WO2023185151A1 - 光束准直设备、方法、装置、存储介质和电子装置 - Google Patents

光束准直设备、方法、装置、存储介质和电子装置 Download PDF

Info

Publication number
WO2023185151A1
WO2023185151A1 PCT/CN2022/142474 CN2022142474W WO2023185151A1 WO 2023185151 A1 WO2023185151 A1 WO 2023185151A1 CN 2022142474 W CN2022142474 W CN 2022142474W WO 2023185151 A1 WO2023185151 A1 WO 2023185151A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
target
distance
collimating
value
Prior art date
Application number
PCT/CN2022/142474
Other languages
English (en)
French (fr)
Inventor
阮仁秋
朱超
胡方
张鑫涵
倪蒙
龚勋
刘晓旭
闫大鹏
Original Assignee
武汉锐科光纤激光技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉锐科光纤激光技术股份有限公司 filed Critical 武汉锐科光纤激光技术股份有限公司
Publication of WO2023185151A1 publication Critical patent/WO2023185151A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0411Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using focussing or collimating elements, i.e. lenses or mirrors; Aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam

Definitions

  • Embodiments of the present invention relate to the field of laser processing, and specifically, to a beam collimation equipment, method, device, storage medium and electronic device.
  • laser has gradually been widely used in various fields. Due to its advantages such as high brightness, high conversion efficiency, small size, long life, and good laser beam quality, it is widely used in materials Processing, such as marking, drilling, welding, cutting, cleaning, coating, etc., as well as optical communications, spectral imaging, medical and other fields. As the precision requirements of industrial processing technology become higher and higher, the requirements for the spatial shape distribution, energy distribution and other beam information of the laser beam used are also getting higher and higher. In some practical applications, the laser beam energy output by the laser is required to be in a specific form. The distribution form and spatial form are in a specific distribution state, which leads to the analysis and measurement of laser beams.
  • the collimated beam can meet the beam input requirements of the measuring equipment.
  • Different models have different spot sizes of the laser output beams. This results in large differences in the spot size and back-end focal length of the laser output after collimation using the same parameter collimation optical system. Therefore, currently, in the Before the beam can be analyzed and measured, it is necessary to manually replace the collimation optical system with different parameters. The operation is very complicated. Moreover, after replacing different collimation optical systems, the back-end optical path also does not match, resulting in the collimation. The beam cannot meet the needs of the beam analysis measurement equipment.
  • Embodiments of the present invention provide a beam collimation device, method, device, storage medium and electronic device to at least solve the problem of low beam detection efficiency of beam detection equipment in related technologies.
  • a beam collimating device including: a first collimating lens group, a beam focusing lens group and a second collimating lens group, wherein the beam focusing lens group is disposed on the Between the first collimating lens group and the second collimating lens group, the optical paths of the first collimating lens group, the beam focusing lens group and the second collimating lens group are coaxial, and the first collimating lens group and the second collimating lens group are coaxial.
  • the first distance between the beam focusing lens group and the second distance between the beam focusing lens group and the second collimating lens group are set to allow adjustment of the position of the second collimating lens group Fixed; the first collimating lens group is used to collimate the initial beam to obtain a collimated beam; the beam focusing lens group is used to focus the collimated beam to obtain a focused beam; the third Two collimating lens groups are used to collimate the focused beam to obtain a target beam with a target spot size, wherein the target beam is used to input a beam detection device, and the target interface size of the beam detection device is consistent with the Target spot size matching.
  • the first collimating lens group includes: a first lens and a second lens, wherein the distance between the first lens and the second lens is a fixed value;
  • the beam focusing lens group includes : a third lens and a fourth lens, wherein the distance between the third lens and the fourth lens is a fixed value;
  • the second collimating lens group includes: a fifth lens, wherein the fifth lens The focus of the lens coincides with the focus of the focused beam.
  • the refractive index of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens is a target refractive index, wherein the target refractive index falls within Within the target refractive index interval, the lens within the target refractive index interval satisfies the target dispersion condition for the light beam.
  • the radius of curvature of the beam input surface of the first lens is a positive value, the radius of curvature of the beam output surface of the first lens is a positive value; the radius of curvature of the beam input surface of the second lens is positive. value, the radius of curvature of the beam output surface of the second lens is a negative value; the radius of curvature of the beam input surface of the third lens is a negative value, and the radius of curvature of the beam output surface of the third lens is a negative value;
  • the radius of curvature of the beam input surface of the fourth lens is a positive value, the radius of curvature of the beam output surface of the fourth lens is a positive value; the radius of curvature of the beam input surface of the fifth lens is a positive value, and the curvature radius of the beam input surface of the fourth lens is a positive value.
  • the radius of curvature of the beam output surface of the fifth lens is a positive value.
  • the beam input surface of the first lens is an aspheric surface
  • the beam output surface of the third lens is an aspheric surface
  • the target spot size is smaller than or equal to the target interface size.
  • the distance between the first lens and the second lens is a fixed value set according to the refractive index of the lens, the thickness of the lens, or the focal length value of the lens.
  • the distance between the third lens and the fourth lens is a fixed value set according to the refractive index of the lens, the thickness of the lens, or the focal length value of the lens.
  • the refractive index of the target refractive index interval is greater than or equal to 1.45 and less than or equal to 1.56.
  • the target dispersion condition is used to indicate the beam quality output by the lens.
  • a beam collimation method including: acquiring target beam parameters of an initial beam and target device parameters of a beam detection device, wherein the beam detection device is used to align the beam collimation device The output beam is detected, and the beam collimating device is used to collimate the initial beam.
  • the beam collimating device includes a first collimating lens group, a beam focusing lens group and a second collimating lens group, so The beam focusing lens group is arranged between the first collimating lens group and the second collimating lens group, and the first collimating lens group, the beam focusing lens group and the second collimating lens
  • the optical paths of the group are coaxial, the first distance between the first collimating lens group and the beam focusing lens group and the second distance between the beam focusing lens group and the second collimating lens group are Set to allow adjustment, the position of the second collimating lens group is fixed; the first distance value of the first distance and the second distance of the second distance are determined according to the target beam parameters and the target equipment parameters.
  • determining the first distance value of the first distance and the second distance value of the second distance according to the target beam parameter and the target device parameter include: and the focused beam focal length value of the beam focusing lens group to determine the target focused beam focal length value corresponding to the target beam parameter, wherein the focused beam focal length value is used to indicate the beam focus after being focused by the beam focusing lens group
  • the distance value between the focus of the beam and the center point of the focusing lens group determine the focal length value of the target focused beam and the focal length of the target beam among the focal length value of the focused beam, equipment parameters and the first distance of the focusing lens group that have a corresponding relationship.
  • the first distance value corresponding to the target device parameter, and the corresponding relationship between the focused beam focal length value of the beam focusing lens group, the device parameter and the second distance is determined to correspond to the target focused beam focal length value and the target device parameter. the second distance value.
  • the first distance corresponding to the target focused beam focal length value and the target equipment parameter is determined among the focused beam focal length value, equipment parameter and first distance of the beam focusing lens group that have a corresponding relationship. value, and determining the second distance value corresponding to the target focused beam focal length value and the target equipment parameter in the corresponding relationship between the focused beam focal length value of the beam focusing lens group, equipment parameters and the second distance, including:
  • the conversion factor is calculated according to the second formula.
  • the target beam parameters include time domain characteristic parameters, spatial domain characteristic parameters and frequency domain characteristic parameters.
  • the second distance value is the distance between the beam focusing lens group and the second collimating lens when the focus of the target focused beam of the target beam parameter coincides with the focus of the second collimating lens group.
  • a beam collimation device including: an acquisition module for acquiring the target beam parameters of the initial beam, and the target equipment parameters of the beam detection device, wherein the beam detection device Used to detect the light beam output by the beam collimation device, the beam collimation device is used to collimate the initial beam, the beam collimation device includes a first collimating lens group, a beam focusing lens group and a third Two collimating lens groups, the beam focusing lens group is arranged between the first collimating lens group and the second collimating lens group, the first collimating lens group, the beam focusing lens group and The optical path of the second collimating lens group is coaxial, the first distance between the first collimating lens group and the beam focusing lens group, and the beam focusing lens group and the second collimating lens group The second distance is set to allow adjustment, and the position of the second collimating lens group is fixed; a determining module for determining the first distance of the first distance according to the target beam parameters and
  • a target beam collimating device is obtained; a control module is used to control the initial beam to be input into the target beam collimating device, and obtain a target beam with a target spot size output by the target beam collimating device, wherein the target beam is Upon inputting the light beam detection device, the target interface size of the light beam detection device matches the target spot size.
  • the determining module includes:
  • a first determination unit configured to determine a target focused beam focal length value corresponding to the target beam parameter from the beam parameters having a corresponding relationship and the focused beam focal length value of the beam focusing lens group, wherein the focused beam focal length The value is used to indicate the distance value between the focus of the beam after being focused by the beam focusing lens group and the center point of the focusing lens group;
  • a second determination unit configured to determine a first value corresponding to the target focused beam focal length value and the target device parameter among the focused beam focal length values, device parameters and first distances of the beam focusing lens group that have a corresponding relationship. distance value, and determine the second distance value corresponding to the target focused beam focal length value and the target equipment parameter in the corresponding relationship between the focused beam focal length value of the beam focusing lens group, the device parameters and the second distance.
  • a computer-readable storage medium is also provided.
  • a computer program is stored in the computer-readable storage medium, wherein the computer program is configured to execute any of the above methods when running. Steps in Examples.
  • an electronic device including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform any of the above. Steps in method embodiments.
  • the beam collimating device includes a first collimating lens group, a beam focusing lens group and a second collimating lens group, wherein the beam focusing lens group is disposed between the first collimating lens group and the third collimating lens group.
  • the optical paths of the first collimating lens group, the beam focusing lens group and the second collimating lens group are coaxial, and the optical path between the first collimating lens group and the beam focusing lens group is coaxial.
  • a distance and a second distance between the beam focusing lens group and the second collimating lens group are set to allow adjustment, and the position of the second collimating lens group is fixed; the first collimating lens group , used to collimate the initial beam to obtain a collimated beam; the beam focusing lens group is used to focus the collimated beam to obtain a focused beam; the second collimating lens group is used to focus the The focused beam is collimated to obtain a target beam with a target spot size, wherein the target beam is used to input a beam detection device, and the target interface size of the beam detection device matches the target spot size, that is, beam collimation
  • the equipment includes a first collimating lens group, a beam focusing lens group and a second collimating lens group with coaxial optical paths.
  • the first collimating lens group is used to collimate the initial beam to obtain a collimated beam.
  • the beam focusing lens group is used to The collimated beam is focused to obtain a focused beam, and the second collimating lens group is used to collimate the focused beam to obtain the target beam. Since the first distance between the first collimating lens group and the beam focusing lens group is adjustable , and the second distance between the beam focusing lens group and the second collimating lens group is adjustable, so that the initial beam passes through the first collimating lens group, the beam focusing lens group and the second collimating lens group in sequence.
  • the target spot size of the target beam matches the interface size of the beam detection equipment, and since the position of the second collimating lens group is fixed, it is ensured that the target interface size requirements are obtained after collimating different initial beams.
  • the position of the optical path behind the beam collimation device does not need to be changed, so that the beam detection device can efficiently and quickly detect the initial beam according to the output target beam. Therefore, the detection of the beam by the beam detection device existing in the related technology is solved.
  • the problem of low efficiency has been achieved, and the effect of improving the detection efficiency of the beam detection equipment for the beam has been achieved.
  • Figure 1 is a schematic diagram of a beam collimation device according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of an optional beam collimation according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of the mobile terminal hardware structure of the beam collimation method according to the embodiment of the present invention.
  • Figure 4 is a flow chart of a beam collimation method according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of an optional inner lens of a beam collimation device according to an embodiment of the present invention.
  • Figure 6 is a schematic diagram of an optional zoom curve according to an embodiment of the present invention.
  • Figure 7 is a schematic diagram of the point spread function of the beam collimation device at the longest focus and the shortest focus according to the embodiment of the present invention.
  • Figure 8 is a transfer function MTF diagram of the beam collimation device implemented in the present invention at the longest focal length and the shortest focal length;
  • Figure 9 is a structural block diagram of a beam collimating device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a beam collimating device according to an embodiment of the present invention. As shown in Figure 1, the device includes the following steps: a first collimating lens group 12; Beam focusing lens group 14 and second collimating lens group 16, wherein,
  • the beam focusing lens group 14 is disposed between the first collimating lens group 12 and the second collimating lens group 16.
  • the first collimating lens group 12, the beam focusing lens group 14 and the second collimating lens The optical path of the group 16 is coaxial, the first distance D1 between the first collimating lens group 12 and the beam focusing lens group 14 and the distance between the beam focusing lens group 14 and the second collimating lens group 16
  • the second distance D2 between is set to allow adjustment, and the position of the second collimating lens group 16 is fixed;
  • the first collimating lens group 12 is used to collimate the initial beam A to obtain a collimated beam
  • the beam focusing lens group 14 is used to focus the collimated beam to obtain a focused beam
  • the second collimating lens group 16 is used to collimate the focused beam to obtain a target beam B with a target spot size, wherein the target beam B is used to input a beam detection device, and the beam detection device
  • the target interface size matches the target spot size.
  • the first collimating lens group 12 may be, but is not limited to, a lens group composed of a collimating lens, or may also be a lens group composed of a collimating lens and a focusing lens. This solution is suitable for This is not limited.
  • the beam focusing mirror may be a lens group composed of a focusing lens, or may also be a lens group composed of a collimating lens and a focusing lens, which is not limited in this solution.
  • the second collimating lens may be a lens group composed of a collimating lens, or may also be a lens group composed of a collimating lens and a focusing lens, which is not limited in this solution.
  • the target spot size may be, but is not limited to, smaller than or equal to the target interface size.
  • the adjusted target spot size can be compared with the initial spot size of the initial beam A. But it is not limited to increase, decrease and equality, and this plan does not limit it.
  • the beam detection device is used to detect the attribute information of the initial beam A according to the target beam B.
  • the attribute information may include, but is not limited to, the quality of the beam, the spatial distribution of the beam, the energy distribution of the beam, etc. etc. This plan does not limit this.
  • the conventional fiber laser collimating lens is a collimating head, and different collimating lenses are replaced according to different use requirements.
  • the actual required light spots are diverse and cannot meet all use requirements.
  • the use requirement of the laser can be realized by adjusting the distance between the lens groups to adjust the focal length of the beam collimation device, thereby adjusting the spot size after collimation.
  • Figure 2 is an optional beam according to the embodiment of the present invention.
  • Collimation diagram as shown in Figure 2, when collimating the initial beam A with the same beam parameters, by adjusting the first distance D1 between the first collimating lens group 12 and the beam focusing lens group 14, and the beam focusing lens group 14 and the second distance D2 of the second collimating lens group 16 to obtain target beams B with different spot sizes.
  • the first distance D1 is increased and the second distance is decreased.
  • D2 that is, moving the beam focusing lens group 14 to the second collimating lens group 16
  • reduce the first distance D1 and increase the second distance D2 that is, focus the beam The lens group 14 moves toward the second collimating lens group 16).
  • the spot size of the beam can be adjusted without changing the beam collimation device, and without affecting the rear section of the beam collimation device. distance to achieve fixed back-intercept output of the beam collimation device.
  • the beam collimation device includes a first collimating lens group 12 with a coaxial optical path, a beam focusing lens group 14 and a second collimating lens group 16.
  • the first collimating lens group 12 is used to collimate the initial beam A.
  • the beam focusing lens group 14 is used to focus the collimated beam to obtain a focused beam, and the second collimating lens group 16 is used to collimate the focused beam to obtain the target beam B.
  • the first collimating lens group 16 The first distance D1 between 12 and the beam focusing lens group 14 is adjustable, and the second distance D2 between the beam focusing lens group 14 and the second collimating lens group 16 is adjustable, so that the initial beam A
  • the target spot size of the target beam B obtained after sequentially passing through the first collimating lens group 12, the beam focusing lens group 14 and the second collimating lens group 16 matches the interface size of the beam detection device, and due to the second collimating lens group
  • the position of 16 is fixed, thereby ensuring that after collimating different initial beams A, the target beam B that meets the target interface size requirements is obtained without changing the position of the optical path after the beam collimation device, thereby achieving pass
  • the first collimating lens group 12 includes: a first lens 121 and a second lens 122, wherein the distance between the first lens 121 and the second lens 122 is Fixed value;
  • the beam focusing lens group 14 includes: a third lens 141 and a fourth lens 142, wherein the distance between the third lens 141 and the fourth lens 142 is a fixed value;
  • the second collimating lens group 16 includes: a fifth lens 161, wherein the focus of the fifth lens 161 coincides with the focus of the focused light beam.
  • the distance between the first lens 121 and the second lens 122 may be, but is not limited to, a fixed value set according to the refractive index of the lens, the thickness of the lens, the focal length value of the lens, etc.
  • the distance between the third lens 141 and the fourth lens 142 may be, but is not limited to, a fixed value set according to the refractive index of the lens, the thickness of the lens, the focal length value of the lens, etc.
  • the first lens 121, the second lens 122, the third lens 141, the fourth lens 142 and the fifth lens 161 may be, but are not limited to, coated with A lens with a high transmittance film that has high transmittance for a certain attribute of light beam, such as a lens coated with a high transmittance near-infrared film.
  • the first lens 121, the second lens 122, the third lens 141, The fourth lens 142 and the fifth lens 161 may be, but are not limited to, lenses coated with a high-resistance film that has high resistance to certain properties of light beams.
  • the refractive index of the first lens 121, the second lens 122, the third lens 141, the fourth lens 142, and the fifth lens 161 is the target refraction. rate, wherein the target refractive index falls within a target refractive index interval, and the lens within the target refractive index interval satisfies the target dispersion condition for the light beam.
  • the target dispersion condition is used to indicate the quality of the beam output by the lens.
  • the target dispersion condition can be It is not limited to the fact that the dispersion coefficient of the lens is within a certain range.
  • the target refractive index interval may be, but is not limited to, a refractive index greater than or equal to 1.45 and less than or equal to 1.56.
  • the refractive index of the first lens 121, the second lens 122, the third lens 141, the fourth lens 142, and the fifth lens 161 is a target. thickness.
  • the radius of curvature of the beam input surface of the first lens 121 is a positive value, and the radius of curvature of the beam output surface of the first lens 121 is a positive value;
  • the radius of curvature of the beam input surface of the second lens 122 is a positive value, and the radius of curvature of the beam output surface of the second lens 122 is a negative value;
  • the radius of curvature of the beam input surface of the third lens 141 is a negative value, and the radius of curvature of the beam output surface of the third lens 141 is a negative value;
  • the radius of curvature of the beam input surface of the fourth lens 142 is a positive value, and the radius of curvature of the beam output surface of the fourth lens 142 is a positive value;
  • the radius of curvature of the beam input surface of the fifth lens 161 is a positive value, and the radius of curvature of the beam output surface of the fifth lens 161 is a positive value.
  • the radius of curvature of the beam input surface of the first lens 121 is greater than or equal to 8.09875mm and less than or equal to 8.95125mm, and the radius of curvature of the beam output surface of the first lens 121 is greater than or equal to 6.94735mm, and less than or equal to 7.67865mm;
  • the radius of curvature of the beam input surface of the second lens 122 is greater than or equal to 14.73659mm and less than or equal to 16.28781mm, and the radius of curvature of the beam output surface of the second lens 122 is greater than or equal to 11.93523mm and less than or equal to 13.19157mm;
  • the third lens The radius of curvature of the beam input surface of 141 is greater than or equal to 40.750535mm and less than or equal to 45.040065mm.
  • the radius of curvature of the beam output surface of the third lens 141 is greater than or equal to 529.576455mm and less than or equal to 585.321345mm; the beam input surface of the fourth lens 142 is The radius of curvature is greater than or equal to 9.3594mm and less than or equal to 10.3446mm.
  • the radius of curvature of the beam output surface of the fourth lens 142 is greater than or equal to 7.536825mm and less than or equal to 8.330175mm.
  • the radius of curvature of the beam input surface of the fifth lens 161 is greater than or equal to 24.827585mm. , is less than or equal to 27.441015mm, and the curvature radius of the beam output surface of the fifth lens 161 is greater than or equal to 37.387345mm, and is less than or equal to 41.322855mm.
  • the beam input surface of the first lens 121 is an aspheric surface; the beam output surface of the third lens 141 is an aspheric surface.
  • the beam input surface of the first lens 121 and the beam output surface of the third lens 141 can be set to be aspherical.
  • the beam input surface and the beam output surface of the third lens 141 can be set to the same aspherical coefficient, or they can be set to different aspherical coefficients, for example, the beam input surface of the first lens 121 and the beam output of the third lens 141
  • the surface can be set to the same aspherical surface coefficients as the fourth-order coefficient is -8.3867*10 -6 , the sixth-order coefficient is -4.5956*10 -6 , and the eighth-order coefficient is -6.8107*10 -8 .
  • FIG. 3 is a block diagram of the mobile terminal hardware structure of the beam collimation method according to the embodiment of the present invention.
  • the mobile terminal may include one or more (only one is shown in Figure 3) processors 302 (the processor 302 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA) and a memory 304 for storing data, wherein the above-mentioned mobile terminal may also include a transmission device 306 and an input and output device 308 for communication functions.
  • FIG. 3 is only illustrative, and it does not limit the structure of the above-mentioned mobile terminal.
  • the mobile terminal may also include more or fewer components than shown in FIG. 3 , or have a different configuration than that shown in FIG. 3 .
  • the memory 304 can be used to store computer programs, for example, software programs and modules of application software, such as the computer program corresponding to the beam collimation method in the embodiment of the present invention.
  • the processor 302 executes the computer program by running the computer program stored in the memory 304.
  • Various functional applications and data processing implement the above methods.
  • Memory 304 may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 304 may further include memory located remotely relative to the processor 302, and these remote memories may be connected to the mobile terminal through a network. Examples of the above-mentioned networks include but are not limited to the Internet, intranets, local area networks, mobile communication networks and combinations thereof.
  • the transmission device 306 is used to receive or send data via a network.
  • Specific examples of the above-mentioned network may include a wireless network provided by a communication provider of the mobile terminal.
  • the transmission device 306 includes a network adapter (Network Interface Controller, NIC for short), which can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 306 may be a radio frequency (Radio Frequency, RF for short) module, which is used to communicate with the Internet wirelessly.
  • NIC Network Interface Controller
  • FIG. 4 is a flow chart of a beam collimation method according to an embodiment of the present invention. As shown in Figure 4, the process includes the following steps:
  • Step S402 Obtain the target beam parameters of the initial beam A and the target device parameters of the beam detection device, wherein the beam detection device is used to detect the beam output by the beam collimation device, and the beam collimation device is used to detect the beam.
  • the initial beam A is collimated.
  • the beam collimation device includes a first collimating lens group 12, a beam focusing lens group 14 and a second collimating lens group 16.
  • the beam focusing lens group 14 is arranged on the third Between a collimating lens group 12 and the second collimating lens group 16, the optical paths of the first collimating lens group 12, the beam focusing lens group 14 and the second collimating lens group 16 are coaxial.
  • the first distance D1 between the first collimating lens group 12 and the beam focusing lens group 14 and the second distance D2 between the beam focusing lens group 14 and the second collimating lens group 16 Set to allow adjustment, the position of the second collimating lens group 16 is fixed;
  • Step S404 determine the first distance value of the first distance D1 and the second distance value of the second distance D2 according to the target beam parameter and the target device parameter;
  • Step S406 adjust the first collimating lens group 12 and the beam focusing lens group 14 according to the first distance value and the second distance value to obtain a target beam collimation device;
  • Step S408 control the initial beam A to input into the target beam collimation device, and obtain the target beam B of the target spot size output by the target beam collimation device, wherein the target beam B is used to input the beam detection Equipment, the target interface size of the beam detection equipment matches the target spot size.
  • the beam collimating device includes a first collimating lens group 12 with coaxial optical paths, a beam focusing lens group 14 and a second collimating lens group 16.
  • the first collimating lens group 12 is used to collimate the initial beam A.
  • the beam focusing lens group 14 is used to focus the collimated beam to obtain a focused beam, and the second collimating lens group 16 is used to collimate the focused beam to obtain the target beam B.
  • the first distance D1 between 12 and the beam focusing lens group 14 is adjustable, and the second distance D2 between the beam focusing lens group 14 and the second collimating lens group 16 is adjustable, so according to the target beam parameters
  • the first distance value corresponding to the first distance D1 and the second distance value corresponding to the second distance D2 are determined based on the parameters of the target device, so that the initial beam A passes through the first distance adjusted by the first distance D1 and the second distance D2 in sequence.
  • the target spot size of the target beam B obtained after the collimating lens group 12, the beam focusing lens group 14 and the second collimating lens group 16 matches the interface size of the beam detection device, and because the position of the second collimating lens group 16 is Fixed, thereby ensuring that after collimating different initial beams A, the target beam B that meets the target interface size requirements is obtained without changing the position of the optical path behind the beam collimation device, so that the beam detection device can be adjusted according to
  • the output target beam B detects the initial beam A efficiently and quickly. Therefore, the problem of low beam detection efficiency of the beam detection equipment in the related technology is solved, and the effect of improving the beam detection efficiency of the beam detection equipment is achieved. .
  • the target beam parameters may include, but are not limited to, time domain characteristic parameters, spatial domain characteristic parameters and frequency domain characteristic parameters, where the time domain characteristic parameters may include pulse waveform, peak power, repetition power, instantaneous Power, etc.
  • spatial domain characteristic parameters may include, but are not limited to, spot diameter, divergence angle, spot pattern, near-field and far-field distribution, etc.
  • Frequency domain characteristic parameters may include, but are not limited to, wavelength, spectral line width, frequency stability, coherence Wait, this plan does not limit this.
  • the target device parameters may include, but are not limited to, the target interface size of the target interface of the device that receives the target beam B, the distance between the device and the beam detection device (for example, the distance between the device's target interface and the beam detection device center distance, or the distance between the target interface and the second collimating lens group 16).
  • the beam parameters are different, and the focus of the focused beam obtained after being focused by the beam focusing lens group 14 is different from the distance value between the focusing lens group, which results in the same focusing lens group affecting different beam parameters.
  • the spot size of the focused beam irradiated on the second collimating mirror is different. Therefore, the spot size of the target beam B after collimation is also different. Therefore, the beam parameters and equipment parameters are different, and the corresponding first distance The values are also different, and the corresponding second distance values are also different.
  • step S406 the back intercept of the target collimation device after adjustment is the same as the back intercept of the collimation device before adjustment.
  • the target spot size of the target beam B may be increased, reduced, or unchanged relative to the initial spot size of the initial beam A.
  • the target spot size is smaller than or equal to the target interface size.
  • determining the first distance value of the first distance D1 and the second distance value of the second distance D2 according to the target beam parameters and the target device parameters includes:
  • the target focused beam focal length value corresponding to the target beam parameter is determined from the beam parameters having a corresponding relationship and the focused beam focal length value of the beam focusing lens group 14 , wherein the focused beam focal length value is used to indicate the The distance value between the focus of the beam after focusing by the beam focusing lens group 14 and the center point of the focusing lens group;
  • the first distance value corresponding to the target focused beam focal length value and the target equipment parameter is determined among the focused beam focal length value, device parameter and first distance D1 of the beam focusing lens group 14 that have a corresponding relationship, and in The second distance value corresponding to the target focused beam focal length value and the target equipment parameter is determined from the corresponding relationship between the focused beam focal length value, equipment parameters and the second distance D2 of the beam focusing lens group 14 .
  • the second distance value may be the distance between the beam focusing lens group 14 and the second collimating lens group 16 when the focus of the target focused beam and the focus of the second collimating lens group 16 coincide with the target beam parameter. 16 distance values between.
  • the focal length value of the focused beam and the target focused beam focal length value and the target are determined among the focused beam focal length value, equipment parameters and the first distance D1 of the beam focusing lens group 14 that have a corresponding relationship.
  • the first distance value corresponding to the equipment parameter, and the corresponding relationship between the focused beam focal length value of the beam focusing lens group 14, the equipment parameter and the second distance D2 is determined to be the target focused beam focal length value and the target equipment parameter.
  • the corresponding second distance value includes:
  • the conversion factor is calculated according to the second formula.
  • a 1 , a 2 , a 3 , b 1 , b 2 , b 3 , c 1 and c 2 may be, but are not limited to, any natural numbers.
  • FIG. 5 is a schematic diagram of an optional inner lens of the beam collimation device according to an embodiment of the present invention. As shown in Figure 5, the beam detection device requires The target spot size is 6mm-10mm.
  • the collimation spot size of the lens of the beam collimation equipment is set to be in the range, and the focal length range is 13.65mm. -22.73mm, the collimation of the beam is less than 4mrad, and the applicable wavelength is 915nm to 1100nm.
  • the numerical aperture NA is 0.22, which meets the parameters of most current fiber laser fibers.
  • the distance from the fiber outlet to the first piece of the pre-collimation group is 16.27mm.
  • the material is UV fused quartz, which can meet the high-power use requirements of fiber lasers.
  • nd reffractive index
  • Vd disersion coefficient
  • the beam collimating device includes a first collimating lens group 12, a beam focusing lens group 14, and a second collimating lens group 16.
  • the first collimating lens group 12 includes a first lens 121 and a second lens 122.
  • the group 14 includes a third lens 141 and a fourth lens 142
  • the second collimating lens group 16 includes a fifth lens 161 .
  • the beam incident surface of the first lens 121 is an aspherical surface with a curvature radius of 8.525mm ⁇ 5%.
  • the aspherical surface coefficients are -0.0000083867 for the fourth order, 0.0000045956 for the sixth order, and -0.000000068107 for the eighth order.
  • the curvature of the beam output surface The radius is 7.313mm ⁇ 5%, the lens thickness is 5mm, the material nd is 1.4585, and Vd is 67.821; the distance D1 between the second lens 122 and the second lens 122 is 1.524mm; the curvature radius of the beam input surface of the second lens 122 is 15.5122 mm ⁇ 5%, the curvature radius of the beam output surface is -12.5634mm ⁇ 5%, T2 is 5mm, the material nd is 1.4585, Vd is 67.821; the first distance D1 between the second lens 122 and the third lens 141 of the mirror
  • the adjustable range is 40.4391mm-2.2578mm; the curvature radius S5 of the beam incident surface of the third lens 141 is -42.8953mm ⁇ 5%, the curvature radius of the beam output surface is -557.4489mm ⁇ 5%, the lens thickness is 5mm, and the material nd is 1.4585, Vd is 67.821; the distance between the third lens
  • the first distance (D 1 ) and the second distance (D 2 ) are combined with the third lens 141 and the fourth lens combined focal length f (after focusing the beam, the focus of the focused beam is the same as the third lens 141 and the third lens 141 ).
  • FIG. 6 is a schematic diagram of an optional zoom curve according to an embodiment of the present invention. As shown in Figure 6, according to the combined focal length f of the third lens 141 and the fourth lens (after focusing the beam, the focal point of the focused beam is the same as the focus of the third lens 141 and the fourth lens). (the distance between the center points of the four-lens combination) changes, the values of D 1 and D 2 change accordingly.
  • the first laser beam output by a fiber laser with an output average power of 2000W is used as the laser source.
  • the specific spot mode is: output fundamental mode, wavelength is 1080nm, spot size and diameter is 5mm, and beam quality M2 is 1.4 , the spatial energy distribution of the output beam is Gaussian distribution;
  • a semiconductor fiber laser with an average output power of 2000W is used as the light source, the spot mode is a high-order mode, the wavelength is 915nm, the spot size is 8mm, and the beam quality M2 is 40.5, respectively, as application implementations example.
  • the first fiber laser with an average power of 2000W as the light source after outputting the laser through the output end cap QBH, connect the collimation optical system interface to the laser output end cap, that is, the laser beam is incident through the incident surface of the first lens 121 of the optical system , the first lens 121 and the second lens 122 are a fixed lens group (first collimation group) in the optical system, and their purpose is also to pre-collimate the divergent laser output from the laser.
  • the first lens 121 is the incident wide field of view.
  • the meniscus aspheric surface can focus more incident laser light into the optical system and reduce energy loss, and the first lens 121 is coated with a high-transmission film.
  • the focus of the first lens 121 coincides with the focus of the second lens 122, so the laser beam is pre-collimated.
  • the third lens 141 and the fourth lens 142 form a beam focusing group to achieve the zoom function of the optical system, that is, to change the magnification of the image through the first distance D1 and the second distance D2 without changing other characteristics of the image.
  • Aspherical lenses are also used in order to reduce aberrations.
  • Each surface is coated with a high-transmission film to avoid energy loss.
  • the combined focus of the third lens 141 and the fourth lens 142 (the focus of the focused beam after focusing the beam) It coincides with the focus of the fifth lens 161, so the laser beam output through the output surface of the fifth lens 161 is collimated parallel light.
  • the output spot size is 5mm, and the spot brightness is uniform and the size remains unchanged, which means that parallel light is output.
  • the output laser spot size can be obtained at 14mm. It changes uniformly within the range of 23mm, so that the optical system used in the back end can match the output parallel laser beam without changing the focal length. consistent with the design results.
  • Figure 7 is a schematic diagram of the point spread function of the beam collimating device according to the embodiment of the present invention at the longest focal length (a) and the shortest focal length (b).
  • Figure 8 is a schematic diagram of the beam collimating device according to the present invention at the longest focal length (a) and shortest focal length (b).
  • the MTF diagram of the transfer function at the shortest focus (b) is shown in Figures 7 and 8.
  • the shortest focus and longest focus of the beam collimation equipment are both within the diffraction limit, indicating that the optical system has good performance.
  • the method according to the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present invention can be embodied in the form of a software product in essence or the part that contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD), including several instructions to cause a terminal device (which can be a mobile phone, computer, server, or network device, etc.) to execute the methods of various embodiments of the present invention.
  • FIG. 9 is a structural block diagram of a beam collimating device according to an embodiment of the present invention.
  • the device includes: an acquisition module 92 for acquiring an initial The target beam parameters of the beam A, and the target device parameters of the beam detection device, wherein the beam detection device is used to detect the beam output by the beam collimation device, and the beam collimation device is used to detect the initial beam A.
  • the beam collimating device includes a first collimating lens group 12, a beam focusing lens group 14 and a second collimating lens group 16.
  • the beam focusing lens group 14 is arranged on the first collimating lens group.
  • the first distance D1 between the collimating lens group 12 and the beam focusing lens group 14 and the second distance D2 between the beam focusing lens group 14 and the second collimating lens group 16 are set to allow adjustment , the position of the second collimating lens group 16 is fixed; the determination module 94 is used to determine the first distance value of the first distance D1 and the second distance according to the target beam parameters and the target equipment parameters.
  • the second distance value of D2; the adjustment module 96 is used to adjust the first collimating lens group 12 and the beam focusing lens group 14 according to the first distance value and the second distance value to obtain the target beam collimation. straightening device; the control module 98 is used to control the initial beam A to input into the target beam collimating device to obtain the target beam B of the target spot size output by the target beam collimating device, wherein the target beam B is Upon inputting the light beam detection device, the target interface size of the light beam detection device matches the target spot size.
  • the determination module includes: a first determination unit, configured to determine the target corresponding to the target beam parameter among the beam parameters having a corresponding relationship and the focused beam focal length value of the beam focusing lens group 14 The focal length value of the focused beam, where the focal length value of the focused beam is used to indicate the distance value between the focus of the beam focused by the beam focusing lens group 14 and the center point of the focusing lens group; the second determination unit is configured to The first distance value corresponding to the target focused beam focal length value and the target equipment parameter is determined from the corresponding relationship between the focused beam focal length value, the equipment parameter and the first distance D1 of the beam focusing lens group 14, and in the The second distance value corresponding to the target focused beam focal length value and the target equipment parameter is determined from the corresponding relationship between the focused beam focal length value, the equipment parameter and the second distance D2 of the beam focusing lens group 14 .
  • a first determination unit configured to determine the target corresponding to the target beam parameter among the beam parameters having a corresponding relationship and the focused beam focal length value of the beam focusing
  • each of the above modules can be implemented through software or hardware.
  • it can be implemented in the following ways, but is not limited to this: the above modules are all located in the same processor; or the above modules can be implemented in any combination.
  • the forms are located in different processors.
  • Embodiments of the present invention also provide a computer-readable storage medium that stores a computer program, wherein the computer program is configured to execute the steps in any of the above method embodiments when running.
  • the computer-readable storage medium may include but is not limited to: U disk, read-only memory (Read-Only Memory, referred to as ROM), random access memory (Random Access Memory, referred to as RAM) , mobile hard disk, magnetic disk or optical disk and other media that can store computer programs.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk and other media that can store computer programs.
  • An embodiment of the present invention also provides an electronic device, including a memory and a processor.
  • a computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any of the above method embodiments.
  • the above-mentioned electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the above-mentioned processor, and the input-output device is connected to the above-mentioned processor.
  • modules or steps of the present invention can be implemented using general-purpose computing devices. They can be concentrated on a single computing device, or distributed across a network composed of multiple computing devices. They may be implemented in program code executable by a computing device, such that they may be stored in a storage device for execution by the computing device, and in some cases may be executed in a sequence different from that shown herein. Or the described steps can be implemented by making them into individual integrated circuit modules respectively, or by making multiple modules or steps among them into a single integrated circuit module. As such, the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Lenses (AREA)

Abstract

本发明实施例提供了一种光束准直设备、方法、装置、存储介质和电子装置,该设备包括第一准直镜组、光束聚焦镜组和第二准直镜组;第一准直镜组用于对初始光束进行准直;光束聚焦镜组用于对准直光束进行聚焦;第二准直镜组用于对聚焦光束进行准直。通过本发明达到了提高光束检测设备对光束的检测效率的效果。

Description

光束准直设备、方法、装置、存储介质和电子装置 技术领域
本发明实施例涉及激光处理领域,具体而言,涉及一种光束准直设备、方法、装置、存储介质和电子装置。
背景技术
近年来,随着制造业技术的快速发展,激光也逐渐在各个领域被广泛的应用,由于其具有亮度高、转换效率高、体积小、寿命长、激光光束质量好等优点,广泛应用于材料加工,如打标、打孔、焊接、切割、清洗、涂覆等以及光通信、光谱成像、医疗等领域。随着工业加工技术的精度要求越来越高,对使用的激光束的空间形态分布、能量分布等光束信息的要求也越来越高,一些实际应用中要求激光器输出的激光束能量呈特定的分布形式、空间形态呈特定分布状态,这就衍生了激光光束的分析测量。
目前行业内在进行光束的分析测量时,需要对待测光束进行光束缩放处理,通过使用准直光束系统进行准直处理,使得准直后的光束能够符合测量设备的光束输入要求,但是由于使用的激光器的型号不同,激光器输出的光束的光斑尺寸也不同,这就导致了用同一参数准直光学系统进行准直后,激光器输出的光斑大小及后端焦距差异较大,因此,当前在对不同的光束进行分析和测量前,需要手动更换不同参数的准直光学系统,操作十分的复杂,并且,在更换了不同的准直光学系统后,后端光路也随之不匹配,致使准直后的光束无法满足光束分析测量设备的需求。
针对相关技术中存在的光束检测设备对光束的检测效率较低的问题,目前尚未提出有效的解决方案。
技术问题
本发明实施例提供了一种光束准直设备、方法、装置、存储介质和电子装置,以至少解决相关技术中存在的光束检测设备对光束的检测效率较低的问题。
技术解决方案
根据本发明的一个实施例,提供了一种光束准直设备,包括:第一准直镜组、光束聚焦镜组和第二准直镜组,其中,所述光束聚焦镜组设置在所述第一准直镜组和所述第二准直镜组之间,第一准直镜组、光束聚焦镜组和第二准直镜组的光路同轴,所述第一准直镜组与所述光束聚焦镜组之间的第一距离以及所述光束聚焦镜组与所述第二准直镜组之间的第二距离被设置为允许调整,所述第二准直镜组的位置固定;所述第一准直镜组,用于对初始光束进行准直,得到准直光束;所述光束聚焦镜组,用于对所述准直光束进行聚焦,得到聚焦光束;所述第二准直镜组,用于对所述聚焦光束进行准直,得到目标光斑尺寸的目标光束,其中,所述目标光束用于输入光束检测设备,所述光束检测设备的目标接口尺寸与所述目标光斑尺寸匹配。
可选的,所述第一准直镜组包括:第一透镜和第二透镜,其中,所述第一透镜和所述第二透镜之间的距离为固定值;所述光束聚焦镜组包括:第三透镜和第四透镜,其中,所述第三透镜和所述第四透镜之间的距离为固定值;所述第二准直镜组包括:第五透镜,其中,所述第五透镜的焦点与所述聚焦光束的焦点重合。
可选的,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜的折射率均为目标折射率,其中,所述目标折射率落在目标折射率区间内,在所述目标折射率区间内的透镜满足对光束的目标色散条件。
可选的,所述第一透镜的光束输入面的曲率半径为正值,所述第一透镜的光束输出面的曲率半径为正值;所述第二透镜的光束输入面的曲率半径为正值,所述第二透镜的光束输出面的曲率半径为负值; 所述第三透镜的光束输入面的曲率半径为负值,所述第三透镜的光束输出面的曲率半径为负值;所述第四透镜的光束输入面的曲率半径为正值,所述第四透镜的光束输出面的曲率半径为正值;所述第五透镜的光束输入面的曲率半径为正值,所述第五透镜的光束输出面的曲率半径为正值。
可选的,所述第一透镜的光束输入面为非球面;所述第三透镜的光束输出面为非球面。
可选的,所述目标光斑尺寸小于或者等于所述目标接口尺寸。
可选的,所述第一透镜和所述第二透镜之间的距离是根据透镜的折射率、镜片厚度或者镜片焦距值设置的固定值。
可选的,所述第三透镜和所述第四透镜之间的距离是根据透镜的折射率、镜片厚度或者镜片焦距值设置的固定值。
可选的,所述目标折射率区间的折射率大于或等于1.45且小于或等于1.56。
可选的,所述目标色散条件用于指示透镜输出的光束质量。
根据本发明的一个实施例,提供了一种光束准直方法,包括:获取初始光束的目标光束参数,以及光束检测设备的目标设备参数,其中,所述光束检测设备用于对光束准直设备输出的光束进行检测,所述光束准直设备用于对所述初始光束进行准直,所述光束准直设备包括第一准直镜组、光束聚焦镜组和第二准直镜组,所述光束聚焦镜组设置在所述第一准直镜组和所述第二准直镜组之间,所述第一准直镜组、所述光束聚焦镜组和所述第二准直镜组的光路同轴,所述第一准直镜组与所述光束聚焦镜组之间的第一距离以及所述光束聚焦镜组与所述第二准直镜组之间的第二距离被设置为允许调整,所述第二准直镜组的位置固定;根据所述目标光束参数和所述目标设备参数确定所述第一距离的第一距离值和所述第二距离的第二距离值;按照所述第一距离值和所述第二距离值调整所述第一准直镜组和所述光束聚焦镜组,得到目标光束准直设备;控制所述初始光束输入所述目标光束准直设备,得到所述目标光束准直设备输出的目标光斑尺寸的目标 光束,其中,所述目标光束用于输入所述光束检测设备,所述光束检测设备的目标接口尺寸与所述目标光斑尺寸匹配。
可选的,所述根据所述目标光束参数和所述目标设备参数确定所述第一距离的第一距离值和所述第二距离的第二距离值,包括:在具有对应关系的光束参数和所述光束聚焦镜组的聚焦光束焦距值中确定出与所述目标光束参数对应的目标聚焦光束焦距值,其中,所述聚焦光束焦距值用于指示经所述光束聚焦镜组聚焦后的光束焦点和所述聚焦镜组中心点的距离值;在具有对应关系的所述光束聚焦镜组的聚焦光束焦距值、设备参数和第一距离中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第一距离值,以及在所述光束聚焦镜组的聚焦光束焦距值、设备参数和第二距离的对应关系中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第二距离值。
可选的,所述在具有对应关系的所述光束聚焦镜组的聚焦光束焦距值、设备参数和第一距离中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第一距离值,以及在所述光束聚焦镜组的聚焦光束焦距值、设备参数和第二距离的对应关系中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第二距离值,包括:根据第一公式计算得到所述第一距离值,其中,所述第一公式为D 1=-a 1E 2-a 2E+a 3,D 1为所述第一距离值,a 1、a 2和a 3是与所述目标设备参数匹配的系数,E为转换因子,所述转换因子是根据第二公式计算得到的,所述第二公式为f=b 1E 2+b 2E+b 3,f为所述目标聚焦光束焦距值,b 1、b 2和b 3为与所述目标设备参数匹配的系数;根据第三公式计算得到所述第二距离值,其中,所述第三公式为D 2=c 1E-c 2,D 2为所述第二距离值,c 1和c 2为与所述目标设备参数匹配的系数。
可选的,所述目标光束参数包括时域特性参数、空域特性参数和频域特性参数。
可选的,所述第二距离值是当所述目标光束参数的目标聚焦光束的焦点和所述第二准直镜组的焦点重合时所述光束聚焦镜组和所述第二准直镜组之间的距离值。
根据本发明的又一个实施例,还提供了一种光束准直装置,包括:获取模块,用于获取初始光束的目标光束参数,以及光束检测设备的目标设备参数,其中,所述光束检测设备用于对光束准直设备输出的光束进行检测,所述光束准直设备用于对所述初始光束进行准直,所述光束准直设备包括第一准直镜组、光束聚焦镜组和第二准直镜组,所述光束聚焦镜组设置在所述第一准直镜组和所述第二准直镜组之间,所述第一准直镜组、所述光束聚焦镜组和所述第二准直镜组的光路同轴,所述第一准直镜组与所述光束聚焦镜组之间的第一距离以及所述光束聚焦镜组与所述第二准直镜组之间的第二距离被设置为允许调整,所述第二准直镜组的位置固定;确定模块,用于根据所述目标光束参数和所述目标设备参数确定所述第一距离的第一距离值和所述第二距离的第二距离值;调整模块,用于按照所述第一距离值和所述第二距离值调整所述第一准直镜组和所述光束聚焦镜组,得到目标光束准直设备;控制模块,用于控制所述初始光束输入所述目标光束准直设备,得到所述目标光束准直设备输出的目标光斑尺寸的目标光束,其中,所述目标光束用于输入所述光束检测设备,所述光束检测设备的目标接口尺寸与所述目标光斑尺寸匹配。
可选的,所述确定模块包括:
第一确定单元,用于在具有对应关系的光束参数和所述光束聚焦镜组的聚焦光束焦距值中确定出与所述目标光束参数对应的目标聚焦光束焦距值,其中,所述聚焦光束焦距值用于指示经所述光束聚焦镜组聚焦后的光束焦点和所述聚焦镜组中心点的距离值;
第二确定单元,用于在具有对应关系的所述光束聚焦镜组的聚焦光束焦距值、设备参数和第一距离中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第一距离值,以及在所述光束聚焦镜组的聚焦光束焦距值、设备参数和第二距离的对应关系中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第二距离值。
可选的,所述第二确定单元用于:根据第一公式计算得到所述第一距离值,其中,所述第一公式为D 1=-a 1E 2-a 2E+a 3,D 1为所述第一距 离值,a 1、a 2和a 3是与所述目标设备参数匹配的系数,E为转换因子,所述转换因子是根据第二公式计算得到的,所述第二公式为f=b 1E 2+b 2E+b 3,f为所述目标聚焦光束焦距值,b 1、b 2和b 3为与所述目标设备参数匹配的系数;根据第三公式计算得到所述第二距离值,其中,所述第三公式为D 2=c 1E-c 2,D 2为所述第二距离值,c 1和c 2为与所述目标设备参数匹配的系数。
根据本发明的又一个实施例,还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一项方法实施例中的步骤。
有益效果
通过本发明,光束准直设备包括第一准直镜组、光束聚焦镜组和第二准直镜组,其中,所述光束聚焦镜组设置在所述第一准直镜组和所述第二准直镜组之间,第一准直镜组、光束聚焦镜组和第二准直镜组的光路同轴,所述第一准直镜组与所述光束聚焦镜组之间的第一距离以及所述光束聚焦镜组与所述第二准直镜组之间的第二距离被设置为允许调整,所述第二准直镜组的位置固定;所述第一准直镜组,用于对初始光束进行准直,得到准直光束;所述光束聚焦镜组,用于对所述准直光束进行聚焦,得到聚焦光束;所述第二准直镜组,用于对所述聚焦光束进行准直,得到目标光斑尺寸的目标光束,其中,所述目标光束用于输入光束检测设备,所述光束检测设备的目标接口尺寸与所述目标光斑尺寸匹配,即,光束准直设备包括光路同轴的第一准直镜组、光束聚焦镜组和第二准直镜组,第一准直镜组用于对初始光束进行准直得到准直光束,光束聚焦镜组用于对准直光束进行聚焦得到聚焦光束,第二准直镜组用于对聚焦光束进行准直得到目标光束,由于第一准直镜组和光束聚焦镜组之间的第一距离是可调的,以及光 束聚焦镜组和第二准直镜组之间的第二距离是可调的,从而使得初始光束依次经过第一准直镜组、光束聚焦镜组以及第二准直镜组后得到的目标光束的目标光斑尺寸与光束检测设备的接口尺寸匹配,并且由于第二准直镜组的位置是固定的,从而保证在对不同的初始光束进行准直后得到的符合目标接口尺寸需求的目标光束的同时无需对光束准直设备后的光路的位置进行更改,从而实现通过移动光束准直设备中的镜组的位置将初始光束准直为光斑尺寸与光束检测设备接口尺寸匹配的目标光束,并且光束准直设备后的光路位置也无需更改,从而实现光束检测设备可根据输出的目标光束高效快速的对初始光束的检测,因此,解决了相关技术中存在的光束检测设备对光束的检测效率较低的问题,达到了提高光束检测设备对光束的检测效率的效果。
附图说明
图1是根据本发明实施例的光束准直设备的示意图;
图2是根据本发明实施例的一种可选的光束的准直示意图;
图3是本发明实施例的光束准直方法的移动终端硬件结构框图;
图4是根据本发明实施例的光束准直方法的流程图;
图5是根据本发明实施例的一种可选的光束准直设备内透镜示意图;
图6是根据本发明实施例的一种可选的变焦曲线示意图;
图7是本发明实施例的光束准直设备在最长焦和最短焦时点扩散函数示意图;
图8是本发明实施的光束准直设备在最长焦和最短焦时传递函数MTF图;
图9是根据本发明实施例的光束准直装置的结构框图。
本发明的实施方式
下文中将参考附图并结合实施例来详细说明本发明的实施例。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术 语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种光束准直设备,图1是根据本发明实施例的光束准直设备的示意图,如图1所示,该设备包括如下步骤:第一准直镜组12、光束聚焦镜组14和第二准直镜组16,其中,
所述光束聚焦镜组14设置在所述第一准直镜组12和所述第二准直镜组16之间,第一准直镜组12、光束聚焦镜组14和第二准直镜组16的光路同轴,所述第一准直镜组12与所述光束聚焦镜组14之间的第一距离D1以及所述光束聚焦镜组14与所述第二准直镜组16之间的第二距离D2被设置为允许调整,所述第二准直镜组16的位置固定;
所述第一准直镜组12,用于对初始光束A进行准直,得到准直光束;
所述光束聚焦镜组14,用于对所述准直光束进行聚焦,得到聚焦光束;
所述第二准直镜组16,用于对所述聚焦光束进行准直,得到目标光斑尺寸的目标光束B,其中,所述目标光束B用于输入光束检测设备,所述光束检测设备的目标接口尺寸与所述目标光斑尺寸匹配。
可选地,在本实施例中,第一准直镜组12可以但不限于是由准直镜组成的镜组,或者还可以是由准直镜和聚焦镜组成的镜组,本方案对此不做限定。
可选地,在本实施例中,光束聚焦镜可以是由聚焦镜组成的镜组,或者还可以是由准直镜和聚焦镜组成的镜组,本方案对此不做限定。
可选地,在本实施例中,第二准直镜可以是由准直镜组成的镜组,或者还可以是由准直镜和聚焦镜组成的镜组,本方案对此不做限定。
可选地,在本实施例中,目标光斑尺寸可以但不限于是小于或者等于目标接口尺寸。
可选地,在本实施例中,通过调节第一距离D1和第二距离D2从而调节输出的目标光束B的目标光斑尺寸,调节后的目标光斑尺 寸相比于初始光束A的初始光斑尺寸可以但不限于是增大、缩小和相等,本方案对此不做限定。
可选地,在本实施例中,光束检测设备用于根据所述目标光束B检测初始光束A的属性信息,属性信息可以但不限于包括光束的质量、光束的空间分布、光束的能量分布等等,本方案对此不做限定。
常规的光纤激光准直镜都是一个准直头,在根据不同的使用需求更换不同的准直镜,而对于实际需要的光斑是多种多样的,并不能满足所有的使用要求,为了满足半导体激光器的这一个使用需求通过以上实施例,实现通过调节镜组间距调节光束准直设备的焦距,从而调节准直后的光斑尺寸,图2是根据本发明实施例的一种可选的光束的准直示意图,如图2所示,对同一光束参数的初始光束A进行准直时,通过调节第一准直镜组12和光束聚焦镜组14的第一距离D1,以及光束聚焦镜组14和第二准直镜组16的第二距离D2,从而得到不同光斑尺寸的目标光束B,比如,当需要对初始光斑的光斑尺寸缩小时,则增大第一距离D1,减小第二距离D2(即将光束聚焦镜组14向第二准直镜组16侧移动),当需要对初始光束A的光斑尺寸放大时,则减小第一距离D1,增大第二距离D2(即将光束聚焦镜组14向第二准直镜组16侧移动)。
通过上述实施例,通过调节镜组位置,调节光束准直设备的焦距,实现在不更改光束准直设备的前提下,对光束的光斑尺寸进行调整,并且,不影响光束准直设备的后截距,实现光束准直设备的固定后截距输出。
通过以上步骤,光束准直设备包括光路同轴的第一准直镜组12、光束聚焦镜组14和第二准直镜组16,第一准直镜组12用于对初始光束A进行准直得到准直光束,光束聚焦镜组14用于对准直光束进行聚焦得到聚焦光束,第二准直镜组16用于对聚焦光束进行准直得到目标光束B,由于第一准直镜组12和光束聚焦镜组14之间的第一距离D1是可调的,以及光束聚焦镜组14和第二准直镜组16之间的第二距离D2是可调的,从而使得初始光束A依次经过第一准直镜组 12、光束聚焦镜组14以及第二准直镜组16后得到的目标光束B的目标光斑尺寸与光束检测设备的接口尺寸匹配,并且由于第二准直镜组16的位置是固定的,从而保证在对不同的初始光束A进行准直后得到的符合目标接口尺寸需求的目标光束B的同时无需对光束准直设备后的光路的位置进行更改,从而实现通过移动光束准直设备中的镜组的位置将初始光束A准直为光斑尺寸与光束检测设备接口尺寸匹配的目标光束B,并且光束准直设备后的光路位置也无需更改,使得光束检测设备可根据输出的目标光束B高效快速的对初始光束A的检测,因此,解决了相关技术中存在的光束检测设备对光束的检测效率较低的问题,达到了提高光束检测设备对光束的检测效率的效果。
作为一种可选的实施例,所述第一准直镜组12包括:第一透镜121和第二透镜122,其中,所述第一透镜121和所述第二透镜122之间的距离为固定值;
所述光束聚焦镜组14包括:第三透镜141和第四透镜142,其中,所述第三透镜141和所述第四透镜142之间的距离为固定值;
所述第二准直镜组16包括:第五透镜161,其中,所述第五透镜161的焦点与所述聚焦光束的焦点重合。
可选地,在本实施例中,第一透镜121和第二透镜122之间的距离可以但不限于是根据透镜的折射率、镜片厚度、镜片焦距值等设置的固定值。
可选地,在本实施例中,第三透镜141和第四透镜142之间的距离可以但不限于是根据透镜的折射率、镜片厚度、镜片焦距值等设置的固定值。
可选地,在本实施例中,为保证对光束的透过能力,第一透镜121、第二透镜122、第三透镜141、第四透镜142以及第五透镜161可以但不限于是镀有对某属性光束具有高透性的高透膜的透镜,比如镀有高透近红外膜的透镜,同理,为过滤某种光束,第一透镜121、第二透镜122、第三透镜141、第四透镜142以及第五透镜161可以但不限于是镀有对某些属性的光束具有高阻性的高阻膜的透镜。
作为一种可选的实施例,所述第一透镜121、所述第二透镜122、所述第三透镜141、所述第四透镜142、所述第五透镜161的折射率均为目标折射率,其中,所述目标折射率落在目标折射率区间内,在所述目标折射率区间内的透镜满足对光束的目标色散条件。
可选地,在本实施例中,目标色散条件用于指示透镜输出的光束质量,当满足目标色散条件后透镜输出的光束质量较好,色散不明显,成像质量较高,目标色散条件可以但不限于是透镜的色散系数在某一区间内。
可选地,在本实施例中,目标折射率区间可以但不限于是折射率大于等于1.45,且小于等于1.56。
可选地,在本实施例中,所述第一透镜121、所述第二透镜122、所述第三透镜141、所述第四透镜142、所述第五透镜161的折射率均为目标厚度。
作为一种可选的实施例,所述第一透镜121的光束输入面的曲率半径为正值,所述第一透镜121的光束输出面的曲率半径为正值;
所述第二透镜122的光束输入面的曲率半径为正值,所述第二透镜122的光束输出面的曲率半径为负值;
所述第三透镜141的光束输入面的曲率半径为负值,所述第三透镜141的光束输出面的曲率半径为负值;
所述第四透镜142的光束输入面的曲率半径为正值,所述第四透镜142的光束输出面的曲率半径为正值;
所述第五透镜161的光束输入面的曲率半径为正值,所述第五透镜161的光束输出面的曲率半径为正值。
可选地,在本实施例中,第一透镜121的光束输入面的曲率半径大于等于8.09875mm,小于等于8.95125mm,第一透镜121的光束输出面的曲率半径大于等于6.94735mm,且小于等于7.67865mm;第二透镜122的光束输入面的曲率半径大于等于14.73659mm,且小于等于16.28781mm,第二透镜122的光束输出面的曲率半径大于等于11.93523mm,且小于等于13.19157mm;第三透镜141的光束输入面 的曲率半径大于等于40.750535mm,且小于等于45.040065mm,第三透镜141的光束输出面的曲率半径大于等于529.576455mm,且小于等于585.321345mm;第四透镜142的光束输入面的曲率半径大于等于9.3594mm,且小于等于10.3446mm,第四透镜142的光束输出面的曲率半径大于等于7.536825mm,且小于等于8.330175mm;第五透镜161的光束输入面的曲率半径大于等于24.827585mm,小于等于27.441015mm,第五透镜161的光束输出面的曲率半径大于等于37.387345mm,且小于等于41.322855mm。
作为一种可选的实施例,第一透镜121的光束输入面为非球面;第三透镜141的光束输出面为非球面。
可选地,在本实施例中,为了减少成像的像差,防止光束畸变,第一透镜121的光束输入面和第三透镜141的光束输出面可以被设置为非球面,第一透镜121的光束输入面和第三透镜141的光束输出面可以被设置相同的非球面系数,也可以被设置为不同的非球面系数,比如,第一透镜121的光束输入面和第三透镜141的光束输出面可以被设置相同的非球面系数可以被设置为第四阶系数为-8.3867*10 -6,第六阶系数为-4.5956*10 -6,第八阶系数为-6.8107*10 -8
本申请实施例中所提供的方法实施例可以在移动终端、计算机终端或者类似的运算装置中执行。以运行在移动终端上为例,图3是本发明实施例的光束准直方法的移动终端硬件结构框图。如图3所示,移动终端可以包括一个或多个(图3中仅示出一个)处理器302(处理器302可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器304,其中,上述移动终端还可以包括用于通信功能的传输设备306以及输入输出设备308。本领域普通技术人员可以理解,图3所示的结构仅为示意,其并不对上述移动终端的结构造成限定。例如,移动终端还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器304可用于存储计算机程序,例如,应用软件的软件程序以及模块,如本发明实施例中的光束准直方法对应的计算机程序,处 理器302通过运行存储在存储器304内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器304可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器304可进一步包括相对于处理器302远程设置的存储器,这些远程存储器可以通过网络连接至移动终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置306用于经由一个网络接收或者发送数据。上述的网络具体实例可包括移动终端的通信供应商提供的无线网络。在一个实例中,传输装置306包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置306可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种光束准直方法,图4是根据本发明实施例的光束准直方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,获取初始光束A的目标光束参数,以及光束检测设备的目标设备参数,其中,所述光束检测设备用于对光束准直设备输出的光束进行检测,所述光束准直设备用于对所述初始光束A进行准直,所述光束准直设备包括第一准直镜组12、光束聚焦镜组14和第二准直镜组16,所述光束聚焦镜组14设置在所述第一准直镜组12和所述第二准直镜组16之间,所述第一准直镜组12、所述光束聚焦镜组14和所述第二准直镜组16的光路同轴,所述第一准直镜组12与所述光束聚焦镜组14之间的第一距离D1以及所述光束聚焦镜组14与所述第二准直镜组16之间的第二距离D2被设置为允许调整,所述第二准直镜组16的位置固定;
步骤S404,根据所述目标光束参数和所述目标设备参数确定所述第一距离D1的第一距离值和所述第二距离D2的第二距离值;
步骤S406,按照所述第一距离值和所述第二距离值调整所述第一准直镜组12和所述光束聚焦镜组14,得到目标光束准直设备;
步骤S408,控制所述初始光束A输入所述目标光束准直设备,得到所述目标光束准直设备输出的目标光斑尺寸的目标光束B,其中,所述目标光束B用于输入所述光束检测设备,所述光束检测设备的目标接口尺寸与所述目标光斑尺寸匹配。
通过上述步骤,光束准直设备包括光路同轴的第一准直镜组12、光束聚焦镜组14和第二准直镜组16,第一准直镜组12用于对初始光束A进行准直得到准直光束,光束聚焦镜组14用于对准直光束进行聚焦得到聚焦光束,第二准直镜组16用于对聚焦光束进行准直得到目标光束B,由于第一准直镜组12和光束聚焦镜组14之间的第一距离D1是可调的,以及光束聚焦镜组14和第二准直镜组16之间的第二距离D2是可调的,因此根据目标光束参数和目标设备参数确定出第一距离D1对应的第一距离值,以及第二距离D2对应的第二距离值,从而使得初始光束A依次经过调整过第一距离D1和第二距离D2的第一准直镜组12、光束聚焦镜组14以及第二准直镜组16后得到的目标光束B的目标光斑尺寸与光束检测设备的接口尺寸匹配,并且由于第二准直镜组16的位置是固定的,从而保证在对不同的初始光束A进行准直后得到的符合目标接口尺寸需求的目标光束B的同时无需对光束准直设备后的光路的位置进行更改,从而实现光束检测设备可根据输出的目标光束B高效快速的对初始光束A的检测,因此,解决了相关技术中存在的光束检测设备对光束的检测效率较低的问题,达到了提高光束检测设备对光束的检测效率的效果。
在上述步骤S402提供的技术方案中,目标光束参数可以但不限于包括时域特性参数、空域特性参数和频域特性参数,其中,时域特性参数可以包括脉冲波形、峰值功率、重复功率、瞬时功率等,空域特性参数可以但不限于包括光斑直径、发散角、光斑模式、近场和远场分布等等,频域特性参数可以但不限于包括波长、谱线宽度、频率稳定性、相干性等等,本方案对此不做限定。
可选地,在本实施例中,目标设备参数可以但不限于包括设备接收目标光束B的目标接口的目标接口尺寸,设备与光束检测设备的 距离(比如,设备的目标接口与光束检测设备的中心距离,或者目标接口与第二准直镜组16的距离)。
在上述步骤S404提供的技术方案中,光束参数不同,经光束聚焦镜组14聚焦后得到的聚焦光束的焦点与聚焦镜组的距离值是不同的,进而导致同一聚焦镜组对不同光束参数的光束聚焦得到的聚焦光束照射在第二准直镜上的光斑尺寸是不同的,从而准直后的目标光束B的光斑尺寸也是不同的,因此光束参数不同、设备参数不同,对应的第一距离值也是不同的,对应的第二距离值也是不同的。
在上述步骤S406提供的技术方案中,调整后的目标准直设备的后截距与调整前的准直设备的后截距相同。
在上述步骤S408提供的技术方案中,目标光束B的目标光斑尺寸相对初始光束A的初始光斑尺寸可以是增大的、缩小的、不变的。
可选地,在本实施例中,目标光斑尺寸小于或等于目标接口尺寸。
作为一种可选的实施例,所述根据所述目标光束参数和所述目标设备参数确定所述第一距离D1的第一距离值和所述第二距离D2的第二距离值,包括:
在具有对应关系的光束参数和所述光束聚焦镜组14的聚焦光束焦距值中确定出与所述目标光束参数对应的目标聚焦光束焦距值,其中,所述聚焦光束焦距值用于指示经所述光束聚焦镜组14聚焦后的光束焦点和所述聚焦镜组中心点的距离值;
在具有对应关系的所述光束聚焦镜组14的聚焦光束焦距值、设备参数和第一距离D1中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第一距离值,以及在所述光束聚焦镜组14的聚焦光束焦距值、设备参数和第二距离D2的对应关系中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第二距离值。
可选地,在本实施例中,第二距离值可以是当目标光束参数的目标聚焦光束的焦点和第二准直镜组16的焦点重合时光束聚焦镜组14和第二准直镜组16之间的距离值。
作为一种可选的实施例,所述在具有对应关系的所述光束聚焦镜 组14的聚焦光束焦距值、设备参数和第一距离D1中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第一距离值,以及在所述光束聚焦镜组14的聚焦光束焦距值、设备参数和第二距离D2的对应关系中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第二距离值,包括:
根据第一公式计算得到所述第一距离值,其中,所述第一公式为D 1=-a 1E 2-a 2E+a 3,D 1为所述第一距离值,a 1、a 2和a 3是与所述目标设备参数匹配的系数,E为转换因子,所述转换因子是根据第二公式计算得到的,所述第二公式为f=b 1E 2+b 2E+b 3,f为所述目标聚焦光束焦距值,b 1、b 2和b 3为与所述目标设备参数匹配的系数;
根据第三公式计算得到所述第二距离值,其中,所述第三公式为D 2=c 1E-c 2,D 2为所述第二距离值,c 1和c 2为与所述目标设备参数匹配的系数。
可选地,在本实施例中,a 1、a 2、a 3、b 1、b 2、b 3、c 1和c 2可以但不限于是任意自然数。
光束准直设备中的镜组位置可调,当需要对初始光束A进行光束准直处理时,根据光束参数和光束检测设备接口尺寸调节镜组的位置,从而实现自动将初始光束A转换为光束检测设备可用的目标光束B,从而大大提高了光束检测设备的效率,图5是根据本发明实施例的一种可选的光束准直设备内透镜示意图,如图5所示,光束检测设备需要的目标光斑尺寸为6mm-10mm,为了满足光束准直设备对满足当前大部分光纤激光器输出光束的准直需求,设置光束准直设备的镜头的准直光斑大小为范围,焦距的范围为13.65mm-22.73mm,光束的准直度为小于4mrad,适用波长为915nm至1100nm。数值孔径NA为0.22,满足当前大部分光纤激光器光纤的参数。光纤出口到预准直组第一片的距离为16.27mm,材料为紫外融融石英,能够满足光纤激光器大功率的使用需求,nd(折射率)为1.4585,Vd(色散系数)为67.821。光束准直设备包括第一准直镜组12、光束聚焦镜组14、第二准直镜组16,其中,第一准直镜组12包括第一透镜121 和第二透镜122,光束聚焦镜组14包括第三透镜141和第四透镜142,第二准直镜组16包括第五透镜161。第一透镜121的光束入射面为非球面,曲率半径为8.525mm±5%,非球面系数,第四阶为-0.0000083867,第六阶为0.0000045956,第八阶为-0.000000068107,光束输出面的曲率半径为7.313mm±5%,镜片厚度为5mm,材料nd为1.4585,Vd为67.821;第二透镜122和第二透镜122的间距D1=1.524mm;第二透镜122的光束输入面曲率半径为15.5122mm±5%,光束输出面曲率半径为-12.5634mm±5%,T2为5mm,材料nd为1.4585,Vd为67.821;镜第二透镜122与第三透镜141之间的第一距离D1的间距可调区间为40.4391mm-2.2578mm;第三透镜141的光束入射面的曲率半径S5为-42.8953mm±5%,光束输出面的曲率半径为-557.4489mm±5%,透镜厚度为5mm,材料nd为1.4585,Vd为67.821;第三透镜141与第四透镜142的间距为1mm;第四透镜142的光束入射面的曲率半径为9.852mm±5%,光束输出面的曲率半径为7.9335mm±5%,透镜厚度为5mm,材料nd为1.4585,Vd为67.821;第四透镜142与第五透镜161之间的第二距离D2的间距可调区间为2.0369mm-38.8057mm;第五透镜161的光束入射面的曲率半径为26.1343mm±5%,光束输出面的曲率半径为39.3551mm±5%,镜片厚度为5mm,材料nd为1.4585,Vd为67.821。
经计算推导,光学系统变焦过程中第一距离(D 1)和第二距离(D 2)与第三透镜141和第四镜片组合焦距f(对光束聚焦后聚焦光束焦点与第三透镜141和第四镜片组合中心点的距离)存在以下关系:D 1=-0.2532E 2-1.3674E+41.719,D 2=4.0854E-2.0485,第三第四镜片组合后的焦距:f=0.0579E 2+0.3535E+13.304其中E为转换因子,简言之在实际应用中,当不同的参数激光输入时,调整组合焦距值即设置不同的焦距的时候,此时组合焦距为已知参数,由上述公式即可得到D 1及D 2的值。图6是根据本发明实施例的一种可选的变焦曲线示意图,如图6所示根据第三透镜141和第四镜片组合焦距f(对光束聚焦后聚焦光束焦点与第三透镜141和第四镜片组合中心点的距离)的 变化,D 1和D 2的值对应变化。
在本实施例中,第一以输出平均功率为2000W的光纤激光器输出的激光光束为激光源,具体光斑模式为,输出基模,波长为1080nm,光斑大小直径为5mm,光束质量为M2为1.4,输出光束空间能量分布为高斯分布;第二,以输出平均功率为2000W的半导体光纤激光器为光源,光斑模式为高阶模,波长为915nm,光斑大小为8mm,光束质量M2为40.5,分别作为应用实施例。
以上述第一种平均功率为2000W的光纤激光器为光源,经输出端帽QBH输出激光后,将准直光学系统接口与激光器输出端帽对接,即激光束经光学系统第一透镜121入射面入射,第一透镜121与第二透镜122是光学系统中的固定的镜组(第一准直组),其目的也是将激光器输出的发散的激光预准直,第一透镜121为入射宽视场弯月非球面,能更多地将入射激光汇聚进光学系统,减少能量损失,并且第一透镜121上镀有高透膜。第一透镜121的焦点与第二透镜122的焦点重合,所以实现激光束预准直。第三透镜141与第四透镜142组成光束聚焦组,实现光学系统的变焦作用,即是通过第一距离D1和第二距离D2实现像的倍率的改变,而不改变像的其他特性,其镜片同样采用非球面镜片,目的是为了减小像差,各面均镀有高透膜不造成能量的损失,第三透镜141和第四透镜142的组合焦点(对光束聚焦后聚焦光束的焦点)与第五透镜161的焦点重合,所以经第五透镜161输出面输出的激光束为准直后的平行光。综上所述,1080nm的激光经准直光学系统后,输出为光斑大小为5mm,光斑亮度均匀大小不变,则说明输出平行光,通过调节镜组后,可以得到输出的激光光斑大小在14mm至23mm范围内均匀改变,这样以来后端应用的光学系统亦可以不用改变焦距来配合输出的平行激光束。与设计结果相符合。
图7是本发明实施例的光束准直设备在最长焦(a)和最短焦(b)时点扩散函数示意图,图8是本发明实施的光束准直设备在最长焦(a)和最短焦(b)时传递函数MTF图,如图7和图8所示,该光束准直 设备最短焦和最长焦均在衍射极限以内,说明光学系统性能良好。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例的方法。
在本实施例中还提供了一种光束准直装置,图9是根据本发明实施例的光束准直装置的结构框图,如图9所示,该装置包括:获取模块92,用于获取初始光束A的目标光束参数,以及光束检测设备的目标设备参数,其中,所述光束检测设备用于对光束准直设备输出的光束进行检测,所述光束准直设备用于对所述初始光束A进行准直,所述光束准直设备包括第一准直镜组12、光束聚焦镜组14和第二准直镜组16,所述光束聚焦镜组14设置在所述第一准直镜组12和所述第二准直镜组16之间,所述第一准直镜组12、所述光束聚焦镜组14和所述第二准直镜组16的光路同轴,所述第一准直镜组12与所述光束聚焦镜组14之间的第一距离D1以及所述光束聚焦镜组14与所述第二准直镜组16之间的第二距离D2被设置为允许调整,所述第二准直镜组16的位置固定;确定模块94,用于根据所述目标光束参数和所述目标设备参数确定所述第一距离D1的第一距离值和所述第二距离D2的第二距离值;调整模块96,用于按照所述第一距离值和所述第二距离值调整所述第一准直镜组12和所述光束聚焦镜组14,得到目标光束准直设备;控制模块98,用于控制所述初始光束A输入所述目标光束准直设备,得到所述目标光束准直设备输出的目标光斑尺寸的目标光束B,其中,所述目标光束B用于输入所述光束检测设备,所述光束检测设备的目标接口尺寸与所述目标光斑尺寸匹配。
可选的,所述确定模块,包括:第一确定单元,用于在具有对应 关系的光束参数和所述光束聚焦镜组14的聚焦光束焦距值中确定出与所述目标光束参数对应的目标聚焦光束焦距值,其中,所述聚焦光束焦距值用于指示经所述光束聚焦镜组14聚焦后的光束焦点和所述聚焦镜组中心点的距离值;第二确定单元,用于在具有对应关系的所述光束聚焦镜组14的聚焦光束焦距值、设备参数和第一距离D1中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第一距离值,以及在所述光束聚焦镜组14的聚焦光束焦距值、设备参数和第二距离D2的对应关系中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第二距离值。
可选的,所述第二确定单元,用于:根据第一公式计算得到所述第一距离值,其中,所述第一公式为D 1=-a 1E 2-a 2E+a 3,D 1为所述第一距离值,a 1、a 2和a 3是与所述目标设备参数匹配的系数,E为转换因子,所述转换因子是根据第二公式计算得到的,所述第二公式为f=b 1E 2+b 2E+b 3,f为所述目标聚焦光束焦距值,b 1、b 2和b 3为与所述目标设备参数匹配的系数;根据第三公式计算得到所述第二距离值,其中,所述第三公式为D 2=c 1E-c 2,D 2为所述第二距离值,c 1和c 2为与所述目标设备参数匹配的系数。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述计算机可读存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本发明的实施例还提供了一种电子装置,包括存储器和处理器, 该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
在一个示例性实施例中,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
本实施例中的具体示例可以参考上述实施例及示例性实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种光束准直设备,其中,包括:第一准直镜组、光束聚焦镜组和第二准直镜组,其中,
    所述光束聚焦镜组设置在所述第一准直镜组和所述第二准直镜组之间,第一准直镜组、光束聚焦镜组和第二准直镜组的光路同轴,所述第一准直镜组与所述光束聚焦镜组之间的第一距离以及所述光束聚焦镜组与所述第二准直镜组之间的第二距离被设置为允许调整,所述第二准直镜组的位置固定;
    所述第一准直镜组,用于对初始光束进行准直,得到准直光束;
    所述光束聚焦镜组,用于对所述准直光束进行聚焦,得到聚焦光束;
    所述第二准直镜组,用于对所述聚焦光束进行准直,得到目标光斑尺寸的目标光束,其中,所述目标光束用于输入光束检测设备,所述光束检测设备的目标接口尺寸与所述目标光斑尺寸匹配。
  2. 根据权利要求1所述的设备,其中,所述第一准直镜组包括:第一透镜和第二透镜,其中,所述第一透镜和所述第二透镜之间的距离为固定值;
    所述光束聚焦镜组包括:第三透镜和第四透镜,其中,所述第三透镜和所述第四透镜之间的距离为固定值;
    所述第二准直镜组包括:第五透镜,其中,所述第五透镜的焦点与所述聚焦光束的焦点重合。
  3. 根据权利要求2所述的设备,其中,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜的折射率均为目标折射率,其中,所述目标折射率落在目标折射率区间内,在所述目标折射率区间内的透镜满足对光束的目标色散条件。
  4. 根据权利要求2所述的设备,其中,所述第一透镜的光束输入面的曲率半径为正值,所述第一透镜的光束输出面的曲率半径为正值;
    所述第二透镜的光束输入面的曲率半径为正值,所述第二透镜的光束输出面的曲率半径为负值;
    所述第三透镜的光束输入面的曲率半径为负值,所述第三透镜的光束输出面的曲率半径为负值;
    所述第四透镜的光束输入面的曲率半径为正值,所述第四透镜的光束输出面的曲率半径为正值;
    所述第五透镜的光束输入面的曲率半径为正值,所述第五透镜的光束输出面的曲率半径为正值。
  5. 根据权利要求2所述的设备,其中,所述第一透镜的光束输入面为非球面;所述第三透镜的光束输出面为非球面。
  6. 根据权利要求1所述的设备,其中,所述目标光斑尺寸小于或者等于所述目标接口尺寸。
  7. 根据权利要求2所述的设备,其中,所述第一透镜和所述第二透镜之间的距离是根据透镜的折射率、镜片厚度或者镜片焦距值设置的固定值。
  8. 根据权利要求2所述的设备,其中,所述第三透镜和所述第四透镜之间的距离是根据透镜的折射率、镜片厚度或者镜片焦距值设置的固定值。
  9. 根据权利要求3所述的设备,其中,所述目标折射率区间的折射率大于或等于1.45且小于或等于1.56。
  10. 根据权利要求3所述的设备,其中,所述目标色散条件用于指示透镜输出的光束质量。
  11. 一种光束准直方法,其中,包括:
    获取初始光束的目标光束参数,以及光束检测设备的目标设备参数,其中,所述光束检测设备用于对光束准直设备输出的光束进行检测,所述光束准直设备用于对所述初始光束进行准直,所述光束准直设备包括第一准直镜组、光束聚焦镜组和第二准直镜组,所述光束聚焦镜组设置在所述第一准直镜组和所述第二准直镜组之间,所述第一准直镜组、所述光束聚焦镜组和所述第二准直镜组的光路同轴,所述 第一准直镜组与所述光束聚焦镜组之间的第一距离以及所述光束聚焦镜组与所述第二准直镜组之间的第二距离被设置为允许调整,所述第二准直镜组的位置固定;
    根据所述目标光束参数和所述目标设备参数确定所述第一距离的第一距离值和所述第二距离的第二距离值;
    按照所述第一距离值和所述第二距离值调整所述第一准直镜组和所述光束聚焦镜组,得到目标光束准直设备;
    控制所述初始光束输入所述目标光束准直设备,得到所述目标光束准直设备输出的目标光斑尺寸的目标光束,其中,所述目标光束用于输入所述光束检测设备,所述光束检测设备的目标接口尺寸与所述目标光斑尺寸匹配。
  12. 根据权利要求11所述的方法,其中,所述根据所述目标光束参数和所述目标设备参数确定所述第一距离的第一距离值和所述第二距离的第二距离值,包括:
    在具有对应关系的光束参数和所述光束聚焦镜组的聚焦光束焦距值中确定出与所述目标光束参数对应的目标聚焦光束焦距值,其中,所述聚焦光束焦距值用于指示经所述光束聚焦镜组聚焦后的光束焦点和所述聚焦镜组中心点的距离值;
    在具有对应关系的所述光束聚焦镜组的聚焦光束焦距值、设备参数和第一距离中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第一距离值,以及在所述光束聚焦镜组的聚焦光束焦距值、设备参数和第二距离的对应关系中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第二距离值。
  13. 根据权利要求12所述的方法,其中,所述在具有对应关系的所述光束聚焦镜组的聚焦光束焦距值、设备参数和第一距离中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第一距离值,以及在所述光束聚焦镜组的聚焦光束焦距值、设备参数和第二距离的对应关系中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第二距离值,包括:
    根据第一公式计算得到所述第一距离值,其中,所述第一公式为D 1=-a 1E 2-a 2E+a 3,D 1为所述第一距离值,a 1、a 2和a 3是与所述目标设备参数匹配的系数,E为转换因子,所述转换因子是根据第二公式计算得到的,所述第二公式为f=b 1E 2+b 2E+b 3,f为所述目标聚焦光束焦距值,b 1、b 2和b 3为与所述目标设备参数匹配的系数;
    根据第三公式计算得到所述第二距离值,其中,所述第三公式为D 2=c 1E-c 2,D 2为所述第二距离值,c 1和c 2为与所述目标设备参数匹配的系数。
  14. 根据权利要求11所述的方法,其中,所述目标光束参数包括时域特性参数、空域特性参数和频域特性参数。
  15. 根据权利要求11所述的方法,其中,所述第二距离值是当所述目标光束参数的目标聚焦光束的焦点和所述第二准直镜组的焦点重合时所述光束聚焦镜组和所述第二准直镜组之间的距离值。
  16. 一种光束准直装置,其中,包括:
    获取模块,用于获取初始光束的目标光束参数,以及光束检测设备的目标设备参数,其中,所述光束检测设备用于对光束准直设备输出的光束进行检测,所述光束准直设备用于对所述初始光束进行准直,所述光束准直设备包括第一准直镜组、光束聚焦镜组和第二准直镜组,所述光束聚焦镜组设置在所述第一准直镜组和所述第二准直镜组之间,所述第一准直镜组、所述光束聚焦镜组和所述第二准直镜组的光路同轴,所述第一准直镜组与所述光束聚焦镜组之间的第一距离以及所述光束聚焦镜组与所述第二准直镜组之间的第二距离被设置为允许调整,所述第二准直镜组的位置固定;
    确定模块,用于根据所述目标光束参数和所述目标设备参数确定所述第一距离的第一距离值和所述第二距离的第二距离值;
    调整模块,用于按照所述第一距离值和所述第二距离值调整所述第一准直镜组和所述光束聚焦镜组,得到目标光束准直设备;
    控制模块,用于控制所述初始光束输入所述目标光束准直设备,得到所述目标光束准直设备输出的目标光斑尺寸的目标光束,其中, 所述目标光束用于输入所述光束检测设备,所述光束检测设备的目标接口尺寸与所述目标光斑尺寸匹配。
  17. 根据权利要求16所述的光束准直装置,其中,所述确定模块包括:
    第一确定单元,用于在具有对应关系的光束参数和所述光束聚焦镜组的聚焦光束焦距值中确定出与所述目标光束参数对应的目标聚焦光束焦距值,其中,所述聚焦光束焦距值用于指示经所述光束聚焦镜组聚焦后的光束焦点和所述聚焦镜组中心点的距离值;
    第二确定单元,用于在具有对应关系的所述光束聚焦镜组的聚焦光束焦距值、设备参数和第一距离中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第一距离值,以及在所述光束聚焦镜组的聚焦光束焦距值、设备参数和第二距离的对应关系中确定与所述目标聚焦光束焦距值和所述目标设备参数对应的第二距离值。
  18. 根据权利要求17所述的光束准直装置,其中,所述第二确定单元用于:根据第一公式计算得到所述第一距离值,其中,所述第一公式为D 1=-a 1E 2-a 2E+a 3,D 1为所述第一距离值,a 1、a 2和a 3是与所述目标设备参数匹配的系数,E为转换因子,所述转换因子是根据第二公式计算得到的,所述第二公式为f=b 1E 2+b 2E+b 3,f为所述目标聚焦光束焦距值,b 1、b 2和b 3为与所述目标设备参数匹配的系数;根据第三公式计算得到所述第二距离值,其中,所述第三公式为D 2=c 1E-c 2,D 2为所述第二距离值,c 1和c 2为与所述目标设备参数匹配的系数。
  19. 一种计算机可读存储介质,其中,所述计算机可读存储介质中存储有计算机程序,其中,所述计算机程序被处理器执行时实现所述权利要求6所述的方法的步骤。
  20. 一种电子装置,包括存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现所述权利要求6所述的方法的步骤。
PCT/CN2022/142474 2022-03-31 2022-12-27 光束准直设备、方法、装置、存储介质和电子装置 WO2023185151A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210327859.8A CN114488555B (zh) 2022-03-31 2022-03-31 光束准直设备、方法、装置、存储介质和电子装置
CN202210327859.8 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185151A1 true WO2023185151A1 (zh) 2023-10-05

Family

ID=81487841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142474 WO2023185151A1 (zh) 2022-03-31 2022-12-27 光束准直设备、方法、装置、存储介质和电子装置

Country Status (2)

Country Link
CN (1) CN114488555B (zh)
WO (1) WO2023185151A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889830B (zh) * 2021-12-03 2022-02-25 武汉锐科光纤激光技术股份有限公司 光束的生成方法、设备和装置、存储介质及电子装置
CN114488555B (zh) * 2022-03-31 2022-08-05 武汉锐科光纤激光技术股份有限公司 光束准直设备、方法、装置、存储介质和电子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604303A (zh) * 2009-07-09 2009-12-16 上海微电子装备有限公司 一种激光扩束器参数的计算方法
CN201758240U (zh) * 2010-05-21 2011-03-09 太原理工大学 半导体激光准直扩束器
CN204086693U (zh) * 2014-09-18 2015-01-07 光越科技(深圳)有限公司 一类大功率可调光斑输出头
CN104330864A (zh) * 2014-11-18 2015-02-04 中国工程物理研究院应用电子学研究所 一种电动闭环调整的板条激光扩束准直系统
JP2015079171A (ja) * 2013-10-18 2015-04-23 増田 麻言 光走査方法および光走査装置
CN206573762U (zh) * 2017-01-16 2017-10-20 邓青宇 一种激光枪
CN114488555A (zh) * 2022-03-31 2022-05-13 武汉锐科光纤激光技术股份有限公司 光束准直设备、方法、装置、存储介质和电子装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI248244B (en) * 2003-02-19 2006-01-21 J P Sercel Associates Inc System and method for cutting using a variable astigmatic focal beam spot
CN101414052A (zh) * 2008-11-26 2009-04-22 中国科学院上海技术物理研究所 伽利略式多波长可变倍激光扩束准直系统
CN102081233A (zh) * 2009-11-27 2011-06-01 西安华科光电有限公司 一种绿光准直、扩束光学系统
CN101750744B (zh) * 2009-12-23 2011-11-09 深圳市大族激光科技股份有限公司 激光扩束镜系统
CN102402112B (zh) * 2011-11-30 2013-07-31 海信集团有限公司 光源装置、光源产生方法及包含光源装置的激光投影机
JP2016536642A (ja) * 2013-08-22 2016-11-24 ソーラボス インコーポレイテッド 2個の倍率調整可能なレンズを用いたビームエキスパンダー
CN204044437U (zh) * 2014-08-26 2014-12-24 济南和普威视光电技术有限公司 一种半导体激光匀化照明镜片组
CN108508614B (zh) * 2017-02-23 2024-05-03 常州巴斯光年激光科技有限公司 一种适用于1064nm波长的红外激光连续倍率扩束系统
CN109387948A (zh) * 2017-08-04 2019-02-26 维林光电(苏州)有限公司 一种光纤输出激光器
CN207924239U (zh) * 2018-01-10 2018-09-28 佛山华国光学器材有限公司 一种大变倍比远距离变焦镜头和激光照明装置
CN110181179B (zh) * 2019-05-31 2021-12-14 大族激光科技产业集团股份有限公司 激光切割设备及激光切割方法
CN111283320B (zh) * 2020-03-06 2022-02-15 深圳市大族数控科技股份有限公司 激光扩束镜及激光加工设备
CN111965832A (zh) * 2020-09-02 2020-11-20 武汉莱歌光学有限公司 一种可变倍激光光束整形光学系统
CN214896037U (zh) * 2021-04-25 2021-11-26 天津市极光创新智能科技有限公司 一种光束控制装置
CN113376829A (zh) * 2021-07-06 2021-09-10 江苏亮点光电研究有限公司 一种激光眩目器光学发射装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604303A (zh) * 2009-07-09 2009-12-16 上海微电子装备有限公司 一种激光扩束器参数的计算方法
CN201758240U (zh) * 2010-05-21 2011-03-09 太原理工大学 半导体激光准直扩束器
JP2015079171A (ja) * 2013-10-18 2015-04-23 増田 麻言 光走査方法および光走査装置
CN204086693U (zh) * 2014-09-18 2015-01-07 光越科技(深圳)有限公司 一类大功率可调光斑输出头
CN104330864A (zh) * 2014-11-18 2015-02-04 中国工程物理研究院应用电子学研究所 一种电动闭环调整的板条激光扩束准直系统
CN206573762U (zh) * 2017-01-16 2017-10-20 邓青宇 一种激光枪
CN114488555A (zh) * 2022-03-31 2022-05-13 武汉锐科光纤激光技术股份有限公司 光束准直设备、方法、装置、存储介质和电子装置

Also Published As

Publication number Publication date
CN114488555B (zh) 2022-08-05
CN114488555A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023185151A1 (zh) 光束准直设备、方法、装置、存储介质和电子装置
CN108981579B (zh) 一种用于大范围测量的光谱共焦测量系统及方法
CN107356407B (zh) 同步测量高功率光纤激光器功率、光谱和光束质量的装置
CN102155990B (zh) 一种中阶梯光栅光谱仪的装调方法
JP6872519B2 (ja) レーザ作動光源
CN102346291A (zh) 一种同轴双远心成像光学系统
KR20180005760A (ko) 레이저광 정형 및 파면 제어용 광학계
CN110146991A (zh) 一种激光光斑整形光学系统
WO2015051587A1 (zh) 极紫外光刻机中匹配多个物镜的照明系统调整与设计方法
CN111736329A (zh) 一种双片式非球面镜zoom光学系统
CN103499871A (zh) 一种用于激光束发散角测量的超消色差光学系统
Kasuya et al. A prism anamorphic system for Gaussian beam expander
CN109477971B (zh) 可变像散射束适配设备和频率转换单元
CN207067543U (zh) 高椭圆度激光束整形系统
CN208887783U (zh) 一种半导体激光器光束质量测试装置
JP6019244B2 (ja) 遠赤外線レーザ加工のためのFθレンズ及びレーザ加工デバイス
CN103885186B (zh) 一种基于棱镜对和柱面镜的消像散光束整形系统
WO2024040878A1 (zh) 检测装置及基因测序仪
CN112018597A (zh) 外腔半导体激光器
CN216633000U (zh) 一种可调匀化光斑的光学系统
CN213888711U (zh) 一种用于激光切割加工的远心透镜
JP2010055022A (ja) 累進屈折力レンズの光学性能評価方法
CN204422748U (zh) 基于大口径入射光束的纯转动拉曼测温激光雷达扩束系统
CN113776788A (zh) 激光器的参数测试方法及装置
CN112404704A (zh) 变倍激光扩束镜及激光加工系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934963

Country of ref document: EP

Kind code of ref document: A1