WO2023185533A1 - 一种探测处理方法、装置、系统、存储介质及电子装置 - Google Patents

一种探测处理方法、装置、系统、存储介质及电子装置 Download PDF

Info

Publication number
WO2023185533A1
WO2023185533A1 PCT/CN2023/082588 CN2023082588W WO2023185533A1 WO 2023185533 A1 WO2023185533 A1 WO 2023185533A1 CN 2023082588 W CN2023082588 W CN 2023082588W WO 2023185533 A1 WO2023185533 A1 WO 2023185533A1
Authority
WO
WIPO (PCT)
Prior art keywords
task
detection
request message
cloud
terminal
Prior art date
Application number
PCT/CN2023/082588
Other languages
English (en)
French (fr)
Inventor
郑军
仇超
张学良
居彦超
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023185533A1 publication Critical patent/WO2023185533A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/04Processing captured monitoring data, e.g. for logfile generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1095Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • H04W4/14Short messaging services, e.g. short message services [SMS] or unstructured supplementary service data [USSD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure relate to the field of communications, specifically, to a detection processing method, device, system, storage medium and electronic device.
  • the current core network detection methods mainly include: manual testing for core network detection; driving detection using professional instruments; detection terminals with built-in terminal modules distributed in the coverage area for fixed-point detection; and protocol simulation testing.
  • Embodiments of the present disclosure provide a detection processing method, device, system, storage medium and electronic device to at least solve the problem of time-consuming, labor-intensive, low efficiency and problems existing in the current manual detection, professional instrument drive detection and fixed-point detection in related technologies. Problems include slow fault response and complex operation.
  • a detection processing method is provided, which is applied to the detection station.
  • the method includes:
  • EMS Enhanced Message Service
  • test analysis results are sent to the cloud through a stop execution use case response message.
  • a detection processing method is also provided, applied to the cloud, and the method includes:
  • the test analysis result sent by the detection station through the stop execution use case response message is sent to the terminal.
  • a detection processing system includes: a terminal, a cloud and a detection station, wherein,
  • the terminal is used to download the test case corresponding to the detection task from the cloud, execute the test case, and send a stop execution request message to the cloud;
  • the cloud is configured to create the detection task according to the request of the terminal, and send the stop execution use case request message to the detection station;
  • the detection station is used to synchronize the detection task from the cloud, and after receiving the stop execution use case request message, obtain the signaling data generated by executing the test case from the EMS, and perform operations based on the signaling data.
  • the test results are analyzed, and the test analysis results are sent to the cloud through a stop execution use case response message.
  • a detection processing device which is applied to the detection station, and the device includes:
  • the first synchronization module is configured to synchronize the detection task from the cloud, wherein the detection task is created by the cloud according to the task creation request message of the terminal;
  • the first receiving module is configured to receive a stop execution test case request message sent by the terminal after executing the test case corresponding to the detection task;
  • the acquisition module is configured to obtain the signaling data generated by executing the test case from the EMS;
  • An analysis module configured to perform test result analysis based on the signaling data to obtain test analysis results
  • the first sending module is configured to send the test analysis results to the cloud through a stop execution use case response message.
  • a detection processing device is also provided, applied to the cloud, and the device includes:
  • the second synchronization module is configured to synchronize the detection task to the detection station
  • a forwarding module configured to forward the stop execution case request message sent after the terminal executes the test case corresponding to the detection task to the detection station, so that the detection station obtains and executes the test case generated from the EMS signaling data, and perform test result analysis based on the signaling data to obtain test analysis results;
  • a result sending module is configured to send the test analysis results sent by the detection station through a stop execution use case response message to the terminal.
  • a computer-readable storage medium is also provided, and a computer program is stored in the storage medium, wherein the computer program is configured to execute any of the above method embodiments when running. steps in.
  • an electronic device including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above. Real method steps in the example.
  • Figure 1 is a hardware structure block diagram of a mobile terminal of a detection processing method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart 1 of a detection processing method according to an embodiment of the present disclosure
  • Figure 3 is a flow chart 2 of a detection processing method according to an embodiment of the present disclosure
  • Figure 4 is a flow chart of task testing according to an embodiment of the present disclosure
  • FIG. 5 is a block diagram of a detection processing system according to this embodiment.
  • FIG. 6 is a block diagram of a detection processing system according to this preferred embodiment.
  • Figure 7 is a schematic diagram of a detection diagram according to this embodiment.
  • Figure 8 is a block diagram 1 of a detection processing device according to an embodiment of the present disclosure.
  • Figure 9 is a second block diagram of a detection processing device according to an embodiment of the present disclosure.
  • FIG. 1 is a hardware structure block diagram of a mobile terminal of the detection processing method according to an embodiment of the present disclosure.
  • the mobile terminal may include one or more (only one is shown in Figure 1 ) processor 102 (the processor 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 104 for storing data, wherein the above-mentioned mobile terminal may also include a processor for communication functions.
  • Transmission device 106 and input and output device 108 may be executed in a mobile terminal, a computer terminal, or a similar computing device.
  • the structure shown in Figure 1 is only illustrative, and it does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal may also include more or fewer components than shown in FIG. 1 , or have a different configuration than shown in FIG. 1 .
  • the memory 104 can be used to store computer programs, for example, software programs and modules of application software, such as the computer programs corresponding to the detection processing methods in the embodiments of the present disclosure.
  • the processor 102 executes various tasks by running the computer programs stored in the memory 104.
  • Functional applications and business chain address pool slicing processing implement the above method.
  • Memory 104 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may further include memory located remotely relative to the processor 102, and these remote memories may be connected to the mobile terminal through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • Transmission device 106 is used to receive or send data via a network.
  • Specific examples of the above-mentioned network may include a wireless network provided by a communication provider of the mobile terminal.
  • the transmission device 106 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • FIG. 2 is a flow chart 1 of the detection processing method according to the embodiment of the present disclosure, as shown in Figure 2 , the process includes the following step:
  • Step S202 synchronize the detection task from the cloud, where the detection task is created by the cloud according to the task creation request message of the terminal;
  • the above-mentioned step S202 may specifically include: sending a synchronization task request message to the cloud, wherein the synchronization task request message carries a user account; receiving a synchronization task response message sent by the cloud, wherein the The synchronization task response message carries the detection task of the user account and other tasks except the detection task.
  • Step S204 Receive a stop execution test case request message sent by the terminal after executing the test case corresponding to the detection task;
  • the above step S204 may specifically include: receiving the stop execution use case request message sent by the cloud, wherein the stop execution use case request message is that the terminal executes the use case according to the set network configuration response message.
  • the test cases corresponding to the detection tasks are then sent to the cloud.
  • Step S206 obtain the signaling data generated by executing the test case from the EMS;
  • the above step S206 may specifically include: sending a request message to obtain collection task information to the EMS, where the request message to obtain collection task information carries a collection task identifier; receiving a response from the EMS by obtaining collection task information.
  • Step S208 Perform test result analysis based on the signaling data to obtain test analysis results
  • the above-mentioned step S208 may specifically include: performing signaling analysis according to the signaling data; performing bill analysis according to the signaling data; performing performance statistical analysis according to the signaling data; Data for alarm analysis.
  • Step S210 Send the test analysis result to the cloud through a stop execution use case response message.
  • the method further includes: receiving a set network configuration request message sent by the cloud, wherein the set network configuration request message is sent by the terminal to the cloud. , wherein the set network configuration request message carries the parameter information and task identification of the test case; and sends a create signaling tracking task request message to the EMS to create a collection task corresponding to the test case on the EMS ; Receive the creation signaling tracking task response message returned by the EMS, and encapsulate the setting network configuration response message according to the result code carried in the creating signaling tracking task response message; send the setting network configuration response message through the cloud sent to the terminal.
  • the method before the above step S204, further includes: establishing a long connection channel with the cloud; associating the detection task with the long connection channel to facilitate communication with the cloud through the established long connection. Forward signaling interaction data.
  • FIG. 3 is a flow chart 2 of the detection processing method according to the embodiment of the present disclosure. As shown in Figure 3, the process includes the following steps :
  • Step S302 Create a detection task according to the task creation request message of the terminal;
  • Step S304 synchronize the detection task to the detection station
  • the above step S304 may specifically include: receiving the synchronization task request message sent by the detection station, Wherein, the synchronization task request message carries a user account; a synchronization task response message is sent to the detection station, wherein the synchronization task response message carries the detection task of the user account and the detection task other than the detection task. other tasks.
  • Step S306 Forward the stop execution case request message sent by the terminal after executing the test case corresponding to the detection task to the detection station, so that the detection station obtains the information generated by executing the test case from the EMS. command data, and perform test result analysis based on the signaling data to obtain test analysis results;
  • the above step S306 may specifically include: receiving a stop execution use case request message sent by the terminal after executing the test case corresponding to the detection task according to the set network configuration response message, and forwarding the stop execution use case request message to the detection station end. .
  • Step S308 Send the test analysis result sent by the detection station through the stop execution use case response message to the terminal.
  • steps S302 and S308 it is possible to solve the problems of current manual detection, professional instrument drive detection and fixed-point detection in related technologies such as time-consuming and labor-intensive processes, low efficiency, slow fault response, complex operation, etc.
  • the automated detection process reduces a lot of manpower investment. , there is no need to manually complete test data collection, while improving the accuracy and efficiency of data collection; online and remote can directly monitor the detection process, automatically return test results, and improve detection and test efficiency.
  • the method further includes: forwarding the set network configuration request message sent by the terminal to the detection station, so that the detection station sends creation signaling to the EMS. Track the task request message to create a collection task corresponding to the test case on the EMS, wherein the set network configuration request message carries the parameter information and task identification of the test case; receive the detection station Set network configuration response message sent by the end, wherein the set network configuration response message is encapsulated by the detection station end according to the result code carried in the creation signaling tracking task response message returned by the EMS; The network configuration response message is sent to the terminal.
  • the method further includes: receiving a task creation request message sent by the terminal; creating the task according to the task creation request message, and returning a task creation response message to the terminal, wherein: The task creation response message carries the successfully created task identifier; receiving a download request message sent by the terminal to download the test case corresponding to the task identifier, wherein the download request message carries the use case identifier of the test case ; Send a download response message to the terminal, where the download response message carries the RPA process content corresponding to the use case identifier, and the RPA process content is used to execute the test case.
  • the method further includes: establishing a long connection channel with the detection station, and storing the corresponding relationship between the long connection channel, the user account, and the detection task in a database. , the forwarding of data related to the detection task can be completed based on the corresponding relationship.
  • the detection station is deployed at the test site to realize remote operation tasks, monitor the tasks in real time, and generate task reports in real time.
  • the detection station can automatically synchronize tasks with the cloud system, download test resources, and cooperate with the terminal APP.
  • the detection station controls the EMS to capture and download signaling tracking, and can automatically do so at the end of the task execution. Analyze, and then transmit the results back to the cloud system.
  • the automated detection process reduces a lot of manpower investment and does not require manual test data collection, while improving the accuracy and efficiency of data collection.
  • the detection process can be directly monitored online and remotely, and test results can be automatically transmitted back to improve detection and testing efficiency.
  • An operator used the cloud, site and terminal to collaborate with the core network to conduct 100 real terminal acceptance test cases, involving Access and Mobility Management Function (AMF), Session Management Function (Session Management) Function, referred to as SMF), User Plane Function,
  • AMF Access and Mobility Management Function
  • Session Management Function Session Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • the cloud, site and terminal collaborate with the core network test methods and devices to greatly improve the automation level of the test process. If the test solution design (including use case script development) is not considered, the overall test efficiency can be increased by 90%. about.
  • Mobile network active detection methods and devices adopt a variety of test methods to meet operators' diverse test scenarios (flexible collection of no/manual/public network/private network signaling), and provide cutover, upgrade, acceptance, network access, performance, etc.
  • Use case packages for various scenarios centralized management of use cases, automated construction of test steps, checkpoints, and test results, providing an easy-to-use, fast and efficient automated acceptance process.
  • FIG. 4 is a flow chart of task testing according to an embodiment of the present disclosure, as described in Figure 4, including:
  • Step 1 Create a new detection task in the task management module on the terminal APP.
  • the terminal sends a CreateTask request message to the cloud, carrying parameters as shown in Table 1 below.
  • the response message carries the parameters of the success identifier. If the cloud creation task fails, the response message carries the parameters of the failure identifier and the failure reason value.
  • Step 2 After successfully creating a new detection task on the terminal, the Software Process Automation (Robotic Process Automation, referred to as RPA) executor downloads the RPA process use case.
  • the terminal sends a DownloadSrcipt request message to the cloud, and the message carries the cloud server and use case label.
  • the response message returned by the cloud contains the status code and the RPA process content corresponding to the use case number.
  • Step 3 Log in to the station.
  • the task management module of the station sends a synchronization task SyncTask request message to the cloud, carrying user parameter.
  • the cloud response message carries all tasks under the user's name.
  • the station stores the tasks synchronized from the cloud into the local database.
  • the site system needs to actively establish a long socket connection channel with the cloud. After the long connection is established, the task to be tested specified by the user needs to be associated with the channel, and the cloud manages the relationship between the channel, the user, and the task. After the channel is established, the cloud acts as a message forwarding center.
  • the terminal After receiving the instructions from the terminal, it finds the corresponding channel according to the task and sends the instructions to the corresponding station system.
  • the response message from the station system is returned to the cloud message forwarding center through the long connection channel, and the cloud message forwarding center distributes the message to the terminal.
  • Step 4 Set up the network management.
  • the terminal When the terminal performs a task, it first initiates a SetNetworkConfigReq message carrying the International Mobile Subscriber Identification Number (IMSI), mobile station identification number parameters and task identification of the terminal test card.
  • IMSI International Mobile Subscriber Identification Number
  • the cloud After receiving the SetNetworkConfigReq message, the cloud determines that the station has established a long connection channel for this task, and then sends the SetNetworkConfigReq message to the station through the long connection channel through the forwarding message module.
  • IMSI International Mobile Subscriber Identification Number
  • the cloud After receiving the SetNetworkConfigReq message, the cloud determines that the station has established a long connection channel for this task, and then sends the SetNetworkConfigReq message to the station through the long connection channel through the forwarding message module.
  • Step 5 The setting is successful. After receiving the SetNetworkConfigReq message, the station sends a Resfule interface creation signaling tracing task request CreateTraceTaskReq message to the EMS network element.
  • the request message carries the information shown in Table 2 below.
  • the EMS After receiving the request message, the EMS creates a collection task related to the test card on the EMS, including signaling, statistical indicators, and alarm information. After EMS completes processing, it returns the CreateTraceTaskRes message to the station. This message carries the result code and task ID of the created task. The result code is used to identify whether the task creation is successful.
  • the station After receiving the CreateTraceTaskRes message, the station extracts the result code and encapsulates it into the SetNetworkConfigRes response message. The station sends the SetNetworkConfigRes message to the cloud through a long connection, and the cloud forwards the message to the terminal.
  • Step 6 After receiving SetNetworkConfigRes, the terminal executes the use case, calls the terminal's built-in RPA executor, and starts executing the RPA automation process use case.
  • Step 7 After the terminal executes the use case, it sends the StopCaseReq message to the cloud.
  • the message carries the use case identifier, use case execution log, use case end time, and use case execution result message to the cloud.
  • the cloud stores these parameters in the cloud database and forwards the message to the station through a long connection.
  • Step 8 After receiving the StopCaseReq message, the station sends the GetTaskDataReq message to obtain the collection task information message to the EMS. This message carries the previously created collection task ID. EMS brings the data generated by the collection task back to the station through the GetTaskDataRes response message.
  • Step 9 After obtaining the data on the EMS generated by the use case, the station starts to perform signaling analysis, bill analysis, performance statistical analysis and alarm analysis.
  • Signaling analysis follows predefined rules and automated inspection and analysis of protocol processes.
  • CDR analysis is checked in accordance with the operator's specifications, and performance analysis includes EMS customized collection indicators for comparison with historical indicator trends. pair analysis.
  • the station analyzes the collected alarms and no new alarms are generated.
  • the station stores signaling, call records, performance indicators and alarm analysis results in the database.
  • Step 10 After the station completes the test result analysis, it sends the analysis results back to the cloud through the StopCaseRes message.
  • the cloud stores the analysis results in the database and forwards the StopCaseRes message to the terminal. After receiving the message, the terminal continues to execute the next use case.
  • the detection results can be visually displayed in the cloud, including the task start time, task end time, and the detection use case execution results.
  • FIG. 5 is a block diagram of a detection processing system according to an embodiment of the present disclosure. As shown in Figure 5, the system includes: a terminal, a cloud and a detection station. end, where,
  • the terminal is used to download the test case corresponding to the detection task from the cloud, execute the test case, and send a stop execution request message to the cloud;
  • the cloud is configured to create the detection task according to the request of the terminal, and send the stop execution use case request message to the detection station;
  • the detection station is used to synchronize the detection task from the cloud, and after receiving the stop execution use case request message, obtain the signaling data generated by executing the test case from the EMS, and perform operations based on the signaling data.
  • the test results are analyzed, and the test analysis results are sent to the cloud through a stop execution use case response message.
  • the terminal is further configured to send a set network configuration request message to the cloud, wherein the set network configuration request message carries parameter information and task identification of the test case;
  • the cloud is also used to send the set network configuration request message to the detection station;
  • the detection station is also configured to send a create signaling tracking task request message to the EMS to create a collection task corresponding to the test case on the EMS; receive a create signaling tracking task response message returned by the EMS , and encapsulates the set network configuration response message according to the result code carried in the creation signaling tracking task response message; and sends the set network configuration response message to the terminal through the cloud.
  • Figure 6 is a block diagram of the detection processing system according to this preferred embodiment. As shown in Figure 6, it includes a terminal, a cloud and a detection station.
  • the terminal is used to perform active business detection and includes a task management module and an RPA executor sub-module.
  • the cloud is used for detection scenario package design and detection result visualization, including the scenario package store module, detection visualization module and message forwarding module.
  • the detection station is used for in-depth analysis of detection services, including modules such as message distribution, interface management, signaling acquisition, and signaling analysis.
  • Figure 7 is a schematic diagram of a detection diagram according to this embodiment. As shown in Figure 7, it includes:
  • the cloud is connected to the Internet through the firewall and has a fixed public IP and domain name;
  • the terminal is connected to the operator's network.
  • the operator generally allocates a LAN IP to the terminal;
  • the DC under test is in the operator's computer room and is connected to the public network through the firewall. It also provides management plane channels for DC management;
  • the detection station is located in the DC management area under test. Management interfaces such as EMS in the DC can be accessed through the management plane channel. At the same time, the detection station needs to be accessed through the public network (the IP assigned to the terminal by the operator is basically a LAN IP). Cloud server.
  • a detection processing device is also provided, which is applied to the detection station.
  • Figure 8 is a basic According to the block diagram 1 of the detection processing device according to an embodiment of the present disclosure, as shown in Figure 8, the device includes:
  • the first synchronization module 82 is configured to synchronize the detection task from the cloud, where the detection task is created by the cloud according to the task creation request message of the terminal;
  • the first receiving module 84 is configured to receive a stop execution case request message sent by the terminal after executing the test case corresponding to the detection task;
  • the acquisition module 86 is configured to acquire the signaling data generated by executing the test case from the EMS;
  • the analysis module 88 is configured to perform test result analysis based on the signaling data to obtain test analysis results;
  • the first sending module 810 is configured to send the test analysis result to the cloud through a stop execution use case response message.
  • the device further includes:
  • the second receiving module is configured to receive a set network configuration request message sent by the cloud, wherein the set network configuration request message is sent by the terminal to the cloud, wherein the set network configuration request message carries There is parameter information and task identification of test cases;
  • the second sending module is configured to send a create signaling tracking task request message to the EMS to create a collection task corresponding to the test case on the EMS;
  • the third receiving module is configured to receive the create signaling tracking task response message returned by the EMS, and encapsulate and set the network configuration response message according to the result code carried in the create signaling tracking task response message;
  • the third sending module is configured to send the set network configuration response message to the terminal through the cloud.
  • the first receiving module is further configured to
  • the acquisition module is further configured to send a request message to obtain collection task information to the EMS, wherein the request message to obtain collection task information carries a collection task identifier;
  • the analysis module is further configured to perform signaling analysis based on the signaling data; perform bill analysis based on the signaling data; perform performance statistical analysis based on the signaling data; Signaling data is used for alarm analysis.
  • the first synchronization module is further configured to send a synchronization task request message to the cloud, where the synchronization task request message carries a user account; receive a synchronization task response message sent by the cloud, Wherein, the synchronization task response message carries the detection task of the user account and other tasks except the detection task.
  • the device further includes:
  • the first connection establishment module is configured to establish a long connection channel with the cloud
  • An association module configured to associate the detection task with the long connection channel.
  • FIG. 9 is a block diagram 2 of a detection processing device according to an embodiment of the present disclosure. As shown in Figure 9, the device includes:
  • the creation module 92 is configured to create a detection task according to the task creation request message of the terminal;
  • the second synchronization module 94 is configured to synchronize the detection task to the detection station;
  • the forwarding module 96 is configured to forward the stop execution case request message sent after the terminal executes the test case corresponding to the detection task to the detection station end, so that the detection station end obtains and executes the test case from the EMS Generate signaling data, and perform test result analysis based on the signaling data to obtain test analysis results;
  • the result sending module 98 is configured to send the test analysis results sent by the detection station through the stop execution use case response message to the terminal.
  • the device further includes:
  • the fourth sending module is configured to forward the set network configuration request message sent by the terminal to the detection station end, so that the detection station end sends a create signaling tracking task request message to the EMS, so as to create a signaling tracking task request message on the EMS.
  • the fourth receiving module is configured to receive a set network configuration response message sent by the detection station, wherein the set network configuration response message is a creation signaling tracking task response message returned by the detection station based on the EMS.
  • the carried result code is encapsulated;
  • the fifth sending module is configured to send the set network configuration response message to the terminal.
  • the forwarding module is further configured to receive a stop execution use case request message sent by the terminal after executing the test case corresponding to the detection task according to the set network configuration response message; and send the stop execution use case The request message is forwarded to the detection station.
  • the device further includes:
  • the fifth receiving module is configured to receive the task creation request message sent by the terminal;
  • a return module configured to create the task according to the task creation request message, and return a task creation response message to the terminal, where the task creation response message carries a successfully created task identifier
  • the sixth receiving module is configured to receive a download request message sent by the terminal to download the test case corresponding to the task identifier, wherein the download request message carries the use case identifier of the test case;
  • the sixth sending module is configured to send a download response message to the terminal, wherein the download response message carries the RPA process content corresponding to the use case identifier, and the RPA process content is used to execute the test case.
  • the second synchronization module 94 is further configured to receive a synchronization task request message sent by the detection station, wherein the synchronization task request message carries a user account; Synchronization task response message, wherein the synchronization task response message carries the detection task of the user account and other tasks except the detection task.
  • the device further includes:
  • the second connection establishment module is configured to establish a long connection channel with the detection station
  • the storage module is configured to store the corresponding relationship between the long connection channel, the user account, and the detection task in a database.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program, wherein the computer program is configured to execute the steps in any of the above method embodiments when running.
  • the computer-readable storage medium may include but is not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as Various media that can store computer programs, such as RAM), mobile hard disk, magnetic disk or optical disk.
  • Embodiments of the present disclosure also provide an electronic device, including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present disclosure can be implemented using general-purpose computing devices, and they can be concentrated on a single computing device, or distributed across a network composed of multiple computing devices. They may be implemented in program code executable by a computing device, such that they may be stored in a storage device for execution by the computing device, and in some cases may be executed in a sequence different from that shown herein. Or the described steps can be implemented by making them into individual integrated circuit modules respectively, or by making multiple modules or steps among them into a single integrated circuit module. As such, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Mining & Analysis (AREA)
  • Debugging And Monitoring (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本公开实施例提供了一种探测处理方法、装置、系统、存储介质及电子装置,该方法包括:从云端同步探测任务;接收该终端执行该探测任务对应的测试用例之后发送的停止执行用例请求消息;从EMS获取执行该测试用例产生的信令数据;根据该信令数据进行测试结果分析,得到测试分析结果;通过停止执行用例响应消息将该测试分析结果发送给该云端,可以解决相关技术中针对当前人工探测、专业仪表驱车探测和定点探测存在的过程费时费力,效率较低、故障响应迟缓,操作复杂等问题,自动化探测过程减少大量人力投入,不需要人工完成测试数据采集,同时提高数据采集准确性和效率;在线远程可直接监视探测过程,自动回传测试结果,提升探测测试效率。

Description

一种探测处理方法、装置、系统、存储介质及电子装置
相关申请的交叉引用
本公开基于2022年03月30日提交的发明名称为“一种探测处理方法、装置、系统、存储介质及电子装置”的中国专利申请CN202210327296.2,并且要求该专利申请的优先权,通过引用将其所公开的内容全部并入本公开。
技术领域
本公开实施例涉及通信领域,具体而言,涉及一种探测处理方法、装置、系统、存储介质及电子装置。
背景技术
随着移动通讯技术飞速发展,已正式宣布启动5G商用。各种移动通讯终端设备及其应用场景使用需要稳定可靠的通信网络质量,各种业务场景需要通过探测手段来评估其业务的质量。当前核心网探测方法主要有:人工测试方式进行核心网探测;采用专业仪表驱车探测的方法;将内装终端模块的探测终端,分布在覆盖区域内,定点探测的方法;协议仿真方式的测试。
上述核心网探测的缺点是:人工探测需要很多测试人员,过程费时费力,效率较低、故障响应迟缓。测试时需要大批量的用户识别卡(Subscriber Identity Module,简称为SIM卡),资源难于管理和共享。测试记录的随意性比较大、反馈时间长,不能真实反映用户感受到的网络质量。测试项目分散,缺乏统筹安排,对新业务测试支持不足。专业仪表往往存在着造价昂贵,维护困难的缺点,要求测试人员的业务水平较高,也不利于随时随地的开展测试和问题定位工作。虽能实现多监控点常年持续监控的要求,但都需要从运营商使用的网络设备如交换机中探测过程记录,才能获取带有时间标签的探测过程记录,其实现方案操作复杂。
针对相关技术中针对当前人工探测、专业仪表驱车探测和定点探测存在的过程费时费力,效率较低、故障响应迟缓,操作复杂等问题,尚未提出解决方案。
发明内容
本公开实施例提供了一种探测处理方法、装置、系统、存储介质及电子装置,以至少解决相关技术中针对当前人工探测、专业仪表驱车探测和定点探测存在的过程费时费力,效率较低、故障响应迟缓,操作复杂等问题。
根据本公开的一个实施例,提供了一种探测处理方法,应用于探测站端,所述方法包括:
从云端同步探测任务,其中,所述探测任务是所述云端根据终端的任务创建请求消息创建的;
接收所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息;
从增强型短消息服务(Enhanced Message Service,简称为EMS)获取执行所述测试用例产生的信令数据;
根据所述信令数据进行测试结果分析,得到测试分析结果;
通过停止执行用例响应消息将所述测试分析结果发送给所述云端。
根据本公开的另一个实施例,还提供了一种探测处理方法,应用于云端,所述方法包括:
根据终端的任务创建请求消息创建探测任务;
将所述探测任务同步给探测站端;
将所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息转发给所述探测站端,以使所述探测站端从EMS获取执行所述测试用例产生的信令数据,并根据所述信令数据进行测试结果分析,得到测试分析结果;
将所述探测站端通过停止执行用例响应消息发送的所述测试分析结果发送给所述终端。
根据本公开的另一个实施例,还提供了一种探测处理系统,所述系统包括:终端、云端以及探测站端,其中,
所述终端,用于从所述云端下载探测任务对应的测试用例,并执行所述测试用例,向所述云端发送停止执行用例请求消息;
所述云端,用于根据所述终端的请求创建所述探测任务,将所述停止执行用例请求消息发送给探测站端;
所述探测站端,用于从所述云端同步所述探测任务,在接收所述停止执行用例请求消息之后,从EMS获取执行所述测试用例产生的信令数据,根据所述信令数据进行测试结果分析,并通过停止执行用例响应消息将测试分析结果发送给所述云端。
根据本公开的另一个实施例,还提供了一种探测处理装置,应用于探测站端,所述装置包括:
第一同步模块,设置为从云端同步探测任务,其中,所述探测任务是所述云端根据终端的任务创建请求消息创建的;
第一接收模块,设置为接收所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息;
获取模块,设置为从EMS获取执行所述测试用例产生的信令数据;
分析模块,设置为根据所述信令数据进行测试结果分析,得到测试分析结果;
第一发送模块,设置为通过停止执行用例响应消息将所述测试分析结果发送给所述云端。
根据本公开的另一个实施例,还提供了一种探测处理装置,应用于云端,所述装置包括:
创建模块,设置为根据终端的任务创建请求消息创建探测任务;
第二同步模块,设置为将所述探测任务同步给探测站端;
转发模块,设置为将所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息转发给所述探测站端,以使所述探测站端从EMS获取执行所述测试用例产生的信令数据,并根据所述信令数据进行测试结果分析,得到测试分析结果;
发送结果模块,设置为将所述探测站端通过停止执行用例响应消息发送的所述测试分析结果发送给所述终端。
根据本公开的又一个实施例,还提供了一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实 施例中的步骤。
附图说明
图1是本公开实施例的探测处理方法的移动终端的硬件结构框图;
图2是根据本公开实施例的探测处理方法的流程图一;
图3是根据本公开实施例的探测处理方法的流程图二;
图4是根据本公开实施例的任务测试的流程图;
图5是根据本实施例的探测处理系统的框图;
图6是根据本优选实施例的探测处理系统的框图;
图7是根据本实施例的探测示意图的示意图;
图8是根据本公开实施例的探测处理装置的框图一;
图9是根据本公开实施例的探测处理装置的框图二。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开的实施例。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本公开实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图1是本公开实施例的探测处理方法的移动终端的硬件结构框图,如图1所示,移动终端可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,其中,上述移动终端还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本公开实施例中的探测处理方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及业务链地址池切片处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可进一步包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输设备106用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输设备106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输设备106可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端或网络架构的探测处理方法,应用于探测站端,图2是根据本公开实施例的探测处理方法的流程图一,如图2所示,该流程包括如下 步骤:
步骤S202,从云端同步探测任务,其中,所述探测任务是所述云端根据终端的任务创建请求消息创建的;
本实施例中,上述步骤S202具体可以包括:向所述云端发送同步任务请求消息,其中,所述同步任务请求消息携带由用户账号;接收所述云端发送的同步任务响应消息,其中,所述同步任务响应消息携带所述用户账号的所述探测任务与除所述探测任务之外的其他任务。
步骤S204,接收所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息;
本实施例中,上述步骤S204具体可以包括:接收所述云端发送的所述停止执行用例请求消息,其中,所述停止执行用例请求消息是所述终端根据所述设置网络配置响应消息执行所述探测任务对应的测试用例之后发送给所述云端的。
步骤S206,从EMS获取执行所述测试用例产生的信令数据;
本实施例中,上述步骤S206具体可以包括:向所述EMS发送获取采集任务信息请求消息,其中,所述获取采集任务信息请求消息携带有采集任务标识;接收所述EMS通过获取采集任务信息响应消息返回的所述采集任务标识对应的采集任务产生的所述信令数据。
步骤S208,根据所述信令数据进行测试结果分析,得到测试分析结果;
本实施例中,上述步骤S208具体可以包括:根据所述信令数据进行信令分析;根据所述信令数据进行话单分析;根据所述信令数据进行性能统计分析;根据所述信令数据进行告警分析。
步骤S210,通过停止执行用例响应消息将所述测试分析结果发送给所述云端。
通过上述步骤S202值S210,可以解决相关技术中针对当前人工探测、专业仪表驱车探测和定点探测存在的过程费时费力,效率较低、故障响应迟缓,操作复杂等问题,自动化探测过程减少大量人力投入,不需要人工完成测试数据采集,同时提高数据采集准确性和效率;在线远程可直接监视探测过程,自动回传测试结果,提升探测测试效率。
在一实施例中,在上述步骤S204之前,所述方法还包括:接收所述云端发送的设置网络配置请求消息,其中,所述设置网络配置请求消息是所述所述终端发送给所述云端的,其中,所述设置网络配置请求消息中携带有测试用例的参数信息与任务标识;向EMS发送创建信令跟踪任务请求消息,以在所述EMS上创建与所述测试用例对应的采集任务;接收所述EMS返回的创建信令跟踪任务响应消息,并根据所述创建信令跟踪任务响应消息中携带的结果码封装设置网络配置响应消息;通过所述云端将所述设置网络配置响应消息发送给所述终端。
在另一实施例中,在上述步骤S204之前,所述方法还包括:与所述云端建立长连接通道;将所述探测任务关联到所述长连接通道,便于通过建立的长连接通过与云端进行信令交互月数据的转发。
根据本公开的另一个实施例,还提供了一种探测处理方法,应用于云端,图3是根据本公开实施例的探测处理方法的流程图二,如图3所示,该流程包括如下步骤:
步骤S302,根据终端的任务创建请求消息创建探测任务;
步骤S304,将所述探测任务同步给探测站端;
本实施例中,上述步骤S304具体可以包括:接收所述探测站端发送的同步任务请求消息, 其中,所述同步任务请求消息携带有用户账号;向所述探测站端发送同步任务响应消息,其中,所述同步任务响应消息携带所述用户账号的所述探测任务与除所述探测任务之外的其他任务。
步骤S306,将所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息转发给所述探测站端,以使所述探测站端从EMS获取执行所述测试用例产生的信令数据,并根据所述信令数据进行测试结果分析,得到测试分析结果;
本实施例中,上述步骤S306具体可以包括:接收终端根据设置网络配置响应消息执行探测任务对应的测试用例之后发送的停止执行用例请求消息,将该停止执行用例请求消息转发给所述探测站端。
步骤S308,将所述探测站端通过停止执行用例响应消息发送的所述测试分析结果发送给所述终端。
通过上述步骤S302值S308,可以解决相关技术中针对当前人工探测、专业仪表驱车探测和定点探测存在的过程费时费力,效率较低、故障响应迟缓,操作复杂等问题,自动化探测过程减少大量人力投入,不需要人工完成测试数据采集,同时提高数据采集准确性和效率;在线远程可直接监视探测过程,自动回传测试结果,提升探测测试效率。
在一实施例中,在上述步骤S306之前,所述方法还包括:将所述终端发送的设置网络配置请求消息转发给所述探测站端,以使所述探测站端向EMS发送创建信令跟踪任务请求消息,以在所述EMS上创建与所述测试用例对应的采集任务,其中,所述设置网络配置请求消息中携带有所述测试用例的参数信息与任务标识;接收所述探测站端发送的设置网络配置响应消息,其中,所述设置网络配置响应消息是所述探测站端根据所述EMS返回的创建信令跟踪任务响应消息中携带的结果码封装得到的;将所述设置网络配置响应消息发送给所述终端。
在另一实施例中,所述方法还包括:接收所述终端发送的任务创建请求消息;根据所述任务创建请求消息创建所述任务,向所述终端返回任务创建响应消息,其中,所述任务创建响应消息中携带有创建成功的任务标识;接收所述终端发送的下载所述任务标识对应的测试用例的下载请求消息,其中,所述下载请求消息中携带有所述测试用例的用例标识;向所述终端发送下载响应消息,其中,所述下载响应消息中携带有所述用例标识对应的RPA流程内容,所述RPA流程内容用于执行所述测试用例。
在另一实施例中,在上述步骤S306之前,所述方法还包括:与所述探测站端建立长连接通道,将所述长连接通道、用户账号、所述探测任务的对应关系存储到数据库中,可以基于该对应关系完成与探测任务相关的数据的转发。
本实施例针对当前人工探测、专业仪表驱车探测和定点探测的缺点,在测试现场部署探测站端可实现远程操作任务,并对任务实时监控,实时生成任务报告。探测站端能够自动和云端系统同步任务、下载测试资源,并能与终端APP配合,在测试任务执行过程中,控制EMS进行信令跟踪的抓取和下载,并能在任务执行结束时自动进行分析,分析后将结果传回给云端系统。自动化探测过程减少大量人力投入,不需要人工完成测试数据采集,同时提高数据采集准确性和效率。在线远程可直接监视探测过程,自动回传测试结果,提升探测测试效率。
在某运营商中使用云端、站端以及终端协同核心网进行100条真实终端验收用例测试,涉及到接入和移动管理功能(Access and Mobility Management Function,简称为AMF)、会话管理功能(Session Management Function,简称为SMF)、用户面功能(User Plane Function, 简称为UPF)等5G网元业务,云端、站端以及终端协同核心网测试方法及装置大幅提升测试流程自动化水平,若不考虑测试方案设计(含用例脚本开发),整体测试效率可提升90%左右。
移动网络主动探测方法及装置采用丰富的测试方式,可满足运营商多样化的测试场景(无/手工/公网/专网信令灵活采集),提供割接、升级、验收、入网、性能等各种场景的用例包,用例集中管理,对测试步骤、检查点、测试结果均进行自动化构建,提供方便易用、快捷高效的自动化验收流程。
本实施例可以应用网络功能虚拟化于(network function virtulization,简称为NFV)核心网探测,云端系统通过防火墙接入Internet公网,无法直接操作被测数据中心(Data Center,简称为DC)的EMS进行信令跟踪操作,需探测站端的参与,探测站端需要能够同时访问公网的云端系统和数据中心DC内的EMS,可实现对EMS信令的自动收集和分析。图4是根据本公开实施例的任务测试的流程图,如图4所述,包括:
步骤1,终端APP上任务管理模块中创建新的探测任务。终端往云端发送CreateTask请求消息,携带的参数如下表1所示。
表1
如果云端成功创建了任务,则响应消息携带成功标识的参数。如果云端创建任务失败,则响应消息携带失败标识的参数以及失败原因值。
步骤2,终端上成功创建新的探测任务后,软件流程自动化(Robotic Process Automation,简称为RPA)执行器进行RPA流程用例下载。终端往云端发送DownloadSrcipt请求消息,消息携带云端服务器以及用例标号。云端返回的响应消息包含状态码、用例编号对应的RPA流程内容。
步骤3,登入站端,站端的任务管理模块向云端发送同步任务SyncTask请求消息,携带 user参数。云端响应消息中携带user名下的所有任务。站端收到该消息后,将云端同步过来的任务存储到本地数据库中。同时由于站端属于私网地址,云端指令无法直接到达站端,站端系统需要主动与云端建立socket长连接通道。长连接建立后还需要将用户指定的待测任务关联到该通道,云端管理该通道与用户、任务之间的关系。通道建立后,云端作为消息转发中心,接收到终端的指令后根据任务找到对应的通道,将指令发送给对应的站端系统。站端系统的响应消息通过长连接通道返回到云端消息转发中心,云端的消息转发中心将消息分发到终端上。
步骤4,设置网管,终端执行任务时,首先发起SetNetworkConfigReq消息携带终端测试卡的国际移动用户识别码(International Mobile Subscriber ldentification Number,简称为IMSI)、移动台识别号码参数和任务标识。云端接收到SetNetworkConfigReq消息后判断该任务已有站端建立了长连接通道,则将SetNetworkConfigReq消息通过转发消息模块通过长连接通道发给站端。
步骤5,设置成功,站端接收到SetNetworkConfigReq消息后,发送Resfule接口创建信令跟踪任务请求CreateTraceTaskReq消息给EMS网元,该请求消息携带如下表2所示。
表2
EMS收到请求消息后,在EMS上创建与测试卡相关的采集任务,包含信令、统计指标以及告警信息。EMS完成处理后,返回CreateTraceTaskRes消息给站端。该消息携带创建任务的结果码以及任务ID,结果码用于标识任务创建是否成功。站端收到CreateTraceTaskRes消息后,提取结果码并封装到SetNetworkConfigRes响应消息。站端将SetNetworkConfigRes消息通过长连接发往云端,云端转发该消息给终端。
步骤6,终端收到SetNetworkConfigRes后执行用例,调用终端内置的RPA执行器,开始执行RPA自动化流程用例。
步骤7,终端执行完用例后,发送StopCaseReq消息给云端。该消息携带用例标识、用例执行日志、用例结束时间,用例执行结果消息到云端。云端将这些参数存入云端数据库并将消息通过长连接转发到站端。
步骤8,站端接收StopCaseReq消息后,向EMS发送获取采集任务信息消息GetTaskDataReq消息。该消息携带之前创建的采集任务标识。EMS将采集任务产生的数据通过GetTaskDataRes响应消息带回给站端。
步骤9,站端获取到用例产生的EMS上的数据后开始进行信令分析、话单分析、性能统计分析以及告警的分析。信令分析按照预定义规则以及协议流程的自动化检查分析。话单分析按照运营商的规范进行检查,性能分析包含EMS定制的采集指标进行历史指标趋势进行比 对分析。站端对收集到的告警进行分析,无新增告警产生。站端将信令、话单、性能指标以及告警分析结果存入数据库。
步骤10,站端完成测试结果分析后,通过StopCaseRes消息将分析结果回传云端。云端将分析结果存入数据库并StopCaseRes消息转发给终端。终端收到该消息后继续下一条用例执行。
完成主动探测任务,在云端能够将探测结果进行可视化显示,包含任务开始时间,任务结束时间,探测的用例执行结果。
根据本公开的另一个实施例,还提供了一种探测处理系统,图5是根据本公开实施例的探测处理系统的框图,如图5所示,所述系统包括:终端、云端以及探测站端,其中,
所述终端,用于从所述云端下载探测任务对应的测试用例,并执行所述测试用例,向所述云端发送停止执行用例请求消息;
所述云端,用于根据所述终端的请求创建所述探测任务,将所述停止执行用例请求消息发送给探测站端;
所述探测站端,用于从所述云端同步所述探测任务,在接收所述停止执行用例请求消息之后,从EMS获取执行所述测试用例产生的信令数据,根据所述信令数据进行测试结果分析,并通过停止执行用例响应消息将测试分析结果发送给所述云端。
在一实施例中,所述终端,还用于向所述云端发送设置网络配置请求消息,其中,所述设置网络配置请求消息中携带有测试用例的参数信息与任务标识;
所述云端,还用于将所述设置网络配置请求消息发送给所述探测站端;
所述探测站端,还用于向EMS发送创建信令跟踪任务请求消息,以在所述EMS上创建与所述测试用例对应的采集任务;接收所述EMS返回的创建信令跟踪任务响应消息,并根据所述创建信令跟踪任务响应消息中携带的结果码封装设置网络配置响应消息;通过所述云端将所述设置网络配置响应消息发送给所述终端。
图6是根据本优选实施例的探测处理系统的框图,如图6所示,包含终端、云端和探测站端,终端用于执行主动业务探测,包含任务管理模块和RPA执行器子模块。云端用于探测场景包设计以及探测结果可视化,包含场景包商店模块、探测可视化模块和消息转发模块。探测站端用于对探测业务进行深度分析,包含消息分发、接口管理,信令获取以及信令分析等模块。
图7是根据本实施例的探测示意图的示意图,如图7所示,包括:
云端,通过防火墙接入Internet公网,并具有固定公网IP和域名;
终端,接入运营商网络,运营商一般给终端端分配的是局域网网IP;
数据中心(Data Center以下简称DC):被测DC在运营商机房,对外通过防火墙连接公网,同时提供管理面通道用于DC管理;
探测站端,处于被测DC管理区域,通过管理面通道可访问DC内的EMS等管理接口,同时探测站端需要通过接入公网(运营商给终端分配的IP基本都是局域网IP)访问云端服务器。
根据本公开的另一个实施例,还提供了一种探测处理装置,应用于探测站端,图8是根 据本公开实施例的探测处理装置的框图一,如图8所示,所述装置包括:
第一同步模块82,设置为从云端同步探测任务,其中,所述探测任务是所述云端根据终端的任务创建请求消息创建的;
第一接收模块84,设置为接收所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息;
获取模块86,设置为从EMS获取执行所述测试用例产生的信令数据;
分析模块88,设置为根据所述信令数据进行测试结果分析,得到测试分析结果;
第一发送模块810,设置为通过停止执行用例响应消息将所述测试分析结果发送给所述云端。
在一实施例中,所述装置还包括:
第二接收模块,设置为接收所述云端发送的设置网络配置请求消息,其中,所述设置网络配置请求消息是所述终端发送给所述云端的,其中,所述设置网络配置请求消息中携带有测试用例的参数信息与任务标识;
第二发送模块,设置为向EMS发送创建信令跟踪任务请求消息,以在所述EMS上创建与所述测试用例对应的采集任务;
第三接收模块,设置为接收所述EMS返回的创建信令跟踪任务响应消息,并根据所述创建信令跟踪任务响应消息中携带的结果码封装设置网络配置响应消息;
第三发送模块,设置为通过所述云端将所述设置网络配置响应消息发送给所述终端。
在一实施例中,所述第一接收模块,还设置为
接收所述云端发送的所述停止执行用例请求消息,其中,所述停止执行用例请求消息是所述终端根据所述设置网络配置响+应消息执行所述探测任务对应的测试用例之后发送给所述云端的。
在一实施例中,所述获取模块,还设置为向所述EMS发送获取采集任务信息请求消息,其中,所述获取采集任务信息请求消息携带有采集任务标识;
接收所述EMS通过获取采集任务信息响应消息返回的所述采集任务标识对应的采集任务产生的所述信令数据。
在一实施例中,所述分析模块,还设置为根据所述信令数据进行信令分析;根据所述信令数据进行话单分析;根据所述信令数据进行性能统计分析;根据所述信令数据进行告警分析。
在一实施例中,所述第一同步模块,还设置为向所述云端发送同步任务请求消息,其中,所述同步任务请求消息携带由用户账号;接收所述云端发送的同步任务响应消息,其中,所述同步任务响应消息携带所述用户账号的所述探测任务与除所述探测任务之外的其他任务。
在一实施例中,所述装置还包括:
第一建立连接模块,设置为与所述云端建立长连接通道;
关联模块,设置为将所述探测任务关联到所述长连接通道。
根据本公开的另一个实施例,还提供了一种探测处理装置,应用于云端,图9是根据本公开实施例的探测处理装置的框图二,如图9所示,所述装置包括:
创建模块92,设置为根据终端的任务创建请求消息创建探测任务;
第二同步模块94,设置为将所述探测任务同步给探测站端;
转发模块96,设置为将所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息转发给所述探测站端,以使所述探测站端从EMS获取执行所述测试用例产生的信令数据,并根据所述信令数据进行测试结果分析,得到测试分析结果;
发送结果模块98,设置为将所述探测站端通过停止执行用例响应消息发送的所述测试分析结果发送给所述终端。
在一实施例中,所述装置还包括:
第四发送模块,设置为将所述终端发送的设置网络配置请求消息转发给所述探测站端,以使所述探测站端向EMS发送创建信令跟踪任务请求消息,以在所述EMS上创建与所述测试用例对应的采集任务,其中,所述设置网络配置请求消息中携带有所述测试用例的参数信息与任务标识;
第四接收模块,设置为接收所述探测站端发送的设置网络配置响应消息,其中,所述设置网络配置响应消息是所述探测站端根据所述EMS返回的创建信令跟踪任务响应消息中携带的结果码封装得到的;
第五发送模块,设置为将所述设置网络配置响应消息发送给所述终端。
在一实施例中,所述转发模块,还设置为接收所述终端根据所述设置网络配置响应消息执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息;将所述停止执行用例请求消息转发给所述探测站端。
在一实施例中,所述装置还包括:
第五接收模块,设置为接收所述终端发送的任务创建请求消息;
返回模块,设置为根据所述任务创建请求消息创建所述任务,向所述终端返回任务创建响应消息,其中,所述任务创建响应消息中携带有创建成功的任务标识;
第六接收模块,设置为接收所述终端发送的下载所述任务标识对应的测试用例的下载请求消息,其中,所述下载请求消息中携带有所述测试用例的用例标识;
第六发送模块,设置为向所述终端发送下载响应消息,其中,所述下载响应消息中携带有所述用例标识对应的RPA流程内容,所述RPA流程内容用于执行所述测试用例。
在一实施例中,所述第二同步模块94,还设置为接收所述探测站端发送的同步任务请求消息,其中,所述同步任务请求消息携带有用户账号;向所述探测站端发送同步任务响应消息,其中,所述同步任务响应消息携带所述用户账号的所述探测任务与除所述探测任务之外的其他任务。
在一实施例中,所述装置还包括:
第二建立连接模块,设置为与所述探测站端建立长连接通道;
存储模块,设置为将所述长连接通道、用户账号、所述探测任务的对应关系存储到数据库中。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为 RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (19)

  1. 一种探测处理方法,应用于探测站端,所述方法包括:
    从云端同步探测任务,其中,所述探测任务是所述云端根据终端的任务创建请求消息创建的;
    接收所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息;
    从增强型短消息服务EMS获取执行所述测试用例产生的信令数据;
    根据所述信令数据进行测试结果分析,得到测试分析结果;
    通过停止执行用例响应消息将所述测试分析结果发送给所述云端。
  2. 根据权利要求1所述的方法,其中,在接收所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息之前,所述方法还包括:
    接收所述云端发送的设置网络配置请求消息,其中,所述设置网络配置请求消息是所述终端发送给所述云端的,其中,所述设置网络配置请求消息中携带有测试用例的参数信息与任务标识;
    向所述EMS发送创建信令跟踪任务请求消息,以在所述EMS上创建与所述测试用例对应的采集任务;
    接收所述EMS返回的创建信令跟踪任务响应消息,并根据所述创建信令跟踪任务响应消息中携带的结果码封装设置网络配置响应消息;
    通过所述云端将所述设置网络配置响应消息发送给所述终端。
  3. 根据权利要求2所述的方法,其中,接收所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息包括:
    接收所述云端发送的所述停止执行用例请求消息,其中,所述停止执行用例请求消息是所述终端根据所述设置网络配置响应消息执行所述探测任务对应的测试用例之后发送给所述云端的。
  4. 根据权利要求2所述的方法,其中,从EMS获取执行所述测试用例产生的信令数据包括:
    向所述EMS发送获取采集任务信息请求消息,其中,所述获取采集任务信息请求消息携带有采集任务标识;
    接收所述EMS通过获取采集任务信息响应消息返回的所述采集任务标识对应的采集任务产生的所述信令数据。
  5. 根据权利要求1所述的方法,其中,根据所述信令数据进行测试结果分析,得到测试分析结果包括:
    根据所述信令数据进行信令分析;
    根据所述信令数据进行话单分析;
    根据所述信令数据进行性能统计分析;
    根据所述信令数据进行告警分析。
  6. 根据权利要求1所述的方法,其中,从云端同步探测任务包括:
    向所述云端发送同步任务请求消息,其中,所述同步任务请求消息携带由用户账号;
    接收所述云端发送的同步任务响应消息,其中,所述同步任务响应消息携带所述用户账 号的所述探测任务与除所述探测任务之外的其他任务。
  7. 根据权利要求1所述的方法,其中,在接收所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息之前,所述方法还包括:
    与所述云端建立长连接通道;
    将所述探测任务关联到所述长连接通道。
  8. 一种探测处理方法,应用于云端,所述方法包括:
    根据终端的任务创建请求消息创建探测任务;
    将所述探测任务同步给探测站端;
    将所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息转发给所述探测站端,以使所述探测站端从增强型短消息服务EMS获取执行所述测试用例产生的信令数据,并根据所述信令数据进行测试结果分析,得到测试分析结果;
    将所述探测站端通过停止执行用例响应消息发送的所述测试分析结果发送给所述终端。
  9. 根据权利要求8所述的方法,其中,在将所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息转发给所述探测站端之前,所述方法还包括:
    将所述终端发送的设置网络配置请求消息转发给所述探测站端,以使所述探测站端向EMS发送创建信令跟踪任务请求消息,以在所述EMS上创建与所述测试用例对应的采集任务,其中,所述设置网络配置请求消息中携带有所述测试用例的参数信息与任务标识;
    接收所述探测站端发送的设置网络配置响应消息,其中,所述设置网络配置响应消息是所述探测站端根据所述EMS返回的创建信令跟踪任务响应消息中携带的结果码封装得到的;
    将所述设置网络配置响应消息发送给所述终端。
  10. 根据权利要求9所述的方法,其中,将所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息转发给所述探测站端包括:
    接收所述终端根据所述设置网络配置响应消息执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息;
    将所述停止执行用例请求消息转发给所述探测站端。
  11. 根据权利要求8所述的方法,其中,所述方法还包括:
    接收所述终端发送的任务创建请求消息;
    根据所述任务创建请求消息创建所述任务,向所述终端返回任务创建响应消息,其中,所述任务创建响应消息中携带有创建成功的任务标识;
    接收所述终端发送的下载所述任务标识对应的测试用例的下载请求消息,其中,所述下载请求消息中携带有所述测试用例的用例标识;
    向所述终端发送下载响应消息,其中,所述下载响应消息中携带有所述用例标识对应的RPA流程内容,所述RPA流程内容用于执行所述测试用例。
  12. 根据权利要求8所述的方法,其中,将所述探测任务同步给探测站端包括:
    接收所述探测站端发送的同步任务请求消息,其中,所述同步任务请求消息携带有用户账号;
    向所述探测站端发送同步任务响应消息,其中,所述同步任务响应消息携带所述用户账号的所述探测任务与除所述探测任务之外的其他任务。
  13. 根据权利要求12所述的方法,其中,在将所述终端执行所述探测任务对应的测试用 例之后发送的停止执行用例请求消息转发给所述探测站端之前,所述方法还包括:
    与所述探测站端建立长连接通道;
    将所述长连接通道、用户账号、所述探测任务的对应关系存储到数据库中。
  14. 一种探测处理系统,所述系统包括:终端、云端以及探测站端,其中,
    所述终端,用于从所述云端下载探测任务对应的测试用例,并执行所述测试用例,向所述云端发送停止执行用例请求消息;
    所述云端,用于根据所述终端的请求创建所述探测任务,将所述停止执行用例请求消息发送给探测站端;
    所述探测站端,用于从所述云端同步所述探测任务,在接收所述停止执行用例请求消息之后,从增强型短消息服务EMS获取执行所述测试用例产生的信令数据,根据所述信令数据进行测试结果分析,并通过停止执行用例响应消息将测试分析结果发送给所述云端。
  15. 根据权利要求14所述的系统,其中,
    所述终端,还用于向所述云端发送设置网络配置请求消息,其中,所述设置网络配置请求消息中携带有测试用例的参数信息与任务标识;
    所述云端,还用于将所述设置网络配置请求消息发送给所述探测站端;
    所述探测站端,还用于向增强型短消息服务EMS发送创建信令跟踪任务请求消息,以在所述EMS上创建与所述测试用例对应的采集任务;接收所述EMS返回的创建信令跟踪任务响应消息,并根据所述创建信令跟踪任务响应消息中携带的结果码封装设置网络配置响应消息;通过所述云端将所述设置网络配置响应消息发送给所述终端。
  16. 一种探测处理装置,应用于探测站端,所述装置包括:
    第一同步模块,设置为从云端同步探测任务,其中,所述探测任务是所述云端根据终端的任务创建请求消息创建的;
    第一接收模块,设置为接收所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息;
    获取模块,设置为从增强型短消息服务EMS获取执行所述测试用例产生的信令数据;
    分析模块,设置为根据所述信令数据进行测试结果分析,得到测试分析结果;
    第一发送模块,设置为通过停止执行用例响应消息将所述测试分析结果发送给所述云端。
  17. 一种探测处理装置,应用于云端,所述装置包括:
    创建模块,设置为根据终端的任务创建请求消息创建探测任务;
    第二同步模块,设置为将所述探测任务同步给探测站端;
    转发模块,设置为将所述终端执行所述探测任务对应的测试用例之后发送的停止执行用例请求消息转发给所述探测站端,以使所述探测站端从增强型短消息服务EMS获取执行所述测试用例产生的信令数据,并根据所述信令数据进行测试结果分析,得到测试分析结果;
    发送结果模块,设置为将所述探测站端通过停止执行用例响应消息发送的所述测试分析结果发送给所述终端。
  18. 一种计算机可读的存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至7、8至13任一项中所述的方法。
  19. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至7、8至13任一项中所述的方法。
PCT/CN2023/082588 2022-03-30 2023-03-20 一种探测处理方法、装置、系统、存储介质及电子装置 WO2023185533A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210327296.2 2022-03-30
CN202210327296.2A CN116668347A (zh) 2022-03-30 2022-03-30 一种探测处理方法、装置、系统、存储介质及电子装置

Publications (1)

Publication Number Publication Date
WO2023185533A1 true WO2023185533A1 (zh) 2023-10-05

Family

ID=87708505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082588 WO2023185533A1 (zh) 2022-03-30 2023-03-20 一种探测处理方法、装置、系统、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN116668347A (zh)
WO (1) WO2023185533A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160353318A1 (en) * 2014-02-13 2016-12-01 Huawei Technologies Co., Ltd. Mobile communications network detection method and apparatus
CN109560909A (zh) * 2018-11-29 2019-04-02 广州慧睿思通信息科技有限公司 空口目标诱发探测方法、探测设备及诱发设备
CN213484888U (zh) * 2020-12-04 2021-06-18 中国电信股份有限公司 网络探测装置
CN113259874A (zh) * 2021-07-07 2021-08-13 中兴通讯股份有限公司 消息处理方法、电子设备及存储介质
CN113726607A (zh) * 2021-08-30 2021-11-30 北京百度网讯科技有限公司 一种网络探测方法、装置、电子设备及存储介质
CN114050986A (zh) * 2021-10-08 2022-02-15 中科南京移动通信与计算创新研究院 信令跟踪方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160353318A1 (en) * 2014-02-13 2016-12-01 Huawei Technologies Co., Ltd. Mobile communications network detection method and apparatus
CN109560909A (zh) * 2018-11-29 2019-04-02 广州慧睿思通信息科技有限公司 空口目标诱发探测方法、探测设备及诱发设备
CN213484888U (zh) * 2020-12-04 2021-06-18 中国电信股份有限公司 网络探测装置
CN113259874A (zh) * 2021-07-07 2021-08-13 中兴通讯股份有限公司 消息处理方法、电子设备及存储介质
CN113726607A (zh) * 2021-08-30 2021-11-30 北京百度网讯科技有限公司 一种网络探测方法、装置、电子设备及存储介质
CN114050986A (zh) * 2021-10-08 2022-02-15 中科南京移动通信与计算创新研究院 信令跟踪方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN116668347A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN111431758B (zh) 云网络设备的测试方法、装置、存储介质和计算机设备
US9172593B2 (en) System and method for identifying problems on a network
WO2017041406A1 (zh) 一种故障定位方法及装置
WO2016187449A1 (en) Method and apparatus to determine network quality
CN102497427B (zh) 实现可再生能源监测系统数据采集服务的方法和装置
CN112202635B (zh) 链路的监控方法、装置、存储介质以及电子装置
US20230300039A1 (en) Correlating Network Data With Instant App Feedback for ML-Based Customer Experience Management
US7623856B2 (en) Method for testing communication protocol having collection of internal information of a mobile communication terminal by an external module
CN105915367A (zh) 一种在线调试方法、终端及服务器
CN113419920A (zh) 物联管理平台仿真测试系统联调测试过程实时监控方法
CN105180367A (zh) 空调机组数据传输方法和系统
CN106331060B (zh) 一种基于wifi进行布控的方法和系统
WO2018205850A1 (zh) 一种基站运维方法和装置
CN112118600B (zh) 一种5g独立组网sa架构下的流量牵引系统
WO2023185533A1 (zh) 一种探测处理方法、装置、系统、存储介质及电子装置
WO2023134312A1 (zh) 内容计费测试方法、管理设备、终端设备及存储介质
CN114244726A (zh) 一种5g nr基站信令交互的可视化方法及装置
CN112312376A (zh) 一种远程交互管理多功能电表的方法及系统
CN112650815A (zh) 环境数据的同步方法及装置、存储介质及电子装置
CN113079524B (zh) 一种基于信令软采的信令跟踪方法、基站及可读存储介质
CN114567627B (zh) 一种仿真平台管理方法、系统、设备以及介质
CN113064926B (zh) 数据筛选方法及装置、存储介质及电子装置
CN111010690B (zh) 物联网mme网元信令追踪方法及装置
CN116112413A (zh) 网络设备的测试方法、系统、装置、存储介质及电子设备
CN107402854A (zh) 测试信息管理方法、装置、测试用例执行系统及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777906

Country of ref document: EP

Kind code of ref document: A1