WO2023188286A1 - Training device, estimation device, training method, and recording medium - Google Patents

Training device, estimation device, training method, and recording medium Download PDF

Info

Publication number
WO2023188286A1
WO2023188286A1 PCT/JP2022/016569 JP2022016569W WO2023188286A1 WO 2023188286 A1 WO2023188286 A1 WO 2023188286A1 JP 2022016569 W JP2022016569 W JP 2022016569W WO 2023188286 A1 WO2023188286 A1 WO 2023188286A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
value
model
evaluation function
reference value
Prior art date
Application number
PCT/JP2022/016569
Other languages
French (fr)
Japanese (ja)
Inventor
智哉 坂井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/016569 priority Critical patent/WO2023188286A1/en
Publication of WO2023188286A1 publication Critical patent/WO2023188286A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a learning device, an estimation device, a learning method, and a recording medium.
  • the parameter adjustment device described in Patent Document 1 sets a plurality of parameter values to one of two hyperparameters, hyperparameter A, and sets a fixed value to the other hyperparameter B. .
  • the parameter adjustment device sends the combinations of each value of hyperparameter A and the fixed value of hyperparameter B to the learning device, obtains the correct answer rate for each combination, and calculates the relationship between the value of hyperparameter A and the correct answer rate. Approximate with a function.
  • the parameter adjustment device approximates the relationship between the value of hyperparameter A and the correct answer rate with a function for other values of hyperparameter B, and selects the value of hyperparameter A and the value of hyperparameter B that gives the highest correct answer rate. Find a combination with.
  • An example of the purpose of this disclosure is to provide a learning device, an estimation device, a learning method, and a recording medium that can solve the above-mentioned problems.
  • the learning device determines to what extent the estimation accuracy of the model can be obtained through further machine learning, based on the evaluation function value indicating the evaluation of the estimation accuracy of the model generated in machine learning. and learning means that performs machine learning to update the model so that the output value of the evaluation function approaches the reference value.
  • the estimation device improves the estimation accuracy of the model by further machine learning, which is set based on the evaluation function value indicating the evaluation of the estimation accuracy of the model generated in machine learning.
  • the estimation unit includes an estimation unit that calculates an estimated value regarding the estimation target using the model updated by machine learning that brings the output value of the evaluation function closer to a reference value of how far to obtain it.
  • the learning method is such that the computer improves the estimation accuracy of the model in further machine learning based on the evaluation function value indicating the evaluation of the estimation accuracy of the model generated in machine learning.
  • the method includes setting a reference value to determine how far the evaluation function should be obtained, and training the model so that the output value of the evaluation function approaches the reference value.
  • the recording medium allows the computer to evaluate the estimation accuracy of the model in further machine learning based on the evaluation function value indicating the evaluation of the estimation accuracy of the model generated in machine learning.
  • This recording medium records a program for executing the following steps: setting a reference value to determine how far to obtain the evaluation function, and learning the model so that the output value of the evaluation function approaches the reference value.
  • hyperparameter values for adjusting the breadth of parameter value search can be set relatively easily.
  • FIG. 1 is a diagram illustrating an example of the configuration of a learning device according to an embodiment.
  • FIG. 6 is a diagram illustrating an example of division of learning data by the data acquisition unit according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of robustness against changes in parameter values.
  • FIG. 2 is a diagram illustrating a first example of a processing procedure in which the learning device according to the embodiment performs model learning.
  • FIG. 3 is a diagram illustrating an example of start conditions and end conditions for learning using reference values according to the embodiment.
  • FIG. 7 is a diagram illustrating a second example of a processing procedure in which the learning device according to the embodiment performs model learning.
  • FIG. 7 is a diagram illustrating a third example of a processing procedure in which the learning device according to the embodiment performs model learning.
  • FIG. 1 is a diagram illustrating an example of the configuration of an estimation device according to an embodiment. It is a figure showing another example of composition of a learning device concerning an embodiment.
  • FIG. 3 is a diagram illustrating an example of a processing procedure in a learning method according to an embodiment.
  • FIG. 1 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • FIG. 1 is a diagram showing an example of the configuration of a learning device according to an embodiment.
  • the learning device 100 includes a communication section 110, a display section 120, an operation input section 130, a storage section 180, and a control section 190.
  • the storage unit 180 includes a model storage unit 181.
  • the control unit 190 includes a data acquisition unit 191, a reference setting unit 192, and a learning unit 193.
  • the learning device 100 performs model learning.
  • the learning device 100 may be configured using a computer such as a personal computer (PC) or a workstation.
  • the communication unit 110 communicates with other devices.
  • the communication unit 110 may communicate with a device that stores learning data and receive the learning data.
  • the display unit 120 includes a display screen such as a liquid crystal panel or an LED (Light Emitting Diode) panel, and displays various images.
  • the operation input unit 130 includes input devices such as a keyboard and a mouse, and receives user operations.
  • the display unit 120 may display a hyperparameter value input screen for hyperparameters whose values are set by the user.
  • the operation input unit 130 may also accept a user operation to input a hyperparameter value.
  • the storage unit 180 stores various data.
  • the storage unit 180 is configured using a storage device included in the learning device 100.
  • the model storage unit 181 stores a learning target model.
  • the models to be learned by the learning device 100 are not limited to those stored in the model storage unit 181.
  • a model to be learned by the learning device 100 may be implemented using hardware and configured as a separate device from the learning device 100.
  • the storage unit 180 may be configured without the model storage unit 181.
  • the control unit 190 controls each unit of the learning device 100 to perform various processes.
  • the functions of the control unit 190 may be executed, for example, by a CPU (Central Processing Unit) included in the learning device 100 reading a program from the storage unit 180 and executing it.
  • a CPU Central Processing Unit
  • the data acquisition unit 191 acquires learning data. For example, when the communication unit 110 receives learning data from another device, the data acquisition unit 191 extracts the learning data from the data received by the communication unit 110. Furthermore, the data acquisition unit 191 divides the acquired learning data into training data, confirmation data, and test data. In the following, a case where the data acquisition unit 191 acquires supervised sample data as learning data will be described as an example.
  • the supervised sample data referred to here can be a set whose elements are combinations of inputs to a model and correct answers of model outputs for the inputs.
  • FIG. 2 is a diagram showing an example of division of learning data by the data acquisition unit 191.
  • the data acquisition unit 191 divides the supervised sample data acquired as learning data into training data, confirmation data, and test data. Specifically, the data acquisition unit 191 converts a plurality of elements included in the supervised sample data, which are a combination of an input to a model and a correct answer of the output of the model in response to the input, into elements of the training data and confirmation data. and test data elements.
  • Training data is used as data for adjusting the values of model parameters.
  • the parameters are variables included in the model and whose values are subject to updating by the learning algorithm. For example, when learning a Perceptron-type neural network using backpropagation, the weighting coefficients between nodes and the bias at each node are examples of parameters. do.
  • the confirmation data is used as data for adjusting hyperparameter values in model learning.
  • the hyperparameters referred to here are parameters related to model learning, such as parameters for setting the behavior of a learning algorithm, other than parameters whose values are subject to update by the learning algorithm. For example, when learning a perceptron-type neural network using error backpropagation, the learning rate is an example of a parameter. Further, when the structure of the neural network is made variable, values related to the structure of the neural network, such as the number of hidden layers and the number of nodes per layer, can also be treated as hyperparameters.
  • the learning device 100 may set a plurality of hyperparameter values and adopt one of the hyperparameter values using confirmation data.
  • the learning device 100 uses the training data to adjust the parameter values for each of the set hyperparameter values, and then evaluates the model using the confirmation data.
  • the learning device 100 may then adopt the hyperparameter value with the highest evaluation.
  • the reference value of the evaluation function value which will be described later, can also be treated as a hyperparameter.
  • the learning device 100 sets only one value at a time for the reference value of the evaluation function value.
  • Test data is used as data to evaluate the model obtained through learning.
  • the learning device 100 may evaluate a model obtained through learning using test data. Then, the learning device 100 or the user may decide whether to adopt the obtained model or re-learn the model based on the evaluation result.
  • Training data and validation data can be referred to as data used to construct a model.
  • Test data can be said to be data used for model evaluation. Further, the training data can be said to be data for updating parameter values of the model.
  • the confirmation data and test data can be said to be data other than data for updating parameter values of the model.
  • the division of supervised sample data performed by the data acquisition unit 191 is not limited to division into training data, confirmation data, and test data.
  • the data acquisition unit 191 may divide the acquired supervised sample data into training data and confirmation data.
  • the standard setting unit 192 sets a standard value of the evaluation function value for the evaluation function used for model learning.
  • the standard setting unit 192 corresponds to an example of standard setting means.
  • the evaluation function here is a function that indicates the evaluation of the estimation accuracy of the model.
  • the estimation accuracy of the model indicated by the evaluation function can also be said to be the degree of adaptation of the model to the data input to the model. It can be said that a high evaluation indicated by the evaluation function means that the degree of fit of the model to the input data is high.
  • the evaluation function can also be called a function that indicates the degree of fit of the model to the data input to the model.
  • the evaluation function value when training data is input to a model can be said to indicate the degree of adaptation of the model to the training data.
  • the learning device 100 uses a function such as an error function or a cross entropy loss function, in which a smaller value indicates a higher evaluation, as an evaluation function.
  • a function such as an error function or a cross entropy loss function, in which a smaller value indicates a higher evaluation, as an evaluation function.
  • the smaller the value of the evaluation function the better the model fits the input data.
  • the minimum value of the evaluation function value is 0
  • the error here may be a value expressed as "1-accuracy”.
  • the loss or error here may be a value based on the distance between the output value of the model and the correct value, such as L1 loss or L2 loss.
  • the evaluation function used by the learning unit 193 is not limited to a specific one.
  • the learning unit 193 may use, as the evaluation function, a function in which a larger evaluation function value indicates a higher evaluation.
  • the reference value here is a value representing the standard of how much estimation accuracy can be obtained for training data in model learning.
  • the reference value can also be called a value that specifies the degree of adaptation of the model to the training data.
  • the reference value can also be said to represent a criterion for preventing overfitting. The closer the reference value is to 0, the more suited the model is to the training data.
  • the learning unit 193 performs model learning.
  • the learning unit 193 performs model learning to bring the evaluation function value as close to the reference value as possible.
  • the learning unit 193 corresponds to an example of learning means.
  • the standard setting unit 192 sets, as a standard value, an evaluation function value indicating that the degree of conformity of the model to the training data is more limited than the maximum degree of conformity. The smaller the evaluation function value is, the higher the degree of conformity is. If the minimum value of the evaluation function value is 0, the standard setting unit 192 sets a value larger than 0 as the standard value of the evaluation function value.
  • the learning unit 193 performs model learning to bring the evaluation function value as close to the reference value as possible.
  • the reference value set by the reference setting unit 192 is used as a hyperparameter for adjusting the width of the search for the parameter value.
  • the learning unit 193 searches for a parameter value and, after reaching a local solution in which the evaluation function value becomes the reference value or a value close to it, searches for another local solution.
  • the possibility of exploration is considered to be relatively low.
  • the reference value is relatively large, the possibility that the learning unit 193 searches for another local solution after reaching a local solution in which the evaluation function value becomes the reference value or a value close to it in the search for the parameter value is comparatively low. It is considered to be highly accurate.
  • the learning unit 193 uses a solution search method that probabilistically determines the next search point, such as a stochastic gradient method, so that it can search for another local solution. You can do it like this.
  • overfitting can be prevented by the learning unit 193 learning the model using the reference value of the evaluation function value.
  • the learning unit 193 can obtain parameter values that are relatively robust against changes in parameter values.
  • being robust against changes in parameter values means that the evaluation function value does not increase much even if the parameter values change somewhat.
  • FIG. 3 is a diagram illustrating an example of robustness against changes in parameter values.
  • the horizontal axis of the graph in FIG. 3 indicates parameter values.
  • the vertical axis indicates the evaluation function value.
  • FIG. 3 shows an example in which the evaluation function value becomes minimum when the value of the parameter w is w1.
  • a line L11 shows an example where the parameter value w1 is relatively robust against changes in the parameter value.
  • line L12 shows an example where the parameter value w1 is not relatively robust against changes in the parameter value.
  • the increase in the evaluation function value is smaller in the case of the line L11 when the value of the parameter w changes somewhat. From this, when the learning unit 193 obtains a local solution for the parameter value indicated by the line L11, learning progresses and new data is obtained more than when the learning section 193 obtains a local solution for the parameter value indicated by the line L12. It is expected that it will be easier to obtain parameter values that are suitable for the new data. In this way, parameter values that are robust to changes in parameter values are expected to have higher accuracy of the model as learning progresses than parameter values that are not robust to changes in parameter values.
  • the reference setting unit 192 sets the reference value based on the evaluation function value obtained through the learning up to that point.
  • the standard setting unit 192 may set an evaluation function value obtained by applying confirmation data to a model in a past epoch as a standard value in a new epoch.
  • the evaluation function value obtained by applying data such as confirmation data to a model an average value of evaluation function values obtained for each element included in the data may be used.
  • the epoch or one epoch here is one time of model learning that the learning unit 193 repeatedly performs using the same supervised sample data.
  • the number of times an epoch is repeated is also referred to as the epoch number.
  • An epoch corresponds to an example of one unit of learning of a model that is repeatedly performed by the learning unit 193.
  • the evaluation function value obtained by applying training data to the model is also referred to as a training loss
  • the evaluation function value obtained by applying confirmation data to the model is also referred to as a confirmation loss
  • the evaluation function value obtained by applying test data to a model is also called test loss.
  • the learning unit 193 uses an error function as an evaluation function
  • the evaluation function value obtained by applying training data to the model is also referred to as a training error
  • the evaluation function value obtained by applying confirmation data to the model is also referred to as a confirmation error
  • an evaluation function value obtained by applying test data to a model is also called a test error.
  • the standard setting unit 192 may set any one of a training loss, a verification loss, a test loss, a training error, a verification error, or a test error as the standard value of the evaluation function.
  • the standard setting unit 192 may calculate a value obtained by calculation based on any one of the training loss, confirmation loss, test loss, training error, confirmation error, or test error, such as a value obtained by multiplying the training loss by a predetermined coefficient. , may be set as the reference value of the evaluation function.
  • the standard setting unit 192 may set a combination of any two or more indicators among training loss, verification loss, test loss, training error, verification error, or test error, such as the average value of training loss and verification loss.
  • a value obtained by calculation based on the evaluation function may be set as a reference value of the evaluation function.
  • the reference setting unit 192 may set the reference value by setting an evaluation function including the reference value.
  • the standard setting unit 192 may set the evaluation function J * (g) shown by equation (1).
  • J(g) indicates the model to be learned.
  • J(g) indicates the original evaluation function (evaluation function that does not include the reference value).
  • b indicates a reference value.
  • the sign of the term "-J(g)" is negative (-)
  • the slope of the evaluation function J * (g) is opposite to that of J(g).
  • the learning unit 193 adjusts the parameter value so that the value of the evaluation function J(g) approaches the minimum value 0 as much as possible. Explore.
  • the learning unit 193 searches for parameter values so as to bring the value of the evaluation function J * (g) as close to the reference value b as possible.
  • the evaluation function J * (g) is defined as whether the output value of the evaluation function J(g) is equal to the reference value b or the output value of the evaluation function J(g) is within the domain of the evaluation function J(g). In a portion larger than the reference value b, the same value as the output value of the evaluation function J(g) is output. On the other hand, the evaluation function J * (g) is defined as the output of the evaluation function J(g) in the domain where the output value of the evaluation function J(g) is smaller than the reference value b. Output a value greater than the value.
  • the evaluation function J * (g) is also referred to as a restricted evaluation function.
  • the standard setting unit 192 may set the evaluation function value in an epoch in which the evaluation function value satisfies a predetermined standard among the epochs already executed by the learning unit 193 as the standard value in the next epoch.
  • the evaluation function value referred to for selecting an epoch and the evaluation function value set as the reference value may be evaluation function values of different data.
  • the standard setting unit 192 may select an epoch in which the confirmation error satisfies a predetermined standard.
  • the predetermined criterion may be a criterion that when the confirmation errors for each epoch are arranged in descending order of value, the order is within a predetermined order of higher values.
  • the reference setting unit 192 may set the reference value based on the training error in the selected epoch. Further, the standard setting unit 192 sets a value obtained by calculation using the training error, such as a value obtained by adding a predetermined value to the training error, or a value obtained by subtracting a predetermined value from the training error, as a standard. It may also be set to a value.
  • the standard setting unit 192 may set the evaluation function value in the epoch with the smallest evaluation function value among the epochs already executed by the learning unit 193 as the standard value in the next epoch.
  • the evaluation function value referred to for selecting an epoch and the evaluation function value set as the reference value may be evaluation function values of different data.
  • the standard setting unit 192 may select the epoch with the smallest training error among the epochs that have been executed by the learning unit 193, and set the confirmation error in that epoch as the standard value in the next epoch. .
  • the standard setting unit 192 can set the standard value by referring to good learning results in that the epoch with the minimum training error is selected.
  • the confirmation error is generally considered to be a larger value than the training error, the standard setting unit 192 sets a relatively large standard value. By learning the model based on this reference value, the learning unit 193 is expected to be less prone to overfitting.
  • the standard setting unit 192 may select the epoch with the smallest confirmation error among the epochs already executed by the learning unit 193, and set the training error in that epoch as the standard value in the next epoch. In epochs where the confirmation error is small, the generalization performance of the obtained model is expected to be relatively high.
  • the standard setting unit 192 sets the training error in the epoch with the minimum confirmation error as the standard value, thereby setting the training error when a model with relatively high generalization performance is obtained as the standard value.
  • the learning unit 193 is expected to make it easier to search for a solution that yields a model with relatively high generalization performance, and in this respect, overfitting can be avoided. It is expected.
  • FIG. 4 is a diagram showing a first example of a processing procedure in which the learning device 100 performs model learning.
  • the learning unit 193 performs learning for the first epoch (step S101).
  • the first epoch of learning there is no epoch that has been executed by the learning unit 193, and the reference setting unit 192 has not set a reference value. Therefore, the learning unit 193 performs model learning without setting a reference value. If no reference value is set, the learning unit 193 performs model learning so that the evaluation function value approaches the minimum value.
  • the standard setting unit 192 sets a standard value for the evaluation function value based on the learning result for the first epoch (step S102).
  • the learning unit 193 performs learning for one epoch using the reference value set by the reference setting unit 192 (step S103).
  • the standard setting unit 192 determines whether the index value in the epoch most recently executed by the learning unit 193 is the minimum value among the index values in the epochs executed by the learning unit 193 (step S104).
  • the index value here may be any of training loss, validation loss, test loss, training error, validation error, or test error.
  • the index value that the standard setting unit 192 uses for the determination in step S104 may be different from the index value that is used to set the reference value.
  • step S104 determines that the index value in the most recently executed epoch is the minimum value among the index values in the executed epochs (step S104: YES).
  • the learning unit 193 sets the reference value to The value is updated to the value obtained from the learning result in the most recent epoch (step S111).
  • the learning unit 193 determines whether a predetermined learning end condition is satisfied (step S112).
  • the learning end condition here is a condition for the learning unit 193 to determine whether to end model learning.
  • the learning end conditions here are not limited to specific conditions.
  • the learning end condition may be that the learning unit 193 has completed learning for a predetermined number of epochs.
  • the learning termination condition may be that the error of the obtained model is less than or equal to a predetermined error threshold.
  • step S112 determines that the learning end condition is not satisfied (step S112: NO)
  • step S112: YES the learning device 100 ends the process of FIG. 4.
  • step S104 determines in step S104 that the index value in the epoch most recently executed by the learning unit 193 is not the minimum value among the index values in the epochs executed by the learning unit 193 (step S104: NO), the process proceeds to step S112.
  • the learning unit 193 may perform learning using the reference value after learning has progressed to a certain extent. For example, as will be described later, the learning unit 193 may perform model learning so as to bring the evaluation function value closer to 0 without using the reference value until a predetermined reference value use start condition is satisfied. Then, after the reference value usage start condition is satisfied, the learning unit 193 may perform model learning so as to bring the evaluation function value closer to the reference value.
  • the reference value usage start condition referred to here is a condition for the learning unit 193 to determine the timing to start learning using the reference value, or a condition for the learning unit 193 to determine whether or not to perform learning using the reference value. This is a condition for doing so.
  • the learning unit 193 may perform learning without using the reference value in the final stage of model learning to improve the performance of the model. For example, the learning unit 193 may perform learning for the last 100 epochs without using the reference value. For example, as will be described later, the learning unit 193 may perform model learning to bring the evaluation function value closer to the reference value until a predetermined reference value use end condition is satisfied. Then, after the reference value use end condition is satisfied, the learning unit 193 may perform model learning so as to bring the evaluation function value closer to 0 without using the reference value.
  • the condition for terminating the use of the reference value here is a condition for the learning unit 193 to determine the timing to end learning using the reference value, or a condition for the learning unit 193 to determine whether or not to end learning using the reference value. This is a condition for making a decision.
  • FIG. 5 is a diagram showing an example of start conditions and end conditions for learning using reference values.
  • the horizontal axis of the graph in FIG. 5 indicates the number of epochs.
  • the vertical axis shows the error.
  • Line L21 shows an example of training error.
  • Line L22 shows an example of confirmation error.
  • the reference setting unit 192 may set the confirmation error in the epoch where the training error is the minimum as the reference value when the training error becomes equal to or less than the threshold value Et.
  • the learning unit 193 performs learning without setting a reference value in the epoch before the reference setting unit 192 sets the reference value, and performs learning based on the reference value in the epoch in which the reference setting unit 192 sets the reference value. You may also do so. Further, the learning unit 193 may perform learning without setting a reference value after the number of epochs reaches M, and may end the learning when the number of epochs reaches N. Both M and N here are positive integers, and M
  • FIG. 6 is a diagram illustrating a second example of a processing procedure in which the learning device 100 performs model learning.
  • the learning unit 193 performs learning for one epoch without setting a reference value (step S201).
  • the standard setting unit 192 determines whether a predetermined standard value use start condition is satisfied (step S202).
  • the conditions for starting to use the reference value are not limited to specific conditions.
  • the condition for starting to use the reference value may be that the training error is less than or equal to a predetermined threshold, but is not limited thereto.
  • step S202 determines that the reference value use start condition is not satisfied (step S202: NO)
  • the process returns to step S201.
  • step S202: YES the reference setting unit 192 sets a reference value (step S211).
  • the standard setting unit 192 selects the epoch with the smallest index value among the epochs that have been executed by the learning unit 193, and sets the standard value based on the learning result for that epoch.
  • the index value here may be any of training loss, validation loss, test loss, training error, validation error, or test error.
  • the index value used by the standard setting unit 192 to select an epoch and the index value used to set the standard value may be different.
  • the learning unit 193 performs learning for one epoch based on the reference value set by the reference setting unit 192 (step S212).
  • the standard setting unit 192 determines whether the index value in the epoch most recently executed by the learning unit 193 is the minimum value among the index values in the epochs executed by the learning unit 193 (step S213).
  • the index value here may be any of training loss, validation loss, test loss, training error, validation error, or test error.
  • the index value that the standard setting unit 192 uses for the determination in step S213 may be different from the index value that is used for setting the reference value.
  • step S213 determines that the index value in the most recently executed epoch is the minimum value among the index values in the executed epochs (step S213: YES)
  • the learning unit 193 sets the reference value to The value is updated to the value obtained from the learning result in the most recent epoch (step S221).
  • the learning unit 193 determines whether a predetermined reference value usage termination condition is satisfied (step S222).
  • the reference value usage termination conditions here are not limited to specific conditions.
  • the reference value use termination condition may be that the learning unit 193 has completed learning for a predetermined number of epochs, but is not limited to this.
  • step S222: NO the process returns to step S103.
  • step S222: NO the learning unit 193 determines whether a predetermined learning termination condition is satisfied (step S231). ).
  • the learning end conditions here are not limited to specific conditions.
  • the learning end condition may be that the learning unit 193 has completed learning for a predetermined number of epochs.
  • the learning termination condition may be that the error of the obtained model is less than or equal to a predetermined error threshold.
  • step S231: NO If the learning unit 193 determines that the learning end condition is not satisfied (step S231: NO), the process returns to step S212. On the other hand, if the learning unit 193 determines that the learning end condition is satisfied (step S231: YES), the learning device 100 ends the process of FIG. 6.
  • step S222 determines whether a predetermined learning termination condition is satisfied.
  • the determination made by the learning unit 193 in step S241 is the same as that in step S231.
  • step S241 If it is determined that the learning end condition is not satisfied (step S241: NO), the learning unit 193 performs learning without setting a reference value for one epoch (step S251). After step S251, the process returns to step S241. On the other hand, if the learning unit 193 determines in step S241 that the learning end condition is satisfied (step S241: YES), the learning device 100 ends the process of FIG. 6.
  • the standard setting unit 192 may set a reference value, and the learning unit 193 may further perform learning for a predetermined number of epochs based on the reference value.
  • the reference setting unit 192 may set the reference value after the learning unit 193 performs learning for 500 epochs.
  • the learning unit 193 may further perform learning for 500 epochs based on the reference value.
  • the standard setting unit 192 may set the training loss at the epoch where the error based on the confirmation data is the minimum (that is, the epoch where the accuracy based on the confirmation data is maximum) as the reference value. It is considered that the epoch with the smallest error based on the confirmation data corresponds to the time before the training loss becomes 0 and overfitting occurs. It is expected that overfitting can be avoided by the standard setting unit 192 setting the training loss in this epoch as a standard value and the learning unit 193 performing learning based on the standard value.
  • FIG. 7 is a diagram illustrating a third example of a processing procedure in which the learning device 100 performs model learning.
  • the learning unit 193 performs learning without setting a reference value for a predetermined number of epochs (step S301).
  • the standard setting unit 192 sets a standard value (step S302). Specifically, the standard setting unit 192 selects the epoch with the smallest index value among the epochs that have been executed by the learning unit 193, and sets the standard value based on the learning result for that epoch.
  • the index value here may be any of training loss, validation loss, test loss, training error, validation error, or test error.
  • the index value used by the standard setting unit 192 to select an epoch and the index value used to set the standard value may be different.
  • the learning unit 193 performs learning for a predetermined number of epochs based on the reference value set by the reference setting unit 192 (step S303). After step S303, the learning device 100 ends the process of FIG. 7.
  • the learning device 100 may further set a reference value and perform learning based on the reference value.
  • the standard setting unit 192 selects the epoch with the smallest index value among the epochs that have been executed by the learning unit 193, and sets the standard value based on the learning result for that epoch.
  • the learning unit 193 performs learning for a predetermined number of epochs based on the reference value set by the reference setting unit 192, as in step S303.
  • the user may instruct the learning device 100 whether to further set a reference value and perform learning based on the reference value.
  • the standard setting unit 192 sets a standard value for determining the estimation accuracy of the model in further machine learning, based on the evaluation function value indicating the estimation accuracy of the model generated in machine learning.
  • the learning unit 193 performs model learning so that the output value of the evaluation function approaches the reference value.
  • the learning device 100 since the evaluation function value is used, it is possible to relatively easily set the hyperparameter value for adjusting the width of the search for the parameter value. Furthermore, in the learning device 100, it is expected that overfitting can be avoided by the learning unit 193 learning the model based on the reference value. Furthermore, in the learning device 100, it is possible to set only one value at a time for setting reference values corresponding to examples of hyperparameter values for adjusting the breadth of search for parameter values. . In particular, with the learning device 100, there is no need to set a plurality of reference values, perform model learning, and select one of the reference values based on the learning results.
  • the learning device 100 is expected to be able to relatively shorten the time required for learning without requiring computational resources such as parallel processing.
  • the standard setting unit 192 can set the standard value based on the evaluation function value obtained by learning, so that the standard value can be set according to the model and the learning situation. It is expected that relatively appropriate standard values can be set in this regard.
  • the standard setting unit 192 sets the standard value to a value indicating that the degree of conformity of the model to the training data is more limited than the maximum degree of conformity among the values that the evaluation function can take. According to the learning device 100, the possibility of overfitting can be reduced by learning using the reference value.
  • the standard setting unit 192 sets a standard value based on an evaluation function value obtained by applying confirmation data, which is data other than data for updating model parameter values (training data), to the model. For example, in epochs where the evaluation function value obtained by applying data other than training data to the model, such as confirmation error, is small, the generalization performance of the obtained model is expected to be relatively high.
  • the standard setting unit 192 sets the training error in the epoch with the minimum confirmation error as the standard value, thereby setting the training error when a model with relatively high generalization performance is obtained as the standard value.
  • the learning unit 193 is expected to make it easier to search for a solution that yields a model with relatively high generalization performance, and in this respect, overfitting can be avoided. It is expected.
  • the standard setting unit 192 performs a process based on the learning result used for setting the standard value in the learning in that epoch. It is determined whether a learning result with a small evaluation function value has been obtained. If it is determined that a learning result with a smaller evaluation function value has been obtained, the standard setting unit 192 updates the standard value based on the learning result in that epoch. Thereby, the standard setting unit 192 can update the standard value as learning of the model by the learning unit 193 progresses, and it is expected that an appropriate standard value can be set according to the progress of learning.
  • the learning unit 193 performs model learning to bring the evaluation function value as close to 0 as possible until a predetermined reference value use start condition is satisfied.
  • the standard setting unit 192 can set the standard value after learning has progressed to a certain extent and the accuracy of the model has stabilized. According to the learning device 100, it is expected that the standard setting unit 192 can set an appropriate standard value in this regard.
  • the learning unit 193 performs model learning so as to bring the evaluation function value as close to 0 as possible after a predetermined reference value usage termination condition is satisfied. According to the learning device 100, learning can be performed without setting a reference value at the final stage of model learning, and in this respect it is expected that the accuracy of the model can be made relatively high.
  • the standard setting unit 192 selects one of the epochs based on the learning results from among the predetermined number of epochs of learning of the model performed by the learning unit 193, and selects the evaluation function value shown in the learning result in the selected epoch.
  • Set standard values based on According to the learning device 100 the standard setting unit 192 only needs to set the standard value once, and in this respect, the time required for learning can be relatively shortened without requiring computational resources such as parallel processing. It is expected that it will be possible. Further, since the standard setting unit 192 sets the standard value at a stage when the learning unit 193 has progressed to a certain extent in learning the model, it is expected that the standard setting unit 192 can set an appropriate standard value.
  • the standard setting unit 192 generates a limited evaluation function.
  • a restricted evaluation function outputs the same value as the output value in a portion of the evaluation function's domain where the output value of the evaluation function is equal to or larger than the reference value, In parts where the output value of the evaluation function is smaller than the reference value, the function outputs a value larger than the reference value.
  • the learning unit 193 performs model learning using the restricted evaluation function set by the standard setting unit 192.
  • the reference value can be included in the restricted evaluation function, and the learning unit 193 does not need to refer to the reference value separately from the evaluation function. According to the learning device 100, in this respect, it is expected that the load on the learning unit 193 is relatively small.
  • FIG. 8 is a diagram illustrating an example of a configuration of an estimation device according to an embodiment.
  • the estimation device 200 includes a communication section 210, a display section 220, an operation input section 230, a storage section 280, and a control section 290.
  • the storage unit 280 includes a model storage unit 181.
  • the control unit 290 includes a data acquisition unit 291 and an estimation unit 292.
  • the estimation device 200 performs estimation using the model learned by the learning device 100.
  • the use of estimation device 200 is not limited to a specific use.
  • the estimation device 200 may be configured as a face authentication device and use a model to calculate the degree of similarity between a face image to be authenticated and a registered face image.
  • the estimation device 200 may input a given sentence into a model and estimate the emotion indicated by the sentence. In this way, the estimation device 200 can be applied to various fields such as computer vision or natural language processing.
  • the estimation device 200 may be configured using a computer such as a personal computer or a workstation. Estimation device 200 may be configured using the computer used as learning device 100. Alternatively, the estimation device 200 may be configured using a computer different from the computer used as the learning device 100.
  • the communication unit 210 communicates with other devices.
  • the communication unit 210 may communicate with another device to receive estimation target data.
  • the display unit 220 includes a display screen such as a liquid crystal panel or an LED panel, and displays various images.
  • the display unit 220 may display the estimation result by the estimation device 200.
  • the operation input unit 230 includes input devices such as a keyboard and a mouse, and receives user operations. A user operation instructing the start of estimation may be accepted.
  • the storage unit 280 stores various data.
  • the storage unit 280 is configured using a storage device included in the estimation device 200.
  • the model storage unit 181 stores a model learned by the learning device 100.
  • the model storage unit 181 of the estimation device 200 stores the same model as the model storage unit 181 of the learning device 100. Therefore, in FIG. 8, 181 is used as the code for the model storage section, as in the case of FIG.
  • the model to be learned by the learning device 100 is configured as a separate device from the learning device 100
  • the model used by the estimating device 200 may also be configured as a separate device from the estimating device 200. good.
  • the storage unit 280 may be configured without the model storage unit 181.
  • the control unit 290 controls each unit of the estimation device 200 to perform various processes, and the function of the control unit 290 may be executed by, for example, a CPU included in the estimation device 200 reading a program from the storage unit 280 and executing it. good.
  • the data acquisition unit 291 acquires data to be estimated. For example, when the communication unit 210 receives data to be estimated from another device, the data acquisition unit 291 extracts the data to be estimated from the data received by the communication unit 210.
  • the estimation unit 292 performs estimation on the estimation target acquired by the data acquisition unit 291.
  • the estimation unit 292 inputs the estimation target data obtained by the data acquisition unit 291 into a model stored in the model storage unit 181, and obtains the output of the model as an estimation result.
  • the estimating unit 292 calculates the estimated value regarding the estimation target using the learned model obtained by learning the model by the learning device 100.
  • the learned model obtained by learning the model by the learning device 100 is set based on the value of the evaluation function that indicates the evaluation of the estimation accuracy of the model, and specifies how much estimation accuracy of the model is to be obtained by further machine learning. This is an example of a model that has been updated using machine learning to bring the output value of the evaluation function closer to the reference value. It is expected that the estimation device 200 does not overfit the model. In this respect, the estimation device 200 is expected to be able to perform estimation with high accuracy.
  • FIG. 9 is a diagram showing another example of the configuration of the learning device according to the embodiment.
  • the learning device 610 includes a reference setting section 611 and a learning section 612.
  • the standard setting unit 611 determines the standard value for determining the estimation accuracy of the model in further machine learning, based on the value of the evaluation function that indicates the evaluation of the estimation accuracy of the model generated in machine learning. Set.
  • the learning unit 612 updates the model by performing machine learning so as to bring the output value of the evaluation function closer to the reference value.
  • the standard setting unit 611 corresponds to an example of standard setting means.
  • the learning unit 612 corresponds to an example of learning means.
  • the learning device 610 it is expected that overfitting can be avoided by the learning unit 612 learning the model based on the reference value. Furthermore, in the learning device 610, it is possible to set only one value at a time for setting reference values corresponding to examples of hyperparameter values for adjusting the breadth of search for parameter values. . In particular, in the learning device 610, there is no need to set a plurality of reference values, perform model learning, and select one of the reference values based on the learning results. In this respect, the learning device 610 is expected to be able to relatively shorten the time required for learning without requiring computational resources such as parallel processing.
  • the standard setting unit 611 can set the standard value based on the evaluation function value obtained by learning, so that the standard value can be set according to the model and the learning situation. It is expected that relatively appropriate standard values can be set in this regard.
  • the standard setting unit 611 can be realized using the functions of the standard setting unit 192 in FIG. 1, for example.
  • the learning unit 612 can be realized using the functions of the learning unit 193 in FIG. 1, for example.
  • FIG. 10 is a diagram illustrating an example of a processing procedure in the learning method according to the embodiment.
  • the learning method shown in FIG. 10 includes setting a standard (step S611) and performing learning (step S612).
  • step S611 the computer determines to what extent the estimation accuracy of the model can be obtained through further machine learning, based on the value of the evaluation function that indicates the evaluation of the estimation accuracy of the model generated in machine learning. Set the standard value.
  • step S612 the computer performs learning of the model so that the output value of the evaluation function approaches the reference value.
  • the learning method shown in FIG. 10 is expected to avoid overfitting by learning the model based on reference values. Furthermore, in the learning method shown in Fig. 10, regarding the setting of reference values corresponding to examples of hyperparameter values for adjusting the breadth of parameter value search, it is possible to set only one value at a time. It is possible. In particular, with the learning method shown in FIG. 10, there is no need to set a plurality of reference values, perform model learning, and select one of the reference values based on the learning results. In this respect, the learning method shown in FIG. 10 is expected to be able to relatively shorten the time required for learning without requiring computational resources such as parallel processing. Further, according to the learning method shown in FIG. 10, by setting the reference value based on the evaluation function value obtained in learning, the reference value can be set according to the model and the learning situation. It is expected that relatively appropriate standard values can be set.
  • FIG. 11 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 700 includes a CPU 710, a main storage device 720, an auxiliary storage device 730, an interface 740, and a nonvolatile recording medium 750.
  • any one or more of the learning device 100, estimation device 200, and learning device 610 described above, or a portion thereof, may be implemented in the computer 700.
  • the operations of each processing section described above are stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program. Further, the CPU 710 secures storage areas corresponding to each of the above-mentioned storage units in the main storage device 720 according to the program. Communication between each device and other devices is performed by the interface 740 having a communication function and performing communication under the control of the CPU 710.
  • the learning device 100 When the learning device 100 is installed in the computer 700, the operation of the control unit 190 and each part thereof is stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program.
  • the CPU 710 secures storage areas corresponding to the storage unit 180 and each unit thereof in the main storage device 720 according to the program.
  • the communication performed by the communication unit 110 is performed by the interface 740 having a communication function and performing communication under the control of the CPU 710.
  • the display of the image by the display unit 120 is performed by the interface 740 having a display device and displaying the image under the control of the CPU 710.
  • Acceptance of a user operation by the operation input unit 130 is executed by the interface 740 having an input device and accepting the user operation.
  • the operation of the control unit 290 and each part thereof is stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program.
  • the CPU 710 reserves storage areas corresponding to the storage section 280 and each section thereof in the main storage device 720 according to the program.
  • the communication performed by the communication unit 210 is performed by the interface 740 having a communication function and performing communication under the control of the CPU 710.
  • the image display performed by the display unit 220 is performed by the interface 740 having a display device and displaying the image under the control of the CPU 710.
  • Acceptance of a user operation by the operation input unit 230 is executed by the interface 740 having an input device and accepting the user operation.
  • the learning device 610 When the learning device 610 is installed in the computer 700, the operations of the standard setting section 611 and the learning section 612 are stored in the auxiliary storage device 730 in the form of a program.
  • the CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program.
  • the CPU 710 secures a storage area in the main storage device 720 for the learning device 610 to perform processing according to the program.
  • Communication between the learning device 610 and other devices is performed by the interface 740 having a communication function and operating under the control of the CPU 710.
  • Interaction between the learning device 610 and the user is performed by the interface 740 having a display device and an input device, displaying various images under the control of the CPU 710, and accepting user operations.
  • any one or more of the programs described above may be recorded on the nonvolatile recording medium 750.
  • the interface 740 may read the program from the nonvolatile recording medium 750. Then, the CPU 710 may directly execute the program read by the interface 740, or may temporarily store the program in the main storage device 720 or the auxiliary storage device 730 and execute it.
  • a program for executing all or part of the processing performed by the learning device 100, the estimation device 200, and the learning device 610 is recorded on a computer-readable recording medium, and the program recorded on this recording medium is readable. Each part may be processed by loading it into a computer system and executing it.
  • the "computer system” herein includes hardware such as an OS (Operating System) and peripheral devices.
  • “computer-readable recording media” refers to portable media such as flexible disks, magneto-optical disks, ROM (Read Only Memory), and CD-ROM (Compact Disc Read Only Memory), and hard disks built into computer systems.
  • the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system.
  • Standard setting means for setting a standard value for determining the estimation accuracy of the model in further machine learning, based on the value of an evaluation function indicating the evaluation of the estimation accuracy of the model generated in machine learning; learning means for updating the model by performing machine learning so as to bring the output value of the evaluation function closer to the reference value; A learning device equipped with.
  • the standard setting means sets the standard value to a value that, among the values that the evaluation function can take, has a degree of conformity of the model to training data that is data for updating parameter values of the model that is more limited than a maximum degree of conformity. set to a value indicating that The learning device described in Appendix 1.
  • the reference setting means sets the reference value based on an evaluation function value obtained by applying confirmation data, which is data other than data for updating parameter values of the model, to the model.
  • confirmation data which is data other than data for updating parameter values of the model.
  • the reference setting means determines, in the one unit of learning, that the learning result used for setting the reference value is higher than the learning result used for setting the reference value.
  • the evaluation function value determines whether a learning result indicating that the degree of adaptation of the model to the input data is higher is obtained, and if it is determined that a learning result indicating that the degree of adaptation is higher is obtained, the updating the reference value based on the result of one unit of learning;
  • the learning device according to any one of Supplementary Notes 1 to 3.
  • the learning means performs learning of the model so that the output value of the evaluation function approaches an evaluation function value indicating a maximum degree of adaptation until a predetermined reference value use start condition is satisfied.
  • the learning means performs learning of the model so that the output value of the evaluation function approaches an evaluation function value indicating a maximum degree of conformity after a predetermined reference value usage termination condition is satisfied.
  • the learning device according to appendix 4 or appendix 5.
  • the reference setting means selects one of the epochs of the learning of the model for a predetermined number of epochs performed by the learning means based on the learning results, and based on the evaluation function value shown in the learning result of the selected epoch. setting the reference value by The learning device according to any one of Supplementary Notes 1 to 3.
  • the standard setting means is configured to determine whether, in the domain of the evaluation function, the output value of the evaluation function is equal to the reference value, or the output value is training data that is data for updating parameter values of the model. A portion indicating that the degree of fit of the model is smaller than the reference value is outputted with the same value as the output value, and an output value of the evaluation function is a portion indicating that the degree of fit is greater than the reference value. Now, generate a restricted evaluation function that outputs a value indicating that the degree of conformity is smaller than the reference value, The learning means performs learning of the model using the limited evaluation function.
  • the learning device according to any one of Supplementary Notes 1 to 7.
  • An estimation device comprising: an estimation unit that calculates an estimated value regarding an estimation target using the model updated by machine learning that brings values closer together.
  • the computer is Based on the value of an evaluation function indicating an evaluation of the estimation accuracy of the model generated in machine learning, setting a reference value for how much estimation accuracy of the model is obtained in further machine learning, learning the model so that the output value of the evaluation function approaches the reference value; Learning methods that include.
  • the present invention may be applied to a learning device, an estimation device, a learning method, and a recording medium.

Abstract

This training device comprises: a reference setting means that uses the value of an evaluation function indicating an evaluation of the accuracy of estimation by a model generated in machine learning to set a reference value specifying how much improvement in the accuracy of estimation by the model is to be achieved through further machine learning; and a training means that trains the model so as to cause the output value of the evaluation function to approach the reference value.

Description

学習装置、推定装置、学習方法および記録媒体Learning device, estimation device, learning method and recording medium
 本発明は、学習装置、推定装置、学習方法および記録媒体に関する。 The present invention relates to a learning device, an estimation device, a learning method, and a recording medium.
 機械学習のモデルのハイパーパラメータの設定方法として、複数のハイパーパラメータ値それぞれで学習を行い、学習結果に基づいて複数のハイパーパラメータ値のうちの何れかを選択する方法がある。
 例えば、特許文献1に記載のパラメータ調整装置は、2つのハイパーパラメータのうちの一方のハイパーパラメータAには複数通りのパラメータ値を設定し、もう一方のハイパーパラメータBには、固定値を設定する。パラメータ調整装置は、ハイパーパラメータAの各値と、ハイパーパラメータBの固定値の組み合わせを学習装置に送信して、各組み合わせについて正答率を取得し、ハイパーパラメータAの値と正答率との関係を関数で近似する。パラメータ調整装置は、ハイパーパラメータBの他の値についても、ハイパーパラメータAの値と正答率との関係を関数で近似し、正答率が最も高くなる、ハイパーパラメータAの値とハイパーパラメータBの値との組み合わせを求める。
As a method for setting hyperparameters for a machine learning model, there is a method in which learning is performed using each of a plurality of hyperparameter values, and one of the plurality of hyperparameter values is selected based on the learning results.
For example, the parameter adjustment device described in Patent Document 1 sets a plurality of parameter values to one of two hyperparameters, hyperparameter A, and sets a fixed value to the other hyperparameter B. . The parameter adjustment device sends the combinations of each value of hyperparameter A and the fixed value of hyperparameter B to the learning device, obtains the correct answer rate for each combination, and calculates the relationship between the value of hyperparameter A and the correct answer rate. Approximate with a function. The parameter adjustment device approximates the relationship between the value of hyperparameter A and the correct answer rate with a function for other values of hyperparameter B, and selects the value of hyperparameter A and the value of hyperparameter B that gives the highest correct answer rate. Find a combination with.
日本国特開2018-15992号公報Japanese Patent Application Publication No. 2018-15992
 モデルの学習の際に、パラメータがとり得る値の範囲を広く探索できるように、ハイパーパラメータを設けることが考えられる。しかし、ハイパーパラメータの値を適切に設定することは困難である。 It is conceivable to provide hyperparameters so that a wide range of values that parameters can take can be searched during model learning. However, it is difficult to appropriately set hyperparameter values.
 この開示の目的の一例は、上述した課題を解決することのできる学習装置、推定装置、学習方法および記録媒体を提供することである。 An example of the purpose of this disclosure is to provide a learning device, an estimation device, a learning method, and a recording medium that can solve the above-mentioned problems.
 本発明の第一の態様によれば、学習装置は、機械学習において生成されたモデルの推定精度についての評価を示す評価関数値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定する基準設定手段と、前記評価関数の出力値を前記基準値に近付けるように機械学習をおこなって前記モデルを更新する学習手段と、を備える。 According to the first aspect of the present invention, the learning device determines to what extent the estimation accuracy of the model can be obtained through further machine learning, based on the evaluation function value indicating the evaluation of the estimation accuracy of the model generated in machine learning. and learning means that performs machine learning to update the model so that the output value of the evaluation function approaches the reference value.
 本発明の第二の態様によれば、推定装置は、機械学習において生成されたモデルの推定精度についての評価を示す評価関数値に基づいて設定される、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値に、前記評価関数の出力値を近付けるように行われる機械学習で更新された前記モデルを用いて、推定対象に関する推定値を算出する推定部を備える。 According to the second aspect of the present invention, the estimation device improves the estimation accuracy of the model by further machine learning, which is set based on the evaluation function value indicating the evaluation of the estimation accuracy of the model generated in machine learning. The estimation unit includes an estimation unit that calculates an estimated value regarding the estimation target using the model updated by machine learning that brings the output value of the evaluation function closer to a reference value of how far to obtain it.
 本発明の第三の態様によれば、学習方法は、コンピュータが、機械学習において生成されたモデルの推定精度についての評価を示す評価関数値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定し、前記評価関数の出力値を前記基準値に近付けるように、前記モデルの学習を行う、ことを含む。 According to a third aspect of the present invention, the learning method is such that the computer improves the estimation accuracy of the model in further machine learning based on the evaluation function value indicating the evaluation of the estimation accuracy of the model generated in machine learning. The method includes setting a reference value to determine how far the evaluation function should be obtained, and training the model so that the output value of the evaluation function approaches the reference value.
 本発明の第四の態様によれば、記録媒体は、コンピュータに、機械学習において生成されたモデルの推定精度についての評価を示す評価関数値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定することと、前記評価関数の出力値を前記基準値に近付けるように、前記モデルの学習を行うことと、を実行させるためのプログラムを記録する記録媒体である。 According to the fourth aspect of the present invention, the recording medium allows the computer to evaluate the estimation accuracy of the model in further machine learning based on the evaluation function value indicating the evaluation of the estimation accuracy of the model generated in machine learning. This recording medium records a program for executing the following steps: setting a reference value to determine how far to obtain the evaluation function, and learning the model so that the output value of the evaluation function approaches the reference value.
 本発明によれば、パラメータの値の探索の広さの調整のためのハイパーパラメータの値を比較的容易に設定することができる。 According to the present invention, hyperparameter values for adjusting the breadth of parameter value search can be set relatively easily.
実施形態に係る学習装置の構成の例を示す図である。1 is a diagram illustrating an example of the configuration of a learning device according to an embodiment. 実施形態に係るデータ取得部による学習データの分割の例を示す図である。FIG. 6 is a diagram illustrating an example of division of learning data by the data acquisition unit according to the embodiment. パラメータ値の変化に対するロバスト性の例を示す図である。FIG. 3 is a diagram illustrating an example of robustness against changes in parameter values. 実施形態に係る学習装置がモデルの学習を行う処理手順の第一の例を示す図である。FIG. 2 is a diagram illustrating a first example of a processing procedure in which the learning device according to the embodiment performs model learning. 実施形態に係る基準値を用いた学習の開始条件および終了条件の例を示す図である。FIG. 3 is a diagram illustrating an example of start conditions and end conditions for learning using reference values according to the embodiment. 実施形態に係る学習装置がモデルの学習を行う処理手順の第二の例を示す図である。FIG. 7 is a diagram illustrating a second example of a processing procedure in which the learning device according to the embodiment performs model learning. 実施形態に係る学習装置がモデルの学習を行う処理手順の第三の例を示す図である。FIG. 7 is a diagram illustrating a third example of a processing procedure in which the learning device according to the embodiment performs model learning. 実施形態に係る推定装置の構成の例を示す図である。1 is a diagram illustrating an example of the configuration of an estimation device according to an embodiment. 実施形態に係る学習装置の構成の、もう1つの例を示す図である。It is a figure showing another example of composition of a learning device concerning an embodiment. 実施形態に係る学習方法における処理の手順の例を示す図である。FIG. 3 is a diagram illustrating an example of a processing procedure in a learning method according to an embodiment. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。FIG. 1 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
 以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、実施形態に係る学習装置の構成の例を示す図である。図1に示す構成で、学習装置100は、通信部110と、表示部120と、操作入力部130と、記憶部180と、制御部190とを備える。記憶部180は、モデル記憶部181を備える。制御部190は、データ取得部191と、基準設定部192と、学習部193とを備える。
Hereinafter, embodiments of the present invention will be described, but the following embodiments do not limit the invention according to the claims. Furthermore, not all combinations of features described in the embodiments are essential to the solution of the invention.
FIG. 1 is a diagram showing an example of the configuration of a learning device according to an embodiment. With the configuration shown in FIG. 1, the learning device 100 includes a communication section 110, a display section 120, an operation input section 130, a storage section 180, and a control section 190. The storage unit 180 includes a model storage unit 181. The control unit 190 includes a data acquisition unit 191, a reference setting unit 192, and a learning unit 193.
 学習装置100は、モデルの学習を行う。学習装置100が、例えばパソコン(Personal Computer;PC)またはワークステーション(Workstation)などのコンピュータを用いて構成されていてもよい。
 通信部110は、他の装置と通信を行う。例えば、通信部110が、学習データを記憶する装置と通信を行い、学習データを受信するようにしてもよい。
The learning device 100 performs model learning. The learning device 100 may be configured using a computer such as a personal computer (PC) or a workstation.
The communication unit 110 communicates with other devices. For example, the communication unit 110 may communicate with a device that stores learning data and receive the learning data.
 表示部120は、例えば液晶パネルまたはLED(Light Emitting Diode、発光ダイオード)パネルなどの表示画面を備え、各種画像を表示する。
 操作入力部130は、例えばキーボードおよびマウスなどの入力デバイスを備え、ユーザ操作を受け付ける。
The display unit 120 includes a display screen such as a liquid crystal panel or an LED (Light Emitting Diode) panel, and displays various images.
The operation input unit 130 includes input devices such as a keyboard and a mouse, and receives user operations.
 例えば、ハイパーパラメータのうちユーザが値を設定するハイパーパラメータについて、表示部120が、ハイパーパラメータ値の入力画面を表示するようにしてもよい。そして、操作入力部130が、ハイパーパラメータ値を入力するユーザ操作を受け付けるようにしてもよい。 For example, the display unit 120 may display a hyperparameter value input screen for hyperparameters whose values are set by the user. The operation input unit 130 may also accept a user operation to input a hyperparameter value.
 記憶部180は、各種データを記憶する。記憶部180は、学習装置100が備える記憶デバイスを用いて構成される。
 モデル記憶部181は、学習対象のモデルを記憶する。ただし、学習装置100が学習の対象とするモデルは、モデル記憶部181が記憶するものに限定されない。例えば、学習装置100が学習の対象とするモデルが、ハードウェアを用いて実装され、学習装置100と別の装置として構成されていてもよい。この場合、記憶部180がモデル記憶部181を備えていない構成とすることができる。
The storage unit 180 stores various data. The storage unit 180 is configured using a storage device included in the learning device 100.
The model storage unit 181 stores a learning target model. However, the models to be learned by the learning device 100 are not limited to those stored in the model storage unit 181. For example, a model to be learned by the learning device 100 may be implemented using hardware and configured as a separate device from the learning device 100. In this case, the storage unit 180 may be configured without the model storage unit 181.
 制御部190は、学習装置100の各部を制御して各種処理を行う。制御部190の機能は、例えば、学習装置100が備えるCPU(Central Processing Unit、中央処理装置)が記憶部180からプログラムを読み出して実行することで実行されてもよい。 The control unit 190 controls each unit of the learning device 100 to perform various processes. The functions of the control unit 190 may be executed, for example, by a CPU (Central Processing Unit) included in the learning device 100 reading a program from the storage unit 180 and executing it.
 データ取得部191は、学習データを取得する。例えば、通信部110が他の装置から学習データを受信する場合、データ取得部191は、通信部110の受信データから学習データを抽出する。また、データ取得部191は、取得した学習データを訓練データと、確認データと、テストデータとに分割する。
 以下では、データ取得部191が、学習データとして教師有りサンプルデータを取得する場合を例に説明する。ここでいう教師有りサンプルデータは、モデルへの入力と、その入力に対するモデルの出力の正解との組み合わせを要素とする集合とすることができる。
The data acquisition unit 191 acquires learning data. For example, when the communication unit 110 receives learning data from another device, the data acquisition unit 191 extracts the learning data from the data received by the communication unit 110. Furthermore, the data acquisition unit 191 divides the acquired learning data into training data, confirmation data, and test data.
In the following, a case where the data acquisition unit 191 acquires supervised sample data as learning data will be described as an example. The supervised sample data referred to here can be a set whose elements are combinations of inputs to a model and correct answers of model outputs for the inputs.
 図2は、データ取得部191による学習データの分割の例を示す図である。図2の例で、データ取得部191は、学習データとして取得した教師有りサンプルデータを、訓練データと、確認データと、テストデータとに分割している。具体的には、データ取得部191は、教師有りサンプルデータに含まれる、モデルへの入力と、その入力に対するモデルの出力の正解との組み合わせによる複数の要素を、訓練データの要素と、確認データの要素と、テストデータの要素とに分ける。 FIG. 2 is a diagram showing an example of division of learning data by the data acquisition unit 191. In the example of FIG. 2, the data acquisition unit 191 divides the supervised sample data acquired as learning data into training data, confirmation data, and test data. Specifically, the data acquisition unit 191 converts a plurality of elements included in the supervised sample data, which are a combination of an input to a model and a correct answer of the output of the model in response to the input, into elements of the training data and confirmation data. and test data elements.
 訓練データは、モデルのパラメータの値を調整するためのデータとして用いられる。ここでいうパラメータは、モデルに含まれ、学習アルゴリズムによる値の更新の対象となる変数である。例えば、パーセプトロン(Perceptron)型のニューラルネットワーク(Neural Network)の学習を、誤差逆伝播法(Backpropagation)を用いて行う場合、ノード間の重み係数、および、各ノードにおけるバイアスが、パラメータの例に該当する。 Training data is used as data for adjusting the values of model parameters. The parameters here are variables included in the model and whose values are subject to updating by the learning algorithm. For example, when learning a Perceptron-type neural network using backpropagation, the weighting coefficients between nodes and the bias at each node are examples of parameters. do.
 確認データは、モデルの学習におけるハイパーパラメータの値を調整するためのデータとして用いられる。ここでいうハイパーパラメータは、学習アルゴリズムの挙動を設定するためのパラメータなど、モデルの学習に関するパラメータのうち、学習アルゴリズムによる値の更新の対象となるパラメータ以外のものである。例えば、パーセプトロン型のニューラルネットワークの学習を、誤差逆伝播法を用いて行う場合、学習率が、パラメータの例に該当する。また、ニューラルネットワークの構造を可変とする場合、隠れ層の層数、および、1層あたりのノードの個数など、ニューラルネットワークの構造に関する値も、ハイパーパラメータとして扱うことができる。 The confirmation data is used as data for adjusting hyperparameter values in model learning. The hyperparameters referred to here are parameters related to model learning, such as parameters for setting the behavior of a learning algorithm, other than parameters whose values are subject to update by the learning algorithm. For example, when learning a perceptron-type neural network using error backpropagation, the learning rate is an example of a parameter. Further, when the structure of the neural network is made variable, values related to the structure of the neural network, such as the number of hidden layers and the number of nodes per layer, can also be treated as hyperparameters.
 例えば、学習装置100が、ハイパーパラメータの値を複数通り設定しておき、確認データを用いて何れかのハイパーパラメータ値を採用するようにしてもよい。この場合、学習装置100は、設定したハイパーパラメータ値のそれぞれについて、訓練データを用いてパラメータ値を調整した後、確認データを用いてモデルの評価を行う。そして、学習装置100が、評価が最も高いハイパーパラメータ値を採用するようにしてもよい。
 なお、後述する評価関数値の基準値も、ハイパーパラメータとして扱うことができる。ただし、後述するように、学習装置100は、評価関数値の基準値については、一度に一通りの値のみを設定する。
For example, the learning device 100 may set a plurality of hyperparameter values and adopt one of the hyperparameter values using confirmation data. In this case, the learning device 100 uses the training data to adjust the parameter values for each of the set hyperparameter values, and then evaluates the model using the confirmation data. The learning device 100 may then adopt the hyperparameter value with the highest evaluation.
Note that the reference value of the evaluation function value, which will be described later, can also be treated as a hyperparameter. However, as will be described later, the learning device 100 sets only one value at a time for the reference value of the evaluation function value.
 テストデータは、学習で得られたモデルを評価するためのデータとして用いられる。例えば、学習装置100が、学習で得られたモデルを、テストデータを用いて評価するようにしてもよい。そして、学習装置100またはユーザが、評価結果に基づいて、得られたモデルを採用するか、モデルの学習をやり直すかを決定するようにしてもよい。 Test data is used as data to evaluate the model obtained through learning. For example, the learning device 100 may evaluate a model obtained through learning using test data. Then, the learning device 100 or the user may decide whether to adopt the obtained model or re-learn the model based on the evaluation result.
 訓練データと確認データとは、モデルの構築に用いられるデータと言うことができる。テストデータは、モデルの評価に用いられるデータと言うことができる。
 また、訓練データは、モデルのパラメータ値更新用のデータと言うことができる。確認データとテストデータとは、モデルのパラメータ値更新用のデータ以外のデータと言うことができる。
Training data and validation data can be referred to as data used to construct a model. Test data can be said to be data used for model evaluation.
Further, the training data can be said to be data for updating parameter values of the model. The confirmation data and test data can be said to be data other than data for updating parameter values of the model.
 ただし、データ取得部191が行う教師有りサンプルデータの分割は、訓練データ、確認データ、および、テストデータへの分割に限定されない。例えば、モデルのテストが実際の使用環境での試験運用にて行われる場合、教師有りサンプルデータからテストデータを確保する必要はない。この場合、データ取得部191が、取得した教師有りサンプルデータを訓練データと確認データとに分割するようにしてもよい。 However, the division of supervised sample data performed by the data acquisition unit 191 is not limited to division into training data, confirmation data, and test data. For example, if a model is tested in a trial run in an actual usage environment, there is no need to secure test data from supervised sample data. In this case, the data acquisition unit 191 may divide the acquired supervised sample data into training data and confirmation data.
 基準設定部192は、モデルの学習に用いられる評価関数について、評価関数値の基準値を設定する。基準設定部192は、基準設定手段の例に該当する。
 ここでいう評価関数は、モデルの推定精度についての評価を示す関数である。
 評価関数が示すモデルの推定精度は、モデルに入力されるデータに対するモデルの適合度合いともいえる。評価関数が示す評価が高いことは、入力データに対するモデルの適合度合いが高いことである、ともいえる。
The standard setting unit 192 sets a standard value of the evaluation function value for the evaluation function used for model learning. The standard setting unit 192 corresponds to an example of standard setting means.
The evaluation function here is a function that indicates the evaluation of the estimation accuracy of the model.
The estimation accuracy of the model indicated by the evaluation function can also be said to be the degree of adaptation of the model to the data input to the model. It can be said that a high evaluation indicated by the evaluation function means that the degree of fit of the model to the input data is high.
 したがって、評価関数は、モデルに入力されるデータに対するモデルの適合度合いを示す関数ともいうことができる。例えば、訓練データがモデルに入力されるときの評価関数値は、その訓練データに対するそのモデルの適合度合いを示しているということができる。 Therefore, the evaluation function can also be called a function that indicates the degree of fit of the model to the data input to the model. For example, the evaluation function value when training data is input to a model can be said to indicate the degree of adaptation of the model to the training data.
 以下では、学習装置100が、評価関数として、例えば誤差関数、または、交差エントロピー(Cross Entropy)損失関数など、値が小さいほど高い評価を示す関数を用いる場合を例に説明する。この場合、評価関数の値が小さいほど、モデルが入力データに適合していることを示す。 In the following, a case will be explained in which the learning device 100 uses a function such as an error function or a cross entropy loss function, in which a smaller value indicates a higher evaluation, as an evaluation function. In this case, the smaller the value of the evaluation function, the better the model fits the input data.
 また、以下では、評価関数値の最小値が0である場合を例に説明する。
 ここでいう誤差は、「1-精度」で示される値であってもよい。あるいは、ここでいう損失または誤差は、L1ロスまたはL2ロスなど、モデルの出力値と正解値との距離に基づく値であってもよい。
 ただし、学習部193が用いる評価関数は、特定のものに限定されない。例えば、学習部193が、評価関数値が大きいほど高い評価を示す関数を評価関数として用いるようにしてもよい。
Further, in the following, a case where the minimum value of the evaluation function value is 0 will be explained as an example.
The error here may be a value expressed as "1-accuracy". Alternatively, the loss or error here may be a value based on the distance between the output value of the model and the correct value, such as L1 loss or L2 loss.
However, the evaluation function used by the learning unit 193 is not limited to a specific one. For example, the learning unit 193 may use, as the evaluation function, a function in which a larger evaluation function value indicates a higher evaluation.
 ここでいう基準値は、モデルの学習において、訓練データに対する推定精度をどこまで得るかの基準を表す値である。基準値は、訓練データに対するモデルの適合度合いを指定する値ともいうことができる。言い換えると、基準値は、過適合を防止する基準を表すともいうことができる。基準値が0に近いほど、訓練データに適合したモデルが生成される。 The reference value here is a value representing the standard of how much estimation accuracy can be obtained for training data in model learning. The reference value can also be called a value that specifies the degree of adaptation of the model to the training data. In other words, the reference value can also be said to represent a criterion for preventing overfitting. The closer the reference value is to 0, the more suited the model is to the training data.
 学習部193は、モデルの学習を行う。特に、学習部193は、評価関数値をなるべく基準値に近付けるように、モデルの学習を行う。
 学習部193は、学習手段の例に該当する。
The learning unit 193 performs model learning. In particular, the learning unit 193 performs model learning to bring the evaluation function value as close to the reference value as possible.
The learning unit 193 corresponds to an example of learning means.
 基準設定部192は、訓練データに対するモデルの適合度合いが最大の適合度合いよりも制限されることを示す評価関数値を、基準値に設定する。評価関数値が小さいほど適合度合いが大きいことを示し、評価関数値の最小値が0である場合、基準設定部192は、0よりも大きい値を評価関数値の基準値として設定する。学習部193は、評価関数値をなるべく基準値に近付けるように、モデルの学習を行う。 The standard setting unit 192 sets, as a standard value, an evaluation function value indicating that the degree of conformity of the model to the training data is more limited than the maximum degree of conformity. The smaller the evaluation function value is, the higher the degree of conformity is. If the minimum value of the evaluation function value is 0, the standard setting unit 192 sets a value larger than 0 as the standard value of the evaluation function value. The learning unit 193 performs model learning to bring the evaluation function value as close to the reference value as possible.
 基準設定部192が設定する基準値は、パラメータの値の探索の広さの調整のためのハイパーパラメータとして用いられる。基準値が比較的小さい場合(すなわち、0に近い場合)、学習部193が、パラメータ値の探索で評価関数値が基準値またはそれに近い値になる局所解に到達した後、別の局所解を探索する可能性は比較的低いと考えられる。一方、基準値が比較的大きい場合、学習部193が、パラメータ値の探索で評価関数値が基準値またはそれに近い値になる局所解に到達した後、別の局所解を探索する可能性は比較的高いと考えられる。
 学習部193が、パラメータ値の探索で局所解に到達した後、別の局所解を探索し得るように、例えば確率的勾配法など、次の探索点を確率的に決定する解探索方法を用いるようにしてもよい。
The reference value set by the reference setting unit 192 is used as a hyperparameter for adjusting the width of the search for the parameter value. When the reference value is relatively small (that is, close to 0), the learning unit 193 searches for a parameter value and, after reaching a local solution in which the evaluation function value becomes the reference value or a value close to it, searches for another local solution. The possibility of exploration is considered to be relatively low. On the other hand, when the reference value is relatively large, the possibility that the learning unit 193 searches for another local solution after reaching a local solution in which the evaluation function value becomes the reference value or a value close to it in the search for the parameter value is comparatively low. It is considered to be highly accurate.
After the learning unit 193 reaches a local solution by searching for parameter values, it uses a solution search method that probabilistically determines the next search point, such as a stochastic gradient method, so that it can search for another local solution. You can do it like this.
 学習部193が、評価関数値の基準値を用いてモデルの学習を行うことで、過適合を防止できることが期待される。過適合の防止によって、例えば、学習部193が、パラメータ値の変化に対して比較的ロバスト(Robust)なパラメータ値を得られることが期待される。ここでいう、パラメータ値の変化に対してロバストであることは、パラメータ値が多少変化しても評価関数値があまり増加しないことである。 It is expected that overfitting can be prevented by the learning unit 193 learning the model using the reference value of the evaluation function value. By preventing overfitting, it is expected that, for example, the learning unit 193 can obtain parameter values that are relatively robust against changes in parameter values. Here, being robust against changes in parameter values means that the evaluation function value does not increase much even if the parameter values change somewhat.
 図3は、パラメータ値の変化に対するロバスト性の例を示す図である。図3のグラフの横軸は、パラメータ値を示す。縦軸は、評価関数値を示す。図3は、パラメータwの値がw1のときに評価関数値が極小となる場合の例を示している。
 線L11は、パラメータ値w1が、パラメータ値の変化に対して比較的ロバストである場合の例を示している。一方、線L12は、パラメータ値w1が、パラメータ値の変化に対して比較的ロバストでない場合の例を示している。
FIG. 3 is a diagram illustrating an example of robustness against changes in parameter values. The horizontal axis of the graph in FIG. 3 indicates parameter values. The vertical axis indicates the evaluation function value. FIG. 3 shows an example in which the evaluation function value becomes minimum when the value of the parameter w is w1.
A line L11 shows an example where the parameter value w1 is relatively robust against changes in the parameter value. On the other hand, line L12 shows an example where the parameter value w1 is not relatively robust against changes in the parameter value.
 線L11の場合と線L12の場合とを比較すると、線L11の場合の方が、パラメータwの値が多少変化した場合の、評価関数値の増加が小さい。このことから、学習部193が、線L11で示されるパラメータ値の局所解を得られた場合の方が、線L12で示される局所解を得られた場合より、学習が進んで新たなデータが示された場合に、その新たなデータにも適するパラメータ値を得易いと期待される。
 このように、パラメータ値の変化に対してロバストなパラメータ値の方が、パラメータ値の変化に対してロバストでないパラメータ値よりも、学習が進んだときのモデルの精度が高いことが期待される。
Comparing the case of the line L11 and the case of the line L12, the increase in the evaluation function value is smaller in the case of the line L11 when the value of the parameter w changes somewhat. From this, when the learning unit 193 obtains a local solution for the parameter value indicated by the line L11, learning progresses and new data is obtained more than when the learning section 193 obtains a local solution for the parameter value indicated by the line L12. It is expected that it will be easier to obtain parameter values that are suitable for the new data.
In this way, parameter values that are robust to changes in parameter values are expected to have higher accuracy of the model as learning progresses than parameter values that are not robust to changes in parameter values.
 学習部193が、評価関数値の基準値を用いてモデルの学習を行うことで、過適合を防止できることが期待される。一方、基準値が大き過ぎると、評価関数値が示す評価の高いモデルを得られないこと、すなわち、学習で得られるモデルの精度が低くなってしまうことが考えられる。 It is expected that overfitting can be prevented by the learning unit 193 learning the model using the reference value of the evaluation function value. On the other hand, if the reference value is too large, it is possible that a model with a high evaluation indicated by the evaluation function value cannot be obtained, that is, the accuracy of the model obtained by learning may be reduced.
 基準値の設定に関して、基準設定部192は、それまでの学習で得られた評価関数値に基づいて基準値を設定する。
 例えば、基準設定部192が、過去のエポックで確認データをモデルに適用して得られた評価関数値を、新たなエポックにおける基準値として設定するようにしてもよい。確認データなどのデータをモデルに適用して得られる評価関数値として、そのデータに含まれる要素毎に得られる評価関数値の平均値を用いるようにしてもよい。
Regarding the setting of the reference value, the reference setting unit 192 sets the reference value based on the evaluation function value obtained through the learning up to that point.
For example, the standard setting unit 192 may set an evaluation function value obtained by applying confirmation data to a model in a past epoch as a standard value in a new epoch. As the evaluation function value obtained by applying data such as confirmation data to a model, an average value of evaluation function values obtained for each element included in the data may be used.
 ここでいうエポックまたは1エポックは、学習部193が、同じ教師有りサンプルデータを用いて繰り返し行うモデルの学習の1回分である。エポックの繰り返し回数を、エポック数とも称する。エポックは、学習部193が繰り返し行うモデルの学習のうち1単位分の学習の例に該当する。 The epoch or one epoch here is one time of model learning that the learning unit 193 repeatedly performs using the same supervised sample data. The number of times an epoch is repeated is also referred to as the epoch number. An epoch corresponds to an example of one unit of learning of a model that is repeatedly performed by the learning unit 193.
 学習部193が評価関数として損失関数を用いる場合、訓練データをモデルに適用して得られる評価関数値を訓練損失とも称し、確認データをモデルに適用して得られる評価関数値を確認損失とも称し、テストデータをモデルに適用して得られる評価関数値をテスト損失とも称する。 When the learning unit 193 uses a loss function as an evaluation function, the evaluation function value obtained by applying training data to the model is also referred to as a training loss, and the evaluation function value obtained by applying confirmation data to the model is also referred to as a confirmation loss. , the evaluation function value obtained by applying test data to a model is also called test loss.
 学習部193が評価関数として誤差関数を用いる場合、訓練データをモデルに適用して得られる評価関数値を訓練誤差とも称し、確認データをモデルに適用して得られる評価関数値を確認誤差とも称し、テストデータをモデルに適用して得られる評価関数値をテスト誤差とも称する。 When the learning unit 193 uses an error function as an evaluation function, the evaluation function value obtained by applying training data to the model is also referred to as a training error, and the evaluation function value obtained by applying confirmation data to the model is also referred to as a confirmation error. , an evaluation function value obtained by applying test data to a model is also called a test error.
 基準設定部192が、訓練損失、確認損失、テスト損失、訓練誤差、確認誤差、または、テスト誤差の何れかを、評価関数の基準値に設定するようにしてもよい。
 あるいは、基準設定部192が、訓練損失に所定の係数を乗算した値など、訓練損失、確認損失、テスト損失、訓練誤差、確認誤差、または、テスト誤差の何れかに基づく計算で得られる値を、評価関数の基準値に設定するようにしてもよい。
 あるいは、基準設定部192が、訓練損失と確認損失との平均値など、訓練損失、確認損失、テスト損失、訓練誤差、確認誤差、または、テスト誤差のうち何れか2つ以上の指標の組み合わせに基づく計算で得られる値を、評価関数の基準値に設定するようにしてもよい。
The standard setting unit 192 may set any one of a training loss, a verification loss, a test loss, a training error, a verification error, or a test error as the standard value of the evaluation function.
Alternatively, the standard setting unit 192 may calculate a value obtained by calculation based on any one of the training loss, confirmation loss, test loss, training error, confirmation error, or test error, such as a value obtained by multiplying the training loss by a predetermined coefficient. , may be set as the reference value of the evaluation function.
Alternatively, the standard setting unit 192 may set a combination of any two or more indicators among training loss, verification loss, test loss, training error, verification error, or test error, such as the average value of training loss and verification loss. A value obtained by calculation based on the evaluation function may be set as a reference value of the evaluation function.
 基準設定部192が、基準値を含む評価関数を設定することで、基準値の設定を行うようにしてもよい。例えば、基準設定部192が、式(1)で示される評価関数J(g)を設定するようにしてもよい。 The reference setting unit 192 may set the reference value by setting an evaluation function including the reference value. For example, the standard setting unit 192 may set the evaluation function J * (g) shown by equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 gは、学習対象のモデルを示す。J(g)は、元の評価関数(基準値が含まれていない評価関数)を示す。bは、基準値を示す。「||」は、絶対値を示す。
 J(g)≧bの場合、J(g)=J(g)である。この場合、学習部193は、評価関数J(g)を用いた学習で、評価関数としてJ(g)を用いる場合と同様にパラメータ値の探索を行う。
g indicates the model to be learned. J(g) indicates the original evaluation function (evaluation function that does not include the reference value). b indicates a reference value. "||" indicates an absolute value.
If J(g)≧b, then J * (g)=J(g). In this case, the learning unit 193 performs learning using the evaluation function J * (g) to search for parameter values in the same way as when J(g) is used as the evaluation function.
 一方、J(g)<bの場合、J(g)=2b-J(g)である。この場合、「-J(g)」の項の符号がマイナス(-)になっており、評価関数J(g)は、J(g)と勾配が逆になっている。
 誤差逆伝播法など勾配法に基づく解探索アルゴリズムで、評価関数としてJ(g)を用いる場合、学習部193は、評価関数J(g)の値をなるべく最小値0に近付けるように、パラメータ値の探索を行う。一方、評価関数としてJ(g)を用いる場合、学習部193は、評価関数J(g)の値をなるべく基準値bに近付けるように、パラメータ値の探索を行う。
On the other hand, when J(g)<b, J * (g)=2b−J(g). In this case, the sign of the term "-J(g)" is negative (-), and the slope of the evaluation function J * (g) is opposite to that of J(g).
When J(g) is used as an evaluation function in a solution search algorithm based on a gradient method such as error backpropagation, the learning unit 193 adjusts the parameter value so that the value of the evaluation function J(g) approaches the minimum value 0 as much as possible. Explore. On the other hand, when using J * (g) as the evaluation function, the learning unit 193 searches for parameter values so as to bring the value of the evaluation function J * (g) as close to the reference value b as possible.
 評価関数J(g)は、評価関数J(g)の定義域のうち、評価関数J(g)の出力値が基準値bと等しいか、あるいは、評価関数J(g)の出力値が基準値bよりも大きい部分では、評価関数J(g)の出力値と同じ値を出力する。一方、評価関数J(g)は、評価関数J(g)の定義域のうち、評価関数J(g)の出力値が基準値bよりも小さい部分では、評価関数J(g)の出力値よりも大きい値を出力する。
 評価関数J(g)を、制限付き評価関数とも称する。
The evaluation function J * (g) is defined as whether the output value of the evaluation function J(g) is equal to the reference value b or the output value of the evaluation function J(g) is within the domain of the evaluation function J(g). In a portion larger than the reference value b, the same value as the output value of the evaluation function J(g) is output. On the other hand, the evaluation function J * (g) is defined as the output of the evaluation function J(g) in the domain where the output value of the evaluation function J(g) is smaller than the reference value b. Output a value greater than the value.
The evaluation function J * (g) is also referred to as a restricted evaluation function.
 基準設定部192が、学習部193が実行済みのエポックのうち、評価関数値が所定の基準を満たしているエポックにおける評価関数値を、次のエポックにおける基準値として設定するようにしてもよい。その際、エポックの選択のために参照する評価関数値と、基準値に設定する評価関数値とが、異なるデータの評価関数値であってもよい。 The standard setting unit 192 may set the evaluation function value in an epoch in which the evaluation function value satisfies a predetermined standard among the epochs already executed by the learning unit 193 as the standard value in the next epoch. At this time, the evaluation function value referred to for selecting an epoch and the evaluation function value set as the reference value may be evaluation function values of different data.
 例えば、基準設定部192が、確認誤差が所定の基準を満たしているエポックを選択してもよい。この場合、所定の基準は、エポック毎の確認誤差を値が小さい順に並べたときに、順番が上位の所定順番以内である、という基準であってもよい。基準設定部192が、選択したエポックにおける訓練誤差に基づいて基準値を設定するようにしてもよい。また、基準設定部192が、たとえば、該訓練誤差に所定の値を加えた値、あるいは、該訓練誤差から所定の値を差し引いた値など、訓練誤差を用いた計算で得られる値を、基準値に設定するようにしてもよい。 For example, the standard setting unit 192 may select an epoch in which the confirmation error satisfies a predetermined standard. In this case, the predetermined criterion may be a criterion that when the confirmation errors for each epoch are arranged in descending order of value, the order is within a predetermined order of higher values. The reference setting unit 192 may set the reference value based on the training error in the selected epoch. Further, the standard setting unit 192 sets a value obtained by calculation using the training error, such as a value obtained by adding a predetermined value to the training error, or a value obtained by subtracting a predetermined value from the training error, as a standard. It may also be set to a value.
 例えば、基準設定部192が、学習部193が実行済みのエポックのうち、評価関数値が最小のエポックにおける評価関数値を、次のエポックにおける基準値として設定するようにしてもよい。その際、エポックの選択のために参照する評価関数値と、基準値に設定する評価関数値とが、異なるデータの評価関数値であってもよい。 For example, the standard setting unit 192 may set the evaluation function value in the epoch with the smallest evaluation function value among the epochs already executed by the learning unit 193 as the standard value in the next epoch. At this time, the evaluation function value referred to for selecting an epoch and the evaluation function value set as the reference value may be evaluation function values of different data.
 さらに例えば、基準設定部192が、学習部193が実行済みのエポックのうち訓練誤差が最小のエポックを選択し、そのエポックにおける確認誤差を、次のエポックにおける基準値として設定するようにしてもよい。
 この場合、基準設定部192は、訓練誤差が最小のエポックを選択する点で、良好な学習結果を参照して基準値を設定することができる。また、一般に確認誤差は訓練誤差よりも大きい値になると考えられる点で、基準設定部192は、比較的大きい値の基準値を設定する。学習部193が、この基準値に基づいてモデルの学習を行うことで、過適合になりにくいことが期待される。
Furthermore, for example, the standard setting unit 192 may select the epoch with the smallest training error among the epochs that have been executed by the learning unit 193, and set the confirmation error in that epoch as the standard value in the next epoch. .
In this case, the standard setting unit 192 can set the standard value by referring to good learning results in that the epoch with the minimum training error is selected. Furthermore, since the confirmation error is generally considered to be a larger value than the training error, the standard setting unit 192 sets a relatively large standard value. By learning the model based on this reference value, the learning unit 193 is expected to be less prone to overfitting.
 あるいは、基準設定部192が、学習部193が実行済みのエポックのうち確認誤差が最小のエポックを選択し、そのエポックにおける訓練誤差を、次のエポックにおける基準値として設定するようにしてもよい。
 確認誤差が小さいエポックでは、得られたモデルの汎化性能が比較的高いと期待される。基準設定部192は、確認誤差が最小のエポックにおける訓練誤差を基準値に設定することで、汎化性能が比較的高いモデルを得られたときの訓練誤差を基準値に設定する。学習部193が、この基準値に基づいてモデルの学習を行うことで、汎化性能が比較的高いモデルが得られる解を探索し易くなることが期待され、この点で、過適合を避けられることが期待される。
Alternatively, the standard setting unit 192 may select the epoch with the smallest confirmation error among the epochs already executed by the learning unit 193, and set the training error in that epoch as the standard value in the next epoch.
In epochs where the confirmation error is small, the generalization performance of the obtained model is expected to be relatively high. The standard setting unit 192 sets the training error in the epoch with the minimum confirmation error as the standard value, thereby setting the training error when a model with relatively high generalization performance is obtained as the standard value. By learning the model based on this reference value, the learning unit 193 is expected to make it easier to search for a solution that yields a model with relatively high generalization performance, and in this respect, overfitting can be avoided. It is expected.
 学習部193が、1エポック分の学習を行う毎に、基準設定部192が、基準値を更新するか否かを判定するようにしてもよい。
 図4は、学習装置100がモデルの学習を行う処理手順の第一の例を示す図である。
 図4の処理で、学習部193は、1エポック目の学習を行う(ステップS101)。1エポック目の学習では、学習部193が実行済みのエポックは無く、基準設定部192は基準値を設定していない。このため、学習部193は、基準値の設定無しにモデルの学習を行う。基準値の設定が無い場合、学習部193は、評価関数値を最小値に近付けるように、モデルの学習を行う。
Each time the learning unit 193 performs one epoch worth of learning, the reference setting unit 192 may determine whether or not to update the reference value.
FIG. 4 is a diagram showing a first example of a processing procedure in which the learning device 100 performs model learning.
In the process of FIG. 4, the learning unit 193 performs learning for the first epoch (step S101). In the first epoch of learning, there is no epoch that has been executed by the learning unit 193, and the reference setting unit 192 has not set a reference value. Therefore, the learning unit 193 performs model learning without setting a reference value. If no reference value is set, the learning unit 193 performs model learning so that the evaluation function value approaches the minimum value.
 学習部193が1エポック目の学習を終了すると、基準設定部192は、1エポック目での学習結果に基づいて評価関数値の基準値を設定する(ステップS102)。
 学習部193は、基準設定部192が設定した基準値を用いて1エポック分の学習を行う(ステップS103)。
When the learning unit 193 finishes learning for the first epoch, the standard setting unit 192 sets a standard value for the evaluation function value based on the learning result for the first epoch (step S102).
The learning unit 193 performs learning for one epoch using the reference value set by the reference setting unit 192 (step S103).
 次に、基準設定部192は、学習部193が直近に実行したエポックにおける指標値が、学習部193が実行済みのエポックにおける指標値のうち最小値か否かを判定する(ステップS104)。上述したように、ここでの指標値は、訓練損失、確認損失、テスト損失、訓練誤差、確認誤差、または、テスト誤差の何れであってもよい。また、基準設定部192がステップS104での判定に用いる指標値と、基準値の設定に用いる指標値とが異なっていてもよい。 Next, the standard setting unit 192 determines whether the index value in the epoch most recently executed by the learning unit 193 is the minimum value among the index values in the epochs executed by the learning unit 193 (step S104). As described above, the index value here may be any of training loss, validation loss, test loss, training error, validation error, or test error. Furthermore, the index value that the standard setting unit 192 uses for the determination in step S104 may be different from the index value that is used to set the reference value.
 学習部193が直近に実行したエポックにおける指標値が、学習部193が実行済みのエポックにおける指標値のうち最小値であると判定した場合(ステップS104:YES)、学習部193は、基準値を直近のエポックにおける学習結果から得られる値に更新する(ステップS111)。 If the learning unit 193 determines that the index value in the most recently executed epoch is the minimum value among the index values in the executed epochs (step S104: YES), the learning unit 193 sets the reference value to The value is updated to the value obtained from the learning result in the most recent epoch (step S111).
 次に、学習部193は、所定の学習終了条件が成立しているか否かを判定する(ステップS112)。ここでいう学習終了条件は、学習部193がモデルの学習を終了するか否かを決定するための条件である。ここでの学習終了条件は、特定の条件に限定されない。例えば、学習終了条件が、学習部193が所定エポック数の学習を終了したという条件であってもよい。あるいは、学習終了条件が、得られたモデルの誤差が所定の誤差閾値以下であるという条件であってもよい。 Next, the learning unit 193 determines whether a predetermined learning end condition is satisfied (step S112). The learning end condition here is a condition for the learning unit 193 to determine whether to end model learning. The learning end conditions here are not limited to specific conditions. For example, the learning end condition may be that the learning unit 193 has completed learning for a predetermined number of epochs. Alternatively, the learning termination condition may be that the error of the obtained model is less than or equal to a predetermined error threshold.
 学習終了条件が成立していないと学習部193が判定した場合(ステップS112:NO)、処理がステップS103へ戻る。
 一方、学習終了条件が成立していると学習部193が判定した場合(ステップS112:YES)、学習装置100は、図4の処理を終了する。
If the learning unit 193 determines that the learning end condition is not satisfied (step S112: NO), the process returns to step S103.
On the other hand, if the learning unit 193 determines that the learning end condition is satisfied (step S112: YES), the learning device 100 ends the process of FIG. 4.
 一方、ステップS104で、学習部193が直近に実行したエポックにおける指標値が、学習部193が実行済みのエポックにおける指標値のうち最小値ではないと基準設定部192が判定した場合(ステップS104:NO)、処理がステップS112へ進む。 On the other hand, if the standard setting unit 192 determines in step S104 that the index value in the epoch most recently executed by the learning unit 193 is not the minimum value among the index values in the epochs executed by the learning unit 193 (step S104: NO), the process proceeds to step S112.
 モデルの学習の初期では、モデルの性能が安定しないことが考えられる。そこで、学習部193が、ある程度学習が進んでから、基準値を用いた学習を行うようにしてもよい。例えば後述するように、所定の基準値使用開始条件が成立するまでは、学習部193が、基準値を用いずに評価関数値を0に近付けるようにモデルの学習を行うようにしてもよい。そして、基準値使用開始条件が成立した後は、学習部193が、評価関数値を基準値に近付けるようにモデルの学習を行うようにしてもよい。ここでいう基準値使用開始条件は、学習部193が、基準値を用いる学習を開始するタイミングを決定するための条件、あるいは、学習部193が、基準値を用いる学習を行うか否かを決定するための条件である。 In the early stages of model learning, the performance of the model may be unstable. Therefore, the learning unit 193 may perform learning using the reference value after learning has progressed to a certain extent. For example, as will be described later, the learning unit 193 may perform model learning so as to bring the evaluation function value closer to 0 without using the reference value until a predetermined reference value use start condition is satisfied. Then, after the reference value usage start condition is satisfied, the learning unit 193 may perform model learning so as to bring the evaluation function value closer to the reference value. The reference value usage start condition referred to here is a condition for the learning unit 193 to determine the timing to start learning using the reference value, or a condition for the learning unit 193 to determine whether or not to perform learning using the reference value. This is a condition for doing so.
 また、学習部193が、モデルの学習の最終段階では、基準値を用いない学習を行ってモデルの性能向上を図るようにしてもよい。例えば、学習部193が、最後の100エポック分の学習を、基準値を用いずに行うようにしてもよい。例えば後述するように、所定の基準値使用終了条件が成立するまでは、学習部193が、評価関数値を基準値に近付けるようにモデルの学習を行うようにしてもよい。そして、基準値使用終了条件が成立した後は、学習部193が、基準値を用いずに評価関数値を0に近付けるようにモデルの学習を行うようにしてもよい。ここでいう基準値使用終了条件は、学習部193が、基準値を用いる学習を終了するタイミングを決定するための条件、あるいは、学習部193が、基準値を用いる学習を終了するか否かを決定するための条件である。 Furthermore, the learning unit 193 may perform learning without using the reference value in the final stage of model learning to improve the performance of the model. For example, the learning unit 193 may perform learning for the last 100 epochs without using the reference value. For example, as will be described later, the learning unit 193 may perform model learning to bring the evaluation function value closer to the reference value until a predetermined reference value use end condition is satisfied. Then, after the reference value use end condition is satisfied, the learning unit 193 may perform model learning so as to bring the evaluation function value closer to 0 without using the reference value. The condition for terminating the use of the reference value here is a condition for the learning unit 193 to determine the timing to end learning using the reference value, or a condition for the learning unit 193 to determine whether or not to end learning using the reference value. This is a condition for making a decision.
 図5は、基準値を用いた学習の開始条件および終了条件の例を示す図である。図5のグラフの横軸はエポック数を示す。縦軸は誤差を示す。線L21は、訓練誤差の例を示す。線L22は、確認誤差の例を示す。
 基準設定部192が、訓練誤差が閾値Et以下になった場合に、訓練誤差が最小となっているエポックにおける確認誤差を基準値に設定するようにしてもよい。学習部193は、基準設定部192が基準値を設定する前のエポックでは基準値の設定無しの学習を行い、基準設定部192が基準値を設定しているエポックでは、基準値に基づく学習を行うようにしてもよい。
 また、学習部193が、エポック数がMに達した後は基準値の設定無しの学習を行い、エポック数がNに達した場合、学習を終了するようにしてもよい。ここでのM、Nは何れも正の整数であり、M<Nである。
FIG. 5 is a diagram showing an example of start conditions and end conditions for learning using reference values. The horizontal axis of the graph in FIG. 5 indicates the number of epochs. The vertical axis shows the error. Line L21 shows an example of training error. Line L22 shows an example of confirmation error.
The reference setting unit 192 may set the confirmation error in the epoch where the training error is the minimum as the reference value when the training error becomes equal to or less than the threshold value Et. The learning unit 193 performs learning without setting a reference value in the epoch before the reference setting unit 192 sets the reference value, and performs learning based on the reference value in the epoch in which the reference setting unit 192 sets the reference value. You may also do so.
Further, the learning unit 193 may perform learning without setting a reference value after the number of epochs reaches M, and may end the learning when the number of epochs reaches N. Both M and N here are positive integers, and M<N.
 図6は、学習装置100がモデルの学習を行う処理手順の第二の例を示す図である。
 図6の処理で、学習部193は、基準値の設定無しの学習を1エポック分行う(ステップS201)。
 次に、基準設定部192は、所定の基準値使用開始条件が成立しているか否かを判定する(ステップS202)。ここでの基準値使用開始条件は、特定の条件に限定されない。例えば図5の例のように、基準値使用開始条件が、訓練誤差が所定の閾値以下であるという条件であってもよいが、これに限定されない。
FIG. 6 is a diagram illustrating a second example of a processing procedure in which the learning device 100 performs model learning.
In the process of FIG. 6, the learning unit 193 performs learning for one epoch without setting a reference value (step S201).
Next, the standard setting unit 192 determines whether a predetermined standard value use start condition is satisfied (step S202). The conditions for starting to use the reference value here are not limited to specific conditions. For example, as in the example of FIG. 5, the condition for starting to use the reference value may be that the training error is less than or equal to a predetermined threshold, but is not limited thereto.
 基準値使用開始条件が成立していないと基準設定部192が判定した場合(ステップS202:NO)、処理がステップS201へ戻る。
 一方、基準値使用開始条件が成立していると判定した場合(ステップS202:YES)、基準設定部192は、基準値を設定する(ステップS211)。具体的には、基準設定部192は、学習部193が実行済みのエポックのうち指標値が最小のエポックを選択し、そのエポックにおける学習結果に基づいて基準値を設定する。上述したように、ここでの指標値は、訓練損失、確認損失、テスト損失、訓練誤差、確認誤差、または、テスト誤差の何れであってもよい。また、基準設定部192がエポックの選択に用いる指標値と、基準値の設定に用いる指標値とが異なっていてもよい。
 学習部193は、基準設定部192が設定した基準値に基づいて1エポック分の学習を行う(ステップS212)。
If the standard setting unit 192 determines that the reference value use start condition is not satisfied (step S202: NO), the process returns to step S201.
On the other hand, if it is determined that the reference value use start condition is satisfied (step S202: YES), the reference setting unit 192 sets a reference value (step S211). Specifically, the standard setting unit 192 selects the epoch with the smallest index value among the epochs that have been executed by the learning unit 193, and sets the standard value based on the learning result for that epoch. As described above, the index value here may be any of training loss, validation loss, test loss, training error, validation error, or test error. Further, the index value used by the standard setting unit 192 to select an epoch and the index value used to set the standard value may be different.
The learning unit 193 performs learning for one epoch based on the reference value set by the reference setting unit 192 (step S212).
 次に、基準設定部192は、学習部193が直近に実行したエポックにおける指標値が、学習部193が実行済みのエポックにおける指標値のうち最小値か否かを判定する(ステップS213)。上述したように、ここでの指標値は、訓練損失、確認損失、テスト損失、訓練誤差、確認誤差、または、テスト誤差の何れであってもよい。また、基準設定部192がステップS213での判定に用いる指標値と、基準値の設定に用いる指標値とが異なっていてもよい。 Next, the standard setting unit 192 determines whether the index value in the epoch most recently executed by the learning unit 193 is the minimum value among the index values in the epochs executed by the learning unit 193 (step S213). As described above, the index value here may be any of training loss, validation loss, test loss, training error, validation error, or test error. Furthermore, the index value that the standard setting unit 192 uses for the determination in step S213 may be different from the index value that is used for setting the reference value.
 学習部193が直近に実行したエポックにおける指標値が、学習部193が実行済みのエポックにおける指標値のうち最小値であると判定した場合(ステップS213:YES)、学習部193は、基準値を直近のエポックにおける学習結果から得られる値に更新する(ステップS221)。 If the learning unit 193 determines that the index value in the most recently executed epoch is the minimum value among the index values in the executed epochs (step S213: YES), the learning unit 193 sets the reference value to The value is updated to the value obtained from the learning result in the most recent epoch (step S221).
 次に、学習部193は、所定の基準値使用終了条件が成立しているか否かを判定する(ステップS222)。ここでの基準値使用終了条件は、特定の条件に限定されない。例えば図5の例のように、基準値使用終了条件が、学習部193が所定エポック数の学習を終了したという条件であってもよいが、これに限定されない。 Next, the learning unit 193 determines whether a predetermined reference value usage termination condition is satisfied (step S222). The reference value usage termination conditions here are not limited to specific conditions. For example, as in the example of FIG. 5, the reference value use termination condition may be that the learning unit 193 has completed learning for a predetermined number of epochs, but is not limited to this.
 基準値使用終了条件が成立していないと学習部193が判定した場合(ステップS222:NO)、処理がステップS103へ戻る。
 一方、ステップS222で、基準値使用終了条件が成立していないと判定した場合(ステップS222:NO)、学習部193は、所定の学習終了条件が成立しているか否かを判定する(ステップS231)。ここでの学習終了条件は、特定の条件に限定されない。例えば、学習終了条件が、学習部193が所定エポック数の学習を終了したという条件であってもよい。あるいは、学習終了条件が、得られたモデルの誤差が所定の誤差閾値以下であるという条件であってもよい。
If the learning unit 193 determines that the reference value usage end condition is not satisfied (step S222: NO), the process returns to step S103.
On the other hand, if it is determined in step S222 that the reference value usage termination condition is not satisfied (step S222: NO), the learning unit 193 determines whether a predetermined learning termination condition is satisfied (step S231). ). The learning end conditions here are not limited to specific conditions. For example, the learning end condition may be that the learning unit 193 has completed learning for a predetermined number of epochs. Alternatively, the learning termination condition may be that the error of the obtained model is less than or equal to a predetermined error threshold.
 学習終了条件が成立していないと学習部193が判定した場合(ステップS231:NO)、処理がステップS212へ戻る。
 一方、学習終了条件が成立していると学習部193が判定した場合(ステップS231:YES)、学習装置100は、図6の処理を終了する。
If the learning unit 193 determines that the learning end condition is not satisfied (step S231: NO), the process returns to step S212.
On the other hand, if the learning unit 193 determines that the learning end condition is satisfied (step S231: YES), the learning device 100 ends the process of FIG. 6.
 一方、ステップ222で、基準値使用終了条件が成立していると判定した場合(ステップS222:YES)、学習部193は、所定の学習終了条件が成立しているか否かを判定する(ステップS241)。ステップS241で学習部193が行う判定は、ステップS231の場合と同様である。 On the other hand, if it is determined in step 222 that the reference value usage termination condition is satisfied (step S222: YES), the learning unit 193 determines whether a predetermined learning termination condition is satisfied (step S241). ). The determination made by the learning unit 193 in step S241 is the same as that in step S231.
 学習終了条件が成立していないと判定した場合(ステップS241:NO)、学習部193は、基準値の設定無しの学習を1エポック分行う(ステップS251)。
 ステップS251の後、処理がステップS241へ戻る。
 一方、ステップS241で、学習終了条件が成立していると学習部193が判定した場合(ステップS241:YES)、学習装置100は、図6の処理を終了する。
If it is determined that the learning end condition is not satisfied (step S241: NO), the learning unit 193 performs learning without setting a reference value for one epoch (step S251).
After step S251, the process returns to step S241.
On the other hand, if the learning unit 193 determines in step S241 that the learning end condition is satisfied (step S241: YES), the learning device 100 ends the process of FIG. 6.
 学習部193が所定エポック数分の学習を行った後、基準設定部192が基準値を設定し、学習部193が、基準値に基づいてさらに所定エポック数分の学習を行うようにしてもよい。例えば、学習部193が500エポック分の学習を行った後、基準設定部192が基準値を設定するようにしてもよい。そして、学習部193が、基準値に基づいてさらに500エポック分の学習を行うようにしてもよい。 After the learning unit 193 performs learning for a predetermined number of epochs, the standard setting unit 192 may set a reference value, and the learning unit 193 may further perform learning for a predetermined number of epochs based on the reference value. . For example, the reference setting unit 192 may set the reference value after the learning unit 193 performs learning for 500 epochs. The learning unit 193 may further perform learning for 500 epochs based on the reference value.
 この場合、基準設定部192が、確認データによる誤差が最小となったエポック(すなわち、確認データによる精度が最大となったエポック)での訓練損失を基準値に設定するようにしてもよい。確認データによる誤差が最小のエポックは訓練損失が0となり過適合する手前に対応していると考えられる。基準設定部192が、このエポックにおける訓練損失を基準値に設定し、学習部193が基準値に基づく学習を行うことで、過適合を回避できることが期待される。 In this case, the standard setting unit 192 may set the training loss at the epoch where the error based on the confirmation data is the minimum (that is, the epoch where the accuracy based on the confirmation data is maximum) as the reference value. It is considered that the epoch with the smallest error based on the confirmation data corresponds to the time before the training loss becomes 0 and overfitting occurs. It is expected that overfitting can be avoided by the standard setting unit 192 setting the training loss in this epoch as a standard value and the learning unit 193 performing learning based on the standard value.
 図7は、学習装置100がモデルの学習を行う処理手順の第三の例を示す図である。
 図7の処理で、学習部193は、基準値の設定無しの学習を所定のエポック数分行う(ステップS301)。
 次に、基準設定部192は、基準値を設定する(ステップS302)。具体的には、基準設定部192は、学習部193が実行済みのエポックのうち指標値が最小のエポックを選択し、そのエポックにおける学習結果に基づいて基準値を設定する。上述したように、ここでの指標値は、訓練損失、確認損失、テスト損失、訓練誤差、確認誤差、または、テスト誤差の何れであってもよい。また、基準設定部192がエポックの選択に用いる指標値と、基準値の設定に用いる指標値とが異なっていてもよい。
 学習部193は、基準設定部192が設定した基準値に基づいて所定のエポック数分の学習を行う(ステップS303)。
 ステップS303の後、学習装置100は、図7の処理を終了する。
FIG. 7 is a diagram illustrating a third example of a processing procedure in which the learning device 100 performs model learning.
In the process of FIG. 7, the learning unit 193 performs learning without setting a reference value for a predetermined number of epochs (step S301).
Next, the standard setting unit 192 sets a standard value (step S302). Specifically, the standard setting unit 192 selects the epoch with the smallest index value among the epochs that have been executed by the learning unit 193, and sets the standard value based on the learning result for that epoch. As described above, the index value here may be any of training loss, validation loss, test loss, training error, validation error, or test error. Further, the index value used by the standard setting unit 192 to select an epoch and the index value used to set the standard value may be different.
The learning unit 193 performs learning for a predetermined number of epochs based on the reference value set by the reference setting unit 192 (step S303).
After step S303, the learning device 100 ends the process of FIG. 7.
 あるいは、ステップS303の後、学習装置100がさらに基準値の設定および基準値に基づく学習を行うようにしてもよい。例えば、基準設定部192は、ステップS302の場合と同様、学習部193が実行済みのエポックのうち指標値が最小のエポックを選択し、そのエポックにおける学習結果に基づいて基準値を設定する。学習部193は、ステップS303の場合と同様、基準設定部192が設定した基準値に基づいて所定のエポック数分の学習を行う。
 例えば、ユーザが、学習装置100にさらに基準値の設定および基準値に基づく学習を行わせるか否かを指示するようにしてもよい。
Alternatively, after step S303, the learning device 100 may further set a reference value and perform learning based on the reference value. For example, as in step S302, the standard setting unit 192 selects the epoch with the smallest index value among the epochs that have been executed by the learning unit 193, and sets the standard value based on the learning result for that epoch. The learning unit 193 performs learning for a predetermined number of epochs based on the reference value set by the reference setting unit 192, as in step S303.
For example, the user may instruct the learning device 100 whether to further set a reference value and perform learning based on the reference value.
 以上のように、基準設定部192は、機械学習において生成されたモデルの推定精度を示す評価関数値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定する。学習部193は、評価関数の出力値を基準値に近付けるように、モデルの学習を行う。 As described above, the standard setting unit 192 sets a standard value for determining the estimation accuracy of the model in further machine learning, based on the evaluation function value indicating the estimation accuracy of the model generated in machine learning. The learning unit 193 performs model learning so that the output value of the evaluation function approaches the reference value.
 学習装置100によれば、評価関数値を用いる点で、パラメータの値の探索の広さの調整のためのハイパーパラメータの値を比較的容易に設定することができる。
 また、学習装置100では、学習部193が基準値に基づいてモデルの学習を行うことで、過適合を避けられることが期待される。
 また、学習装置100では、パラメータの値の探索の広さの調整のためのハイパーパラメータの値の例に該当する基準値の設定について、一度に設定する値を一通りにする運用が可能である。特に、学習装置100では、基準値を複数通り設定しておいてモデルの学習を行い、学習結果に基づいて何れかの基準値を選択するという運用を行う必要がない。学習装置100によれば、この点で、並列処理などの計算資源を必要とせずに、学習に要する時間を比較的短くすることができると期待される。
 また、学習装置100によれば、基準設定部192が学習で得られた評価関数値に基づいて基準値を設定することで、モデルおよび学習の状況に応じて基準値を設定できることができ、この点で、比較的適切な基準値を設定できることが期待される。
According to the learning device 100, since the evaluation function value is used, it is possible to relatively easily set the hyperparameter value for adjusting the width of the search for the parameter value.
Furthermore, in the learning device 100, it is expected that overfitting can be avoided by the learning unit 193 learning the model based on the reference value.
Furthermore, in the learning device 100, it is possible to set only one value at a time for setting reference values corresponding to examples of hyperparameter values for adjusting the breadth of search for parameter values. . In particular, with the learning device 100, there is no need to set a plurality of reference values, perform model learning, and select one of the reference values based on the learning results. In this respect, the learning device 100 is expected to be able to relatively shorten the time required for learning without requiring computational resources such as parallel processing.
Further, according to the learning device 100, the standard setting unit 192 can set the standard value based on the evaluation function value obtained by learning, so that the standard value can be set according to the model and the learning situation. It is expected that relatively appropriate standard values can be set in this regard.
 また、基準設定部192は、基準値を、評価関数がとりうる値のうち、訓練データに対するモデルの適合度合いが、最大の適合度合いよりも制限されることを示す値に設定する。
 学習装置100によれば、基準値を用いた学習によって過適合の可能性を低減させることができる。
Further, the standard setting unit 192 sets the standard value to a value indicating that the degree of conformity of the model to the training data is more limited than the maximum degree of conformity among the values that the evaluation function can take.
According to the learning device 100, the possibility of overfitting can be reduced by learning using the reference value.
 また、基準設定部192は、モデルのパラメータ値更新用のデータ(訓練データ)以外のデータである確認データをモデルに適用して得られる評価関数値に基づいて、基準値を設定する。
 例えば確認誤差など、訓練データ以外のデータをモデルに適用して得られる評価関数値が小さいエポックでは、得られたモデルの汎化性能が比較的高いと期待される。基準設定部192は、確認誤差が最小のエポックにおける訓練誤差を基準値に設定することで、汎化性能が比較的高いモデルを得られたときの訓練誤差を基準値に設定する。学習部193が、この基準値に基づいてモデルの学習を行うことで、汎化性能が比較的高いモデルが得られる解を探索し易くなることが期待され、この点で、過適合を避けられることが期待される。
Further, the standard setting unit 192 sets a standard value based on an evaluation function value obtained by applying confirmation data, which is data other than data for updating model parameter values (training data), to the model.
For example, in epochs where the evaluation function value obtained by applying data other than training data to the model, such as confirmation error, is small, the generalization performance of the obtained model is expected to be relatively high. The standard setting unit 192 sets the training error in the epoch with the minimum confirmation error as the standard value, thereby setting the training error when a model with relatively high generalization performance is obtained as the standard value. By learning the model based on this reference value, the learning unit 193 is expected to make it easier to search for a solution that yields a model with relatively high generalization performance, and in this respect, overfitting can be avoided. It is expected.
 また、基準設定部192は、学習部193が繰り返し行うモデルの学習のうち1エポック分の学習が完了した後、そのエポックでの学習にて、基準値の設定に用いられた学習結果よりも、評価関数値が小さい学習結果が得られたか否かを判定する。評価関数値がより小さい学習結果が得られたと判定した場合、基準設定部192は、そのエポックでの学習の結果に基づいて基準値を更新する。
 これにより、基準設定部192は、学習部193によるモデルの学習が進むにつれて基準値を更新することができ、学習の進度に応じて適切な基準値を設定できることが期待される。
Further, after one epoch of learning of the model that is repeatedly performed by the learning unit 193 is completed, the standard setting unit 192 performs a process based on the learning result used for setting the standard value in the learning in that epoch. It is determined whether a learning result with a small evaluation function value has been obtained. If it is determined that a learning result with a smaller evaluation function value has been obtained, the standard setting unit 192 updates the standard value based on the learning result in that epoch.
Thereby, the standard setting unit 192 can update the standard value as learning of the model by the learning unit 193 progresses, and it is expected that an appropriate standard value can be set according to the progress of learning.
 また、学習部193は、所定の基準値使用開始条件が成立するまでは、評価関数値をなるべく0に近付けるように、モデルの学習を行う。
 これにより、基準設定部192は、学習がある程度進んでモデルの精度が安定してから基準値を設定することができる。学習装置100によれば、この点で、基準設定部192が適切な基準値を設定できることが期待される。
Furthermore, the learning unit 193 performs model learning to bring the evaluation function value as close to 0 as possible until a predetermined reference value use start condition is satisfied.
Thereby, the standard setting unit 192 can set the standard value after learning has progressed to a certain extent and the accuracy of the model has stabilized. According to the learning device 100, it is expected that the standard setting unit 192 can set an appropriate standard value in this regard.
 また、学習部193は、所定の基準値使用終了条件が成立した後は、評価関数値をなるべく0に近付けるように、モデルの学習を行う。
 学習装置100によれば、モデルの学習の最終段階で基準値の設定無しの学習を行うことができ、この点でモデルの精度を比較的高くできると期待される。
Further, the learning unit 193 performs model learning so as to bring the evaluation function value as close to 0 as possible after a predetermined reference value usage termination condition is satisfied.
According to the learning device 100, learning can be performed without setting a reference value at the final stage of model learning, and in this respect it is expected that the accuracy of the model can be made relatively high.
 また、基準設定部192は、学習部193が行った所定エポック数の前記モデルの学習のうち何れかのエポックを学習結果に基づいて選択し、選択したエポックでの学習結果に示される評価関数値に基づいて基準値を設定する。
 学習装置100によれば、基準設定部192は、基準値を1回設定すればよく、この点で、並列処理などの計算資源を必要とせずに、学習に要する時間を比較的短くすることができると期待される。また、基準設定部192が、学習部193によるモデルの学習がある程度進んだ段階で基準値を設定する点で、適切な基準値を設定できることが期待される。
Further, the standard setting unit 192 selects one of the epochs based on the learning results from among the predetermined number of epochs of learning of the model performed by the learning unit 193, and selects the evaluation function value shown in the learning result in the selected epoch. Set standard values based on
According to the learning device 100, the standard setting unit 192 only needs to set the standard value once, and in this respect, the time required for learning can be relatively shortened without requiring computational resources such as parallel processing. It is expected that it will be possible. Further, since the standard setting unit 192 sets the standard value at a stage when the learning unit 193 has progressed to a certain extent in learning the model, it is expected that the standard setting unit 192 can set an appropriate standard value.
 また、基準設定部192は、制限付き評価関数を生成する。制限付き評価関数は、評価関数の定義域のうち、評価関数の出力値が基準値と等しいか、あるいは、その出力値が基準値よりも大きい部分では、その出力値と同じ値を出力し、評価関数の出力値が基準値よりも小さい部分では、基準値よりも大きい値を出力する関数である。学習部193は、基準設定部192が、設定する制限付き評価関数を用いてモデルの学習を行う。
 学習装置100では、基準値を制限付き評価関数に含めることができ、学習部193は、評価関数と別に基準値を参照する必要がない。学習装置100によれば、この点で、学習部193の負荷が比較的小さいことが期待される。
Further, the standard setting unit 192 generates a limited evaluation function. A restricted evaluation function outputs the same value as the output value in a portion of the evaluation function's domain where the output value of the evaluation function is equal to or larger than the reference value, In parts where the output value of the evaluation function is smaller than the reference value, the function outputs a value larger than the reference value. The learning unit 193 performs model learning using the restricted evaluation function set by the standard setting unit 192.
In the learning device 100, the reference value can be included in the restricted evaluation function, and the learning unit 193 does not need to refer to the reference value separately from the evaluation function. According to the learning device 100, in this respect, it is expected that the load on the learning unit 193 is relatively small.
 図8は、実施形態に係る推定装置の構成の例を示す図である。
 図8に示す構成で、推定装置200は、通信部210と、表示部220と、操作入力部230と、記憶部280と、制御部290とを備える。記憶部280は、モデル記憶部181を備える。制御部290は、データ取得部291と、推定部292とを備える。
FIG. 8 is a diagram illustrating an example of a configuration of an estimation device according to an embodiment.
With the configuration shown in FIG. 8, the estimation device 200 includes a communication section 210, a display section 220, an operation input section 230, a storage section 280, and a control section 290. The storage unit 280 includes a model storage unit 181. The control unit 290 includes a data acquisition unit 291 and an estimation unit 292.
 推定装置200は、学習装置100による学習済みのモデルを用いて推定を行う。推定装置200の用途は特定の用途に限定されない。例えば、推定装置200が顔認証装置として構成され、モデルを用いて認証対象の顔画像と登録されている顔画像との類似度を算出するようにしてもよい。あるいは、推定装置200が、与えられる文章をモデルに入力して、その文章が示す感情を推定するようにしてもよい。このように、推定装置200は、コンピュータビジョンまたは自然言語処理などいろいろな分野に適用することができる。 The estimation device 200 performs estimation using the model learned by the learning device 100. The use of estimation device 200 is not limited to a specific use. For example, the estimation device 200 may be configured as a face authentication device and use a model to calculate the degree of similarity between a face image to be authenticated and a registered face image. Alternatively, the estimation device 200 may input a given sentence into a model and estimate the emotion indicated by the sentence. In this way, the estimation device 200 can be applied to various fields such as computer vision or natural language processing.
 推定装置200が、例えばパソコンまたはワークステーションなどのコンピュータを用いて構成されていてもよい。推定装置200が、学習装置100として用いられたコンピュータを用いて構成されていてもよい。あるいは、推定装置200が、学習装置100として用いられたコンピュータとは別のコンピュータを用いて構成されていてもよい。 The estimation device 200 may be configured using a computer such as a personal computer or a workstation. Estimation device 200 may be configured using the computer used as learning device 100. Alternatively, the estimation device 200 may be configured using a computer different from the computer used as the learning device 100.
 通信部210は、他の装置と通信を行う。例えば、通信部210が、他の装置と通信を行って推定対象のデータを受信するようにしてもよい。
 表示部220は、例えば液晶パネルまたはLEDパネルなどの表示画面を備え、各種画像を表示する。例えば、表示部220が、推定装置200による推定結果を表示するようにしてもよい。
 操作入力部230は、例えばキーボードおよびマウスなどの入力デバイスを備え、ユーザ操作を受け付ける。推定開始を指示するユーザ操作を受け付けるようにしてもよい。
The communication unit 210 communicates with other devices. For example, the communication unit 210 may communicate with another device to receive estimation target data.
The display unit 220 includes a display screen such as a liquid crystal panel or an LED panel, and displays various images. For example, the display unit 220 may display the estimation result by the estimation device 200.
The operation input unit 230 includes input devices such as a keyboard and a mouse, and receives user operations. A user operation instructing the start of estimation may be accepted.
 記憶部280は、各種データを記憶する。記憶部280は、推定装置200が備える記憶デバイスを用いて構成される。
 モデル記憶部181は、学習装置100による学習済みのモデルを記憶する。この点で、推定装置200のモデル記憶部181は、学習装置100のモデル記憶部181と同じモデルを記憶する。このため、図8では、モデル記憶部の符号として図1の場合と同じく181を用いている。
The storage unit 280 stores various data. The storage unit 280 is configured using a storage device included in the estimation device 200.
The model storage unit 181 stores a model learned by the learning device 100. In this respect, the model storage unit 181 of the estimation device 200 stores the same model as the model storage unit 181 of the learning device 100. Therefore, in FIG. 8, 181 is used as the code for the model storage section, as in the case of FIG.
 あるいは、学習装置100が学習の対象とするモデルが学習装置100とは別の装置として構成されている場合、推定装置200が用いるモデルも、推定装置200とは別の装置として構成されていてもよい。この場合、記憶部280がモデル記憶部181を備えていない構成とすることができる。 Alternatively, if the model to be learned by the learning device 100 is configured as a separate device from the learning device 100, the model used by the estimating device 200 may also be configured as a separate device from the estimating device 200. good. In this case, the storage unit 280 may be configured without the model storage unit 181.
 制御部290は、推定装置200の各部を制御して各種処理を行う制御部290の機能は、例えば、推定装置200が備えるCPUが記憶部280からプログラムを読み出して実行することで実行されてもよい。 The control unit 290 controls each unit of the estimation device 200 to perform various processes, and the function of the control unit 290 may be executed by, for example, a CPU included in the estimation device 200 reading a program from the storage unit 280 and executing it. good.
 データ取得部291は、推定対象のデータを取得する。例えば、通信部210が他の装置から推定対象のデータを受信する場合、データ取得部291は、通信部210の受信データから推定対象のデータを抽出する。
 推定部292は、データ取得部291が取得する推定対象に対する推定を行う。推定部292は、データ取得部291が取得する推定対象のデータを、モデル記憶部181が記憶するモデルに入力し、モデルの出力を推定結果として取得する。
The data acquisition unit 291 acquires data to be estimated. For example, when the communication unit 210 receives data to be estimated from another device, the data acquisition unit 291 extracts the data to be estimated from the data received by the communication unit 210.
The estimation unit 292 performs estimation on the estimation target acquired by the data acquisition unit 291. The estimation unit 292 inputs the estimation target data obtained by the data acquisition unit 291 into a model stored in the model storage unit 181, and obtains the output of the model as an estimation result.
 以上のように、推定部292は、学習装置100によるモデルの学習で得られた学習済みのモデルを用いて推定対象に関する推定値を算出する。
 学習装置100によるモデルの学習で得られた学習済みのモデルは、モデルの推定精度についての評価を示す評価関数の値に基づいて設定され、さらなる機械学習でモデルの推定精度をどこまで得るかを指定する基準値に、評価関数の出力値を近付けるように行われる機械学習で更新されたモデルの例に該当する。
 推定装置200では、モデルが過適合となっていないことが期待される。推定装置200によれば、この点で、推定を高精度に行えることが期待される。
As described above, the estimating unit 292 calculates the estimated value regarding the estimation target using the learned model obtained by learning the model by the learning device 100.
The learned model obtained by learning the model by the learning device 100 is set based on the value of the evaluation function that indicates the evaluation of the estimation accuracy of the model, and specifies how much estimation accuracy of the model is to be obtained by further machine learning. This is an example of a model that has been updated using machine learning to bring the output value of the evaluation function closer to the reference value.
It is expected that the estimation device 200 does not overfit the model. In this respect, the estimation device 200 is expected to be able to perform estimation with high accuracy.
 図9は、実施形態に係る学習装置の構成の、もう1つの例を示す図である。図9に示す構成で、学習装置610は、基準設定部611と、学習部612とを備える。
 かかる構成で、基準設定部611は、機械学習において生成されたモデルの推定精度についての評価を示す評価関数の値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定する。学習部612は、評価関数の出力値を基準値に近付けるように機械学習をおこなってモデルを更新する。
 基準設定部611は、基準設定手段の例に該当する。学習部612は、学習手段の例に該当する。
FIG. 9 is a diagram showing another example of the configuration of the learning device according to the embodiment. With the configuration shown in FIG. 9, the learning device 610 includes a reference setting section 611 and a learning section 612.
With this configuration, the standard setting unit 611 determines the standard value for determining the estimation accuracy of the model in further machine learning, based on the value of the evaluation function that indicates the evaluation of the estimation accuracy of the model generated in machine learning. Set. The learning unit 612 updates the model by performing machine learning so as to bring the output value of the evaluation function closer to the reference value.
The standard setting unit 611 corresponds to an example of standard setting means. The learning unit 612 corresponds to an example of learning means.
 学習装置610では、学習部612が基準値に基づいてモデルの学習を行うことで、過適合を避けられることが期待される。
 また、学習装置610では、パラメータの値の探索の広さの調整のためのハイパーパラメータの値の例に該当する基準値の設定について、一度に設定する値を一通りにする運用が可能である。特に、学習装置610では、基準値を複数通り設定しておいてモデルの学習を行い、学習結果に基づいて何れかの基準値を選択するという運用を行う必要がない。学習装置610によれば、この点で、並列処理などの計算資源を必要とせずに、学習に要する時間を比較的短くすることができると期待される。
 また、学習装置610によれば、基準設定部611が学習で得られた評価関数値に基づいて基準値を設定することで、モデルおよび学習の状況に応じて基準値を設定できることができ、この点で、比較的適切な基準値を設定できることが期待される。
In the learning device 610, it is expected that overfitting can be avoided by the learning unit 612 learning the model based on the reference value.
Furthermore, in the learning device 610, it is possible to set only one value at a time for setting reference values corresponding to examples of hyperparameter values for adjusting the breadth of search for parameter values. . In particular, in the learning device 610, there is no need to set a plurality of reference values, perform model learning, and select one of the reference values based on the learning results. In this respect, the learning device 610 is expected to be able to relatively shorten the time required for learning without requiring computational resources such as parallel processing.
Further, according to the learning device 610, the standard setting unit 611 can set the standard value based on the evaluation function value obtained by learning, so that the standard value can be set according to the model and the learning situation. It is expected that relatively appropriate standard values can be set in this regard.
 基準設定部611は、例えば、図1の基準設定部192等の機能を用いて実現することができる。学習部612は、例えば、図1の学習部193の機能を用いて実現することができる。 The standard setting unit 611 can be realized using the functions of the standard setting unit 192 in FIG. 1, for example. The learning unit 612 can be realized using the functions of the learning unit 193 in FIG. 1, for example.
 図10は、実施形態に係る学習方法における処理の手順の例を示す図である。
 図10に示す学習方法は、基準を設定すること(ステップS611)と、学習を行うこと(ステップS612)とを含む。
 基準を設定すること(ステップS611)では、コンピュータが、機械学習において生成されたモデルの推定精度についての評価を示す評価関数の値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定する。
 学習を行うこと(ステップS612)では、コンピュータが、評価関数の出力値を基準値に近付けるように、モデルの学習を行う。
FIG. 10 is a diagram illustrating an example of a processing procedure in the learning method according to the embodiment.
The learning method shown in FIG. 10 includes setting a standard (step S611) and performing learning (step S612).
In setting the standard (step S611), the computer determines to what extent the estimation accuracy of the model can be obtained through further machine learning, based on the value of the evaluation function that indicates the evaluation of the estimation accuracy of the model generated in machine learning. Set the standard value.
In performing learning (step S612), the computer performs learning of the model so that the output value of the evaluation function approaches the reference value.
 図10に示す学習方法では、基準値に基づいてモデルの学習を行うことで、過適合を避けられることが期待される。
 また、図10に示す学習方法では、パラメータの値の探索の広さの調整のためのハイパーパラメータの値の例に該当する基準値の設定について、一度に設定する値を一通りにする運用が可能である。特に、図10に示す学習方法では、基準値を複数通り設定しておいてモデルの学習を行い、学習結果に基づいて何れかの基準値を選択するという運用を行う必要がない。図10に示す学習方法によれば、この点で、並列処理などの計算資源を必要とせずに、学習に要する時間を比較的短くすることができると期待される。
 また、図10に示す学習方法によれば、学習で得られた評価関数値に基づいて基準値を設定することで、モデルおよび学習の状況に応じて基準値を設定できることができ、この点で、比較的適切な基準値を設定できることが期待される。
The learning method shown in FIG. 10 is expected to avoid overfitting by learning the model based on reference values.
Furthermore, in the learning method shown in Fig. 10, regarding the setting of reference values corresponding to examples of hyperparameter values for adjusting the breadth of parameter value search, it is possible to set only one value at a time. It is possible. In particular, with the learning method shown in FIG. 10, there is no need to set a plurality of reference values, perform model learning, and select one of the reference values based on the learning results. In this respect, the learning method shown in FIG. 10 is expected to be able to relatively shorten the time required for learning without requiring computational resources such as parallel processing.
Further, according to the learning method shown in FIG. 10, by setting the reference value based on the evaluation function value obtained in learning, the reference value can be set according to the model and the learning situation. It is expected that relatively appropriate standard values can be set.
 図11は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 図11に示す構成で、コンピュータ700は、CPU710と、主記憶装置720と、補助記憶装置730と、インタフェース740と、不揮発性記録媒体750とを備える。
FIG. 11 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
With the configuration shown in FIG. 11, the computer 700 includes a CPU 710, a main storage device 720, an auxiliary storage device 730, an interface 740, and a nonvolatile recording medium 750.
 上記の学習装置100、推定装置200、および、学習装置610のうち何れか1つ以上またはその一部が、コンピュータ700に実装されてもよい。その場合、上述した各処理部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。また、CPU710は、プログラムに従って、上述した各記憶部に対応する記憶領域を主記憶装置720に確保する。各装置と他の装置との通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。 Any one or more of the learning device 100, estimation device 200, and learning device 610 described above, or a portion thereof, may be implemented in the computer 700. In that case, the operations of each processing section described above are stored in the auxiliary storage device 730 in the form of a program. The CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program. Further, the CPU 710 secures storage areas corresponding to each of the above-mentioned storage units in the main storage device 720 according to the program. Communication between each device and other devices is performed by the interface 740 having a communication function and performing communication under the control of the CPU 710.
 学習装置100がコンピュータ700に実装される場合、制御部190およびその各部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。 When the learning device 100 is installed in the computer 700, the operation of the control unit 190 and each part thereof is stored in the auxiliary storage device 730 in the form of a program. The CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program.
 また、CPU710は、プログラムに従って、記憶部180およびその各部に対応する記憶領域を主記憶装置720に確保する。通信部110が行う通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。表示部120が行う画像の表示は、インタフェース740が表示装置を備え、CPU710の制御に従って画像を表示することで実行される。操作入力部130によるユーザ操作の受付は、インタフェース740が入力デバイスを備えてユーザ操作を受け付けることで実行される。 Further, the CPU 710 secures storage areas corresponding to the storage unit 180 and each unit thereof in the main storage device 720 according to the program. The communication performed by the communication unit 110 is performed by the interface 740 having a communication function and performing communication under the control of the CPU 710. The display of the image by the display unit 120 is performed by the interface 740 having a display device and displaying the image under the control of the CPU 710. Acceptance of a user operation by the operation input unit 130 is executed by the interface 740 having an input device and accepting the user operation.
 推定装置200がコンピュータ700に実装される場合、制御部290およびその各部の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。 When the estimation device 200 is installed in the computer 700, the operation of the control unit 290 and each part thereof is stored in the auxiliary storage device 730 in the form of a program. The CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program.
 また、CPU710は、プログラムに従って、記憶部280およびその各部に対応する記憶領域を主記憶装置720に確保する。通信部210が行う通信は、インタフェース740が通信機能を有し、CPU710の制御に従って通信を行うことで実行される。表示部220が行う画像の表示は、インタフェース740が表示装置を備え、CPU710の制御に従って画像を表示することで実行される。操作入力部230によるユーザ操作の受付は、インタフェース740が入力デバイスを備えてユーザ操作を受け付けることで実行される。 Further, the CPU 710 reserves storage areas corresponding to the storage section 280 and each section thereof in the main storage device 720 according to the program. The communication performed by the communication unit 210 is performed by the interface 740 having a communication function and performing communication under the control of the CPU 710. The image display performed by the display unit 220 is performed by the interface 740 having a display device and displaying the image under the control of the CPU 710. Acceptance of a user operation by the operation input unit 230 is executed by the interface 740 having an input device and accepting the user operation.
 学習装置610がコンピュータ700に実装される場合、基準設定部611および学習部612の動作は、プログラムの形式で補助記憶装置730に記憶されている。CPU710は、プログラムを補助記憶装置730から読み出して主記憶装置720に展開し、当該プログラムに従って上記処理を実行する。 When the learning device 610 is installed in the computer 700, the operations of the standard setting section 611 and the learning section 612 are stored in the auxiliary storage device 730 in the form of a program. The CPU 710 reads the program from the auxiliary storage device 730, expands it to the main storage device 720, and executes the above processing according to the program.
 また、CPU710は、プログラムに従って、学習装置610が処理を行うための記憶領域を主記憶装置720に確保する。学習装置610と他の装置との通信は、インタフェース740が通信機能を有し、CPU710の制御に従って動作することで実行される。学習装置610とユーザとのインタラクションは、インタフェース740が表示装置および入力デバイスを備え、CPU710の制御に従って各種画像の表示を行い、ユーザ操作を受け付けることで実行される。 Further, the CPU 710 secures a storage area in the main storage device 720 for the learning device 610 to perform processing according to the program. Communication between the learning device 610 and other devices is performed by the interface 740 having a communication function and operating under the control of the CPU 710. Interaction between the learning device 610 and the user is performed by the interface 740 having a display device and an input device, displaying various images under the control of the CPU 710, and accepting user operations.
 上述したプログラムのうち何れか1つ以上が不揮発性記録媒体750に記録されていてもよい。この場合、インタフェース740が不揮発性記録媒体750からプログラムを読み出すようにしてもよい。そして、CPU710が、インタフェース740が読み出したプログラムを直接実行するか、あるいは、主記憶装置720または補助記憶装置730に一旦保存して実行するようにしてもよい。 Any one or more of the programs described above may be recorded on the nonvolatile recording medium 750. In this case, the interface 740 may read the program from the nonvolatile recording medium 750. Then, the CPU 710 may directly execute the program read by the interface 740, or may temporarily store the program in the main storage device 720 or the auxiliary storage device 730 and execute it.
 なお、学習装置100、推定装置200、および、学習装置610が行う処理の全部または一部を実行するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc Read Only Memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
Note that a program for executing all or part of the processing performed by the learning device 100, the estimation device 200, and the learning device 610 is recorded on a computer-readable recording medium, and the program recorded on this recording medium is readable. Each part may be processed by loading it into a computer system and executing it. Note that the "computer system" herein includes hardware such as an OS (Operating System) and peripheral devices.
Furthermore, "computer-readable recording media" refers to portable media such as flexible disks, magneto-optical disks, ROM (Read Only Memory), and CD-ROM (Compact Disc Read Only Memory), and hard disks built into computer systems. Refers to storage devices such as Further, the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system.
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and includes designs within the scope of the gist of the present invention.
 上記の実施形態の一部または全部は、以下の付記のようにも記載され得るが、以下には限定されない。 Part or all of the above embodiments may be described as in the following supplementary notes, but are not limited to the following.
(付記1)
 機械学習において生成されたモデルの推定精度についての評価を示す評価関数の値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定する基準設定手段と、
 前記評価関数の出力値を前記基準値に近付けるように機械学習をおこなって前記モデルを更新する学習手段と、
 を備える学習装置。
(Additional note 1)
Standard setting means for setting a standard value for determining the estimation accuracy of the model in further machine learning, based on the value of an evaluation function indicating the evaluation of the estimation accuracy of the model generated in machine learning;
learning means for updating the model by performing machine learning so as to bring the output value of the evaluation function closer to the reference value;
A learning device equipped with.
(付記2)
 前記基準設定手段は、前記基準値を、前記評価関数がとりうる値のうち、前記モデルのパラメータ値更新用のデータである訓練データに対する前記モデルの適合度合いが、最大の適合度合いよりも制限されることを示す値に設定する、
 付記1に記載の学習装置。
(Additional note 2)
The standard setting means sets the standard value to a value that, among the values that the evaluation function can take, has a degree of conformity of the model to training data that is data for updating parameter values of the model that is more limited than a maximum degree of conformity. set to a value indicating that
The learning device described in Appendix 1.
(付記3)
 前記基準設定手段は、前記モデルのパラメータ値更新用のデータ以外のデータである確認データを前記モデルに適用して得られる評価関数値に基づいて、前記基準値を設定する、
 付記1または付記2に記載の学習装置。
(Additional note 3)
The reference setting means sets the reference value based on an evaluation function value obtained by applying confirmation data, which is data other than data for updating parameter values of the model, to the model.
The learning device according to Supplementary note 1 or Supplementary note 2.
(付記4)
 前記基準設定手段は、前記学習手段が繰り返し行う前記モデルの学習のうち1単位分の学習が完了した後、その1単位分の学習にて、基準値の設定に用いられた学習結果よりも、評価関数値が、入力データに対する前記モデルの適合度合いがより高いことを示す学習結果が得られたか否かを判定し、適合度合いがより高いことを示す学習結果が得られたと判定した場合、その1単位分の学習の結果に基づいて、前記基準値を更新する、
 付記1から3の何れか一つに記載の学習装置。
(Additional note 4)
After one unit of learning of the model that is repeatedly performed by the learning means is completed, the reference setting means determines, in the one unit of learning, that the learning result used for setting the reference value is higher than the learning result used for setting the reference value. The evaluation function value determines whether a learning result indicating that the degree of adaptation of the model to the input data is higher is obtained, and if it is determined that a learning result indicating that the degree of adaptation is higher is obtained, the updating the reference value based on the result of one unit of learning;
The learning device according to any one of Supplementary Notes 1 to 3.
(付記5)
 前記学習手段は、所定の基準値使用開始条件が成立するまでは、前記評価関数の出力値を、最大の適合度合いを示す評価関数値に近付けるように、前記モデルの学習を行う、
 付記4に記載の学習装置。
(Appendix 5)
The learning means performs learning of the model so that the output value of the evaluation function approaches an evaluation function value indicating a maximum degree of adaptation until a predetermined reference value use start condition is satisfied.
The learning device described in Appendix 4.
(付記6)
 前記学習手段は、所定の基準値使用終了条件が成立した後は、前記評価関数の出力値を、最大の適合度合いを示す評価関数値に近付けるように、前記モデルの学習を行う、
 付記4または付記5に記載の学習装置。
(Appendix 6)
The learning means performs learning of the model so that the output value of the evaluation function approaches an evaluation function value indicating a maximum degree of conformity after a predetermined reference value usage termination condition is satisfied.
The learning device according to appendix 4 or appendix 5.
(付記7)
 前記基準設定手段は、前記学習手段が行った所定エポック数の前記モデルの学習のうち何れかのエポックを学習結果に基づいて選択し、選択したエポックでの学習結果に示される評価関数値に基づいて前記基準値を設定する、
 付記1から3の何れか一つに記載の学習装置。
(Appendix 7)
The reference setting means selects one of the epochs of the learning of the model for a predetermined number of epochs performed by the learning means based on the learning results, and based on the evaluation function value shown in the learning result of the selected epoch. setting the reference value by
The learning device according to any one of Supplementary Notes 1 to 3.
(付記8)
 前記基準設定手段は、前記評価関数の定義域のうち、前記評価関数の出力値が前記基準値と等しいか、あるいは、その出力値が、前記モデルのパラメータ値更新用のデータである訓練データに対する前記モデルの適合度合いが前記基準値よりも小さいことを示す部分では、その出力値と同じ値を出力し、前記評価関数の出力値が、前記適合度合いが前記基準値よりも大きいことを示す部分では、前記適合度合いが前記基準値よりも小さいことを示す値を出力する、制限付き評価関数を生成し、
 前記学習手段は、前記制限付き評価関数を用いて前記モデルの学習を行う、
 付記1から7の何れか一つに記載の学習装置。
(Appendix 8)
The standard setting means is configured to determine whether, in the domain of the evaluation function, the output value of the evaluation function is equal to the reference value, or the output value is training data that is data for updating parameter values of the model. A portion indicating that the degree of fit of the model is smaller than the reference value is outputted with the same value as the output value, and an output value of the evaluation function is a portion indicating that the degree of fit is greater than the reference value. Now, generate a restricted evaluation function that outputs a value indicating that the degree of conformity is smaller than the reference value,
The learning means performs learning of the model using the limited evaluation function.
The learning device according to any one of Supplementary Notes 1 to 7.
(付記9)
 機械学習において生成されたモデルの推定精度についての評価を示す評価関数の値に基づいて設定され、さらなる機械学習で前記モデルの推定精度をどこまで得るかを指定する基準値に、前記評価関数の出力値を近付けるように行われる機械学習で更新された前記モデルを用いて、推定対象に関する推定値を算出する推定部
 を備える推定装置。
(Appendix 9)
The output of the evaluation function is set based on the value of the evaluation function that indicates the evaluation of the estimation accuracy of the model generated in machine learning, and the output of the evaluation function is set as a reference value that specifies to what extent the estimation accuracy of the model is obtained in further machine learning. An estimation device comprising: an estimation unit that calculates an estimated value regarding an estimation target using the model updated by machine learning that brings values closer together.
(付記10)
 コンピュータが、
 機械学習において生成されたモデルの推定精度についての評価を示す評価関数の値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定し、
 前記評価関数の出力値を前記基準値に近付けるように、前記モデルの学習を行う、
 ことを含む学習方法。
(Appendix 10)
The computer is
Based on the value of an evaluation function indicating an evaluation of the estimation accuracy of the model generated in machine learning, setting a reference value for how much estimation accuracy of the model is obtained in further machine learning,
learning the model so that the output value of the evaluation function approaches the reference value;
Learning methods that include.
(付記11)
 コンピュータに、
 機械学習において生成されたモデルの推定精度についての評価を示す評価関数の値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定することと、
 前記評価関数の出力値を前記基準値に近付けるように、前記モデルの学習を行うことと、
 を実行させるためのプログラムを記録する記録媒体。
(Appendix 11)
to the computer,
Setting a reference value for determining the estimation accuracy of the model in further machine learning based on the value of an evaluation function indicating an evaluation of the estimation accuracy of the model generated in machine learning;
Learning the model so that the output value of the evaluation function approaches the reference value;
A recording medium that records a program for executing.
 本発明は、学習装置、推定装置、学習方法および記録媒体に適用してもよい。 The present invention may be applied to a learning device, an estimation device, a learning method, and a recording medium.
 100、610 学習装置
 110、210 通信部
 120、220 表示部
 130、230 操作入力部
 180、280 記憶部
 181 モデル記憶部
 190、290 制御部
 191、291 データ取得部
 192、611 基準設定部
 193、612 学習部
 292 推定部
100, 610 learning device 110, 210 communication section 120, 220 display section 130, 230 operation input section 180, 280 storage section 181 model storage section 190, 290 control section 191, 291 data acquisition section 192, 611 standard setting section 193, 612 Learning section 292 Estimation section

Claims (11)

  1.  機械学習において生成されたモデルの推定精度についての評価を示す評価関数の値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定する基準設定手段と、
     前記評価関数の出力値を前記基準値に近付けるように機械学習をおこなって前記モデルを更新する学習手段と、
     を備える学習装置。
    Standard setting means for setting a standard value for determining the estimation accuracy of the model in further machine learning, based on the value of an evaluation function indicating the evaluation of the estimation accuracy of the model generated in machine learning;
    learning means for updating the model by performing machine learning so as to bring the output value of the evaluation function closer to the reference value;
    A learning device equipped with.
  2.  前記基準設定手段は、前記基準値を、前記評価関数がとりうる値のうち、前記モデルのパラメータ値更新用のデータである訓練データに対する前記モデルの適合度合いが、最大の適合度合いよりも制限されることを示す値に設定する、
     請求項1に記載の学習装置。
    The standard setting means sets the standard value to a value that, among the values that the evaluation function can take, has a degree of conformity of the model to training data that is data for updating parameter values of the model that is more limited than a maximum degree of conformity. set to a value indicating that
    The learning device according to claim 1.
  3.  前記基準設定手段は、前記モデルのパラメータ値更新用のデータ以外のデータである確認データを前記モデルに適用して得られる評価関数値に基づいて、前記基準値を設定する、
     請求項1または請求項2に記載の学習装置。
    The reference setting means sets the reference value based on an evaluation function value obtained by applying confirmation data, which is data other than data for updating parameter values of the model, to the model.
    The learning device according to claim 1 or 2.
  4.  前記基準設定手段は、前記学習手段が繰り返し行う前記モデルの学習のうち1単位分の学習が完了した後、その1単位分の学習にて、基準値の設定に用いられた学習結果よりも、評価関数値が、入力データに対する前記モデルの適合度合いがより高いことを示す学習結果が得られたか否かを判定し、適合度合いがより高いことを示す学習結果が得られたと判定した場合、その1単位分の学習の結果に基づいて、前記基準値を更新する、
     請求項1から3の何れか一項に記載の学習装置。
    After one unit of learning of the model that is repeatedly performed by the learning means is completed, the reference setting means determines, in the one unit of learning, that the learning result used for setting the reference value is higher than the learning result used for setting the reference value. The evaluation function value determines whether a learning result indicating that the degree of adaptation of the model to the input data is higher is obtained, and if it is determined that a learning result indicating that the degree of adaptation is higher is obtained, the updating the reference value based on the result of one unit of learning;
    The learning device according to any one of claims 1 to 3.
  5.  前記学習手段は、所定の基準値使用開始条件が成立するまでは、前記評価関数の出力値を、最大の適合度合いを示す評価関数値に近付けるように、前記モデルの学習を行う、
     請求項4に記載の学習装置。
    The learning means performs learning of the model so that the output value of the evaluation function approaches an evaluation function value indicating a maximum degree of adaptation until a predetermined reference value use start condition is satisfied.
    The learning device according to claim 4.
  6.  前記学習手段は、所定の基準値使用終了条件が成立した後は、前記評価関数の出力値を、最大の適合度合いを示す評価関数値に近付けるように、前記モデルの学習を行う、
     請求項4または請求項5に記載の学習装置。
    The learning means performs learning of the model so that the output value of the evaluation function approaches an evaluation function value indicating a maximum degree of conformity after a predetermined reference value usage termination condition is satisfied.
    The learning device according to claim 4 or claim 5.
  7.  前記基準設定手段は、前記学習手段が行った所定エポック数の前記モデルの学習のうち何れかのエポックを学習結果に基づいて選択し、選択したエポックでの学習結果に示される評価関数値に基づいて前記基準値を設定する、
     請求項1から3の何れか一項に記載の学習装置。
    The reference setting means selects one of the epochs of the learning of the model for a predetermined number of epochs performed by the learning means based on the learning results, and based on the evaluation function value shown in the learning result of the selected epoch. setting the reference value by
    The learning device according to any one of claims 1 to 3.
  8.  前記基準設定手段は、前記評価関数の定義域のうち、前記評価関数の出力値が前記基準値と等しいか、あるいは、その出力値が、前記モデルのパラメータ値更新用のデータである訓練データに対する前記モデルの適合度合いが前記基準値よりも小さいことを示す部分では、その出力値と同じ値を出力し、前記評価関数の出力値が、前記適合度合いが前記基準値よりも大きいことを示す部分では、前記適合度合いが前記基準値よりも小さいことを示す値を出力する、制限付き評価関数を生成し、
     前記学習手段は、前記制限付き評価関数を用いて前記モデルの学習を行う、
     請求項1から7の何れか一項に記載の学習装置。
    The standard setting means is configured to determine whether, in the domain of the evaluation function, the output value of the evaluation function is equal to the reference value, or the output value is training data that is data for updating parameter values of the model. A portion indicating that the degree of fit of the model is smaller than the reference value is outputted with the same value as the output value, and an output value of the evaluation function is a portion indicating that the degree of fit is greater than the reference value. Now, generate a restricted evaluation function that outputs a value indicating that the degree of conformity is smaller than the reference value,
    The learning means performs learning of the model using the limited evaluation function.
    A learning device according to any one of claims 1 to 7.
  9.  機械学習において生成されたモデルの推定精度についての評価を示す評価関数の値に基づいて設定され、さらなる機械学習で前記モデルの推定精度をどこまで得るかを指定する基準値に、前記評価関数の出力値を近付けるように行われる機械学習で更新された前記モデルを用いて、推定対象に関する推定値を算出する推定部
     を備える推定装置。
    The output of the evaluation function is set based on the value of the evaluation function that indicates the evaluation of the estimation accuracy of the model generated in machine learning, and the output of the evaluation function is set as a reference value that specifies to what extent the estimation accuracy of the model is obtained in further machine learning. An estimation device comprising: an estimation unit that calculates an estimated value regarding an estimation target using the model updated by machine learning that brings values closer together.
  10.  コンピュータが、
     機械学習において生成されたモデルの推定精度についての評価を示す評価関数の値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定し、
     前記評価関数の出力値を前記基準値に近付けるように、前記モデルの学習を行う、
     ことを含む学習方法。
    The computer is
    Based on the value of an evaluation function indicating an evaluation of the estimation accuracy of the model generated in machine learning, setting a reference value for how much estimation accuracy of the model is obtained in further machine learning,
    learning the model so that the output value of the evaluation function approaches the reference value;
    Learning methods that include.
  11.  コンピュータに、
     機械学習において生成されたモデルの推定精度についての評価を示す評価関数の値に基づいて、さらなる機械学習で前記モデルの推定精度をどこまで得るかの基準値を設定することと、
     前記評価関数の出力値を前記基準値に近付けるように、前記モデルの学習を行うことと、
     を実行させるためのプログラムを記録する記録媒体。
    to the computer,
    Setting a reference value for determining the estimation accuracy of the model in further machine learning based on the value of an evaluation function indicating an evaluation of the estimation accuracy of the model generated in machine learning;
    Learning the model so that the output value of the evaluation function approaches the reference value;
    A recording medium that records a program for executing.
PCT/JP2022/016569 2022-03-31 2022-03-31 Training device, estimation device, training method, and recording medium WO2023188286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016569 WO2023188286A1 (en) 2022-03-31 2022-03-31 Training device, estimation device, training method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016569 WO2023188286A1 (en) 2022-03-31 2022-03-31 Training device, estimation device, training method, and recording medium

Publications (1)

Publication Number Publication Date
WO2023188286A1 true WO2023188286A1 (en) 2023-10-05

Family

ID=88199869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016569 WO2023188286A1 (en) 2022-03-31 2022-03-31 Training device, estimation device, training method, and recording medium

Country Status (1)

Country Link
WO (1) WO2023188286A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074947A (en) * 2017-10-17 2019-05-16 富士通株式会社 Learning device, learning method, and learning program
JP2020116377A (en) * 2019-01-18 2020-08-06 キヤノンメディカルシステムズ株式会社 Medical processing apparatus, medical processing method, and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074947A (en) * 2017-10-17 2019-05-16 富士通株式会社 Learning device, learning method, and learning program
JP2020116377A (en) * 2019-01-18 2020-08-06 キヤノンメディカルシステムズ株式会社 Medical processing apparatus, medical processing method, and storage medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAVAZZI STEFANO; NICOLI MONICA; RAMPA VITTORIO: "Federated Learning With Cooperating Devices: A Consensus Approach for Massive IoT Networks", IEEE INTERNET OF THINGS JOURNAL, IEEE, USA, vol. 7, no. 5, 6 January 2020 (2020-01-06), USA , pages 4641 - 4654, XP011788101, DOI: 10.1109/JIOT.2020.2964162 *

Similar Documents

Publication Publication Date Title
JP5768834B2 (en) Plant model management apparatus and method
US20230281445A1 (en) Population based training of neural networks
US20210081763A1 (en) Electronic device and method for controlling the electronic device thereof
US20220067588A1 (en) Transforming a trained artificial intelligence model into a trustworthy artificial intelligence model
CN110942248B (en) Training method and device for transaction wind control network and transaction risk detection method
JP6931624B2 (en) Learning support device and learning support method
US20190385055A1 (en) Method and apparatus for artificial neural network learning for data prediction
JP2014102578A (en) Information processor, control method, program, and recording medium
CN111682972B (en) Method and device for updating service prediction model
EP3828783A1 (en) Parallelised training of machine learning models
WO2023284770A1 (en) Tensor program optimization method and apparatus
CN111630530B (en) Data processing system, data processing method, and computer readable storage medium
KR20190141581A (en) Method and apparatus for learning artificial neural network for data prediction
JP2020067910A (en) Learning curve prediction device, learning curve prediction method, and program
WO2023188286A1 (en) Training device, estimation device, training method, and recording medium
KR20220032861A (en) Neural architecture search method and attaratus considering performance in hardware
CN114830137A (en) Method and system for generating a predictive model
Banjac et al. A novel approach for solving convex problems with cardinality constraints
WO2020161797A1 (en) Learning device, learning method, and program
CN110322055B (en) Method and system for improving grading stability of data risk model
EP3764217A1 (en) Arithmetic processing apparatus, control method, and control program
JP2022056367A (en) Identification and quantization of crossconnection bias based upon expert knowledge
Kawashima et al. The aleatoric uncertainty estimation using a separate formulation with virtual residuals
JP7318742B2 (en) LEARNING DEVICE, FACE RECOGNITION SYSTEM, LEARNING METHOD AND PROGRAM
Zeng et al. Design and implementation of an estimator of fractal dimension using fuzzy techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935429

Country of ref document: EP

Kind code of ref document: A1