WO2023188048A1 - Manufacturing plant - Google Patents

Manufacturing plant Download PDF

Info

Publication number
WO2023188048A1
WO2023188048A1 PCT/JP2022/015732 JP2022015732W WO2023188048A1 WO 2023188048 A1 WO2023188048 A1 WO 2023188048A1 JP 2022015732 W JP2022015732 W JP 2022015732W WO 2023188048 A1 WO2023188048 A1 WO 2023188048A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
tool
station
self
propelled
Prior art date
Application number
PCT/JP2022/015732
Other languages
French (fr)
Japanese (ja)
Inventor
リチャード シャーレス
鉄平 根深
Original Assignee
株式会社牧野フライス製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社牧野フライス製作所 filed Critical 株式会社牧野フライス製作所
Priority to PCT/JP2022/015732 priority Critical patent/WO2023188048A1/en
Publication of WO2023188048A1 publication Critical patent/WO2023188048A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/40Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using ball, roller or wheel arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q37/00Metal-working machines, or constructional combinations thereof, built-up from units designed so that at least some of the units can form parts of different machines or combinations; Units therefor in so far as the feature of interchangeability is important
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q41/00Combinations or associations of metal-working machines not directed to a particular result according to classes B21, B23, or B24
    • B23Q41/04Features relating to relative arrangements of machines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]

Definitions

  • the present invention relates to a manufacturing plant equipped with a reconfigurable processing line that includes a tool module and a table module that are separably coupled via an interface.
  • Patent Document 1 describes, as a general-purpose cell constituting a production system, a base unit that supports the minimum robot necessary for processing a workpiece, a parts supply unit that supplies parts of the workpiece to the robot, and a base unit that extends outside the base unit. It is described that one general-purpose cell is constituted by the processing area provided.
  • Patent Document 1 discloses that a production system is configured by a plurality of general-purpose cells, it does not specifically describe how the production system (processing line) is to be recombined.
  • the present invention provides a manufacturing plant that can easily and efficiently reconfigure a processing line that includes a tool module and a table module that are separably coupled via an interface to improve productivity. is intended to provide.
  • a manufacturing factory equipped with a processing line including a tool module and a table module that are separably coupled via an interface at least one self-propellable tool module and at least one self-propellable tool module are provided.
  • a plurality of self-propelled modules including one table module, a processing area where the processing line is installed and processes a workpiece, and an energy supply device that supplies energy to the tool module or the table module within the processing area;
  • a material station that stores workpieces, a tool station that stores a plurality of tools, a fixture station that stores and holds a plurality of fixtures, and a chip treatment that processes chips, which are provided adjacent to the outside of the processing area.
  • a manufacturing plant is provided in which a travel module moves between the processing area and the station area.
  • various movable self-propelled modules can be reassembled within the processing area.
  • a self-propelled module transports and transfers the necessary workpieces and tools from a static station area adjacent to the periphery of the machining area, making the reconfigurable machining line more efficient. It becomes operationally possible.
  • FIG. 1 is a plan view schematically showing a manufacturing factory according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an energy supply device.
  • FIG. 2 is a schematic diagram of a spare module station.
  • FIG. 2 is a schematic diagram of a battery-equipped module. It is a schematic diagram of a workpiece conveyance module.
  • FIG. 3 is a schematic diagram of a tool change module.
  • FIG. 2 is a schematic diagram of a charging station.
  • FIG. 2 is a schematic plan view of a power supply device of a charging station.
  • 1 is a schematic diagram of a wireless charging system.
  • FIG. 2 is a schematic diagram of a first maintenance station.
  • FIG. 3 is a schematic diagram of a second maintenance station.
  • FIG. 3 is a schematic side view of the tool station.
  • FIG. 3 is a schematic plan view of the tool station.
  • FIG. 2 is a schematic side view of a fixture station.
  • FIG. 15 is a schematic plan view of the fixture station of FIG. 14;
  • FIG. 7 is a schematic side view showing a modification of the fixture station.
  • FIG. 17 is a schematic plan view of the fixture station of FIG. 16; It is a schematic side view of a material station. It is a schematic plan view which shows the modification of a material station.
  • FIG. 2 is a schematic diagram of a swarf processing station.
  • FIG. 2 is a plan view of a processing line consisting of three sets of tool modules and table modules.
  • FIG. 3 is a side view showing the tool module mounted on the drive module together with the drive module.
  • 23 is a front view of the tool module of FIG.
  • FIG. 23 is a plan view of the tool module of FIG. 22; FIG. FIG. 23 is a perspective view of the tool module of FIG. 22; FIG. 2 is a perspective view of a tool module configured to linearly feed a main shaft in three orthogonal axes directions.
  • FIG. 3 is a front view of the first active interface.
  • FIG. 3 is a front view of the second active interface.
  • FIG. 3 is a front view of a second passive interface that corresponds to a second active interface.
  • FIG. 3 is a perspective view showing an example of a drive module. 31 is a side view showing the table module mounted on the drive module of FIG. 30 together with the drive module.
  • FIG. FIG. 32 is a perspective view of the table module of FIG. 31; FIG.
  • FIG. 3 is a side cross-sectional view of the tool module shown coupled to the table module.
  • FIG. 3 is a perspective view of the table module shown in closed mode.
  • 37 is a perspective view of the table module of FIG. 36 from another angle;
  • FIG. It is a top view of a table module.
  • FIG. 3 is a front view of the first passive interface.
  • FIG. 6 is a front view of the third active interface.
  • FIG. 6 is a front view of the third passive interface.
  • FIG. 3 is a front view of the second active interface.
  • FIG. 6 is a front view of the second passive interface.
  • a manufacturing plant 10 has at least one processing area and a station area including a plurality of stations arranged around or at the edges of the processing area. More specifically, in this embodiment shown as an example, the manufacturing factory 10 has first and second processing areas 12 and 14 as processing areas, a spare module station 20, a charging station 30, and a first and second processing area as station areas. It includes two maintenance stations 90, 40, a tool station 50, a fixture station 60, first and second material stations 70, 80, and a chip handling station 100.
  • Reconfigurable processing lines 110, 112, 114 including a plurality of self-propelled modules are arranged in the first and second processing areas 12, 14.
  • the self-propelled module can include a tool module and a table module.
  • FIG. 21 shows, as an example of the processing lines 110, 112, 114, a processing line 1100 consisting of three coupled tool module 500 and table module 600 sets.
  • the tool module and table module that make up the processing line 1100 have a control device (not shown) that can communicate wirelessly with a processing system control device (not shown) that is a higher-level control device installed in the control center 16.
  • the processing line 1100 operates as one processing system under the control of a processing system control device.
  • Wireless communication can typically be a wireless LAN. Wired communication may be used instead of wireless communication.
  • the tool module 500 includes a fixed base 504 that is placed and fixed on the top surface of the drive module 560.
  • a pivot base 506 is attached to the upper surface of the fixed base 504 so as to be pivotable about a vertical rotation axis O BS (B axis).
  • the tool module 500 has a longitudinal center axis O S1 extending in the horizontal longitudinal direction that intersects perpendicularly to the rotation axis O BS and a transverse direction that intersects perpendicularly to both the rotation axis O BS and the longitudinal center axis O S1 . It has a central axis O S2 .
  • a hollow main shaft cover 502 defining a substantially rectangular parallelepiped space is disposed on the upper surface of the swing base 506.
  • a tool magazine 522 that stores a plurality of tools T is disposed in the upper part of the front surface of the spindle cover 502.
  • the tool T can be stored and held in the tool magazine 522 by being attached to a two-sided constraint type tool holder conforming to the HSK standard, or a tool holder having a shank shape of 7/24 taper or 1/10 taper. .
  • the tool magazine 522 has a plurality of gripping claws on the outer periphery that engage with the circumferential groove (not shown) of the tool holder, and includes a magazine base that is rotatably provided around the Z axis, and a magazine base that is rotatably provided around the Z axis.
  • a magazine drive motor (not shown) may be included to rotate the base.
  • the main shaft cover 502 has an open end face on the front side of the tool module 500.
  • the main shaft cover 502 has a signal light 509 arranged on the opposite side.
  • the signal light 509 may be arranged on the back side of the main shaft cover 502.
  • a cabinet 524 may be provided at the rear of the tool module 500 to store solenoid valves and filters for pneumatic equipment and hydraulic equipment, and chillers for cooling motors.
  • a control panel 526 containing a control device for the tool module 500 is attached to the rear end of the fixed base 504.
  • a mist collector 501 is arranged on the upper surface of the main shaft cover 502.
  • the tool module 500 includes a main shaft 512 on the tip of which a tool is mounted.
  • the main shaft 512 is rotatably supported by the main shaft head 510 around the central axis O S .
  • the spindle head 510 has a built-in spindle motor that rotationally drives the spindle 512.
  • the spindle head 510 is attached to the A-axis base 508.
  • the spindle head 510 may be rotatably attached to the A-axis base 508 by an A-axis rotation drive device 514 around an axis parallel to the X-axis.
  • the A-axis rotation drive device 514 includes a servo motor (not shown) that rotates the spindle head 510 around an axis (not shown) parallel to the X-axis.
  • the A-axis base 508 is supported by a parallel link mechanism so as to be movable in three orthogonal directions of the X, Y, and Z axes.
  • the parallel link mechanism includes six rod members 515, 516, 517, 518, 519, and 520.
  • the rod members 515, 516, 517, 518, 519, and 520 can be formed by telescopic direct-acting servo motors.
  • a pair of first rod members 515 and 516 are coupled to the upper end of the A-axis base 508 at one end of each. More specifically, the rod members 515, 516 are rotatably coupled at one end of each to the upper end of the A-axis base 508 or a portion adjacent to the upper end, for example, by a knuckle joint with two degrees of freedom. . The other ends of the first rod members 515, 516 are rotatably coupled to the first Z slider 530, for example, by a knuckle joint with two degrees of freedom.
  • the first Z slider 530 is capable of reciprocating in the horizontal back-and-forth direction or the Z-axis direction (direction perpendicular to the paper surface of FIG. 23).
  • the first Z slider 530 is reciprocated in the Z-axis direction by a first Z-axis linear motor.
  • the first Z-axis linear motor includes a stator (not shown) extending in the Z-axis direction fixed to the ceiling of the spindle cover 502, and a movable motor fixed to the first Z slider 530. child (not shown).
  • a pair of second rod members 517, 518 are rotatably attached at one end of each, e.g., by a knuckle joint with two degrees of freedom, to one side edge of the A-axis base 508, in this embodiment, the tool module 500. It is connected to the right side edge (right side in FIG. 23) when viewed from the front.
  • the other ends of the second linear actuators 517 and 518 are rotatably coupled to the second Z slider 532, for example, by a knuckle joint with two degrees of freedom.
  • the second Z slider 532 is capable of reciprocating in the horizontal back-and-forth direction or the Z-axis direction (direction perpendicular to the paper surface of FIG. 23).
  • the second Z slider 532 is reciprocated in the Z-axis direction by a second Z-axis linear motor.
  • the second Z-axis linear motor has a stator (not shown) that extends in the Z-axis direction and is fixed to the inner surface of the right side wall of the spindle cover 502 (the right side wall when viewed from the front of the tool module 500). ) and a mover (not shown) fixed to the second Z slider 532.
  • a pair of third rod members 519, 520 are rotatably attached at one end of each, for example by a knuckle joint with two degrees of freedom, to the other side edge of the A-axis base 508, in this embodiment, the tool module 500. It is connected to the left side edge (left side in FIG. 23) when viewed from the front.
  • the other end of the third linear actuator (not shown) is rotatably coupled to the third Z slider 534, for example, by a knuckle joint with two degrees of freedom.
  • the third Z slider 534 is capable of reciprocating in the horizontal back-and-forth direction or in the Z-axis direction (direction perpendicular to the paper surface of FIG. 25).
  • the third Z slider 534 is reciprocated in the Z-axis direction by a third Z-axis linear motor.
  • the third Z-axis linear motor has a stator (not shown) that extends in the Z-axis direction and is fixed to the inner surface of the left side wall of the spindle cover 502 (the left side wall when viewed from the front of the tool module 500). ) and a mover (not shown) fixed to the third Z slider 534.
  • the spindle head 510 Before the tool module 500 is coupled to the table module 600, the spindle head 510 is disposed within the spindle cover 502. After the tool module 500 and table module 600 are combined and a machining process or a workpiece conveyance process is started, the spindle head 510 protrudes forward in the Z-axis direction from the front opening 502a of the spindle cover 502.
  • the main shaft 512 includes the A-axis base 508, the first to third pairs of rod members 515, 516:517, 518:519, 520, and the first to third Z sliders 530, 532, which constitute a parallel link mechanism. , 534 so as to be able to reciprocate in the three orthogonal axes directions of X, Y, and Z.
  • the spindle head that rotatably supports the main shaft of the tool module is supported movably in three orthogonal axes directions of X, Y, and Z by a parallel link mechanism. It is not limited to this.
  • the spindle head may be supported by a linear feed shaft device in the directions of three orthogonal axes X, Y, and Z.
  • the tool module 1500 includes a base part 1502 placed on the drive module 560, a swing base 1504 fixed to the upper surface of the base part 1502, and a swing base 1504 attached to the swing base 1504 so as to be able to reciprocate in the X-axis direction. It is provided with a column or an X slider 1506, a Y slider 1508 attached to the front surface of the X slider 1506 so as to be movable reciprocally in the Y-axis direction, and a spindle head 1510 attached to the Y slider so as to be movable reciprocally in the Z-axis direction.
  • the main shaft 1512 is rotatably supported by the main shaft head 1510 around a central axis O S in the Z-axis direction.
  • the pivot base 1504, the X slider 1506, the Y slider 1508, and the spindle head 1510 are surrounded by a cover 1516. Further, a tool magazine 1514 is disposed within the cover 1516 and above the spindle head 1510.
  • the tool module 500 is equipped with a first active interface 800 in the front part as a coupling part used for coupling with the table module.
  • the first active interface 800 may be coupled to a first passive interface 820, described below.
  • a first active interface 800 has a flat substrate 802. As shown in FIG. An opening 802a is formed in the substrate 802 through which a chip evacuation device (not shown) passes.
  • the first active interface 800 includes various functional devices disposed on a substrate 802.
  • the functional device includes a multi-connector 804.
  • Multi-connector 804 is arranged in the center adjacent to the upper edge of board 802.
  • the multi-connector 804 shown as an example includes at least one power connector 804a, 804b, 804c, 804h, 804i for connecting a power line, at least one data connector 804d, 804e for connecting a signal line, and an air cylinder. It includes at least one fluid connector 804f, 804g for connecting a conduit (not shown) for passing a working fluid such as pressurized air or hydraulic oil for driving a hydraulic cylinder or a fluid such as a coolant.
  • a working fluid such as pressurized air or hydraulic oil for driving a hydraulic cylinder or a fluid such as a coolant.
  • the first active interface 800 further includes a plurality of couplers for mechanically coupling the tool module 500 to a table module 600, which will be described below.
  • the coupler includes at least one retractable coupler.
  • the retractable couplers include two retractable couplers 806a, 806b.
  • the two retractable couplers 806a and 806b are arranged at the center of the substrate 802 adjacent to both left and right edges, respectively.
  • the coupler further includes a plurality of cone clamps with positioning features. This embodiment includes four cone clamps 808a, 808b, 808c, 808d located at each corner of the substrate 802.
  • the first active interface 800 further includes a plurality of sensor devices.
  • the sensor device includes at least one contact sensor to determine whether the tool module 500 and table module 600 are fully coupled.
  • the contact sensor includes two contact sensors 810a, 810b arranged diagonally on the substrate 802. Two contact sensors 810a, 810b are arranged on the substrate 802 inside a pair of cone clamps 808a, 808d arranged diagonally.
  • the sensor device further includes at least one force sensor.
  • the force sensor includes two force sensors 812a, 812b placed diagonally on the substrate 802.
  • the two force sensors 812a, 812b are arranged on a diagonal different from the diagonal on which the two contact sensors 810a, 810b are arranged. That is, the two force sensors 812a, 812b are placed inside another pair of cone clamps 808b, 808c, which are placed diagonally on the substrate 802.
  • the force sensors 812a and 812b include pins that protrude perpendicularly to the substrate 802, and have a function of guiding the pins in the protruding direction by inserting the pins into corresponding guide holes.
  • the sensor device further includes a non-contact sensor, in particular an optical sensor.
  • the optical sensor includes a camera 814.
  • Camera 814 is preferably oriented such that its optical axis is perpendicular to substrate 802.
  • the camera 814 is arranged between the multi-connector 804 and the upper edge of the opening 802a.
  • Camera 814 may be placed below opening 802a.
  • the non-contact sensor may further include a laser sensor, such as a laser displacement sensor.
  • the sensor device may further include an RFID (Radio Frequency Identifier) recording an identification code and an RFID reader to identify the module.
  • RFID Radio Frequency Identifier
  • the tool module 500 may include one or more types of interfaces in addition to the first active interface 800.
  • the tool module 500 can include a second active interface 870 as shown in FIG.
  • the second active interface 870 can include a multi-connector 874 attached to a planar substrate 872.
  • the multi-connector 874 is arranged adjacent to the center of the upper edge of the board 872.
  • the multi-connector 874 shown as an example includes at least one power connector 874a, 874b, 874c, 874h, 874i for connecting a power line, data connectors 874d, 874e for connecting a signal line, and for driving an air cylinder or a hydraulic cylinder.
  • It includes at least one fluid connector 874f, 874g for connecting a conduit (not shown) for carrying a working fluid such as pressurized air or oil, or a fluid such as a coolant.
  • Second active interface 870 can further include camera 814.
  • the tool module 500 can also include a second passive interface 860 (FIG. 29), which corresponds to the second active interface 870.
  • the second passive interface 860 can include a multi-connector 864 attached to a planar substrate 862.
  • the multi-connector 864 is a multi-connector corresponding to the multi-connector 874 of the second active interface 870, and includes at least one power connector 864a, 864b, 864c, 864h, 864i for connecting a power line, and a signal line for connecting a signal line.
  • the second passive interface 860 can include an object 866 to be imaged by the camera 814 of the second active interface 870 .
  • Imaged object 866 may be an identification code representing tool module 500 .
  • the drive module 560 includes a control device (not shown) capable of wireless communication with a processing system control device that is a higher-level control device disposed in the control center 16. Together with the table module 600 and the table module 600, the processing system operates as one processing system under the control of the processing system control device.
  • Wireless communication can typically be a wireless LAN.
  • the drive module 560 forms one self-propelled truck.
  • the drive module 560 has a hollow, generally rectangular parallelepiped-shaped base portion 562.
  • Wheels 564 are rotatably attached to the four corners of the base portion 562.
  • Wheels 564 can be formed by conventional tire and wheel combinations, but are preferably formed by mecanum wheels.
  • a mecanum wheel is a wheel that does not turn by a steering operation that tilts the wheel itself with respect to the traveling direction like a normal wheel, but turns by using a rotation difference between the wheels. By controlling the difference in rotation of the wheels, it is possible not only to move linearly in the direction of rotation of the wheel like a normal wheel, but also to make super-turns and parallel movement in all directions.
  • Wheel 564 may be formed by an omniwheel.
  • the drive module 560 includes a drive motor (not shown) for rotating each of the four wheels 564 independently.
  • the drive motor may be disposed within the base portion 562, but is preferably an in-wheel motor (not shown) disposed within each wheel 564.
  • the drive module 560 is equipped with area sensors 598 arranged at the four corners. More specifically, two area sensors 598 are arranged on the front surface of the base section 562, and two area sensors 598 are arranged on the rear surface of the base section 562.
  • the four area sensors 598 form a generally circular sensing area around the drive module 560.
  • Area sensor 598 detects the presence, shape, and position (distance, direction) of an object within the detection area.
  • the area sensor 598 can be a laser sensor, in particular a lidar (Light Detection and Ranging) sensor. Lidar sensors measure the scattered light of pulsed laser irradiation and can analyze the distance to a distant object and the properties of that object. To provide a three-dimensional driving space sensor that can grasp the situation in real time and three-dimensionally. Furthermore, a 3D LiDAR sensor may be used as the laser sensor.
  • the table module of this embodiment which is a modification of the table module 200, is formed from a table module 600 and a drive module 560.
  • the table module 600 is mounted on the top surface 562a of the drive module 560, specifically on the ram 596 of the leveling block 590.
  • the table module 600 includes a base portion 620 and a rotary table 630 rotatably supported around a vertical central axis OT .
  • the table module 600 When combined with the tool module 500, the table module 600 has a longitudinal center axis O T1 that coincides with the longitudinal center axis O S1 of the tool module 500, a vertical rotation axis O BT , and a longitudinal center axis O BT. It has a transverse central axis O T2 that perpendicularly intersects both O T1 .
  • the rotary table 630 has a mounting surface 630a made of a flat surface on which a workpiece (not shown) is placed and fixed, and a shaft portion 632 protruding from the lower surface on the opposite side of the mounting surface 630a.
  • the base portion 620 has a boss hole 622 that is formed around the rotation axis O BT and receives the shaft portion 632 of the rotary table 630 .
  • the shaft portion 632 is rotatably supported in the boss hole 622 by a bearing 634.
  • the table module 600 can include a servo motor as a drive source that rotationally drives the rotary table 630.
  • the servo motor includes a stator 636 fixed to the inner circumferential surface of the boss hole 622 of the base portion 620, and a stator 636 fixed to the outer circumferential surface of the shaft portion 632 of the rotary table 630 so as to face the stator 636.
  • a rotor 638 is provided.
  • a chip discharge passage 626 is formed in the base portion 620 .
  • the chip discharge passage 626 extends along the longitudinal center axis O T1 of the table module 600 and a horizontally extending center axis (chip conveyor axis) O CC inclined with respect to the transverse center axis O T1 . ing.
  • a chip discharge passage 626 passes through the base portion 620 along the chip conveyor axis O CC .
  • the base portion 620 has a chip discharge hole 624 that opens on its upper surface. The bottom of the chip evacuation hole 624 extends to a chip evacuation passage 626 to collect and direct chips generated during machining to the chip evacuation passage 626 .
  • the chip discharge passage 626 has a receiving portion 626a.
  • the receiving portion 626a is formed from a hole extending in the direction of the longitudinal central axis O T1 .
  • the receiving part 626a is open on the side surface facing the tool module 500 in the base part 620, and when the tool module 500 is combined with the table module 600, the longitudinal direction of the tool module 500 is opened in the screw conveyor of the chip discharging device 552.
  • a forwardly projecting portion is received along the central axis O S1 of the direction.
  • the chip discharge passage 626 does not need to include the receiving portion 626a. Further, in the case where the chip discharge device is a belt conveyor 551, when the tool module 500 is coupled to the table module 600, the tip of the belt conveyor 551 is arranged above the chip discharge hole 624, as shown in FIG.
  • a chip discharge device 618 is disposed within the chip discharge passage 626 .
  • the chip evacuation device 618 can be formed by a belt conveyor 628 extending along the chip conveyor axis Occ .
  • the belt conveyor 628 has one end portion (upstream end portion) (not shown) disposed near the side surface of the base portion 620, and the other end portion (downstream end portion) (not shown) of the chip discharge device 618. ) protrudes from the opposite side of the base portion 620 along the chip conveyor axis O CC .
  • the upstream end portion 628a of the belt conveyor 628 projects slightly from the side surface of the base portion 620.
  • a downstream end portion 628b of the belt conveyor 628 is a lift-up portion that is lifted upward.
  • the table module 600 may further include a movable cover assembly 602 attached to the top surface of the base portion 620.
  • the movable cover assembly 602 can be a cover that can be opened and closed about a vertical axis of rotation (not shown) on the top surface of the base portion 620.
  • Movable cover assembly 602 includes a first movable cover 604 , a second movable cover 606 and a third movable cover 608 .
  • the first to third movable covers 604 to 608 are movable independently in the circumferential direction.
  • Actuators 609 of the first to third movable covers 604 to 608 are disposed within an actuator cover (not shown).
  • the first, second, and third movable covers 604, 606, and 608 have side surfaces 604a, 606a, and 608a formed from a portion of a cylindrical surface that curves along the circumference centered on the rotation axis of the cover. and ceilings 604b, 606b, 608b extending radially inward from the upper ends of the side surfaces 604a, 606a, 608a.
  • the first and second movable covers 604 and 606 are arranged on the same circumference centered on the rotation axis O BT , and the third movable cover 608 is located inside the first and second movable covers 604 and 606. It is located in
  • the first and second movable covers 604 and 606 have rollers 616 and 617 that protrude radially outward at their lower ends.
  • the rollers 616, 617 are provided rotatably about an axis extending in the radial direction with respect to the rotation axis OBT .
  • the table module 600 has a cover rail 615 extending along a circumference centered on the rotation axis OBT .
  • the rollers 616 and 617 are placed on the upper end of the cover rail 615, so that the first and second movable covers 604 and 606 are movably supported along the cover rail 615. While the first and second movable covers 604, 606 move, the rollers 616, 617 roll along the cover rails 615.
  • the table module 600 further includes a cover rail (not shown) for a third movable cover 608 and a cover for the third movable cover 608 disposed at the lower end of the third movable cover 608. It includes rollers (not shown) that roll along the rails.
  • a cover rail for the third movable cover 608 is arranged inside the third movable cover 608.
  • the table module 600 further includes a first passive interface 820 (FIG. 37) that corresponds to the first active interface 800 of the tool module 500.
  • the first passive interface 820 has a flat substrate 822 attached to the base portion 620 . More specifically, the substrate 822 is fixed to the side of the base portion 620 facing the tool module 500 to be coupled.
  • First passive interface 820 includes various functional devices disposed on substrate 822.
  • the functional device includes a multi-connector 824 that is coupled to multi-connector 804 of first active interface 800 .
  • the multi-connector 824 is arranged adjacent to the center of the upper edge of the board 822.
  • the multi-connector 824 shown as an example includes at least one power connector 824a, 824b, 824c, 824h, 824i for connecting a power line, data connectors 824d, 824e for connecting a signal line, and driving an air cylinder or a hydraulic cylinder. It includes at least one fluid connector 824f, 824g for connecting a conduit (not shown) for carrying a working fluid such as pressurized air or oil, or a fluid such as a coolant.
  • the first passive interface 820 further includes a plurality of couplers corresponding to the couplers of the first active interface 800.
  • the couplers include two retraction couplers 826a, 826b corresponding to the retraction couplers 806a, 806b of the first active interface 800.
  • the retracting couplers 826a and 826b are arranged adjacent to the center of both left and right edges of the board 822.
  • the coupler further includes four cone clamps 828a, 828b, 828c, 828d corresponding to cone clamps 808a, 808b, 808c, 808d of first active interface 800. Cone clamps 828a, 828b, 828c, 828d are located at each corner of substrate 822.
  • the first passive interface 820 further includes contact pieces 830a, 830b corresponding to the contact sensors 810a, 810b of the first active interface 800.
  • the contact pieces 830a, 830b are arranged at positions facing the contact sensors 810a, 810b when the first active interface 800 and the first passive interface 820 face each other. , are arranged inside a pair of cone clamps 828a, 828b arranged at diagonal positions.
  • the first passive interface 820 further includes guide holes 832a, 832b corresponding to the force sensors 812a, 812b of the first active interface 800.
  • the guide holes 832a, 832b receive the pins of the force sensors 812a, 812b when the tool module 500 is coupled to the table module 600, and guide the movement of the tool module 500 in the protruding direction of the pins.
  • Table module 600 may include one or more types of interfaces in addition to first passive interface 820.
  • the table module 600 can include a third active interface 850 as shown in FIG.
  • the third active interface 850 has a flat substrate 852 attached to the base portion 620 .
  • the substrate 852 is formed with an opening 852a through which the chip discharge device 618 (belt conveyor 628) passes.
  • a third active interface 850 is secured to the side of the base portion 620 to allow an upstream end portion (not shown) of the belt conveyor 628 to pass through the opening 852a.
  • the third active interface 850 includes various functional devices disposed on a substrate 852.
  • the functional device includes a multi-connector 854 similar to multi-connector 804 of first active interface 800 .
  • the multi-connector 854 is arranged adjacent to the center of the upper edge of the board 852.
  • the multi-connector 854 shown as an example includes power connectors 854a, 854b, 854c, 854h, 854i that connect power lines, data connectors 854d and 854e that connect signal lines, and pressurized air and pressure oil that drive air cylinders and hydraulic cylinders. It includes at least one fluid connector 854f, 854g for connecting a conduit (not shown) for passing a fluid such as a working fluid or a coolant.
  • the functional device includes a camera 856.
  • Camera 856 is preferably oriented such that its optical axis is perpendicular to substrate 852.
  • the camera 856 is arranged between the multi-connector 854 and the upper edge of the opening 852a.
  • the camera 856 may be placed below the opening 852a.
  • the functional device may further include a laser sensor, for example a lidar (Light Detection and Ranging) sensor.
  • the table module 600 can include a third passive interface 840 as shown in FIG.
  • the third passive interface 840 is a companion interface to the third active interface 850, and is fixed to two opposing sides of the base portion 620 along the chip conveyor axis O CC .
  • the third passive interface 840 has a flat substrate 842 attached to the base portion 620.
  • the substrate 842 is formed with an opening 842a through which the chip discharge device 618 (belt conveyor 628) passes.
  • a third passive interface 840 is located on the opposite side of the base portion 620 along the chip conveyor axis O CC from the third active interface 850 to allow the downstream end portion 628b of the belt conveyor 628 to pass through the opening 842a.
  • a third passive interface 840 may additionally be mounted on the side of the base portion 620 at a 45° angle to the chip conveyor axis O CC .
  • the third passive interface 840 may include various functional devices disposed on the substrate 842.
  • the functional device includes a multi-connector 844 similar to multi-connector 824 of first passive interface 820 .
  • the multi-connector 844 is disposed adjacent to the center of the upper edge of the board 842.
  • the multi-connector 844 shown as an example includes power connectors 844a, 844b, 844c, 844h, 844i for connecting power lines, data connectors 844d, 844e for connecting signal lines, and pressurized air or pressure oil for driving air cylinders or hydraulic cylinders. It includes at least one fluid connector 844f, 844g for connecting a conduit (not shown) for carrying a fluid such as a working fluid or a coolant.
  • the third passive interface 840 further includes an object 846 to be imaged by the camera 856 of the third active interface 850.
  • the imaged object is a recognition code representing the table module 600 similar to the imaged object 834 of the first passive interface 820 .
  • the third table module 600-3 (the rightmost table module in FIG. 21) is moved and fixed at a predetermined position.
  • the second table module 600-2 is coupled to this third table module 600-3, and the first table module 600-1 is coupled to the second table module 600-2.
  • this fixed table module 600 stationary side table module
  • this fixed table module 600 moving side table module
  • the moving table module then approaches the stationary table module along the chip conveyor axis Occ with its third active interface 850 facing the stationary table module's third passive interface 840.
  • the downstream end portion 628b of the chip evacuation device of the moving table module enters the chip evacuation passage 626 of the base portion 620 of the stationary table module along the chip conveyor axis Occ , and It is located above the upstream end portion 628a of the belt conveyor 628 of the side table module.
  • the two table modules 600 are coupled to each other by coupling the third active interface 850 of the moving table module to the third passive interface 840 of the stationary table module. After coupling, the movable table module is fixed to the floor by bringing the shoe 572 of the stand assembly 570 of the movable table module into contact with the floor.
  • one corresponding tool module 500-1, 500-2, 500-3 is coupled to each of the three table modules 600-1, 600-2, 600-3 coupled to each other.
  • Each of the tool modules 500-1, 500-2, and 500-3 has its longitudinal center axis O S1 aligned with the longitudinal center axis O T1 of each of the table modules 600-1, 600-2, and 600-3.
  • the first active interface 800 is aligned with each of the table modules 600-1, 600-2, 600-3 along the central axes O S1 , O T1 so as to coincide with the first active interface 800 . , 600-3 to a first passive interface 820.
  • a first active interface 800 of each of the tool modules 500-1, 500-2, 500-3 is coupled to a first passive interface 820 of the corresponding table module 600-1, 600-2, 600-3. Then, the chip evacuation devices 552 of the tool modules 500-1, 500-2, and 500-3 move forward (in the direction toward the table module 600) along the longitudinal center axis O T1 and move toward the table module 600. The leading end portion is arranged above the chip discharge device 618 (belt conveyor 628) of the table modules 600-1, 600-2, and 600-3.
  • a reconfigurable processing line for example the processing line 1100, is constructed within the first and second processing areas 12, 14.
  • the processing lines constructed in each of the first and second processing areas 12 and 14 are not limited to the processing line 1100 described above.
  • a machining line can include more or less than three tool modules 500 and table modules 600, depending on the machining process to be performed.
  • One or more energy supply devices 120 are installed in the processing area.
  • two energy supply devices 120 are installed in the first processing area 12, and two energy supply devices 120 are installed in the second processing area 14.
  • the energy supply device 120 includes an auxiliary device 122 installed upright on the floor of the first processing area 12 or the second processing area 14 and connected to a pressurized air source (not shown) such as factory service air. and a control device 124 connected to a power source (not shown), such as factory power.
  • the auxiliary equipment 122 can include an air dryer that dries pressurized air, a filter that filters pressurized air, and a solenoid valve that controls supply and cutoff of pressurized air.
  • the control device 124 can include an inverter that boosts the power from the power source, a regulator that controls the current output by the energy supply device 120, and a breaker that cuts off the current output by the energy supply device 120.
  • the energy supply device 120 includes a connector (multi-connector) 120a attached to the front surface.
  • the energy supply device 120 can supply power and pressurized air to the processing lines 110 , 112 , 114 connected to the energy supply 120 via the multi-connector 124 .
  • the table module 600-3 shown in FIG. 21 is coupled to the energy supply device 120, and power, electric signals, working fluid, and coolant are supplied from the table module 600-3 to the table modules 600-2 and 600-1.
  • Modules 600-3, 600-2, 600-1 supply power, electrical signals, and/or fluids, such as working fluid or coolant, to tool modules 500-3, 500-2, 500-1.
  • the spare module station 20 is a compartment for storing or arranging spare modules for the purpose of reconfiguring a processing line or replacing a failed module.
  • a part of the manufacturing plant 10 can be defined as a spare module station 20.
  • a plurality of self-propelled modules are stored or arranged in the spare module station 20.
  • the plurality of self-propelled modules include a tool module 22, a table module 24, and a self-propelled auxiliary module 26.
  • the tool module 22 can be, for example, the tool module 500 or 1500 mounted on the drive module 560 described above.
  • the table module 24 can be, for example, the table module 600 mounted on the drive module 560 described above.
  • the self-propelled auxiliary module 26 includes a control device (not shown) that can communicate wirelessly with a processing system control device that is a higher-level control device provided in the control center 16. It operates together with the tool module 500 and the table module 600 as one machining system under the control of the machining system controller.
  • the processing system control device communicates with an operation panel and a control device within the processing system, and can also be operated from a terminal outside the control center, such as a mobile terminal connected via a network.
  • the self-propelled auxiliary module 26 is a self-propelled module that can be self-propelled under the processing system control device, and as described later, can include multiple types of modules with various functions.
  • a battery-mounted module 130 is illustrated as an example of the self-propelled auxiliary module 26.
  • the battery mounted module 130 includes, for example, a control device 134 and a battery 136 mounted on a self-propelled vehicle.
  • the self-propelled vehicle 132 includes a coupler 138.
  • the coupler 138 can be disposed on one side of the self-propelled vehicle 132.
  • Coupler 138 can be, for example, second active interface 870.
  • the battery-powered module 130 can thus power a free-propelled module 300 with a coupler 302 , such as a second passive interface 860 , that can be coupled to the coupler 138 .
  • the battery-equipped module 130 may include an auxiliary device 132 for supplying pressurized air, such as an air compressor, an air dryer, a filter, or a solenoid valve. In this case, the battery-equipped module 130 can supply the self-propelled module 300 with pressurized air in addition to electric power.
  • the battery may also be a fuel cell with a hydrogen storage system.
  • the self-propelled auxiliary module 26 can also include a workpiece transport module 140.
  • the workpiece transfer module 140 can include a manipulator 144 mounted on a self-propelled vehicle 142, as shown in FIG. In FIG. 5, the self-propelled module 60 is a table module 600.
  • the self-propelled vehicle 142 can have a work stocker 146 that stores one or more works W.
  • the workpiece W can include an unprocessed workpiece (raw material) in addition to a processed workpiece.
  • the work before processing may be used as a raw material, and the processed work may be used as a work.
  • the manipulator 144 can be, for example, a vertical articulated robot arm having a hand 144a at its tip.
  • the self-propelled vehicle 142 includes a coupler 141.
  • the coupler 141 can be disposed on one side of the self-propelled vehicle 142.
  • Coupler 146 can be, for example, second active interface 870.
  • the control device 148 of the workpiece transfer module 140 connects to the control device 62 of the self-propelled module 60 . connected to.
  • the workpiece transport module 140 transports and transfers the workpiece W between first and second material stations 70 and 80, which will be described later, and a table module 600.
  • the self-propelled auxiliary module 26 may also include a tool change module 150.
  • the tool exchange module 150 can include a tool magazine 154 mounted on a self-propelled vehicle 152, as shown in FIG.
  • the tool magazine 154 includes a support 154b erected on the top surface of the self-propelled vehicle 152, an annular tool support 154c rotatably attached to the support 154b, and a plurality of grippers 154a attached to the tool support 154c. , and a tool T is gripped by each of the grippers 154a.
  • the self-propelled vehicle 152 further includes a control device 156 and a coupler 158.
  • the coupler 158 can be disposed on one side of the self-propelled vehicle 152.
  • Coupler 158 can be, for example, second active interface 870.
  • the tool exchange module 150 can supply tools needed by the self-propelled module 310, typically the tool module 500, and can receive tools no longer needed by the tool module 500, such as broken tools.
  • the controller 156 of the tool change module 150 connects to the controller 603 of the self-propelled module 310 . connected to.
  • the charging station 30 can be placed adjacent to the spare module station 20.
  • the charging station 30 is a section for charging the battery mounted on the self-propelled module.
  • a portion within the manufacturing plant 10, preferably adjacent to the spare module station 20, may be defined as a charging station 30.
  • the charging station 30 can be provided with one or more power supply devices 32 (FIG. 7).
  • the power supply device 32 includes a control device 34 connected to a power source (not shown) such as factory power.
  • the control device 34 can include an inverter that boosts the power from the power source, a regulator that controls the current output by the power supply device 32, and a breaker that cuts off the current that the power supply device 32 outputs.
  • the power supply device 32 further includes a coupler 36.
  • Coupler 36 can be, for example, second passive interface 860.
  • the coupler (second active interface 870) 568 of the drive module 560 carrying a self-propelled module, such as the tool tool module 500 the battery 566 of the drive module 560 can be charged.
  • the power supply device 32 may include a plurality of couplers 36.
  • the power supply device 160 shown in FIG. 8 as an example has six connectors 162.
  • the power supply device 160 has a stand 164 fixed to the floor of the charging station 30.
  • the stand 164 has a plurality of vertical sides, six sides in the example shown in FIG. 8, and a coupler 162 is disposed on each side.
  • Coupler 162 may be a second passive interface 860.
  • the charging station 30 may include a wireless charging system.
  • a wireless charging system includes a wireless power transmitter 172, a wireless charging receiver 174, a battery 176 connected to the wireless charging receiver 174, a power supply 166 that supplies power to the wireless power transmitter 172, and a controller 168 that controls the power supply 166. be able to.
  • the wireless power transmitter 172 can be embedded in the floor of the first processing area 12 and/or the second processing area 14 of the manufacturing plant 10.
  • the wireless power supply transmitter 172 connects the tool module 500, the table module 600, the self-propelled auxiliary modules 130, 140, 150, etc. in the vicinity of the energy supply device 120 of the first processing area 12 and/or the second processing area 14.
  • self-propelled modules can be buried in the floor where they can be placed.
  • Power supply 166 and controller 168 may be located within charging station 30 .
  • the wireless charging receiver 174 can be placed on the bottom surface of the drive module of the self-propelled module 170, such as the tool module 500, table module 600, self-propelled auxiliary module 130, 140, 150, etc. By arranging the self-propelled module 170 so that the wireless charging receiver 174 faces the wireless power transmitter 172, the wireless power transmitter 172 and the wireless charging receiver 174 can be connected to each other via wireless communication, and the wireless charging receiver 174 can be connected wirelessly.
  • the wireless charging receiver 174 is connected to the power transmitter 172, and the wireless charging receiver 174 transmits information such as the difference between the required amount of received power, a power transmission stop request, the power being received, and the charging rate of the mobile device, and based on the information, , a control device 168 controls the power supply device 166 to control the voltage, current, and frequency of the alternating current supplied to the wireless power supply transmitter 172.
  • the battery 176 of the self-propelled module is charged through the induced magnetic field generated between the wireless power transmitter 172 and the wireless charging receiver 174.
  • the first maintenance station 90 is a section where regular maintenance of the self-propelled module 180 is performed. A portion of manufacturing plant 10 may be defined as first maintenance station 90 .
  • the first maintenance station 90 may include a cover that surrounds a predetermined space within the manufacturing plant 10.
  • Periodic maintenance performed at the first maintenance station 90 is performed by storing condensate generated from water and oil vapor contained in compressed air such as service air of the manufacturing plant 10 to which the self-propelled module 230 is supplied. Replacing the drain tank, replacing the filter of the mist collector that collects the mist of cutting oil generated during cutting, replenishing the cutting oil that is supplied to the workpiece W in mist for cutting, and removing foreign objects from compressed air.
  • Cleaning operations may include replacing filters for removal, replacing grease cartridges filled with lubricating grease, and removing chips from self-propelled module 230 using a vacuum prior to maintenance operations.
  • the first maintenance station 90 In order to carry out such periodic maintenance, the first maintenance station 90, as shown in FIG. A storage shelf 92 is provided for holding regularly replaced parts 96 such as grease cartridges.
  • first maintenance station 90 includes a manipulator 98 and a control device 91 that controls manipulator 98.
  • the manipulator 98 can preferably be a vertical articulated robot arm having a hand 98a as an end effector at its tip.
  • the end effector may include multiple types of end effectors 94 suitable for gripping each regularly replaced part 96.
  • the end effector may include a vacuum end effector (not shown) that applies a vacuum to the self-propelled module 180.
  • Each end effector 94 can be housed in a dedicated storage device (not shown) or storage shelf 92.
  • the control device 91 of the first maintenance station 90 wirelessly communicates with the control device 182 of the self-propelled module 180 and receives the ID of the self-propelled module 180.
  • the control device 182 of the self-propelled module 180 stores maintenance information related to maintenance performed on the self-propelled module 180 in the past.
  • the control device 91 of the first maintenance station 90 performs necessary normal or periodic maintenance based on the maintenance information of the self-propelled module 180.
  • a part of the manufacturing plant 10 can be defined as the second maintenance station 40.
  • the second maintenance station 40 may include a cover that surrounds a predetermined space within the manufacturing plant 10.
  • the second maintenance station 40 is a section for diagnosing the state of the self-propelled module.
  • a tool module 500 is shown as an example of the self-propelled module 210 to be subjected to the diagnostic test at the second maintenance station 40, but the self-propelled module diagnosed by the second maintenance station 40 is The tool module 500 or 1500.
  • the diagnostic tests performed at the second maintenance station 40 include vibration measurements, rotation accuracy measurements, and runout accuracy measurements of the spindles 512, 1512 of the tool modules 500, 1500.
  • the diagnostic test includes positioning accuracy measurement (three-dimensional positioning accuracy measurement or spatial accuracy measurement) of the X-axis, Y-axis, Z-axis, A-axis, and B-axis feed axes of the tool modules 500 and 1500, and tool accuracy measurement of the spindles 512 and 1512. It may also include clamping force measurements.
  • the second maintenance station 40 includes a plurality of instruments or diagnostic tools 48a, 48b, 48c held in an instrument rack 46, as shown in FIG. It includes a measuring instrument stand 44 on which a measuring instrument 48d to be used is placed, and a control device 40a having a diagnostic program for automatically executing a diagnostic test.
  • the measuring instruments include, for example, an acceleration pickup that measures the vibration of the main shafts 512 and 1512, a non-contact precision displacement meter that measures the rotation accuracy of the main shafts 512 and 1512, and a contact or non-contact type that measures the runout accuracy of the main shafts 512 and 1512. It can include a contact displacement meter and a three-dimensional sensor for measuring the positioning accuracy of the feed axis.
  • the second maintenance station 40 may include a diagnostic tool that attaches to the tip of the spindle 512, 1512 to perform diagnostic tests.
  • the diagnostic tool includes a reference ball (not shown) for measuring the rotation accuracy of the spindles 512, 1512, a test bar (not shown) for measuring the runout accuracy of the spindles 512, 1512, and a positioning accuracy of the feed axis.
  • a ball bar (not shown) may be included for measurements.
  • Such a diagnostic tool may be mounted in a tool holder (not shown) that attaches the tool to the spindle 512, 1512 of the tool module 500 or 1500, rather than the instrument rack 46 shown in FIG.
  • the diagnostic tool magazine (not shown) may have a gripper (not shown) for holding the diagnostic tool.
  • the second maintenance station 40 includes a coupler 45 that couples to the active interface 800 of the tool module 500, 1500.
  • the coupling 45 of the second maintenance station 40 can be formed by a passive interface 860, for example.
  • the control device 501 of the self-propelled module 210 connects to the control device 40a of the second maintenance station 40. connected to.
  • the control device 501 of the self-propelled module 210 stores a diagnostic test history related to the results of diagnostic tests performed on the self-propelled module 210 in the past.
  • the results of the executed diagnostic test are output from the control device 40a of the second maintenance station 40 to the control device 501 of the self-propelled module 210, and stored in the control device 501 of the self-propelled module 210 as a diagnostic test history.
  • the diagnostic test results may be displayed on a control panel (not shown) of the second maintenance station 40. You can also set a threshold and issue a warning to request maintenance when the diagnostic result exceeds the threshold. Furthermore, the diagnostic results can also be sent to the processing system controller via the network.
  • the tool station 50 is a compartment for storing and holding spare tools in order to replace the tools when the tools are damaged or when the machining line is reconfigured.
  • a portion of manufacturing plant 10 may be defined as a tool station 50 .
  • the tool station 50 includes a cover that surrounds a predetermined space within the manufacturing plant 10.
  • the tool station 50 includes a tool rack 52 that holds a plurality of tools T, a manipulator 54, and a coupler 58 that is coupled to a coupler 192 of a self-propelled module 190 that is coupled to the tool station 50. , and a control device 56 that controls the manipulator 54.
  • the manipulator 54 is formed from a vertical articulated robot arm having a hand 54a at its tip.
  • Manipulator 54 transports tools between a self-propelled module 190 coupled to tool station 50 and tool rack 52 .
  • the tool T may be replaced by the manipulator 54 while being placed on the tool stand 53.
  • the self-propelled module 190 is a tool module 500, and the tool station 50 is connected to a first active interface 800 of the tool module 500, which is configured by a coupler 192 of the self-propelled module 190, as a coupler 58. 1 passive interface 820.
  • the controller 56 controls the self-propelled module 190 through the controller 194 of the self-propelled module 190.
  • the tool change process is executed by a tool change program included in the control device 56 of the tool station 50.
  • the controller 56 of the tool station 50 communicates with the controller 194 of the coupled self-propelled module 190 and receives the ID of the self-propelled module 190 .
  • the control device 56 identifies the self-propelled module 190 based on the ID of the self-propelled module 190, and executes a tool exchange program suitable for the self-propelled module 190.
  • the communication can also be wireless communication.
  • the self-propelled module 190 is the tool module 500
  • the tool magazine 196 of the self-propelled module 190 stores the tool to be replaced.
  • the manipulator 54 grasps the indexed tool T, removes it from the tool magazine 196, and mounts it in a predetermined position on the tool rack 52.
  • the manipulator 54 removes the new tool T to be installed in the tool magazine 196 from the tool rack 52 and installs it in a predetermined position in the tool magazine 196.
  • the tool station 50 can also include a tool loader TL, as shown in FIG. 13.
  • a tool loader TL When the operator places a predetermined tool T on the tool loader TL and performs a tool storage operation through the operation panel (not shown) of the tool station 50, the manipulator 54 loads the tool T on the tool loader TL into the tool rack 52. Attach it in place. Further, when the operator performs a tool unloading operation through the operating panel of the tool station 50, the manipulator 54 transports the tool T to be unloaded from the tool station 50 from the tool rack 52 to the tool loader TL.
  • the tools T to be delivered may be transferred directly from the tool magazine 196 of the self-propelled module 190 coupled to the tool station 50 to the tool loader TL.
  • the operator can input the tool number assigned to the tool T into the control device 56 of the tool station 50.
  • the tool number can be entered automatically.
  • the control device 56 of the tool station 50 mounts the tool T in a vacant position on the tool rack 52. At this time, the tool number of the tool T and its position on the tool rack 52 can be stored in association with each other.
  • the fixture station 60 is a compartment for storing and holding various fixtures.
  • the fixture is a jig or fixture for fixing the workpiece W to the table. There are various types of fixtures depending on the shape and dimensions of the work W.
  • the fixture station 60 stores and holds spare fixtures for replacing the fixtures when reconfiguring the processing line.
  • a portion of the manufacturing plant 10 may be defined as a fixture station 60.
  • the fixture station 60 includes a cover that surrounds a predetermined space within the manufacturing factory 10.
  • the fixture station 60 includes a fixture rack 62 that holds a plurality of fixtures WF, a manipulator 64 as a fixture exchange device, and a self-propelled module coupled to the fixture station 60.
  • a coupler 68 that couples to the coupler 202 of 200 and a control device 66 that controls the manipulator 64 are provided.
  • the manipulator 64 is formed from a vertical articulated robot arm having a hand 64a at its tip. The manipulator 64 transports the fixture WF between the self-propelled module 200 coupled to the fixture station 60 and the fixture rack 62.
  • the fixture WF can be fixed at a predetermined position on the upper surface of the pallet P in advance.
  • the free-propelled module 200 is a table module 600, and the fixture station 60 has a first passive interface 820, as a coupler 68, coupled to a first passive interface 820 as a coupler 202 of the free-propelled module 200. It can be formed by an active interface 800.
  • the control device 66 controls the self-propelled module 200 through the control device 204 of the self-propelled module 200.
  • the fixture exchange process is executed by a fixture exchange program included in the control device 66 of the fixture station 60.
  • the controller 66 of the fixture station 60 communicates with the controller 204 of the coupled free-running module 200 and receives the ID of the free-running module 200 .
  • the control device 66 specifies the self-propelled module 200 based on the ID of the self-propelled module 200, and executes a fixture exchange program that is suitable for it.
  • the communication can also be wireless communication.
  • the self-propelled module 200 is a table module 600
  • the manipulator 64 moves onto the table 206 of the self-propelled module 200 (rotary table 630 of the table module 600). grip the fixture WF or pallet P, and remove the fixture WF and the pallet P from the table 206.
  • a pallet fixing device (not shown) for grasping and fixing the pallet P can be provided on the table 206.
  • the manipulator 64 places the fixture WF removed from the table 206 together with the pallet P at a predetermined position on the fixture rack 62.
  • the fixture station 60 can also include a fixture loader WFL.
  • the manipulator 64 moves the fixture on the fixture loader WFL. Place the WF at a predetermined position on the fixture rack 62. Further, when the operator performs a fixture unloading operation through the operation panel of the fixture station 60, the manipulator 64 transports the fixture WF to be unloaded from the fixture station 60 from the fixture rack 62 to the fixture loader WFL. .
  • the fixture WF to be delivered may be directly transported from the table 206 of the self-propelled module 200 coupled to the fixture station 60 to the fixture loader WFL.
  • the operator can input the fixture number assigned to the fixture WF into the control device 66 of the fixture station 60.
  • the control device 66 of the fixture station 60 mounts the fixture WF in a vacant position of the fixture rack 62. At that time, the fixture number of the fixture WF and the position on the fixture rack 62 can be stored in association with each other.
  • the manipulator 64 is formed from a vertically articulated robot arm, but the invention is not limited thereto and may be other types of robots.
  • the manipulator 64' of the fixture station 60 is formed by a cylindrical coordinate robot.
  • the manipulator 64' includes a column 61 that is rotatably provided around a vertical axis O wfs , a linear guide 63 that extends horizontally and that is attached to the column 61, and an arm 65 that is attached so that it can move forward and backward along the linear guide 63. , a hand 67 attached to the tip of the arm 65, a support 61, and a drive device (not shown) for driving the arm 65.
  • the fixture station 60 includes a fixture rack 62 that arranges a plurality of fixtures WF on a circumference around a vertical axis O wfs , and a fixture loader WFL.
  • the fixture loader WFL can also arrange the fixtures WF on the same circumference as the fixture rack 62.
  • Fixture station 60 of FIGS. 16 and 17 also operates similarly to fixture station 60 of FIGS. 14 and 15.
  • the first material station 70 is a section for storing and storing unprocessed workpieces W.
  • a portion of manufacturing plant 10 may be defined as first material station 70 .
  • a predetermined area or space may be defined as the first material station 70 by drawing a line on the floor of the manufacturing factory 10 or by using a partition wall.
  • the first material station 70 may include a cover that surrounds a predetermined space within the manufacturing plant 10.
  • the second material station 80 is a section for storing and storing processed workpieces W.
  • a portion of the manufacturing plant 10 may be defined as a second material station 80.
  • a predetermined area or space may be defined as the second material station 80 by drawing a line on the floor of the manufacturing factory 10 or by using a partition wall.
  • the first and second material stations 70, 80 are preferably arranged adjacent to each other. By arranging the first and second material stations 70 and 80 adjacent to each other, one self-propelled transport vehicle 220 transports the processed workpiece W to the second material station 80 and then returns the processed workpiece W to the second material station 80. It becomes possible to efficiently transport the processed workpiece W from the first material station 70 to the processing line.
  • the first and second material stations 70 and 80 are generally configured similarly, and each includes work racks 72 and 82 on which a plurality of unprocessed workpieces W and processed workpieces W are placed. ing. Unprocessed workpieces W and processed workpieces W are transferred between the first and second material stations 70, 80 and the processing line by a self-propelled transport vehicle 220 controlled by a processing system control device (not shown). It can be placed on a pallet P and transported.
  • the self-propelled transport vehicle 220 is a self-propelled forklift.
  • the workpieces W may be stacked in bulk on the pallet P, as shown in FIG.
  • the workpieces W may be placed in individual sections.
  • the chip processing station 100 is a section for performing a pre-compression process for efficiently discharging chips generated during processing of the work W to the outside of the manufacturing factory 10.
  • a portion of the manufacturing plant 10 may be defined as a chip handling station 100.
  • a predetermined area or space may be defined as the chip processing station 100 by drawing a line on the floor of the manufacturing plant 10 or by using a partition wall.
  • the chip processing station 100 is provided with a hopper 102 for the chips transported to the chip processing station 100, and a chip packer 104 for compressing the chips.
  • the hopper 102 includes a main body having an internal space, a conveyor (not shown) disposed within the main body that transports chips input into the hopper 102 to a chip packer 104, and a hinge or pin 102b. It includes a movable table 102a rotatably attached to the upper end of the main body, and a chute 106 attached to one side of the main body. A chip packer 104 is arranged below the chute 106.
  • the movable base 102a can be rotated between a horizontal position (not shown) and an inclined position as shown by a rotary actuator (not shown) coaxial with the pin 102b.
  • the chips are stored in a chip container 222 and transported from the processing line to the chip processing station 100 by a self-propelled transport vehicle such as a forklift.
  • a self-propelled transport vehicle such as a forklift.
  • the chips in the chip container 222 fall into the main body of the hopper 112.
  • the chips that have fallen into the body of the hopper 112 are transported by a conveyor toward the chute 116 and fall from the chute 116 into the chip packer 114.
  • the chips that have fallen into the chip packer 114 are compressed by the packer 114. As a result, the chips become one lump, which makes it easier to transport.
  • the second processing area 14 is located more proximally with respect to the spare module station 20 than the first processing area 12. It is therefore advantageous to arrange in the second processing area 14 a processing line whose configuration changes frequently.
  • Manufacturing plant 12 First processing area 14 Second processing area 16 Control center 20 Spare module station 22 Tool module 24 Table module 26 Self-propelled auxiliary module 30 Charging station 32 Power supply device 40 Second maintenance station 50 Tool station 60 Fixture Cha station 70 First material station 80 Second material station 90 First maintenance station 100 Chip processing station 120 Energy supply device 130 Battery-equipped module 140 Workpiece transfer module 150 Tool exchange module 500 Tool module 560 Drive module 600 Table module

Abstract

A manufacturing plant 10, provided with processing lines 110, 112, 114 including a table module 600 and a tool module 500 separably connected via an interface, comprises: a plurality of self-traveling modules including at least one self-traveling tool module and at least one self-traveling table module; processing areas 12, 14 in which the processing lines are installed and which process a workpiece; energy supply devices 120 for supplying energy to the tool modules or table modules in the processing areas; and a station area having at least one station from among material stations 70, 80 which are provided adjacent to each other outside the processing areas and store workpieces, a tool station 50 for storing a tool, a fixture station 60 for housing and retaining a plurality of fixtures, a scrap processing station 100 for processing scraps, maintenance stations 90, 40 for performing maintenance of the self-traveling modules, and a spare module station 20 in which a backup self-traveling module stands by, the self-traveling modules moving between the processing areas and the station area.

Description

製造工場Manufacturing plant
 本発明は、インターフェースを介して分離可能に結合されたツールモジュールと、テーブルモジュールとを含む再構成可能な加工ラインを備えた製造工場に関する。 The present invention relates to a manufacturing plant equipped with a reconfigurable processing line that includes a tool module and a table module that are separably coupled via an interface.
 特許文献1には、生産システムを構成する汎用セルとして、ワークの加工に最低限必要なロボットを支持するベースユニット、ロボットに対してワークの部品を供給する部品供給ユニット、ベースユニットの外側に延設される加工エリアによって1つの汎用セルを構成することが記載されている。 Patent Document 1 describes, as a general-purpose cell constituting a production system, a base unit that supports the minimum robot necessary for processing a workpiece, a parts supply unit that supplies parts of the workpiece to the robot, and a base unit that extends outside the base unit. It is described that one general-purpose cell is constituted by the processing area provided.
特開2012-81582号公報Japanese Patent Application Publication No. 2012-81582
 特許文献1は、複数の汎用セルによって生産システムを構成することを開示しているが、具体的にどのように生産システム(加工ライン)を組み換えるのかについては具体的に記載されていない。 Although Patent Document 1 discloses that a production system is configured by a plurality of general-purpose cells, it does not specifically describe how the production system (processing line) is to be recombined.
 本発明は、インターフェースを介して分離可能に結合されたツールモジュールと、テーブルモジュールとを含む加工ラインの再構成を容易に、かつ、効率的に実施して生産性を向上できるようにした製造工場を提供することを目的としている。 The present invention provides a manufacturing plant that can easily and efficiently reconfigure a processing line that includes a tool module and a table module that are separably coupled via an interface to improve productivity. is intended to provide.
 本発明によれば、インターフェースを介して分離可能に結合されたツールモジュールと、テーブルモジュールとを含む加工ラインを備えた製造工場において、自走可能な少なくとも一つのツールモジュールと、自走可能な少なくとも一つのテーブルモジュールとを含む複数の自走モジュールと、前記加工ラインが設置されワークを加工する加工エリアと、前記加工エリア内で前記ツールモジュールまたは前記テーブルモジュールにエネルギを供給するエネルギ供給装置と、前記加工エリアの外側に隣接して設けられ、ワークを貯蔵するマテリアルステーション、複数の工具を貯蔵するツールステーション、複数のフィクスチャを格納、保持するフィクスチャステーション、切り屑の処理を行う切り屑処理ステーション、前記自走モジュールの保守を行うメンテナンスステーション、前記自走モジュールを充電する充電ステーション、および、予備の自走モジュールが待機するスペアモジュールステーションのうち少なくとも一つのステーションを有するステーションエリアと、前記自走モジュールが前記加工エリアと前記ステーションエリアとの間を移動するようにした製造工場が提供される。 According to the present invention, in a manufacturing factory equipped with a processing line including a tool module and a table module that are separably coupled via an interface, at least one self-propellable tool module and at least one self-propellable tool module are provided. a plurality of self-propelled modules including one table module, a processing area where the processing line is installed and processes a workpiece, and an energy supply device that supplies energy to the tool module or the table module within the processing area; A material station that stores workpieces, a tool station that stores a plurality of tools, a fixture station that stores and holds a plurality of fixtures, and a chip treatment that processes chips, which are provided adjacent to the outside of the processing area. a station area having at least one of a station, a maintenance station for maintaining the self-propelled module, a charging station for charging the self-propelled module, and a spare module station for waiting for a spare self-propelled module; A manufacturing plant is provided in which a travel module moves between the processing area and the station area.
 本発明によれば、インターフェースを介して分離可能に結合されたツールモジュールと、テーブルモジュールとを含む加工ラインを備えた製造工場において、移動可能な様々な自走モジュールが加工エリア内で再構築可能な加工ラインを形成し、自走モジュールが、加工エリアの周縁に隣接している静的なステーションエリアからが必要なワークや工具等の運搬、受け渡しをするので、再構成可能な加工ラインを効率的に運用可能となる。 According to the invention, in a manufacturing plant equipped with a processing line that includes a tool module and a table module that are separably coupled via an interface, various movable self-propelled modules can be reassembled within the processing area. A self-propelled module transports and transfers the necessary workpieces and tools from a static station area adjacent to the periphery of the machining area, making the reconfigurable machining line more efficient. It becomes operationally possible.
本発明の好ましい実施形態による製造工場の概略を示す平面図である。1 is a plan view schematically showing a manufacturing factory according to a preferred embodiment of the present invention. エネルギ供給装置の概略図である。FIG. 2 is a schematic diagram of an energy supply device. スペアモジュールステーションの概略図である。FIG. 2 is a schematic diagram of a spare module station. バッテリ搭載モジュールの概略図である。FIG. 2 is a schematic diagram of a battery-equipped module. ワーク搬送モジュールの概略図である。It is a schematic diagram of a workpiece conveyance module. 工具交換モジュールの概略図である。FIG. 3 is a schematic diagram of a tool change module. 充電ステーションの概略図である。FIG. 2 is a schematic diagram of a charging station. 充電ステーションの給電装置の略示平面図である。FIG. 2 is a schematic plan view of a power supply device of a charging station. ワイヤレス充電システムの概略図である。1 is a schematic diagram of a wireless charging system. 第1のメンテナンスステーションの概略図である。FIG. 2 is a schematic diagram of a first maintenance station. 第2のメンテナンスステーションの概略図である。FIG. 3 is a schematic diagram of a second maintenance station. ツールステーションの略示側面図である。FIG. 3 is a schematic side view of the tool station. ツールステーションの略示平面図である。FIG. 3 is a schematic plan view of the tool station. フィクスチャステーションの略示側面図である。FIG. 2 is a schematic side view of a fixture station. 図14のフィクスチャステーションの略示平面図である。FIG. 15 is a schematic plan view of the fixture station of FIG. 14; フィクスチャステーションの変形例を示す略示側面図である。FIG. 7 is a schematic side view showing a modification of the fixture station. 図16のフィクスチャステーションの略示平面図である。FIG. 17 is a schematic plan view of the fixture station of FIG. 16; マテリアルステーションの概略側面図である。It is a schematic side view of a material station. マテリアルステーションの変形例を示す略示平面図である。It is a schematic plan view which shows the modification of a material station. 切り屑処理ステーションの概略図である。FIG. 2 is a schematic diagram of a swarf processing station. 3組のツールモジュールとテーブルモジュールから成る加工ラインの平面図である。FIG. 2 is a plan view of a processing line consisting of three sets of tool modules and table modules. ドライブモジュールに搭載したツールモジュールをドライブモジュールと共に示す側面図である。FIG. 3 is a side view showing the tool module mounted on the drive module together with the drive module. 図22のツールモジュールの正面図である。23 is a front view of the tool module of FIG. 22. FIG. 図22のツールモジュールの平面図である。23 is a plan view of the tool module of FIG. 22; FIG. 図22のツールモジュールの斜視図である。FIG. 23 is a perspective view of the tool module of FIG. 22; 主軸を直行3軸方向に直線送りする構成のツールモジュールの斜視図である。FIG. 2 is a perspective view of a tool module configured to linearly feed a main shaft in three orthogonal axes directions. 第1の能動インターフェースの正面図である。FIG. 3 is a front view of the first active interface. 第2の能動インターフェースの正面図である。FIG. 3 is a front view of the second active interface. 第2の能動インターフェースに対応した第2の受動インターフェースの正面図である。FIG. 3 is a front view of a second passive interface that corresponds to a second active interface. ドライブモジュールの一例を示す斜視図である。FIG. 3 is a perspective view showing an example of a drive module. 図30のドライブモジュールに搭載したテーブルモジュールをドライブモジュールと共に示す側面図である。31 is a side view showing the table module mounted on the drive module of FIG. 30 together with the drive module. FIG. 図31のテーブルモジュールの斜視図である。FIG. 32 is a perspective view of the table module of FIG. 31; テーブルモジュールと結合した状態で示すツールモジュールの側断面図である。FIG. 3 is a side cross-sectional view of the tool module shown coupled to the table module. 閉モードで示すテーブルモジュールの斜視図である。FIG. 3 is a perspective view of the table module shown in closed mode. 別の角度から見た図36のテーブルモジュールの斜視図である。37 is a perspective view of the table module of FIG. 36 from another angle; FIG. テーブルモジュールの平面図である。It is a top view of a table module. 第1の受動インターフェースの正面図である。FIG. 3 is a front view of the first passive interface. 第3の能動インターフェースの正面図である。FIG. 6 is a front view of the third active interface. 第3の受動インターフェースの正面図である。FIG. 6 is a front view of the third passive interface. 第2の能動インターフェースの正面図である。FIG. 3 is a front view of the second active interface. 第2の受動インターフェースの正面図である。FIG. 6 is a front view of the second passive interface.
 以下、添付図面を参照して、本発明の好ましい実施形態を説明する。
 図1を参照すると、製造工場10は、少なくとも1つの加工エリアと、該加工エリアの周囲または辺縁部に配置された複数のステーションを含むステーションエリアを有している。より詳細には、一例として示す本実施形態では、製造工場10は、加工エリアとして第1と第2の加工エリア12、14と、ステーションエリアとしてスペアモジュールステーション20、充電ステーション30、第1と第2のメンテナンスステーション90、40、ツールステーション50、フィクスチャステーション60、第1と第2のマテリアルステーション70、80、および、切り屑処理ステーション100を含んでいる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
Referring to FIG. 1, a manufacturing plant 10 has at least one processing area and a station area including a plurality of stations arranged around or at the edges of the processing area. More specifically, in this embodiment shown as an example, the manufacturing factory 10 has first and second processing areas 12 and 14 as processing areas, a spare module station 20, a charging station 30, and a first and second processing area as station areas. It includes two maintenance stations 90, 40, a tool station 50, a fixture station 60, first and second material stations 70, 80, and a chip handling station 100.
 第1と第2の加工エリア12、14には、複数の自走モジュールを含んだ再構成可能な加工ライン110、112、114が配置される。自走モジュールは、ツールモジュールとテーブルモジュールとを含むことができる。図21に、加工ライン110、112、114の一例として、3組の結合したツールモジュール500とテーブルモジュール600から成る加工ライン1100を示す。加工ライン1100を構成するツールモジュールおよびテーブルモジュールは、コントロールセンタ16に配設されている上位の制御装置である加工システム制御装置(図示せず)と無線通信可能な制御装置(図示せず)をそれぞれ備えており、加工ライン1100は、加工システム制御装置による制御の下で1つの加工システムとして動作する。無線通信は、典型的には無線LANとすることができる。無線通信に代えて、有線通信を採用してもよい。 Reconfigurable processing lines 110, 112, 114 including a plurality of self-propelled modules are arranged in the first and second processing areas 12, 14. The self-propelled module can include a tool module and a table module. FIG. 21 shows, as an example of the processing lines 110, 112, 114, a processing line 1100 consisting of three coupled tool module 500 and table module 600 sets. The tool module and table module that make up the processing line 1100 have a control device (not shown) that can communicate wirelessly with a processing system control device (not shown) that is a higher-level control device installed in the control center 16. The processing line 1100 operates as one processing system under the control of a processing system control device. Wireless communication can typically be a wireless LAN. Wired communication may be used instead of wireless communication.
 図22~図25を参照すると、ツールモジュール500は、ドライブモジュール560の上面に載置、固定される固定ベース504を備えている。固定ベース504の上面には、旋回ベース506が、鉛直方向の回転軸線OBS(B軸)を中心として旋回可能に取り付けられている。ツールモジュール500は、回転軸線OBSに垂直に交差する水平前後方向に延びる長手方向の中心軸線OS1と、回転軸線OBSおよび長手方向の中心軸線OS1の双方に垂直に交差する横断方向の中心軸線OS2とを有している。 Referring to FIGS. 22 to 25, the tool module 500 includes a fixed base 504 that is placed and fixed on the top surface of the drive module 560. A pivot base 506 is attached to the upper surface of the fixed base 504 so as to be pivotable about a vertical rotation axis O BS (B axis). The tool module 500 has a longitudinal center axis O S1 extending in the horizontal longitudinal direction that intersects perpendicularly to the rotation axis O BS and a transverse direction that intersects perpendicularly to both the rotation axis O BS and the longitudinal center axis O S1 . It has a central axis O S2 .
 旋回ベース506の上面には、略直方体状の空間を画成する中空の主軸カバー502が配設されている。主軸カバー502の前面の上方部分には、複数の工具Tを収納した工具マガジン522が配設されている。工具Tは、HSK規格に準拠した2面拘束形の工具ホルダ、7/24テーパや1/10テーパのシャンク形状を有した工具ホルダに装着して、工具マガジン522に収納、保持するようにできる。この場合、工具マガジン522は、外周部に工具ホルダの周溝(図示せず)と係合する複数の把持爪を有し、Z軸を中心として回転可能に設けられたマガジンベースと、該マガジンベースを回転するマガジン駆動モータ(図示せず)を有することができる。マガジンベースを回転させて、交換するべき工具Tを交換位置に割り出し、主軸512を交換位置に配置されている工具Tに接近させて、主軸512に工具Tを装着するようにできる。 A hollow main shaft cover 502 defining a substantially rectangular parallelepiped space is disposed on the upper surface of the swing base 506. A tool magazine 522 that stores a plurality of tools T is disposed in the upper part of the front surface of the spindle cover 502. The tool T can be stored and held in the tool magazine 522 by being attached to a two-sided constraint type tool holder conforming to the HSK standard, or a tool holder having a shank shape of 7/24 taper or 1/10 taper. . In this case, the tool magazine 522 has a plurality of gripping claws on the outer periphery that engage with the circumferential groove (not shown) of the tool holder, and includes a magazine base that is rotatably provided around the Z axis, and a magazine base that is rotatably provided around the Z axis. A magazine drive motor (not shown) may be included to rotate the base. By rotating the magazine base, the tool T to be replaced can be indexed to the replacement position, the main shaft 512 can be brought close to the tool T placed at the replacement position, and the tool T can be mounted on the main shaft 512.
 主軸カバー502は、ツールモジュール500の前側の端面が開口している。主軸カバー502は、対向する側面に信号灯509が配設されている。信号灯509は主軸カバー502の背面に配設してもよい。ツールモジュール500の後方には、空圧機器や油圧機器のソレノイドバルブやフィルタ、モータ―冷却用のチラーを格納するキャビネット524を有していてもよい。固定ベース504の後端部には、ツールモジュール500の制御装置を内蔵した制御盤526が取付けられている。主軸カバー502の上面には、ミストコレクタ501が配設されている。 The main shaft cover 502 has an open end face on the front side of the tool module 500. The main shaft cover 502 has a signal light 509 arranged on the opposite side. The signal light 509 may be arranged on the back side of the main shaft cover 502. A cabinet 524 may be provided at the rear of the tool module 500 to store solenoid valves and filters for pneumatic equipment and hydraulic equipment, and chillers for cooling motors. A control panel 526 containing a control device for the tool module 500 is attached to the rear end of the fixed base 504. A mist collector 501 is arranged on the upper surface of the main shaft cover 502.
 ツールモジュール500は、先端に工具を装着する主軸512を備えている。主軸512は、中心軸線OS周りに回転可能に主軸頭510に支持される。主軸頭510は、主軸512を回転駆動する主軸モータを内蔵している。主軸頭510は、A軸ベース508に取付けられている。主軸頭510は、A軸回転駆動装置514によって、X軸に平行な軸線周りに回転可能にA軸ベース508に取り付けてもよい。本実施形態では、A軸回転駆動装置514は、主軸頭510をX軸に平行な軸線(図示せず)周りに回転駆動するサーボモータ(図示せず)を有している。 The tool module 500 includes a main shaft 512 on the tip of which a tool is mounted. The main shaft 512 is rotatably supported by the main shaft head 510 around the central axis O S . The spindle head 510 has a built-in spindle motor that rotationally drives the spindle 512. The spindle head 510 is attached to the A-axis base 508. The spindle head 510 may be rotatably attached to the A-axis base 508 by an A-axis rotation drive device 514 around an axis parallel to the X-axis. In this embodiment, the A-axis rotation drive device 514 includes a servo motor (not shown) that rotates the spindle head 510 around an axis (not shown) parallel to the X-axis.
 本実施形態では、A軸ベース508は、パラレルリンク機構によって、X、Y、Z軸の直交3軸方向に移動可能に支持されている。パラレルリンク機構は、6つの棒部材515、516、517、518、519、520を備えている。棒部材515、516、517、518、519、520は、伸縮式の直動サーボモータにより形成することができる。 In the present embodiment, the A-axis base 508 is supported by a parallel link mechanism so as to be movable in three orthogonal directions of the X, Y, and Z axes. The parallel link mechanism includes six rod members 515, 516, 517, 518, 519, and 520. The rod members 515, 516, 517, 518, 519, and 520 can be formed by telescopic direct-acting servo motors.
 本実施形態では、一対の第1の棒部材515、516が、各々の一端において、A軸ベース508の上端部に結合されている。より詳細には、棒部材515、516は、各々の一端において、例えば、2自由度のナックルジョイントによって、回転可能に、A軸ベース508の上端部または上端部に隣接する部分に結合されている。第1の棒部材515、516の他端は、例えば、2自由度のナックルジョイントによって、回転可能に第1のZスライダ530に結合されている。 In this embodiment, a pair of first rod members 515 and 516 are coupled to the upper end of the A-axis base 508 at one end of each. More specifically, the rod members 515, 516 are rotatably coupled at one end of each to the upper end of the A-axis base 508 or a portion adjacent to the upper end, for example, by a knuckle joint with two degrees of freedom. . The other ends of the first rod members 515, 516 are rotatably coupled to the first Z slider 530, for example, by a knuckle joint with two degrees of freedom.
 第1のZスライダ530は、水平前後方向またはZ軸方向(図23の紙面に垂直な方向)に往復移動可能となっている。本実施形態では、第1のZスライダ530は第1のZ軸リニアモータによってZ軸方向に往復駆動される。本実施形態では、第1のZ軸リニアモータは、主軸カバー502の天井に固定されたZ軸方向に延びる固定子固定子(図示せず)と、第1のZスライダ530に固定された移動子(図示せず)とを具備している。 The first Z slider 530 is capable of reciprocating in the horizontal back-and-forth direction or the Z-axis direction (direction perpendicular to the paper surface of FIG. 23). In this embodiment, the first Z slider 530 is reciprocated in the Z-axis direction by a first Z-axis linear motor. In this embodiment, the first Z-axis linear motor includes a stator (not shown) extending in the Z-axis direction fixed to the ceiling of the spindle cover 502, and a movable motor fixed to the first Z slider 530. child (not shown).
 一対の第2の棒部材517、518が、各々の一端において、例えば、2自由度のナックルジョイントによって、回転可能に、A軸ベース508の一方の側縁部、本実施形態では、ツールモジュール500の正面から見て右側縁部(図23において右側)に結合されている。第2の直動アクチュエータ517、518の他端は、例えば、2自由度のナックルジョイントによって、回転可能に第2のZスライダ532に結合されている。 A pair of second rod members 517, 518 are rotatably attached at one end of each, e.g., by a knuckle joint with two degrees of freedom, to one side edge of the A-axis base 508, in this embodiment, the tool module 500. It is connected to the right side edge (right side in FIG. 23) when viewed from the front. The other ends of the second linear actuators 517 and 518 are rotatably coupled to the second Z slider 532, for example, by a knuckle joint with two degrees of freedom.
 第2のZスライダ532は、水平前後方向またはZ軸方向(図23の紙面に垂直な方向)に往復移動可能となっている。本実施形態では、第2のZスライダ532は第2のZ軸リニアモータによってZ軸方向に往復駆動される。本実施形態では、第2のZ軸リニアモータは、主軸カバー502の右側壁(ツールモジュール500の正面から見て右側の側壁)の内面に固定されたZ軸方向に延びる固定子(図示せず)と、第2のZスライダ532に固定された移動子(図示せず)とを具備している。 The second Z slider 532 is capable of reciprocating in the horizontal back-and-forth direction or the Z-axis direction (direction perpendicular to the paper surface of FIG. 23). In this embodiment, the second Z slider 532 is reciprocated in the Z-axis direction by a second Z-axis linear motor. In this embodiment, the second Z-axis linear motor has a stator (not shown) that extends in the Z-axis direction and is fixed to the inner surface of the right side wall of the spindle cover 502 (the right side wall when viewed from the front of the tool module 500). ) and a mover (not shown) fixed to the second Z slider 532.
 一対の第3の棒部材519、520が、各々の一端において、例えば、2自由度のナックルジョイントによって、回転可能に、A軸ベース508の他方の側縁部、本実施形態では、ツールモジュール500の正面から見て左側縁部(図23において左側)に結合されている。第3の直動アクチュエータ(図示せず)の他端は、例えば、2自由度のナックルジョイントによって、回転可能に第3のZスライダ534に結合されている。 A pair of third rod members 519, 520 are rotatably attached at one end of each, for example by a knuckle joint with two degrees of freedom, to the other side edge of the A-axis base 508, in this embodiment, the tool module 500. It is connected to the left side edge (left side in FIG. 23) when viewed from the front. The other end of the third linear actuator (not shown) is rotatably coupled to the third Z slider 534, for example, by a knuckle joint with two degrees of freedom.
 第3のZスライダ534は、水平前後方向またはZ軸方向(図25の紙面に垂直な方向)に往復移動可能となっている。本実施形態では、第3のZスライダ534は第3のZ軸リニアモータによってZ軸方向に往復駆動される。本実施形態では、第3のZ軸リニアモータは、主軸カバー502の左側壁(ツールモジュール500の正面から見て左側の側壁)の内面に固定されたZ軸方向に延びる固定子(図示せず)と、第3のZスライダ534に固定された移動子(図示せず)とを具備している。 The third Z slider 534 is capable of reciprocating in the horizontal back-and-forth direction or in the Z-axis direction (direction perpendicular to the paper surface of FIG. 25). In this embodiment, the third Z slider 534 is reciprocated in the Z-axis direction by a third Z-axis linear motor. In this embodiment, the third Z-axis linear motor has a stator (not shown) that extends in the Z-axis direction and is fixed to the inner surface of the left side wall of the spindle cover 502 (the left side wall when viewed from the front of the tool module 500). ) and a mover (not shown) fixed to the third Z slider 534.
 ツールモジュール500がテーブルモジュール600に結合する以前は、主軸頭510は主軸カバー502内に配置されている。ツールモジュール500とテーブルモジュール600が結合した後、加工工程またはワーク搬送工程が開始されると、主軸頭510は主軸カバー502の前方の開口部502aからZ軸方向前方へ突出する。 Before the tool module 500 is coupled to the table module 600, the spindle head 510 is disposed within the spindle cover 502. After the tool module 500 and table module 600 are combined and a machining process or a workpiece conveyance process is started, the spindle head 510 protrudes forward in the Z-axis direction from the front opening 502a of the spindle cover 502.
 こうして、主軸512は、パラレルリンク機構を構成するA軸ベース508、第1~第3の対の棒部材515、516:517、518:519、520及び第1~第3のZスライダ530、532、534によって、X、Y、Zの直交3軸方向に往復動可能に支持されている。 In this way, the main shaft 512 includes the A-axis base 508, the first to third pairs of rod members 515, 516:517, 518:519, 520, and the first to third Z sliders 530, 532, which constitute a parallel link mechanism. , 534 so as to be able to reciprocate in the three orthogonal axes directions of X, Y, and Z.
 なお、既述の実施形態では、ツールモジュールの主軸を回転可能に支持する主軸頭は、パラレルリンク機構によってX、Y、Zの直交3軸方向に移動可能に支持されているが、本発明はこれに限定されない。例えば、図26に示すように、X、Y、Zの直交3軸方向の直線送り軸装置によって主軸頭を支持するようにしてもよい。 Note that in the embodiments described above, the spindle head that rotatably supports the main shaft of the tool module is supported movably in three orthogonal axes directions of X, Y, and Z by a parallel link mechanism. It is not limited to this. For example, as shown in FIG. 26, the spindle head may be supported by a linear feed shaft device in the directions of three orthogonal axes X, Y, and Z.
 図26を参照すると、ツールモジュール1500は、ドライブモジュール560に載置されるベース部1502、ベース部1502の上面に固定される旋回ベース1504、旋回ベース1504にX軸方向に往復動可能に取り付けられるコラムまたはXスライダ1506、Xスライダ1506の前面にY軸方向に往復動可能に取り付けられるYスライダ1508、YスライダにZ軸方向に往復動可能に取り付けられる主軸頭1510を備えている。主軸1512は、主軸頭1510にZ軸方向の中心軸線OS周りに回転可能に支持されている。旋回ベース1504、Xスライダ1506、Yスライダ1508および主軸頭1510は、カバー1516によって包囲されている。また、カバー1516内において、主軸頭1510の上方には、工具マガジン1514が配設されている。 Referring to FIG. 26, the tool module 1500 includes a base part 1502 placed on the drive module 560, a swing base 1504 fixed to the upper surface of the base part 1502, and a swing base 1504 attached to the swing base 1504 so as to be able to reciprocate in the X-axis direction. It is provided with a column or an X slider 1506, a Y slider 1508 attached to the front surface of the X slider 1506 so as to be movable reciprocally in the Y-axis direction, and a spindle head 1510 attached to the Y slider so as to be movable reciprocally in the Z-axis direction. The main shaft 1512 is rotatably supported by the main shaft head 1510 around a central axis O S in the Z-axis direction. The pivot base 1504, the X slider 1506, the Y slider 1508, and the spindle head 1510 are surrounded by a cover 1516. Further, a tool magazine 1514 is disposed within the cover 1516 and above the spindle head 1510.
 ツールモジュール500は、前方部分に、テーブルモジュールとの結合に用いる結合部としての第1の能動インターフェース800を備えている。第1の能動インターフェース800は、後述する第1の受動インターフェース820と結合することができる。図27を参照すると、第1の能動インターフェース800は平板状の基板802を有している。基板802には、切り屑排出装置(図示せず)を通すための開口部802aが形成されている。 The tool module 500 is equipped with a first active interface 800 in the front part as a coupling part used for coupling with the table module. The first active interface 800 may be coupled to a first passive interface 820, described below. Referring to FIG. 27, a first active interface 800 has a flat substrate 802. As shown in FIG. An opening 802a is formed in the substrate 802 through which a chip evacuation device (not shown) passes.
 第1の能動インターフェース800は、基板802上に配設された種々の機能デバイスを含む。機能デバイスは、マルチコネクタ804を含む。マルチコネクタ804は、基板802の上縁に隣接する中央部に配置されている。一例として示すマルチコネクタ804は、電力ラインを接続するための少なくとも1つの電力コネクタ804a 、804b、804c、804h、804i、信号ラインを接続するための少なくとも1つのデータコネクタ804d、804e、および、エアシリンダや油圧シリンダを駆動する加圧空気や圧油のような作動流体やクーラント等の流体を通す管路(図示せず)を接続するための少なくとも1つの流体コネクタ804f、804gを含む。 The first active interface 800 includes various functional devices disposed on a substrate 802. The functional device includes a multi-connector 804. Multi-connector 804 is arranged in the center adjacent to the upper edge of board 802. The multi-connector 804 shown as an example includes at least one power connector 804a, 804b, 804c, 804h, 804i for connecting a power line, at least one data connector 804d, 804e for connecting a signal line, and an air cylinder. It includes at least one fluid connector 804f, 804g for connecting a conduit (not shown) for passing a working fluid such as pressurized air or hydraulic oil for driving a hydraulic cylinder or a fluid such as a coolant.
 第1の能動インターフェース800は、更に、ツールモジュール500を後述するテーブルモジュール600に機械的に結合するための複数のカプラを含んでいる。本実施形態では、カプラは少なくとも1つの引込カプラを含む。本実施形態では、引込カプラは2つの引込カプラ806a、806bを含む。2つの引込カプラ806a、806bは、基板802の左右両縁に夫々隣接する中央部に配置されている。カプラは、更に、位置決め機能を有した複数のコーンクランプを含む。本実施形態では、基板802の隅部の各々に配置された4つのコーンクランプ808a、808b、808c、808dを含んでいる。 The first active interface 800 further includes a plurality of couplers for mechanically coupling the tool module 500 to a table module 600, which will be described below. In this embodiment, the coupler includes at least one retractable coupler. In this embodiment, the retractable couplers include two retractable couplers 806a, 806b. The two retractable couplers 806a and 806b are arranged at the center of the substrate 802 adjacent to both left and right edges, respectively. The coupler further includes a plurality of cone clamps with positioning features. This embodiment includes four cone clamps 808a, 808b, 808c, 808d located at each corner of the substrate 802.
 第1の能動インターフェース800は、更に、複数のセンサデバイスを含む。センサデバイスは、ツールモジュール500とテーブルモジュール600とが完全に結合されたか否かを判定するための少なくとも1つの接触センサを含む。本実施形態では、接触センサは、基板802の対角線上に配置された2つの接触センサ810a、810bを含む。2つの接触センサ810a、810bは、基板802において、対角位置に配置されている一対のコーンクランプ808a、808dの内側に配置されている。 The first active interface 800 further includes a plurality of sensor devices. The sensor device includes at least one contact sensor to determine whether the tool module 500 and table module 600 are fully coupled. In this embodiment, the contact sensor includes two contact sensors 810a, 810b arranged diagonally on the substrate 802. Two contact sensors 810a, 810b are arranged on the substrate 802 inside a pair of cone clamps 808a, 808d arranged diagonally.
 センサデバイスは、更に、少なくとも1つの力センサを含む。本実施形態では、力センサは、基板802の対角線上に配置された2つの力センサ812a、812bを含む。2つの力センサ812a、812bは、2つの接触センサ810a、810bが配置されている対角線とは異なる対角線上に配置されている。つまり、2つの力センサ812a、812bは、基板802において、対角位置に配置されている他の対のコーンクランプ808b、808cの内側に配置されている。力センサ812a、812bは、基板802に対して垂直に突出するピンを備えており、該ピンを対応のガイド穴内に挿入することによって、ピンの突出方向にガイドする機能を有している。 The sensor device further includes at least one force sensor. In this embodiment, the force sensor includes two force sensors 812a, 812b placed diagonally on the substrate 802. The two force sensors 812a, 812b are arranged on a diagonal different from the diagonal on which the two contact sensors 810a, 810b are arranged. That is, the two force sensors 812a, 812b are placed inside another pair of cone clamps 808b, 808c, which are placed diagonally on the substrate 802. The force sensors 812a and 812b include pins that protrude perpendicularly to the substrate 802, and have a function of guiding the pins in the protruding direction by inserting the pins into corresponding guide holes.
 センサデバイスは、非接触センサ、特に光学センサを更に含んでいる。本実施形態では、光学センサはカメラ814を含む。カメラ814は、好ましくは、その光軸が基板802に対して垂直となるように配向される。本実施形態では、カメラ814は、マルチコネクタ804と開口部802aの上縁部との間に配置されている。カメラ814は、開口部802aの下側に配置してもよい。非接触センサは、更に、レーザーセンサ、例えばレーザー変位センサを含んでいてもよい。センサデバイスは、更に、モジュールを識別するために、識別コードを記録したRFID(Radio Frequency Identifier)及びRFIDリーダを備えていても良い。 The sensor device further includes a non-contact sensor, in particular an optical sensor. In this embodiment, the optical sensor includes a camera 814. Camera 814 is preferably oriented such that its optical axis is perpendicular to substrate 802. In this embodiment, the camera 814 is arranged between the multi-connector 804 and the upper edge of the opening 802a. Camera 814 may be placed below opening 802a. The non-contact sensor may further include a laser sensor, such as a laser displacement sensor. The sensor device may further include an RFID (Radio Frequency Identifier) recording an identification code and an RFID reader to identify the module.
 ツールモジュール500は、第1の能動インターフェース800に加えて、1または複数のタイプのインターフェースを備えることができる。例えば、ツールモジュール500は、第1の能動インターフェース800に加えて、図28に示す第2の能動インターフェース870を備えることができる。第2の能動インターフェース870は平板状の基板872に取付けられたマルチコネクタ874を含むことができる。マルチコネクタ874は、基板872の上縁の中央部に隣接して配置されている。一例として示すマルチコネクタ874は、電力ラインを接続するための少なくとも1つの電力コネクタ874a 、874b、874c、874h、874i、信号ラインを接続するデータコネクタ874d、874eおよび、エアシリンダや油圧シリンダを駆動する加圧空気や圧油のような作動流体やクーラント等の流体を通す管路(図示せず)を接続するための少なくとも1つの流体コネクタ874f、874gを含む。第2の能動インターフェース870は、更に、カメラ814を含むことができる。 The tool module 500 may include one or more types of interfaces in addition to the first active interface 800. For example, in addition to the first active interface 800, the tool module 500 can include a second active interface 870 as shown in FIG. The second active interface 870 can include a multi-connector 874 attached to a planar substrate 872. The multi-connector 874 is arranged adjacent to the center of the upper edge of the board 872. The multi-connector 874 shown as an example includes at least one power connector 874a, 874b, 874c, 874h, 874i for connecting a power line, data connectors 874d, 874e for connecting a signal line, and for driving an air cylinder or a hydraulic cylinder. It includes at least one fluid connector 874f, 874g for connecting a conduit (not shown) for carrying a working fluid such as pressurized air or oil, or a fluid such as a coolant. Second active interface 870 can further include camera 814.
 ツールモジュール500は、また、第1の能動インターフェース800に加えて、第2の能動インターフェース870に対応した、第2の受動インターフェース860(図29)を備えることができる。第2の受動インターフェース860は平板状の基板862に取付けられたマルチコネクタ864を含むことができる。マルチコネクタ864は、第2の能動インターフェース870のマルチコネクタ874に対応したマルチコネクタであって、電力ラインを接続するための少なくとも1つの電力コネクタ864a、864b、864c、864h、864i、信号ラインを接続するデータコネクタ864d、864eおよび、エアシリンダや油圧シリンダを駆動する加圧空気や圧油のような作動流体やクーラント等の流体を通す管路(図示せず)を接続するための少なくとも1つの流体コネクタ864f、864gを含む。第2の受動インターフェース860は、第2の能動インターフェース870のカメラ814による撮像対象866を含むことができる。撮像対象866は、ツールモジュール500を表す識別コードとすることができる。 In addition to the first active interface 800, the tool module 500 can also include a second passive interface 860 (FIG. 29), which corresponds to the second active interface 870. The second passive interface 860 can include a multi-connector 864 attached to a planar substrate 862. The multi-connector 864 is a multi-connector corresponding to the multi-connector 874 of the second active interface 870, and includes at least one power connector 864a, 864b, 864c, 864h, 864i for connecting a power line, and a signal line for connecting a signal line. data connectors 864d and 864e for connecting the data connectors 864d and 864e, and at least one fluid conduit (not shown) for passing a working fluid such as pressurized air or oil that drives an air cylinder or a hydraulic cylinder, or a fluid such as a coolant. Includes connectors 864f and 864g. The second passive interface 860 can include an object 866 to be imaged by the camera 814 of the second active interface 870 . Imaged object 866 may be an identification code representing tool module 500 .
 図30を参照すると、ドライブモジュール560は、コントロールセンタ16に配設されている上位の制御装置である加工システム制御装置と無線通信可能な制御装置(図示せず)を備えており、ツールモジュール500およびテーブルモジュール600と共に、加工システム制御装置による制御の下で1つの加工システムとして動作する。無線通信は、典型的には無線LANとすることができる。こうして、ドライブモジュール560は1つの自走台車を形成する。 Referring to FIG. 30, the drive module 560 includes a control device (not shown) capable of wireless communication with a processing system control device that is a higher-level control device disposed in the control center 16. Together with the table module 600 and the table module 600, the processing system operates as one processing system under the control of the processing system control device. Wireless communication can typically be a wireless LAN. Thus, the drive module 560 forms one self-propelled truck.
 ドライブモジュール560は、中空の概ね直方体形状のベース部562を有している。ベース部562の四隅には、ホイール564が回転可能に取付けられている。ホイール564は、通常のタイヤとホイールの組み合わせによって形成することができるが、好ましくは、メカナムホイールによって形成される。メカナムホイールは、通常のホイールのようにホイール自体を進行方向に対して傾斜させる操舵操作によって旋回するのではなく、ホイールの回転差を用いて旋回を行うホイールである。ホイールの回転差を制御することで、通常のホイールのようにホイールの回転方向への直線移動のみならず、超信地旋回や全方向への平行移動が可能となる。ホイール564は、オムニホイールによって形成されてもよい。 The drive module 560 has a hollow, generally rectangular parallelepiped-shaped base portion 562. Wheels 564 are rotatably attached to the four corners of the base portion 562. Wheels 564 can be formed by conventional tire and wheel combinations, but are preferably formed by mecanum wheels. A mecanum wheel is a wheel that does not turn by a steering operation that tilts the wheel itself with respect to the traveling direction like a normal wheel, but turns by using a rotation difference between the wheels. By controlling the difference in rotation of the wheels, it is possible not only to move linearly in the direction of rotation of the wheel like a normal wheel, but also to make super-turns and parallel movement in all directions. Wheel 564 may be formed by an omniwheel.
 ドライブモジュール560は、4つのホイール564の各々を独立に回転駆動するための駆動モータ(図示せず)を備えている。駆動モータはベース部562内に配設してもよいが、各ホイール564内に配設されたインホイールモータ(図示せず)とすることが好ましい。 The drive module 560 includes a drive motor (not shown) for rotating each of the four wheels 564 independently. The drive motor may be disposed within the base portion 562, but is preferably an in-wheel motor (not shown) disposed within each wheel 564.
 ドライブモジュール560は四隅に配設されたエリアセンサ598を備えている。より詳細には、ベース部562の前面に2つのエリアセンサ598が配置され、ベース部562の後面に2つのエリアセンサ598が配置されている。4つのエリアセンサ598によって、ドライブモジュール560の周囲に概ね円形の検出領域が形成される。エリアセンサ598は、検出領域内の物体の存在、形状および位置(距離、方向)を検出する。エリアセンサ598は、レーザーセンサ、特にライダ(LiDAR (Light Detection and Ranging))センサとすることができる。ライダセンサは、パルス状に発光するレーザー照射に対する散乱光を測定し、遠距離にある対象までの距離やその対象の性質を分析することができ、対象物までの正確な距離を測定し、周辺の状況をリアルタイムかつ立体的に把握できる3次元走行空間センサを提供する。また、レーザーセンサは、3d LiDARセンサを用いてもよい。 The drive module 560 is equipped with area sensors 598 arranged at the four corners. More specifically, two area sensors 598 are arranged on the front surface of the base section 562, and two area sensors 598 are arranged on the rear surface of the base section 562. The four area sensors 598 form a generally circular sensing area around the drive module 560. Area sensor 598 detects the presence, shape, and position (distance, direction) of an object within the detection area. The area sensor 598 can be a laser sensor, in particular a lidar (Light Detection and Ranging) sensor. Lidar sensors measure the scattered light of pulsed laser irradiation and can analyze the distance to a distant object and the properties of that object. To provide a three-dimensional driving space sensor that can grasp the situation in real time and three-dimensionally. Furthermore, a 3D LiDAR sensor may be used as the laser sensor.
 図31~図36を参照すると、ツールモジュール500が結合するテーブルモジュールが図示されている。テーブルモジュール200の変形例である本実施例のテーブルモジュールは、テーブルモジュール600とドライブモジュール560とから形成される。テーブルモジュール600は、ドライブモジュール560の上面562a、特にレベリングブロック590のラム596上に載置される。テーブルモジュール600は、ベース部620と、鉛直方向の中心軸線OT周りに回転可能に支持される回転テーブル630とを具備する。テーブルモジュール600は、ツールモジュール500と結合したときに、ツールモジュール500の長手方向の中心軸線OS1に一致する長手方向の中心軸線OT1と、鉛直方向の回転軸線OBTおよび長手方向の中心軸線OT1の双方に垂直に交差する横断方向の中心軸線OT2とを有している。 Referring to FIGS. 31-36, a table module to which tool module 500 is coupled is illustrated. The table module of this embodiment, which is a modification of the table module 200, is formed from a table module 600 and a drive module 560. The table module 600 is mounted on the top surface 562a of the drive module 560, specifically on the ram 596 of the leveling block 590. The table module 600 includes a base portion 620 and a rotary table 630 rotatably supported around a vertical central axis OT . When combined with the tool module 500, the table module 600 has a longitudinal center axis O T1 that coincides with the longitudinal center axis O S1 of the tool module 500, a vertical rotation axis O BT , and a longitudinal center axis O BT. It has a transverse central axis O T2 that perpendicularly intersects both O T1 .
 回転テーブル630は、ワーク(図示せず)を載置、固定する平面から成る取付面630aと、取付面630aの反対側の下面から突出する軸部632とを有している。ベース部620は、回転軸線OBTを中心として形成され回転テーブル630の軸部632を受容するボス穴622を有している。軸部632は、軸受634によってボス穴622に回転可能に支持されている。 The rotary table 630 has a mounting surface 630a made of a flat surface on which a workpiece (not shown) is placed and fixed, and a shaft portion 632 protruding from the lower surface on the opposite side of the mounting surface 630a. The base portion 620 has a boss hole 622 that is formed around the rotation axis O BT and receives the shaft portion 632 of the rotary table 630 . The shaft portion 632 is rotatably supported in the boss hole 622 by a bearing 634.
 テーブルモジュール600は、回転テーブル630を回転駆動する駆動源としてサーボモータを備えることができる。本実施形態において、該サーボモータは、ベース部620のボス穴622の内周面に固定したステータ636と、該ステータ636に対面するように、回転テーブル630の軸部632の外周面に取付けたロータ638とを具備する。 The table module 600 can include a servo motor as a drive source that rotationally drives the rotary table 630. In this embodiment, the servo motor includes a stator 636 fixed to the inner circumferential surface of the boss hole 622 of the base portion 620, and a stator 636 fixed to the outer circumferential surface of the shaft portion 632 of the rotary table 630 so as to face the stator 636. A rotor 638 is provided.
 ベース部620には、切り屑排出通路626が形成されている。切り屑排出通路626は、テーブルモジュール600の長手方向の中心軸線OT1および横断方向の中心軸線OT1に対して傾斜した水平方向に延びる中心軸線(チップコンベア軸線)OCCに沿って延在している。切り屑排出通路626は、チップコンベア軸線OCCに沿ってベース部620を貫通している。また、ベース部620は、その上面に開口する切り屑排出穴624を有している。切り屑排出穴624の底部は、切り屑排出通路626まで延びており、加工中に発生する切り屑を収集し、切り屑排出通路626へ導くようになっている。 A chip discharge passage 626 is formed in the base portion 620 . The chip discharge passage 626 extends along the longitudinal center axis O T1 of the table module 600 and a horizontally extending center axis (chip conveyor axis) O CC inclined with respect to the transverse center axis O T1 . ing. A chip discharge passage 626 passes through the base portion 620 along the chip conveyor axis O CC . Furthermore, the base portion 620 has a chip discharge hole 624 that opens on its upper surface. The bottom of the chip evacuation hole 624 extends to a chip evacuation passage 626 to collect and direct chips generated during machining to the chip evacuation passage 626 .
 また、切り屑排出通路626は受容部626aを有している。受容部626aは、長手方向の中心軸線OT1方向に延びる穴から形成される。受容部626aは、ベース部620においてツールモジュール500に対面する側面に開口しており、ツールモジュール500がテーブルモジュール600と結合したときに、切り屑排出装置552のスクリューコンベアにおいて、ツールモジュール500の長手方向の中心軸線OS1に沿って前方に突出する部分を受容する。 Further, the chip discharge passage 626 has a receiving portion 626a. The receiving portion 626a is formed from a hole extending in the direction of the longitudinal central axis O T1 . The receiving part 626a is open on the side surface facing the tool module 500 in the base part 620, and when the tool module 500 is combined with the table module 600, the longitudinal direction of the tool module 500 is opened in the screw conveyor of the chip discharging device 552. A forwardly projecting portion is received along the central axis O S1 of the direction.
 なお、切り屑排出装置が、スクリューコンベアではなく、ベルトコンベアの場合、切り屑排出通路626は受容部626aを備えていなくともよい。また、切り屑排出装置がベルトコンベア551の場合、ツールモジュール500がテーブルモジュール600に結合すると、図33に示すように、ベルトコンベア551の先端部が切り屑排出穴624の上方に配置される。 Note that if the chip discharge device is a belt conveyor instead of a screw conveyor, the chip discharge passage 626 does not need to include the receiving portion 626a. Further, in the case where the chip discharge device is a belt conveyor 551, when the tool module 500 is coupled to the table module 600, the tip of the belt conveyor 551 is arranged above the chip discharge hole 624, as shown in FIG.
 切り屑排出通路626内には、切り屑排出装置618が配設されている。切り屑排出装置618は、チップコンベア軸線OCCに沿って延びるベルトコンベア628によって形成することができる。ベルトコンベア628は、切り屑排出装置618は、一端部分(上流側端部分)(図示せず)がベース部620の側面の近傍に配置され、他端部分(下流側端部分)(図示せず)が、チップコンベア軸線OCCに沿うベース部620の反対側の側面から突出している。図示する実施形態では、ベルトコンベア628の上流側端部分628aは、ベース部620の前記側面から僅かに突出している。ベルトコンベア628の下流側端部分628bは、上方に持ち上げられたリフトアップ部となっている。 A chip discharge device 618 is disposed within the chip discharge passage 626 . The chip evacuation device 618 can be formed by a belt conveyor 628 extending along the chip conveyor axis Occ . The belt conveyor 628 has one end portion (upstream end portion) (not shown) disposed near the side surface of the base portion 620, and the other end portion (downstream end portion) (not shown) of the chip discharge device 618. ) protrudes from the opposite side of the base portion 620 along the chip conveyor axis O CC . In the illustrated embodiment, the upstream end portion 628a of the belt conveyor 628 projects slightly from the side surface of the base portion 620. A downstream end portion 628b of the belt conveyor 628 is a lift-up portion that is lifted upward.
 テーブルモジュール600は、更に、ベース部620の上面に取付けられた可動カバー集成体602を備えることができる。可動カバー集成体602は、ベース部620の上面において、鉛直方向の回転軸線(図示せず)周りに開閉可能なカバーとすることができる。可動カバー集成体602は、第1の可動カバー604、第2の可動カバー606および第3の可動カバー608を備えている。第1~第3の可動カバー604~608は、独立に周方向に移動可能となっている。第1~第3の可動カバー604~608のアクチュエータ609がアクチュエータカバー(図示せず)内に配設されている。 The table module 600 may further include a movable cover assembly 602 attached to the top surface of the base portion 620. The movable cover assembly 602 can be a cover that can be opened and closed about a vertical axis of rotation (not shown) on the top surface of the base portion 620. Movable cover assembly 602 includes a first movable cover 604 , a second movable cover 606 and a third movable cover 608 . The first to third movable covers 604 to 608 are movable independently in the circumferential direction. Actuators 609 of the first to third movable covers 604 to 608 are disposed within an actuator cover (not shown).
 第1と、第2と、第3の可動カバー604、606、608は、カバーの回転軸線を中心とする円周に沿って湾曲する円筒面の一部から形成される側面604a、606a、608aと、側面604a、606a、608aの上端から半径方向内側に延びる天井604b、606b、608bとを有している。第1と第2の可動カバー604、606は、回転軸線OBTを中心とする同一円周上に配置され、第3の可動カバー608は、第1と第2の可動カバー604、606の内側に配置されている。 The first, second, and third movable covers 604, 606, and 608 have side surfaces 604a, 606a, and 608a formed from a portion of a cylindrical surface that curves along the circumference centered on the rotation axis of the cover. and ceilings 604b, 606b, 608b extending radially inward from the upper ends of the side surfaces 604a, 606a, 608a. The first and second movable covers 604 and 606 are arranged on the same circumference centered on the rotation axis O BT , and the third movable cover 608 is located inside the first and second movable covers 604 and 606. It is located in
 第1と第2の可動カバー604、606は、下端部に半径方向外側に突出するローラ616、617を有している。ローラ616、617は、回転軸線OBTに関して半径方向に延びる軸線を中心に回転可能に設けられている。テーブルモジュール600は、回転軸線OBTを中心とする円周に沿って延びるカバーレール615を有している。ローラ616、617は、カバーレール615の上端に載置され、これにより、第1と第2の可動カバー604、606はカバーレール615に沿って移動可能に支持される。第1と第2の可動カバー604、606が移動する間、ローラ616、617はカバーレール615に沿って転動する。テーブルモジュール600は、更に、第3の可動カバー608のためのカバーレール(図示せず)と、第3の可動カバー608の下端部に配設され、該第3の可動カバー608のためのカバーレールに沿って転動するローラ(図示せず)を具備している。第3の可動カバー608のためのカバーレールは、第3の可動カバー608の内側に配置されている。 The first and second movable covers 604 and 606 have rollers 616 and 617 that protrude radially outward at their lower ends. The rollers 616, 617 are provided rotatably about an axis extending in the radial direction with respect to the rotation axis OBT . The table module 600 has a cover rail 615 extending along a circumference centered on the rotation axis OBT . The rollers 616 and 617 are placed on the upper end of the cover rail 615, so that the first and second movable covers 604 and 606 are movably supported along the cover rail 615. While the first and second movable covers 604, 606 move, the rollers 616, 617 roll along the cover rails 615. The table module 600 further includes a cover rail (not shown) for a third movable cover 608 and a cover for the third movable cover 608 disposed at the lower end of the third movable cover 608. It includes rollers (not shown) that roll along the rails. A cover rail for the third movable cover 608 is arranged inside the third movable cover 608.
 テーブルモジュール600は、更に、ツールモジュール500の第1の能動インターフェース800に対応した第1の受動インターフェース820(図37)を備えている。第1の受動インターフェース820は、ベース部620に取付けられる平板状の基板822を有している。より詳細には、基板822は、ベース部620において、結合されるツールモジュール500に対面する側面に固定させる。 The table module 600 further includes a first passive interface 820 (FIG. 37) that corresponds to the first active interface 800 of the tool module 500. The first passive interface 820 has a flat substrate 822 attached to the base portion 620 . More specifically, the substrate 822 is fixed to the side of the base portion 620 facing the tool module 500 to be coupled.
 図37を参照すると、基板822には、切り屑排出装置552を通すための開口部822aが形成されている。第1の受動インターフェース820は、基板822上に配設された種々の機能デバイスを含む。機能デバイスは、第1の能動インターフェース800のマルチコネクタ804に結合可能なマルチコネクタ824を含む。マルチコネクタ824は、基板822の上縁の中央部に隣接して配置されている。一例として示すマルチコネクタ824は、電力ラインを接続するための少なくとも1つの電力コネクタ824a、824b、824c、824h、824i、信号ラインを接続するデータコネクタ824d、824eおよび、エアシリンダや油圧シリンダを駆動する加圧空気や圧油のような作動流体やクーラント等の流体を通す管路(図示せず)を接続するための少なくとも1つの流体コネクタ824f、824gを含む。 Referring to FIG. 37, the substrate 822 is formed with an opening 822a through which the chip evacuation device 552 passes. First passive interface 820 includes various functional devices disposed on substrate 822. The functional device includes a multi-connector 824 that is coupled to multi-connector 804 of first active interface 800 . The multi-connector 824 is arranged adjacent to the center of the upper edge of the board 822. The multi-connector 824 shown as an example includes at least one power connector 824a, 824b, 824c, 824h, 824i for connecting a power line, data connectors 824d, 824e for connecting a signal line, and driving an air cylinder or a hydraulic cylinder. It includes at least one fluid connector 824f, 824g for connecting a conduit (not shown) for carrying a working fluid such as pressurized air or oil, or a fluid such as a coolant.
 第1の受動インターフェース820は、更に、第1の能動インターフェース800のカプラに対応した複数のカプラを含んでいる。本実施形態では、カプラは、第1の能動インターフェース800の引込カプラ806a、806bに対応した2つの引込カプラ826a、826bを含む。引込カプラ826a、826bは、基板822の左右両縁の中央部に隣接して配置されている。カプラは、更に、第1の能動インターフェース800のコーンクランプ808a、808b、808c、808dに対応した4つのコーンクランプ828a、828b、828c、828dを含んでいる。コーンクランプ828a、828b、828c、828dは、基板822の隅部の各々に配置されている。 The first passive interface 820 further includes a plurality of couplers corresponding to the couplers of the first active interface 800. In this embodiment, the couplers include two retraction couplers 826a, 826b corresponding to the retraction couplers 806a, 806b of the first active interface 800. The retracting couplers 826a and 826b are arranged adjacent to the center of both left and right edges of the board 822. The coupler further includes four cone clamps 828a, 828b, 828c, 828d corresponding to cone clamps 808a, 808b, 808c, 808d of first active interface 800. Cone clamps 828a, 828b, 828c, 828d are located at each corner of substrate 822.
 第1の受動インターフェース820は、更に、第1の能動インターフェース800の接触センサ810a、810bに対応した当接片830a、830bを含む。当接片830a、830bは、第1の能動インターフェース800と第1の受動インターフェース820が対面したときに、接触センサ810a、810bに対面する位置に配置されており、本実施形態では、基板822において、一対の対角位置に配置されているコーンクランプ828a、828bの内側に配置されている。 The first passive interface 820 further includes contact pieces 830a, 830b corresponding to the contact sensors 810a, 810b of the first active interface 800. The contact pieces 830a, 830b are arranged at positions facing the contact sensors 810a, 810b when the first active interface 800 and the first passive interface 820 face each other. , are arranged inside a pair of cone clamps 828a, 828b arranged at diagonal positions.
 第1の受動インターフェース820は、更に、第1の能動インターフェース800の力センサ812a、812bに対応したガイド穴832a、832bを有している。ガイド穴832a、832bは、テーブルモジュール600にツールモジュール500が結合するとき、力センサ812a、812bのピンを受容し、ツールモジュール500の動作をピンの突出方向にガイドする。 The first passive interface 820 further includes guide holes 832a, 832b corresponding to the force sensors 812a, 812b of the first active interface 800. The guide holes 832a, 832b receive the pins of the force sensors 812a, 812b when the tool module 500 is coupled to the table module 600, and guide the movement of the tool module 500 in the protruding direction of the pins.
 テーブルモジュール600は、第1の受動インターフェース820に加えて、1または複数のタイプのインターフェースを含むことができる。例えば、テーブルモジュール600は、第1の受動インターフェース820に加えて、図38に示す第3の能動インターフェース850を備えることができる。第3の能動インターフェース850は、ベース部620に取付けられる平板状の基板852を有している。基板852は、切り屑排出装置618(ベルトコンベア628)を通すための開口部852aが形成されている。第3の能動インターフェース850は、ベルトコンベア628の上流側端部分(図示せず)を開口部852aに挿通させるように、ベース部620の側面に固定される。 Table module 600 may include one or more types of interfaces in addition to first passive interface 820. For example, in addition to the first passive interface 820, the table module 600 can include a third active interface 850 as shown in FIG. The third active interface 850 has a flat substrate 852 attached to the base portion 620 . The substrate 852 is formed with an opening 852a through which the chip discharge device 618 (belt conveyor 628) passes. A third active interface 850 is secured to the side of the base portion 620 to allow an upstream end portion (not shown) of the belt conveyor 628 to pass through the opening 852a.
 第3の能動インターフェース850は、基板852上に配設された種々の機能デバイスを含む。機能デバイスは、第1の能動インターフェース800のマルチコネクタ804と同様のマルチコネクタ854を含む。マルチコネクタ854は、基板852の上縁の中央部に隣接して配置されている。一例として示すマルチコネクタ854は、電力ラインを接続する電力コネクタ854a、854b、854c、854h、854i、信号ラインを接続するデータコネクタ854d、854e、エアシリンダや油圧シリンダを駆動する加圧空気や圧油のような作動流体やクーラント等の流体を通す管路(図示せず)を接続するための少なくとも1つの流体コネクタ854f、854gを含む。 The third active interface 850 includes various functional devices disposed on a substrate 852. The functional device includes a multi-connector 854 similar to multi-connector 804 of first active interface 800 . The multi-connector 854 is arranged adjacent to the center of the upper edge of the board 852. The multi-connector 854 shown as an example includes power connectors 854a, 854b, 854c, 854h, 854i that connect power lines, data connectors 854d and 854e that connect signal lines, and pressurized air and pressure oil that drive air cylinders and hydraulic cylinders. It includes at least one fluid connector 854f, 854g for connecting a conduit (not shown) for passing a fluid such as a working fluid or a coolant.
 本実施形態では、機能デバイスはカメラ856を含む。カメラ856は、好ましくは、その光軸が基板852に対して垂直となるように配向される。本実施形態では、カメラ856は、マルチコネクタ854と開口部852aの上縁部との間に配置されている。カメラ856は、開口部852aの下側に配置してもよい。機能デバイスは、更に、レーザーセンサ、例えばライダ(LiDAR (Light Detection and Ranging))センサを含んでいてもよい。 In this embodiment, the functional device includes a camera 856. Camera 856 is preferably oriented such that its optical axis is perpendicular to substrate 852. In this embodiment, the camera 856 is arranged between the multi-connector 854 and the upper edge of the opening 852a. The camera 856 may be placed below the opening 852a. The functional device may further include a laser sensor, for example a lidar (Light Detection and Ranging) sensor.
 テーブルモジュール600は、第1の受動インターフェース820および第3の能動インターフェース850に加えて、図39に示す第3の受動インターフェース840を備えることができる。第3の受動インターフェース840は、第3の能動インターフェース850と対をなすインターフェースであり、チップコンベア軸線OCCに沿ってベース部620の対向する2つの側面に固定される。第3の受動インターフェース840は、ベース部620に取付けられる平板状の基板842を有している。基板842は、切り屑排出装置618(ベルトコンベア628)を通すための開口部842aが形成されている。第3の受動インターフェース840は、ベルトコンベア628の下流側端部分628bを開口部842aに挿通させるように、チップコンベア軸線OCCに沿って第3の能動インターフェース850とは反対側のベース部620の側面に固定される。第3の受動インターフェース840は、付加的に、ベース部620の側面において、チップコンベア軸線OCCに対して45°の角度をなす位置に取り付けることができる。 In addition to the first passive interface 820 and the third active interface 850, the table module 600 can include a third passive interface 840 as shown in FIG. The third passive interface 840 is a companion interface to the third active interface 850, and is fixed to two opposing sides of the base portion 620 along the chip conveyor axis O CC . The third passive interface 840 has a flat substrate 842 attached to the base portion 620. The substrate 842 is formed with an opening 842a through which the chip discharge device 618 (belt conveyor 628) passes. A third passive interface 840 is located on the opposite side of the base portion 620 along the chip conveyor axis O CC from the third active interface 850 to allow the downstream end portion 628b of the belt conveyor 628 to pass through the opening 842a. Fixed to the side. A third passive interface 840 may additionally be mounted on the side of the base portion 620 at a 45° angle to the chip conveyor axis O CC .
 第3の受動インターフェース840は、基板842上に配設された種々の機能デバイスを含むことができる。機能デバイスは、第1の受動インターフェース820のマルチコネクタ824と同様のマルチコネクタ844を含む。マルチコネクタ844は、基板842の上縁の中央部に隣接して配置されている。一例として示すマルチコネクタ844は、電力ラインを接続する電力コネクタ844a、844b、844c、844h、844i、信号ラインを接続するデータコネクタ844d、844eおよびエアシリンダや油圧シリンダを駆動する加圧空気や圧油のような作動流体やクーラント等の流体を通す管路(図示せず)を接続するための少なくとも1つの流体コネクタ844f、844gを含む。 The third passive interface 840 may include various functional devices disposed on the substrate 842. The functional device includes a multi-connector 844 similar to multi-connector 824 of first passive interface 820 . The multi-connector 844 is disposed adjacent to the center of the upper edge of the board 842. The multi-connector 844 shown as an example includes power connectors 844a, 844b, 844c, 844h, 844i for connecting power lines, data connectors 844d, 844e for connecting signal lines, and pressurized air or pressure oil for driving air cylinders or hydraulic cylinders. It includes at least one fluid connector 844f, 844g for connecting a conduit (not shown) for carrying a fluid such as a working fluid or a coolant.
 第3の受動インターフェース840は、更に、第3の能動インターフェース850のカメラ856による撮像対象846を含む。本実施形態では、撮像対象は、第1の受動インターフェース820の撮像対象834と同様のテーブルモジュール600を表す認識コードである。 The third passive interface 840 further includes an object 846 to be imaged by the camera 856 of the third active interface 850. In this embodiment, the imaged object is a recognition code representing the table module 600 similar to the imaged object 834 of the first passive interface 820 .
 加工ライン1100は、まず、第3のテーブルモジュール600-3(図21では、最も右側のテーブルモジュール)が所定の位置に移動、固定される。次いで、この第3のテーブルモジュール600-3に第2のテーブルモジュール600-2が結合され、第2のテーブルモジュール600-2に第1のテーブルモジュール600-1が結合される。このように、2つのテーブルモジュール600を結合する場合には、一方のテーブルモジュール600を固定し、この固定されたテーブルモジュール600(静止側テーブルモジュール)に、他方のテーブルモジュール600(移動側テーブルモジュール)を接近させることによって、両者を結合するようにする。 In the processing line 1100, first, the third table module 600-3 (the rightmost table module in FIG. 21) is moved and fixed at a predetermined position. Next, the second table module 600-2 is coupled to this third table module 600-3, and the first table module 600-1 is coupled to the second table module 600-2. In this way, when combining two table modules 600, one table module 600 is fixed, and this fixed table module 600 (stationary side table module) is connected to the other table module 600 (moving side table module). ) to combine the two.
 このとき、移動側テーブルモジュールは、その第3の能動インターフェース850を静止側テーブルモジュールの第3の受動インターフェース840に対面させ、チップコンベア軸線OCCに沿って、静止側テーブルモジュールに接近する。結合するとき、移動側テーブルモジュールの切り屑排出装置の下流側端部分628bが、チップコンベア軸線OCCに沿って、静止側テーブルモジュールのベース部620の切り屑排出通路626内に進入し、静止側テーブルモジュールのベルトコンベア628の上流側端部分628aの上方に配置される。 The moving table module then approaches the stationary table module along the chip conveyor axis Occ with its third active interface 850 facing the stationary table module's third passive interface 840. When mating, the downstream end portion 628b of the chip evacuation device of the moving table module enters the chip evacuation passage 626 of the base portion 620 of the stationary table module along the chip conveyor axis Occ , and It is located above the upstream end portion 628a of the belt conveyor 628 of the side table module.
 移動側テーブルモジュールの第3の能動インターフェース850が、静止側テーブルモジュールの第3の受動インターフェース840に結合することによって、2つのテーブルモジュール600が互いに結合される。結合後、移動側テーブルモジュールのスタンド組立体570のシュー572を床面に当接させることによって、移動側テーブルモジュールが床面に固定される。 The two table modules 600 are coupled to each other by coupling the third active interface 850 of the moving table module to the third passive interface 840 of the stationary table module. After coupling, the movable table module is fixed to the floor by bringing the shoe 572 of the stand assembly 570 of the movable table module into contact with the floor.
 次いで、互いに結合された3つのテーブルモジュール600-1、600-2、600-3の各々に、対応する1つのツールモジュール500-1、500-2、500-3が結合される。ツールモジュール500-1、500-2、500-3の各々は、その長手方向の中心軸線OS1がテーブルモジュール600-1、600-2、600-3の各々の長手方向の中心軸線OT1に一致するように、中心軸線OS1、OT1に沿ってテーブルモジュール600-1、600-2、600-3の各々に接近し、第1の能動インターフェース800をテーブルモジュール600-1、600-2、600-3の第1の受動インターフェース820に結合させる。 Next, one corresponding tool module 500-1, 500-2, 500-3 is coupled to each of the three table modules 600-1, 600-2, 600-3 coupled to each other. Each of the tool modules 500-1, 500-2, and 500-3 has its longitudinal center axis O S1 aligned with the longitudinal center axis O T1 of each of the table modules 600-1, 600-2, and 600-3. The first active interface 800 is aligned with each of the table modules 600-1, 600-2, 600-3 along the central axes O S1 , O T1 so as to coincide with the first active interface 800 . , 600-3 to a first passive interface 820.
 ツールモジュール500-1、500-2、500-3の各々の第1の能動インターフェース800が、対応するテーブルモジュール600-1、600-2、600-3の第1の受動インターフェース820に結合されると、ツールモジュール500-1、500-2、500-3の切り屑排出装置552は、長手方向の中心軸線OT1に沿って前方へ(テーブルモジュール600に接近する方向に)に移動し、その先端部がテーブルモジュール600-1、600-2、600-3の切り屑排出装置618(ベルトコンベア628)の上方に配置される。 A first active interface 800 of each of the tool modules 500-1, 500-2, 500-3 is coupled to a first passive interface 820 of the corresponding table module 600-1, 600-2, 600-3. Then, the chip evacuation devices 552 of the tool modules 500-1, 500-2, and 500-3 move forward (in the direction toward the table module 600) along the longitudinal center axis O T1 and move toward the table module 600. The leading end portion is arranged above the chip discharge device 618 (belt conveyor 628) of the table modules 600-1, 600-2, and 600-3.
 こうして再構成可能な加工ライン、一例として、加工ライン1100が第1と第2の加工エリア12、14内に構築される。第1と第2の加工エリア12、14の各々に構築される加工ラインは、上述した加工ライン1100には限定されない。加工ラインは、実行する加工プロセスに応じて、3より多数の或いは3より少数のツールモジュール500とテーブルモジュール600とを含むことができる。 In this way, a reconfigurable processing line, for example the processing line 1100, is constructed within the first and second processing areas 12, 14. The processing lines constructed in each of the first and second processing areas 12 and 14 are not limited to the processing line 1100 described above. A machining line can include more or less than three tool modules 500 and table modules 600, depending on the machining process to be performed.
 加工エリアには1または複数のエネルギ供給装置120が設置されている。本例では、一例として、第1の加工エリア12に2つのエネルギ供給装置120が設置され、第2の加工エリア14に2つのエネルギ供給装置120が設置されている。 One or more energy supply devices 120 are installed in the processing area. In this example, as an example, two energy supply devices 120 are installed in the first processing area 12, and two energy supply devices 120 are installed in the second processing area 14.
 図2を参照すると、エネルギ供給装置の一例が示されている。エネルギ供給装置120は、第1の加工エリア12または第2の加工エリア14の床面に立設され、工場のサービスエアのような加圧空気源(図示せず)に接続された補器122と、工場電力のような電力源(図示せず)に接続された制御機器124とを備えている。補器122は、加圧空気を乾燥させるエアドライヤ、加圧空気を濾過するフィルタおよび加圧空気の供給、遮断を制御するソレノイドバルブを含むことができる。制御機器124は、電力源からの電力を昇圧するインバータ、エネルギ供給装置120が出力する電流を制御するレギュレータおよびエネルギ供給装置120が出力する電流を遮断するブレーカを含むことができる。 Referring to FIG. 2, an example of an energy supply device is shown. The energy supply device 120 includes an auxiliary device 122 installed upright on the floor of the first processing area 12 or the second processing area 14 and connected to a pressurized air source (not shown) such as factory service air. and a control device 124 connected to a power source (not shown), such as factory power. The auxiliary equipment 122 can include an air dryer that dries pressurized air, a filter that filters pressurized air, and a solenoid valve that controls supply and cutoff of pressurized air. The control device 124 can include an inverter that boosts the power from the power source, a regulator that controls the current output by the energy supply device 120, and a breaker that cuts off the current output by the energy supply device 120.
 エネルギ供給装置120は、前面に取り付けられた連結器(マルチコネクタ)120aを備えている。こうして、エネルギ供給装置120は、マルチコネクタ124を介して、エネルギ供給120に接続された加工ライン110、112、114に電力および加圧空気を供給することができる。 The energy supply device 120 includes a connector (multi-connector) 120a attached to the front surface. Thus, the energy supply device 120 can supply power and pressurized air to the processing lines 110 , 112 , 114 connected to the energy supply 120 via the multi-connector 124 .
 エネルギ供給装置120には、図21のテーブルモジュール600-3が結合され、該テーブルモジュール600-3からテーブルモジュール600-2、600-1へ電力、電気信号、作動流体やクーラントが供給され、テーブルモジュール600-3、600-2、600-1から、ツールモジュール500-3、500-2、500-1へ電力、電気信号および/または作動流体やクーラントのような流体が供給される。 The table module 600-3 shown in FIG. 21 is coupled to the energy supply device 120, and power, electric signals, working fluid, and coolant are supplied from the table module 600-3 to the table modules 600-2 and 600-1. Modules 600-3, 600-2, 600-1 supply power, electrical signals, and/or fluids, such as working fluid or coolant, to tool modules 500-3, 500-2, 500-1.
 図3を参照すると、スペアモジュールステーション20は、加工ラインの再構成や、故障したモジュールを交換目的で予備のモジュールを格納または配置するための区画である。製造工場10の一部をスペアモジュールステーション20として定めることができる。 Referring to FIG. 3, the spare module station 20 is a compartment for storing or arranging spare modules for the purpose of reconfiguring a processing line or replacing a failed module. A part of the manufacturing plant 10 can be defined as a spare module station 20.
 スペアモジュールステーション20には、複数の自走モジュールが格納または配置される。複数の自走モジュールは、ツールモジュール22、テーブルモジュール24および自走補助モジュール26を含む。ツールモジュール22は、例えば既述したドライブモジュール560に搭載されたツールモジュール500または1500とすることができる。テーブルモジュール24は、例えば既述したドライブモジュール560に搭載されたテーブルモジュール600とすることができる。 A plurality of self-propelled modules are stored or arranged in the spare module station 20. The plurality of self-propelled modules include a tool module 22, a table module 24, and a self-propelled auxiliary module 26. The tool module 22 can be, for example, the tool module 500 or 1500 mounted on the drive module 560 described above. The table module 24 can be, for example, the table module 600 mounted on the drive module 560 described above.
 自走補助モジュール26は、ツールモジュール500やテーブルモジュール600と同様に、コントロールセンタ16に設けられている上位の制御装置である加工システム制御装置と無線通信可能な制御装置(図示せず)を備えており、ツールモジュール500およびテーブルモジュール600と共に、加工システム制御装置による制御の下で1つの加工システムとして動作する。加工システム制御装置は加工システム内の操作盤、制御装置と通信しており、また、例えば、ネットワークで繋がったモバイル端末のようなコントロールセンタ外の端末からも操作することができる。 Like the tool module 500 and the table module 600, the self-propelled auxiliary module 26 includes a control device (not shown) that can communicate wirelessly with a processing system control device that is a higher-level control device provided in the control center 16. It operates together with the tool module 500 and the table module 600 as one machining system under the control of the machining system controller. The processing system control device communicates with an operation panel and a control device within the processing system, and can also be operated from a terminal outside the control center, such as a mobile terminal connected via a network.
 自走補助モジュール26は、加工システム制御装置の下で自走可能な自走モジュールであって、後述するように、種々の機能を有した複数種類のモジュールを含むことができる。図4を参照すると、自走補助モジュール26の一例としてバッテリ搭載モジュール130が図示されている。バッテリ搭載モジュール130は、一例として、自走車に搭載した制御機器134およびバッテリ136を備えている。自走車132は連結器138を備えている。連結器138は、自走車132の一側面に配設することができる。連結器138は、例えば、第2の能動インターフェース870とすることができる。こうして、バッテリ搭載モジュール130は、連結器138に結合可能な連結器302、例えば第2の受動インターフェース860を備えた自走モジュール300に電力供給することができる。 The self-propelled auxiliary module 26 is a self-propelled module that can be self-propelled under the processing system control device, and as described later, can include multiple types of modules with various functions. Referring to FIG. 4, a battery-mounted module 130 is illustrated as an example of the self-propelled auxiliary module 26. The battery mounted module 130 includes, for example, a control device 134 and a battery 136 mounted on a self-propelled vehicle. The self-propelled vehicle 132 includes a coupler 138. The coupler 138 can be disposed on one side of the self-propelled vehicle 132. Coupler 138 can be, for example, second active interface 870. The battery-powered module 130 can thus power a free-propelled module 300 with a coupler 302 , such as a second passive interface 860 , that can be coupled to the coupler 138 .
 バッテリ搭載モジュール130は、エアコンプレッサ、エアドライヤ、フィルタ、ソレノイドバルブのような加圧空気を供給するための補器132を備えていてもよい。この場合、バッテリ搭載モジュール130は、自走モジュール300に電力に加えて加圧空気を供給することができる。また、バッテリは、水素貯蔵システムを備えた燃料電池とすることもできる。 The battery-equipped module 130 may include an auxiliary device 132 for supplying pressurized air, such as an air compressor, an air dryer, a filter, or a solenoid valve. In this case, the battery-equipped module 130 can supply the self-propelled module 300 with pressurized air in addition to electric power. The battery may also be a fuel cell with a hydrogen storage system.
 自走補助モジュール26は、また、ワーク搬送モジュール140を含むことができる。ワーク搬送モジュール140は、図5に示すように、自走車142に搭載したマニピュレータ144を含むことができる。図5では、自走モジュール60はテーブルモジュール600である。自走車142には、1または複数のワークWを収容したワークストッカ146を有することができる。ワークWは、加工済ワークに加えて未加工ワーク(素材)を含むことができる。なお、本明細書では、加工前ワークを素材として、加工済ワークをワークとすることもある。マニピュレータ144は、一例として、先端にハンド144aを有した垂直多関節型ロボットアームとすることができる。自走車142は連結器141を備えている。連結器141は、自走車142の一側面に配設することができる。連結器146は、例えば、第2の能動インターフェース870とすることができる。 The self-propelled auxiliary module 26 can also include a workpiece transport module 140. The workpiece transfer module 140 can include a manipulator 144 mounted on a self-propelled vehicle 142, as shown in FIG. In FIG. 5, the self-propelled module 60 is a table module 600. The self-propelled vehicle 142 can have a work stocker 146 that stores one or more works W. The workpiece W can include an unprocessed workpiece (raw material) in addition to a processed workpiece. In addition, in this specification, the work before processing may be used as a raw material, and the processed work may be used as a work. The manipulator 144 can be, for example, a vertical articulated robot arm having a hand 144a at its tip. The self-propelled vehicle 142 includes a coupler 141. The coupler 141 can be disposed on one side of the self-propelled vehicle 142. Coupler 146 can be, for example, second active interface 870.
 ワーク搬送モジュール140が、連結器141によって自走モジュール60の連結器(第2の受動インターフェース860)62に結合されると、ワーク搬送モジュール140の制御装置148が、自走モジュール60の制御装置62に接続される。ワーク搬送モジュール140は、後述する第1と第2のマテリアルステーション70、80と、テーブルモジュール600との間で、ワークWの搬送、受け渡しを行う。 When the workpiece transfer module 140 is coupled to the coupler (second passive interface 860 ) 62 of the self-propelled module 60 by the coupler 141 , the control device 148 of the workpiece transfer module 140 connects to the control device 62 of the self-propelled module 60 . connected to. The workpiece transport module 140 transports and transfers the workpiece W between first and second material stations 70 and 80, which will be described later, and a table module 600.
 自走補助モジュール26は、また、工具交換モジュール150を含むことができる。工具交換モジュール150は、図6に示すように、自走車152に搭載した工具マガジン154を含むことができる。工具マガジン154は、自走車152の上面に立設された支柱154bと、支柱154bに回転可能に取り付けられた環状の工具支持部154c、および、工具支持部154cに取り付けられた複数のグリッパ154aを含み、該グリッパ154aの各々に工具Tが把持される。 The self-propelled auxiliary module 26 may also include a tool change module 150. The tool exchange module 150 can include a tool magazine 154 mounted on a self-propelled vehicle 152, as shown in FIG. The tool magazine 154 includes a support 154b erected on the top surface of the self-propelled vehicle 152, an annular tool support 154c rotatably attached to the support 154b, and a plurality of grippers 154a attached to the tool support 154c. , and a tool T is gripped by each of the grippers 154a.
 自走車152は、制御装置156と、連結器158とを更に備えている。連結器158は、自走車152の一側面に配設することができる。連結器158は、例えば、第2の能動インターフェース870とすることができる。工具交換モジュール150は、自走モジュール310、典型的にはツールモジュール500に必要な工具を供給し、かつ、ツールモジュール500で不要になった工具、例えば破損した工具を受け取ることができる。工具交換モジュール150が、連結器158によって自走モジュール310の連結器(第2の受動インターフェース860)312に結合されると、工具交換モジュール150の制御装置156が、自走モジュール310の制御装置603に接続される。 The self-propelled vehicle 152 further includes a control device 156 and a coupler 158. The coupler 158 can be disposed on one side of the self-propelled vehicle 152. Coupler 158 can be, for example, second active interface 870. The tool exchange module 150 can supply tools needed by the self-propelled module 310, typically the tool module 500, and can receive tools no longer needed by the tool module 500, such as broken tools. When the tool change module 150 is coupled to the coupler (second passive interface 860 ) 312 of the self-propelled module 310 by the coupler 158 , the controller 156 of the tool change module 150 connects to the controller 603 of the self-propelled module 310 . connected to.
 充電ステーション30は、スペアモジュールステーション20に隣接させて配置することができる。充電ステーション30は、自走モジュールが搭載するバッテリを充電するための区画である。製造工場10内の一部、好ましくはスペアモジュールステーション20に隣接する一部を充電ステーション30として定めることができる。 The charging station 30 can be placed adjacent to the spare module station 20. The charging station 30 is a section for charging the battery mounted on the self-propelled module. A portion within the manufacturing plant 10, preferably adjacent to the spare module station 20, may be defined as a charging station 30.
 充電ステーション30には、1または複数の給電装置32(図7)を配設することができる。給電装置32は、工場電力のような電力源(図示せず)に接続された制御機器34を備えている。制御機器34は、電力源からの電力を昇圧するインバータ、給電装置32が出力する電流を制御するレギュレータおよび給電装置32が出力する電流を遮断するブレーカを含むことができる。 The charging station 30 can be provided with one or more power supply devices 32 (FIG. 7). The power supply device 32 includes a control device 34 connected to a power source (not shown) such as factory power. The control device 34 can include an inverter that boosts the power from the power source, a regulator that controls the current output by the power supply device 32, and a breaker that cuts off the current that the power supply device 32 outputs.
 給電装置32は連結器36を更に備えている。連結器36は、例えば、第2の受動インターフェース860とすることができる。自走モジュール、例えばツールツールモジュール500を搭載したドライブモジュール560の連結器(第2の能動インターフェース870)568に結合することによって、ドライブモジュール560のバッテリ566に充電することができる。 The power supply device 32 further includes a coupler 36. Coupler 36 can be, for example, second passive interface 860. By coupling to the coupler (second active interface 870) 568 of the drive module 560 carrying a self-propelled module, such as the tool tool module 500, the battery 566 of the drive module 560 can be charged.
 図7において、給電装置32は、1つの連結器36を備えているように図示されているが、給電装置32は複数の連結器36を備えていてもよい。一例として示す図8の給電装置160は6つの連結器162を有している。給電装置160は、充電ステーション30の床面に固定されたスタンド164を有している。スタンド164は、複数の鉛直側面、図8に示す例では、6つの側面を有しており、該側面の各々に連結器162が配設されている。連結器162は、第2の受動インターフェース860とすることができる。 Although the power supply device 32 is illustrated as having one coupler 36 in FIG. 7, the power supply device 32 may include a plurality of couplers 36. The power supply device 160 shown in FIG. 8 as an example has six connectors 162. The power supply device 160 has a stand 164 fixed to the floor of the charging station 30. The stand 164 has a plurality of vertical sides, six sides in the example shown in FIG. 8, and a coupler 162 is disposed on each side. Coupler 162 may be a second passive interface 860.
 また、充電ステーション30は、ワイヤレス充電システムを含んでいてもよい。図9を参照すると、ワイヤレス充電システムの一例が示されている。ワイヤレス充電システムは、ワイヤレス給電トランスミッタ172、ワイヤレス充電レシーバ174、ワイヤレス充電レシーバ174に接続されたバッテリ176、ワイヤレス給電トランスミッタ172に電力を供給する電源装置166および電源装置166を制御する制御装置168を含むことができる。 Additionally, the charging station 30 may include a wireless charging system. Referring to FIG. 9, an example of a wireless charging system is shown. The wireless charging system includes a wireless power transmitter 172, a wireless charging receiver 174, a battery 176 connected to the wireless charging receiver 174, a power supply 166 that supplies power to the wireless power transmitter 172, and a controller 168 that controls the power supply 166. be able to.
 ワイヤレス給電トランスミッタ172は、製造工場10の第1の加工エリア12および/または第2の加工エリア14の床に埋設することができる。ワイヤレス給電トランスミッタ172は、例えば、第1の加工エリア12および/または第2の加工エリア14のエネルギ供給装置120の近傍において、ツールモジュール500、テーブルモジュール600、自走補助モジュール130、140、150等の自走モジュールを配置可能な床に埋設することができる。電源装置166と制御装置168は、充電ステーション30内に配置することができる。 The wireless power transmitter 172 can be embedded in the floor of the first processing area 12 and/or the second processing area 14 of the manufacturing plant 10. For example, the wireless power supply transmitter 172 connects the tool module 500, the table module 600, the self-propelled auxiliary modules 130, 140, 150, etc. in the vicinity of the energy supply device 120 of the first processing area 12 and/or the second processing area 14. self-propelled modules can be buried in the floor where they can be placed. Power supply 166 and controller 168 may be located within charging station 30 .
 ワイヤレス充電レシーバ174は、ツールモジュール500、テーブルモジュール600、自走補助モジュール130、140、150等の自走モジュール170のドライブモジュールの底面に配置することができる。ワイヤレス充電レシーバ174が、ワイヤレス給電トランスミッタ172に対面するように、自走モジュール170を配置することによって、ワイヤレス給電トランスミッタ172とワイヤレス充電レシーバ174とが、無線通信を介して、ワイヤレス充電レシーバ174がワイヤレス給電トランスミッタ172に接続され、ワイヤレス充電レシーバ174からワイヤレス給電トランスミッタ172に受電量の必要量に対する差分、送電停止要求、受電中の電力、携帯機器の充電率のような情報が伝達され、それに基づいて、制御装置168が電源装置166を制御して、ワイヤレス給電トランスミッタ172に供給する交流電流の電圧、電流、周波数を制御する。こうして、ワイヤレス給電トランスミッタ172と、ワイヤレス充電レシーバ174との間に生成される誘導磁界を通じて、自走モジュールのバッテリ176が充電される。 The wireless charging receiver 174 can be placed on the bottom surface of the drive module of the self-propelled module 170, such as the tool module 500, table module 600, self-propelled auxiliary module 130, 140, 150, etc. By arranging the self-propelled module 170 so that the wireless charging receiver 174 faces the wireless power transmitter 172, the wireless power transmitter 172 and the wireless charging receiver 174 can be connected to each other via wireless communication, and the wireless charging receiver 174 can be connected wirelessly. The wireless charging receiver 174 is connected to the power transmitter 172, and the wireless charging receiver 174 transmits information such as the difference between the required amount of received power, a power transmission stop request, the power being received, and the charging rate of the mobile device, and based on the information, , a control device 168 controls the power supply device 166 to control the voltage, current, and frequency of the alternating current supplied to the wireless power supply transmitter 172. Thus, the battery 176 of the self-propelled module is charged through the induced magnetic field generated between the wireless power transmitter 172 and the wireless charging receiver 174.
 第1のメンテナンスステーション90は、自走モジュール180の定期的なメンテナンスを行うための区画である。製造工場10の一部を第1のメンテナンスステーション90として定めることができる。第1のメンテナンスステーション90は、製造工場10内の所定の空間を包囲するカバー備えていてもよい。 The first maintenance station 90 is a section where regular maintenance of the self-propelled module 180 is performed. A portion of manufacturing plant 10 may be defined as first maintenance station 90 . The first maintenance station 90 may include a cover that surrounds a predetermined space within the manufacturing plant 10.
 第1のメンテナンスステーション90で実施される定期的なメンテナンスは、自走モジュール230が供給を受ける製造工場10のサービスエアのような圧縮空気に含まれる水や油の蒸気から発生するドレンを貯留するドレンタンクの交換、切削加工中に生成されるミスト状の切削オイルを収集するミストコレクタのフィルタ交換、切削加工のためにワークWにミスト状に供給される切削オイルの補充、圧縮空気から異物を除去するためのフィルタの交換、潤滑用のグリースを充填したグリースカートリッジの交換、メンテナンス作業に先立って真空により自走モジュール230から切り屑を除去する清掃作業を含むことができる。 Periodic maintenance performed at the first maintenance station 90 is performed by storing condensate generated from water and oil vapor contained in compressed air such as service air of the manufacturing plant 10 to which the self-propelled module 230 is supplied. Replacing the drain tank, replacing the filter of the mist collector that collects the mist of cutting oil generated during cutting, replenishing the cutting oil that is supplied to the workpiece W in mist for cutting, and removing foreign objects from compressed air. Cleaning operations may include replacing filters for removal, replacing grease cartridges filled with lubricating grease, and removing chips from self-propelled module 230 using a vacuum prior to maintenance operations.
 こうした定期的なメンテナンスを実施するために、第1のメンテナンスステーション90は、図10に示すように、未使用のドレンタンク、未使用のミストコレクタ用フィルタ、切削オイル、未使用のフィルタおよび未使用のグリースカートリッジのような定期交換部品96を保持する収納棚92を備えている。 In order to carry out such periodic maintenance, the first maintenance station 90, as shown in FIG. A storage shelf 92 is provided for holding regularly replaced parts 96 such as grease cartridges.
 自走モジュール180と、収納棚92との間で定期交換部品96を交換するために、第1のメンテナンスステーション90はマニピュレータ98と、マニピュレータ98を制御する制御装置91とを備えている。マニピュレータ98は、好ましくは、先端部にエンドエフェクタとしてのハンド98aを有した垂直多関節型ロボットアームとすることができる。更に、エンドエフェクタは、各定期交換部品96を把持するのに適した複数種類のエンドエフェクタ94を備えることができる。更に、エンドエフェクタは、自走モジュール180に真空を適用するバキュームエンドエフェクタ(図示せず)を含むことができる。各エンドエフェクタ94は、専用の収納装置(図示せず)または収納棚92に収めることができる。 In order to replace regularly replaced parts 96 between self-propelled module 180 and storage shelf 92, first maintenance station 90 includes a manipulator 98 and a control device 91 that controls manipulator 98. The manipulator 98 can preferably be a vertical articulated robot arm having a hand 98a as an end effector at its tip. Further, the end effector may include multiple types of end effectors 94 suitable for gripping each regularly replaced part 96. Additionally, the end effector may include a vacuum end effector (not shown) that applies a vacuum to the self-propelled module 180. Each end effector 94 can be housed in a dedicated storage device (not shown) or storage shelf 92.
 第1のメンテナンスステーション90の制御装置91は、自走モジュール180の制御装置182と無線通信し、自走モジュール180のIDを受信する。自走モジュール180の制御装置182は、自走モジュール180の過去に実施されたメンテナンスに関連したメンテナンス情報を記憶している。第1のメンテナンスステーション90の制御装置91は、自走モジュール180のメンテナンス情報に基づいて、必要な通常のまたは定期的なメンテナンスを実行する。 The control device 91 of the first maintenance station 90 wirelessly communicates with the control device 182 of the self-propelled module 180 and receives the ID of the self-propelled module 180. The control device 182 of the self-propelled module 180 stores maintenance information related to maintenance performed on the self-propelled module 180 in the past. The control device 91 of the first maintenance station 90 performs necessary normal or periodic maintenance based on the maintenance information of the self-propelled module 180.
 製造工場10の一部を第2のメンテナンスステーション40として定めることができる。第2のメンテナンスステーション40は、製造工場10内の所定の空間を包囲するカバー備えていてもよい。 A part of the manufacturing plant 10 can be defined as the second maintenance station 40. The second maintenance station 40 may include a cover that surrounds a predetermined space within the manufacturing plant 10.
 第2のメンテナンスステーション40は自走モジュールの状態を診断する区画である。図11には、第2のメンテナンスステーション40における診断テストの対象となる自走モジュール210の一例として、ツールモジュール500が示されているが、第2のメンテナンスステーション40が診断する自走モジュールは、ツールモジュール500または1500である。第2のメンテナンスステーション40で実施される診断テストには、ツールモジュール500、1500の主軸512、1512の振動測定、回転精度測定および振れ精度測定を含む。診断テストは、ツールモジュール500、1500のX軸、Y軸、Z軸、A軸、B軸の送り軸の位置決め精度測定(3次元位置決め精度測定または空間精度測定)や、主軸512、1512の工具クランプ力測定を含んでいてもよい。 The second maintenance station 40 is a section for diagnosing the state of the self-propelled module. In FIG. 11, a tool module 500 is shown as an example of the self-propelled module 210 to be subjected to the diagnostic test at the second maintenance station 40, but the self-propelled module diagnosed by the second maintenance station 40 is The tool module 500 or 1500. The diagnostic tests performed at the second maintenance station 40 include vibration measurements, rotation accuracy measurements, and runout accuracy measurements of the spindles 512, 1512 of the tool modules 500, 1500. The diagnostic test includes positioning accuracy measurement (three-dimensional positioning accuracy measurement or spatial accuracy measurement) of the X-axis, Y-axis, Z-axis, A-axis, and B-axis feed axes of the tool modules 500 and 1500, and tool accuracy measurement of the spindles 512 and 1512. It may also include clamping force measurements.
 第2のメンテナンスステーション40は、こうした診断テストを実施するために、図11に示すように、測定器ラック46に保持された複数の測定器または診断ツール48a、48b、48cと、各診断テストに使用する測定器48dを載置する測定器台44と、診断テストを自動実行する診断プログラムを有した制御装置40aとを備えている。測定器は、例えば、主軸512、1512の振動を測定する加速度ピックアップ、主軸512、1512の回転精度を測定する非接触精密変位計、主軸512、1512の振れ精度を測定するための接触式または非接触式変位計、送り軸の位置決め精度を測定するための3次元センサを含むことができる。 To perform such diagnostic tests, the second maintenance station 40 includes a plurality of instruments or diagnostic tools 48a, 48b, 48c held in an instrument rack 46, as shown in FIG. It includes a measuring instrument stand 44 on which a measuring instrument 48d to be used is placed, and a control device 40a having a diagnostic program for automatically executing a diagnostic test. The measuring instruments include, for example, an acceleration pickup that measures the vibration of the main shafts 512 and 1512, a non-contact precision displacement meter that measures the rotation accuracy of the main shafts 512 and 1512, and a contact or non-contact type that measures the runout accuracy of the main shafts 512 and 1512. It can include a contact displacement meter and a three-dimensional sensor for measuring the positioning accuracy of the feed axis.
 第2のメンテナンスステーション40は、診断テストを実施するために主軸512、1512の先端に装着する診断ツールを備えることができる。診断ツールは、主軸512、1512の回転精度を測定するための基準球(図示せず)、主軸512、1512の振れ精度を測定するためのテストバー(図示せず)、送り軸の位置決め精度を測定するためのボールバー(図示せず)を含むことができる。こうした診断ツールは、図11に示す測定器ラック46ではなく、工具をツールモジュール500または1500の主軸512、1512に取り付ける工具ホルダ(図示せず)に装着して、工具マガジン類似の工具ホルダを把持するグリッパ(図示せず)を有した診断ツールマガジン(図示せず)に収納するようにしてもよい。 The second maintenance station 40 may include a diagnostic tool that attaches to the tip of the spindle 512, 1512 to perform diagnostic tests. The diagnostic tool includes a reference ball (not shown) for measuring the rotation accuracy of the spindles 512, 1512, a test bar (not shown) for measuring the runout accuracy of the spindles 512, 1512, and a positioning accuracy of the feed axis. A ball bar (not shown) may be included for measurements. Such a diagnostic tool may be mounted in a tool holder (not shown) that attaches the tool to the spindle 512, 1512 of the tool module 500 or 1500, rather than the instrument rack 46 shown in FIG. The diagnostic tool magazine (not shown) may have a gripper (not shown) for holding the diagnostic tool.
 ツールモジュール500、1500に対して診断テストを実施するために、第2のメンテナンスステーション40は、ツールモジュール500、1500の能動インターフェース800に結合する連結器45を備えている。第2のメンテナンスステーション40の連結器45は、例えば受動インターフェース860により形成することができる。 To perform diagnostic tests on the tool module 500, 1500, the second maintenance station 40 includes a coupler 45 that couples to the active interface 800 of the tool module 500, 1500. The coupling 45 of the second maintenance station 40 can be formed by a passive interface 860, for example.
 図11に示すように、自走モジュール210の連結器212が第2のメンテナンスステーション40の連結器45と結合すると、自走モジュール210の制御装置501が、第2のメンテナンスステーション40の制御装置40aに接続される。自走モジュール210の制御装置501は、該自走モジュール210の過去に実施された診断テスト結果に関連した診断テスト履歴を記憶している。実施された診断テスト結果は、第2のメンテナンスステーション40の制御装置40aから自走モジュール210の制御装置501に出力され、診断テスト履歴として、自走モジュール210の制御装置501に格納される。診断テスト結果は、第2のメンテナンスステーション40の操作盤(図示せず)上に表示するようにできる。閾値を設定し、診断結果が閾値を超えたときに、メンテナンスを促す警告を出すこともできる。更に、ネットワークを介して、加工システム制御装置に診断結果を送信することもできる。 As shown in FIG. 11, when the coupler 212 of the self-propelled module 210 is coupled with the coupler 45 of the second maintenance station 40, the control device 501 of the self-propelled module 210 connects to the control device 40a of the second maintenance station 40. connected to. The control device 501 of the self-propelled module 210 stores a diagnostic test history related to the results of diagnostic tests performed on the self-propelled module 210 in the past. The results of the executed diagnostic test are output from the control device 40a of the second maintenance station 40 to the control device 501 of the self-propelled module 210, and stored in the control device 501 of the self-propelled module 210 as a diagnostic test history. The diagnostic test results may be displayed on a control panel (not shown) of the second maintenance station 40. You can also set a threshold and issue a warning to request maintenance when the diagnostic result exceeds the threshold. Furthermore, the diagnostic results can also be sent to the processing system controller via the network.
 ツールステーション50は、工具の破損した場合や、加工ラインの再構成に際して、工具を交換するために、予備の工具を格納、保持するための区画である。製造工場10の一部をツールステーション50として定めることができる。ツールステーション50は、製造工場10内の所定の空間を包囲するカバー備えることが好ましい。 The tool station 50 is a compartment for storing and holding spare tools in order to replace the tools when the tools are damaged or when the machining line is reconfigured. A portion of manufacturing plant 10 may be defined as a tool station 50 . Preferably, the tool station 50 includes a cover that surrounds a predetermined space within the manufacturing plant 10.
 ツールステーション50には、図12に示すように、複数の工具Tを保持する工具ラック52と、マニピュレータ54と、ツールステーション50に結合する自走モジュール190の連結器192に結合する連結器58と、マニピュレータ54を制御する制御装置56とが配設されている。本例では、マニピュレータ54は、先端部にハンド54aを有した垂直多関節型ロボットアームから形成されている。マニピュレータ54は、ツールステーション50に結合された自走モジュール190と、工具ラック52との間で工具を搬送する。また、図12に示すように、工具Tは、工具台53に置かれた状態でマニピュレータ54が工具の交換を行ってもよい。 As shown in FIG. 12, the tool station 50 includes a tool rack 52 that holds a plurality of tools T, a manipulator 54, and a coupler 58 that is coupled to a coupler 192 of a self-propelled module 190 that is coupled to the tool station 50. , and a control device 56 that controls the manipulator 54. In this example, the manipulator 54 is formed from a vertical articulated robot arm having a hand 54a at its tip. Manipulator 54 transports tools between a self-propelled module 190 coupled to tool station 50 and tool rack 52 . Further, as shown in FIG. 12, the tool T may be replaced by the manipulator 54 while being placed on the tool stand 53.
 図12では、自走モジュール190はツールモジュール500であり、ツールステーション50は、連結器58として、自走モジュール190の連結器192の構成するツールモジュール500の第1の能動インターフェース800に結合する第1の受動インターフェース820を備えている。 In FIG. 12, the self-propelled module 190 is a tool module 500, and the tool station 50 is connected to a first active interface 800 of the tool module 500, which is configured by a coupler 192 of the self-propelled module 190, as a coupler 58. 1 passive interface 820.
 自走モジュール190の連結器192が、ツールステーション50の連結器58に結合されると、制御装置56は、自走モジュール190の制御装置194を通じて、自走モジュール190を制御する。工具交換プロセスは、ツールステーション50の制御装置56が有する工具交換プログラムによって実行される。ツールステーション50の制御装置56は、結合された自走モジュール190の制御装置194と通信を行い、自走モジュール190のIDを受信する。制御装置56は、自走モジュール190のIDに基づいて、自走モジュール190を特定し、それに適合した工具交換プログラムを実行する。また、通信は無線通信とすることもできる。 When the coupler 192 of the self-propelled module 190 is coupled to the coupler 58 of the tool station 50, the controller 56 controls the self-propelled module 190 through the controller 194 of the self-propelled module 190. The tool change process is executed by a tool change program included in the control device 56 of the tool station 50. The controller 56 of the tool station 50 communicates with the controller 194 of the coupled self-propelled module 190 and receives the ID of the self-propelled module 190 . The control device 56 identifies the self-propelled module 190 based on the ID of the self-propelled module 190, and executes a tool exchange program suitable for the self-propelled module 190. Moreover, the communication can also be wireless communication.
 例えば、図12、13では、自走モジュール190はツールモジュール500であり、工具交換プログラムが実行されると、自走モジュール190の工具マガジン196(ツールモジュール500の工具マガジン522)が交換すべき工具Tを工具交換位置に割り出す。次いで、マニピュレータ54が割り出された工具Tを把持して工具マガジン196から取り外し、工具ラック52の所定位置に装着する。次いで、マニピュレータ54が、工具マガジン196に装着すべき新工具Tを工具ラック52から取り外して、工具マガジン196の所定位置に装着する。 For example, in FIGS. 12 and 13, the self-propelled module 190 is the tool module 500, and when the tool exchange program is executed, the tool magazine 196 of the self-propelled module 190 (the tool magazine 522 of the tool module 500) stores the tool to be replaced. Determine T to the tool exchange position. Next, the manipulator 54 grasps the indexed tool T, removes it from the tool magazine 196, and mounts it in a predetermined position on the tool rack 52. Next, the manipulator 54 removes the new tool T to be installed in the tool magazine 196 from the tool rack 52 and installs it in a predetermined position in the tool magazine 196.
 ツールステーション50は、また、図13に示すように、ツールローダTLを備えることができる。オペレータが、ツールローダTLに所定の工具Tを配置し、ツールステーション50の操作盤(図示せず)を通じて工具入庫操作を行うことによって、マニピュレータ54がツールローダTL上の工具Tを工具ラック52の所定位置に装着する。また、オペレータが、ツールステーション50の操作盤を通じて工具出庫操作を行うことによって、マニピュレータ54は、ツールステーション50から出庫すべき工具Tを工具ラック52からツールローダTLへ搬送する。出庫すべき工具Tは、ツールステーション50に結合している自走モジュール190の工具マガジン196から直接ツールローダTLへ搬送されるようにしてもよい。 The tool station 50 can also include a tool loader TL, as shown in FIG. 13. When the operator places a predetermined tool T on the tool loader TL and performs a tool storage operation through the operation panel (not shown) of the tool station 50, the manipulator 54 loads the tool T on the tool loader TL into the tool rack 52. Attach it in place. Further, when the operator performs a tool unloading operation through the operating panel of the tool station 50, the manipulator 54 transports the tool T to be unloaded from the tool station 50 from the tool rack 52 to the tool loader TL. The tools T to be delivered may be transferred directly from the tool magazine 196 of the self-propelled module 190 coupled to the tool station 50 to the tool loader TL.
 オペレータは、ツールローダTLを介して工具Tをツールステーション50に入庫する際、工具Tに割り当てられている工具番号をツールステーション50の制御装置56に入力するようにできる。或いは、工具にRFIDや2次元コードが付与されている場合は自動で工具番号を入力することもできる。ツールステーション50の制御装置56は、該工具Tを工具ラック52の空いている位置に装着する。その際、該工具Tの工具番号と工具ラック52上の位置とを関連付けて記憶するようにできる。 When the operator stores the tool T into the tool station 50 via the tool loader TL, the operator can input the tool number assigned to the tool T into the control device 56 of the tool station 50. Alternatively, if the tool is assigned an RFID or two-dimensional code, the tool number can be entered automatically. The control device 56 of the tool station 50 mounts the tool T in a vacant position on the tool rack 52. At this time, the tool number of the tool T and its position on the tool rack 52 can be stored in association with each other.
 フィクスチャステーション60は、種々のフィクスチャを格納、保持するための区画である。フィクスチャは、テーブルにワークWを固定するための治具または固定具である。フィクスチャはワークWの形状、寸法に適合させて様々なタイプがある。フィクスチャステーション60は、加加工ラインの再構成に際して、フィクスチャを交換するために、予備のフィクスチャを格納、保持している。製造工場10の一部をフィクスチャステーション60として定めることができる。フィクスチャステーション60は、製造工場10内の所定の空間を包囲するカバー備えることが好ましい。 The fixture station 60 is a compartment for storing and holding various fixtures. The fixture is a jig or fixture for fixing the workpiece W to the table. There are various types of fixtures depending on the shape and dimensions of the work W. The fixture station 60 stores and holds spare fixtures for replacing the fixtures when reconfiguring the processing line. A portion of the manufacturing plant 10 may be defined as a fixture station 60. Preferably, the fixture station 60 includes a cover that surrounds a predetermined space within the manufacturing factory 10.
 フィクスチャステーション60には、図14、15に示すように、複数のフィクスチャWFを保持するフィクスチャラック62と、フィクスチャ交換装置としてのマニピュレータ64と、フィクスチャステーション60に結合する自走モジュール200の連結器202に結合する連結器68と、マニピュレータ64を制御する制御装置66とが配設されている。本例では、マニピュレータ64は、先端部にハンド64aを有した垂直多関節型ロボットアームから形成されている。マニピュレータ64は、フィクスチャステーション60に結合された自走モジュール200と、フィクスチャラック62との間でフィクスチャWFを搬送する。フィクスチャWFは、パレットPの上面の所定位置に予め固定しておくことができる。 As shown in FIGS. 14 and 15, the fixture station 60 includes a fixture rack 62 that holds a plurality of fixtures WF, a manipulator 64 as a fixture exchange device, and a self-propelled module coupled to the fixture station 60. A coupler 68 that couples to the coupler 202 of 200 and a control device 66 that controls the manipulator 64 are provided. In this example, the manipulator 64 is formed from a vertical articulated robot arm having a hand 64a at its tip. The manipulator 64 transports the fixture WF between the self-propelled module 200 coupled to the fixture station 60 and the fixture rack 62. The fixture WF can be fixed at a predetermined position on the upper surface of the pallet P in advance.
 図14、15では、自走モジュール200はテーブルモジュール600であり、フィクスチャステーション60は、連結器68として、自走モジュール200の連結器202としての第1の受動インターフェース820に結合する第1の能動インターフェース800により形成することができる。 14 and 15, the free-propelled module 200 is a table module 600, and the fixture station 60 has a first passive interface 820, as a coupler 68, coupled to a first passive interface 820 as a coupler 202 of the free-propelled module 200. It can be formed by an active interface 800.
 自走モジュール200の連結器202が、フィクスチャステーション60の連結器68に結合されると、制御装置66は、自走モジュール200の制御装置204を通じて、自走モジュール200を制御する。フィクスチャ交換プロセスは、フィクスチャステーション60の制御装置66が有するフィクスチャ交換プログラムによって実行される。フィクスチャステーション60の制御装置66は、結合された自走モジュール200の制御装置204と通信を行い、自走モジュール200のIDを受信する。制御装置66は、自走モジュール200のIDに基づいて、自走モジュール200を特定し、それに適合したフィクスチャ交換プログラムを実行する。また、通信は無線通信とすることもできる。 When the coupler 202 of the self-propelled module 200 is coupled to the coupler 68 of the fixture station 60, the control device 66 controls the self-propelled module 200 through the control device 204 of the self-propelled module 200. The fixture exchange process is executed by a fixture exchange program included in the control device 66 of the fixture station 60. The controller 66 of the fixture station 60 communicates with the controller 204 of the coupled free-running module 200 and receives the ID of the free-running module 200 . The control device 66 specifies the self-propelled module 200 based on the ID of the self-propelled module 200, and executes a fixture exchange program that is suitable for it. Moreover, the communication can also be wireless communication.
 例えば、図14、15では、自走モジュール200はテーブルモジュール600であり、フィクスチャ交換プログラムが実行されると、マニピュレータ64が、自走モジュール200のテーブル206(テーブルモジュール600の回転テーブル630)上のフィクスチャWFまたはパレットPを把持して、フィクスチャWFをパレットPとともにテーブル206から取り外す。テーブル206上にパレットPを把持、固定するパレット固定装置(図示せず)を配設することができる。マニピュレータ64は、テーブル206から取り外したフィクスチャWFをパレットPと共にフィクスチャラック62の所定位置に載置する。 For example, in FIGS. 14 and 15, the self-propelled module 200 is a table module 600, and when the fixture exchange program is executed, the manipulator 64 moves onto the table 206 of the self-propelled module 200 (rotary table 630 of the table module 600). grip the fixture WF or pallet P, and remove the fixture WF and the pallet P from the table 206. A pallet fixing device (not shown) for grasping and fixing the pallet P can be provided on the table 206. The manipulator 64 places the fixture WF removed from the table 206 together with the pallet P at a predetermined position on the fixture rack 62.
 フィクスチャステーション60は、また、フィクスチャローダWFLを備えることができる。オペレータが、フィクスチャローダWFL上に所定のフィクスチャWFを配置し、フィクスチャステーション60の操作盤(図示せず)を通じてフィクスチャ操作を行うことによって、マニピュレータ64がフィクスチャローダWFL上のフィクスチャWFをフィクスチャラック62の所定位置に載置する。また、オペレータが、フィクスチャステーション60の操作盤を通じてフィクスチャ出庫操作を行うことによって、マニピュレータ64は、フィクスチャステーション60から出庫すべきフィクスチャWFをフィクスチャラック62からフィクスチャローダWFLへ搬送する。出庫すべきフィクスチャWFは、フィクスチャステーション60に結合している自走モジュール200のテーブル206から直接フィクスチャローダWFLへ搬送されるようにしてもよい。 The fixture station 60 can also include a fixture loader WFL. When the operator places a predetermined fixture WF on the fixture loader WFL and operates the fixture through the operation panel (not shown) of the fixture station 60, the manipulator 64 moves the fixture on the fixture loader WFL. Place the WF at a predetermined position on the fixture rack 62. Further, when the operator performs a fixture unloading operation through the operation panel of the fixture station 60, the manipulator 64 transports the fixture WF to be unloaded from the fixture station 60 from the fixture rack 62 to the fixture loader WFL. . The fixture WF to be delivered may be directly transported from the table 206 of the self-propelled module 200 coupled to the fixture station 60 to the fixture loader WFL.
 オペレータは、フィクスチャローダWFLを介してフィクスチャWFをフィクスチャステーション60に装填する際、フィクスチャWFに割り当てられているフィクスチャ番号をフィクスチャステーション60の制御装置66に入力するようにできる。フィクスチャステーション60の制御装置66は、該フィクスチャWFをフィクスチャラック62の空いている位置に装着する。その際、該フィクスチャWFのフィクスチャ番号とフィクスチャラック62上の位置とを関連付けて記憶するようにできる。 When loading the fixture WF into the fixture station 60 via the fixture loader WFL, the operator can input the fixture number assigned to the fixture WF into the control device 66 of the fixture station 60. The control device 66 of the fixture station 60 mounts the fixture WF in a vacant position of the fixture rack 62. At that time, the fixture number of the fixture WF and the position on the fixture rack 62 can be stored in association with each other.
 図14、15の実施形態では、マニピュレータ64は垂直多関節型ロボットアームから形成されているが、本発明は、これに限定されず、他の形式のロボットとすることができる。例えば、図16、17を参照すると、フィクスチャステーション60のマニピュレータ64′は、円筒座標ロボットにより形成されている。 In the embodiment of FIGS. 14 and 15, the manipulator 64 is formed from a vertically articulated robot arm, but the invention is not limited thereto and may be other types of robots. For example, referring to FIGS. 16 and 17, the manipulator 64' of the fixture station 60 is formed by a cylindrical coordinate robot.
 マニピュレータ64′は、鉛直軸線Owfsを中心として回転可能に設けられた支柱61と、支柱61に取り付けられた水平に伸びる直線ガイド63と、直線ガイド63に沿って進退可能に取り付けられたアーム65と、アーム65の先端に取り付けられたハンド67および支柱61、アーム65を駆動する駆動装置(図示せず)とを備えている。 The manipulator 64' includes a column 61 that is rotatably provided around a vertical axis O wfs , a linear guide 63 that extends horizontally and that is attached to the column 61, and an arm 65 that is attached so that it can move forward and backward along the linear guide 63. , a hand 67 attached to the tip of the arm 65, a support 61, and a drive device (not shown) for driving the arm 65.
 図16、17において、フィクスチャステーション60は、鉛直軸線Owfsを中心として複数のフィクスチャWFを円周上に配置するフィクスチャラック62と、フィクスチャローダWFLとを備えている。フィクスチャローダWFLもまたフィクスチャWFをフィクスチャラック62と同じ円周上に配置するようにできる。
 図16、17のフィクスチャステーション60も図14、15のフィクスチャステーション60と同様に作用する。
16 and 17, the fixture station 60 includes a fixture rack 62 that arranges a plurality of fixtures WF on a circumference around a vertical axis O wfs , and a fixture loader WFL. The fixture loader WFL can also arrange the fixtures WF on the same circumference as the fixture rack 62.
Fixture station 60 of FIGS. 16 and 17 also operates similarly to fixture station 60 of FIGS. 14 and 15.
 第1のマテリアルステーション70は、未加工ワークWを格納、保管するための区画である。製造工場10の一部を第1のマテリアルステーション70として定めることができる。製造工場10の床面に線を引いたり隔壁によって、所定の領域または空間を第1のマテリアルステーション70として画成してもよい。第1のマテリアルステーション70は、製造工場10内の所定の空間を包囲するカバー備えていてもよい。 The first material station 70 is a section for storing and storing unprocessed workpieces W. A portion of manufacturing plant 10 may be defined as first material station 70 . A predetermined area or space may be defined as the first material station 70 by drawing a line on the floor of the manufacturing factory 10 or by using a partition wall. The first material station 70 may include a cover that surrounds a predetermined space within the manufacturing plant 10.
 第2のマテリアルステーション80は、加工済ワークWを格納、保管するための区画である。製造工場10の一部を第2のマテリアルステーション80として定めることができる。製造工場10の床面に線を引いたり隔壁によって、所定の領域または空間を第2のマテリアルステーション80として画成してもよい The second material station 80 is a section for storing and storing processed workpieces W. A portion of the manufacturing plant 10 may be defined as a second material station 80. A predetermined area or space may be defined as the second material station 80 by drawing a line on the floor of the manufacturing factory 10 or by using a partition wall.
 第1と第2のマテリアルステーション70、80は、互いに隣接させて配置することが好ましい。第1と第2のマテリアルステーション70、80を互いに隣接させて配置することによって、1台の自走式搬送車220によって、加工済ワークWを第2のマテリアルステーション80に搬送した帰りに、未加工ワークWを第1のマテリアルステーション70から加工ラインへ効率よく搬送することが可能となる。 The first and second material stations 70, 80 are preferably arranged adjacent to each other. By arranging the first and second material stations 70 and 80 adjacent to each other, one self-propelled transport vehicle 220 transports the processed workpiece W to the second material station 80 and then returns the processed workpiece W to the second material station 80. It becomes possible to efficiently transport the processed workpiece W from the first material station 70 to the processing line.
 図18に示すように、第1と第2のマテリアルステーション70、80は概ね同様に構成されており、それぞれ複数の未加工ワークWおよび加工済ワークWを載置するワークラック72、82を備えている。加工システム制御装置(図示せず)により制御される自走式搬送車220によって、第1と第2のマテリアルステーション70、80と、加工ラインとの間で未加工ワークWおよび加工済ワークWをパレットPに載置して搬送することができる。本実施形態では、自走式搬送車220は自走式のフォークリフトである。 As shown in FIG. 18, the first and second material stations 70 and 80 are generally configured similarly, and each includes work racks 72 and 82 on which a plurality of unprocessed workpieces W and processed workpieces W are placed. ing. Unprocessed workpieces W and processed workpieces W are transferred between the first and second material stations 70, 80 and the processing line by a self-propelled transport vehicle 220 controlled by a processing system control device (not shown). It can be placed on a pallet P and transported. In this embodiment, the self-propelled transport vehicle 220 is a self-propelled forklift.
 パレットP内にワークWをばら積みしてもよいが、図19に示すように、ワークラック72、82には、仕切り壁78、88によって、周壁74、84の内側を複数の区画に分割して個々の区画内にワークWを配置するようにしてもよい。 Although the workpieces W may be stacked in bulk on the pallet P, as shown in FIG. The workpieces W may be placed in individual sections.
 切り屑処理ステーション100は、ワークWの加工に生じた切り屑を製造工場10の外部へ効率的に排出するための前圧縮処理を行うための区画である。製造工場10の一部を切り屑処理ステーション100として定めることができる。製造工場10の床面に線を引いたり、隔壁によって、所定の領域または空間を切り屑処理ステーション100として画成してもよい。 The chip processing station 100 is a section for performing a pre-compression process for efficiently discharging chips generated during processing of the work W to the outside of the manufacturing factory 10. A portion of the manufacturing plant 10 may be defined as a chip handling station 100. A predetermined area or space may be defined as the chip processing station 100 by drawing a line on the floor of the manufacturing plant 10 or by using a partition wall.
 図20に示すように、切り屑処理ステーション100には、該切り屑処理ステーション100に搬送された切り屑のためのホッパ102と、切り屑を圧縮処理する切り屑パッカー104とが設けられている。ホッパ102は、内部空間を有した本体と、該本体内に配設され、ホッパ102に投入された切り屑を切り屑パッカー104へ輸送するコンベア(図示せず)と、ヒンジまたはピン102bによって、前記本体の上端部に回動可能に取り付けられた可動台102aと、本体の一側面に取り付けられたシュート106とを含む。シュート106の下側には、切り屑パッカー104が配設されている。 As shown in FIG. 20, the chip processing station 100 is provided with a hopper 102 for the chips transported to the chip processing station 100, and a chip packer 104 for compressing the chips. . The hopper 102 includes a main body having an internal space, a conveyor (not shown) disposed within the main body that transports chips input into the hopper 102 to a chip packer 104, and a hinge or pin 102b. It includes a movable table 102a rotatably attached to the upper end of the main body, and a chute 106 attached to one side of the main body. A chip packer 104 is arranged below the chute 106.
 可動台102aは、ピン102bと同軸の回転アクチュエータ(図示せず)によって、水平位置(図示せず)と、図示する傾斜位置との間で回動することができる。切り屑は、切り屑容器222内に収められ、フォークリフト様の自走式搬送車によって加工ラインから切り屑処理ステーション100へ搬送される。可動台112が水平位置にあるとき、切り屑を収納した切り屑容器222が、切り屑容器222と共に可動台112上に載置される。 The movable base 102a can be rotated between a horizontal position (not shown) and an inclined position as shown by a rotary actuator (not shown) coaxial with the pin 102b. The chips are stored in a chip container 222 and transported from the processing line to the chip processing station 100 by a self-propelled transport vehicle such as a forklift. When the movable table 112 is in the horizontal position, the chip container 222 containing chips is placed on the movable table 112 together with the chip container 222 .
 可動台112aが、図示する傾斜位置にあるとき、切り屑容器222内の切り屑が、ホッパ112の本体内に落下する。ホッパ112の本体内に落下した切り屑は、コンベアによりシュート116へ向けて輸送され、シュート116から切り屑パッカー114内に落下する。切り屑パッカー114内に落下した切り屑は、パッカー114により圧縮される。これにより、切り屑は1つの塊となり、搬送が容易になる。 When the movable table 112a is in the illustrated inclined position, the chips in the chip container 222 fall into the main body of the hopper 112. The chips that have fallen into the body of the hopper 112 are transported by a conveyor toward the chute 116 and fall from the chute 116 into the chip packer 114. The chips that have fallen into the chip packer 114 are compressed by the packer 114. As a result, the chips become one lump, which makes it easier to transport.
 図1において、第2の加工エリア14は、第1の加工エリア12よりも、スペアモジュールステーション20に関して近位に配置されている。従って、第2の加工エリア14には、頻繁に構成を変更する加工ラインを配置することが有利である。 In FIG. 1, the second processing area 14 is located more proximally with respect to the spare module station 20 than the first processing area 12. It is therefore advantageous to arrange in the second processing area 14 a processing line whose configuration changes frequently.
 10  製造工場
 12  第1の加工エリア
 14  第2の加工エリア
 16  コントロールセンタ
 20  スペアモジュールステーション
 22  ツールモジュール
 24  テーブルモジュール
 26  自走補助モジュール
 30  充電ステーション
 32  給電装置
 40  第2のメンテナンスステーション
 50  ツールステーション
 60  フィクスチャステーション
 70  第1のマテリアルステーション
 80  第2のマテリアルステーション
 90  第1のメンテナンスステーション
 100  切り屑処理ステーション
 120  エネルギ供給装置
 130  バッテリ搭載モジュール
 140  ワーク搬送モジュール
 150  工具交換モジュール
 500  ツールモジュール
 560  ドライブモジュール
 600  テーブルモジュール
10 Manufacturing plant 12 First processing area 14 Second processing area 16 Control center 20 Spare module station 22 Tool module 24 Table module 26 Self-propelled auxiliary module 30 Charging station 32 Power supply device 40 Second maintenance station 50 Tool station 60 Fixture Cha station 70 First material station 80 Second material station 90 First maintenance station 100 Chip processing station 120 Energy supply device 130 Battery-equipped module 140 Workpiece transfer module 150 Tool exchange module 500 Tool module 560 Drive module 600 Table module

Claims (8)

  1.  インターフェースを介して分離可能に結合されたツールモジュールと、テーブルモジュールとを含む加工ラインを備えた製造工場において、
     自走可能な少なくとも一つのツールモジュールと、自走可能な少なくとも一つのテーブルモジュールとを含む複数の自走モジュールと、
     前記加工ラインが設置されワークを加工する加工エリアと、
     前記加工エリア内で前記ツールモジュールまたは前記テーブルモジュールにエネルギを供給するエネルギ供給装置と、
     前記加工エリアの外側に隣接して設けられ、ワークを貯蔵するマテリアルステーション、複数の工具を貯蔵するツールステーション、複数のフィクスチャを格納、保持するフィクスチャステーション、切り屑の処理を行う切り屑処理ステーション、前記自走モジュールの保守を行うメンテナンスステーション、前記自走モジュールを充電する充電ステーション、および、予備の自走モジュールが待機するスペアモジュールステーションのうち少なくとも一つのステーションを有するステーションエリアと、
     を具備し、
     前記自走モジュールが前記加工エリアと前記ステーションエリアとの間を移動することを特徴とした製造工場。
    In a manufacturing plant equipped with a processing line including a tool module and a table module that are separably coupled via an interface,
    a plurality of self-propelled modules including at least one self-propelled tool module and at least one self-propelled table module;
    a processing area where the processing line is installed and processes the workpiece;
    an energy supply device that supplies energy to the tool module or the table module within the processing area;
    A material station that stores workpieces, a tool station that stores a plurality of tools, a fixture station that stores and holds a plurality of fixtures, and a chip treatment that processes chips, which are provided adjacent to the outside of the processing area. a station area having at least one of a station, a maintenance station for maintaining the self-propelled module, a charging station for charging the self-propelled module, and a spare module station for waiting for a spare self-propelled module;
    Equipped with
    A manufacturing factory characterized in that the self-propelled module moves between the processing area and the station area.
  2.  前記エネルギ供給装置に1つのテーブルモジュールが結合され、該テーブルモジュールに他のテーブルモジュールが前記エネルギ供給装置の反対側に結合され、前記エネルギ供給装置と、2つの前記テーブルモジュールが、所定の軸線に沿って横並びに配列され、2つの前記テーブルモジュールの各々に1つのツールモジュールが結合されるようにした請求項1に記載の製造工場。 One table module is coupled to the energy supply device, another table module is coupled to the table module on the opposite side of the energy supply device, and the energy supply device and the two table modules are aligned on a predetermined axis. 2. The manufacturing plant according to claim 1, wherein the tool modules are arranged side by side along the table, and one tool module is coupled to each of the two table modules.
  3.  前記ツールモジュールまたは前記テーブルモジュールと、前記インターフェースを介して分離可能に結合し、少なくともワークまたは工具を搬送する自走補助モジュールを更に具備し、
     該自走補助モジュールが、前記ステーションと前記ツールモジュールまたはテーブルモジュールとの間を走行して、工具またはワークの受け渡しを行う請求項1に記載の製造工場。
    further comprising a self-propelled auxiliary module that is separably coupled to the tool module or the table module via the interface and that transports at least a workpiece or a tool;
    The manufacturing factory according to claim 1, wherein the self-propelled auxiliary module travels between the station and the tool module or table module to deliver tools or workpieces.
  4.  前記エネルギ供給装置は、床面に固定され、インターフェースを介して前記ツールモジュールまたは前記テーブルモジュールに電力、流体および/またはデータの受け渡しをおこなう請求項1に記載の製造工場。 The manufacturing factory according to claim 1, wherein the energy supply device is fixed to a floor surface and delivers power, fluid, and/or data to the tool module or the table module via an interface.
  5.  前記エネルギ供給装は、床面に固定されたスタンドと、前記ツールモジュールおよび/またはテーブルモジュールのインターフェースに結合可能な複数のインターフェースとを備え、前記複数のインターフェースが、前記スタンドの異なる側面に配設されている請求項1に記載の製造工場。 The energy supply device includes a stand fixed to a floor surface and a plurality of interfaces connectable to interfaces of the tool module and/or table module, the plurality of interfaces being arranged on different sides of the stand. The manufacturing factory according to claim 1, wherein:
  6.  前記エネルギ供給装置は、前記ツールモジュールまたは前記テーブルモジュールにインターフェースを介して結合し、該ツールモジュールまたはテーブルに電力を供給するバッテリ搭載自走モジュールである請求項1に記載の製造工場。 The manufacturing factory according to claim 1, wherein the energy supply device is a battery-equipped self-propelled module that is coupled to the tool module or the table module via an interface and supplies power to the tool module or the table.
  7.  前記ツールモジュールおよび前記ワークモジュールを含む複数の自走モジュールは、ワイヤレス充電レシーバを備えており、前記加工エリアの床面に設けられたワイヤレス給電トランスミッタから非接触で充電用動力の供給を受ける請求項1に記載の製造工場。 A plurality of self-propelled modules including the tool module and the work module are equipped with a wireless charging receiver, and receive power for charging in a contactless manner from a wireless power transmitter provided on the floor of the processing area. The manufacturing factory described in 1.
  8.  前記フィクスチャステーションは、ワークをパレットに取り付けるフィクスチャを交換するフィクスチャ交換装置を有する請求項1に記載の製造工場。 The manufacturing factory according to claim 1, wherein the fixture station includes a fixture exchange device for exchanging fixtures that attach workpieces to pallets.
PCT/JP2022/015732 2022-03-29 2022-03-29 Manufacturing plant WO2023188048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015732 WO2023188048A1 (en) 2022-03-29 2022-03-29 Manufacturing plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015732 WO2023188048A1 (en) 2022-03-29 2022-03-29 Manufacturing plant

Publications (1)

Publication Number Publication Date
WO2023188048A1 true WO2023188048A1 (en) 2023-10-05

Family

ID=88200209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015732 WO2023188048A1 (en) 2022-03-29 2022-03-29 Manufacturing plant

Country Status (1)

Country Link
WO (1) WO2023188048A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033592A (en) * 1998-07-21 2000-02-02 Denso Corp Production system
US6920973B2 (en) * 2003-06-19 2005-07-26 The Regents Of The University Of Michigan Integrated reconfigurable manufacturing system
JP2008213131A (en) * 2007-03-07 2008-09-18 Seiko Epson Corp General-purpose cell for production system and production system using general-purpose cell
JP2008229738A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Production system and general-purpose cell for the production system
JP2022503607A (en) * 2018-08-30 2022-01-12 ディッケル マホ プロンテン ゲーエムベーハー Machine tools for machining workpieces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033592A (en) * 1998-07-21 2000-02-02 Denso Corp Production system
US6920973B2 (en) * 2003-06-19 2005-07-26 The Regents Of The University Of Michigan Integrated reconfigurable manufacturing system
JP2008213131A (en) * 2007-03-07 2008-09-18 Seiko Epson Corp General-purpose cell for production system and production system using general-purpose cell
JP2008229738A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Production system and general-purpose cell for the production system
JP2022503607A (en) * 2018-08-30 2022-01-12 ディッケル マホ プロンテン ゲーエムベーハー Machine tools for machining workpieces

Similar Documents

Publication Publication Date Title
CN112912207B (en) Transport device for transporting one or more handling devices
US10132717B2 (en) Flexible automation cell for performing secondary operations in concert with a machining center and roll check operations
US20160288280A1 (en) Reconfigurable assembly work station
US10228303B2 (en) Flexible automation cell for performing secondary operations in concert with a machining center and roll check operations
US6920973B2 (en) Integrated reconfigurable manufacturing system
WO2022071553A1 (en) Processing system
WO2023188048A1 (en) Manufacturing plant
US20050198804A1 (en) Honeycomb reconfigurable manufacturing system
WO2023188047A1 (en) Production system
CN115593832A (en) Intelligent production line for unmanned environment operation
CN216802447U (en) Automatic production line based on disc products
KR102492263B1 (en) Automatic workpiece unloading device for CNC machine tools
CN116000918A (en) Multifunctional composite robot based on omni-directional mobile AGV chassis
KR20180134029A (en) Automatic attachment changer and boring machine including the same
CN113523785A (en) Flexible automatic installation production line for steel wire thread insert
JP7225452B1 (en) Unmanned transport device and processing system equipped with the same
JPH04115856A (en) Automatic work device
US20220379420A1 (en) Combined transfer and storage device and manufacturing line for machining
US20220379419A1 (en) Manufacturing system and manufacturing line for machining
CN218524606U (en) Composite lean measurement island
US20240082969A1 (en) Handling cell for a machine tool and manufacturing system
JPH04101754A (en) Transfer device for automatic working device
CN111070074A (en) 3-shaft truss manipulator device for spherical honing equipment
JPH04105843A (en) Automatic processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935196

Country of ref document: EP

Kind code of ref document: A1