報の現示が進行以外の現示に変化した場合に、その変化のときから現示情報の現示が再び変化するまでの時間間隔を計測し(ステップS204からステップS307まで)、計測の際の現示情報に基づいて、先行列車11Bが在線する閉そく区間を、経路上の複数の閉そく区間を記憶するデータベース111から検索し、時間間隔と検索された閉そく区間とに基づいて、先行列車11Bの平均速度を予測し(ステップS310)、予測した平均速度に基づいて自列車11Aの走行を制御する(ステップS311)。
 その結果、予測した先行列車11Bの平均速度に基づいて、例えば、自列車11Aと先行列車11Bとの運転間隔が短くならないように自列車11Aの走行を制御することが可能となる。
(C8) As shown in Figures 1 to 8, etc., there is a method of controlling a train moving on a predetermined route, in which the display information of the aboveground signal of the block section in which the own train 11A is located is other than progress. When the display changes, the time interval from the time of the change until the display of the display information changes again (from step S204 to step S307), and based on the display information at the time of measurement, The block section where the preceding train 11B is located is searched from the database 111 that stores a plurality of block sections on the route, and the average speed of the preceding train 11B is predicted based on the time interval and the searched block section (step S310), and the running of the own train 11A is controlled based on the predicted average speed (step S311).
As a result, based on the predicted average speed of the preceding train 11B, it becomes possible to control the traveling of the own train 11A so that the driving interval between the own train 11A and the preceding train 11B does not become short, for example.
 以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。本発明に開示される技術的思考の範囲内において当業者による様々な変更及び修正が可能であり、様々な変形例が含まれる。また、上述した実施の形態は本発明を分かりやすく説明するために挙げた例であり、必ずしも説明した全ての構成を備えるものに限定されるものではない。さらにまた、上述した実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。 The embodiments and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the characteristics of the invention are not impaired. Various changes and modifications can be made by those skilled in the art within the scope of the technical idea disclosed in the present invention, and various modifications are included. Further, the embodiments described above are examples given to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to add, delete, or replace some of the configurations of the embodiments described above with other configurations.
 10…列車制御システム、11…列車、11A…自列車、11B…先行列車、100…車上制御部、101…計測部、102…演算部、103…検索部、110…カメラ、111…データベース、112…位置取得部、120,120A,120B…走行可能経路、121…線路、122…到着駅、123,123A,123B…走行許可位置、124,124A~124E…地上信号機、125,125A,125B…制限速度、126,126A,126B…走行軌跡、B1~B5…閉そく区間 DESCRIPTION OF SYMBOLS 10... Train control system, 11... Train, 11A... Own train, 11B... Preceding train, 100... Onboard control section, 101... Measurement section, 102... Calculation section, 103... Search section, 110... Camera, 111... Database, 112... Position acquisition unit, 120, 120A, 120B... Drivable route, 121... Railroad, 122... Arrival station, 123, 123A, 123B... Driving permitted position, 124, 124A to 124E... Ground signal, 125, 125A, 125B... Speed limit, 126, 126A, 126B...Travel trajectory, B1-B5...Block section

Claims (8)

  1.  所定の経路上を移動する列車に設けられて該列車を制御する列車制御システムであって、
     前記列車の在線位置を取得する位置取得部と、
     複数の運転パターン、地上信号機の信号現示と制限速度との関係、および、前記経路上の複数の地上信号機および複数の閉そく区間を記憶するデータベースと、
     前記在線位置の閉そく区間の地上信号機を撮影して現示情報を出力するカメラと、
     前記現示情報に対応する前記制限速度に基づいて、走行許可位置および該走行許可位置までの走行を可能とする走行可能経路を算出し、前記走行許可位置および前記走行可能経路に基づいて前記列車の走行を制御する車上制御部と、を備え、
     前記車上制御部は、
     前記現示情報の現示が進行以外の現示に変化した場合に、前記変化のときから前記現示情報の現示が再び変化するまでの時間間隔を計測する計測部と、
     前記計測の際の前記現示情報に基づいて、先行列車が在線する閉そく区間を前記データベースから検索する検索部と、
     前記時間間隔と前記検索部で検索された前記閉そく区間とに基づいて、前記先行列車の平均速度を予測する予測部と、を備え、
     前記予測部で予測された前記平均速度に基づいて前記列車の走行を制御する、列車制御システム。
    A train control system installed on a train moving on a predetermined route to control the train,
    a position acquisition unit that acquires the on-track position of the train;
    a database that stores a plurality of driving patterns, a relationship between a signal display of a ground signal and a speed limit, a plurality of ground signals and a plurality of block sections on the route;
    a camera that photographs a ground signal in a block section of the line location and outputs current information;
    Based on the speed limit corresponding to the current information, a travel permitted position and a travelable route that allows traveling to the travel permitted position are calculated, and the train is moved based on the travel permitted position and the travelable route. an on-vehicle control unit that controls the running of the vehicle;
    The on-board control section includes:
    a measuring unit that measures a time interval from the time of the change until the display of the display information changes again when the display of the display information changes to a display other than progress;
    a search unit that searches the database for a block section in which a preceding train is located based on the current information at the time of the measurement;
    a prediction unit that predicts the average speed of the preceding train based on the time interval and the block section searched by the search unit,
    A train control system that controls running of the train based on the average speed predicted by the prediction unit.
  2.  請求項1に記載の列車制御システムにおいて、
     前記車上制御部は、
     前記データベースが記憶する前記複数の運転パターンから、前記平均速度に基づいて前記先行列車との運転間隔短縮が低減可能な運転パターンを選択し、
     前記列車の運転パターンを選択された運転パターンに変更する、列車制御システム。
    The train control system according to claim 1,
    The on-board control section includes:
    From the plurality of driving patterns stored in the database, selecting a driving pattern that can reduce the shortening of the driving interval with the preceding train based on the average speed,
    A train control system that changes a driving pattern of the train to a selected driving pattern.
  3.  請求項1に記載の列車制御システムにおいて、
     前記車上制御部は、
     前記列車が在線する閉そく区間内を走行中に計測される前記時間間隔に基づいて、前記平均速度を予測する、列車制御システム。
    The train control system according to claim 1,
    The on-board control section includes:
    A train control system that predicts the average speed based on the time interval measured while the train is traveling within a block section in which the train is located.
  4.  請求項1に記載の列車制御システムであって、
     前記車上制御部は、
     前記データベースに基づいて、前記カメラが撮影している前記地上信号機が、閉そく区間進入により必ず信号現示が変化する地上信号機か否かを判定する判定部をさらに備え、
     前記車上制御部は、前記判定部が必ず信号現示が変化する地上信号機であると判定すると、前記計測部による計測動作を初めからやり直す、列車制御システム。
    The train control system according to claim 1,
    The on-board control section includes:
    further comprising a determination unit that determines, based on the database, whether the ground signal photographed by the camera is a ground signal whose signal appearance always changes when entering a block section;
    In the train control system, the on-board control unit restarts the measurement operation by the measurement unit from the beginning when the determination unit determines that the signal is a ground signal in which the signal appearance always changes.
  5.  請求項1に記載の列車制御システムにおいて、
     前記車上制御部は、連続する2つ以上の前記閉そく区間毎に計測された複数の前記時間間隔に連続性が認められる場合に、連続する2つ以上の閉そく区間で得られた複数の前記時間間隔を加算して出力する加算部をさらに備え、
     前記予測部は、前記加算部の出力に基づいて前記平均速度を予測する、列車制御システム。
    The train control system according to claim 1,
    When continuity is recognized in the plurality of time intervals measured for each of two or more consecutive block sections, the on-board control unit may be configured to further comprising an adder that adds and outputs the time intervals;
    The train control system wherein the prediction unit predicts the average speed based on the output of the addition unit.
  6.  請求項1に記載の列車制御システムにおいて、
     前記車上制御部は、
     前記列車の閉そく区間通過前後における前記現示情報の現示の変化を除外して、前記計測部による前記時間間隔の計測を行わせる、列車制御システム。
    The train control system according to claim 1,
    The on-board control section includes:
    A train control system that causes the measurement unit to measure the time interval while excluding changes in the display information of the display information before and after the train passes through a block section.
  7.  請求項2に記載の列車制御システムにおいて、
     前記車上制御部は、
     前記列車が前記経路上を移動中に前記予測部により予測される複数の前記平均速度から最も速い平均速度を選択し、
     選択した前記最も速い平均速度に基づいて、前記先行列車との運転間隔短縮が低減可能な運転パターンを選択する、列車制御システム。
    The train control system according to claim 2,
    The on-board control section includes:
    selecting the fastest average speed from the plurality of average speeds predicted by the prediction unit while the train is moving on the route;
    A train control system that selects a driving pattern that can reduce the shortening of a driving interval with the preceding train based on the selected fastest average speed.
  8.  所定の経路上を移動する列車の列車制御方法であって、
     列車が在線する閉そく区間の地上信号機の現示情報の現示が進行以外の現示に変化した場合に、前記変化のときから前記現示情報の現示が再び変化するまでの時間間隔を計測し、
     前記計測の際の前記現示情報に基づいて、先行列車が在線する閉そく区間を、前記経路上の複数の閉そく区間を記憶するデータベースから検索し、
     前記時間間隔と検索された前記閉そく区間とに基づいて、前記先行列車の平均速度を予測し、
     予測した前記平均速度に基づいて前記列車の走行を制御する、列車制御方法。
    A train control method for a train moving on a predetermined route, the method comprising:
    When the display of the display information of the above ground signal in the block section where the train is located changes to a display other than progress, measure the time interval from the time of the change until the display of the display information changes again. death,
    Searching for a block section where the preceding train is located from a database storing a plurality of block sections on the route based on the current information at the time of the measurement,
    predicting the average speed of the preceding train based on the time interval and the searched block section;
    A train control method that controls running of the train based on the predicted average speed.
PCT/JP2022/045558 2022-03-31 2022-12-09 Train control system and train control method WO2023188564A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022059083 2022-03-31
JP2022-059083 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023188564A1 true WO2023188564A1 (en) 2023-10-05

Family

ID=88199981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045558 WO2023188564A1 (en) 2022-03-31 2022-12-09 Train control system and train control method

Country Status (1)

Country Link
WO (1) WO2023188564A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101504A (en) * 2000-09-25 2002-04-05 Kawasaki Heavy Ind Ltd Drive-control method for mobile unit and device
JP2002204507A (en) * 2001-01-05 2002-07-19 Hitachi Ltd Train group control system, train group control method, on-train ato device and ground control device
JP2010036803A (en) * 2008-08-07 2010-02-18 Nippon Signal Co Ltd:The Automatic train control device
JP2011126404A (en) * 2009-12-17 2011-06-30 Mitsubishi Heavy Ind Ltd Operational support device for vehicle not powered by overhead electric wire
JP2013023054A (en) * 2011-07-20 2013-02-04 Hitachi Ltd Train control system
JP2021101613A (en) * 2017-06-14 2021-07-08 日本信号株式会社 On-board apparatus for automatic train operation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101504A (en) * 2000-09-25 2002-04-05 Kawasaki Heavy Ind Ltd Drive-control method for mobile unit and device
JP2002204507A (en) * 2001-01-05 2002-07-19 Hitachi Ltd Train group control system, train group control method, on-train ato device and ground control device
JP2010036803A (en) * 2008-08-07 2010-02-18 Nippon Signal Co Ltd:The Automatic train control device
JP2011126404A (en) * 2009-12-17 2011-06-30 Mitsubishi Heavy Ind Ltd Operational support device for vehicle not powered by overhead electric wire
JP2013023054A (en) * 2011-07-20 2013-02-04 Hitachi Ltd Train control system
JP2021101613A (en) * 2017-06-14 2021-07-08 日本信号株式会社 On-board apparatus for automatic train operation system

Similar Documents

Publication Publication Date Title
CN107924617B (en) System and method for determining navigation information for an autonomous vehicle
JP5689464B2 (en) A method for determining the type of road condition for a vehicle in a predictive manner
JP5644168B2 (en) Driving assistance device
AU2014100528A4 (en) Systems and methods for determining route location
CN101652802B (en) Safe driving assisting device
US20100063657A1 (en) System, method and computer readable memory medium for verifying track database information
JP2008009870A (en) Information storage device and program for control
US20160091315A1 (en) Vehicle information-processing device
CN108603764A (en) Information provider unit, information-providing server and information providing method
CN104999958A (en) Automatic control system and method for steering lamp
JP2006331002A (en) Signal controller
JP2008305042A (en) Car navigation device, road sign recognition method and program
JP6860757B2 (en) Intersection passage control system
US20180180432A1 (en) Vehicular traffic pattern application
WO2023188564A1 (en) Train control system and train control method
KR20190064228A (en) Apparatus and method of providing information of traffic lanes using image sensing and vehicle control method using the same
EP3747686A1 (en) Travel pattern creation device, travel pattern creation method and automatic train operation device
AU2020289782B2 (en) Vehicle control system
JP3784171B2 (en) Navigation device
JP6533381B2 (en) Schedule management device
RU2777862C1 (en) System for formation of energy-efficient navigation route of operated vehicle
RU2777854C1 (en) Device for formation of energy-efficient navigation route of operated vehicle
RU2777857C1 (en) Device for formation of modified energy-efficient track of operated vehicle
RU2777858C1 (en) Vehicle with the function of forming a modified energy efficient track of the operating vehicle
JP2019133248A (en) Vehicle control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935693

Country of ref document: EP

Kind code of ref document: A1