WO2023188271A1 - Aircraft - Google Patents

Aircraft Download PDF

Info

Publication number
WO2023188271A1
WO2023188271A1 PCT/JP2022/016520 JP2022016520W WO2023188271A1 WO 2023188271 A1 WO2023188271 A1 WO 2023188271A1 JP 2022016520 W JP2022016520 W JP 2022016520W WO 2023188271 A1 WO2023188271 A1 WO 2023188271A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
drone
monitoring device
data
internet
Prior art date
Application number
PCT/JP2022/016520
Other languages
French (fr)
Japanese (ja)
Inventor
武彦 塩川
Original Assignee
三共木工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三共木工株式会社 filed Critical 三共木工株式会社
Priority to PCT/JP2022/016520 priority Critical patent/WO2023188271A1/en
Publication of WO2023188271A1 publication Critical patent/WO2023188271A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use

Definitions

  • the technology of the present disclosure relates to aircraft.
  • JP 2021-192495A discloses a system that includes a ground communication device and a mobile communication device that is mounted on a drone and directly communicates wirelessly with the ground communication device.
  • the ground communication device and the mobile communication device mounted on the drone directly communicate wirelessly with each other, the communication distance is short.
  • the technology of the present disclosure aims to provide an aircraft that can make the communication distance between the aircraft and a monitoring device longer than that of conventional technology.
  • the aircraft according to the first aspect of the technology of the present disclosure includes a communication unit for connecting to the Internet and controlling the communication unit so that data is transmitted to a monitoring device via the Internet. and a control unit.
  • the communication unit receives the first IP address when connected to the Internet, and when the aircraft is in flight, the communication unit receives the first IP address.
  • the control unit receives a second IP address in place of the received first IP address or the second IP address.
  • the communication unit is controlled such that a second IP address is transmitted to a management device, and the management device transmits identification data common to the monitoring device and the aircraft and the first IP address received from the communication unit.
  • the IP address or the second IP address are stored in a storage unit in correspondence with each other, and the first IP address or the second IP address is transmitted to the monitoring device, and the monitoring device
  • the communication unit communicates with the communication unit via the Internet using the first IP address or the second IP address received from the communication unit.
  • the control unit performs data communication processing to control the communication unit so that data is transmitted to the monitoring device via the Internet. , if data is not transmitted for a first period, the communication section is stopped, and the control section controls the communication section so that data is transmitted every time a second period shorter than the first period elapses.
  • the first aspect of the technology of the present disclosure can make the communication distance between the aircraft and the monitoring device longer than the conventional technology.
  • a second aspect of the disclosed technology allows the monitoring device to communicate with the aircraft over the Internet even if the aircraft receives a second IP address in place of the first IP address during flight. be able to.
  • the third aspect of the technology of the present disclosure can prevent data communication processing from stopping while the aircraft is in flight.
  • FIG. 1 is a block diagram of a system including a drone 10, an ISP server 12, a DDNS server 14, a cloud server 15, and a monitoring device 16 according to an embodiment.
  • FIG. 2 is a block diagram of a control system of the drone 10.
  • FIG. 3 is a diagram showing a storage area of a storage device of a DDNS server 14.
  • FIG. 3 is a functional block diagram of a CPU 32 of the drone 10.
  • FIG. It is a flowchart of the transmission processing program 42P1. 6 is a flowchart of the data transmission preparation process in step 52 of FIG. 5.
  • FIG. It is a flowchart of the transmission processing stop program 42P3. It is a flowchart of the dynamic IP address reception program 42P2. It is a flowchart of the transmission processing maintenance and IP address change check program 42P4.
  • FIG. 1 shows a drone 10 according to an embodiment, an ISP server device (hereinafter referred to as "ISP server") 12, a DDNS server device (hereinafter referred to as “DDNS server”) 14, and a cloud server device (hereinafter referred to as “cloud server”). ) 15 and a monitoring device 16 is shown.
  • the drone 10, the ISP server 12, the DDNS server 14, the cloud server 15, and the monitoring device 16 are interconnected via the Internet 18.
  • the drone 10 includes a modem 22 for connecting to the Internet 18 and a communication control device 20 that controls the modem 22 so that data is transmitted to the monitoring device 16 via the Internet 18. After communicating with the ISP server 12, the modem 22 is connected to the Internet 18.
  • the communication control device 20 is, for example, a single board computer, ie, a so-called Raspberry Pi.
  • the drone 10 includes a main body (not shown), a plurality of arms, a motor provided at the tip of each of the plurality of arms, and a propeller rotated by the motor.
  • the drone 10 includes a first camera 28A, a second camera 28B, a sensor 26, and a flight controller (FC) 24.
  • the first camera 28A is provided on the front side of the main body and photographs an area in the direction of movement of the drone 10.
  • the second camera 28B is provided at the rear upper part of the main body and photographs the entire upper part of the drone 10.
  • the sensor 26 is a GPS (Global Positioning System) sensor, a gyro sensor, an altitude sensor, an acceleration sensor, an atmospheric pressure sensor, or the like. In addition, in FIG. 1, these are shown as the sensor 26.
  • the first camera 28A and the second camera 28B are connected to the communication control device 20.
  • Sensor 26 is connected to FC24.
  • the FC 24 includes a computer and a storage device that stores flight route data and flight programs for automatic piloting.
  • the FC 24 transmits various sensor data detected by the sensor 26 to the communication control device 20.
  • the computer of the FC 24 controls the communication control device 20 so that the transmission data is transmitted to the monitoring device 16 via the Internet 18 using the modem 22.
  • the transmission data includes image data of a front image obtained by photographing the traveling direction of the drone 10 by the first camera 28A and a drone image obtained by photographing the entire upper part of the drone 10 by the second camera 28B, and various sensor data detected by the sensor 26.
  • the computer of the FC 24 controls the motor according to the flight program to rotate the propeller and fly along the above flight path (autopilot flight).
  • FIG. 2 shows a block diagram of the control system of the communication control device 20.
  • the communication control device 20 includes a computer 30 and a secondary storage device 42.
  • the computer 30 includes a CPU (Central Processing Unit) 32, a ROM (Read Only Memory) 34, a RAM (Random Access Memory) 36, and an input/output (I/O) port 40.
  • the CPU 32, ROM 34, RAM 36, and I/O port 40 are interconnected via a bus 38.
  • a first camera 28A, a second camera 28B, an FC 24, a modem 22, and a storage device 42 are connected to the I/O port 40.
  • the storage device 42 has a program storage area 42P and an IP address storage area 42E.
  • the program storage area 42P stores a transmission processing program 42P1, a dynamic IP address reception program 42P2, a transmission processing stop program 42P3, and a transmission processing maintenance and IP address change check program 42P4.
  • the IP address storage area 42E includes an initial IP address storage area 42E1 and a dynamic IP address storage area 42E2. Note that each of the above programs may be stored in the ROM 34.
  • the storage device 42 is a non-transitory tangible computer readable recording medium, such as an HDD (Hard disk drive) or an SSD (Solid storage medium). non-volatile memory such as tedrive) It is a device.
  • the monitoring device 16 (see FIG. 1) is a device that monitors the drone 10, and includes a computer, a communication device, a display device, a storage device, etc. (not shown).
  • the monitoring device 16 displays the forward image data, drone image data, and sensor data that the communication device receives from the modem 22 of the drone 10 via the Internet 18 on a display device or stores in a storage device.
  • the cloud server 15 is a server that receives data (front image data, drone image data, and sensor data) from the drone 10 and stores the received data.
  • the ISP (Internet Service Provider) server 12 is a server that provides a service to connect the modem 22 of the drone 10 and the Internet 18.
  • the ISP server 12 When accessed from the modem 22 of the powered-on drone 10, the ISP server 12 transmits an IP address to the modem 22.
  • the ISP server 12 may change the IP address of the modem 22 of the drone 10 and transmits the changed IP address to the modem 22.
  • the changed IP address is stored as a dynamic IP address in the dynamic IP address storage area 42E2.
  • the DDNS server 14 is a server that provides a DDNS (Dynamic Domain Name System) service.
  • the DDNS service is a service that associates dynamically changing IP addresses with fixed domains (identification data).
  • the DDNS server 14 includes a computer, a communication device, a storage device, etc. (not shown).
  • FIG. 3 shows the storage area of the storage device of the DDNS server 14.
  • the storage device of the DDNS server 14 has a storage area 14E.
  • the storage area 14E includes a domain storage area 14E1 that stores predetermined identification data common to the drone 10 and the monitoring device 16, for example, a domain, and an IP address storage area 14E2 that stores the IP address received from the drone 10. There is.
  • the domain storage area 14E1 and the IP address storage area 14E2 are associated with each other.
  • the drone 10 transmits the changed IP address along with the domain to the DDNS server 14.
  • the DDNS server 14 stores (overwrites) the received IP address in the IP address storage area 14E2 corresponding to the received domain. Therefore, the latest IP address of the drone 10 is stored in the IP address storage area 14E2.
  • the monitoring device 16 needs to know the IP address of the drone 10.
  • the IP address of the drone 10 may change during the flight of the drone 10. In this case, if the IP address of the drone 10 is changed, the monitoring device 16 cannot communicate with the drone 10 using the IP address before the change.
  • the monitoring device 16 when the monitoring device 16 communicates with the drone 10 via the Internet 18, the monitoring device 16 first uses a common IP address for the drone 10 and the monitoring device 16 in order to instruct the DDNS server 14 to send the latest IP address of the drone 10.
  • the domain to be used is sent to the DDNS server 14.
  • the DDNS server 14 uses the received domain to search the IP address storage area 14E2 for the IP address corresponding to the domain.
  • the DDNS server 14 transmits the IP address obtained through the search (that is, the latest IP address of the loan 10) to the monitoring device 16.
  • the monitoring device 16 communicates with the drone 10 via the Internet 18 using the received IP address.
  • FIG. 4 shows a functional block diagram of the CPU 32 of the drone 10.
  • the functions of the CPU 32 include a connection processing function, a reception processing function, a storage processing function, a transmission processing function, a judgment function, and a termination function.
  • the CPU 32 executes any of the programs described above to control the connection processing unit 31, the reception processing unit 33, the storage processing unit 35, the transmission processing unit 37, the determination unit 39, and the termination unit 41. functions as
  • FIG. 5 shows a flowchart of the transmission processing program 42P1.
  • the CPU 32 of the communication control device 20 of the drone 10 executes the transmission processing program 42P1, the transmission processing and the transmission processing method are executed.
  • the transmission processing program 42P1 starts when the communication control device 20 is powered on.
  • each unit (31, 35, 37) described later executes a data transmission preparation process.
  • step 54 the reception processing unit 33 captures the front image from the first camera 28A, captures the drone image from the second camera 28B, and receives sensor data from the FC 24, and the transmission processing unit 37 captures the front image data, Transmission data including drone image data and sensor data is transmitted to the monitoring device 16 and the cloud server 15 by the modem 22 via the Internet 18 (data transmission processing).
  • the monitoring device 16 stores the received transmission data in the storage device, or stores the transmission data based on the received transmission data.
  • the front image, the drone image, and the sensor data are displayed on a display device.
  • the transmission processing unit 37 transmits the transmission data to the cloud server 15 in addition to the monitoring device 16 in case the transmission data is not received by the monitoring device 16 due to a communication failure or the like. It's for a reason. If the transmitted data is not received by the monitoring device 16, the monitoring device 16 receives the transmitted data from the cloud server 14, stores the transmitted data received from the cloud server 14 in the storage device, or stores the transmitted data received from the cloud server 14. Based on the transmitted data, the front image, the drone image, and the sensor data are displayed on the display device.
  • step 56 it is determined whether a predetermined time has elapsed since the transmission data was transmitted in step 54. If it is not determined that the predetermined time has elapsed since the transmission data was sent, in step 58, the determining unit 39 determines whether or not a flight end instruction signal instructing the end of the flight has been received from the FC 24. By doing so, it is determined whether the flight has ended or not. If it is determined that the flight has ended, the transmission process ends. If it is not determined that the flight has ended, the transmission process returns to step 56.
  • step 56 If it is determined in step 56 that a predetermined time has elapsed since the transmission data was transmitted in step 54, the transmission process returns to step 54. Therefore, transmission data is transmitted to the monitoring device 16 and the cloud server 15 at predetermined time intervals until the end of the flight.
  • FIG. 6 shows a flowchart of the data transmission preparation process in step 52 of FIG.
  • the connection processing unit 31 controls the modem 22 to request the ISP server 12 to connect to the Internet 18.
  • the ISP server 12 Upon receiving the request, the ISP server 12 transmits an IP address (initial IP address) to the modem 22.
  • the reception processing unit 33 receives the initial IP address from the ISP server 12.
  • step 66 the storage processing unit 35 stores the initial IP address in the initial IP address storage area 42E1 of the address storage area 42E of the storage device 42 (see also FIG. 2).
  • step 68 the connection processing unit 31 connects to the FC 24.
  • step 70 the transmission processing unit 37 transmits the initial IP address to the monitoring device 16.
  • step 72 the transmission processing unit 37 transmits the initial IP address to the DDNS server 14.
  • the DDNS server 14 stores the IP address in the IP address storage area 14E2 of the storage area 14E (see also FIG. 3) of the storage device (not shown) of the DDNS server 14.
  • the monitoring device 16 uses a common link between the drone 10 and the monitoring device 16 to instruct the DDNS server 14 to send the IP address of the drone 10 . Send the domain to the DDNS server 14.
  • the DDNS server 14 uses the received domain to search the IP address storage area 14E2 for the IP address corresponding to the domain.
  • the DDNS server 14 sends the searched IP address to the monitoring device 16.
  • the monitoring device 16 communicates with the drone 10 via the Internet 18 using the received IP address.
  • the drone and the monitoring device need to be located within an area where direct wireless communication is possible. Therefore, the area in which the drone and the monitoring device can communicate is narrow. Since the location of the monitoring device is fixed, the range in which the drone communicating with the monitoring device can fly is narrow.
  • the drone 10 transmits transmission data including forward image data, drone image data, and sensor data to the monitoring device 16 and the cloud server 15 via the Internet 18 using the modem 22. Send. Therefore, the drone 10, the monitoring device 16, and the cloud server 15 can communicate via the Internet 18 beyond the area where direct wireless communication is possible.
  • the communication distance between the drone 10 and the monitoring device 16 can be made longer than in the conventional technology.
  • FIG. 7 shows a flowchart of the transmission processing stop program 42P3.
  • the transmission processing stop program 42P3 is repeatedly executed every first time from when the communication control device 20 is powered on.
  • step 82 the determination unit 39 determines whether there was any transmission processing (data transmission processing in step 54 in FIG. 5) between the last execution of the stop processing of the transmission processing and the current execution. Note that in this embodiment, each time the data transmission process in step 54 of FIG. 5 is executed, data on the execution date and time of the data transmission process is stored in the storage device 42. Therefore, from this execution date and time data, it can be determined whether or not there was a transmission process between the time when the stop process of the main transmission process was executed last time and the time when it is executed this time. If it is determined that there is a transmission process, the transmission process stop process is ended. If it is not determined that there is a transmission process, the process of stopping the transmission process proceeds to step 84. In step 84, the termination unit 41 terminates the execution of the transmission processing program.
  • the transmission processing program 42P1 starts when the communication control device 20 is powered on and is executed until the end of the flight. However, for some reason, the transmission data may not be transmitted, and in this case, if the transmission processing program 42P1 is executed, power will be wasted. Therefore, if no transmission processing is performed during the first period, power consumption can be reduced by terminating the execution of the transmission processing program 42P1.
  • FIG. 8 shows a flowchart of the dynamic IP address reception processing program 42E2.
  • the dynamic IP address reception processing program 42E2 starts when a dynamic IP address is received from the ISP server 12 after receiving the initial IP address.
  • a dynamic IP address is an IP address that is different from the initial IP address.
  • step 92 the storage processing unit 35 stores the dynamic IP address in the dynamic IP address storage area 42E2 of the address storage area 42E of the storage device 42 (see also FIG. 2).
  • step 94 the transmission processing unit 37 transmits the dynamic IP address to the monitoring device 16.
  • step 96 the transmission processing unit 37 transmits the dynamic IP address to the DDNS server 14.
  • the DDNS server 14 stores (overwrites) the dynamic IP address in the IP address storage area 14E2 of the storage area 14E (see also FIG. 3) of the storage device (not shown) of the DDNS server 14.
  • the monitoring device 16 transmits the domain common to the drone 10 and the monitoring device 16 to the DDNS server 14.
  • the DDNS server 14 uses the received domain, the DDNS server 14 searches the IP address storage area 14E2 for the IP address corresponding to the domain (the dynamic IP address overwritten in the IP address storage area 14E2, that is, the latest IP address). do.
  • the DDNS server 14 transmits the latest IP address obtained through the search to the monitoring device 16.
  • the monitoring device 16 communicates with the drone 10 via the Internet 18 using the latest received IP address.
  • the DDNS server 16 sends the latest dynamic IP address to the monitoring device 16. Therefore, the monitoring device 16 can communicate with the modem 22 via the Internet 18.
  • FIG. 9 shows a flowchart of the transmission processing maintenance and IP address change check program 42P4.
  • the transmission processing maintenance and IP address change check program 42P4 is repeatedly executed every second time period, which is shorter than the first time period, from when the communication control device 20 is powered on.
  • step 102 the transmission processing unit 37 transmits a signal, for example, a ping, to the ISP server 1212.
  • step 82 in FIG. 7 becomes an affirmative determination. Therefore, it is possible to prevent the transmission processing program 42P1 from stopping during the flight of the drone 10.
  • step 104 the determining unit 39 determines whether the IP address has been changed by determining whether a dynamic IP address is stored in the dynamic IP address storage area 42E2 in the IP address storage area 42E. do.
  • the transmission process maintenance and IP address change check process ends. If it is determined that the IP address has changed, the transmission process maintenance and IP address change check process proceeds to step 106.
  • step 106 the transmission processing unit 37 transmits the dynamic IP address to the monitoring device 16.
  • step 108 the transmission processing unit 37 transmits the dynamic IP address to the DDNS server 14.
  • step 104 when executing step 104, if the dynamic IP address to be sent this time in step 106 is the same as the dynamic IP address sent in step 106 last time, it should not be determined that the IP address has changed. You can also do this.
  • the drone 10 transmits data to the monitoring device 16 via the Internet, so the communication distance between the drone 10 and the monitoring device 16 is different from that of the conventional method of direct communication. Technology can make it longer.
  • the monitoring device can receive the latest IP address of the drone 10 via the DDNS server 14. Therefore, communication with the drone 10 can be continued.
  • the transmission processing maintenance and IP address change check program 42P4 is configured to transmit a signal (ping) for a period shorter than the first time period during which the transmission processing program is stopped on the assumption that the drone 10 is not communicating. Repeat every 2 hours. Therefore, this embodiment can prevent the transmission processing program from stopping and the monitoring device 16 being unable to monitor the drone 10 during the flight of the drone.
  • the first camera 28A and the second camera 28B are connected to the communication control device 20, and the sensor 26 is connected to the FC 24, but the technology of the present disclosure is not limited to this.
  • the first camera 28A and the second camera 28B may be connected to the FC 24 and the sensor 26 may be connected to the communication control device 20, or the sensor 26, the first camera 28A, and the second camera 28B may all be connected to the FC 24.
  • the sensor 26, the first camera 28A, and the second camera 28B may all be connected to the communication control device 20.
  • the embodiment described above includes the FC 24 and the communication control device 20, but the communication control device 20 is omitted, and the sensor 26, the first camera 28A, and the second camera 28B are all connected to the FC 24,
  • the FC 24 may execute each of the above programs 42P1 to 42P.
  • a drone instead of a drone, other unmanned aircraft, such as a radio-controlled airplane and a radio-controlled unmanned helicopter, or even a manned aircraft, such as a radio-controlled helicopter that can carry a person, may be used. good.
  • unmanned aircraft such as a radio-controlled airplane and a radio-controlled unmanned helicopter
  • a manned aircraft such as a radio-controlled helicopter that can carry a person
  • each component may exist as long as there is no contradiction.
  • each process is realized by a software configuration using a computer, but the technology of the present disclosure is not limited to this.
  • a software configuration using a computer instead of a software configuration using a computer, only the hardware configuration such as FPGA (FIELD -PROGRAMMABLE GATE ARRAY) or ASIC (Application Specific INTEGRATED CIRCUIT).
  • Passing each process may be executed.
  • a portion of each process may be executed by a software configuration, and the remaining processes may be executed by a hardware configuration.
  • Non-transitory computer-readable media includes various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, and CDs. - R/W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may also be provided to the computer on various types of temporary computer-readable media.
  • Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can provide the program to the computer via wired communication channels, such as electrical wires and fiber optics, or wireless communication channels.

Abstract

This aircraft comprises a communication unit for connecting to the internet, and a control unit that controls the communication unit such that data is transmitted to a monitoring device through the internet. The communication unit, when connected to the internet, receives a first IP address for identifying the control unit, and while the aircraft is flying, receives a second IP address instead of the first IP address. The control unit, when receiving the first IP address or the second IP address from the communication unit, controls the communication unit such that the first IP address or the second IP address is transmitted to a management device. The management device stores, in a storage unit, identification data shared by the monitoring device and the aircraft in correspondence with the first IP address or the second IP address received from the communication unit, and transmits the first IP address or the second IP address to the monitoring device. The monitoring device uses the first IP address or the second IP address received from the management device to communicate with the communication unit through the internet.

Description

航空機aircraft
 本開示の技術は、航空機に関する。 The technology of the present disclosure relates to aircraft.
 特開2021-192495号公報には、地上通信装置と、ドローンに搭載され、地上通信装置と直接無線通信する移動体通信装置とを備えるシステムが開示されている。 JP 2021-192495A discloses a system that includes a ground communication device and a mobile communication device that is mounted on a drone and directly communicates wirelessly with the ground communication device.
 上記のように、地上通信装置とドローンに搭載された移動体通信装置との間で、互いに他方に向けて直接無線通信をするので、通信可能距離が短い。 As mentioned above, since the ground communication device and the mobile communication device mounted on the drone directly communicate wirelessly with each other, the communication distance is short.
 本開示の技術は、航空機と監視装置との間の通信距離を従来の技術より長くすることができる航空機を提供することを目的とする。 The technology of the present disclosure aims to provide an aircraft that can make the communication distance between the aircraft and a monitoring device longer than that of conventional technology.
 上記目的を達成するため本開示の技術の第1の態様の航空機は、インターネットに接続するための通信部と、データが前記インターネットを介して監視装置に送信されるように、前記通信部を制御する制御部と、を備える。 In order to achieve the above object, the aircraft according to the first aspect of the technology of the present disclosure includes a communication unit for connecting to the Internet and controlling the communication unit so that data is transmitted to a monitoring device via the Internet. and a control unit.
 第2の態様の航空機は、第1の態様において、前記通信部は、前記インターネットに接続した場合に、第1のIPアドレスを受信すると共に、前記航空機が飛行中に、前記第1のIPアドレスに代わる第2のIPアドレスを受信し、前記制御部は、前記通信部により前記第1のIPアドレス又は前記第2のIPアドレスが受信されると、受信された前記第1のIPアドレス又は前記第2のIPアドレスが、管理装置に送信されるように、前記通信部を制御し、前記管理装置は、前記監視装置及び前記航空機に共通する識別データと前記通信部から受信した前記第1のIPアドレス又は前記第2のIPアドレスとを対応して記憶部に記憶すると共に、前記監視装置に前記第1のIPアドレス又は前記第2のIPアドレスを送信し、前記監視装置は、前記管理装置から受信した前記第1のIPアドレス又は前記第2のIPアドレスを用いて、前記インターネットを介して前記通信部と通信する。 In the aircraft of a second aspect, in the first aspect, the communication unit receives the first IP address when connected to the Internet, and when the aircraft is in flight, the communication unit receives the first IP address. When the first IP address or the second IP address is received by the communication unit, the control unit receives a second IP address in place of the received first IP address or the second IP address. The communication unit is controlled such that a second IP address is transmitted to a management device, and the management device transmits identification data common to the monitoring device and the aircraft and the first IP address received from the communication unit. The IP address or the second IP address are stored in a storage unit in correspondence with each other, and the first IP address or the second IP address is transmitted to the monitoring device, and the monitoring device The communication unit communicates with the communication unit via the Internet using the first IP address or the second IP address received from the communication unit.
 第3の態様の航空機は、第1の態様又は第2の態様において、前記制御部は、データが前記インターネットを介して前記監視装置に送信されるように前記通信部を制御するデータ通信処理を、データが第1の期間送信されない場合、停止し、前記制御部は、前記第1の期間より短い第2の期間経過する毎にデータが送信されるように、前記通信部を制御する。 In the aircraft of a third aspect, in the first aspect or the second aspect, the control unit performs data communication processing to control the communication unit so that data is transmitted to the monitoring device via the Internet. , if data is not transmitted for a first period, the communication section is stopped, and the control section controls the communication section so that data is transmitted every time a second period shorter than the first period elapses.
 本開示の技術の第1の態様は、航空機と監視装置との間の通信距離を従来の技術より長くすることができる。 The first aspect of the technology of the present disclosure can make the communication distance between the aircraft and the monitoring device longer than the conventional technology.
 本開示の技術の第2の態様は、航空機が飛行中に第1のIPアドレスに代わる第2のIPアドレスを受信しても監視装置がインターネットを介して航空機と通信することができるようにすることができる。 A second aspect of the disclosed technology allows the monitoring device to communicate with the aircraft over the Internet even if the aircraft receives a second IP address in place of the first IP address during flight. be able to.
 本開示の技術の第3の態様は、航空機が飛行中にデータ通信処理が停止することを防止することができる。 The third aspect of the technology of the present disclosure can prevent data communication processing from stopping while the aircraft is in flight.
実施の形態のドローン10、ISPサーバ12、DDNSサーバ14、クラウドサーバ15、及び監視装置16を備えたシステムのブロック図である。1 is a block diagram of a system including a drone 10, an ISP server 12, a DDNS server 14, a cloud server 15, and a monitoring device 16 according to an embodiment. ドローン10の制御系のブロック図である。FIG. 2 is a block diagram of a control system of the drone 10. FIG. DDNSサーバ14の記憶装置の記憶領域を示す図である。3 is a diagram showing a storage area of a storage device of a DDNS server 14. FIG. ドローン10のCPU32の機能ブロック図である。3 is a functional block diagram of a CPU 32 of the drone 10. FIG. 送信処理プログラム42P1のフローチャートである。It is a flowchart of the transmission processing program 42P1. 図5のステップ52のデータ送信準備処理のフローチャートである。6 is a flowchart of the data transmission preparation process in step 52 of FIG. 5. FIG. 送信処理の停止プログラム42P3のフローチャートである。It is a flowchart of the transmission processing stop program 42P3. 動的IPアドレス受信プログラム42P2のフローチャートである。It is a flowchart of the dynamic IP address reception program 42P2. 送信処理維持及びIPアドレス変更チェックプログラム42P4のフローチャートである。It is a flowchart of the transmission processing maintenance and IP address change check program 42P4.
 以下、図面を参照して、本開示の技術の実施の形態を説明する。 Hereinafter, embodiments of the technology of the present disclosure will be described with reference to the drawings.
 図1には、実施の形態のドローン10、ISPサーバ装置(以下、「ISPサーバ」という)12、DDNSサーバ装置(以下、「DDNSサーバ」という)14、クラウドサーバ装置(以下、「クラウドサーバ」という)15、及び監視装置16を備えたシステムのブロック図が示されている。ドローン10、ISPサーバ12、DDNSサーバ14、クラウドサーバ15、及び監視装置16は、インターネット18により相互に接続されている。 FIG. 1 shows a drone 10 according to an embodiment, an ISP server device (hereinafter referred to as "ISP server") 12, a DDNS server device (hereinafter referred to as "DDNS server") 14, and a cloud server device (hereinafter referred to as "cloud server"). ) 15 and a monitoring device 16 is shown. The drone 10, the ISP server 12, the DDNS server 14, the cloud server 15, and the monitoring device 16 are interconnected via the Internet 18.
 ドローン10は、インターネット18に接続するためのモデム22と、データがインターネット18を介して監視装置16に送信されるように、モデム22を制御する通信制御装置20と、を備える。モデム22は、ISPサーバ12と通信した後、インターネット18に接続される。通信制御装置20は、例えば、シングルボードコンピュータ、即ち、所謂ラズベリーパイである。 The drone 10 includes a modem 22 for connecting to the Internet 18 and a communication control device 20 that controls the modem 22 so that data is transmitted to the monitoring device 16 via the Internet 18. After communicating with the ISP server 12, the modem 22 is connected to the Internet 18. The communication control device 20 is, for example, a single board computer, ie, a so-called Raspberry Pi.
 ドローン10は、図示しない本体と、複数のアームと、複数のアームの各々の先端に設けられたモータ及びモータにより回転するプロペラと、を備える。 The drone 10 includes a main body (not shown), a plurality of arms, a motor provided at the tip of each of the plurality of arms, and a propeller rotated by the motor.
 ドローン10は、第1のカメラ28Aと、第2のカメラ28Bと、センサ26と、フライトコントローラ(Flight Controller(FC))24を備える。第1のカメラ28Aは、本体の前側に設けられ、ドローン10の進行方向の領域を撮影する。第2のカメラ28Bは、本体の後上部に設けられ、ドローン10の上部全体を撮影する。センサ26は、GPS(Global Positioning System)センサ、ジャイロセンサ、高度センサ、加速度センサ、気圧センサ等である。なお、図1では、これらをセンサ26として示されている。 The drone 10 includes a first camera 28A, a second camera 28B, a sensor 26, and a flight controller (FC) 24. The first camera 28A is provided on the front side of the main body and photographs an area in the direction of movement of the drone 10. The second camera 28B is provided at the rear upper part of the main body and photographs the entire upper part of the drone 10. The sensor 26 is a GPS (Global Positioning System) sensor, a gyro sensor, an altitude sensor, an acceleration sensor, an atmospheric pressure sensor, or the like. In addition, in FIG. 1, these are shown as the sensor 26.
 例えば、第1のカメラ28A及び第2のカメラ28Bは、通信制御装置20に接続されている。センサ26は、FC24に接続されている。 For example, the first camera 28A and the second camera 28B are connected to the communication control device 20. Sensor 26 is connected to FC24.
 FC24は、コンピュータ、及び、自動操縦のための飛行ルートのデータ及び飛行プログラム等を記憶した記憶装置等を備える。 The FC 24 includes a computer and a storage device that stores flight route data and flight programs for automatic piloting.
 FC24は、センサ26により検出された各種のセンサデータを、通信制御装置20に送信する。 The FC 24 transmits various sensor data detected by the sensor 26 to the communication control device 20.
 FC24のコンピュータは、送信データがモデム22により、インターネット18を介して、監視装置16に送信するように、通信制御装置20を制御する。送信データは、第1のカメラ28Aによりドローン10の進行方向が撮影されて得られた前方画像及び第2のカメラ28Bによりドローン10の上部全体が撮影されて得られたドローン画像の画像データと、上記センサ26により検出された各種のセンサデータとを含む。 The computer of the FC 24 controls the communication control device 20 so that the transmission data is transmitted to the monitoring device 16 via the Internet 18 using the modem 22. The transmission data includes image data of a front image obtained by photographing the traveling direction of the drone 10 by the first camera 28A and a drone image obtained by photographing the entire upper part of the drone 10 by the second camera 28B, and various sensor data detected by the sensor 26.
 FC24のコンピュータは、飛行プログラムによりモータを制御することにより、プロペラを回転させて、上記飛行経路に沿って飛行(自動操縦飛行)する。 The computer of the FC 24 controls the motor according to the flight program to rotate the propeller and fly along the above flight path (autopilot flight).
 図2には、通信制御装置20の制御系のブロック図が示されている。図2に示すように、通信制御装置20は、コンピュータ30と、2次記憶装置42と、を備える。コンピュータ30は、CPU(Central Processing Unit)32、ROM(Read Only Memory)34、RAM(Random Access Memory)36、及び入出力(I/O)ポート40を備えている。CPU32、ROM34、RAM36、及びI/Oポート40は、バス38を介して、相互に接続されている。I/Oポート40には、第1のカメラ28A、第2のカメラ28B、FC24、モデム22、及び記憶装置42が接続されている。 FIG. 2 shows a block diagram of the control system of the communication control device 20. As shown in FIG. 2, the communication control device 20 includes a computer 30 and a secondary storage device 42. The computer 30 includes a CPU (Central Processing Unit) 32, a ROM (Read Only Memory) 34, a RAM (Random Access Memory) 36, and an input/output (I/O) port 40. The CPU 32, ROM 34, RAM 36, and I/O port 40 are interconnected via a bus 38. A first camera 28A, a second camera 28B, an FC 24, a modem 22, and a storage device 42 are connected to the I/O port 40.
 記憶装置42には、プログラム記憶領域42Pと、IPアドレス記憶領域42Eとがある。プログラム記憶領域42Pには、送信処理プログラム42P1、動的IPアドレス受信プログラム42P2、送信処理の停止プログラム42P3、及び送信処理維持及びIPアドレス変更チェックプログラム42P4が記憶されている。IPアドレス記憶領域42Eは、初期IPアドレス記憶領域42E1と、動的IPアドレス記憶領域42E2とがある。なお、上記各プログラムは、ROM34に記憶されてもよい。記憶装置42は、一時的でない有形のコンピュータが可読可能な記録媒体(non-transitory tangible Computer Readable media)であり、例えば、HDD(Hard disk drive)やSSD(Solid state drive)等の不揮発性の記憶装置である。 The storage device 42 has a program storage area 42P and an IP address storage area 42E. The program storage area 42P stores a transmission processing program 42P1, a dynamic IP address reception program 42P2, a transmission processing stop program 42P3, and a transmission processing maintenance and IP address change check program 42P4. The IP address storage area 42E includes an initial IP address storage area 42E1 and a dynamic IP address storage area 42E2. Note that each of the above programs may be stored in the ROM 34. The storage device 42 is a non-transitory tangible computer readable recording medium, such as an HDD (Hard disk drive) or an SSD (Solid storage medium). non-volatile memory such as tedrive) It is a device.
 監視装置16(図1参照)は、ドローン10を監視する装置であり、図示しないコンピュータ、通信装置、表示装置、及び記憶装置等を備える。監視装置16は、通信装置がドローン10のモデム22からインターネット18を介して受信した前方画像データ、ドローン画像データ、及びセンサデータを、表示装置に表示したり、記憶装置に記憶したり、する。 The monitoring device 16 (see FIG. 1) is a device that monitors the drone 10, and includes a computer, a communication device, a display device, a storage device, etc. (not shown). The monitoring device 16 displays the forward image data, drone image data, and sensor data that the communication device receives from the modem 22 of the drone 10 via the Internet 18 on a display device or stores in a storage device.
 クラウドサーバ15は、ドローン10からデータ(前方画像データ、ドローン画像データ、及びセンサデータ)を受信し、受信したデータを保存するサーバである。 The cloud server 15 is a server that receives data (front image data, drone image data, and sensor data) from the drone 10 and stores the received data.
 ISP(Internet Service Provider)サーバ12は、ドローン10のモデム22とインターネット18とを接続するサービスを提供するサーバである。 The ISP (Internet Service Provider) server 12 is a server that provides a service to connect the modem 22 of the drone 10 and the Internet 18.
 ISPサーバ12は、電源が投入されたドローン10のモデム22からアクセスがあると、モデム22にIPアドレスを送信する。 When accessed from the modem 22 of the powered-on drone 10, the ISP server 12 transmits an IP address to the modem 22.
 ドローン10のモデム22が、電源が投入されて初めてIPアドレスを受信した場合、当該IPアドレスが、初期IPアドレスとしてドローン10の記憶装置42(図2参照)の初期IPアドレス記憶領域42E1に記憶される。その後、ISPサーバ12は、当該ドローン10のモデム22のIPアドレスを変更する場合があり、変更したIPアドレスを、モデム22に送信する。変更されたIPアドレスは、動的IPアドレスとして、動的IPアドレス記憶領域42E2に記憶される。 When the modem 22 of the drone 10 receives an IP address for the first time after being powered on, the IP address is stored as an initial IP address in the initial IP address storage area 42E1 of the storage device 42 (see FIG. 2) of the drone 10. Ru. Thereafter, the ISP server 12 may change the IP address of the modem 22 of the drone 10 and transmits the changed IP address to the modem 22. The changed IP address is stored as a dynamic IP address in the dynamic IP address storage area 42E2.
 DDNSサーバ14は、DDNS(Dynamic Domain Name System)サービスを提供するサーバである。DDNSサービスは、動的に変更するIPアドレスと固定のドメイン(識別データ)とを対応付けるサービスである。 The DDNS server 14 is a server that provides a DDNS (Dynamic Domain Name System) service. The DDNS service is a service that associates dynamically changing IP addresses with fixed domains (identification data).
 DDNSサーバ14は、図示しないコンピュータ、通信装置、及び記憶装置等を備えている。 The DDNS server 14 includes a computer, a communication device, a storage device, etc. (not shown).
 図3には、DDNSサーバ14の記憶装置の記憶領域が示されている。DDNSサーバ14の記憶装置は、記憶領域14Eを有する。記憶領域14Eには、ドローン10及び監視装置16に共通する予め定められた識別データ、例えば、ドメインを記憶するドメイン記憶領域14E1と、ドローン10から受信したIPアドレスを記憶するIPアドレス記憶領域14E2と、がある。ドメイン記憶領域14E1とIPアドレス記憶領域14E2とは対応付けられている。 FIG. 3 shows the storage area of the storage device of the DDNS server 14. The storage device of the DDNS server 14 has a storage area 14E. The storage area 14E includes a domain storage area 14E1 that stores predetermined identification data common to the drone 10 and the monitoring device 16, for example, a domain, and an IP address storage area 14E2 that stores the IP address received from the drone 10. There is. The domain storage area 14E1 and the IP address storage area 14E2 are associated with each other.
 ドローン10のIPアドレスが変更される毎に、ドローン10は、変更後のIPアドレスを、ドメインと共に、DDNSサーバ14に送信する。DDNSサーバ14は、受信したIPアドレスを、受信したドメインに対応するIPアドレス記憶領域14E2に記憶(上書き)する。よって、IPアドレス記憶領域14E2には、ドローン10の最新のIPアドレスが記憶される。 Every time the IP address of the drone 10 is changed, the drone 10 transmits the changed IP address along with the domain to the DDNS server 14. The DDNS server 14 stores (overwrites) the received IP address in the IP address storage area 14E2 corresponding to the received domain. Therefore, the latest IP address of the drone 10 is stored in the IP address storage area 14E2.
 ところで、監視装置16は、インターネット18を介してドローン10と通信するためには、ドローン10のIPアドレスを知っている必要がある。しかし、ドローン10のIPアドレスはドローン10の飛行中、変更される場合ある。この場合、ドローン10のIPアドレスが変更された場合、監視装置16は、変更前のIPアドレスでは、ドローン10と通信することができない。 By the way, in order to communicate with the drone 10 via the Internet 18, the monitoring device 16 needs to know the IP address of the drone 10. However, the IP address of the drone 10 may change during the flight of the drone 10. In this case, if the IP address of the drone 10 is changed, the monitoring device 16 cannot communicate with the drone 10 using the IP address before the change.
 そこで、監視装置16は、インターネット18を介してドローン10と通信する場合、まず、ドローン10の最新のIPアドレスを送信するようにDDNSサーバ14に指示するために、ドローン10及び監視装置16に共通するドメインを、DDNSサーバ14に送信する。 Therefore, when the monitoring device 16 communicates with the drone 10 via the Internet 18, the monitoring device 16 first uses a common IP address for the drone 10 and the monitoring device 16 in order to instruct the DDNS server 14 to send the latest IP address of the drone 10. The domain to be used is sent to the DDNS server 14.
 DDNSサーバ14は、受信したドメインを用いて、当該ドメインに対応するIPアドレスを、IPアドレス記憶領域14E2から検索する。DDNSサーバ14は、検索して得たIPアドレス(即ち、ローン10の最新のIPアドレス)を、監視装置16に送信する。監視装置16は、受信したIPアドレスで、インターネット18を介してドローン10と通信する。 The DDNS server 14 uses the received domain to search the IP address storage area 14E2 for the IP address corresponding to the domain. The DDNS server 14 transmits the IP address obtained through the search (that is, the latest IP address of the loan 10) to the monitoring device 16. The monitoring device 16 communicates with the drone 10 via the Internet 18 using the received IP address.
 図4には、ドローン10のCPU32の機能ブロック図が示されている。CPU32の機能は、接続処理機能、受信処理機能、記憶処理機能、送信処理機能、判断機能、及び終了機能を有する。図4に示すように、CPU32は、上記各プログラムの何れかを実行することにより、接続処理部31、受信処理部33、記憶処理部35、送信処理部37、判断部39、及び終了部41として機能する。 FIG. 4 shows a functional block diagram of the CPU 32 of the drone 10. The functions of the CPU 32 include a connection processing function, a reception processing function, a storage processing function, a transmission processing function, a judgment function, and a termination function. As shown in FIG. 4, the CPU 32 executes any of the programs described above to control the connection processing unit 31, the reception processing unit 33, the storage processing unit 35, the transmission processing unit 37, the determination unit 39, and the termination unit 41. functions as
 次に、本実施の形態の作用を説明する。 Next, the operation of this embodiment will be explained.
 図5には、送信処理プログラム42P1のフローチャートが示されている。ドローン10の通信制御装置20のCPU32が送信処理プログラム42P1を実行することにより、送信処理及び送信処理方法が実行される。送信処理プログラム42P1は、通信制御装置20に電源が投入された場合にスタートする。 FIG. 5 shows a flowchart of the transmission processing program 42P1. When the CPU 32 of the communication control device 20 of the drone 10 executes the transmission processing program 42P1, the transmission processing and the transmission processing method are executed. The transmission processing program 42P1 starts when the communication control device 20 is powered on.
 ステップ52で、後述する各部(31、35、37)は、データ送信準備処理を実行する。 In step 52, each unit (31, 35, 37) described later executes a data transmission preparation process.
 ステップ54で、受信処理部33は、第1のカメラ28Aから前方画像を取り込み、第2のカメラ28Bからドローン画像を取り込み、センサデータをFC24から受信し、送信処理部37は、前方画像データ、ドローン画像データ、及びセンサデータを含む送信データを、モデム22により、インターネット18を介して、監視装置16とクラウドサーバ15とに送信する(データ送信処理)。 In step 54, the reception processing unit 33 captures the front image from the first camera 28A, captures the drone image from the second camera 28B, and receives sensor data from the FC 24, and the transmission processing unit 37 captures the front image data, Transmission data including drone image data and sensor data is transmitted to the monitoring device 16 and the cloud server 15 by the modem 22 via the Internet 18 (data transmission processing).
 上記のように、監視装置16は、通信装置がドローン10のモデム22からインターネット18を介して送信データを受信した場合、受信した送信データを記憶装置に記憶したり、受信した送信データに基づいて、前方画像、ドローン画像、及びセンサデータを、表示装置に表示したり、する。 As described above, when the communication device receives transmission data from the modem 22 of the drone 10 via the Internet 18, the monitoring device 16 stores the received transmission data in the storage device, or stores the transmission data based on the received transmission data. , the front image, the drone image, and the sensor data are displayed on a display device.
 ところで、送信処理部37が、上記送信データを、監視装置16以外に、クラウドサーバ15にも送信するのは、当該送信データが、通信障害等により、監視装置16に受信されなかった場合に備えるためである。送信データが監視装置16に受信されなかった場合、監視装置16は、クラウドサーバ14から送信データを受信し、クラウドサーバ14から受信した送信データを記憶装置に記憶したり、クラウドサーバ14から受信した送信データに基づいて、前方画像、ドローン画像、及びセンサデータを、表示装置に表示したり、する。 By the way, the transmission processing unit 37 transmits the transmission data to the cloud server 15 in addition to the monitoring device 16 in case the transmission data is not received by the monitoring device 16 due to a communication failure or the like. It's for a reason. If the transmitted data is not received by the monitoring device 16, the monitoring device 16 receives the transmitted data from the cloud server 14, stores the transmitted data received from the cloud server 14 in the storage device, or stores the transmitted data received from the cloud server 14. Based on the transmitted data, the front image, the drone image, and the sensor data are displayed on the display device.
 ステップ56で、ステップ54で送信データを送信した時から所定時間が経過したか否かを判断する。送信データを送信した時から所定時間が経過したと判断されなかった場合には、ステップ58で、判断部39は、飛行の終了を指示する飛行終了指示信号をFC24から受信したか否かを判断することにより、飛行終了か否かを判断する。飛行終了であると判断され場合には、送信処理は終了する。飛行終了であると判断されなかった場合には、送信処理は、ステップ56に戻る。 In step 56, it is determined whether a predetermined time has elapsed since the transmission data was transmitted in step 54. If it is not determined that the predetermined time has elapsed since the transmission data was sent, in step 58, the determining unit 39 determines whether or not a flight end instruction signal instructing the end of the flight has been received from the FC 24. By doing so, it is determined whether the flight has ended or not. If it is determined that the flight has ended, the transmission process ends. If it is not determined that the flight has ended, the transmission process returns to step 56.
 ステップ56で、ステップ54で送信データを送信した時から所定時間が経過したと判断された場合、送信処理は、ステップ54に戻る。よって、飛行終了まで所定時間毎に、送信データが監視装置16とクラウドサーバ15とに送信される。 If it is determined in step 56 that a predetermined time has elapsed since the transmission data was transmitted in step 54, the transmission process returns to step 54. Therefore, transmission data is transmitted to the monitoring device 16 and the cloud server 15 at predetermined time intervals until the end of the flight.
 図6には、図5のステップ52のデータ送信準備処理のフローチャートが示されている。図6に示すように、図5のステップ52のデータ送信準備処理では、ステップ62で、接続処理部31は、ISPサーバ12を介して、インターネット18への接続を開始する。即ち、接続処理部31は、インターネット18への接続をISPサーバ12に要求するように、モデム22を制御する。当該要求があるとISPサーバ12は、モデム22にIPアドレス(初期IPアドレ)を送信する。ステップ64で、受信処理部33は、ISPサーバ12から、初期IPアドレを受信する。 FIG. 6 shows a flowchart of the data transmission preparation process in step 52 of FIG. As shown in FIG. 6, in the data transmission preparation process of step 52 in FIG. That is, the connection processing unit 31 controls the modem 22 to request the ISP server 12 to connect to the Internet 18. Upon receiving the request, the ISP server 12 transmits an IP address (initial IP address) to the modem 22. In step 64, the reception processing unit 33 receives the initial IP address from the ISP server 12.
 ステップ66で、記憶処理部35は、初期IPアドレスを、記憶装置42(図2も参照)のアドレス記憶領域42Eの初期IPアドレス記憶領域42E1に記憶する。 In step 66, the storage processing unit 35 stores the initial IP address in the initial IP address storage area 42E1 of the address storage area 42E of the storage device 42 (see also FIG. 2).
 ステップ68で、接続処理部31は、FC24と接続する。 In step 68, the connection processing unit 31 connects to the FC 24.
 ステップ70で、送信処理部37は、初期IPアドレスを監視装置16に送信する。 In step 70, the transmission processing unit 37 transmits the initial IP address to the monitoring device 16.
 ステップ72で、送信処理部37は、初期IPアドレスをDDNSサーバ14に送信する。 In step 72, the transmission processing unit 37 transmits the initial IP address to the DDNS server 14.
 DDNSサーバ14は、DDNSサーバ14の図示しない記憶装置の記憶領域14E(図3も参照)のIPアドレス記憶領域14E2に記憶する。 The DDNS server 14 stores the IP address in the IP address storage area 14E2 of the storage area 14E (see also FIG. 3) of the storage device (not shown) of the DDNS server 14.
 上記のように、監視装置16は、インターネット18を介してドローン10と通信する場合、ドローン10のIPアドレスを送信するようにDDNSサーバ14に指示するために、ドローン10及び監視装置16に共通するドメインを、DDNSサーバ14に送信する。 As mentioned above, when the monitoring device 16 communicates with the drone 10 via the Internet 18 , the monitoring device 16 uses a common link between the drone 10 and the monitoring device 16 to instruct the DDNS server 14 to send the IP address of the drone 10 . Send the domain to the DDNS server 14.
 DDNSサーバ14は、受信したドメインを用いて、当該ドメインに対応するIPアドレスを、IPアドレス記憶領域14E2から検索する。DDNSサーバ14は、検索して得たIPアドレスを、監視装置16に送信する。 The DDNS server 14 uses the received domain to search the IP address storage area 14E2 for the IP address corresponding to the domain. The DDNS server 14 sends the searched IP address to the monitoring device 16.
 監視装置16は、受信したIPアドレスを用いて、インターネット18を介してドローン10と通信する。 The monitoring device 16 communicates with the drone 10 via the Internet 18 using the received IP address.
 ところで、従来技術のように、ドローンと監視装置とが、直接無線通信する場合には、ドローンと監視装置とが、直接無線通信可能な領域内に位置する必要がある。よって、ドローンと監視装置とが通信できる領域は狭い。監視装置の位置は固定されているので、監視装置と通信するドローンが飛行できる範囲は狭い。 By the way, when a drone and a monitoring device directly communicate wirelessly as in the prior art, the drone and the monitoring device need to be located within an area where direct wireless communication is possible. Therefore, the area in which the drone and the monitoring device can communicate is narrow. Since the location of the monitoring device is fixed, the range in which the drone communicating with the monitoring device can fly is narrow.
 これに対し、本実施の形態では、ドローン10は、前方画像データ、ドローン画像データ、及びセンサデータを含む送信データを、モデム22により、インターネット18を介して、監視装置16とクラウドサーバ15とに送信する。従って、ドローン10と、監視装置16及びクラウドサーバ15とは、インターネット18を介して、直接無線通信可能な領域を超えて、通信することができる。 In contrast, in the present embodiment, the drone 10 transmits transmission data including forward image data, drone image data, and sensor data to the monitoring device 16 and the cloud server 15 via the Internet 18 using the modem 22. Send. Therefore, the drone 10, the monitoring device 16, and the cloud server 15 can communicate via the Internet 18 beyond the area where direct wireless communication is possible.
 よって、本実施の形態では、ドローン10と監視装置16との間の通信距離を従来の技術より長くすることができる。 Therefore, in this embodiment, the communication distance between the drone 10 and the monitoring device 16 can be made longer than in the conventional technology.
 図7には、送信処理の停止プログラム42P3のフローチャートが示されている。送信処理の停止プログラム42P3は、通信制御装置20に電源が投入された時から第1の時間毎に繰り返し実行される。 FIG. 7 shows a flowchart of the transmission processing stop program 42P3. The transmission processing stop program 42P3 is repeatedly executed every first time from when the communication control device 20 is powered on.
 ステップ82で、判断部39は、本送信処理の停止処理が前回実行さてから今回実行されるまでの間に送信処理(図5のステップ54のデータ送信処理)があったか否かを判断する。なお、本実施の形態では、図5のステップ54のデータ送信処理が実行される毎に、当該データ送信処理の実行日時のデータが、記憶装置42に記憶される。よって、この実行日時のデータから、本送信処理の停止処理が前回実行さてから今回実行されるまでの間に送信処理があったか否かを判断することができる。送信処理があったと判断された場合には、送信処理の停止処理を終了する。送信処理があったと判断されなかった場合には、送信処理の停止処理は、ステップ84に進む。ステップ84で、終了部41は、送信処理プログラムの実行を終了する。 In step 82, the determination unit 39 determines whether there was any transmission processing (data transmission processing in step 54 in FIG. 5) between the last execution of the stop processing of the transmission processing and the current execution. Note that in this embodiment, each time the data transmission process in step 54 of FIG. 5 is executed, data on the execution date and time of the data transmission process is stored in the storage device 42. Therefore, from this execution date and time data, it can be determined whether or not there was a transmission process between the time when the stop process of the main transmission process was executed last time and the time when it is executed this time. If it is determined that there is a transmission process, the transmission process stop process is ended. If it is not determined that there is a transmission process, the process of stopping the transmission process proceeds to step 84. In step 84, the termination unit 41 terminates the execution of the transmission processing program.
 ところで、上記のように、送信処理プログラム42P1は、通信制御装置20に電源が投入された場合にスタートし、飛行終了まで実行される。しかし、何らかの理由で、送信データを送信しない場合があり、この場合に、送信処理プログラム42P1を実行したのでは、電力が無駄に消費される。そこで、第1の時間、送信処理がされなければ、送信処理プログラム42P1の実行を終了することにより、電力消費を少なくすることができる。 By the way, as described above, the transmission processing program 42P1 starts when the communication control device 20 is powered on and is executed until the end of the flight. However, for some reason, the transmission data may not be transmitted, and in this case, if the transmission processing program 42P1 is executed, power will be wasted. Therefore, if no transmission processing is performed during the first period, power consumption can be reduced by terminating the execution of the transmission processing program 42P1.
 図8には、動的IPアドレス受信処理プログラム42E2のフローチャートが示されている。動的IPアドレス受信処理プログラム42E2は、ISPサーバ12から、初期IPアドレスの受信後、動的IPアドレスを受信した場合に、スタートする。動的IPアドレスは、初期IPアドレスとは異なるIPアドレスである。 FIG. 8 shows a flowchart of the dynamic IP address reception processing program 42E2. The dynamic IP address reception processing program 42E2 starts when a dynamic IP address is received from the ISP server 12 after receiving the initial IP address. A dynamic IP address is an IP address that is different from the initial IP address.
 ステップ92で、記憶処理部35は、動的IPアドレスを、記憶装置42(図2も参照)のアドレス記憶領域42Eの動的IPアドレス記憶領域42E2に記憶する。 In step 92, the storage processing unit 35 stores the dynamic IP address in the dynamic IP address storage area 42E2 of the address storage area 42E of the storage device 42 (see also FIG. 2).
 ステップ94で、送信処理部37は、動的IPアドレスを監視装置16に送信する。 In step 94, the transmission processing unit 37 transmits the dynamic IP address to the monitoring device 16.
 ステップ96で、送信処理部37は、動的IPアドレスをDDNSサーバ14に送信する。 In step 96, the transmission processing unit 37 transmits the dynamic IP address to the DDNS server 14.
 DDNSサーバ14は、DDNSサーバ14の図示しない記憶装置の記憶領域14E(図3も参照)のIPアドレス記憶領域14E2に動的IPアドレスを記憶(上書き)する。 The DDNS server 14 stores (overwrites) the dynamic IP address in the IP address storage area 14E2 of the storage area 14E (see also FIG. 3) of the storage device (not shown) of the DDNS server 14.
 上記のように、監視装置16は、ドローン10及び監視装置16に共通するドメインを、DDNSサーバ14に送信する。DDNSサーバ14は、受信したドメインを用いて、当該ドメインに対応するIPアドレス(IPアドレス記憶領域14E2に上書きされた動的IPアドレス、即ち、最新のIPアドレス)を、IPアドレス記憶領域14E2から検索する。DDNSサーバ14は、検索して得た最新のIPアドレスを、監視装置16に送信する。監視装置16は、受信した最新のIPアドレスを用いて、インターネット18を介してドローン10と通信する。 As described above, the monitoring device 16 transmits the domain common to the drone 10 and the monitoring device 16 to the DDNS server 14. Using the received domain, the DDNS server 14 searches the IP address storage area 14E2 for the IP address corresponding to the domain (the dynamic IP address overwritten in the IP address storage area 14E2, that is, the latest IP address). do. The DDNS server 14 transmits the latest IP address obtained through the search to the monitoring device 16. The monitoring device 16 communicates with the drone 10 via the Internet 18 using the latest received IP address.
 このようにモデム22が動的IPアドレスを受信する、即ち、IPアドレスが初期IPアドレスから動的IPアドレスが変更しても、DDNSサーバ16が監視装置16に最新の動的IPアドレスを送信するので、監視装置16はモデム22とインターネット18を介して通信することができる。 In this way, even if the modem 22 receives a dynamic IP address, that is, the IP address changes from the initial IP address, the DDNS server 16 sends the latest dynamic IP address to the monitoring device 16. Therefore, the monitoring device 16 can communicate with the modem 22 via the Internet 18.
 図9には、送信処理維持及びIPアドレス変更チェックプログラム42P4のフローチャートが示されている。送信処理維持及びIPアドレス変更チェックプログラム42P4は、通信制御装置20に電源が投入された時から第1の時間より短い第2の時間毎に繰り返し実行される。 FIG. 9 shows a flowchart of the transmission processing maintenance and IP address change check program 42P4. The transmission processing maintenance and IP address change check program 42P4 is repeatedly executed every second time period, which is shorter than the first time period, from when the communication control device 20 is powered on.
 ステップ102で、送信処理部37は、信号、例えば、pingを、ISPサーバ1212に送信する。これにより、図7のステップ82が肯定判定となる。よって、送信処理プログラム42P1が、ドローン10の飛行中に停止することを防止することができる。 In step 102, the transmission processing unit 37 transmits a signal, for example, a ping, to the ISP server 1212. As a result, step 82 in FIG. 7 becomes an affirmative determination. Therefore, it is possible to prevent the transmission processing program 42P1 from stopping during the flight of the drone 10.
 ステップ104で、判断部39は、IPアドレス記憶領域42Eにおける動的IPアドレス記憶領域42E2に動的IPアドレスが記憶されているか否かを判断することにより、IPアドレスが変更されたか否かを判断する。 In step 104, the determining unit 39 determines whether the IP address has been changed by determining whether a dynamic IP address is stored in the dynamic IP address storage area 42E2 in the IP address storage area 42E. do.
 IPアドレスが変更されたと判断されなかった場合には、送信処理維持及びIPアドレス変更チェック処理は終了する。IPアドレスが変更されたと判断された場合には、送信処理維持及びIPアドレス変更チェック処理はステップ106に進む。 If it is determined that the IP address has not been changed, the transmission process maintenance and IP address change check process ends. If it is determined that the IP address has changed, the transmission process maintenance and IP address change check process proceeds to step 106.
 ステップ106で、送信処理部37は、動的IPアドレスを監視装置16に送信する。 In step 106, the transmission processing unit 37 transmits the dynamic IP address to the monitoring device 16.
 ステップ108で、送信処理部37は、動的IPアドレスをDDNSサーバ14に送信する。 In step 108, the transmission processing unit 37 transmits the dynamic IP address to the DDNS server 14.
 なお、ステップ104を実行する場合、今回、ステップ106で送信しようとする動的IPアドレスが、前回、ステップ106で送信した動的IPアドレスと同じ場合には、IPアドレスが変更されたと判断しないようにしてもよい。 Note that when executing step 104, if the dynamic IP address to be sent this time in step 106 is the same as the dynamic IP address sent in step 106 last time, it should not be determined that the IP address has changed. You can also do this.
 以上説明したように本実施の形態では、ドローン10は、データを、インターネットを介して、監視装置16に送信するので、ドローン10と監視装置16との間の通信距離を、直接通信する従来の技術より、長くすることができる。 As explained above, in the present embodiment, the drone 10 transmits data to the monitoring device 16 via the Internet, so the communication distance between the drone 10 and the monitoring device 16 is different from that of the conventional method of direct communication. Technology can make it longer.
 また、本実施の形態では、ドローン10が飛行中に、モデム22のIPアドレスが変更されても、監視装置は、DDNSサーバ14を介して、ドローン10の最新のIPアドレスを受信することができるので、ドローン10との間の通信を継続することができる。 Furthermore, in this embodiment, even if the IP address of the modem 22 is changed while the drone 10 is in flight, the monitoring device can receive the latest IP address of the drone 10 via the DDNS server 14. Therefore, communication with the drone 10 can be continued.
 更に、本実施の形態では、送信処理維持及びIPアドレス変更チェックプログラム42P4で信号(ping)を送信することを、ドローン10が通信していないとして送信処理プログラムを停止する第1の時間より短い第2の時間毎に繰り返し実行する。よって、本実施の形態は、ドローンの飛行中に、送信処理プログラムが停止し、監視装置16がドローン10の監視ができなくなることを防止することができる。 Furthermore, in this embodiment, the transmission processing maintenance and IP address change check program 42P4 is configured to transmit a signal (ping) for a period shorter than the first time period during which the transmission processing program is stopped on the assumption that the drone 10 is not communicating. Repeat every 2 hours. Therefore, this embodiment can prevent the transmission processing program from stopping and the monitoring device 16 being unable to monitor the drone 10 during the flight of the drone.
 以上説明した実施の形態では、第1のカメラ28A及び第2のカメラ28Bを通信制御装置20に接続し、センサ26をFC24に接続しているが、本開示の技術はこれに限定されない。例えば、第1のカメラ28A及び第2のカメラ28BをFC24に接続し且つセンサ26を通信制御装置20に接続したり、センサ26、第1のカメラ28A及び第2のカメラ28Bの全てをFC24に接続したり、センサ26、第1のカメラ28A及び第2のカメラ28Bの全てを通信制御装置20に接続したり、してもよい。 In the embodiment described above, the first camera 28A and the second camera 28B are connected to the communication control device 20, and the sensor 26 is connected to the FC 24, but the technology of the present disclosure is not limited to this. For example, the first camera 28A and the second camera 28B may be connected to the FC 24 and the sensor 26 may be connected to the communication control device 20, or the sensor 26, the first camera 28A, and the second camera 28B may all be connected to the FC 24. The sensor 26, the first camera 28A, and the second camera 28B may all be connected to the communication control device 20.
 以上説明した実施の形態では、FC24及び通信制御装置20を備えているが、通信制御装置20を省略し、センサ26、第1のカメラ28A及び第2のカメラ28Bの全てをFC24に接続し、上記各プログラム42P1~42PをFC24が実行してもよい。 The embodiment described above includes the FC 24 and the communication control device 20, but the communication control device 20 is omitted, and the sensor 26, the first camera 28A, and the second camera 28B are all connected to the FC 24, The FC 24 may execute each of the above programs 42P1 to 42P.
 以上説明した実施の形態では、ドローンを用いて説明したが、本開示の技術はこれに限定されない。例えば、ドローンに代えて、その他の無人飛行機、例えば、無線操縦可能な飛行機及び無線操縦可能な無人ヘリコプタ、更には、有人航空機、例えば、無線操縦可能な人が乗ることができるヘリコプタを用いてもよい。 Although the embodiments described above have been described using a drone, the technology of the present disclosure is not limited thereto. For example, instead of a drone, other unmanned aircraft, such as a radio-controlled airplane and a radio-controlled unmanned helicopter, or even a manned aircraft, such as a radio-controlled helicopter that can carry a person, may be used. good.
 本開示において、各構成要素(装置等)は、矛盾が生じない限りは、1つのみ存在しても2つ以上存在してもよい。 In the present disclosure, only one or two or more of each component (device, etc.) may exist as long as there is no contradiction.
 以上説明した各例では、コンピュータを利用したソフトウェア構成により各処理が実現される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、コンピュータを利用したソフトウェア構成に代えて、FPGA(Field-Programmable Gate Array)またはASIC(Application Specific Integrated Circuit)等のハードウェア構成のみによって、各処理が実行されるようにしてもよい。各処理のうちの一部の処理がソフトウェア構成により実行され、残りの処理がハードウェア構成によって実行されるようにしてもよい。 In each of the examples described above, each process is realized by a software configuration using a computer, but the technology of the present disclosure is not limited to this. For example, instead of a software configuration using a computer, only the hardware configuration such as FPGA (FIELD -PROGRAMMABLE GATE ARRAY) or ASIC (Application Specific INTEGRATED CIRCUIT). , Passing each process may be executed. A portion of each process may be executed by a software configuration, and the remaining processes may be executed by a hardware configuration.
 なお、上述した各プログラムは、様々なタイプの非一時的なコンピュータ可読媒体を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 Note that each of the programs described above can be stored and supplied to a computer using various types of non-transitory computer-readable media. Non-transitory computer-readable media includes various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, and CDs. - R/W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). The program may also be provided to the computer on various types of temporary computer-readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can provide the program to the computer via wired communication channels, such as electrical wires and fiber optics, or wireless communication channels.
 以上説明した各処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。 Each of the processes described above is just an example. Therefore, it goes without saying that unnecessary steps may be deleted, new steps may be added, or the processing order may be changed within the scope of the main idea.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的にかつ個々に記載された場合と同様に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned herein are incorporated by reference, as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (3)

  1.  インターネットに接続するための通信部と、
     データが前記インターネットを介して監視装置に送信されるように、前記通信部を制御する制御部と、
     を備える航空機。
    A communication department for connecting to the Internet,
    a control unit that controls the communication unit so that data is transmitted to a monitoring device via the Internet;
    An aircraft equipped with
  2.  前記通信部は、前記インターネットに接続した場合に、第1のIPアドレスを受信すると共に、前記航空機が飛行中に、前記第1のIPアドレスに代わる第2のIPアドレスを受信し、
     前記制御部は、前記通信部により前記第1のIPアドレス又は前記第2のIPアドレスが受信されると、受信された前記第1のIPアドレス又は前記第2のIPアドレスが、管理装置に送信されるように、前記通信部を制御し、
     前記管理装置は、前記監視装置及び前記航空機に共通する識別データと前記通信部から受信した前記第1のIPアドレス又は前記第2のIPアドレスとを対応して記憶部に記憶すると共に、前記監視装置に前記第1のIPアドレス又は前記第2のIPアドレスを送信し、
     前記監視装置は、前記管理装置から受信した前記第1のIPアドレス又は前記第2のIPアドレスを用いて、前記インターネットを介して前記通信部と通信する、
     ことを特徴とする請求項1に記載の航空機。
    The communication unit receives a first IP address when connected to the Internet, and receives a second IP address in place of the first IP address while the aircraft is in flight;
    When the communication unit receives the first IP address or the second IP address, the control unit transmits the received first IP address or the second IP address to a management device. controlling the communication unit so that
    The management device stores identification data common to the monitoring device and the aircraft and the first IP address or the second IP address received from the communication unit in a corresponding manner, and transmitting the first IP address or the second IP address to a device;
    The monitoring device communicates with the communication unit via the Internet using the first IP address or the second IP address received from the management device.
    The aircraft according to claim 1, characterized in that:
  3.  前記制御部は、データが前記インターネットを介して前記監視装置に送信されるように前記通信部を制御するデータ通信処理を、データが第1の期間送信されない場合、停止し、
     前記制御部は、前記第1の期間より短い第2の期間経過する毎にデータが送信されるように、前記通信部を制御する、
     ことを特徴とする請求項1又は請求項2に記載の航空機。
    The control unit stops a data communication process that controls the communication unit so that data is transmitted to the monitoring device via the Internet when no data is transmitted for a first period;
    The control unit controls the communication unit so that data is transmitted every time a second period shorter than the first period elapses.
    The aircraft according to claim 1 or claim 2, characterized in that:
PCT/JP2022/016520 2022-03-31 2022-03-31 Aircraft WO2023188271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016520 WO2023188271A1 (en) 2022-03-31 2022-03-31 Aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016520 WO2023188271A1 (en) 2022-03-31 2022-03-31 Aircraft

Publications (1)

Publication Number Publication Date
WO2023188271A1 true WO2023188271A1 (en) 2023-10-05

Family

ID=88199880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016520 WO2023188271A1 (en) 2022-03-31 2022-03-31 Aircraft

Country Status (1)

Country Link
WO (1) WO2023188271A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207149A (en) * 2014-04-21 2015-11-19 薫 渡部 monitoring system and monitoring method
US20170045884A1 (en) * 2015-08-10 2017-02-16 Edward Kablaoui System and Method for Drone Connectivity and Communication Over a Cellular Network
JP2017526280A (en) * 2015-03-31 2017-09-07 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd System for controlling unmanned aerial vehicles
JP2018503194A (en) * 2015-01-13 2018-02-01 ▲広▼州▲極飛▼科技有限公司Guangzhou Xaircraft Technology Co., Ltd. Method and system for scheduling unmanned aircraft, unmanned aircraft
JP2018165931A (en) * 2017-03-28 2018-10-25 株式会社ゼンリンデータコム Control device for drone, control method for drone and control program for drone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207149A (en) * 2014-04-21 2015-11-19 薫 渡部 monitoring system and monitoring method
JP2018503194A (en) * 2015-01-13 2018-02-01 ▲広▼州▲極飛▼科技有限公司Guangzhou Xaircraft Technology Co., Ltd. Method and system for scheduling unmanned aircraft, unmanned aircraft
JP2017526280A (en) * 2015-03-31 2017-09-07 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd System for controlling unmanned aerial vehicles
US20170045884A1 (en) * 2015-08-10 2017-02-16 Edward Kablaoui System and Method for Drone Connectivity and Communication Over a Cellular Network
JP2018165931A (en) * 2017-03-28 2018-10-25 株式会社ゼンリンデータコム Control device for drone, control method for drone and control program for drone

Similar Documents

Publication Publication Date Title
JP7020421B2 (en) Flight controls, unmanned aerial vehicles, flight control methods, and programs
US11243533B2 (en) Control apparatus for unmanned transport machine
US9933780B2 (en) Systems and methods for remote distributed control of unmanned aircraft
WO2019113727A1 (en) Unmanned aerial vehicle return method and device, storage medium, and unmanned aerial vehicle
US20200245217A1 (en) Control method, unmanned aerial vehicle, server and computer readable storage medium
JP6281720B2 (en) Imaging system
US11877253B2 (en) Aircraft time synchronization system and method
US11958604B2 (en) Unmanned aerial vehicle and method for controlling gimbal thereof
WO2018059295A1 (en) Control method, device, and system for multirotor aerial vehicle
CN108780321B (en) Method, device, system, and computer-readable storage medium for device pose adjustment
WO2019227287A1 (en) Data processing method and device for unmanned aerial vehicle
JP2018092237A (en) Unmanned aircraft control system, and control method and program of the same
US11620911B2 (en) Management device and flying device management method
WO2023188271A1 (en) Aircraft
US20210240185A1 (en) Shooting control method and unmanned aerial vehicle
US20210005079A1 (en) Uav communication control method and system, and uav
US11620913B2 (en) Movable object application framework
WO2019062127A1 (en) Control method and apparatus for unmanned aircraft
CN110809863B (en) Communication link system, data transmission method, unmanned aerial vehicle, and storage medium
KR102258731B1 (en) System and method for controlling flight sequence of unmanned aerial vehicle
US20200334192A1 (en) Communication method, device, and system
JP2019018664A (en) Imaging control system
WO2020107465A1 (en) Control method, unmanned aerial vehicle and computer-readable storage medium
WO2020061941A1 (en) Communication method and system, and movable platform
WO2020059684A1 (en) Flying vehicle guidance method, guidance device, and guidance system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933892

Country of ref document: EP

Kind code of ref document: A1