WO2023185885A1 - 太空能的冷媒量的提示方法、装置和设备 - Google Patents

太空能的冷媒量的提示方法、装置和设备 Download PDF

Info

Publication number
WO2023185885A1
WO2023185885A1 PCT/CN2023/084523 CN2023084523W WO2023185885A1 WO 2023185885 A1 WO2023185885 A1 WO 2023185885A1 CN 2023084523 W CN2023084523 W CN 2023084523W WO 2023185885 A1 WO2023185885 A1 WO 2023185885A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature value
threshold
ambient temperature
water temperature
space energy
Prior art date
Application number
PCT/CN2023/084523
Other languages
English (en)
French (fr)
Inventor
谢丹丹
潘献化
向奇轩
吴绍杰
李伟
Original Assignee
青岛海尔新能源电器有限公司
青岛经济技术开发区海尔热水器有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔新能源电器有限公司, 青岛经济技术开发区海尔热水器有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔新能源电器有限公司
Publication of WO2023185885A1 publication Critical patent/WO2023185885A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the field of space energy technology, and in particular to a method, device and equipment for indicating the amount of refrigerant in space energy.
  • the pipelines of space energy are connected with multiple devices, with many solder joints and joints. Once the welding and installation are not tight, it is easy to cause the loss of refrigerant. The lack of refrigerant will cause damage to the machine and reduce the space energy hot water heating capacity.
  • the exhaust temperature of the space energy compressor is judged to determine whether the refrigerant amount of the space energy is missing, thereby protecting the space energy.
  • the method for determining whether the refrigerant amount of space energy is missing is not high in reliability, relatively simple, and cannot effectively protect space energy.
  • This application provides a method, device and equipment for indicating the amount of refrigerant in space energy, to solve the problem that the method of judging whether the amount of refrigerant in space energy is missing is unreliable, relatively simple, and cannot effectively protect space energy. .
  • this application provides a method for prompting the amount of refrigerant in space energy.
  • the method includes:
  • temperature data of space energy includes the ambient temperature value of the space energy, the actual water temperature value in the water tank of the space energy, and the exhaust temperature value of the compressor of the space energy;
  • the functional information determine the functional information of the space energy, and the functional information represents whether the refrigerant amount of the space energy is normal;
  • prompt information is output.
  • determining the functional information of the space energy based on the temperature data includes:
  • the exhaust gas temperature value is less than the target temperature threshold, it is determined that the amount of refrigerant in the space energy is normal.
  • determining the target temperature threshold based on the ambient temperature value and the actual water temperature value includes:
  • the ambient temperature value and the actual water temperature value determine the ambient temperature interval of the ambient temperature value and the water temperature interval of the actual water temperature value
  • the target temperature threshold is determined according to the ambient temperature interval and the water temperature interval.
  • the method includes:
  • the first preset threshold is determined to be the target temperature. Threshold, the first ambient temperature threshold is the lowest ambient temperature limit at which the space can work;
  • the ambient temperature value is greater than or equal to the second ambient temperature threshold, the ambient temperature value is less than the third ambient temperature threshold, the actual water temperature value is greater than the first water temperature threshold, and the actual water temperature value is less than or equal to the second water temperature threshold , then determine the second preset threshold as the target temperature threshold;
  • the ambient temperature value is greater than or equal to the third ambient temperature threshold, the ambient temperature value is less than the fourth ambient temperature threshold, the actual water temperature value is greater than the second water temperature threshold, and the actual water temperature value is less than or equal to the third water temperature threshold , then determine the third preset threshold as the target temperature threshold;
  • the fourth preset threshold is determined to be the target temperature threshold.
  • prompt information is output according to the function information, including:
  • the missing time is recorded, and based on the current time and the missing time, the output device is controlled to output the first prompt information, and the first prompt information is used to represent the The amount of refrigerant in space energy is missing;
  • the output device is controlled to output second prompt information, and the second prompt information is used to indicate that the refrigerant amount of the space energy is normal;
  • the output device includes one or more of a lighting device, a speaker signal device, and a display device.
  • controlling the output device to output the first prompt information based on the current time and the missing time includes:
  • the first preset standard is obtained, and the output device is controlled to output the first prompt information according to the first preset standard;
  • the second preset standard is obtained, and the output device is controlled to output the first prompt information according to the second preset standard.
  • this application provides a device for indicating the amount of refrigerant in space energy.
  • the device includes:
  • An acquisition unit configured to acquire temperature data of space energy, wherein the temperature data includes the ambient temperature value of the space energy, the actual water temperature value in the water tank of the space energy, and the temperature of the compressor of the space energy. Exhaust temperature value;
  • a determination unit configured to determine functional information of the space energy based on the temperature data, where the functional information represents whether the refrigerant amount of the space energy is normal;
  • a processing unit configured to output prompt information according to the function information.
  • the determining unit includes:
  • a first determination subunit configured to determine a target temperature threshold based on the ambient temperature value and the actual water temperature value
  • a second determination subunit configured to determine that the amount of refrigerant in the space energy is missing if the exhaust gas temperature value is greater than or equal to the target temperature threshold
  • the third determination subunit is used to determine that the refrigerant amount of the space energy is normal if the exhaust gas temperature value is less than the target temperature threshold.
  • the first determining subunit includes:
  • a first processing module configured to determine the ambient temperature interval of the ambient temperature value and the water temperature interval of the actual water temperature value based on the ambient temperature value and the actual water temperature value;
  • the second processing module is used to determine the target temperature threshold according to the ambient temperature interval and the water temperature interval.
  • the first determining subunit is specifically used to:
  • the first preset threshold is determined to be the target temperature. Threshold, the first ambient temperature threshold is the lowest ambient temperature limit at which the space can work;
  • the ambient temperature value is greater than or equal to the second ambient temperature threshold, the ambient temperature value is less than the third ambient temperature threshold, the actual water temperature value is greater than the first water temperature threshold, and the actual water temperature value is less than or equal to the second water temperature threshold , then determine the second preset threshold as the target temperature threshold;
  • the ambient temperature value is greater than or equal to the third ambient temperature threshold, the ambient temperature value is less than the fourth ambient temperature threshold, the actual water temperature value is greater than the second water temperature threshold, and the actual water temperature value is less than or equal to the third water temperature threshold , then determine the third preset threshold as the target temperature threshold;
  • the fourth preset threshold is determined to be the target temperature threshold.
  • the processing unit includes:
  • the first processing subunit is used to record the missing time if the functional information representing the refrigerant amount of the space energy is missing. moment, and according to the current time and the missing time, control the output device to output the first prompt information, the first prompt information is used to represent the lack of refrigerant amount of the space energy;
  • the second processing subunit is used to control the output device to output second prompt information if the functional information indicates that the refrigerant amount of the space energy is normal.
  • the second prompt information is used to indicate that the refrigerant amount of the space energy is normal.
  • the output device includes one or more of a lighting device, a speaker signal device, and a display device.
  • the first processing subunit is specifically used to:
  • the first preset standard is obtained, and the output device is controlled to output the first prompt information according to the first preset standard;
  • the second preset standard is obtained, and the output device is controlled to output the first prompt information according to the second preset standard.
  • this application provides an electronic device, which includes: a memory and a processor;
  • Memory memory for storing instructions executable by the processor
  • the processor is configured to perform the method described in the first aspect.
  • the present application provides a computer-readable storage medium.
  • Computer-executable instructions are stored in the computer-readable storage medium. When executed by a processor, the computer-executable instructions are used to implement the method as described in the first aspect. .
  • the present application provides a computer program product, including a computer program that implements the method described in the first aspect when executed by a processor.
  • the method provided by this application for prompting the amount of refrigerant in space energy is through the following steps: obtaining the temperature data of space energy, where the temperature data includes the ambient temperature value of the space energy, the actual water temperature value of the space energy, and the exhaust gas of the space energy. Temperature value; based on the temperature data, determine the functional information of the space energy, which indicates whether the refrigerant amount of the space energy is normal; output prompt information based on the functional information. The reliability of the judgment of the refrigerant amount of space energy is improved, and effective protection of space energy can be achieved.
  • Figure 1 is a schematic structural diagram of a space energy provided by an embodiment of the present application.
  • Figure 2 is a flow chart of a method for prompting the amount of refrigerant in space energy provided by an embodiment of the present application
  • Figure 3 is a flow chart of another method for prompting the amount of refrigerant in space energy provided by an embodiment of the present application
  • Figure 4 is a schematic structural diagram of a space energy refrigerant amount prompting device provided by an embodiment of the present application
  • Figure 5 is a schematic structural diagram of another space energy refrigerant amount prompting device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 7 is a block diagram of a terminal device provided by an embodiment of the present application.
  • the pipelines of space energy are connected with multiple devices such as evaporators, compressors, four-way valves, water tanks, condensers, expansion valves, etc. There are many solder joints and joints. Once the welding and installation are not tight, it will easily lead to the loss of refrigerant.
  • Figure 1 is a schematic structural diagram of a space energy provided by an embodiment of the present application.
  • space energy evaporator 01 absorbs heat from the sun and the air, and converts " The "low temperature and low pressure” liquid refrigerant turns into a "low temperature and low pressure” gaseous refrigerant.
  • Compressor 02 works to change the "low temperature and low pressure” gaseous refrigerant into a "high temperature and high pressure” gaseous refrigerant.
  • the "high temperature and high pressure” gaseous refrigerant is condensed.
  • Heat is released in the heat exchanger 05 (the micro-channel heat exchanger mounted on the outer wall of the inner tank of the water tank 04), thereby heating the water in the inner tank of the water tank, and then becomes a "low-temperature sub-high-pressure” liquid refrigerant, and a "low-temperature sub-high pressure” liquid refrigerant.
  • the refrigerant after passing through the expansion valve 06, becomes a "low temperature and low pressure” liquid refrigerant. This cycle is repeated to heat the water in the water tank to the target temperature.
  • the four-way valve 03 changes direction from left to right and is used to switch between the two opposite processes of heating and defrosting.
  • the exhaust temperature of the space energy compressor is judged to determine whether the refrigerant amount of the space energy is missing, thereby protecting the space energy.
  • the method of judging whether the amount of refrigerant in space energy is missing through the exhaust gas temperature is not high in reliability and relatively simple.
  • the high exhaust temperature is not necessarily caused by the lack of refrigerant, so it cannot effectively realize the control of space energy. protection of.
  • the method for prompting the amount of refrigerant in space energy provided by this application is intended to solve the above technical problems of the existing technology.
  • Figure 2 is a flow chart of a method for prompting the amount of refrigerant in space energy provided by an embodiment of the present application. As shown in Figure 2, the method includes:
  • the temperature data includes the ambient temperature value of the space energy, the actual water temperature value in the space energy water tank, and the exhaust temperature value of the space energy compressor.
  • the temperature data of space energy for example, obtain the ambient temperature value of the space energy through a temperature measurement device or sensor device, the actual water temperature value of the water in the space energy water tank, and the exhaust temperature in the space energy compressor. value.
  • the functional information indicates whether the refrigerant amount of the space energy is normal.
  • the functional information of the space energy is determined. This functional information can be used to characterize whether the amount of refrigerant of the space energy is normal; it can also characterize whether the space energy can operate normally.
  • corresponding prompt information is output based on the obtained functional information of space energy. For example, when the functional information represents that the refrigerant amount of the space energy is normal, a prompt message that the space energy refrigerant amount is normal is output; when the functional information represents that the space energy refrigerant amount is missing, a prompt message that the space energy is in a state of missing refrigerant amount is output. information; when the functional information represents that the space energy is operating normally, a prompt message that the space energy is in a normal working state is output; when the functional information represents that the space energy is operating abnormally, a prompt message that the space energy is in an abnormal working state is output. information.
  • the following steps are used to obtain the temperature data of the space energy, where the temperature data includes the ambient temperature value of the space energy, the actual water temperature value of the space energy, and the exhaust temperature value of the space energy; based on the temperature data, determine The functional information of the space energy indicates whether the refrigerant amount of the space energy is normal; according to the functional information, prompt information is output. The reliability of the judgment of the refrigerant amount of space energy is improved, and effective protection of space energy can be achieved.
  • Figure 3 is a flow chart of another method for prompting the amount of refrigerant in space energy provided by an embodiment of the present application. As shown in Figure 3, the method includes:
  • the temperature data includes the ambient temperature value of the space energy, the actual water temperature value in the space energy water tank, and the exhaust temperature value of the space energy compressor.
  • the temperature data is used to determine functional information of the space energy, and the functional information represents whether the amount of refrigerant of the space energy is normal.
  • the temperature data of space energy for example, obtain the ambient temperature value of the space energy through a temperature measurement device or sensor device, the actual water temperature value of the water in the space energy water tank, and the exhaust temperature in the space energy compressor. value. Then based on these temperature data, the functional information of the space energy can be determined, and this functional information can be used to characterize whether the refrigerant amount of the space energy is normal.
  • step 202 includes the following steps:
  • the ambient temperature value is greater than or equal to the first ambient temperature threshold, the ambient temperature value is less than the second ambient temperature threshold, and the actual water temperature value is less than or equal to the first water temperature threshold, then the first preset threshold is determined to be the target temperature threshold, and the first ambient temperature The threshold is the lowest ambient temperature limit for space operation.
  • the ambient temperature value is greater than or equal to the second ambient temperature threshold, the ambient temperature value is less than the third ambient temperature threshold, the actual water temperature value is greater than the first water temperature threshold, and the actual water temperature value is less than or equal to the second water temperature threshold, then the second preset threshold is determined is the target temperature threshold.
  • the ambient temperature value is greater than or equal to the third ambient temperature threshold, the ambient temperature value is less than the fourth ambient temperature threshold, the actual water temperature value is greater than the second water temperature threshold, and the actual water temperature value is less than or equal to the third water temperature threshold, then the third preset threshold is determined is the target temperature threshold.
  • the fourth preset threshold is determined to be the target temperature threshold.
  • the ambient temperature value and the actual water temperature value in the acquired temperature data their respective corresponding temperature intervals are determined, that is, the ambient temperature interval of the ambient temperature value and the water temperature interval of the actual water temperature value, and then based on the ambient temperature interval and the water temperature interval, determine the target temperature threshold, taking four ambient temperature intervals and four water temperature intervals as an example: If it is determined that the ambient temperature value is within the numerical interval composed of the first ambient temperature threshold and the second ambient temperature threshold, and the actual water temperature value is less than or equal to First water temperature threshold, then determine the first preset threshold as the target temperature threshold, that is, if it is determined that the ambient temperature value is greater than or equal to the first ambient temperature threshold, the ambient temperature value is less than the second ambient temperature threshold, and the actual water temperature value is less than or equal to the first water temperature threshold, then determine the first preset threshold as the target temperature threshold, and the first ambient temperature threshold as the lowest ambient temperature limit that can work in space; if it is determined that the ambient temperature value is within the value composed of the second
  • the exhaust gas temperature value is greater than or equal to the corresponding target temperature threshold at this time, it is determined that the amount of refrigerant in space energy is missing at this time.
  • the functional information representing the amount of refrigerant in space energy is missing, record the missing time, and control the output device to output the first prompt information based on the current time and the missing time.
  • the first prompt information is used to represent the lack of refrigerant amount in space energy, where , the output device includes one or more of lighting equipment, speaker signal equipment, and display equipment.
  • step 204 includes the following steps:
  • the first preset standard is obtained, and the output device is controlled to output the first prompt information according to the first preset standard.
  • the second preset standard is obtained, and the output device is controlled to output the first prompt information according to the second preset standard.
  • the missing moment is recorded, and the output device output is controlled based on the current moment and the missing moment.
  • the first prompt message represents the lack of refrigerant in space energy, prompting the user to perform protective processing such as refrigerant replenishment or shutdown.
  • the output device includes one or more of lighting equipment, speaker signal equipment, and display equipment.
  • Prompt information is output according to different preset standards according to the missing time of the refrigerant: if the difference between the current time and the missing time is greater than the preset time threshold, the first preset standard is obtained, and the output device is controlled to output the first based on the first preset standard. Prompt information.
  • the second preset standard is obtained, and the output device is controlled to output the first prompt information according to the second preset standard.
  • the different preset standards may be different types and quantities of output devices, or may be different strengths of data prompt information of the output devices.
  • the exhaust gas temperature value is less than the corresponding target temperature threshold at this time, it is determined that the amount of refrigerant in the space energy is normal.
  • the output device is controlled to output a second prompt information, and the second prompt information is used to represent that the amount of refrigerant in space energy is normal; wherein, the output equipment includes lighting equipment, speaker signal equipment, and display. one or more types of equipment.
  • the output device is controlled
  • the second prompt message is output, indicating that the amount of refrigerant in the space energy is normal; the output device includes one or more of lighting equipment, speaker signal equipment, and display equipment.
  • the following steps are used: obtain the ambient temperature value of the space energy, the actual water temperature value of the space energy, and the exhaust temperature value of the space energy; determine the ambient temperature value of the ambient temperature value based on the ambient temperature value and the actual water temperature value. interval and the water temperature interval of the actual water temperature value; determine the target temperature threshold based on the ambient temperature interval and water temperature interval; if the exhaust temperature value is greater than or equal to the target temperature threshold, it is determined that the amount of refrigerant in space energy is missing; if the amount of refrigerant in space energy is missing, Then record the missing time, and control the output device to output the first prompt information according to the current time and the missing time.
  • the first prompt information is used to represent the lack of refrigerant amount of the space energy.
  • the space energy is determined. If the amount of refrigerant is normal, the output device is controlled to output the second prompt message. This process comprehensively considers a variety of factors, improves the reliability of the judgment of the refrigerant amount of space energy, and can achieve effective protection of space energy.
  • Figure 4 is a schematic structural diagram of a device for indicating the amount of refrigerant in space energy provided by an embodiment of the present application. As shown in Figure 4, the device includes:
  • the acquisition unit 31 is used to acquire the temperature data of the space energy, where the temperature data includes the ambient temperature value of the space energy, the actual water temperature value of the space energy, and the exhaust temperature value of the space energy.
  • the determination unit 32 is used to determine the functional information of the space energy based on the temperature data.
  • the functional information represents whether the refrigerant amount of the space energy is normal.
  • the processing unit 33 is used to output prompt information according to the function information.
  • Figure 5 is a schematic structural diagram of another device for indicating the amount of refrigerant in space energy provided by an embodiment of the present application. Based on the embodiment shown in Figure 4, as shown in Figure 5, the device includes:
  • the determining unit 32 includes:
  • the first determination sub-unit 321 is used to determine the target temperature threshold based on the ambient temperature value and the actual water temperature value.
  • the second determination subunit 322 is used to determine that the amount of refrigerant in space energy is missing if the exhaust gas temperature value is greater than or equal to the target temperature threshold.
  • the third determination subunit 323 is used to determine that the amount of refrigerant in the space energy is normal if the exhaust temperature value is less than the target temperature threshold.
  • the first determining subunit 321 includes:
  • the first processing module 3211 is used to determine the ambient temperature range of the ambient temperature value and the water temperature range of the actual water temperature value based on the ambient temperature value and the actual water temperature value.
  • the second processing module 3212 is used to determine the target temperature threshold according to the ambient temperature interval and the water temperature interval.
  • the first determination subunit 321 is specifically used to:
  • the ambient temperature value is greater than or equal to the first ambient temperature threshold, the ambient temperature value is less than the second ambient temperature threshold, and the actual water temperature value is less than or equal to the first water temperature threshold, then the first preset threshold is determined to be the target temperature threshold, and the first ambient temperature The threshold is the lowest ambient temperature limit for space operation.
  • the ambient temperature value is greater than or equal to the second ambient temperature threshold, the ambient temperature value is less than the third ambient temperature threshold, the actual water temperature value is greater than the first water temperature threshold, and the actual water temperature value is less than or equal to the second water temperature threshold, then the second preset threshold is determined is the target temperature threshold.
  • the ambient temperature value is greater than or equal to the third ambient temperature threshold, the ambient temperature value is less than the fourth ambient temperature threshold, the actual water temperature value is greater than the second water temperature threshold, and the actual water temperature value is less than or equal to the third water temperature threshold, then the third preset threshold is determined is the target temperature threshold.
  • the fourth preset threshold is determined to be the target temperature threshold.
  • the processing unit 33 includes:
  • the first processing subunit 331 is used to record the missing time if the functional information representing the amount of refrigerant in space energy is missing, and control the output device to output the first prompt information based on the current time and the missing time.
  • the first prompt information is used to represent the space energy. The amount of available refrigerant is missing.
  • the second processing subunit 332 is used to control the output device to output second prompt information if the functional information indicates that the refrigerant amount of the space energy is normal.
  • the second prompt information is used to indicate that the refrigerant amount of the space energy is normal.
  • the output device includes one or more of a lighting device, a speaker signal device, and a display device.
  • the first processing subunit 331 is specifically used to:
  • the first preset standard is obtained, and the output device is controlled to output the first prompt information according to the first preset standard.
  • the second preset standard is obtained, and the output device is controlled to output the first prompt information according to the second preset standard.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in FIG. 6 , the electronic device includes: a memory 51 and a processor 52 .
  • Memory 51 memory used to store instructions executable by the processor 52.
  • the processor 52 is configured to execute the method provided in the above embodiment.
  • Figure 7 is a block diagram of a terminal device provided by an embodiment of the present application.
  • the device can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc. .
  • Device 800 may include one or more of the following components: processing component 802 , memory 804 , power supply component 806 , multimedia component 808 , audio component 810 , input/output (I/O) interface 812 , sensor component 814 , and communications component 816 .
  • Processing component 802 generally controls the overall operations of device 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operations at device 800 . Examples of such data include instructions for any application or method operating on device 800, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 804 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 806 provides power to the various components of device 800.
  • Power supply components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 800 .
  • Multimedia component 808 includes a screen that provides an output interface between device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. A touch sensor can not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • multimedia component 808 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) configured to receive external audio signals when device 800 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signal may be further stored in memory 804 or sent via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and the peripheral interface module.
  • the peripheral interface module may Be it the keyboard, click wheel, buttons, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 814 includes one or more sensors that provide various aspects of status assessment for device 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the device 800, the sensor component 814 can also detect the position change of the device 800 or a component of the device 800, the user The presence or absence of contact with device 800 , device 800 orientation or acceleration/deceleration and temperature changes of device 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between apparatus 800 and other devices.
  • Device 800 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • communications component 816 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 800 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, which are executable by the processor 820 of the apparatus 800 to complete the above method is also provided.
  • non-transitory computer-readable storage media may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • Embodiments of the present application also provide a non-transitory computer-readable storage medium.
  • the storage medium When instructions in the storage medium are executed by a processor of an electronic device, the electronic device can execute the method provided by the above embodiments.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes: a computer program.
  • the computer program is stored in a readable storage medium.
  • At least one processor of the electronic device can read the computer program from the readable storage medium.
  • At least A processor executes a computer program so that the electronic device executes the solution provided by any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提供一种太空能的冷媒量的提示方法、装置和设备。该方法包括:获取太空能的温度数据,其中,温度数据包括太空能所处的环境温度值、太空能的水箱中的实际水温值以及太空能的压缩机的排气温度值;根据温度数据,确定太空能的功能信息,功能信息表征太空能的冷媒量是否正常;根据功能信息,输出提示信息。这个过程提高了对太空能的冷媒量判断的可靠性,能够实现对太空能的有效保护。

Description

太空能的冷媒量的提示方法、装置和设备
本申请要求于2022年03月28日提交中国专利局、申请号为202210312168.0、申请名称为“太空能的冷媒量的提示方法、装置和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及太空能技术领域,尤其涉及一种太空能的冷媒量的提示方法、装置和设备。
背景技术
太空能的管道连接有多个器件,焊点多、接头多,一旦焊接、安装不紧密,就容易导致冷媒缺失,冷媒的缺失会导致机器损坏、太空能热水制热能力降低。
现有技术中,通过判断太空能压缩机的排气温度来判断太空能的冷媒量是否缺失,进而保护太空能。
然而现有技术中,判断太空能的冷媒量是否缺失的方式可靠性不高、较为单一,不能有效的实现对太空能的保护。
发明内容
本申请提供一种太空能的冷媒量的提示方法、装置和设备,用以解决判断太空能的冷媒量是否缺失的方式可靠性不高、较为单一,不能有效的实现对太空能的保护的问题。
第一方面,本申请提供一种太空能的冷媒量的提示方法,所述方法包括:
获取太空能的温度数据,其中,所述温度数据包括所述太空能所处的环境温度值、所述太空能的水箱中的实际水温值以及所述太空能的压缩机的排气温度值;
根据所述温度数据,确定所述太空能的功能信息,所述功能信息表征所述太空能的冷媒量是否正常;
根据所述功能信息,输出提示信息。
在可选的一种实施方式中,根据所述温度数据,确定所述太空能的功能信息,包括:
根据所述环境温度值和所述实际水温值,确定目标温度阈值;
若所述排气温度值大于等于所述目标温度阈值,则确定所述太空能的冷媒量缺失;
若所述排气温度值小于所述目标温度阈值,则确定所述太空能的冷媒量正常。
在可选的一种实施方式中,根据所述环境温度值和所述实际水温值,确定目标温度阈值,包括:
根据所述环境温度值和所述实际水温值,确定所述环境温度值的环境温度区间和所述实际水温值的水温区间;
根据所述环境温度区间和所述水温区间,确定所述目标温度阈值。
在可选的一种实施方式中,所述方法包括:
若确定所述环境温度值大于等于第一环境温度阈值、所述环境温度值小于第二环境温度阈值、且所述实际水温值小于等于第一水温阈值,则确定第一预设阈值为目标温度阈值,所述第一环境温度阈值为所述太空能工作的最低环境温度限值;
若确定所述环境温度值大于等于第二环境温度阈值、所述环境温度值小于第三环境温度阈值、所述实际水温值大于第一水温阈值、且所述实际水温值小于等于第二水温阈值,则确定第二预设阈值为目标温度阈值;
若确定所述环境温度值大于等于第三环境温度阈值、所述环境温度值小于第四环境温度阈值、所述实际水温值大于第二水温阈值、且所述实际水温值小于等于第三水温阈值,则确定第三预设阈值为目标温度阈值;
若确定所述环境温度值大于等于第四环境温度阈值、所述实际水温值大于第三水温阈值、且所述实际水温值小于等于第四水温阈值,则确定第四预设阈值为目标温度阈值。
在可选的一种实施方式中,根据所述功能信息,输出提示信息,包括:
若所述功能信息表征所述太空能的冷媒量缺失,则记录缺失时刻,并根据当前时刻与所述缺失时刻,控制输出设备输出第一提示信息,所述第一提示信息用于表征所述太空能的冷媒量缺失;
若所述功能信息表征所述太空能的冷媒量正常,则控制输出设备输出第二提示信息,所述第二提示信息用于表征所述太空能的冷媒量正常;
其中,所述输出设备包括灯光设备、音箱信号设备、显示设备中的一种或多种。
在可选的一种实施方式中,根据当前时刻与所述缺失时刻,控制输出设备输出第一提示信息,包括:
若所述当前时刻与所述缺失时刻的差值,大于预设时间阈值,则获取第一预设标准,根据第一预设标准控制输出设备输出第一提示信息;
若所述当前时刻与所述缺失时刻的差值,小于等于预设时间阈值,则获取第二预设标准,根据第二预设标准控制输出设备输出第一提示信息。
第二方面,本申请提供一种太空能的冷媒量的提示装置,所述装置包括:
获取单元,用于获取太空能的温度数据,其中,所述温度数据包括所述太空能所处的环境温度值、所述太空能的水箱中的实际水温值以及所述太空能的压缩机的排气温度值;
确定单元,用于根据所述温度数据,确定所述太空能的功能信息,所述功能信息表征所述太空能的冷媒量是否正常;
处理单元,用于根据所述功能信息,输出提示信息。
在可选的一种实施方式中,所述确定单元包括:
第一确定子单元,用于根据所述环境温度值和所述实际水温值,确定目标温度阈值;
第二确定子单元,用于若所述排气温度值大于等于所述目标温度阈值,则确定所述太空能的冷媒量缺失;
第三确定子单元,用于若所述排气温度值小于所述目标温度阈值,则确定所述太空能的冷媒量正常。
在可选的一种实施方式中,所述第一确定子单元包括:
第一处理模块,用于根据所述环境温度值和所述实际水温值,确定所述环境温度值的环境温度区间和所述实际水温值的水温区间;
第二处理模块,用于根据所述环境温度区间和所述水温区间,确定所述目标温度阈值。
在可选的一种实施方式中,所述第一确定子单元具体用于:
若确定所述环境温度值大于等于第一环境温度阈值、所述环境温度值小于第二环境温度阈值、且所述实际水温值小于等于第一水温阈值,则确定第一预设阈值为目标温度阈值,所述第一环境温度阈值为所述太空能工作的最低环境温度限值;
若确定所述环境温度值大于等于第二环境温度阈值、所述环境温度值小于第三环境温度阈值、所述实际水温值大于第一水温阈值、且所述实际水温值小于等于第二水温阈值,则确定第二预设阈值为目标温度阈值;
若确定所述环境温度值大于等于第三环境温度阈值、所述环境温度值小于第四环境温度阈值、所述实际水温值大于第二水温阈值、且所述实际水温值小于等于第三水温阈值,则确定第三预设阈值为目标温度阈值;
若确定所述环境温度值大于等于第四环境温度阈值、所述实际水温值大于第三水温阈值、且所述实际水温值小于等于第四水温阈值,则确定第四预设阈值为目标温度阈值。
在可选的一种实施方式中,所述处理单元包括:
第一处理子单元,用于若所述功能信息表征所述太空能的冷媒量缺失,则记录缺失时 刻,并根据当前时刻与所述缺失时刻,控制输出设备输出第一提示信息,所述第一提示信息用于表征所述太空能的冷媒量缺失;
第二处理子单元,用于若所述功能信息表征所述太空能的冷媒量正常,则控制输出设备输出第二提示信息,所述第二提示信息用于表征所述太空能的冷媒量正常;
其中,所述输出设备包括灯光设备、音箱信号设备、显示设备中的一种或多种。
在可选的一种实施方式中,所述第一处理子单元具体用于:
若所述当前时刻与所述缺失时刻的差值,大于预设时间阈值,则获取第一预设标准,根据第一预设标准控制输出设备输出第一提示信息;
若所述当前时刻与所述缺失时刻的差值,小于等于预设时间阈值,则获取第二预设标准,根据第二预设标准控制输出设备输出第一提示信息。
第三方面,本申请提供一种电子设备,所述电子设备包括:存储器,处理器;
存储器;用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为执行如第一方面所述的方法。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如第一方面所述的方法。
第五方面,本申请提供一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现如第一方面所述的方法。
本申请提供的太空能的冷媒量的提示方法,通过以下步骤:获取太空能的温度数据,其中,温度数据包括太空能所处的环境温度值、太空能的实际水温值以及太空能的排气温度值;根据温度数据,确定太空能的功能信息,功能信息表征太空能的冷媒量是否正常;根据功能信息,输出提示信息。提高了对太空能的冷媒量判断的可靠性,能够实现对太空能的有效保护。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1为本申请实施例提供的一种太空能的结构示意图;
图2为本申请实施例提供的一种太空能的冷媒量的提示方法的流程图;
图3为本申请实施例提供的另一种太空能的冷媒量的提示方法的流程图;
图4为本申请实施例提供的一种太空能的冷媒量的提示装置的结构示意图;
图5为本申请实施例提供的另一种太空能的冷媒量的提示装置的结构示意图;
图6为本申请实施例提供的一种电子设备的结构示意图;
图7是本申请实施例提供的一种终端设备的框图。
通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
太空能的管道连接有蒸发器、压缩机、四通阀、水箱、冷凝器、膨胀阀等多个器件,焊点多、接头多,一旦焊接、安装不紧密,就容易导致冷媒缺失。
一个示例中,图1为本申请实施例提供的一种太空能的结构示意图,如图1所示,太空能的工作流程为:太空能蒸发器01,吸收太阳和空气中的热量,将“低温低压”液态冷媒,变为“低温低压”的气态冷媒,压缩机02做功将“低温低压”的气态冷媒,变为“高温高压”的气态冷媒,“高温高压”的气态的冷媒,在冷凝器05(水箱04内胆外壁上贴装的微通道换热器)中放热,从而加热水箱内胆中的水,然后变为“低温次高压”的液态冷媒,“低温次高压”的液态冷媒,经过膨胀阀06后,变为“低温低压”的液态冷媒,如此循环反复,将水箱内的水加热到目标温度。四通阀03起换向左右,用来切换制热和化霜两个相反的过程。
当系统充注冷媒量不足,或者系统有漏点导致冷媒缺失,最主要的表现就是水温上升慢,压缩机排气温度过高,进而导致机器损坏、太空能热水制热能力降低。
现有技术中,通过判断太空能压缩机的排气温度来判断太空能的冷媒量是否缺失,进而保护太空能。
然而现有技术中,通过排气温度来判断太空能的冷媒量是否缺失的方式可靠性不高、较为单一,排气温度高,不一定是缺冷媒导致的,因此不能有效的实现对太空能的保护。
本申请提供的太空能的冷媒量的提示方法,旨在解决现有技术的如上技术问题。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术 问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。
图2为本申请实施例提供的一种太空能的冷媒量的提示方法的流程图,如图2所示,该方法包括:
101、获取太空能的温度数据,其中,温度数据包括太空能所处的环境温度值、太空能的水箱中的实际水温值以及太空能的压缩机的排气温度值。
示例性地,获取太空能的温度数据,例如,通过测温设备或者传感器装置获取太空能所处的环境温度值、太空能水箱中水的的实际水温值以及太空能压缩机中的排气温度值。
102、根据温度数据,确定太空能的功能信息,功能信息表征太空能的冷媒量是否正常。
示例性地,根据温度数据,确定太空能的功能信息,该功能信息可以用于表征太空能的冷媒量是否正常;也可以表征太空能是否能够正常运行。
103、根据功能信息,输出提示信息。
示例性地,根据获得的太空能的功能信息,输出相对应的提示信息。例如,当功能信息表征该太空能的冷媒量正常时,输出该太空能冷媒量正常的提示信息,当功能信息表征该太空能冷媒量缺失时,输出该太空能正处于冷媒量缺失状态的提示信息;当功能信息表征该太空能正常运行时,输出该太空能正处于正常工作状态的提示信息,当功能信息表征该太空能非正常运行时,输出该太空能正处于非正常工作状态的提示信息。
本实施例中,通过以下步骤:获取太空能的温度数据,其中,温度数据包括太空能所处的环境温度值、太空能的实际水温值以及太空能的排气温度值;根据温度数据,确定太空能的功能信息,功能信息表征太空能的冷媒量是否正常;根据功能信息,输出提示信息。提高了对太空能的冷媒量判断的可靠性,能够实现对太空能的有效保护。
图3为本申请实施例提供的另一种太空能的冷媒量的提示方法的流程图,如图3所示,该方法包括:
201、获取太空能的温度数据,其中,温度数据包括太空能所处的环境温度值、太空能的水箱中的实际水温值以及太空能的压缩机的排气温度值。
一个示例中,温度数据用于确定太空能的功能信息,功能信息表征太空能的冷媒量是否正常。
示例性地,获取太空能的温度数据,例如,通过测温设备或者传感器装置获取太空能所处的环境温度值、太空能水箱中水的的实际水温值以及太空能压缩机中的排气温度值。 进而可以根据这些温度数据,确定太空能的功能信息,该功能信息可以用于表征太空能的冷媒量是否正常。
202、根据环境温度值和实际水温值,确定环境温度值的环境温度区间和实际水温值的水温区间;根据环境温度区间和水温区间,确定目标温度阈值。
一个示例中,步骤202包括以下步骤:
若确定环境温度值大于等于第一环境温度阈值、环境温度值小于第二环境温度阈值、且实际水温值小于等于第一水温阈值,则确定第一预设阈值为目标温度阈值,第一环境温度阈值为太空能工作的最低环境温度限值。
若确定环境温度值大于等于第二环境温度阈值、环境温度值小于第三环境温度阈值、实际水温值大于第一水温阈值、且实际水温值小于等于第二水温阈值,则确定第二预设阈值为目标温度阈值。
若确定环境温度值大于等于第三环境温度阈值、环境温度值小于第四环境温度阈值、实际水温值大于第二水温阈值、且实际水温值小于等于第三水温阈值,则确定第三预设阈值为目标温度阈值。
若确定环境温度值大于等于第四环境温度阈值、实际水温值大于第三水温阈值、且实际水温值小于等于第四水温阈值,则确定第四预设阈值为目标温度阈值。
示例性地,根据获取的温度数据中的环境温度值和实际水温值,确定其各自对应的温度区间,即环境温度值的环境温度区间和实际水温值的水温区间,再根据环境温度区间和水温区间,确定目标温度阈值,以四个环境温度区间和四个水温区间为例:若确定环境温度值在第一环境温度阈值和第二环境温度阈构成的数值区间内,且实际水温值小于等于第一水温阈值,则确定第一预设阈值为目标温度阈值,即若确定环境温度值大于等于第一环境温度阈值、环境温度值小于第二环境温度阈值、且实际水温值小于等于第一水温阈值,则确定第一预设阈值为目标温度阈值,第一环境温度阈值为太空能工作的最低环境温度限值;若确定环境温度值在第二环境温度阈值和第三环境温度阈构成的数值区间内,并且实际水温值在第一水温阈值和第二水温阈值所构成的数值区间内,则确定第二预设阈值为目标温度阈值,即若确定环境温度值大于等于第二环境温度阈值、环境温度值小于第三环境温度阈值、实际水温值大于第一水温阈值、且实际水温值小于等于第二水温阈值,则确定第二预设阈值为目标温度阈值;若确定环境温度值在第三环境温度阈值和第四环境温度阈构成的数值区间内,并且实际水温值在第二水温阈值和第三水温阈值所构成的数值区间内,则确定第三预设阈值为目标温度阈值,即若确定环境温度值大于等于第三环境温度阈值、 环境温度值小于第四环境温度阈值、实际水温值大于第二水温阈值、且实际水温值小于等于第三水温阈值,则确定第三预设阈值为目标温度阈值;若确定环境温度值大于等于第四环境温度阈值、实际水温值大于第三水温阈值、且实际水温值小于等于第四水温阈值,则确定第四预设阈值为目标温度阈值。
203、若排气温度值大于等于目标温度阈值,则确定太空能的冷媒量缺失。
示例性地,若排气温度值大于等于此时对应的目标温度阈值,则确定此时太空能的冷媒量缺失。
204、若功能信息表征太空能的冷媒量缺失,则记录缺失时刻,并根据当前时刻与缺失时刻,控制输出设备输出第一提示信息,第一提示信息用于表征太空能的冷媒量缺失,其中,输出设备包括灯光设备、音箱信号设备、显示设备中的一种或多种。
一个示例中,步骤204包括以下步骤:
若当前时刻与缺失时刻的差值,大于预设时间阈值,则获取第一预设标准,根据第一预设标准控制输出设备输出第一提示信息。
若当前时刻与缺失时刻的差值,小于等于预设时间阈值,则获取第二预设标准,根据第二预设标准控制输出设备输出第一提示信息。
示例性地,若由温度数据:环境温度、实际水温温度、排气温度确定的功能信息表征太空能的冷媒量缺失,则记录下缺失的时刻,并根据当前时刻与缺失时刻,控制输出设备输出第一提示信息,表征太空能的冷媒量缺失,提示用户进行冷媒补充或者停机等保护处理,其中,输出设备包括灯光设备、音箱信号设备、显示设备中的一种或多种。根据冷媒的缺失时长按照不同预设标准输出提示信息:若当前时刻与缺失时刻的差值,大于预设时间阈值,则获取第一预设标准,根据第一预设标准控制输出设备输出第一提示信息。若当前时刻与缺失时刻的差值,小于等于预设时间阈值,则获取第二预设标准,根据第二预设标准控制输出设备输出第一提示信息。其中不同预设标准可以是输出设备的种类、数量不同,也可以是输出设备数据提示信息的强度不同。
205、若排气温度值小于目标温度阈值,则确定太空能的冷媒量正常。
示例性地,若排气温度值小于此时对应的目标温度阈值,则确定太空能的冷媒量正常。
206、若功能信息表征太空能的冷媒量正常,则控制输出设备输出第二提示信息,第二提示信息用于表征太空能的冷媒量正常;其中,输出设备包括灯光设备、音箱信号设备、显示设备中的一种或多种。
示例性地,若由温度数据确定的功能信息表征太空能的冷媒量正常,则控制输出设备 输出第二提示信息,表示太空能的冷媒量正常;其中,输出设备包括灯光设备、音箱信号设备、显示设备中的一种或多种。
本实施例中,通过以下步骤:获取太空能所处的环境温度值、太空能的实际水温值以及太空能的排气温度值;根据环境温度值和实际水温值,确定环境温度值的环境温度区间和实际水温值的水温区间;根据环境温度区间和水温区间,确定目标温度阈值;若排气温度值大于等于目标温度阈值,则确定太空能的冷媒量缺失;若太空能的冷媒量缺失,则记录缺失时刻,并根据当前时刻与缺失时刻,控制输出设备输出第一提示信息,第一提示信息用于表征太空能的冷媒量缺失,若排气温度值小于目标温度阈值,则确定太空能的冷媒量正常,则控制输出设备输出第二提示信息。这个过程全面考虑了多种因素,提高了对太空能的冷媒量判断的可靠性,能够实现对太空能的有效保护。
图4为本申请实施例提供的一种太空能的冷媒量的提示装置的结构示意图,如图4所示,该装置包括:
获取单元31,用于获取太空能的温度数据,其中,温度数据包括太空能所处的环境温度值、太空能的实际水温值以及太空能的排气温度值。
确定单元32,用于根据温度数据,确定太空能的功能信息,功能信息表征太空能的冷媒量是否正常。
处理单元33,用于根据功能信息,输出提示信息。
图5为本申请实施例提供的另一种太空能的冷媒量的提示装置的结构示意图,在图4所示实施例的基础上,如图5所示,该装置包括:
一个示例中,确定单元32包括:
第一确定子单元321,用于根据环境温度值和实际水温值,确定目标温度阈值。
第二确定子单元322,用于若排气温度值大于等于目标温度阈值,则确定太空能的冷媒量缺失。
第三确定子单元323,用于若排气温度值小于目标温度阈值,则确定太空能的冷媒量正常。
一个示例中,第一确定子单元321包括:
第一处理模块3211,用于根据环境温度值和实际水温值,确定环境温度值的环境温度区间和实际水温值的水温区间。
第二处理模块3212,用于根据环境温度区间和水温区间,确定目标温度阈值。
一个示例中,第一确定子单元321具体用于:
若确定环境温度值大于等于第一环境温度阈值、环境温度值小于第二环境温度阈值、且实际水温值小于等于第一水温阈值,则确定第一预设阈值为目标温度阈值,第一环境温度阈值为太空能工作的最低环境温度限值。
若确定环境温度值大于等于第二环境温度阈值、环境温度值小于第三环境温度阈值、实际水温值大于第一水温阈值、且实际水温值小于等于第二水温阈值,则确定第二预设阈值为目标温度阈值。
若确定环境温度值大于等于第三环境温度阈值、环境温度值小于第四环境温度阈值、实际水温值大于第二水温阈值、且实际水温值小于等于第三水温阈值,则确定第三预设阈值为目标温度阈值。
若确定环境温度值大于等于第四环境温度阈值、实际水温值大于第三水温阈值、且实际水温值小于等于第四水温阈值,则确定第四预设阈值为目标温度阈值。
一个示例中,处理单元33包括:
第一处理子单元331,用于若功能信息表征太空能的冷媒量缺失,则记录缺失时刻,并根据当前时刻与缺失时刻,控制输出设备输出第一提示信息,第一提示信息用于表征太空能的冷媒量缺失。
第二处理子单元332,用于若功能信息表征太空能的冷媒量正常,则控制输出设备输出第二提示信息,第二提示信息用于表征太空能的冷媒量正常。
其中,输出设备包括灯光设备、音箱信号设备、显示设备中的一种或多种。
一个示例中,第一处理子单元331具体用于:
若当前时刻与缺失时刻的差值,大于预设时间阈值,则获取第一预设标准,根据第一预设标准控制输出设备输出第一提示信息。
若当前时刻与缺失时刻的差值,小于等于预设时间阈值,则获取第二预设标准,根据第二预设标准控制输出设备输出第一提示信息。
图6为本申请实施例提供的一种电子设备的结构示意图,如图6所示,电子设备包括:存储器51,处理器52。
存储器51;用于存储处理器52可执行指令的存储器。
其中,处理器52被配置为执行如上述实施例提供的方法。
图7是本申请实施例提供的一种终端设备的框图,该设备可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以 是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本申请实施例还提供了一种非临时性计算机可读存储介质,当该存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行上述实施例提供的方法。
本申请实施例还提供了一种计算机程序产品,计算机程序产品包括:计算机程序,计算机程序存储在可读存储介质中,电子设备的至少一个处理器可以从可读存储介质读取计算机程序,至少一个处理器执行计算机程序使得电子设备执行上述任一实施例提供的方案。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实 施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。

Claims (15)

  1. 一种太空能的冷媒量的提示方法,其特征在于,所述方法包括:
    获取太空能的温度数据,其中,所述温度数据包括所述太空能所处的环境温度值、所述太空能的水箱中的实际水温值以及所述太空能的压缩机的排气温度值;
    根据所述温度数据,确定所述太空能的功能信息,所述功能信息表征所述太空能的冷媒量是否正常;
    根据所述功能信息,输出提示信息。
  2. 根据权利要求1所述的方法,其特征在于,根据所述温度数据,确定所述太空能的功能信息,包括:
    根据所述环境温度值和所述实际水温值,确定目标温度阈值;
    若所述排气温度值大于等于所述目标温度阈值,则确定所述太空能的冷媒量缺失;
    若所述排气温度值小于所述目标温度阈值,则确定所述太空能的冷媒量正常。
  3. 根据权利要求2所述的方法,其特征在于,根据所述环境温度值和所述实际水温值,确定目标温度阈值,包括:
    根据所述环境温度值和所述实际水温值,确定所述环境温度值的环境温度区间和所述实际水温值的水温区间;
    根据所述环境温度区间和所述水温区间,确定所述目标温度阈值。
  4. 根据权利要求3所述的方法,其特征在于,所述方法包括:
    若确定所述环境温度值大于等于第一环境温度阈值、所述环境温度值小于第二环境温度阈值、且所述实际水温值小于等于第一水温阈值,则确定第一预设阈值为目标温度阈值,所述第一环境温度阈值为所述太空能工作的最低环境温度限值;
    若确定所述环境温度值大于等于第二环境温度阈值、所述环境温度值小于第三环境温度阈值、所述实际水温值大于第一水温阈值、且所述实际水温值小于等于第二水温阈值,则确定第二预设阈值为目标温度阈值;
    若确定所述环境温度值大于等于第三环境温度阈值、所述环境温度值小于第四环境温度阈值、所述实际水温值大于第二水温阈值、且所述实际水温值小于等于第三水温阈值,则确定第三预设阈值为目标温度阈值;
    若确定所述环境温度值大于等于第四环境温度阈值、所述实际水温值大于第三水温阈值、且所述实际水温值小于等于第四水温阈值,则确定第四预设阈值为目标温度阈值。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,根据所述功能信息,输出提 示信息,包括:
    若所述功能信息表征所述太空能的冷媒量缺失,则记录缺失时刻,并根据当前时刻与所述缺失时刻,控制输出设备输出第一提示信息,所述第一提示信息用于表征所述太空能的冷媒量缺失;
    若所述功能信息表征所述太空能的冷媒量正常,则控制输出设备输出第二提示信息,所述第二提示信息用于表征所述太空能的冷媒量正常;
    其中,所述输出设备包括灯光设备、音箱信号设备、显示设备中的一种或多种。
  6. 根据权利要求5所述的方法,其特征在于,根据当前时刻与所述缺失时刻,控制输出设备输出第一提示信息,包括:
    若所述当前时刻与所述缺失时刻的差值,大于预设时间阈值,则获取第一预设标准,根据第一预设标准控制输出设备输出第一提示信息;
    若所述当前时刻与所述缺失时刻的差值,小于等于预设时间阈值,则获取第二预设标准,根据第二预设标准控制输出设备输出第一提示信息。
  7. 一种太空能的冷媒量的提示装置,其特征在于,所述装置包括:
    获取单元,用于获取太空能的温度数据,其中,所述温度数据包括所述太空能所处的环境温度值、所述太空能的水箱中的实际水温值以及所述太空能的压缩机的排气温度值;
    确定单元,用于根据所述温度数据,确定所述太空能的功能信息,所述功能信息表征所述太空能的冷媒量是否正常;
    处理单元,用于根据所述功能信息,输出提示信息。
  8. 根据权利要求7所述的装置,其特征在于,所述确定单元包括:
    第一确定子单元,用于根据所述环境温度值和所述实际水温值,确定目标温度阈值;
    第二确定子单元,用于若所述排气温度值大于等于所述目标温度阈值,则确定所述太空能的冷媒量缺失;
    第三确定子单元,用于若所述排气温度值小于所述目标温度阈值,则确定所述太空能的冷媒量正常。
  9. 根据权利要求8所述的装置,其特征在于,所述第一确定子单元包括:
    第一处理模块,用于根据所述环境温度值和所述实际水温值,确定所述环境温度值的环境温度区间和所述实际水温值的水温区间;
    第二处理模块,用于根据所述环境温度区间和所述水温区间,确定所述目标温度阈值。
  10. 根据权利要求9所述的装置,其特征在于,所述第一确定子单元具体用于:
    若确定所述环境温度值大于等于第一环境温度阈值、所述环境温度值小于第二环境温度阈值、且所述实际水温值小于等于第一水温阈值,则确定第一预设阈值为目标温度阈值,所述第一环境温度阈值为所述太空能工作的最低环境温度限值;
    若确定所述环境温度值大于等于第二环境温度阈值、所述环境温度值小于第三环境温度阈值、所述实际水温值大于第一水温阈值、且所述实际水温值小于等于第二水温阈值,则确定第二预设阈值为目标温度阈值;
    若确定所述环境温度值大于等于第三环境温度阈值、所述环境温度值小于第四环境温度阈值、所述实际水温值大于第二水温阈值、且所述实际水温值小于等于第三水温阈值,则确定第三预设阈值为目标温度阈值;
    若确定所述环境温度值大于等于第四环境温度阈值、所述实际水温值大于第三水温阈值、且所述实际水温值小于等于第四水温阈值,则确定第四预设阈值为目标温度阈值。
  11. 根据权利要求7-10任一项所述的装置,其特征在于,所述处理单元包括:
    第一处理子单元,用于若所述功能信息表征所述太空能的冷媒量缺失,则记录缺失时刻,并根据当前时刻与所述缺失时刻,控制输出设备输出第一提示信息,所述第一提示信息用于表征所述太空能的冷媒量缺失;
    第二处理子单元,用于若所述功能信息表征所述太空能的冷媒量正常,则控制输出设备输出第二提示信息,所述第二提示信息用于表征所述太空能的冷媒量正常;
    其中,所述输出设备包括灯光设备、音箱信号设备、显示设备中的一种或多种。
  12. 根据权利要求11所述的装置,其特征在于,所述第一处理子单元具体用于:
    若所述当前时刻与所述缺失时刻的差值,大于预设时间阈值,则获取第一预设标准,根据第一预设标准控制输出设备输出第一提示信息;
    若所述当前时刻与所述缺失时刻的差值,小于等于预设时间阈值,则获取第二预设标准,根据第二预设标准控制输出设备输出第一提示信息。
  13. 一种电子设备,其特征在于,所述电子设备包括:存储器,处理器;
    存储器;用于存储所述处理器可执行指令的存储器;
    其中,所述处理器被配置为执行如权利要求1-6任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现如权利要求1-6任一项所述的方法。
  15. 一种计算机程序产品,其特征在于,包括计算机程序,该计算机程序被处理 器执行时实现权利要求1-6中任一项所述的方法。
PCT/CN2023/084523 2022-03-28 2023-03-28 太空能的冷媒量的提示方法、装置和设备 WO2023185885A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210312168.0A CN114963602B (zh) 2022-03-28 2022-03-28 太空能的冷媒量的提示方法、装置和设备
CN202210312168.0 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023185885A1 true WO2023185885A1 (zh) 2023-10-05

Family

ID=82971402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084523 WO2023185885A1 (zh) 2022-03-28 2023-03-28 太空能的冷媒量的提示方法、装置和设备

Country Status (2)

Country Link
CN (1) CN114963602B (zh)
WO (1) WO2023185885A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114963602B (zh) * 2022-03-28 2024-03-12 青岛海尔新能源电器有限公司 太空能的冷媒量的提示方法、装置和设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328678A (en) * 1979-06-01 1982-05-11 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Refrigerant compressor protecting device
CN105241070A (zh) * 2015-11-06 2016-01-13 珠海格力电器股份有限公司 空气能热水器缺氟保护控制方法、装置和空气能热水器
CN105674574A (zh) * 2016-01-25 2016-06-15 珠海格力电器股份有限公司 空气能热水器及其控制装置和控制方法
CN107300279A (zh) * 2017-08-09 2017-10-27 珠海格力电器股份有限公司 用于检测定频风冷冷水机组缺冷媒的方法
CN111442570A (zh) * 2020-03-13 2020-07-24 青岛经济技术开发区海尔热水器有限公司 太空能系统的控制方法、装置、设备及存储介质
CN112032935A (zh) * 2020-08-24 2020-12-04 Tcl空调器(中山)有限公司 一种空调器缺氟保护的控制方法、空调器及存储介质
CN114963602A (zh) * 2022-03-28 2022-08-30 青岛海尔新能源电器有限公司 太空能的冷媒量的提示方法、装置和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755617B2 (ja) * 1984-09-17 1995-06-14 株式会社ゼクセル 車両用空気調和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328678A (en) * 1979-06-01 1982-05-11 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Refrigerant compressor protecting device
CN105241070A (zh) * 2015-11-06 2016-01-13 珠海格力电器股份有限公司 空气能热水器缺氟保护控制方法、装置和空气能热水器
CN105674574A (zh) * 2016-01-25 2016-06-15 珠海格力电器股份有限公司 空气能热水器及其控制装置和控制方法
CN107300279A (zh) * 2017-08-09 2017-10-27 珠海格力电器股份有限公司 用于检测定频风冷冷水机组缺冷媒的方法
CN111442570A (zh) * 2020-03-13 2020-07-24 青岛经济技术开发区海尔热水器有限公司 太空能系统的控制方法、装置、设备及存储介质
CN112032935A (zh) * 2020-08-24 2020-12-04 Tcl空调器(中山)有限公司 一种空调器缺氟保护的控制方法、空调器及存储介质
CN114963602A (zh) * 2022-03-28 2022-08-30 青岛海尔新能源电器有限公司 太空能的冷媒量的提示方法、装置和设备

Also Published As

Publication number Publication date
CN114963602B (zh) 2024-03-12
CN114963602A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
KR101814161B1 (ko) 전자기기 제어 방법 및 장치
JP6345793B2 (ja) 着呼処理方法および装置
US20160210034A1 (en) Method and apparatus for switching display mode
EP3151526B1 (en) Reminding method and device thereof
WO2019080614A1 (zh) 防止终端误触的方法及装置
WO2023185885A1 (zh) 太空能的冷媒量的提示方法、装置和设备
WO2016119495A1 (zh) 语音提示方法及装置
US10042328B2 (en) Alarm setting method and apparatus, and storage medium
CN107450950B (zh) 启动指令处理方法及装置
CN106034323A (zh) 基于无线终端的数据连接自动恢复方法及相关装置
CN114543263B (zh) 一种盘管温度控制方法、盘管温度控制装置及存储介质
CN114567696A (zh) 应用控制方法、应用控制装置及存储介质
CN109803085A (zh) 控制摄像头摄像的方法及装置
CN113408604A (zh) 抽真空结果判定方法、装置、设备及存储介质
CN115095966B (zh) 控制方法、装置、通信设备及存储介质
CN112462963A (zh) 非接触手势控制方法、装置及存储介质
CN114811749B (zh) 一种空调及其控制方法、装置及存储介质
CN114738977B (zh) 空调弱磁角度控制方法、装置及存储介质
CN115095968B (zh) 转矩补偿控制方法、装置和存储介质
CN117847870B (zh) 确定压缩机发生液击的方法、装置、电子设备及介质
CN114811996B (zh) 空调、空调控制方法、装置及存储介质
CN114738978B (zh) 空调压缩机运行频率控制方法、装置及存储介质
CN114811754A (zh) 一种空调及其控制方法、装置及存储介质
WO2023168596A1 (zh) 一种确定唤醒信号周期的方法、装置、设备及存储介质
CN114909777A (zh) 空调器的化霜控制方法、装置、终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778250

Country of ref document: EP

Kind code of ref document: A1