WO2023188142A1 - Azimuth detection device and azimuth detection method - Google Patents

Azimuth detection device and azimuth detection method Download PDF

Info

Publication number
WO2023188142A1
WO2023188142A1 PCT/JP2022/016096 JP2022016096W WO2023188142A1 WO 2023188142 A1 WO2023188142 A1 WO 2023188142A1 JP 2022016096 W JP2022016096 W JP 2022016096W WO 2023188142 A1 WO2023188142 A1 WO 2023188142A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase difference
signal
antenna
inter
frequency
Prior art date
Application number
PCT/JP2022/016096
Other languages
French (fr)
Japanese (ja)
Inventor
隆文 永野
亘 辻田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/016096 priority Critical patent/WO2023188142A1/en
Priority to JP2024510916A priority patent/JPWO2023188142A1/ja
Publication of WO2023188142A1 publication Critical patent/WO2023188142A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals

Definitions

  • the present disclosure relates to a direction finding device and a direction finding method.
  • a direction finding device that estimates the direction of arrival of a plurality of signals included in a wide frequency band
  • a direction finding device that uses an irregularly spaced antenna array in which a plurality of antennas are arranged at irregular intervals is known. Even if the signal is included in a wide frequency band, if it is a narrowband signal that has a narrow frequency band, the phase relationship between the signals received by each antenna of an unevenly spaced antenna array, specifically, between the antennas. By using the phase difference between the antennas, which is the phase difference between the antennas, the direction of arrival of the signal can be estimated.
  • Patent Document 1 discloses a method of combining a plurality of unevenly spaced subarrays with subarray spacings such that the ratio of the subarray spacings is a prime number ratio or an irrational number.
  • a method is disclosed that uses an antenna array arranged at irregular intervals to include at least one set of antennas.
  • Another possible method is to use an unevenly spaced antenna array as a direction finding device to estimate the direction of arrival of multiple signals included in a wide frequency band, but when estimating the direction of arrival of a wideband signal, Since the phase difference between antennas changes at different frequencies, information in a wide frequency band cannot be used effectively.
  • one or more aspects of the present disclosure aim to enable accurate estimation of the direction of arrival of a wideband signal.
  • a direction finding device includes an antenna array in which a plurality of antennas are arranged at unequal intervals, a signal receiving unit that receives an incoming signal with the antenna array, and a direction finding unit that receives a predetermined direction from the incoming signal.
  • a signal separation and detection section that separates and detects the incoming signals if one or more bands include a plurality of incoming signals;
  • a phase difference information calculation unit that calculates a phase difference between antennas, which is a phase difference, at a specific frequency; and a direction of arrival estimation unit that estimates the direction of arrival of each of the incoming signals from the phase difference between the antennas.
  • an incoming signal is received by an antenna array in which a plurality of antennas are arranged at unequal intervals, and a plurality of incoming signals are detected for each of one or more predetermined bands from the incoming signal. is included, the incoming signal is detected, and from the frequency components of each of the detected incoming signals, an inter-antenna phase difference, which is a phase difference between the plurality of antennas, is calculated at a specific frequency.
  • the method is characterized in that the direction of arrival of each of the arriving signals is estimated from the phase difference between the antennas.
  • FIG. 1 is a block diagram schematically showing the configuration of a direction finding device according to Embodiments 1 and 2.
  • FIG. FIG. 2 is a schematic diagram illustrating an example of an inter-antenna phase difference between different antennas of one wideband signal.
  • 1 is a block diagram schematically showing the configuration of a signal processing circuit in Embodiment 1.
  • FIG. 3 is a flowchart illustrating an example of a process for calculating a phase difference between antennas.
  • FIG. 2 is a block diagram schematically showing the configuration of a signal processing circuit in Embodiment 2.
  • FIG. (A) and (B) are block diagrams showing an example of a hardware configuration.
  • FIG. 1 is a block diagram schematically showing the configuration of a direction finding device 100 according to the first embodiment.
  • the direction finding device 100 includes a plurality of antennas 101, a plurality of filters 102, a high frequency signal generation circuit 103, a plurality of mixers 104, a plurality of amplifiers 105, and a plurality of A/D (Analog/Digital) converters 106. and a signal processing circuit 110.
  • the antenna 101, the filter 102, the mixer 104, the high frequency signal generation circuit 103, the amplifier 105, and the A/D converter 106 are also referred to as a signal receiving section 107.
  • the plurality of antennas 101 are arranged at unequal intervals and constitute an antenna array. It is assumed that the intervals at which the plurality of antennas 101 are arranged are set so that the arrival direction of the signal can be detected according to the known technique described in Patent Document 1 and the like. Therefore, the antenna array in which the plurality of antennas 101 are arranged at unequal intervals receives incoming signals over a wide band as received signals. A received signal received by each of the plurality of antennas 101 is provided to a plurality of filters 102 provided corresponding to each of the plurality of antennas 101.
  • the filter 102 filters out undesired components contained in the received signal.
  • the filter reception signals processed by each of the plurality of filters 102 are provided to a plurality of mixers 104 provided corresponding to each of the plurality of filters 102.
  • the high frequency signal generation circuit 103 generates a high frequency signal that is a predetermined high frequency signal.
  • the high frequency signal is provided to mixer 104.
  • the mixer 104 mixes the filter reception signal from the filter 102 and the high frequency signal from the high frequency signal generation circuit 103 to frequency convert the filter reception signal and filter out undesired components.
  • a processed signal which is a signal processed by each of the plurality of mixers 104, is provided to a plurality of amplifiers 105 provided corresponding to each of the plurality of mixers 104.
  • the amplifier 105 amplifies the processed signal from the mixer 104.
  • the processed signals amplified by each of the plurality of amplifiers 105 are given as amplified signals to the plurality of A/D converters 106 provided corresponding to each of the plurality of amplifiers 105.
  • the A/D converter 106 converts the amplified signal from the amplifier 105 into an incoming signal by digitizing it.
  • the incoming signal converted by each of the plurality of A/D converters 106 is provided to a signal processing circuit 110.
  • the signal receiving unit 107 includes an antenna array in which a plurality of antennas 101 are arranged at unequal intervals, and receives a plurality of incoming signals with the antenna array.
  • the signal processing circuit 110 is a signal processing unit that processes incoming signals that are digital signals from the plurality of A/D converters 106.
  • the signal processing circuit 110 estimates the direction of arrival of a signal from the inter-antenna phase difference of the signal received by an antenna array in which a plurality of antennas 101 are arranged at unequal intervals.
  • the inter-antenna phase difference ⁇ ( m , n, k, ⁇ ) of the frequency component of the frequency k ⁇ f of the received signal arriving from the direction ⁇ at the antenna m and the antenna n with the antenna spacing d m, n is as follows. It is expressed by equation (1).
  • c represents the speed of light
  • ⁇ f represents the discrete frequency interval
  • k represents the index of the discrete frequency.
  • the reception frequency bandwidth of a wideband signal varies depending on the application, but is, for example, a bandwidth from several hundred MHz to several GHz.
  • the inter-antenna phase difference also changes linearly with respect to each of the antenna spacing d m,n and the sine sin ⁇ of the signal arrival direction.
  • FIG. 2 shows an example of the inter-antenna phase difference between different antennas for one broadband signal.
  • FIG. 3 is a block diagram schematically showing the configuration of the signal processing circuit 110.
  • the signal processing circuit 110 functions as a signal separation detection section 111, a phase difference information calculation section 112, and a direction of arrival estimation section 113.
  • the signal separation and detection unit 111 separates the incoming signal and detects the incoming signal. For example, if a plurality of incoming signals are included in each of one or more predetermined bands, the signal separation and detection unit 111 separates the incoming signal received by the signal receiving unit 107 and detects the incoming signal. do.
  • the signal separation and detection unit 111 divides an incoming signal in a wide frequency band into one or more subbands using a filter bank. Then, the signal separation detection unit 111 separates the plurality of signals by repeating assigning a signal band detected in the frequency domain to a signal detected in the time domain in each subband for each processing unit time. and detect it. Note that when detecting a signal band, the signal separation and detection unit 111 calculates a set of frequency components of the signal. The set of frequency components calculated here is given to the phase difference information calculation section 112.
  • the signal separation detection unit 111 can use the signal separation detection method described in Non-Patent Document 1 below.
  • the technology described in Non-Patent Document 1 divides a wide frequency band into multiple subbands using a filter bank, and assigns a signal band detected in the frequency domain to a signal detected in the time domain in each subband as a processing unit. By repeating each time, multiple signals can be separated and detected. Since a set of frequency components of the signal is calculated when detecting a signal band, the phase difference information calculation unit 112 can utilize the set of frequency components.
  • Non-patent document 1 Takafumi Nagano, Wataru Tsujita, "Real-time pulse detection method from wideband signal", IEICE Technical Report, SANE2021-3, pp. 11-14, May 2021
  • the phase difference information calculation unit 112 calculates the inter-antenna phase difference of the incoming signal. For example, the phase difference information calculation unit 112 specifies the inter-antenna phase difference, which is the phase difference between the plurality of antennas 101, from the frequency components of each of the one or more incoming signals separated and detected by the signal separation and detection unit 111. Calculated at the frequency of
  • the phase difference information calculation unit 112 calculates the inter-antenna phase difference at a specific frequency from the set of frequency components from the signal separation detection unit 111. Note that, instead of the inter-antenna phase difference, the phase difference information calculation unit 112 calculates the peak component of the DFT (Discrete Fourier Transformation) of the inter-antenna product of the signal frequency components, corrected to a value at a specific frequency. It's okay.
  • DFT Discrete Fourier Transformation
  • the inter-antenna product z (m, n, k, ⁇ ) between antenna m and antenna n of the frequency component of frequency k ⁇ f of the signal at arrival direction ⁇ is expressed by the following equation (2).
  • the inter-antenna product is calculated after converting the frequency component of the signal received by antenna n into a conjugate complex number.
  • a(m, n, k, ⁇ ) represents intensity
  • j represents an imaginary unit.
  • the frequency components within the signal band of the detected signal are calculated.
  • the DFT in the frequency direction is calculated using the following equation (3).
  • the rate of change of the inter-antenna phase difference matches the discrete frequency of the DFT, in other words, when the peak position of the DFT matches the discrete frequency of the DFT, and if the discrete frequency is l peak , then the DFT's The deflection angle argZ (m, n, lpeak) of the peak component becomes the inter-antenna phase difference at the frequency k min ⁇ f. If the peak position of the DFT does not match the discrete frequency of the DFT, it is desirable to estimate the accurate peak position and correct the inter-antenna phase difference according to that position.
  • the DFT peak positions of the DFT of the inter-antenna products of frequency components in an unevenly spaced antenna array are usually different.
  • the DFT is calculated after zero padding the product between each antenna so that the DFT length between each antenna is the reciprocal ratio of the antenna spacing, it is possible to align the DFT peak positions of the products between antennas with different antenna spacings. can.
  • the S/N ratio can be improved by calculating the absolute value of the DFT between each antenna and adding the absolute values. Since the peak of the DFT of the antenna-to-antenna product is sharper in a DFT with a short zero-padded DFT length, the addition process may be a weighted average in which the weight of the DFT with a short zero-padded DFT length is increased.
  • the DFT peak position may be estimated from the summed value after aligning the DFT peak positions between each antenna in this way, calculating and adding the absolute values.
  • the DFT peak position of the antenna-to-antenna product of the signal frequency component can be estimated with high accuracy by calculating a curve passing through the peak and points around it and estimating the peak position as a real number.
  • the phase difference information calculation unit 112 calculates a parabola passing through three points including the peak and two points on both sides of the peak, and estimates the horizontal axis position of the focus of the parabola as the peak position.
  • the curve not only a parabola but also any curve having a maximum point may be used.
  • the specific frequency is expressed as k min ⁇ f.
  • the frequency in the k direction of z (m, n, k) matches the discrete frequency of the DFT, the This is because the declination angle becomes the inter-antenna phase difference at the frequency k min ⁇ f.
  • the second term on the right side of equation (5) above calculates the phase difference at the frequency k min ⁇ f. Corrections have been made so that Note that when the frequency of z(m, n, k) in the k direction matches the discrete frequency of DFT, the second term on the right side of the above equation (5) becomes "0".
  • the inter-antenna phase difference at a specific frequency k min ⁇ f is corrected to the inter-antenna phase difference at another frequency k ref ⁇ f. be able to.
  • the inter-antenna phase difference at frequency k min ⁇ f can be corrected to the inter-antenna phase difference at frequency k ref ⁇ f.
  • FIG. 4 is a flowchart illustrating an example of a process in which the phase difference information calculation unit 112 calculates the inter-antenna phase difference in the first embodiment.
  • the phase difference information calculation unit 112 determines that the length in the frequency direction of the inter-antenna product of the frequency components between each antenna for each of the one or more incoming signals detected by the signal separation and detection unit 111 is equal to the interval between the plurality of antennas 101.
  • the inter-antenna product between each antenna is zero-padded so as to have a reciprocal ratio, and then the DFT is calculated in the frequency direction (S10).
  • the phase difference information calculation unit 112 adds the absolute values of the calculation results of the DFT between each antenna (S11). Then, the phase difference information calculation unit 112 detects the peak position of DFT between each antenna (S12). Subsequently, the phase difference information calculation unit 112 estimates the peak position of DFT between each antenna (S13).
  • the phase difference information calculation unit 112 calculates the inter-antenna phase difference at a specific frequency from the set of frequency components from the signal separation detection unit 111 and the processing result thereof (S14). For example, the phase difference information calculation unit 112 calculates the inter-antenna phase difference at a specific frequency from the peak value and its position detected from the DFT of the inter-antenna product, the estimated peak position, the number of frequency components, and the DFT length. calculate.
  • the direction of arrival estimating section 113 estimates the direction of arrival of the arriving signal. Since the inter-antenna phase difference calculated by the phase difference information calculation unit 112 is the inter-antenna phase difference at a specific frequency, the arrival direction estimation unit 113 calculates the arrival direction of each incoming signal by calculating the arrival direction of the existing narrowband signal. Estimation is performed using the method used for direction of arrival estimation.
  • the phase difference information calculation unit 112 uses the signal frequency instead of the phase difference between antennas.
  • the peak component of the DFT of the inter-antenna product of the components may be corrected to the value at frequency k min ⁇ f as shown in equation (7) below and calculated as an element of the correlation matrix. .
  • the DFT can be calculated with a small amount of calculation by using a normal FFT (Fast Fourier Transform). However, if the DFT length becomes longer due to zero padding, the amount of calculation will increase. In that case, the amount of calculation can be reduced by using the DFT matrix expressed by the following equation (8), excluding the zero-padded portions, and performing calculations limited to the necessary discrete frequency range.
  • FFT Fast Fourier Transform
  • the direction of arrival of a signal can be estimated with high accuracy using the method used to estimate the direction of arrival of a narrowband signal.
  • the direction finding device 200 includes a plurality of antennas 101, a plurality of filters 102, a high frequency signal generation circuit 103, a plurality of mixers 104, and a plurality of amplifiers. 105, a plurality of A/D converters 106, and a signal processing circuit 210.
  • the plurality of antennas 101, the plurality of filters 102, the high frequency signal generation circuit 103, the plurality of mixers 104, the plurality of amplifiers 105, and the plurality of A/D converters 106 of the direction finding device 200 according to the second embodiment are the same as those of the embodiment. This is similar to the plurality of antennas 101, the plurality of filters 102, the high frequency signal generation circuit 103, the plurality of mixers 104, the plurality of amplifiers 105, and the plurality of A/D converters 106 of the direction finding device 100 according to No. 1.
  • Signal processing circuit 210 processes the incoming signal, which is a digital signal from A/D converter 106.
  • the signal processing circuit 210 estimates the direction of arrival of the signal from the inter-antenna phase difference of the signal received by the antenna array in which the plurality of antennas 101 are arranged at unequal intervals.
  • FIG. 5 is a block diagram schematically showing the configuration of the signal processing circuit 210.
  • the signal processing circuit 210 functions as a signal separation detection section 211 , a phase difference information calculation section 212 , a direction of arrival estimation section 113 , and a phase difference information integration section 214 .
  • the direction of arrival estimation section 113 of the signal processing circuit 210 in the second embodiment is similar to the direction of arrival estimation section 113 of the signal processing circuit 110 in the first embodiment.
  • the signal separation and detection unit 111 in the first embodiment assigns one signal band to the signal separated and detected from the incoming signal, and calculates one set of frequency components corresponding to the signal band.
  • the signal separation and detection unit 211 in the second embodiment assigns a plurality of signal bands to signals separated and detected in the process of detecting an incoming signal, or integrates a plurality of signals.
  • a set of one or more frequency components corresponding to one or more signal bands is calculated for the signal.
  • the set of frequency components calculated here is given to the phase difference information calculation section 212.
  • the phase difference information calculation unit 212 calculates a frequency at a specific frequency for one or more signal bands of each signal provided from the signal separation detection unit 211.
  • the phase difference between the antennas or the DFT peak component of the product between the antennas of the signal frequency components is corrected to a value at a specific frequency.
  • phase difference information the phase difference between antennas at a specific frequency or the peak component of DFT of the product between antennas of signal frequency components corrected to a value at a specific frequency will be referred to as phase difference information.
  • phase difference information integration unit 214 integrates the plurality of phase difference information into one phase difference information.
  • phase difference between the antennas of the signal bands to be integrated is assumed to be two, and the peak position of the DFT estimated by the corrected phase difference between the antennas of the two signal bands a and b. and are shown in the following formulas (9) to (11), respectively.
  • the inter-antenna phase difference when a specific frequency is k ref ⁇ f can be calculated by the following equation (12) by weighted averaging using a predetermined weight w g .
  • k ref may be any integer, but k ref ⁇ f is within a frequency band that includes signal band a, signal band b, and regions between each of signal band a and signal band b.
  • k ref may be determined to be a value between the respective specific frequency indices k min of signal band a and signal band b.
  • the phase difference between the antennas in signal bands a and b is corrected to the phase difference between the antennas at the frequency k ref ⁇ f, and then the weighted average of the phase differences between the antennas is calculated. By doing so, information on both signal bands can be effectively utilized.
  • the weight of the weighted average may be a value depending on the signal strength or signal bandwidth.
  • the peak component of the DFT of the antenna-to-antenna product of the frequency components of the two signal bands a and signal band b is corrected to the DFT of the antenna-to-antenna product at a specific frequency kref ⁇ f, and then The average polarization angle may be used as the inter-antenna phase difference.
  • the phase difference information integration unit 214 converts the phase difference information into phase difference information at a common frequency, and integrates the converted phase difference information.
  • the direction of arrival estimating section 113 in the second embodiment is similar to the direction of arrival estimating section 113 in the first embodiment, but when using a method of estimating the direction of arrival from a correlation matrix like MUSIC, multiple When the phase difference information is integrated, the peak component of the DFT of the antenna-to-antenna product of the signal components before calculating the declination angle in equation (13) above is corrected, and a matrix whose components are the integrated one is created. It can be used as a correlation matrix.
  • a processor 11 such as a central processing unit (Central Processing Unit) or the like.
  • Such a program may be provided through a network, or may be provided recorded on a recording medium. That is, such a program may be provided as a program product, for example.
  • part or all of the signal processing circuits 110 and 210 may be, for example, a single circuit, a composite circuit, a processor that operates on a program, a parallel processor that operates on a program, as shown in FIG. 6(B), It can also be configured with a processing circuit 12 such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • phase difference information integration unit 100, 200 Direction finding device, 101 Antenna, 102 Filter, 103 High frequency signal generation circuit, 104 Mixer, 105 Amplifier, 106 A/D converter, 107 Signal receiver, 110, 210 Signal Processing circuit, 111, 211 signal separation detection 112, 212 phase difference information calculation unit, 113 direction of arrival estimation unit, 214 phase difference information integration unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An azimuth detection device (100) comprises: a signal reception unit (107) that includes an antenna array in which a plurality of antennas (101) are disposed at unequal intervals, and that receives incoming signals with the antenna array; and a signal processing circuit (110) that, if a plurality of incoming signals are included in each of one or more predetermined bands from the incoming signals, separates the incoming signals, calculates, in a specific frequency, an inter-antenna phase difference which is a phase difference between the plurality of antennas (101) from a frequency component of each incoming signal, and estimates an incoming azimuth of each incoming signal from the inter-antenna phase difference.

Description

方位探知装置及び方位探知方法Direction finding device and direction finding method
 本開示は、方位探知装置及び方位探知方法に関する。 The present disclosure relates to a direction finding device and a direction finding method.
 広い周波数帯域に含まれる複数の信号の到来方位を推定する方位探知装置として、不等間隔で複数のアンテナを配置した不等間隔アンテナアレイを利用した方位探知装置が知られている。広い周波数帯域に含まれる信号であっても、狭い周波数帯域を持つ信号である狭帯域信号であれば、不等間隔アンテナアレイの各アンテナで受信する信号の位相関係、具体的には、アンテナ間の位相差であるアンテナ間位相差を利用することで、信号の到来方位を推定できる。 As a direction finding device that estimates the direction of arrival of a plurality of signals included in a wide frequency band, a direction finding device that uses an irregularly spaced antenna array in which a plurality of antennas are arranged at irregular intervals is known. Even if the signal is included in a wide frequency band, if it is a narrowband signal that has a narrow frequency band, the phase relationship between the signals received by each antenna of an unevenly spaced antenna array, specifically, between the antennas. By using the phase difference between the antennas, which is the phase difference between the antennas, the direction of arrival of the signal can be estimated.
 不等間隔アンテナアレイを用いて狭帯域信号の到来方位を推定する技術としては、特許文献1に、不等間隔の複数のサブアレイをサブアレイ間隔の比が素数比又は無理数となるサブアレイ間隔の組み合わせを少なくとも一組含むように不等間隔に配列したアンテナアレイを用いる方法が開示されている。 As a technique for estimating the direction of arrival of a narrowband signal using an unevenly spaced antenna array, Patent Document 1 discloses a method of combining a plurality of unevenly spaced subarrays with subarray spacings such that the ratio of the subarray spacings is a prime number ratio or an irrational number. A method is disclosed that uses an antenna array arranged at irregular intervals to include at least one set of antennas.
 一方で、近年、信号の広帯域化が進んでおり、広い周波数帯域に含まれる複数の広帯域信号、言い換えると、広い周波数帯域を持つ信号の到来方位を推定する技術が求められている。 On the other hand, in recent years, signals have become increasingly broadband, and there is a need for a technology that can estimate the direction of arrival of multiple broadband signals included in a wide frequency band, or in other words, the direction of arrival of signals with a wide frequency band.
特開平10-253730号公報Japanese Patent Application Publication No. 10-253730
 広帯域信号は、信号帯域内でも異なる周波数でアンテナ間位相差が変化してしまうため、アンテナ間位相差が固定であることを前提とした、特許文献1に記載のような狭帯域信号の推定技術では、広い周波数帯域の情報を有効に活用できない。 In a wideband signal, the phase difference between antennas changes at different frequencies even within the signal band, so a narrowband signal estimation technique such as that described in Patent Document 1 is based on the premise that the phase difference between antennas is fixed. In this case, information in a wide frequency band cannot be used effectively.
 また、広い周波数帯域に含まれる複数の信号の到来方位を推定する方位探知装置として不等間隔アンテナアレイを利用した方法が考えられるが、広帯域信号の到来方位を推定する際には信号帯域内の異なる周波数でアンテナ間位相差が変化しているために広い周波数帯域の情報を有効に利用することができない。 Another possible method is to use an unevenly spaced antenna array as a direction finding device to estimate the direction of arrival of multiple signals included in a wide frequency band, but when estimating the direction of arrival of a wideband signal, Since the phase difference between antennas changes at different frequencies, information in a wide frequency band cannot be used effectively.
 そこで、本開示の一又は複数の態様は、精度良く広帯域信号の到来方位を推定できるようにすることを目的とする。 Therefore, one or more aspects of the present disclosure aim to enable accurate estimation of the direction of arrival of a wideband signal.
 本開示の一態様に係る方位探知装置は、複数のアンテナを不等間隔に配置したアンテナアレイを備え、前記アンテナアレイで到来信号を受信する信号受信部と、前記到来信号から、予め定められた一以上の帯域毎に複数の到来信号が含まれていれば分離して、前記到来信号を検出する信号分離検出部と、前記検出された到来信号毎の周波数成分から、前記複数のアンテナ間の位相差であるアンテナ間位相差を、特定の周波数において算出する位相差情報算出部と、前記アンテナ間位相差から、前記到来信号毎の到来方位を推定する到来方位推定部と、を備えることを特徴とする。 A direction finding device according to an aspect of the present disclosure includes an antenna array in which a plurality of antennas are arranged at unequal intervals, a signal receiving unit that receives an incoming signal with the antenna array, and a direction finding unit that receives a predetermined direction from the incoming signal. a signal separation and detection section that separates and detects the incoming signals if one or more bands include a plurality of incoming signals; A phase difference information calculation unit that calculates a phase difference between antennas, which is a phase difference, at a specific frequency; and a direction of arrival estimation unit that estimates the direction of arrival of each of the incoming signals from the phase difference between the antennas. Features.
 本開示の一態様に係る方位探知方法は、複数のアンテナを不等間隔に配置したアンテナアレイで到来信号を受信し、前記到来信号から、予め定められた一以上の帯域毎に複数の到来信号が含まれていれば分離して、前記到来信号を検出し、前記検出された到来信号毎の周波数成分から、前記複数のアンテナ間の位相差であるアンテナ間位相差を、特定の周波数において算出し、前記アンテナ間位相差から、前記到来信号毎の到来方位を推定することを特徴とする。 In a direction finding method according to an aspect of the present disclosure, an incoming signal is received by an antenna array in which a plurality of antennas are arranged at unequal intervals, and a plurality of incoming signals are detected for each of one or more predetermined bands from the incoming signal. is included, the incoming signal is detected, and from the frequency components of each of the detected incoming signals, an inter-antenna phase difference, which is a phase difference between the plurality of antennas, is calculated at a specific frequency. The method is characterized in that the direction of arrival of each of the arriving signals is estimated from the phase difference between the antennas.
 本開示の一又は複数の態様によれば、精度良く広帯域信号の到来方位を推定することができる。 According to one or more aspects of the present disclosure, it is possible to accurately estimate the direction of arrival of a wideband signal.
実施の形態1及び2に係る方位探知装置の構成を概略的に示すブロック図である。1 is a block diagram schematically showing the configuration of a direction finding device according to Embodiments 1 and 2. FIG. 一つの広帯域信号の異なるアンテナ間のアンテナ間位相差の一例を示す概略図である。FIG. 2 is a schematic diagram illustrating an example of an inter-antenna phase difference between different antennas of one wideband signal. 実施の形態1における信号処理回路の構成を概略的に示すブロック図である。1 is a block diagram schematically showing the configuration of a signal processing circuit in Embodiment 1. FIG. アンテナ間位相差を算出する処理の一例を示すフローチャートである。3 is a flowchart illustrating an example of a process for calculating a phase difference between antennas. 実施の形態2における信号処理回路の構成を概略的に示すブロック図である。FIG. 2 is a block diagram schematically showing the configuration of a signal processing circuit in Embodiment 2. FIG. (A)及び(B)は、ハードウェア構成例を示すブロック図である。(A) and (B) are block diagrams showing an example of a hardware configuration.
実施の形態1.
 図1は、実施の形態1に係る方位探知装置100の構成を概略的に示すブロック図である。
 方位探知装置100は、複数のアンテナ101と、複数のフィルタ102と、高周波信号発生回路103と、複数のミキサ104と、複数の増幅器105と、複数のA/D(Analog/Digital)変換器106と、信号処理回路110とを備える。
 ここで、アンテナ101、フィルタ102、ミキサ104、高周波信号発生回路103、増幅器105及びA/D変換器106を、信号受信部107ともいう。
Embodiment 1.
FIG. 1 is a block diagram schematically showing the configuration of a direction finding device 100 according to the first embodiment.
The direction finding device 100 includes a plurality of antennas 101, a plurality of filters 102, a high frequency signal generation circuit 103, a plurality of mixers 104, a plurality of amplifiers 105, and a plurality of A/D (Analog/Digital) converters 106. and a signal processing circuit 110.
Here, the antenna 101, the filter 102, the mixer 104, the high frequency signal generation circuit 103, the amplifier 105, and the A/D converter 106 are also referred to as a signal receiving section 107.
 複数のアンテナ101は、不等間隔に配置され、アンテナアレイを構成する。複数のアンテナ101を配置する間隔については、特許文献1等に記載の公知の技術に従って、信号の到来方向を検出することができるように設定されているものとする。このため、複数のアンテナ101を不等間隔に配置したアンテナアレイは、広帯域にわたる到来信号を、受信信号として受信する。複数のアンテナ101のそれぞれで受信された受信信号は、複数のアンテナ101のそれぞれに対応して設けられている複数のフィルタ102に与えられる。 The plurality of antennas 101 are arranged at unequal intervals and constitute an antenna array. It is assumed that the intervals at which the plurality of antennas 101 are arranged are set so that the arrival direction of the signal can be detected according to the known technique described in Patent Document 1 and the like. Therefore, the antenna array in which the plurality of antennas 101 are arranged at unequal intervals receives incoming signals over a wide band as received signals. A received signal received by each of the plurality of antennas 101 is provided to a plurality of filters 102 provided corresponding to each of the plurality of antennas 101.
 フィルタ102は、受信信号に含まれている所望外の成分をフィルタする。複数のフィルタ102のそれぞれで処理されたフィルタ受信信号は、複数のフィルタ102のそれぞれに対応して設けられている複数のミキサ104に与えられる。 The filter 102 filters out undesired components contained in the received signal. The filter reception signals processed by each of the plurality of filters 102 are provided to a plurality of mixers 104 provided corresponding to each of the plurality of filters 102.
 高周波信号発生回路103は、予め定められた高い周波数の信号である高周波信号を発生する。高周波信号は、ミキサ104に与えられる。 The high frequency signal generation circuit 103 generates a high frequency signal that is a predetermined high frequency signal. The high frequency signal is provided to mixer 104.
 ミキサ104は、フィルタ102からのフィルタ受信信号と、高周波信号発生回路103からの高周波信号とを混合することにより、フィルタ受信信号を周波数変換するとともに、所望外の成分をフィルタする。そして、複数のミキサ104のそれぞれで処理された信号である処理信号は、複数のミキサ104のそれぞれに対応して設けられている複数の増幅器105に与えられる。 The mixer 104 mixes the filter reception signal from the filter 102 and the high frequency signal from the high frequency signal generation circuit 103 to frequency convert the filter reception signal and filter out undesired components. A processed signal, which is a signal processed by each of the plurality of mixers 104, is provided to a plurality of amplifiers 105 provided corresponding to each of the plurality of mixers 104.
 増幅器105は、ミキサ104からの処理信号を増幅する。複数の増幅器105のそれぞれで増幅された処理信号は、増幅信号として、複数の増幅器105のそれぞれに対応して設けられている複数のA/D変換器106に与えられる。 The amplifier 105 amplifies the processed signal from the mixer 104. The processed signals amplified by each of the plurality of amplifiers 105 are given as amplified signals to the plurality of A/D converters 106 provided corresponding to each of the plurality of amplifiers 105.
 A/D変換器106は、増幅器105からの増幅信号をデジタル化することで到来信号に変換する。複数のA/D変換器106のそれぞれで変換された到来信号は、信号処理回路110に与えられる。 The A/D converter 106 converts the amplified signal from the amplifier 105 into an incoming signal by digitizing it. The incoming signal converted by each of the plurality of A/D converters 106 is provided to a signal processing circuit 110.
 以上のように、信号受信部107は、複数のアンテナ101を不等間隔に配置したアンテナアレイを備え、そのアンテナアレイで複数の到来信号を受信する。 As described above, the signal receiving unit 107 includes an antenna array in which a plurality of antennas 101 are arranged at unequal intervals, and receives a plurality of incoming signals with the antenna array.
 信号処理回路110は、複数のA/D変換器106からのデジタル信号である到来信号を処理する信号処理部である。
 ここでは、信号処理回路110は、複数のアンテナ101を不等間隔に配置したアンテナアレイで受信された信号のアンテナ間位相差から、その信号の到来方位を推定する。
The signal processing circuit 110 is a signal processing unit that processes incoming signals that are digital signals from the plurality of A/D converters 106.
Here, the signal processing circuit 110 estimates the direction of arrival of a signal from the inter-antenna phase difference of the signal received by an antenna array in which a plurality of antennas 101 are arranged at unequal intervals.
 まず、不等間隔アンテナアレイで受信した到来信号のアンテナ間位相差について説明する。アンテナ間隔dm,nであるアンテナmとアンテナnに方位θから到来して、受信された信号の周波数kΔfの周波数成分のアンテナ間位相差φ(m,n,k,θ)は、下記の(1)式で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、cは光速、Δfは離散周波数間隔、kは離散周波数のインデックスを表す。
First, the inter-antenna phase difference of the incoming signal received by the irregularly spaced antenna array will be explained. The inter-antenna phase difference φ( m , n, k, θ) of the frequency component of the frequency kΔf of the received signal arriving from the direction θ at the antenna m and the antenna n with the antenna spacing d m, n is as follows. It is expressed by equation (1).
Figure JPOXMLDOC01-appb-M000001
Here, c represents the speed of light, Δf represents the discrete frequency interval, and k represents the index of the discrete frequency.
 (1)式から、アンテナ間位相差は、周波数kΔfに対して線形に変化し、異なる周波数でアンテナ間位相差が変化することが分かる。また、広帯域信号の場合、アンテナ間位相差が大きく変化することも分かる。 From equation (1), it can be seen that the inter-antenna phase difference changes linearly with the frequency kΔf, and the inter-antenna phase difference changes at different frequencies. It can also be seen that in the case of a wideband signal, the phase difference between antennas changes significantly.
 広帯域信号の受信周波数帯域幅は、適用先によって異なるが、一例として数百MHzから数GHzまでの帯域幅である。また、アンテナ間位相差は、アンテナ間隔dm,n、及び、信号到来方位の正弦sinθのそれぞれに対しても線形に変化する。図2に、一つの広帯域信号の異なるアンテナ間のアンテナ間位相差の例を示す。 The reception frequency bandwidth of a wideband signal varies depending on the application, but is, for example, a bandwidth from several hundred MHz to several GHz. Furthermore, the inter-antenna phase difference also changes linearly with respect to each of the antenna spacing d m,n and the sine sin θ of the signal arrival direction. FIG. 2 shows an example of the inter-antenna phase difference between different antennas for one broadband signal.
 図3は、信号処理回路110の構成を概略的に示すブロック図である。
 信号処理回路110は、信号分離検出部111、位相差情報算出部112及び到来方位推定部113として機能する。
FIG. 3 is a block diagram schematically showing the configuration of the signal processing circuit 110.
The signal processing circuit 110 functions as a signal separation detection section 111, a phase difference information calculation section 112, and a direction of arrival estimation section 113.
 信号分離検出部111は、到来信号を分離して、その到来信号を検出する。例えば、信号分離検出部111は、信号受信部107で受信された到来信号から、予め定められた一以上の帯域毎に複数の到来信号が含まれていれば分離して、その到来信号を検出する。 The signal separation and detection unit 111 separates the incoming signal and detects the incoming signal. For example, if a plurality of incoming signals are included in each of one or more predetermined bands, the signal separation and detection unit 111 separates the incoming signal received by the signal receiving unit 107 and detects the incoming signal. do.
 具体的には、例えば、信号分離検出部111は、広い周波数帯域の到来信号をフィルタバンクで一以上の複数のサブバンドに分割する。そして、信号分離検出部111は、各サブバンドにおいて時間領域で検出された信号に、周波数領域で検出された信号帯域を割り当てることを、処理単位時間毎に繰り返すことにより、複数の信号を分離して、検出する。なお、信号分離検出部111は、信号帯域を検出する際には、信号の周波数成分の集合を算出している。ここで算出された、周波数成分の集合は、位相差情報算出部112に与えられる。 Specifically, for example, the signal separation and detection unit 111 divides an incoming signal in a wide frequency band into one or more subbands using a filter bank. Then, the signal separation detection unit 111 separates the plurality of signals by repeating assigning a signal band detected in the frequency domain to a signal detected in the time domain in each subband for each processing unit time. and detect it. Note that when detecting a signal band, the signal separation and detection unit 111 calculates a set of frequency components of the signal. The set of frequency components calculated here is given to the phase difference information calculation section 112.
 例えば、信号分離検出部111は、下記の非特許文献1の信号分離検出方式を用いることができる。非特許文献1に記載された技術は、広い周波数帯域をフィルタバンクで複数のサブバンドに分割し、各サブバンドにおいて時間領域で検出した信号に周波数領域で検出した信号帯域を割り当てることを処理単位時間毎に繰り返すことにより、複数の信号を分離して、検出できる。信号帯域を検出する際に、信号の周波数成分の集合が算出されているので、位相差情報算出部112は、その周波数成分の集合を利用することができる。 For example, the signal separation detection unit 111 can use the signal separation detection method described in Non-Patent Document 1 below. The technology described in Non-Patent Document 1 divides a wide frequency band into multiple subbands using a filter bank, and assigns a signal band detected in the frequency domain to a signal detected in the time domain in each subband as a processing unit. By repeating each time, multiple signals can be separated and detected. Since a set of frequency components of the signal is calculated when detecting a signal band, the phase difference information calculation unit 112 can utilize the set of frequency components.
 なお、実施の形態1の信号分離検出部111では、信号には一つの信号帯域が割り当てられ、その信号帯域に対応した一つの周波数成分の集合が算出されているものとする。また、信号分離検出部111では、複数の信号を分離して、検出できるのであれば他の方式を用いてもよい。その方式において検出された信号の周波数成分の集合が算出されなくても、信号検出後に周波数成分の集合が算出されてもよい。
 非特許文献1:永野隆文、辻田亘、「広帯域信号からのリアルタイムパルス検出方式」、信学技報、SANE2021-3、pp.11-14、2021年5月
It is assumed that in the signal separation and detection unit 111 of the first embodiment, one signal band is assigned to a signal, and one set of frequency components corresponding to the signal band is calculated. Further, the signal separation and detection unit 111 may use other methods as long as they can separate and detect a plurality of signals. Even if the set of frequency components of the detected signal is not calculated in that method, the set of frequency components may be calculated after the signal is detected.
Non-patent document 1: Takafumi Nagano, Wataru Tsujita, "Real-time pulse detection method from wideband signal", IEICE Technical Report, SANE2021-3, pp. 11-14, May 2021
 位相差情報算出部112は、到来信号のアンテナ間位相差を算出する。例えば、位相差情報算出部112は、信号分離検出部111で分離して検出された一以上の到来信号毎の周波数成分から、複数のアンテナ101間の位相差であるアンテナ間位相差を、特定の周波数において算出する。 The phase difference information calculation unit 112 calculates the inter-antenna phase difference of the incoming signal. For example, the phase difference information calculation unit 112 specifies the inter-antenna phase difference, which is the phase difference between the plurality of antennas 101, from the frequency components of each of the one or more incoming signals separated and detected by the signal separation and detection unit 111. Calculated at the frequency of
 具体的には、位相差情報算出部112は、信号分離検出部111からの、周波数成分の集合から、特定の周波数でのアンテナ間位相差を算出する。なお、位相差情報算出部112は、アンテナ間位相差の代わりに、信号周波数成分のアンテナ間積のDFT(Discrete Fourier Transformation)のピーク成分を、特定の周波数での値に補正したものを算出してもよい。 Specifically, the phase difference information calculation unit 112 calculates the inter-antenna phase difference at a specific frequency from the set of frequency components from the signal separation detection unit 111. Note that, instead of the inter-antenna phase difference, the phase difference information calculation unit 112 calculates the peak component of the DFT (Discrete Fourier Transformation) of the inter-antenna product of the signal frequency components, corrected to a value at a specific frequency. It's okay.
 例えば、到来方位θの信号の周波数kΔfの周波数成分のアンテナmと、アンテナ
nの間のアンテナ間積z(m,n,k,θ)は、下記の(2)式で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、アンテナ間積は、アンテナnで受信された信号の周波数成分を共役複素数にしてから積を算出するものとする。またa(m,n,k,θ)は強度、jは虚数単位を表す。
For example, the inter-antenna product z (m, n, k, θ) between antenna m and antenna n of the frequency component of frequency kΔf of the signal at arrival direction θ is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Here, it is assumed that the inter-antenna product is calculated after converting the frequency component of the signal received by antenna n into a conjugate complex number. Further, a(m, n, k, θ) represents intensity, and j represents an imaginary unit.
 アンテナ間位相差の算出にあたって、まず、アンテナ間位相差を特定の周波数での位相差とするため、また、S/N比を向上させるために、検出された信号の信号帯域内の周波数成分のアンテナ間積z(m,n,k),k=kmin,・・・,kmaxに対して、周波数方向におけるDFTを下記の(3)式で算出する。ここでは、信号の到来方位は、未知のものとする。
Figure JPOXMLDOC01-appb-M000003
 ここで、Lは、DFT長であり、ゼロパディングを行わない場合は、L=kmax-kmin+1である。
In calculating the phase difference between antennas, first, in order to make the phase difference between antennas a phase difference at a specific frequency, and to improve the S/N ratio, the frequency components within the signal band of the detected signal are calculated. For the inter-antenna product z(m, n, k), k=k min , . . . , k max , the DFT in the frequency direction is calculated using the following equation (3). Here, the direction of arrival of the signal is assumed to be unknown.
Figure JPOXMLDOC01-appb-M000003
Here, L is the DFT length, and when zero padding is not performed, L=k max −k min +1.
 アンテナ間位相差の変化率がDFTの離散周波数と一致している場合、言い換えると、DFTのピーク位置がDFTの離散周波数に一致している場合は、その離散周波数をlpeakとすると、DFTのピーク成分の偏角argZ(m,n,lpeak)が周波数kminΔfにおけるアンテナ間位相差となる。DFTのピーク位置がDFTの離散周波数に一致していない場合は、正確なピーク位置を推定し、その位置に応じてアンテナ間位相差を補正することが望ましい。 When the rate of change of the inter-antenna phase difference matches the discrete frequency of the DFT, in other words, when the peak position of the DFT matches the discrete frequency of the DFT, and if the discrete frequency is l peak , then the DFT's The deflection angle argZ (m, n, lpeak) of the peak component becomes the inter-antenna phase difference at the frequency k min Δf. If the peak position of the DFT does not match the discrete frequency of the DFT, it is desirable to estimate the accurate peak position and correct the inter-antenna phase difference according to that position.
 DFTのピーク位置を正確に推定するためには、DFTのピーク成分のS/N比を向上させることが有効である。異なるアンテナ間隔のアンテナ間位相差の変化率は異なるため、通常、不等間隔アンテナアレイにおける周波数成分のアンテナ間積のDFTのピーク位置は、異なる。しかしながら、各アンテナ間におけるDFT長がアンテナ間隔の逆数比となるように各アンテナ間積にゼロパディングを行ってからDFTを算出すると、異なるアンテナ間隔のアンテナ間積のDFTのピーク位置を揃えることができる。 In order to accurately estimate the DFT peak position, it is effective to improve the S/N ratio of the DFT peak component. Since the rate of change of the inter-antenna phase difference for different antenna spacings is different, the peak positions of the DFT of the inter-antenna products of frequency components in an unevenly spaced antenna array are usually different. However, if the DFT is calculated after zero padding the product between each antenna so that the DFT length between each antenna is the reciprocal ratio of the antenna spacing, it is possible to align the DFT peak positions of the products between antennas with different antenna spacings. can.
 ピーク位置の基準はl=0であり、Z(m,n,-l)=Z(m,n,L-l)とすると、正負の離散周波数範囲において異なるアンテナ間隔のアンテナ間積のDFTのピーク位置を揃えることができる。ピーク位置が揃っていると、各アンテナ間のDFTの絶対値を算出して、その絶対値を加算することで、S/N比を向上することができる。アンテナ間積のDFTのピークは、ゼロパディングしたDFT長が短いDFTの方が鋭くなるため、加算処理は、ゼロパディングしたDFT長が短いDFTの重みを大きくした加重平均としても良い。DFTのピーク位置は、このように各アンテナ間のDFTのピーク位置を揃え、絶対値を算出し加算した上で、その加算値から推定してもよい。 The reference for the peak position is l = 0, and if Z (m, n, - l) = Z (m, n, L - l), then the DFT of the inter-antenna product with different antenna spacing in the positive and negative discrete frequency ranges is Peak positions can be aligned. When the peak positions are aligned, the S/N ratio can be improved by calculating the absolute value of the DFT between each antenna and adding the absolute values. Since the peak of the DFT of the antenna-to-antenna product is sharper in a DFT with a short zero-padded DFT length, the addition process may be a weighted average in which the weight of the DFT with a short zero-padded DFT length is increased. The DFT peak position may be estimated from the summed value after aligning the DFT peak positions between each antenna in this way, calculating and adding the absolute values.
 信号周波数成分のアンテナ間積のDFTのピーク位置は、ピークとその周辺の点を通る曲線を算出し、ピーク位置を実数として推定することにより、精度良く推定できる。例えば、位相差情報算出部112は、ピークと、その両側の二点とを含む三点を通る放物線を算出し、放物線の焦点の横軸位置をピーク位置として推定する。曲線は、放物線だけでなく、極大点を持つ任意の曲線が用いられてもよい。推定されたピーク位置を下記の(4)式により示すと、周波数kminΔfにおける補正したアンテナ間位相差は、下記の(5)式で示される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
The DFT peak position of the antenna-to-antenna product of the signal frequency component can be estimated with high accuracy by calculating a curve passing through the peak and points around it and estimating the peak position as a real number. For example, the phase difference information calculation unit 112 calculates a parabola passing through three points including the peak and two points on both sides of the peak, and estimates the horizontal axis position of the focus of the parabola as the peak position. As the curve, not only a parabola but also any curve having a maximum point may be used. When the estimated peak position is expressed by the following equation (4), the corrected inter-antenna phase difference at the frequency k min Δf is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 次に、位相差情報算出部112で使用する特定の周波数について説明する。
 上記の(5)式では、特定の周波数は、kminΔfとして表されている。これは、上記(3)式のDFTの段階で、z(m,n,k)のk方向の周波数がDFTの離散周波数に一致している場合に、Z(m,n,lpeak)の偏角が周波数kminΔfにおけるアンテナ間位相差となるためである。一方で、z(m,n,k)のk方向の周波数がDFTの離散周波数に一致していない場合は、上記の(5)式の右辺の第二項で、周波数kminΔfにおける位相差となるように、補正が行われている。なお、z(m,n,k)のk方向の周波数がDFTの離散周波数に一致している場合には、上記の(5)式の右辺の第二項は、「0」になる。
Next, a specific frequency used by the phase difference information calculation section 112 will be explained.
In the above equation (5), the specific frequency is expressed as k min Δf. This means that in the DFT stage of equation (3) above, if the frequency in the k direction of z (m, n, k) matches the discrete frequency of the DFT, the This is because the declination angle becomes the inter-antenna phase difference at the frequency k min Δf. On the other hand, if the frequency in the k direction of z(m, n, k) does not match the discrete frequency of DFT, the second term on the right side of equation (5) above calculates the phase difference at the frequency k min Δf. Corrections have been made so that Note that when the frequency of z(m, n, k) in the k direction matches the discrete frequency of DFT, the second term on the right side of the above equation (5) becomes "0".
 なお、上記の(4)式で示されている推定したピーク位置を使って、特定の周波数kminΔfでのアンテナ間位相差を、別の周波数krefΔfでのアンテナ間位相差に補正することができる。具体的には、下記の(6)式に示されているように、周波数kminΔfにおけるアンテナ間位相差を、周波数krefΔfでのアンテナ間位相差に補正することができる。
Figure JPOXMLDOC01-appb-M000006
Note that using the estimated peak position shown in equation (4) above, the inter-antenna phase difference at a specific frequency k min Δf is corrected to the inter-antenna phase difference at another frequency k ref Δf. be able to. Specifically, as shown in equation (6) below, the inter-antenna phase difference at frequency k min Δf can be corrected to the inter-antenna phase difference at frequency k ref Δf.
Figure JPOXMLDOC01-appb-M000006
 図4は、実施の形態1における位相差情報算出部112がアンテナ間位相差を算出する処理の一例を示すフローチャートである。
 まず、位相差情報算出部112は、信号分離検出部111で検出された一以上の到来信号毎の各アンテナ間の周波数成分のアンテナ間積の周波数方向の長さが複数のアンテナ101の間隔の逆数比となるように、各アンテナ間のアンテナ間積をゼロパディングしてから、その周波数方向においてDFTを算出する(S10)。
FIG. 4 is a flowchart illustrating an example of a process in which the phase difference information calculation unit 112 calculates the inter-antenna phase difference in the first embodiment.
First, the phase difference information calculation unit 112 determines that the length in the frequency direction of the inter-antenna product of the frequency components between each antenna for each of the one or more incoming signals detected by the signal separation and detection unit 111 is equal to the interval between the plurality of antennas 101. The inter-antenna product between each antenna is zero-padded so as to have a reciprocal ratio, and then the DFT is calculated in the frequency direction (S10).
 次に、位相差情報算出部112は、各アンテナ間のDFTの算出結果の絶対値を加算する(S11)。
 そして、位相差情報算出部112は、各アンテナ間のDFTのピーク位置を検出する(S12)。
 続いて、位相差情報算出部112は、各アンテナ間のDFTのピーク位置を推定する(S13)。
Next, the phase difference information calculation unit 112 adds the absolute values of the calculation results of the DFT between each antenna (S11).
Then, the phase difference information calculation unit 112 detects the peak position of DFT between each antenna (S12).
Subsequently, the phase difference information calculation unit 112 estimates the peak position of DFT between each antenna (S13).
 そして、位相差情報算出部112は、信号分離検出部111からの、周波数成分の集合と、その処理結果とから、特定の周波数でのアンテナ間位相差を算出する(S14)。例えば、位相差情報算出部112は、アンテナ間積のDFTから検出されたピークの値とその位置、推定されたピーク位置、周波数成分数、及び、DFT長から特定の周波数におけるアンテナ間位相差を算出する。 Then, the phase difference information calculation unit 112 calculates the inter-antenna phase difference at a specific frequency from the set of frequency components from the signal separation detection unit 111 and the processing result thereof (S14). For example, the phase difference information calculation unit 112 calculates the inter-antenna phase difference at a specific frequency from the peak value and its position detected from the DFT of the inter-antenna product, the estimated peak position, the number of frequency components, and the DFT length. calculate.
 図3に戻り、到来方位推定部113は、到来信号の到来方位を推定する。
 到来方位推定部113は、位相差情報算出部112で算出されたアンテナ間位相差が特定の周波数でのアンテナ間位相差となっているため、各到来信号の到来方位を既存の狭帯域信号の到来方位推定に用いる手法を用いて推定する。
Returning to FIG. 3, the direction of arrival estimating section 113 estimates the direction of arrival of the arriving signal.
Since the inter-antenna phase difference calculated by the phase difference information calculation unit 112 is the inter-antenna phase difference at a specific frequency, the arrival direction estimation unit 113 calculates the arrival direction of each incoming signal by calculating the arrival direction of the existing narrowband signal. Estimation is performed using the method used for direction of arrival estimation.
 また、到来方位推定部113が、MUSIC(MUltiple SIgnal Classification)のように、相関行列から到来方位を推定する手法を用いる場合、位相差情報算出部112は、アンテナ間位相差の代わりに、信号周波数成分のアンテナ間積のDFTのピーク成分を(5)式と同様に、下記の(7)式のように、周波数kminΔfにおける値に補正した値を相関行列の要素として算出してもよい。
Figure JPOXMLDOC01-appb-M000007
Furthermore, when the direction of arrival estimation unit 113 uses a method of estimating the direction of arrival from a correlation matrix, such as MUSIC (Multiple Signal Classification), the phase difference information calculation unit 112 uses the signal frequency instead of the phase difference between antennas. Similarly to equation (5), the peak component of the DFT of the inter-antenna product of the components may be corrected to the value at frequency k min Δf as shown in equation (7) below and calculated as an element of the correlation matrix. .
Figure JPOXMLDOC01-appb-M000007
 なお、DFTは、通常FFT(Fast Fourier Transform)を用いると、少ない計算量で計算できる。しかしながら、ゼロパディングでDFT長が長くなる場合は、計算量が多くなってしまう。その場合は、下記の(8)式で表されるDFT行列を用いて、ゼロパディングされた箇所を除外し、必要な離散周波数範囲に限定して計算を行うことにより、計算量を削減できる。
Figure JPOXMLDOC01-appb-M000008
Note that the DFT can be calculated with a small amount of calculation by using a normal FFT (Fast Fourier Transform). However, if the DFT length becomes longer due to zero padding, the amount of calculation will increase. In that case, the amount of calculation can be reduced by using the DFT matrix expressed by the following equation (8), excluding the zero-padded portions, and performing calculations limited to the necessary discrete frequency range.
Figure JPOXMLDOC01-appb-M000008
 以上のように、実施の形態1によれば、狭帯域信号の到来方位推定に用いる手法により精度良く信号の到来方位を推定できる。 As described above, according to the first embodiment, the direction of arrival of a signal can be estimated with high accuracy using the method used to estimate the direction of arrival of a narrowband signal.
実施の形態2.
 図1に示されているように、実施の形態2に係る方位探知装置200は、複数のアンテナ101と、複数のフィルタ102と、高周波信号発生回路103と、複数のミキサ104と、複数の増幅器105と、複数のA/D変換器106と、信号処理回路210とを備える。
Embodiment 2.
As shown in FIG. 1, the direction finding device 200 according to the second embodiment includes a plurality of antennas 101, a plurality of filters 102, a high frequency signal generation circuit 103, a plurality of mixers 104, and a plurality of amplifiers. 105, a plurality of A/D converters 106, and a signal processing circuit 210.
 実施の形態2に係る方位探知装置200の複数のアンテナ101、複数のフィルタ102、高周波信号発生回路103、複数のミキサ104、複数の増幅器105及び複数のA/D変換器106は、実施の形態1に係る方位探知装置100の複数のアンテナ101、複数のフィルタ102、高周波信号発生回路103、複数のミキサ104、複数の増幅器105及び複数のA/D変換器106と同様である。 The plurality of antennas 101, the plurality of filters 102, the high frequency signal generation circuit 103, the plurality of mixers 104, the plurality of amplifiers 105, and the plurality of A/D converters 106 of the direction finding device 200 according to the second embodiment are the same as those of the embodiment. This is similar to the plurality of antennas 101, the plurality of filters 102, the high frequency signal generation circuit 103, the plurality of mixers 104, the plurality of amplifiers 105, and the plurality of A/D converters 106 of the direction finding device 100 according to No. 1.
 信号処理回路210は、A/D変換器106からのデジタル信号である到来信号を処理する。
 ここでは、信号処理回路210は、複数のアンテナ101を不等間隔に配置したアンテナアレイで受信された信号のアンテナ間位相差から、その信号の到来方位を推定する。
Signal processing circuit 210 processes the incoming signal, which is a digital signal from A/D converter 106.
Here, the signal processing circuit 210 estimates the direction of arrival of the signal from the inter-antenna phase difference of the signal received by the antenna array in which the plurality of antennas 101 are arranged at unequal intervals.
 図5は、信号処理回路210の構成を概略的に示すブロック図である。
 信号処理回路210は、信号分離検出部211、位相差情報算出部212、到来方位推定部113及び位相差情報統合部214として機能する。
 実施の形態2における信号処理回路210の到来方位推定部113は、実施の形態1における信号処理回路110の到来方位推定部113と同様である。
FIG. 5 is a block diagram schematically showing the configuration of the signal processing circuit 210.
The signal processing circuit 210 functions as a signal separation detection section 211 , a phase difference information calculation section 212 , a direction of arrival estimation section 113 , and a phase difference information integration section 214 .
The direction of arrival estimation section 113 of the signal processing circuit 210 in the second embodiment is similar to the direction of arrival estimation section 113 of the signal processing circuit 110 in the first embodiment.
 実施の形態1における信号分離検出部111は、到来信号から分離検出された信号には一つの信号帯域を割り当て、その信号帯域に対応した一つの周波数成分の集合を算出している。一方、実施の形態2における信号分離検出部211は、到来信号を検出する過程で分離検出された信号に複数の信号帯域を割り当てたり、複数の信号を統合したりすることにより、分離検出される信号に対して一つ以上の信号帯域に対応する一つ以上の周波数成分の集合を算出する。ここで算出された周波数成分の集合は、位相差情報算出部212に与えられる。 The signal separation and detection unit 111 in the first embodiment assigns one signal band to the signal separated and detected from the incoming signal, and calculates one set of frequency components corresponding to the signal band. On the other hand, the signal separation and detection unit 211 in the second embodiment assigns a plurality of signal bands to signals separated and detected in the process of detecting an incoming signal, or integrates a plurality of signals. A set of one or more frequency components corresponding to one or more signal bands is calculated for the signal. The set of frequency components calculated here is given to the phase difference information calculation section 212.
 位相差情報算出部212は、信号分離検出部211から与えられた各信号の一つ以上の各信号帯域に対して、実施の形態1の位相差情報算出部112と同様に、特定の周波数でのアンテナ間位相差、又は、信号周波数成分のアンテナ間積のDFTのピーク成分を特定の周波数での値に補正したものを算出する。以降、特定の周波数でのアンテナ間位相差、又は、信号周波数成分のアンテナ間積のDFTのピーク成分を特定の周波数での値に補正したものを位相差情報という。 Similar to the phase difference information calculation unit 112 of Embodiment 1, the phase difference information calculation unit 212 calculates a frequency at a specific frequency for one or more signal bands of each signal provided from the signal separation detection unit 211. The phase difference between the antennas or the DFT peak component of the product between the antennas of the signal frequency components is corrected to a value at a specific frequency. Hereinafter, the phase difference between antennas at a specific frequency or the peak component of DFT of the product between antennas of signal frequency components corrected to a value at a specific frequency will be referred to as phase difference information.
 位相差情報統合部214は、分離検出された各信号に複数の信号帯域が割り当てられ、複数の位相差情報が算出されている場合に、複数の位相差情報を一つの位相差情報に統合する。 When a plurality of signal bands are assigned to each separated and detected signal and a plurality of phase difference information is calculated, the phase difference information integration unit 214 integrates the plurality of phase difference information into one phase difference information. .
 複数の特定の周波数でのアンテナ間位相差を統合して一つのアンテナ間位相差を算出する方法を説明する。ここでは、一般性を失うことなく、統合される信号帯域のアンテナ間位相差は二つとし、二つの信号帯域a及び信号帯域bの補正されたアンテナ間位相差と推定されたDFTのピーク位置とをそれぞれ下記の(9)式~(11)式に示す。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
A method of calculating one inter-antenna phase difference by integrating inter-antenna phase differences at a plurality of specific frequencies will be described. Here, without loss of generality, the phase difference between the antennas of the signal bands to be integrated is assumed to be two, and the peak position of the DFT estimated by the corrected phase difference between the antennas of the two signal bands a and b. and are shown in the following formulas (9) to (11), respectively.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 そして、特定の周波数をkrefΔfとする場合のアンテナ間位相差は、予め定められた重みwを使って加重平均により、下記の(12)式で算出できる。
Figure JPOXMLDOC01-appb-M000012
Then, the inter-antenna phase difference when a specific frequency is k ref Δf can be calculated by the following equation (12) by weighted averaging using a predetermined weight w g .
Figure JPOXMLDOC01-appb-M000012
 ここで、krefは、任意の整数で良いが、krefΔfが、信号帯域a及び信号帯域bと、信号帯域a及び信号帯域bのそれぞれとの間の領域とを含む周波数帯域内となるように、又は、信号帯域a及び信号帯域bのそれぞれの特定の周波数のインデックスkminの間の値となるように、krefが決められてもよい。この(12)式では、信号帯域a及びbのアンテナ間位相差を、周波数krefΔfでのアンテナ間位相差に補正した上で、アンテナ間位相差の加重平均が求められている。このようにすることで、両方の信号帯域の情報を有効に活用することができる。加重平均の重みは、信号強度又は信号帯域幅に応じた値とすればよい。 Here, k ref may be any integer, but k ref Δf is within a frequency band that includes signal band a, signal band b, and regions between each of signal band a and signal band b. Alternatively, k ref may be determined to be a value between the respective specific frequency indices k min of signal band a and signal band b. In this equation (12), the phase difference between the antennas in signal bands a and b is corrected to the phase difference between the antennas at the frequency k ref Δf, and then the weighted average of the phase differences between the antennas is calculated. By doing so, information on both signal bands can be effectively utilized. The weight of the weighted average may be a value depending on the signal strength or signal bandwidth.
 なお、下記の(13)式のように、二つの信号帯域a及び信号帯域bの周波数成分のアンテナ間積のDFTのピーク成分を特定の周波数krefΔfでのアンテナ間積のDFTに補正し、その平均の偏角をアンテナ間位相差としてもよい。
Figure JPOXMLDOC01-appb-M000013
As shown in equation (13) below, the peak component of the DFT of the antenna-to-antenna product of the frequency components of the two signal bands a and signal band b is corrected to the DFT of the antenna-to-antenna product at a specific frequency krefΔf, and then The average polarization angle may be used as the inter-antenna phase difference.
Figure JPOXMLDOC01-appb-M000013
 以上のように、位相差情報統合部214は、位相差情報を、共通の周波数での位相差情報に変換し、その変換された位相差情報を統合する。 As described above, the phase difference information integration unit 214 converts the phase difference information into phase difference information at a common frequency, and integrates the converted phase difference information.
 なお、実施の形態2における到来方位推定部113は、実施の形態1における到来方位推定部113と同様であるが、MUSICのように相関行列から到来方位を推定する手法を用いる場合で、複数の位相差情報が統合されている場合には、上記の(13)式の偏角を算出する前の信号成分のアンテナ間積のDFTのピーク成分を補正し、統合したものを成分に持つ行列を相関行列として用いることができる。 Note that the direction of arrival estimating section 113 in the second embodiment is similar to the direction of arrival estimating section 113 in the first embodiment, but when using a method of estimating the direction of arrival from a correlation matrix like MUSIC, multiple When the phase difference information is integrated, the peak component of the DFT of the antenna-to-antenna product of the signal components before calculating the declination angle in equation (13) above is corrected, and a matrix whose components are the integrated one is created. It can be used as a correlation matrix.
 以上に記載された信号処理回路110,210の一部又は全部は、例えば、図6(A)に示されているように、メモリ10と、メモリ10に格納されているプログラムを実行するCPU(Central Processing Unit)等のプロセッサ11とにより構成することができる。このようなプログラムは、ネットワークを通じて提供されてもよく、また、記録媒体に記録されて提供されてもよい。即ち、このようなプログラムは、例えば、プログラムプロダクトとして提供されてもよい。 Part or all of the signal processing circuits 110 and 210 described above, for example, as shown in FIG. It can be configured with a processor 11 such as a central processing unit (Central Processing Unit) or the like. Such a program may be provided through a network, or may be provided recorded on a recording medium. That is, such a program may be provided as a program product, for example.
 また、信号処理回路110,210の一部又は全部は、例えば、図6(B)に示されているように、単一回路、複合回路、プログラムで動作するプロセッサ、プログラムで動作する並列プロセッサ、ASIC(Application Specific Integrated Circuit)又はFPGA(Field Programmable Gate Array)等の処理回路12で構成することもできる。 Further, part or all of the signal processing circuits 110 and 210 may be, for example, a single circuit, a composite circuit, a processor that operates on a program, a parallel processor that operates on a program, as shown in FIG. 6(B), It can also be configured with a processing circuit 12 such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
 100,200 方位探知装置、 101 アンテナ、 102 フィルタ、 103 高周波信号発生回路、 104 ミキサ、 105 増幅器、 106 A/D変換器、 107 信号受信部、 110,210 信号処理回路、 111,211 信号分離検出部、 112,212 位相差情報算出部、 113 到来方位推定部、 214 位相差情報統合部。 100, 200 Direction finding device, 101 Antenna, 102 Filter, 103 High frequency signal generation circuit, 104 Mixer, 105 Amplifier, 106 A/D converter, 107 Signal receiver, 110, 210 Signal Processing circuit, 111, 211 signal separation detection 112, 212 phase difference information calculation unit, 113 direction of arrival estimation unit, 214 phase difference information integration unit.

Claims (8)

  1.  複数のアンテナを不等間隔に配置したアンテナアレイを備え、前記アンテナアレイで到来信号を受信する信号受信部と、
     前記到来信号から、予め定められた一以上の帯域毎に複数の到来信号が含まれていれば分離して、前記到来信号を検出する信号分離検出部と、
     前記検出された到来信号毎の周波数成分から、前記複数のアンテナ間の位相差であるアンテナ間位相差を、特定の周波数において算出する位相差情報算出部と、
     前記アンテナ間位相差から、前記到来信号毎の到来方位を推定する到来方位推定部と、を備えること
     を特徴とする方位探知装置。
    a signal receiving unit comprising an antenna array in which a plurality of antennas are arranged at unequal intervals, and receiving an incoming signal with the antenna array;
    a signal separation and detection unit that separates the incoming signal from the incoming signal if a plurality of incoming signals are included for each of one or more predetermined bands, and detects the incoming signal;
    a phase difference information calculation unit that calculates an inter-antenna phase difference, which is a phase difference between the plurality of antennas, at a specific frequency from the frequency component of each of the detected incoming signals;
    An azimuth finding device comprising: an arrival azimuth estimation unit that estimates the arrival azimuth of each of the arriving signals from the inter-antenna phase difference.
  2.  前記位相差情報算出部は、前記到来信号毎の周波数成分のアンテナ間積の周波数方向の長さが前記複数のアンテナの間隔の逆数比となるように前記アンテナ間積をゼロパディングしてから、前記周波数方向においてDFT(Discrete Fourier Transformation)を算出した算出結果を加算した加算値のピーク位置を検出又は推定し、前記ピーク位置から前記特定の周波数における前記アンテナ間位相差を算出すること
     を特徴とする請求項1に記載の方位探知装置。
    The phase difference information calculation unit zero-pads the inter-antenna product so that the length in the frequency direction of the inter-antenna product of the frequency components of each of the incoming signals is a reciprocal ratio of the spacing between the plurality of antennas, and then Detecting or estimating a peak position of an added value obtained by adding calculation results obtained by calculating DFT (Discrete Fourier Transformation) in the frequency direction, and calculating the inter-antenna phase difference at the specific frequency from the peak position. The direction finding device according to claim 1.
  3.  前記位相差情報算出部は、前記加算値のピーク及び前記ピークの周辺の予め定められた点を通る曲線を算出して、前記ピーク位置を実数として推定すること
     を特徴とする請求項2に記載の方位探知装置。
    3. The phase difference information calculation unit calculates a curve passing through a peak of the added value and a predetermined point around the peak, and estimates the peak position as a real number. direction finding device.
  4.  前記位相差情報算出部は、予め定められたDFT行列を用いて、前記アンテナ間位相差を算出すること
     を特徴とする請求項2又は3に記載の方位探知装置。
    The direction finding device according to claim 2 or 3, wherein the phase difference information calculation unit calculates the inter-antenna phase difference using a predetermined DFT matrix.
  5.  一つの到来信号に割り当てられた二以上の信号帯域に対して算出された前記アンテナ間位相差を、共通の周波数でのアンテナ間位相差に変換し、前記変換されたアンテナ間位相差を統合する位相差情報統合部をさらに備え、
     前記到来方位推定部は、前記統合されたアンテナ間位相差から、前記到来信号の到来方位を推定すること
     を特徴とする請求項1から4の何れか一項に記載の方位探知装置。
    Converting the inter-antenna phase difference calculated for two or more signal bands assigned to one incoming signal to an inter-antenna phase difference at a common frequency, and integrating the converted antenna-to-antenna phase differences. Further equipped with a phase difference information integration section,
    The direction finding device according to any one of claims 1 to 4, wherein the direction of arrival estimating section estimates the direction of arrival of the arriving signal from the integrated phase difference between antennas.
  6.  前記位相差情報算出部は、前記到来信号の周波数成分のアンテナ間積のDFTの算出結果のピーク成分を、前記特定の周波数での値に補正して、前記アンテナ間位相差を算出すること
     を特徴とする請求項2から4の何れか一項に記載の方位探知装置。
    The phase difference information calculation unit calculates the inter-antenna phase difference by correcting a peak component of the DFT calculation result of the inter-antenna product of the frequency components of the incoming signal to a value at the specific frequency. The direction finding device according to any one of claims 2 to 4.
  7.  前記位相差情報算出部は、前記一つの到来信号に割り当てられた二以上の信号帯域の周波数成分のアンテナ間積のDFTの算出結果のピーク成分を、前記特定の周波数での値に補正し、
     前記補正されたアンテナ間積のDFTの算出結果のピーク成分を、共通の周波数でのピーク成分に変換し、前記変換されたピーク成分を統合する位相差情報統合部をさらに備え、
     前記到来方位推定部は、前記統合されたピーク成分から、前記到来信号毎の到来方位を推定すること
     を特徴とする請求項6に記載の方位探知装置。
    The phase difference information calculation unit corrects a peak component of a DFT calculation result of an inter-antenna product of frequency components of two or more signal bands assigned to the one incoming signal to a value at the specific frequency,
    further comprising a phase difference information integration unit that converts the peak component of the DFT calculation result of the corrected inter-antenna product into a peak component at a common frequency and integrates the converted peak components,
    The direction finding device according to claim 6, wherein the direction of arrival estimating unit estimates the direction of arrival of each of the arriving signals from the integrated peak components.
  8.  複数のアンテナを不等間隔に配置したアンテナアレイで到来信号を受信し、
     前記到来信号から、予め定められた一以上の帯域毎に複数の到来信号が含まれていれば分離して、前記到来信号を検出し、
     前記検出された到来信号毎の周波数成分から、前記複数のアンテナ間の位相差であるアンテナ間位相差を、特定の周波数において算出し、
     前記アンテナ間位相差から、前記到来信号毎の到来方位を推定すること
     を特徴とする方位探知方法。
    The incoming signal is received by an antenna array with multiple antennas arranged at unequal intervals,
    If a plurality of incoming signals are included in each of one or more predetermined bands from the incoming signal, the incoming signals are separated, and the incoming signals are detected;
    Calculating an inter-antenna phase difference, which is a phase difference between the plurality of antennas, at a specific frequency from the frequency component of each of the detected incoming signals,
    An azimuth finding method, comprising: estimating the arrival azimuth of each of the arriving signals from the inter-antenna phase difference.
PCT/JP2022/016096 2022-03-30 2022-03-30 Azimuth detection device and azimuth detection method WO2023188142A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/016096 WO2023188142A1 (en) 2022-03-30 2022-03-30 Azimuth detection device and azimuth detection method
JP2024510916A JPWO2023188142A1 (en) 2022-03-30 2022-03-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/016096 WO2023188142A1 (en) 2022-03-30 2022-03-30 Azimuth detection device and azimuth detection method

Publications (1)

Publication Number Publication Date
WO2023188142A1 true WO2023188142A1 (en) 2023-10-05

Family

ID=88199755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016096 WO2023188142A1 (en) 2022-03-30 2022-03-30 Azimuth detection device and azimuth detection method

Country Status (2)

Country Link
JP (1) JPWO2023188142A1 (en)
WO (1) WO2023188142A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701762A (en) * 1985-10-17 1987-10-20 Sanders Associates, Inc. Three-dimensional electromagnetic surveillance system and method
CN112771401A (en) * 2020-06-24 2021-05-07 华为技术有限公司 Target detection method and device, radar and vehicle
US20210270925A1 (en) * 2020-02-27 2021-09-02 The Boeing Company Systems and methods for enhanced direction of arrival detection and calculation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701762A (en) * 1985-10-17 1987-10-20 Sanders Associates, Inc. Three-dimensional electromagnetic surveillance system and method
US20210270925A1 (en) * 2020-02-27 2021-09-02 The Boeing Company Systems and methods for enhanced direction of arrival detection and calculation
CN112771401A (en) * 2020-06-24 2021-05-07 华为技术有限公司 Target detection method and device, radar and vehicle

Also Published As

Publication number Publication date
JPWO2023188142A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
US10539645B2 (en) Angle of arrival estimation
CA2279160C (en) Simultaneous intrapulse analysis, direction finding and lpi signal detection
US5432862A (en) Frequency division, energy comparison, source detection signal processing system
US5874916A (en) Frequency selective TDOA/FDOA cross-correlation
JP3600459B2 (en) Method and apparatus for estimating direction of arrival of radio wave
CN106486769B (en) Spatial interpolation method and apparatus for linear phased array antenna
CN114545342A (en) Radar pulse signal parameter measuring method using multi-channel reconnaissance receiver
US6509729B2 (en) Multiple simultaneous optical frequency measurement
WO2023188142A1 (en) Azimuth detection device and azimuth detection method
US6700537B2 (en) Method for calibrating a wideband direction finding system
CN107390198B (en) Sub-band related registration method under high-speed moving target
JP3808431B2 (en) Direction finding device
US20160192217A1 (en) Fast signal surveyor
US20060119514A1 (en) Radio signal direction finder
Tsyporenko et al. Development of direct method of direction finding with two-dimensional correlative processing of spatial signal
KR101801325B1 (en) Radar apparatus based on virtual channel and method for generating virtual channel using the same
JP2011022079A (en) Angle measuring device
CN110806558A (en) Direction finding method of three-channel direction finding system based on time slice rotation
JP2845220B2 (en) Sound source direction detection device
JP7384276B2 (en) Communication device, communication method
Niranjan et al. SWaP Optimised Parameter Extraction of Radar Signals for Space Electronic Intelligence Application.
WO2015186628A1 (en) Radiowave monitoring device
Zoltowski et al. Combatting High Dynamic Range Issues and Extraneous Peaks in Bistatic Passive Radar Exploiting Digital Video Broadcast
JP2717331B2 (en) Direction estimation method using narrowband signal
BniLam et al. 2D angle of arrival estimations and bandwidth recognition for broadband signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024510916

Country of ref document: JP