WO2023184450A1 - Method for receiving/sending information on basis of non-codebook pusch, and apparatuses therefor - Google Patents

Method for receiving/sending information on basis of non-codebook pusch, and apparatuses therefor Download PDF

Info

Publication number
WO2023184450A1
WO2023184450A1 PCT/CN2022/084685 CN2022084685W WO2023184450A1 WO 2023184450 A1 WO2023184450 A1 WO 2023184450A1 CN 2022084685 W CN2022084685 W CN 2022084685W WO 2023184450 A1 WO2023184450 A1 WO 2023184450A1
Authority
WO
WIPO (PCT)
Prior art keywords
candidate
resource
srs
srs resource
combination
Prior art date
Application number
PCT/CN2022/084685
Other languages
French (fr)
Chinese (zh)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000698.XA priority Critical patent/CN117158087A/en
Priority to PCT/CN2022/084685 priority patent/WO2023184450A1/en
Publication of WO2023184450A1 publication Critical patent/WO2023184450A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and apparatus for receiving/transmitting information based on non-codebook PUSCH.
  • the number of uplink transmission layers of the terminal device can be increased to 8 layers to support a higher uplink transmission rate that is comparable to that of downlink.
  • the uplink of terminal equipment is enhanced to Layer 8, how to implement non-codebook Physical Uplink Share Channel (PUSCH) transmission becomes a problem that needs to be solved.
  • PUSCH Physical Uplink Share Channel
  • Embodiments of the present application provide a method and apparatus for receiving/transmitting information based on non-codebook PUSCH, which can increase the number of uplink data transmission layers to 8 layers in the terminal equipment to realize non-codebook-based PUSCH transmission.
  • embodiments of the present application provide a method for receiving information based on non-codebook PUSCH, which is suitable for terminal equipment.
  • the method includes:
  • Receive indication information sent by the network device where the indication information is used to indicate the TRI corresponding to the precoding matrix used for PUSCH transmission;
  • the first resource combination Based on the TRI, determine the first resource combination corresponding to the TRI through the first mapping relationship between the candidate data transmission layer and the candidate resource combination, where the first resource combination is an SRS resource based on the precoding It is determined from the SRS resource set that the first resource combination is a combination of one or more SRS resources, or that the first resource combination is a port combination of SRS resources;
  • a precoding matrix used for the PUSCH transmission is determined.
  • the sending network device configures the precoded SRS resources in the non-codebook SRS resource set, and receives the indication information sent by the network device, where the indication information is used to indicate the data transmission layer used for actual transmission of PUSCH. number of indication information TRI, and determine the target precoding matrix used for PUSCH transmission based on the TRI. Based on the TRI, determine the first resource combination corresponding to the TRI through the first mapping relationship between the candidate data transmission layer and the candidate resource combination. Based on the A resource combination determines the precoding matrix used for actual transmission of PUSCH.
  • the mapping relationship between the candidate data transmission layer and the candidate resource combination is constructed, and only the indication information indicating the TRI needs to be transmitted, so that the number of occupied bits is smaller and the overhead of transmission signaling can be reduced. Furthermore, based on TRI, it is possible to indicate the precoding matrix that meets the PUSCH transmission requirements, improving the security, accuracy and reliability of PUSCH transmission. There is no need to expand the existing SRI mapping table. In the scenario where the data transmission layer is added, The precoding matrix that supports 8-layer PUSCH transmission can be indicated through the indication information.
  • embodiments of the present application provide another method of transmitting information based on non-codebook PUSCH, which is suitable for network equipment.
  • the method includes:
  • the first resource combination is a combination of one or more SRS resources, or the first resource combination is a Port combination of SRS resources;
  • the precoded SRS resources corresponding to the non-codebook SRS resource set sent by the terminal device are received, based on the precoded SRS resources, the first resource combination is selected from the SRS resource set, and the first resource combination is selected based on the SRS in the first resource combination.
  • the number of resources or ports is used to generate indication information, where the indication information is used to indicate the precoding matrix and TRI used for PUSCH transmission.
  • the mapping relationship between the candidate data transmission layer and the candidate resource combination is constructed, and only the indication information indicating the TRI needs to be transmitted, so that the number of occupied bits is smaller and the overhead of transmission signaling can be reduced.
  • the precoding matrix that supports 8-layer PUSCH transmission can be indicated through the indication information.
  • embodiments of the present application provide a communication device that has some or all of the functions of the terminal device in implementing the method described in the first aspect.
  • the functions of the communication device may have some or all of the functions in this application.
  • the functions in the embodiments may also be used to independently implement any of the embodiments in this application.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • embodiments of the present application provide another communication device that has some or all of the functions of the network device in the method example described in the second aspect.
  • the functions of the communication device may have some of the functions in this application.
  • the functions in all embodiments may also be used to implement any one embodiment of the present application independently.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the communication device includes:
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • inventions of the present application provide a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • inventions of the present application provide a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present application provide a communication system, which includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect and the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect and the communication device according to the tenth aspect. the above-mentioned communication device.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to perform the method described in the second aspect. .
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
  • the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • this application provides a chip system, which includes at least one processor and an interface for supporting network equipment to implement the functions involved in the second aspect, for example, determining or processing the data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • this application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a method for receiving information on non-codebook-based PUSCH provided by an embodiment of the present application
  • Figure 3 is a schematic flowchart of a method for receiving information on non-codebook-based PUSCH provided by an embodiment of the present application
  • Figure 4 is a schematic flowchart of a method for transmitting information based on non-codebook PUSCH provided by an embodiment of the present application
  • Figure 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining”
  • the terms used in this article are “greater than” or “less than”, “higher than” or “lower than” when characterizing size relationships. But for those skilled in the art, it can be understood that: the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of “less than or equal to”; the term “higher than” covers the meaning of “higher than or equal to”. “The meaning of “less than” also covers the meaning of "less than or equal to”.
  • the uplink sounding signal SRS (Sounding Reference Signal,) is used to estimate the frequency domain information of the uplink channel and perform frequency selective scheduling. It is also used to estimate the uplink channel and perform downlink beamforming.
  • the sounding reference signal SRS (Sounding Reference Signal,) is used to estimate the frequency domain information of the uplink channel and perform frequency selective scheduling. It is also used to estimate the uplink channel and perform downlink beamforming.
  • SRS Resource Indicator is used to instruct the UE which SRS resource to use for uplink data transmission.
  • Data transmission rank indicator (Transmission Rank Indicator, TRI), used to indicate the number of data transmission layers corresponding to the precoding matrix used for actual transmission of PUSCH.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included.
  • the communication system shown in Figure 1 includes a network device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • NR 5th generation new radio
  • side link in the embodiment of the present application may also be called a side link or a through link.
  • the network device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the network device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of this application do not limit the specific technologies and specific equipment forms used by network equipment.
  • the network equipment provided by the embodiments of this application may be composed of a centralized unit (central unit, CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • side-link transmission modes there are 4 side-link transmission modes.
  • Side link transmission mode 1 and side link transmission mode 2 are used for terminal device direct (device-to-device, D2D) communication.
  • Side-link transmission mode 3 and side-link transmission mode 4 are used for V2X communications.
  • resource allocation is scheduled by the network device 101.
  • the network device 101 can send resource allocation information to the terminal device 102, and then the terminal device 102 allocates resources to another terminal device, so that the other terminal device can send information to the network device 101 through the allocated resources.
  • a terminal device with better signal or higher reliability can be used as the terminal device 102 .
  • the first terminal device mentioned in the embodiment of this application may refer to the terminal device 102, and the second terminal device may refer to the other terminal device.
  • Figure 2 is a schematic flowchart of a method for receiving information on a non-codebook-based PUSCH provided by an embodiment of the present application.
  • the method of receiving information based on non-codebook PUSCH is executed by the terminal equipment.
  • the method may include but is not limited to the following steps:
  • Step S21 Send the precoded SRS resources in the non-codebook SRS resource set to the network device.
  • the maximum PUSCH transmission that the terminal equipment can support can be increased to layer 8, which can then be used to support a higher uplink transmission rate that is comparable to that of downlink.
  • the sounding reference signal (Sounding Reference Signal, SRS) resource set includes at least one SRS resource.
  • the SRS resource may be a single-port SRS resource or a multi-port SRS resource.
  • the maximum number of ports configured for multi-port SRS resources is 8.
  • a maximum of 8 SRS resources can be configured in the SRS resource set.
  • the resource configuration type of the SRS resource collection is:
  • the SRS resource set includes multiple first candidate SRS resources, where all the first candidate SRS resources are single-port SRS resources.
  • the SRS resource set includes at least one second candidate SRS resource, and different second candidate SRS resources have different numbers of ports.
  • the second candidate SRS resource 1 the number of ports is 1, the second candidate SRS resource 2, the number of ports is 2, the second candidate SRS resource 3, the number of ports is 3, the second candidate SRS resource 4, the number of ports is 4,
  • the second candidate SRS resource is 8, and the number of ports is 8.
  • the SRS resource set includes a third candidate SRS resource, and the third candidate SRS resource is configured with multiple candidate ports.
  • the value of the number of ports can include 1, 2, 3, 4, 5, 6, 7, and 8.
  • the network device configures an SRS resource set with a non-codebook function to the terminal device through high-layer signaling.
  • the network device can configure the terminal device through Radio Resource Control (RRC) signaling or Media access control-Control Element (MAC-CE) signaling or other high-level signaling.
  • RRC Radio Resource Control
  • MAC-CE Media access control-Control Element
  • SRS resource collection the configuration or reconfiguration of the SRS resource set is implemented through RRC signaling, and the updated configuration of all or part of the SRS resources of a certain SRS resource set is implemented through MAC-CE signaling.
  • the time domain characteristics of the SRS resource set are periodic, semi-persistent or aperiodic. That is to say, the SRS resource set can be a periodic SRS resource set, a semi-persistent SRS resource set, or a non-periodic SRS resource set. Periodic SRS resource collection.
  • the terminal device can precode the SRS resources configured in the SRS resource set based on the initial precoding matrix, and send the precoded SRS resources to the network device.
  • the precoded SRS resources can be used to obtain channel state information (CSI), and then obtain channel estimation information.
  • the channel estimation information can reflect scheduling information such as channel conditions, interference conditions of pre-scheduled users, and/or channel noise.
  • the non-codebook uplink transmission scheme is also a spatial multiplexing technology.
  • the difference from the codebook-based uplink transmission is that its precoding is based on certain criteria, rather than based on a fixed codebook. Determine the precoding among the candidate values. If the reciprocity of the uplink and downlink channels exists, the terminal can calculate the downlink channel information based on the channel reciprocity, thereby obtaining the uplink precoding matrix. If the channel reciprocity is good enough, the terminal can obtain more accurate precoding through the downlink channel. Compared with the codebook-based transmission scheme, it can save the cost of precoding indication and obtain better performance at the same time.
  • the terminal device receives associated downlink Channel State Information-Reference Signal (CSI-RS) resources configured by the network device, and the terminal device can determine the initial precoding matrix based on the downlink CSI-RS resources.
  • CSI-RS Channel State Information-Reference Signal
  • the target precoding matrix used for actual transmission of PUSCH in the application is selected from the initial precoding matrix.
  • Step S22 Receive indication information sent by the network device, where the indication information is used to indicate the TRI corresponding to the precoding matrix used for PUSCH transmission.
  • the network device can receive the precoded SRS resources for channel estimation and obtain channel estimation information. Since the channel estimation information can reflect channel conditions, pre-scheduled multi-user interference and/or channel noise, it can further be based on the channel estimation. The information determines the TRI of the terminal device.
  • the network device can comprehensively consider the estimated uplink channel information, interference conditions of pre-scheduled users and other scheduling factors, and determine the first resource combination used for actual transmission of PUSCH from the SRS resource set configured for the terminal device, based on the first
  • the resource combination can determine the target precoding matrix, and determine the number of data transmission layers corresponding to the target precoding matrix based on the number of resources in the first resource combination, that is, the network device selects from the SRS resource set based on the precoded SRS resources.
  • the first resource is combined, and the precoding matrix used for PUSCH transmission and the TRI corresponding to the precoding matrix are determined.
  • the indication information (Sounding Reference Signal Resource Indicator, SRI) of the SRS resource is used as the indication information, and the TRI is indicated through the SRI.
  • the indication information can also be directly TRI.
  • Step S23 Based on the TRI, determine the first resource combination corresponding to the TRI through the first mapping relationship between the candidate data transmission layer and the candidate resource combination, where the first resource combination is precoding-based SRS resources from the SRS resource set. It is determined that the first resource combination includes an SRS resource combination of one or more SRS resources or that the first resource combination is a port combination of SRS resources.
  • the first mapping relationship between the candidate data transmission layer and the candidate resource combination is defined or indicated in advance.
  • a mapping table may be preset, and the mapping table includes the relationship between the number of candidate data transmission layers and the candidate resource combination.
  • the first resource combination is a combination of one or more SRS resources selected from the SRS resource set based on the precoded SRS, or a port combination of the same SRS resource.
  • the resource configuration type one corresponding to the SRS resource set is that the SRS resource set includes the first candidate SRS resource, and the first resource combination includes one or more first candidate SRS resources selected by the network device.
  • the first mapping relationship includes a correspondence relationship between candidate TRIs and first candidate SRS resources, and different candidate TRIs correspond to different candidate resource combinations composed of one or more first candidate SRS resources, where , the values of the candidate TRIs increase sequentially, and the number and number of the first candidate SRS resources included in the candidate resource combination also increase sequentially.
  • the TRI indicated by the indication information (SRI) when the TRI indicated by the indication information (SRI) is 1, it corresponds to the number #0 of the first candidate SRS resource. When the TRI indicated by the indication information (SRI) is 2, it corresponds to the number # of the first candidate SRS resource. 0 and #1, when the TRI indicated by the indication information (SRI) is 3, correspond to the numbers #0, #1 and #2 of the first candidate SRS resources, and so on.
  • the second resource configuration type corresponding to the SRS resource set is that the SRS resource set includes the second candidate SRS resource.
  • the network device selects a second candidate SRS resource from the SRS resource set based on the precoded SRS.
  • the first resource combination is the selected third SRS resource. Port combinations of all ports configured for the second candidate SRS resource.
  • the first mapping relationship includes the corresponding relationship between the candidate TRI and the second candidate SRS resource, which can be determined through a table or a predefined manner, where the value of the candidate TRI corresponds to the number of the second candidate SRS resource one-to-one, When the values of candidate TRIs increase sequentially, the number of the second candidate SRS resource and the number of ports included also increase sequentially.
  • the TRI indicated by the indication information (SRI) when the TRI indicated by the indication information (SRI) is 1, it corresponds to the number #0 of the second candidate SRS resource. When the TRI indicated by the indication information (SRI) is 2, it corresponds to the number # of the second candidate SRS resource. 1. When the indication information (SRI) indicates 3, it corresponds to the number #2 of the first candidate SRS resource, and so on.
  • the corresponding relationship between the candidate SRI and the second candidate SRS resource can also be configured, which can be determined through a table or a predefined manner, where the value of the candidate SRI corresponds to the number of the second candidate SRS resource.
  • the candidate As the value of SRI increases in sequence, the number of the second candidate SRS resource and the number of ports included also increase in sequence.
  • the SRI indicated by the indication information (SRI) when the SRI indicated by the indication information (SRI) is 0, it corresponds to the number #0 of the second candidate SRS resource. When the SRI indicated by the indication information (SRI) is 1, it corresponds to the number # of the second candidate SRS resource. 1. When the indication information (SRI) indicates 2, it corresponds to the number #2 of the first candidate SRS resource, and so on.
  • the network device selects one or more candidate ports from the candidate ports of the third candidate SRS resource based on the precoded SRS, then the first The resource combination is a port combination formed by one or more selected candidate ports.
  • the first mapping relationship includes the correspondence between candidate TRIs and candidate ports. Different candidate TRIs correspond to different candidate port combinations composed of one or more candidate ports, where the value order of the candidate TRIs is increases, the number of candidate ports and port numbers included in the candidate port combination also increase sequentially.
  • the TRI indicated by the indication information (SRI) when the TRI indicated by the indication information (SRI) is 1, it corresponds to the port number #0 in the third candidate SRS resource.
  • the TRI indicated by the indication information (SRI) When the TRI indicated by the indication information (SRI) is 2, it corresponds to the port number #0 in the third candidate SRS resource.
  • Step S24 Based on the first resource combination, determine the precoding matrix used for PUSCH transmission.
  • the terminal device can determine the precoding matrix used for PUSCH transmission using the precoding vector or precoding matrix corresponding to the first resource combination.
  • the resource configuration of the SRS resource set is of the first type, where the first resource combination includes one or more first SRS resources, and the first SRS resource is the first SRS resource selected by the network device in the SRS resource set.
  • the terminal equipment determines the precoding vector used corresponding to the first SRS resource, and determines the precoding matrix used for PUSCH transmission based on the precoding vector used by the first SRS resource.
  • the precoding vector is a vector of the initial precoding matrix.
  • the precoding vectors used by the first candidate SRS resources in the combination are combined according to the number sequence of the first candidate SRS resources to obtain a precoding matrix used for PUSCH transmission.
  • Each first candidate SRS resource port corresponds to a precoding column vector.
  • the first candidate SRS resource #0 corresponds to V 0
  • the first candidate SRS resource #1 corresponds to V 1
  • the first candidate SRS resource #2 corresponds to V 2
  • the first candidate SRS resource #3 corresponds to V 3
  • the first candidate SRS resource #7 corresponds to V 7 .
  • the first resource combination determined by the terminal equipment is the first candidate SRS resource #0 and the first candidate SRS resource #1
  • the corresponding V 1 and V 2 are combined to obtain a precoding matrix used for PUSCH transmission.
  • the terminal device determines the precoding matrix used by the port combination corresponding to the second SRS resource, and determines the precoding matrix used corresponding to the second SRS resource as the precoding matrix used for PUSCH transmission.
  • the terminal device uses a different precoding matrix to precode each second candidate SRS resource in the SRS resource set to obtain the precoded second candidate SRS resource.
  • the precoding matrix corresponding to the second candidate SRS resource may be determined based on the port combination corresponding to the second candidate SRS resource.
  • the precoding matrix corresponding to the second candidate SRS resource is a combination of one or more precoding vectors of the initial precoding matrix.
  • the second candidate SRS resource #0 is configured with one port #0
  • the second candidate SRS resource #1 is configured with two ports #0 and #1
  • the second candidate SRS resource #2 corresponds to three ports #0 and #1. 1 and #2
  • the second candidate SRS resource #3 is configured with four ports #0, #1 and #2 and port #3
  • the second candidate SRS resource #7 corresponds to four ports #0 to port #7.
  • Precoding matrices corresponding to different second candidate SRS resources are precoding matrices corresponding to different second candidate SRS resources.
  • the second candidate SRS resource #1 is configured with two ports #0 and #1, and the corresponding precoding matrix is [V 0 , V 1 ]; for example, The second candidate SRS resource #3 is configured with two ports #0, #1 and #2 and port #3, and the corresponding precoding matrix is [V 0 , V 1 , V 2 , V 3 ].
  • the terminal device determines that the first resource combination is the second SRS resource #1 and the included port combination is ports #0 and #1, the second candidate SRS resource #1 and the corresponding precoding matrix are [V 0 , V 1 ], determine the precoding matrix used for PUSCH transmission.
  • the resource configuration of the SRS resource set is of the first type, wherein the first resource combination includes one or more first ports, and the first port is a port selected by the network device among multiple candidate ports. Further, a precoding vector of the first port is obtained, and based on the precoding vector corresponding to the first port, a precoding matrix used for PUSCH transmission is determined. Optionally, the precoding vectors used by the first port in the combination are combined according to the number sequence of the first port to obtain a precoding matrix used for PUSCH transmission.
  • each port in the third candidate SRS resource has a corresponding precoding vector, where the precoding vector is a vector of the initial precoding matrix.
  • Vector for example, candidate port #0 corresponds to V 0 , candidate port #1 corresponds to V 1 , candidate port #2 corresponds to V 2 , candidate port #3 corresponds to V 3 , and so on, candidate port #7 corresponds to V 7 .
  • the first resource combination determined by the terminal equipment is candidate port #0 and candidate port #1, the corresponding V 0 and V 1 are combined to obtain the precoding matrix used for PUSCH transmission.
  • the SRS resources selected in the first resource combination need to apply the maximum number of transmission layers RANK configured by the higher layer as the codebook subset limit, that is to say, the number of data transmission layers corresponding to the target precoding matrix determined by the terminal equipment, Less than or equal to the maximum number of data transmission layers supported by the terminal device.
  • the sending network device configures the precoded SRS resources in the non-codebook SRS resource set, and receives the indication information sent by the network device, where the indication information is used to indicate the data transmission layer used for actual transmission of PUSCH. number of indication information TRI, and determine the target precoding matrix used for PUSCH transmission based on the TRI. Based on the TRI, determine the first resource combination corresponding to the TRI through the first mapping relationship between the candidate data transmission layer and the candidate resource combination. Based on the A resource combination determines the precoding matrix used for actual transmission of PUSCH.
  • the mapping relationship between the candidate data transmission layer and the candidate resource combination is constructed, and only the indication information indicating the TRI needs to be transmitted, so that the number of occupied bits is smaller and the overhead of transmission signaling can be reduced. Furthermore, based on TRI, the target precoding matrix that meets the PUSCH transmission requirements can be indicated, improving the security, accuracy and reliability of PUSCH transmission without the need to expand the existing SRI mapping table. In the scenario where the data transmission layer is added , the precoding matrix that supports 8-layer PUSCH transmission can be indicated through the indication information.
  • Figure 3 is a schematic flowchart of a method for receiving information on a non-codebook-based PUSCH provided by an embodiment of the present application.
  • the method of receiving information based on non-codebook PUSCH is executed by the terminal equipment.
  • the method may include but is not limited to the following steps:
  • Step S31 Send the precoded SRS resources in the SRS resource set whose network device configuration function is non-codebook.
  • step S31 any implementation method in the embodiments in this application can be adopted.
  • any implementation method in the embodiments in this application can be adopted.
  • Step S32 Receive indication information sent by the network device, where the indication information is used to indicate indication information TRI of the number of data transmission layers used for actual PUSCH transmission.
  • the indication field is used to indicate the TRI to the terminal device.
  • the indication field can carry an index value that can index the TRI.
  • Step S33 If the SRI is used to indicate TRI, determine the TRI based on the second mapping relationship between the SRI and the candidate SRI and the candidate TRI.
  • the second mapping relationship there is a second mapping relationship between the candidate SRI and the candidate TRI, and the TRI can be determined based on the second mapping relationship, as shown in Table 1.
  • each element in Table 1 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table.
  • the value of each element does not depend on the value of any other element in Table 1. Therefore, those skilled in the art can understand that the value of each element in Table 1 is an independent embodiment.
  • the second mapping relationship may be determined in advance and stored in the terminal device according to the protocol agreement, or may be indicated to the terminal device through high-level signaling.
  • Step S34 Based on the first mapping relationship, determine the first resource combination corresponding to the TRI.
  • the first resource combination is selected from an SRS resource set based on precoded SRS, and the first resource combination is a combination of one or more SRS resources, or the first resource combination is a port combination of SRS resources.
  • the first mapping relationship between the candidate data transmission layer and the candidate resource combination is defined or indicated in advance.
  • a mapping table may be preset, and the mapping table includes the relationship between the number of candidate data transmission layers and the candidate resource combination.
  • the first mapping relationship includes a correspondence relationship between candidate TRIs and first candidate SRS resources.
  • Different candidate TRIs correspond to different candidate resource combinations composed of one or more first candidate SRS resources, where the candidate As the values of TRI increase sequentially, the number and number of the first candidate SRS resources included in the candidate resource combination also increase sequentially.
  • the first mapping relationship includes a correspondence relationship between the candidate TRI and the second candidate SRS resource.
  • the value of the candidate TRI corresponds to the number of the second candidate SRS resource one-to-one, wherein the values of the candidate TRI are in increasing order, Then the number of the second candidate SRS resource and the number of included ports also increase sequentially.
  • the first mapping relationship includes a correspondence relationship between candidate TRIs and candidate ports.
  • Different candidate TRIs correspond to different candidate port combinations composed of one or more candidate ports, where the values of the candidate TRIs increase in order, Then the number of candidate ports and port numbers included in the candidate port combination also increase sequentially.
  • the first resource combination is a combination of one or more SRS resources selected from the SRS resource set based on the precoded SRS, or a port combination of the same SRS resource.
  • the SRS resource set includes a first candidate SRS resource
  • the first resource combination includes one or more first candidate SRS resources selected by the network device.
  • the SRS resource set includes a second candidate SRS resource
  • the network device selects a second candidate SRS resource from the SRS resource set based on the precoded SRS
  • the first resource combination is the port configured by the selected second candidate SRS resource. Port combination.
  • the SRS resource set includes a third candidate SRS resource
  • the network device selects one or more candidate ports from the candidate ports of the third candidate SRS resource based on the precoded SRS, then the first resource combination is the selected one or A port combination formed by multiple candidate ports.
  • Step S35 Based on the first resource combination, determine the precoding matrix used for PUSCH transmission.
  • the SRS resource set is determined to be resource configuration type one, in which the first resource combination includes one or more first SRS resources, and the first SRS resource is the first candidate SRS selected by the network device in the SRS resource set. resource.
  • the terminal equipment determines the precoding vector used corresponding to the first SRS resource, and determines the precoding matrix used for PUSCH transmission based on the precoding vector used by the first SRS resource.
  • the precoding vector is a vector of the initial precoding matrix.
  • the precoding vectors used by the first candidate SRS resources in the combination are combined according to the number sequence of the first candidate SRS resources to obtain a precoding matrix used for PUSCH transmission.
  • the SRS resource set is determined to be resource configuration type 2, where the first resource combination includes a second SRS resource, and the second SRS resource is a second candidate SRS resource selected by the network device in the SRS resource set. Further, the terminal device determines the precoding matrix used by the port combination corresponding to the second SRS resource, and determines the precoding matrix used corresponding to the second SRS resource as the precoding matrix used for PUSCH transmission.
  • the terminal device uses a different precoding matrix to precode each second candidate SRS resource in the SRS resource set to obtain the precoded second candidate SRS resource.
  • the precoding matrix corresponding to the second candidate SRS resource may be determined based on the port combination corresponding to the second candidate SRS resource.
  • the precoding matrix corresponding to the second candidate SRS resource is a combination of one or more precoding vectors of the initial precoding matrix.
  • the resource configuration of the SRS resource set is of the third type, wherein the first resource combination includes one or more first ports, and the first port is a port selected by the network device among multiple candidate ports. Further, a precoding vector of the first port is obtained, and based on the precoding vector corresponding to the first port, a precoding matrix used for PUSCH transmission is determined. Optionally, the precoding vectors used by the first port in the combination are combined according to the number sequence of the first port to obtain a precoding matrix used for PUSCH transmission.
  • each port in the third candidate SRS resource has a corresponding precoding vector, where the precoding vector is a vector of the initial precoding matrix.
  • the SRS resources selected in the first resource combination need to apply the maximum number of transmission layers RANK configured by the higher layer as the codebook subset limit, that is to say, the number of data transmission layers corresponding to the target precoding matrix determined by the terminal equipment, Less than or equal to the maximum number of data transmission layers supported by the terminal device.
  • the mapping relationship between the candidate data transmission layer and the candidate resource combination is constructed, and only the indication information indicating the TRI needs to be transmitted, so that the number of occupied bits is smaller and the overhead of transmission signaling can be reduced. Furthermore, based on TRI, it is possible to indicate the precoding matrix that meets the PUSCH transmission requirements, improving the security, accuracy and reliability of PUSCH transmission. There is no need to expand the existing SRI mapping table. In the scenario where the data transmission layer is added, The precoding matrix that supports 8-layer PUSCH transmission can be indicated through the indication information.
  • Figure 4 is a schematic flowchart of a non-codebook-based PUSCH information sending method provided by an embodiment of the present application.
  • the method of transmitting information based on non-codebook PUSCH is executed by network equipment.
  • the method may include but is not limited to the following steps:
  • Step S41 Receive the precoded SRS resources in the non-codebook SRS resource set sent by the terminal device.
  • the SRS resource set includes at least one SRS resource.
  • the SRS resource may be a single-port SRS resource or a multi-port SRS resource.
  • the maximum number of ports configured for multi-port SRS resources is 8.
  • a maximum of 8 SRS resources can be configured in the SRS resource set.
  • the resource configuration type of the SRS resource collection :
  • the SRS resource set includes multiple first candidate SRS resources, where the first candidate SRS resources are all single-port SRS resources, and each port corresponds to a data transmission layer. or,
  • the SRS resource set includes at least one second candidate SRS resource, and different second candidate SRS resources have different numbers of ports.
  • the second candidate SRS resource 1 the number of ports is 1, the second candidate SRS resource 2, the number of ports is 2, the second candidate SRS resource 3, the number of ports is 3, the second candidate SRS resource 4, the number of ports is 4,
  • the second candidate SRS resource is 8, and the number of ports is 8.
  • each port corresponds to a data transmission layer. or,
  • the SRS resource set includes a third candidate SRS resource, and the third candidate SRS resource has multiple candidate ports.
  • the value of the number of ports can include 1, 2, 3, 4, 5, 6, 7, and 8, where each port corresponds to a data transmission layer.
  • the network device configures an SRS resource set with a non-codebook function to the terminal device through high-layer signaling.
  • the network device may configure the SRS resource set to the terminal device through RRC signaling or MAC-CE signaling.
  • the SRS resource set may be a periodic SRS resource set, a semi-persistent SRS resource set, or an aperiodic SRS resource set.
  • the terminal device can precode the SRS resources configured in the SRS resource set based on the initial precoding matrix, and send the precoded SRS resources to the network device.
  • the precoded SRS resources can be used to obtain CSI, and then channel estimation information can be obtained.
  • the channel estimation information can reflect scheduling factors such as channel conditions, pre-scheduled multi-user interference, and/or channel noise.
  • the determination process of the initial precoding matrix can be found in the description of the relevant content in the above embodiment, and will not be described again here.
  • Step S42 Based on the precoded SRS resources, determine a first resource combination from the SRS resource set.
  • the first resource combination is an SRS resource combination including one or more SRS resources, or a port combination of the same SRS resource.
  • the network device can receive precoded SRS resources for channel estimation and obtain channel estimation information. Since the channel estimation information can reflect channel conditions, multi-user interference and/or channel noise, the network device can further determine based on the channel estimation information. Output the TRI of the terminal device. That is to say, the network device can comprehensively consider scheduling factors such as estimated uplink channel information and interference conditions of pre-scheduled users, and determine the first resource combination used for PUSCH transmission from the SRS resource set configured for the terminal device.
  • the network device can determine the target precoding matrix based on the first resource combination, and determine the number of data transmission layers corresponding to the target precoding matrix based on the number of resources in the first resource combination, that is, the network device is based on the precoding SRS resources,
  • the first resource combination is selected from the SRS resource set, and the precoding matrix used for PUSCH transmission and the indication information TRI of the number of data transmission layers used for actual PUSCH transmission are determined.
  • Step S43 Generate indication information based on the number of SRS resources or ports of SRS resources in the first resource combination, where the indication information is used to instruct PUSCH transmission to use the precoding matrix and the corresponding TRI.
  • the first resource combination includes one or more first SRS resources, where the first SRS resource is the first SRS resource selected by the network device in the SRS resource set.
  • a candidate SRS resource may determine the number of first SRS resources, and determine the indication information based on the number.
  • a first candidate SRS resource corresponds to a data transmission layer. The network device determines the number of the first SRS resource, and can determine the data transmission layer used for actual transmission of PUSCH, and can determine the data transmission layer used to indicate the Instructions for the data transport layer.
  • the first resource combination includes a second SRS resource, where the second SRS resource is a second candidate SRS resource selected by the network device in the SRS resource set. .
  • the network device generates indication information based on the number of ports configured for the second SRS resource.
  • the network device can determine the data transmission layer used for actual transmission of PUSCH by determining the number of second SRS resources, and can determine the indication information used to indicate the data transmission layer.
  • the second SRS resource is the second candidate SRS resource #2 in the SRS resource set, where the second candidate SRS resource #2 includes ports #0, #1 and #2. Based on the number of ports of the second SRS resource, it can be determined
  • the data transmission layer used for actual transmission of PUSCH is 3.
  • the first resource combination includes one or more first ports, and the first port is a port selected by the network device among multiple candidate ports. Further, the network device generates indication information based on the number of the first ports. For example, the third candidate SRS resource includes candidate ports #0 to #7. The network device can determine candidate port #0 and candidate port #1 as the first port. Then based on the number of first ports, the actual transmission usage of PUSCH can be determined.
  • the data transfer layer is 2.
  • a 3-bit number can be used for encoding, determined as indication information, and the indication information is sent to the terminal device.
  • the data transmission layer 2 used for actual transmission of PUSCH is determined and encoded as 101 as the indication information. It is determined that the data transmission layer used for actual transmission of PUSCH is 5, and the encoding is 101 as the indication information.
  • Step S44 Send instruction information to the terminal device.
  • the SRI is used as the indication information, and the TRI is indicated through the SRI.
  • the indication information can also be directly TRI.
  • the TRI is sent to the terminal device through the indication field of the SRI, that is to say, the indication field of the existing SRI is reused, and the TRI is indicated to the terminal device through the indication field.
  • the indication field can carry an indexable TRI. index value.
  • the network device can send the indication information to the terminal device through DCI signaling.
  • the SRS resources selected in the first resource combination need to apply the maximum number of transmission layers RANK configured by the higher layer as the codebook subset limit, that is to say, the number of data transmission layers corresponding to the target precoding matrix determined by the terminal equipment, Less than or equal to the maximum number of data transmission layers supported by the terminal device.
  • the precoded SRS resources corresponding to the non-codebook SRS resource set sent by the terminal device are received, based on the precoded SRS resources, the first resource combination is selected from the SRS resource set, and the first resource combination is selected based on the SRS in the first resource combination.
  • the number of resources or ports is used to generate indication information, where the indication information is used to determine the precoding matrix and corresponding TRI used for PUSCH transmission.
  • the mapping relationship between the candidate data transmission layer and the candidate resource combination is constructed, and only the indication information indicating the TRI needs to be transmitted, so that the number of occupied bits is smaller and the overhead of transmission signaling can be reduced.
  • the precoding matrix that supports 8-layer PUSCH transmission can be indicated through the indication information.
  • network equipment and terminal equipment may include hardware structures and software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 5 is a schematic structural diagram of a communication device 50 provided by an embodiment of the present application.
  • the communication device 70 shown in FIG. 7 may include a transceiver module 501 and a processing module 502.
  • the transceiving module 501 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 501 may implement the sending function and/or the receiving function.
  • the communication device 50 may be a terminal device (such as the network device in the foregoing method embodiment), a device in the network device, or a device that can be used in conjunction with the network device.
  • the communication device 50 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 50 is a terminal device:
  • the transceiver module 502 is configured to send precoded SRS resources in the non-codebook SRS resource set to the network device, and receive indication information sent by the network device, where the indication information is used to determine the precoding matrix used for PUSCH transmission.
  • the processing module 501 is configured to determine the first resource combination corresponding to the TRI based on the first mapping relationship between the candidate data transmission layer and the candidate resource combination based on the TRI, and determine the first resource combination based on the first resource combination.
  • the transceiving module 502 is also configured to receive a sounding reference signal resource indication SRI, where the SRI is used to indicate the TRI; or, receive the TRI.
  • SRI sounding reference signal resource indication
  • processing module 501 is also used to:
  • the TRI is determined based on the second mapping relationship between the SRI and the candidate SRI and the candidate TRI;
  • a first resource combination corresponding to the TRI is determined.
  • the resource configuration type of the SRS resource set is:
  • the SRS resource set includes multiple first candidate SRS resources, and the first candidate SRS resources are all single-port SRS resources; or
  • the SRS resource set includes at least one second candidate SRS resource, and different second candidate SRS resources have different numbers of ports;
  • the SRS resource set includes a third candidate SRS resource, and the third candidate SRS resource is configured with multiple candidate ports.
  • the processing module 501 is further configured to: determine that the resource configuration of the SRS resource set is the first type, that the first resource combination includes one or more first SRS resources, and that the first SRS The resource is the first candidate SRS resource measured by the network device in the SRS resource set;
  • the target precoding matrix used for the PUSCH transmission is determined.
  • the first mapping relationship includes a correspondence relationship between candidate TRIs and first candidate SRS resources, and different candidate TRIs correspond to different candidate resource combinations composed of one or more first candidate SRS resources. , where the values of the candidate TRIs increase sequentially, then the number and number of the first candidate SRS resources included in the candidate resource combination also increase sequentially.
  • processing module 501 is also used to:
  • the first resource combination includes a second SRS resource
  • the second SRS resource is the SRS resource measured by the network device.
  • the precoding matrix used corresponding to the second SRS resource is determined as the target precoding matrix used for the PUSCH transmission.
  • the first mapping relationship includes a correspondence relationship between the candidate TRI and the second candidate SRS resource, and the value of the candidate TRI corresponds to the number of the second candidate SRS resource, wherein the candidate TRI
  • the values of are sequentially increasing, then the number of the second candidate SRS resource and the number of ports included are also sequentially increasing.
  • processing module 501 is also used to:
  • the first resource combination includes one or more first ports, and the first port is one of the plurality of candidate ports measured by the network device. the port obtained;
  • the first mapping relationship includes a correspondence relationship between candidate TRIs and candidate ports, and different candidate TRIs correspond to different candidate port combinations composed of one or more candidate ports, wherein the candidate TRIs
  • the values of are sequentially increasing, then the number of candidate ports and port numbers included in the candidate port combination are also sequentially increasing.
  • the SRS resource collection is one of the following types:
  • the number of data transmission layers corresponding to the target precoding matrix is less than or equal to the maximum number of data transmission layers supported by the terminal device.
  • the communication device 50 is a network device:
  • the transceiver module 502 is configured to receive a set of precoded SRS resources from non-codebook SRS resources sent by the terminal equipment, and send indication information to the terminal equipment, where the indication information is used to indicate the PUSCH used for actual transmission.
  • the processing module 501 is configured to determine a first resource combination from the SRS resource set based on the precoded SRS resources, and generate the indication information based on the number of SRS resources or ports in the first resource combination;
  • the first resource combination is a source combination of one or more SRS resources, or the first resource combination is a port combination of SRS resources.
  • the transceiver module 502 is also used to:
  • the indication information is determined as the TRI and sent to the terminal device.
  • the resource configuration type of the SRS resource collection is:
  • the SRS resource set includes multiple first candidate SRS resources, and the first candidate SRS resources are all single-port SRS resources; or
  • the SRS resource set includes at least one second candidate SRS resource, and different second candidate SRS resources have different numbers of ports;
  • the SRS resource set includes a third candidate SRS resource, and the third candidate SRS resource is configured with multiple candidate ports.
  • processing module 501 is also used to:
  • the resource configuration of the SRS resource set is the first type, then the first resource combination includes one or more first SRS resources, and the first SRS resource is the network resource in the SRS resource set.
  • the first candidate SRS resource measured by the device;
  • processing module 501 is also used to:
  • the resource configuration of the SRS resource set is the second type, then the first resource combination includes a second SRS resource, and the second SRS resource is measured by the network device in the SRS resource set.
  • the indication information is generated based on the number of ports configured with the second SRS resource.
  • processing module 501 is also used to:
  • the first resource combination includes one or more first ports, and the first port is one of the plurality of candidate ports provided by the network device.
  • the indication information is generated based on the number of the first ports.
  • the SRS resource collection is one of the following types:
  • the number of data transmission layers corresponding to the precoding matrix used for PUSCH transmission is less than or equal to the maximum number of data transmission layers supported by the terminal device.
  • FIG. 6 is a schematic structural diagram of another communication device 60 provided by an embodiment of the present application.
  • the communication device 60 may be a network device, a terminal device (such as the terminal device in the foregoing method embodiment), a chip, a chip system, a processor, etc. that supports the network device to implement the above method, or a terminal device that supports A chip, chip system, or processor that implements the above method.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 60 may include one or more processors 601.
  • the processor 601 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 60 may also include one or more memories 602, on which a computer program 604 may be stored.
  • the processor 601 executes the computer program 604, so that the communication device 60 performs the steps described in the above method embodiments. method.
  • the memory 602 may also store data.
  • the communication device 60 and the memory 602 can be provided separately or integrated together.
  • the communication device 60 may also include a transceiver 605 and an antenna 606.
  • the transceiver 605 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 605 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 60 may also include one or more interface circuits 607.
  • the interface circuit 607 is used to receive code instructions and transmit them to the processor 601 .
  • the processor 601 executes the code instructions to cause the communication device 60 to perform the method described in the above method embodiment.
  • the processor 601 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 601 may store a computer program 603, and the computer program 603 runs on the processor 601, causing the communication device 60 to perform the method described in the above method embodiment.
  • the computer program 603 may be solidified in the processor 601, in which case the processor 601 may be implemented by hardware.
  • the communication device 60 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiment), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may be Not limited by Figure 6.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 7 includes a processor 701 and an interface 702.
  • the number of processors 701 may be one or more, and the number of interfaces 702 may be multiple.
  • the chip also includes a memory 703, which is used to store necessary computer programs and data.
  • the chip can be used to implement the functions of any of the above method embodiments.
  • Embodiments of the present application also provide a communication system, which includes a communication device as a terminal device (such as the terminal device in the foregoing method embodiment) and a communication device as a network device in the embodiment of FIG. 5 , or the system includes The communication device as a terminal device (such as the terminal device in the foregoing method embodiment) and the communication device as a network device in the aforementioned embodiment of FIG. 6 .
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated therein.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Abstract

A method for receiving/sending information on the basis of a non-codebook PUSCH, and apparatuses therefor. The method for receiving information on the basis of a non-codebook PUSCH comprises: sending to a network device a precoded SRS resource in a non-codebook SRS resource set; receiving indication information, which is sent by the network device, wherein the indication information is used for indicating a TRI corresponding to a precoding matrix used in PUSCH transmission, and on the basis of the TRI, determining the precoding matrix used in PUSCH transmission; on the basis of the TRI and by means of a first mapping relationship between candidate data transmission layers and candidate resource combinations, determining a first resource combination corresponding to the TRI; and on the basis of the first resource combination, determining a precoding matrix used in actual PUSCH transmission. In the present application, a mapping relationship between candidate data transmission layers and candidate resource combinations is constructed, and only indication information indicating a TRI needs to be transmitted, such that the number of occupied bits is relatively small, and the overhead of transmission signaling can be reduced. Furthermore, a precoding matrix that satisfies a PUSCH transmission requirement can be indicated on the basis of the TRI.

Description

一种基于非码本的PUSCH接收/发送信息的方法及其装置A method and device for receiving/transmitting information based on non-codebook PUSCH 技术领域Technical field
本申请涉及通信技术领域,尤其涉及一种基于非码本的PUSCH接收/发送信息的方法及其装置。The present application relates to the field of communication technology, and in particular, to a method and apparatus for receiving/transmitting information based on non-codebook PUSCH.
背景技术Background technique
为了适用当前业务或者场景,可以将终端设备的上行传输层数增多至8层,以用于支持与下行可比的更高的上行传输速率。在终端设备的上行增强至8层时,如何实现非码本的物理上行共享信道(Physical Uplink Share Channel,PUSCH)传输成为需要解决的问题。In order to be suitable for current services or scenarios, the number of uplink transmission layers of the terminal device can be increased to 8 layers to support a higher uplink transmission rate that is comparable to that of downlink. When the uplink of terminal equipment is enhanced to Layer 8, how to implement non-codebook Physical Uplink Share Channel (PUSCH) transmission becomes a problem that needs to be solved.
发明内容Contents of the invention
本申请实施例提供一种基于非码本的PUSCH接收/发送信息的方法及其装置,可以在终端设备将上行数据传输层数增多至8层,实现基于非码本的PUSCH传输。Embodiments of the present application provide a method and apparatus for receiving/transmitting information based on non-codebook PUSCH, which can increase the number of uplink data transmission layers to 8 layers in the terminal equipment to realize non-codebook-based PUSCH transmission.
第一方面,本申请实施例提供一种基于非码本的PUSCH接收信息的方法,适用于终端设备,该方法包括:In the first aspect, embodiments of the present application provide a method for receiving information based on non-codebook PUSCH, which is suitable for terminal equipment. The method includes:
向网络设备配置发送非码本的SRS资源集合中经过预编码的SRS资源;Configuring and sending the precoded SRS resources in the non-codebook SRS resource set to the network device;
接收所述网络设备发送的指示信息,所述指示信息用于指示PUSCH传输使用的预编码矩阵所对应的TRI;Receive indication information sent by the network device, where the indication information is used to indicate the TRI corresponding to the precoding matrix used for PUSCH transmission;
基于所述TRI,通过候选数据传输层与候选资源组合之间的第一映射关系,确定所述TRI对应的第一资源组合,其中,所述第一资源组合为基于所述预编码的SRS资源从所述SRS资源集合中确定,该第一资源组合为一个或多个SRS资源的组合,或者该第一资源组合为一个SRS资源的端口组合;Based on the TRI, determine the first resource combination corresponding to the TRI through the first mapping relationship between the candidate data transmission layer and the candidate resource combination, where the first resource combination is an SRS resource based on the precoding It is determined from the SRS resource set that the first resource combination is a combination of one or more SRS resources, or that the first resource combination is a port combination of SRS resources;
基于所述第一资源组合,确定所述PUSCH传输使用的预编码矩阵。Based on the first resource combination, a precoding matrix used for the PUSCH transmission is determined.
本申请实施例中,发送网络设备配置功能为非码本的SRS资源集合中经过预编码的SRS资源,接收网络设备发送的指示信息,其中,指示信息用于指示PUSCH实际传输使用的数据传输层数的指示信息TRI,并基于TRI确定PUSCH传输使用的目标预编码矩阵,基于TRI,通过候选数据传输层与候选资源组合之间的第一映射关系,确定TRI对应的第一资源组合,基于第一资源组合,确定PUSCH实际传输使用的预编码矩阵。本申请实施例中,构建了候选数据传输层与候选资源组合的映射关系,只需要传输指示TRI的指示信息,使得占用的比特个数较少,能够降低传输信令的开销。进一步地,基于TRI就可以指示出满足PUSCH传输要求的预编码矩阵,提高PUSCH传输的安全性、准确性和可靠性,无需对现有SRI映射表进行扩展,在数据传输层增加的场景下,通过指示信息就可以指示支持8层的PUSCH传输的预编码矩阵。In the embodiment of the present application, the sending network device configures the precoded SRS resources in the non-codebook SRS resource set, and receives the indication information sent by the network device, where the indication information is used to indicate the data transmission layer used for actual transmission of PUSCH. number of indication information TRI, and determine the target precoding matrix used for PUSCH transmission based on the TRI. Based on the TRI, determine the first resource combination corresponding to the TRI through the first mapping relationship between the candidate data transmission layer and the candidate resource combination. Based on the A resource combination determines the precoding matrix used for actual transmission of PUSCH. In the embodiment of the present application, the mapping relationship between the candidate data transmission layer and the candidate resource combination is constructed, and only the indication information indicating the TRI needs to be transmitted, so that the number of occupied bits is smaller and the overhead of transmission signaling can be reduced. Furthermore, based on TRI, it is possible to indicate the precoding matrix that meets the PUSCH transmission requirements, improving the security, accuracy and reliability of PUSCH transmission. There is no need to expand the existing SRI mapping table. In the scenario where the data transmission layer is added, The precoding matrix that supports 8-layer PUSCH transmission can be indicated through the indication information.
第二方面,本申请实施例提供另一种基于非码本的PUSCH发送信息的方法,适用于网络设备,该方法包括:In the second aspect, embodiments of the present application provide another method of transmitting information based on non-codebook PUSCH, which is suitable for network equipment. The method includes:
基于所述预编码的SRS资源,从所述SRS资源集合中选出第一资源组合,其中,所述第一资源组合为一个或多个SRS资源的组合,或者所述第一资源组合为一个SRS资源的端口组合;Based on the precoded SRS resources, select a first resource combination from the SRS resource set, where the first resource combination is a combination of one or more SRS resources, or the first resource combination is a Port combination of SRS resources;
基于所述第一资源组合内SRS资源或SRS资源的端口的数量,生成指示信息,其中,所述指示信息用于指示PUSCH传输所使用的预编码矩阵以及对应的TRI;Generate indication information based on the number of SRS resources or ports of SRS resources in the first resource combination, where the indication information is used to indicate the precoding matrix used for PUSCH transmission and the corresponding TRI;
向所述终端设备发送所述指示信息。Send the instruction information to the terminal device.
本申请实施例中,接收终端设备发送的非码本的SRS资源集合对应的预编码SRS资源,基于预编码SRS资源,从SRS资源集合中选出第一资源组合,基于第一资源组合内SRS资源或端口的数量,生成指示信息,其中,指示信息用于指示PUSCH传输使用的预编码矩阵和TRI。本申请实施例中,构建了候选数据传输层与候选资源组合的映射关系,只需要传输指示TRI的指示信息,使得占用的比特个数较少,能够降低传输信令的开销。进一步地,基于TRI就可以指示出满足PUSCH传输要求的预编码矩阵,提高PUSCH传输的安全性、准确性和可靠性,无需对现有SRI映射表进行扩展,在数据传输层增加的场景下,通过指示信息就可以指示支持8层的PUSCH传输的预编码矩阵。In the embodiment of the present application, the precoded SRS resources corresponding to the non-codebook SRS resource set sent by the terminal device are received, based on the precoded SRS resources, the first resource combination is selected from the SRS resource set, and the first resource combination is selected based on the SRS in the first resource combination. The number of resources or ports is used to generate indication information, where the indication information is used to indicate the precoding matrix and TRI used for PUSCH transmission. In the embodiment of the present application, the mapping relationship between the candidate data transmission layer and the candidate resource combination is constructed, and only the indication information indicating the TRI needs to be transmitted, so that the number of occupied bits is smaller and the overhead of transmission signaling can be reduced. Furthermore, based on TRI, it is possible to indicate the precoding matrix that meets the PUSCH transmission requirements, improving the security, accuracy and reliability of PUSCH transmission. There is no need to expand the existing SRI mapping table. In the scenario where the data transmission layer is added, The precoding matrix that supports 8-layer PUSCH transmission can be indicated through the indication information.
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。In a third aspect, embodiments of the present application provide a communication device that has some or all of the functions of the terminal device in implementing the method described in the first aspect. For example, the functions of the communication device may have some or all of the functions in this application. The functions in the embodiments may also be used to independently implement any of the embodiments in this application. The functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software. The hardware or software includes one or more units or modules corresponding to the above functions.
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。In one implementation, the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method. The transceiver module is used to support communication between the communication device and other devices. The communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。As an example, the processing module may be a processor, the transceiver module may be a transceiver or a communication interface, and the storage module may be a memory.
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。In the fourth aspect, embodiments of the present application provide another communication device that has some or all of the functions of the network device in the method example described in the second aspect. For example, the functions of the communication device may have some of the functions in this application. Or the functions in all embodiments may also be used to implement any one embodiment of the present application independently. The functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software. The hardware or software includes one or more units or modules corresponding to the above functions.
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。In one implementation, the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the above method. The transceiver module is used to support communication between the communication device and other devices. The communication device may further include a storage module coupled to the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
在一种实现方式中,所述通信装置包括:In one implementation, the communication device includes:
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。In a fifth aspect, embodiments of the present application provide a communication device. The communication device includes a processor. When the processor calls a computer program in a memory, it executes the method described in the first aspect.
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。In a sixth aspect, embodiments of the present application provide a communication device. The communication device includes a processor. When the processor calls a computer program in a memory, it executes the method described in the second aspect.
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。In a seventh aspect, embodiments of the present application provide a communication device. The communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。In an eighth aspect, embodiments of the present application provide a communication device. The communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。In a ninth aspect, embodiments of the present application provide a communication device. The device includes a processor and an interface circuit. The interface circuit is used to receive code instructions and transmit them to the processor. The processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收 代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。In a tenth aspect, embodiments of the present application provide a communication device. The device includes a processor and an interface circuit. The interface circuit is used to receive code instructions and transmit them to the processor. The processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。In an eleventh aspect, embodiments of the present application provide a communication system, which includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect and the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect and the communication device according to the tenth aspect. the above-mentioned communication device.
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。In a twelfth aspect, embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。In a thirteenth aspect, embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to perform the method described in the second aspect. .
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。In a fourteenth aspect, the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。In a fifteenth aspect, the present application also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the second aspect.
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。In a sixteenth aspect, the present application provides a chip system, which includes at least one processor and an interface for supporting the terminal device to implement the functions involved in the first aspect, for example, determining or processing the data involved in the above method. and information. In a possible design, the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device. The chip system may be composed of chips, or may include chips and other discrete devices.
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。In a seventeenth aspect, this application provides a chip system, which includes at least one processor and an interface for supporting network equipment to implement the functions involved in the second aspect, for example, determining or processing the data involved in the above method. and information. In a possible design, the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network device. The chip system may be composed of chips, or may include chips and other discrete devices.
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。In an eighteenth aspect, the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。In a nineteenth aspect, this application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect.
附图说明Description of drawings
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。In order to more clearly explain the technical solutions in the embodiments of the present application or the background technology, the drawings required to be used in the embodiments or the background technology of the present application will be described below.
图1是本申请实施例提供的一种通信系统的架构示意图;Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application;
图2是本申请实施例提供的一种基于非码本的PUSCH接收信息的方法的流程示意图;Figure 2 is a schematic flowchart of a method for receiving information on non-codebook-based PUSCH provided by an embodiment of the present application;
图3是本申请实施例提供的一种基于非码本的PUSCH接收信息的方法的流程示意图;Figure 3 is a schematic flowchart of a method for receiving information on non-codebook-based PUSCH provided by an embodiment of the present application;
图4是本申请实施例提供的一种基于非码本的PUSCH发送信息的方法的流程示意图;Figure 4 is a schematic flowchart of a method for transmitting information based on non-codebook PUSCH provided by an embodiment of the present application;
图5是本申请实施例提供的一种通信装置的结构示意图;Figure 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application;
图6是本申请实施例提供的一种通信装置的结构示意图;Figure 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application;
图7是本申请实施例提供的一种芯片的结构示意图。FIG. 7 is a schematic structural diagram of a chip provided by an embodiment of the present application.
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。Exemplary embodiments will be described in detail herein, examples of which are illustrated in the accompanying drawings. When the following description refers to the drawings, the same numbers in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the following exemplary embodiments do not represent all implementations consistent with the present disclosure. Rather, they are merely examples of apparatus and methods consistent with aspects of the disclosure as detailed in the appended claims.
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terminology used in the embodiments of the present disclosure is for the purpose of describing specific embodiments only and is not intended to limit the embodiments of the present disclosure. As used in the embodiments of the present disclosure and the appended claims, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”It should be understood that although the terms first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other. For example, without departing from the scope of the embodiments of the present disclosure, the first information may also be called second information, and similarly, the second information may also be called first information. Depending on the context, the word "if" as used herein may be interpreted as "when" or "when" or "in response to determining"
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”、“高于”或“低于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义;术语“高于”涵盖了“高于等于”的含义,“低于”也涵盖了“低于等于”的含义。For the purpose of simplicity and ease of understanding, the terms used in this article are "greater than" or "less than", "higher than" or "lower than" when characterizing size relationships. But for those skilled in the art, it can be understood that: the term "greater than" also covers the meaning of "greater than or equal to", and "less than" also covers the meaning of "less than or equal to"; the term "higher than" covers the meaning of "higher than or equal to". "The meaning of "less than" also covers the meaning of "less than or equal to".
为了便于理解,首先介绍本申请涉及的术语。To facilitate understanding, the terminology involved in this application is first introduced.
上行探测信号SRS(Sounding Reference Signal,),用于估计上行信道频域信息,做频率选择性调度,也用于估计上行信道,做下行波束赋形。The uplink sounding signal SRS (Sounding Reference Signal,) is used to estimate the frequency domain information of the uplink channel and perform frequency selective scheduling. It is also used to estimate the uplink channel and perform downlink beamforming.
探测参考信号SRS(Sounding Reference Signal,),用于估计上行信道频域信息,做频率选择性调度,也用于估计上行信道,做下行波束赋形。The sounding reference signal SRS (Sounding Reference Signal,) is used to estimate the frequency domain information of the uplink channel and perform frequency selective scheduling. It is also used to estimate the uplink channel and perform downlink beamforming.
SRS资源指示(SRS Resource Indicator,SRI),用于指示UE使用哪个SRS资源进行上行数据传输。SRS Resource Indicator (SRI) is used to instruct the UE which SRS resource to use for uplink data transmission.
数据传输秩指示(Transmission Rank Indicator,TRI),用于指示PUSCH实际传输使用的预编码矩阵对应的数据传输层数。Data transmission rank indicator (Transmission Rank Indicator, TRI), used to indicate the number of data transmission layers corresponding to the precoding matrix used for actual transmission of PUSCH.
为了更好的理解本申请实施例公开的一种非码本的PUSCH接收/发送信息的方法,下面首先对本申请实施例适用的通信系统进行描述。In order to better understand the non-codebook PUSCH method for receiving/transmitting information disclosed in the embodiments of the present application, the following first describes the communication system to which the embodiments of the present application are applicable.
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。Please refer to Figure 1. Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application. The communication system may include but is not limited to one network device and one terminal device. The number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, two or more devices may be included. Network equipment, two or more terminal devices. The communication system shown in Figure 1 includes a network device 101 and a terminal device 102 as an example.
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。It should be noted that the technical solutions of the embodiments of the present application can be applied to various communication systems. For example: long term evolution (LTE) system, fifth generation (5th generation, 5G) mobile communication system, 5G new radio (NR) system, or other future new mobile communication systems. It should also be noted that the side link in the embodiment of the present application may also be called a side link or a through link.
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不 做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。The network device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals. For example, the network device 101 can be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc. The embodiments of this application do not limit the specific technologies and specific equipment forms used by network equipment. The network equipment provided by the embodiments of this application may be composed of a centralized unit (central unit, CU) and a distributed unit (DU). The CU may also be called a control unit (control unit). CU-DU is used. The structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。The terminal device 102 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone. Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc. The terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality ( augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc. The embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
在侧链路通信中,存在4种侧链路传输模式。侧链路传输模式1和侧链路传输模式2用于终端设备直通(device-to-device,D2D)通信。侧链路传输模式3和侧链路传输模式4用于V2X通信。当采用侧链路传输模式3时,资源分配由网络设备101调度。具体的,网络设备101可以将资源分配信息发送给终端设备102,然后由该终端设备102向另一终端设备分配资源,以使得该另一终端设备可以通过分配到的资源向网络设备101发送信息。在V2X通信中,可以将信号较好或者可靠性较高的终端设备作为终端设备102。本申请实施例中提及的第一终端设备可以指该终端设备102,第二终端设备可以指该另一终端设备。In side-link communication, there are 4 side-link transmission modes. Side link transmission mode 1 and side link transmission mode 2 are used for terminal device direct (device-to-device, D2D) communication. Side-link transmission mode 3 and side-link transmission mode 4 are used for V2X communications. When side-link transmission mode 3 is adopted, resource allocation is scheduled by the network device 101. Specifically, the network device 101 can send resource allocation information to the terminal device 102, and then the terminal device 102 allocates resources to another terminal device, so that the other terminal device can send information to the network device 101 through the allocated resources. . In V2X communication, a terminal device with better signal or higher reliability can be used as the terminal device 102 . The first terminal device mentioned in the embodiment of this application may refer to the terminal device 102, and the second terminal device may refer to the other terminal device.
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。It can be understood that the communication system described in the embodiments of the present application is to more clearly illustrate the technical solutions of the embodiments of the present application, and does not constitute a limitation on the technical solutions provided by the embodiments of the present application. As those of ordinary skill in the art will know, With the evolution of system architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.
下面结合附图对本申请所提供的基于非码本的PUSCH接收/发送信息的方法及其装置进行详细地介绍。The non-codebook-based PUSCH information receiving/transmitting method and device provided by this application will be introduced in detail below with reference to the accompanying drawings.
请参见图2,图2是本申请实施例提供的一种基于非码本的PUSCH接收信息的方法的流程示意图。该基于非码本的PUSCH接收信息的方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:Please refer to Figure 2. Figure 2 is a schematic flowchart of a method for receiving information on a non-codebook-based PUSCH provided by an embodiment of the present application. The method of receiving information based on non-codebook PUSCH is executed by the terminal equipment. As shown in Figure 2, the method may include but is not limited to the following steps:
步骤S21,向网络设备发送非码本的SRS资源集合中经过预编码的SRS资源。Step S21: Send the precoded SRS resources in the non-codebook SRS resource set to the network device.
本申请实施例中,终端设备可以支持最大PUSCH传输可以增加至8层,进而可以用于支持与下行可比的更高的上行传输速率。In the embodiment of the present application, the maximum PUSCH transmission that the terminal equipment can support can be increased to layer 8, which can then be used to support a higher uplink transmission rate that is comparable to that of downlink.
本申请实施例中,探测参考信号(Sounding Reference Signal,SRS)资源集合中包括至少一个SRS资源。SRS资源可以为单端口的SRS资源,也可以为多端口的SRS资源。多端口的SRS资源配置的端口数量最大为8个。单端口的SRS资源时,SRS资源集合中最大配置8个SRS资源。In this embodiment of the present application, the sounding reference signal (Sounding Reference Signal, SRS) resource set includes at least one SRS resource. The SRS resource may be a single-port SRS resource or a multi-port SRS resource. The maximum number of ports configured for multi-port SRS resources is 8. For single-port SRS resources, a maximum of 8 SRS resources can be configured in the SRS resource set.
可选地,SRS资源集合的资源配置类型为:Optionally, the resource configuration type of the SRS resource collection is:
第一类型:SRS资源集合包括多个第一候选SRS资源,其中,第一候选SRS资源均为单端口SRS资源。Type 1: The SRS resource set includes multiple first candidate SRS resources, where all the first candidate SRS resources are single-port SRS resources.
第二类型:SRS资源集合包括至少一个第二候选SRS资源,不同的第二候选SRS资源有不同数量 的端口。例如,第二候选SRS资源1,端口数量为1,第二候选SRS资源2,端口数量为2,第二候选SRS资源3,端口数量为3,第二候选SRS资源4,端口数量为4,依次类推,第二候选SRS资源8,端口数量为8。Second type: The SRS resource set includes at least one second candidate SRS resource, and different second candidate SRS resources have different numbers of ports. For example, the second candidate SRS resource 1, the number of ports is 1, the second candidate SRS resource 2, the number of ports is 2, the second candidate SRS resource 3, the number of ports is 3, the second candidate SRS resource 4, the number of ports is 4, By analogy, the second candidate SRS resource is 8, and the number of ports is 8.
第三类型:所述SRS资源集合包括一个第三候选SRS资源,所述第三候选SRS资源配置有多个候选端口。端口数量的取值可以包括1,2,3,4,5,6,7,8。Third type: the SRS resource set includes a third candidate SRS resource, and the third candidate SRS resource is configured with multiple candidate ports. The value of the number of ports can include 1, 2, 3, 4, 5, 6, 7, and 8.
可选地,网络设备通过高层信令向终端设备配置一个功能为非码本的SRS资源集合。例如,网络设备可以通过无线资源控制(Radio Resource Control,RRC)信令或媒体接入控制-控制单元(Media access control-Control Element,MAC-CE)信令或其他高层信令向终端设备配置该SRS资源集合。可选地,通过RRC信令实现SRS资源集合的配置或重配置,通过MAC-CE信令实现对于某个SRS资源集合的全部或部分SRS资源的更新配置。Optionally, the network device configures an SRS resource set with a non-codebook function to the terminal device through high-layer signaling. For example, the network device can configure the terminal device through Radio Resource Control (RRC) signaling or Media access control-Control Element (MAC-CE) signaling or other high-level signaling. SRS resource collection. Optionally, the configuration or reconfiguration of the SRS resource set is implemented through RRC signaling, and the updated configuration of all or part of the SRS resources of a certain SRS resource set is implemented through MAC-CE signaling.
可选地,SRS资源集合的时域特性为周期性、半持续或者非周期性,也就是说SRS资源集合可以为一个周期性SRS资源集合,或者为一个半持续SRS资源集合,或者为一个非周期性SRS资源集合。Optionally, the time domain characteristics of the SRS resource set are periodic, semi-persistent or aperiodic. That is to say, the SRS resource set can be a periodic SRS resource set, a semi-persistent SRS resource set, or a non-periodic SRS resource set. Periodic SRS resource collection.
本申请实施例中,终端设备在获取到网络设备配置的SRS资源集合后,可以基于初始预编码矩阵,对SRS资源集合中配置的SRS资源进行预编码,向网络设备发送采用预编码的SRS资源。预编码的SRS资源可以用于获取信道状态信息(Channel State Information,CSI),进而获取信道估计信息,该信道估计信息可以反映信道条件、预调度用户的干扰情况和/或信道噪声等调度信息。In the embodiment of this application, after obtaining the SRS resource set configured by the network device, the terminal device can precode the SRS resources configured in the SRS resource set based on the initial precoding matrix, and send the precoded SRS resources to the network device. . The precoded SRS resources can be used to obtain channel state information (CSI), and then obtain channel estimation information. The channel estimation information can reflect scheduling information such as channel conditions, interference conditions of pre-scheduled users, and/or channel noise.
需要说明的是,非码本上行传输方案也是一种空间复用技术,它与基于码本的上行传输的区别在于它的预编码基于一定的准则获得,而非基于固定的码本在有限的候选值中确定预编码。若上下行信道的互易性存在,则终端可以基于信道互易性进行下行信道信息的计算,从而获得上行预编码矩阵。若信道互易性足够好,终端通过下行信道可以获得更为准确的预编码,相对于基于码本的传输方案,可以节省预编码指示的开销,同时获得更好的性能。It should be noted that the non-codebook uplink transmission scheme is also a spatial multiplexing technology. The difference from the codebook-based uplink transmission is that its precoding is based on certain criteria, rather than based on a fixed codebook. Determine the precoding among the candidate values. If the reciprocity of the uplink and downlink channels exists, the terminal can calculate the downlink channel information based on the channel reciprocity, thereby obtaining the uplink precoding matrix. If the channel reciprocity is good enough, the terminal can obtain more accurate precoding through the downlink channel. Compared with the codebook-based transmission scheme, it can save the cost of precoding indication and obtain better performance at the same time.
可选地,终端设备接收网络设备配置的关联的下行信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)资源,终端设备可以基于下行CSI-RS资源确定出初始预编码矩阵,本申请中PUSCH实际传输所使用的目标预编码矩阵是从初始预编码矩阵中筛选出的。Optionally, the terminal device receives associated downlink Channel State Information-Reference Signal (CSI-RS) resources configured by the network device, and the terminal device can determine the initial precoding matrix based on the downlink CSI-RS resources. The target precoding matrix used for actual transmission of PUSCH in the application is selected from the initial precoding matrix.
步骤S22,接收网络设备发送的指示信息,其中,指示信息用于指示PUSCH传输使用的预编码矩阵对应的TRI。Step S22: Receive indication information sent by the network device, where the indication information is used to indicate the TRI corresponding to the precoding matrix used for PUSCH transmission.
可选地,网络设备可以接收到预编码SRS资源进行信道估计,获取信道估计信息,由于信道估计信息可以反映出信道条件、预调度多用户的干扰情况和/或信道噪声,进而可以基于信道估计信息确定出终端设备的TRI。也就是说,网络设备可以综合考虑估计的上行信道信息、预调度用户的干扰情况等调度因素,从为终端设备配置的SRS资源集合中确定出PUSCH实际传输使用的第一资源组合,基于第一资源组合可以确定出目标预编码矩阵,以及基于第一资源组合内资源的数量确定出目标预编码矩阵对应的数据传输层数,即网络设备基于预编码的SRS资源,从SRS资源集合中选出第一资源组合,并且确定出PUSCH传输使用的预编码矩阵,以及预编码矩阵对应的TRI。Optionally, the network device can receive the precoded SRS resources for channel estimation and obtain channel estimation information. Since the channel estimation information can reflect channel conditions, pre-scheduled multi-user interference and/or channel noise, it can further be based on the channel estimation. The information determines the TRI of the terminal device. That is to say, the network device can comprehensively consider the estimated uplink channel information, interference conditions of pre-scheduled users and other scheduling factors, and determine the first resource combination used for actual transmission of PUSCH from the SRS resource set configured for the terminal device, based on the first The resource combination can determine the target precoding matrix, and determine the number of data transmission layers corresponding to the target precoding matrix based on the number of resources in the first resource combination, that is, the network device selects from the SRS resource set based on the precoded SRS resources. The first resource is combined, and the precoding matrix used for PUSCH transmission and the TRI corresponding to the precoding matrix are determined.
可选地,通过SRS资源的指示信息(Sounding Reference Signal ResourceIndicator,SRI)作为指示信息,通过该SRI指示TRI。可选地,指示信息也可以直接为TRI。Optionally, the indication information (Sounding Reference Signal Resource Indicator, SRI) of the SRS resource is used as the indication information, and the TRI is indicated through the SRI. Optionally, the indication information can also be directly TRI.
步骤S23,基于TRI,通过候选数据传输层与候选资源组合之间的第一映射关系,确定TRI对应的第一资源组合,其中,第一资源组合为基于预编码的SRS资源从SRS资源集合中确定,该第一资源组合包括一个或多个SRS资源的SRS资源组合或者,该第一资源组合为一个SRS资源的端口组合。Step S23: Based on the TRI, determine the first resource combination corresponding to the TRI through the first mapping relationship between the candidate data transmission layer and the candidate resource combination, where the first resource combination is precoding-based SRS resources from the SRS resource set. It is determined that the first resource combination includes an SRS resource combination of one or more SRS resources or that the first resource combination is a port combination of SRS resources.
本申请实施例中,预先定义或指示候选数据传输层与候选资源组合之间的第一映射关系,例如,可以预先一个映射表,该映射表中包括候选数据传输层数和候选资源组合之间的第一映射关系。再例如,候选数据传输层与候选资源组合可以为:TRI=1,则对应SRS资源#0,TRI=2,则对应SRS资源#0和#1。In the embodiment of the present application, the first mapping relationship between the candidate data transmission layer and the candidate resource combination is defined or indicated in advance. For example, a mapping table may be preset, and the mapping table includes the relationship between the number of candidate data transmission layers and the candidate resource combination. The first mapping relationship. For another example, the combination of the candidate data transmission layer and the candidate resource may be: TRI=1, which corresponds to SRS resource #0, and TRI=2, which corresponds to SRS resources #0 and #1.
需要说明的是,第一资源组合为基于预编码SRS从SRS资源集合中选出的一个或多个SRS资源的组合,或者同一个SRS资源的端口组合。It should be noted that the first resource combination is a combination of one or more SRS resources selected from the SRS resource set based on the precoded SRS, or a port combination of the same SRS resource.
SRS资源集合对应的资源配置类型一,即SRS资源集合内包括第一候选SRS资源,第一资源组合包括由网络设备选取出的一个或多个第一候选SRS资源。在该种情况下,第一映射关系包括候选TRI与第一候选SRS资源之间的对应关系,不同的候选TRI对应不同的由一个或多个第一候选SRS资源组合成的候选资源组合,其中,候选TRI的取值顺序递增,则候选资源组合内包括的第一候选SRS资源的数量和编号也顺序递增。The resource configuration type one corresponding to the SRS resource set is that the SRS resource set includes the first candidate SRS resource, and the first resource combination includes one or more first candidate SRS resources selected by the network device. In this case, the first mapping relationship includes a correspondence relationship between candidate TRIs and first candidate SRS resources, and different candidate TRIs correspond to different candidate resource combinations composed of one or more first candidate SRS resources, where , the values of the candidate TRIs increase sequentially, and the number and number of the first candidate SRS resources included in the candidate resource combination also increase sequentially.
示例性说明,当指示信息(SRI)指示的TRI为1时,对应第一候选SRS资源的编号#0,当指示信息(SRI)指示的TRI为2时,对应第一候选SRS资源的编号#0和#1,当指示信息(SRI)指示的TRI为3时,对应第一候选SRS资源的编号#0、#1和#2,并以此类推。For example, when the TRI indicated by the indication information (SRI) is 1, it corresponds to the number #0 of the first candidate SRS resource. When the TRI indicated by the indication information (SRI) is 2, it corresponds to the number # of the first candidate SRS resource. 0 and #1, when the TRI indicated by the indication information (SRI) is 3, correspond to the numbers #0, #1 and #2 of the first candidate SRS resources, and so on.
SRS资源集合对应的资源配置类型二,即SRS资源集合包括第二候选SRS资源,网络设备基于预编码SRS从SRS资源集合中选取出一个第二候选SRS资源,第一资源组合为选出的第二候选SRS资源配置的所有端口的端口组合。可选地,第一映射关系包括候选TRI与第二候选SRS资源之间的对应关系,可以通过表格或者预定义方式确定,其中候选TRI的取值与第二候选SRS资源的编号一一对应,当候选TRI的取值顺序递增,则第二候选SRS资源的编号和所包括的端口数量也顺序递增。The second resource configuration type corresponding to the SRS resource set is that the SRS resource set includes the second candidate SRS resource. The network device selects a second candidate SRS resource from the SRS resource set based on the precoded SRS. The first resource combination is the selected third SRS resource. Port combinations of all ports configured for the second candidate SRS resource. Optionally, the first mapping relationship includes the corresponding relationship between the candidate TRI and the second candidate SRS resource, which can be determined through a table or a predefined manner, where the value of the candidate TRI corresponds to the number of the second candidate SRS resource one-to-one, When the values of candidate TRIs increase sequentially, the number of the second candidate SRS resource and the number of ports included also increase sequentially.
示例性说明,当指示信息(SRI)指示的TRI为1时,对应第二候选SRS资源的编号#0,当指示信息(SRI)指示的TRI为2时,对应第二候选SRS资源的编号#1,当指示信息(SRI)指示的为3时,对应第一候选SRS资源的编号#2,并以此类推。For example, when the TRI indicated by the indication information (SRI) is 1, it corresponds to the number #0 of the second candidate SRS resource. When the TRI indicated by the indication information (SRI) is 2, it corresponds to the number # of the second candidate SRS resource. 1. When the indication information (SRI) indicates 3, it corresponds to the number #2 of the first candidate SRS resource, and so on.
可选地,也可以配置候选SRI与第二候选SRS资源之间的对应关系,可以通过表格或者预定义方式确定,其中候选SRI的取值与第二候选SRS资源的编号一一对应,当候选SRI的取值顺序递增,则第二候选SRS资源的编号和所包括的端口数量也顺序递增。Optionally, the corresponding relationship between the candidate SRI and the second candidate SRS resource can also be configured, which can be determined through a table or a predefined manner, where the value of the candidate SRI corresponds to the number of the second candidate SRS resource. When the candidate As the value of SRI increases in sequence, the number of the second candidate SRS resource and the number of ports included also increase in sequence.
示例性说明,当指示信息(SRI)指示的SRI为0时,对应第二候选SRS资源的编号#0,当指示信息(SRI)指示的SRI为1时,对应第二候选SRS资源的编号#1,当指示信息(SRI)指示的为2时,对应第一候选SRS资源的编号#2,并以此类推。For example, when the SRI indicated by the indication information (SRI) is 0, it corresponds to the number #0 of the second candidate SRS resource. When the SRI indicated by the indication information (SRI) is 1, it corresponds to the number # of the second candidate SRS resource. 1. When the indication information (SRI) indicates 2, it corresponds to the number #2 of the first candidate SRS resource, and so on.
SRS资源集合对应的资源配置类型三,即SRS资源集合包括第三候选SRS资源,网络设备基于预编码SRS从第三候选SRS资源的候选端口中,选取出一个或多个候选端口,则第一资源组合为选取出的一个或多个候选端口所形成的端口组合。在该种情况下,第一映射关系包括候选TRI与候选端口之间的对应关系,不同的候选TRI对应不同的由一个或多个候选端口合成的候选端口组合,其中,候选TRI的取值顺序递增,则候选端口组合内包括的候选端口数量和端口编号也顺序递增。Resource configuration type three corresponding to the SRS resource set, that is, the SRS resource set includes the third candidate SRS resource, and the network device selects one or more candidate ports from the candidate ports of the third candidate SRS resource based on the precoded SRS, then the first The resource combination is a port combination formed by one or more selected candidate ports. In this case, the first mapping relationship includes the correspondence between candidate TRIs and candidate ports. Different candidate TRIs correspond to different candidate port combinations composed of one or more candidate ports, where the value order of the candidate TRIs is increases, the number of candidate ports and port numbers included in the candidate port combination also increase sequentially.
示例性说明,当指示信息(SRI)指示的TRI为1时,对应第三候选SRS资源内端口编号#0,当指示信息(SRI)指示的TRI为2时,对应第三候选SRS资源内端口编号#0和#1,当指示信息(SRI)指示的TRI为3时,对应第三候选SRS资源内端口编号#0、#1和#2,并以此类推。For example, when the TRI indicated by the indication information (SRI) is 1, it corresponds to the port number #0 in the third candidate SRS resource. When the TRI indicated by the indication information (SRI) is 2, it corresponds to the port number #0 in the third candidate SRS resource. Numbers #0 and #1, when the TRI indicated by the indication information (SRI) is 3, correspond to the port numbers #0, #1 and #2 in the third candidate SRS resource, and so on.
步骤S24,基于第一资源组合,确定PUSCH传输使用的预编码矩阵。Step S24: Based on the first resource combination, determine the precoding matrix used for PUSCH transmission.
可选地,终端设备获取到第一资源组合后,可以第一资源组合对应使用的预编码向量或者预编码矩阵,确定PUSCH传输使用的预编码矩阵。Optionally, after acquiring the first resource combination, the terminal device can determine the precoding matrix used for PUSCH transmission using the precoding vector or precoding matrix corresponding to the first resource combination.
一种情况下,确定SRS资源集合的资源配置为第一类型,其中第一资源组合包括的一个或多个第一SRS资源,该第一SRS资源为SRS资源集合内由网络设备选择的第一候选SRS资源。终端设备确定第一SRS资源对应使用的预编码向量,并基于该第一SRS资源所使用的预编码向量,确定PUSCH传输使用的预编码矩阵。其中预编码向量为初始预编码矩阵的一个向量。In one case, it is determined that the resource configuration of the SRS resource set is of the first type, where the first resource combination includes one or more first SRS resources, and the first SRS resource is the first SRS resource selected by the network device in the SRS resource set. Candidate SRS resources. The terminal equipment determines the precoding vector used corresponding to the first SRS resource, and determines the precoding matrix used for PUSCH transmission based on the precoding vector used by the first SRS resource. The precoding vector is a vector of the initial precoding matrix.
可选地,将组合内第一候选SRS资源使用的预编码向量,按照第一候选SRS资源的编号顺序进行组合,得到PUSCH传输使用的预编码矩阵。Optionally, the precoding vectors used by the first candidate SRS resources in the combination are combined according to the number sequence of the first candidate SRS resources to obtain a precoding matrix used for PUSCH transmission.
示例说明,初始预编码矩阵为H=[V 0,V 1,V 2,V 3,V 4,V 5,V 6,V 7],第一候选SRS资源的编号为#0~#7,其中每个第一候选SRS资源口对应一个预编码列向量,例如,第一候选SRS资源#0对应V 0,第一候选SRS资源#1对应V 1,第一候选SRS资源#2对应V 2,第一候选SRS资源#3对应V 3,以此类推,第一候选SRS资源#7对应V 7。在终端设备确定出的第一资源组合为第一候选SRS资源#0和第一候选SRS资源#1时,则将对应的V 1和V 2组合得到PUSCH传输使用的预编码矩阵。 As an example, the initial precoding matrix is H=[V 0 , V 1 , V 2 , V 3 , V 4 , V 5 , V 6 , V 7 ], and the first candidate SRS resources are numbered #0 to #7. Each first candidate SRS resource port corresponds to a precoding column vector. For example, the first candidate SRS resource #0 corresponds to V 0 , the first candidate SRS resource #1 corresponds to V 1 , and the first candidate SRS resource #2 corresponds to V 2 , the first candidate SRS resource #3 corresponds to V 3 , and by analogy, the first candidate SRS resource #7 corresponds to V 7 . When the first resource combination determined by the terminal equipment is the first candidate SRS resource #0 and the first candidate SRS resource #1, the corresponding V 1 and V 2 are combined to obtain a precoding matrix used for PUSCH transmission.
另一种情况下,确定SRS资源集合的资源配置为第一类型,其中,第一资源组合包括一个第二SRS资源,该第二SRS资源为SRS资源集合中由网络设备选择的第二候选SRS资源。进一步地,终端设备确定所述第二SRS资源对应的端口组合所使用的预编码矩阵,并将第二SRS资源对应使用的预编码矩阵,确定为PUSCH传输使用的预编码矩阵。In another case, it is determined that the resource configuration of the SRS resource set is of the first type, wherein the first resource combination includes a second SRS resource, and the second SRS resource is a second candidate SRS selected by the network device in the SRS resource set. resource. Further, the terminal device determines the precoding matrix used by the port combination corresponding to the second SRS resource, and determines the precoding matrix used corresponding to the second SRS resource as the precoding matrix used for PUSCH transmission.
需要说明的是,终端设备对SRS资源集合中每个第二候选SRS资源采用不同的预编码矩阵进行预编码,得到预编码后第二候选SRS资源。第二候选SRS资源对应的预编码矩阵可以基于该第二候选SRS资源对应的端口组合确定。其中,第二候选SRS资源对应的预编码矩阵为初始预编码矩阵一个或多个预编码向量组合而成。It should be noted that the terminal device uses a different precoding matrix to precode each second candidate SRS resource in the SRS resource set to obtain the precoded second candidate SRS resource. The precoding matrix corresponding to the second candidate SRS resource may be determined based on the port combination corresponding to the second candidate SRS resource. The precoding matrix corresponding to the second candidate SRS resource is a combination of one or more precoding vectors of the initial precoding matrix.
示例说明,初始预编码矩阵为H=[V 0,V 1,V 2,V 3,V 4,V 5,V 6,V 7],第二候选SRS资源的编号为#0~#7,其中第二候选SRS资源#0配置有一个端口#0,第二候选SRS资源#1,配置有两个端口#0和#1,第二候选SRS资源#2,对应三个端口#0、#1和#2;第二候选SRS资源#3,配置有四个端口#0、#1和、#2和端口#3;以此类推,第二候选SRS资源#7,对应四个端口#0至端口#7。不同的第二候选SRS资源对应的预编码矩阵,例如,第二候选SRS资源#1,配置有两个端口#0和#1,对应的预编码矩阵为[V 0,V 1];例如,第二候选SRS资源#3,配置有两个端口#0、#1和、#2和端口#3,对应的预编码矩阵为[V 0,V 1,V 2,V 3]。 As an example, the initial precoding matrix is H=[V 0 , V 1 , V 2 , V 3 , V 4 , V 5 , V 6 , V 7 ], and the second candidate SRS resources are numbered #0 to #7. The second candidate SRS resource #0 is configured with one port #0, the second candidate SRS resource #1 is configured with two ports #0 and #1, and the second candidate SRS resource #2 corresponds to three ports #0 and #1. 1 and #2; the second candidate SRS resource #3 is configured with four ports #0, #1 and #2 and port #3; and so on, the second candidate SRS resource #7 corresponds to four ports #0 to port #7. Precoding matrices corresponding to different second candidate SRS resources. For example, the second candidate SRS resource #1 is configured with two ports #0 and #1, and the corresponding precoding matrix is [V 0 , V 1 ]; for example, The second candidate SRS resource #3 is configured with two ports #0, #1 and #2 and port #3, and the corresponding precoding matrix is [V 0 , V 1 , V 2 , V 3 ].
在终端设备确定出第一资源组合为第二SRS资源#1时,包括的端口组合为端口#0和#1时,第二候选SRS资源#1,对应的预编码矩阵为[V 0,V 1],确定为PUSCH传输使用的预编码矩阵。 When the terminal device determines that the first resource combination is the second SRS resource #1 and the included port combination is ports #0 and #1, the second candidate SRS resource #1 and the corresponding precoding matrix are [V 0 , V 1 ], determine the precoding matrix used for PUSCH transmission.
又一种情况下,确定SRS资源集合的资源配置为第一类型,其中,第一资源组合包括一个或多个第一端口,第一端口为多个候选端口中由网络设备选择的端口。进一步地,获取第一端口的预编码向量,并基于第一端口对应的预编码向量,确定PUSCH传输使用的预编码矩阵。可选地,将组合内第一端口使用的预编码向量,按照第一端口的编号顺序进行组合,得到PUSCH传输使用的预编码矩阵。In another case, it is determined that the resource configuration of the SRS resource set is of the first type, wherein the first resource combination includes one or more first ports, and the first port is a port selected by the network device among multiple candidate ports. Further, a precoding vector of the first port is obtained, and based on the precoding vector corresponding to the first port, a precoding matrix used for PUSCH transmission is determined. Optionally, the precoding vectors used by the first port in the combination are combined according to the number sequence of the first port to obtain a precoding matrix used for PUSCH transmission.
需要说明的是,第三候选SRS资源中每个端口有对应的预编码向量,其中预编码向量为初始预编码矩阵的一个向量。It should be noted that each port in the third candidate SRS resource has a corresponding precoding vector, where the precoding vector is a vector of the initial precoding matrix.
示例说明,初始预编码矩阵为H=[V 0,V 1,V 2,V 3,V 4,V 5,V 6,V 7],第三候选SRS资源的候选端口分别对应一个预编码列向量,例如,候选端口#0对应V 0,候选端口#1对应V 1,候选端口#2对应V 2,候选端口#3对应V 3,以此类推,候选端口#7对应V 7。在终端设备确定出的第一资源组合为候选端口#0和候选端口#1时,则将对应的V 0和V 1组合得到PUSCH传输使用的预编码矩阵。 The example shows that the initial precoding matrix is H=[V 0 , V 1 , V 2 , V 3 , V 4 , V 5 , V 6 , V 7 ], and the candidate ports of the third candidate SRS resource each correspond to a precoding column. Vector, for example, candidate port #0 corresponds to V 0 , candidate port #1 corresponds to V 1 , candidate port #2 corresponds to V 2 , candidate port #3 corresponds to V 3 , and so on, candidate port #7 corresponds to V 7 . When the first resource combination determined by the terminal equipment is candidate port #0 and candidate port #1, the corresponding V 0 and V 1 are combined to obtain the precoding matrix used for PUSCH transmission.
需要说明的时,第一资源组合内选择的SRS资源需要应用高层配置的最大传输层数RANK作为码 本子集限制,也就是说,终端设备确定的目标预编码矩阵对应的数据传输层数,小于或者等于该终端设备所支持的最大数据传输层数。When it is necessary to explain, the SRS resources selected in the first resource combination need to apply the maximum number of transmission layers RANK configured by the higher layer as the codebook subset limit, that is to say, the number of data transmission layers corresponding to the target precoding matrix determined by the terminal equipment, Less than or equal to the maximum number of data transmission layers supported by the terminal device.
本申请实施例中,发送网络设备配置功能为非码本的SRS资源集合中经过预编码的SRS资源,接收网络设备发送的指示信息,其中,指示信息用于指示PUSCH实际传输使用的数据传输层数的指示信息TRI,并基于TRI确定PUSCH传输使用的目标预编码矩阵,基于TRI,通过候选数据传输层与候选资源组合之间的第一映射关系,确定TRI对应的第一资源组合,基于第一资源组合,确定PUSCH实际传输使用的预编码矩阵。本申请实施例中,构建了候选数据传输层与候选资源组合的映射关系,只需要传输指示TRI的指示信息,使得占用的比特个数较少,能够降低传输信令的开销。进一步地,基于TRI就可以指示出满足PUSCH传输要求的目标预编码矩阵,提高PUSCH传输的安全性、准确性和可靠性,无需对现有SRI映射表进行扩展,在数据传输层增加的场景下,通过指示信息就可以指示支持8层的PUSCH传输的预编码矩阵。In the embodiment of the present application, the sending network device configures the precoded SRS resources in the non-codebook SRS resource set, and receives the indication information sent by the network device, where the indication information is used to indicate the data transmission layer used for actual transmission of PUSCH. number of indication information TRI, and determine the target precoding matrix used for PUSCH transmission based on the TRI. Based on the TRI, determine the first resource combination corresponding to the TRI through the first mapping relationship between the candidate data transmission layer and the candidate resource combination. Based on the A resource combination determines the precoding matrix used for actual transmission of PUSCH. In the embodiment of the present application, the mapping relationship between the candidate data transmission layer and the candidate resource combination is constructed, and only the indication information indicating the TRI needs to be transmitted, so that the number of occupied bits is smaller and the overhead of transmission signaling can be reduced. Furthermore, based on TRI, the target precoding matrix that meets the PUSCH transmission requirements can be indicated, improving the security, accuracy and reliability of PUSCH transmission without the need to expand the existing SRI mapping table. In the scenario where the data transmission layer is added , the precoding matrix that supports 8-layer PUSCH transmission can be indicated through the indication information.
请参见图3,图3是本申请实施例提供的一种基于非码本的PUSCH接收信息的方法的流程示意图。该基于非码本的PUSCH接收信息的方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:Please refer to Figure 3. Figure 3 is a schematic flowchart of a method for receiving information on a non-codebook-based PUSCH provided by an embodiment of the present application. The method of receiving information based on non-codebook PUSCH is executed by the terminal equipment. As shown in Figure 3, the method may include but is not limited to the following steps:
步骤S31,发送网络设备配置功能为非码本的SRS资源集合中经过预编码的SRS资源。Step S31: Send the precoded SRS resources in the SRS resource set whose network device configuration function is non-codebook.
关于步骤S31的实现方式,可采用本申请中各实施例中任一实现方式,具体介绍可参加相关内容的记载,此处不再赘述。Regarding the implementation of step S31, any implementation method in the embodiments in this application can be adopted. For specific introduction, please refer to the records of relevant contents, and will not be described again here.
步骤S32,接收网络设备发送的指示信息,其中,指示信息用于指示PUSCH实际传输使用的数据传输层数的指示信息TRI。Step S32: Receive indication information sent by the network device, where the indication information is used to indicate indication information TRI of the number of data transmission layers used for actual PUSCH transmission.
可选地,通过SRS资源的指示信息(Sounding Reference Signal ResourceIndicator,SRI),向终端设备指示TRI,可选地,通过SRI的指示域,将TRI发送给终端设备,也就是说复用现有SRI的指示域,通过该指示域向终端设备指示TRI,该指示域上可以携带可索引TRI的索引值。Optionally, indicate the TRI to the terminal device through the indication information of the SRS resource (Sounding Reference Signal ResourceIndicator, SRI). Optionally, send the TRI to the terminal device through the indication field of the SRI, that is to say, reuse the existing SRI. The indication field is used to indicate the TRI to the terminal device. The indication field can carry an index value that can index the TRI.
步骤S33,SRI用于指示TRI的情况下,基于SRI和候选SRI与候选TRI之间的第二映射关系,确定TRI。Step S33: If the SRI is used to indicate TRI, determine the TRI based on the second mapping relationship between the SRI and the candidate SRI and the candidate TRI.
本申请实施例中,候选SRI与候选TRI之间存在第二映射关系,基于该第二映射关系可以确定TRI,如表1所示。参考表1,例如,第二映射关系可以为:SRI取值1,对应的TRI=1,SRI取值5,对应的TRI=6。In this embodiment of the present application, there is a second mapping relationship between the candidate SRI and the candidate TRI, and the TRI can be determined based on the second mapping relationship, as shown in Table 1. Referring to Table 1, for example, the second mapping relationship may be: SRI value 1, corresponding TRI=1, SRI value 5, corresponding TRI=6.
表1Table 1
Figure PCTCN2022084685-appb-000001
Figure PCTCN2022084685-appb-000001
可以理解的是,表1中的每一个元素都是独立存在的,这些元素被示例性的列在同一张表格中,但是并不代表表格中的所有元素必须根据表格中所示的同时存在。其中每一个元素的值,是不依赖于表1中任何其他元素值。因此本领域内技术人员可以理解,该表1中的每一个元素的取值都是一个独立的实施例。It can be understood that each element in Table 1 exists independently, and these elements are exemplarily listed in the same table, but it does not mean that all elements in the table must exist at the same time as shown in the table. The value of each element does not depend on the value of any other element in Table 1. Therefore, those skilled in the art can understand that the value of each element in Table 1 is an independent embodiment.
可选地,第二映射关系可以预先按照协议约定确定存储在终端设备中,也可以通过高层信令指示给终端设备。Optionally, the second mapping relationship may be determined in advance and stored in the terminal device according to the protocol agreement, or may be indicated to the terminal device through high-level signaling.
步骤S34,基于第一映射关系,确定TRI对应的第一资源组合。Step S34: Based on the first mapping relationship, determine the first resource combination corresponding to the TRI.
其中,第一资源组合为基于预编码SRS从SRS资源集合中选出,该第一资源组合为一个或多个SRS资源的组合,或者该第一资源组合为一个SRS资源的端口组合。The first resource combination is selected from an SRS resource set based on precoded SRS, and the first resource combination is a combination of one or more SRS resources, or the first resource combination is a port combination of SRS resources.
本申请实施例中,预先定义或指示候选数据传输层与候选资源组合之间的第一映射关系,例如,可以预先一个映射表,该映射表中包括候选数据传输层数和候选资源组合之间的第一映射关系。再例如,候选数据传输层与候选资源组合可以为:TRI=1,则对应SRS资源#0,TRI=2,则对应SRS资源#0和#1。In the embodiment of the present application, the first mapping relationship between the candidate data transmission layer and the candidate resource combination is defined or indicated in advance. For example, a mapping table may be preset, and the mapping table includes the relationship between the number of candidate data transmission layers and the candidate resource combination. The first mapping relationship. For another example, the combination of the candidate data transmission layer and the candidate resource may be: TRI=1, which corresponds to SRS resource #0, and TRI=2, which corresponds to SRS resources #0 and #1.
可选地,第一映射关系包括候选TRI与第一候选SRS资源之间的对应关系,不同的候选TRI对应不同的由一个或多个第一候选SRS资源组合成的候选资源组合,其中,候选TRI的取值顺序递增,则候选资源组合内包括的第一候选SRS资源的数量和编号也顺序递增。Optionally, the first mapping relationship includes a correspondence relationship between candidate TRIs and first candidate SRS resources. Different candidate TRIs correspond to different candidate resource combinations composed of one or more first candidate SRS resources, where the candidate As the values of TRI increase sequentially, the number and number of the first candidate SRS resources included in the candidate resource combination also increase sequentially.
可选地,第一映射关系包括候选TRI与第二候选SRS资源之间的对应关系,候选TRI的取值与第二候选SRS资源的编号一一对应,其中,候选TRI的取值顺序递增,则第二候选SRS资源的编号和所包括的端口数量也顺序递增。Optionally, the first mapping relationship includes a correspondence relationship between the candidate TRI and the second candidate SRS resource. The value of the candidate TRI corresponds to the number of the second candidate SRS resource one-to-one, wherein the values of the candidate TRI are in increasing order, Then the number of the second candidate SRS resource and the number of included ports also increase sequentially.
可选地,第一映射关系包括候选TRI与候选端口之间的对应关系,不同的候选TRI对应不同的由一个或多个候选端口合成的候选端口组合,其中,候选TRI的取值顺序递增,则候选端口组合内包括的候选端口数量和端口编号也顺序递增。Optionally, the first mapping relationship includes a correspondence relationship between candidate TRIs and candidate ports. Different candidate TRIs correspond to different candidate port combinations composed of one or more candidate ports, where the values of the candidate TRIs increase in order, Then the number of candidate ports and port numbers included in the candidate port combination also increase sequentially.
需要说明的是,第一资源组合为基于预编码SRS从SRS资源集合中选出的一个或多个SRS资源的组合,或者同一个SRS资源的端口组合。例如,SRS资源集合包括第一候选SRS资源,第一资源组合包括由网络设备选取出的一个或多个第一候选SRS资源。再例如,SRS资源集合包括第二候选SRS资源,网络设备基于预编码SRS从SRS资源集合中选取出一个第二候选SRS资源,第一资源组合为选出的第二候选SRS资源配置的端口的端口组合。再例如,SRS资源集合包括第三候选SRS资源,网络设备基于预编码SRS从第三候选SRS资源的候选端口中,选取出一个或多个候选端口,则第一资源组合为选取出的一个或多个候选端口所形成的端口组合。It should be noted that the first resource combination is a combination of one or more SRS resources selected from the SRS resource set based on the precoded SRS, or a port combination of the same SRS resource. For example, the SRS resource set includes a first candidate SRS resource, and the first resource combination includes one or more first candidate SRS resources selected by the network device. For another example, the SRS resource set includes a second candidate SRS resource, the network device selects a second candidate SRS resource from the SRS resource set based on the precoded SRS, and the first resource combination is the port configured by the selected second candidate SRS resource. Port combination. For another example, the SRS resource set includes a third candidate SRS resource, and the network device selects one or more candidate ports from the candidate ports of the third candidate SRS resource based on the precoded SRS, then the first resource combination is the selected one or A port combination formed by multiple candidate ports.
示例性说明可参见上述实施例中相关示例,此处不再赘述。For illustrative description, please refer to the relevant examples in the above embodiments and will not be described again here.
步骤S35,基于第一资源组合,确定PUSCH传输使用的预编码矩阵。Step S35: Based on the first resource combination, determine the precoding matrix used for PUSCH transmission.
一种情况下,确定SRS资源集合为资源配置类型一,其中第一资源组合包括的一个或多个第一SRS资源,该第一SRS资源为SRS资源集合内由网络设备选择的第一候选SRS资源。终端设备确定第一SRS资源对应使用的预编码向量,并基于该第一SRS资源所使用的预编码向量,确定PUSCH传输使用的预编码矩阵。其中预编码向量为初始预编码矩阵的一个向量。In one case, the SRS resource set is determined to be resource configuration type one, in which the first resource combination includes one or more first SRS resources, and the first SRS resource is the first candidate SRS selected by the network device in the SRS resource set. resource. The terminal equipment determines the precoding vector used corresponding to the first SRS resource, and determines the precoding matrix used for PUSCH transmission based on the precoding vector used by the first SRS resource. The precoding vector is a vector of the initial precoding matrix.
可选地,将组合内第一候选SRS资源使用的预编码向量,按照第一候选SRS资源的编号顺序进行组合,得到PUSCH传输使用的预编码矩阵。Optionally, the precoding vectors used by the first candidate SRS resources in the combination are combined according to the number sequence of the first candidate SRS resources to obtain a precoding matrix used for PUSCH transmission.
另一种情况下,确定SRS资源集合为资源配置类型二,其中,第一资源组合包括一个第二SRS资源,该第二SRS资源为SRS资源集合中由网络设备选择的第二候选SRS资源。进一步地,终端设备确定所述第二SRS资源对应的端口组合所使用的预编码矩阵,并将第二SRS资源对应使用的预编码矩阵,确定为PUSCH传输使用的预编码矩阵。In another case, the SRS resource set is determined to be resource configuration type 2, where the first resource combination includes a second SRS resource, and the second SRS resource is a second candidate SRS resource selected by the network device in the SRS resource set. Further, the terminal device determines the precoding matrix used by the port combination corresponding to the second SRS resource, and determines the precoding matrix used corresponding to the second SRS resource as the precoding matrix used for PUSCH transmission.
需要说明的是,终端设备对SRS资源集合中每个第二候选SRS资源采用不同的预编码矩阵进行预编码,得到预编码后第二候选SRS资源。第二候选SRS资源对应的预编码矩阵可以基于该第二候选SRS资源对应的端口组合确定。其中,第二候选SRS资源对应的预编码矩阵为初始预编码矩阵一个或多个预编码向量组合而成。It should be noted that the terminal device uses a different precoding matrix to precode each second candidate SRS resource in the SRS resource set to obtain the precoded second candidate SRS resource. The precoding matrix corresponding to the second candidate SRS resource may be determined based on the port combination corresponding to the second candidate SRS resource. The precoding matrix corresponding to the second candidate SRS resource is a combination of one or more precoding vectors of the initial precoding matrix.
又一种情况下,确定SRS资源集合的资源配置为第三类型,其中,第一资源组合包括一个或多个第一端口,第一端口为多个候选端口中由网络设备选择的端口。进一步地,获取第一端口的预编码向量,并基于第一端口对应的预编码向量,确定PUSCH传输使用的预编码矩阵。可选地,将组合内第一端口使用的预编码向量,按照第一端口的编号顺序进行组合,得到PUSCH传输使用的预编码矩阵。In another case, it is determined that the resource configuration of the SRS resource set is of the third type, wherein the first resource combination includes one or more first ports, and the first port is a port selected by the network device among multiple candidate ports. Further, a precoding vector of the first port is obtained, and based on the precoding vector corresponding to the first port, a precoding matrix used for PUSCH transmission is determined. Optionally, the precoding vectors used by the first port in the combination are combined according to the number sequence of the first port to obtain a precoding matrix used for PUSCH transmission.
需要说明的是,第三候选SRS资源中每个端口有对应的预编码向量,其中预编码向量为初始预编码矩阵的一个向量。It should be noted that each port in the third candidate SRS resource has a corresponding precoding vector, where the precoding vector is a vector of the initial precoding matrix.
示例性说明可参见上述实施例中相关示例,此处不再赘述。For illustrative description, please refer to the relevant examples in the above embodiments and will not be described again here.
需要说明的时,第一资源组合内选择的SRS资源需要应用高层配置的最大传输层数RANK作为码本子集限制,也就是说,终端设备确定的目标预编码矩阵对应的数据传输层数,小于或者等于该终端设备所支持的最大数据传输层数。When it is necessary to explain, the SRS resources selected in the first resource combination need to apply the maximum number of transmission layers RANK configured by the higher layer as the codebook subset limit, that is to say, the number of data transmission layers corresponding to the target precoding matrix determined by the terminal equipment, Less than or equal to the maximum number of data transmission layers supported by the terminal device.
本申请实施例中,构建了候选数据传输层与候选资源组合的映射关系,只需要传输指示TRI的指示信息,使得占用的比特个数较少,能够降低传输信令的开销。进一步地,基于TRI就可以指示出满足PUSCH传输要求的预编码矩阵,提高PUSCH传输的安全性、准确性和可靠性,无需对现有SRI映射表进行扩展,在数据传输层增加的场景下,通过指示信息就可以指示支持8层的PUSCH传输的预编码矩阵。In the embodiment of the present application, the mapping relationship between the candidate data transmission layer and the candidate resource combination is constructed, and only the indication information indicating the TRI needs to be transmitted, so that the number of occupied bits is smaller and the overhead of transmission signaling can be reduced. Furthermore, based on TRI, it is possible to indicate the precoding matrix that meets the PUSCH transmission requirements, improving the security, accuracy and reliability of PUSCH transmission. There is no need to expand the existing SRI mapping table. In the scenario where the data transmission layer is added, The precoding matrix that supports 8-layer PUSCH transmission can be indicated through the indication information.
请参见图4,图4是本申请实施例提供的一种基于非码本的PUSCH发送信息方法的流程示意图。该基于非码本的PUSCH发送信息的方法由网络设备执行。如图4所示,该方法可以包括但不限于如下步骤:Please refer to Figure 4. Figure 4 is a schematic flowchart of a non-codebook-based PUSCH information sending method provided by an embodiment of the present application. The method of transmitting information based on non-codebook PUSCH is executed by network equipment. As shown in Figure 4, the method may include but is not limited to the following steps:
步骤S41,接收终端设备发送的非码本的SRS资源集合中经过预编码的SRS资源。Step S41: Receive the precoded SRS resources in the non-codebook SRS resource set sent by the terminal device.
SRS资源集合中包括至少一个SRS资源。SRS资源可以为单端口的SRS资源,也可以为多端口的SRS资源。多端口的SRS资源配置的端口数量最大为8个。单端口的SRS资源时,SRS资源集合中最大配置8个SRS资源。The SRS resource set includes at least one SRS resource. The SRS resource may be a single-port SRS resource or a multi-port SRS resource. The maximum number of ports configured for multi-port SRS resources is 8. For single-port SRS resources, a maximum of 8 SRS resources can be configured in the SRS resource set.
可选地,SRS资源集合的资源配置类型:Optionally, the resource configuration type of the SRS resource collection:
第一类型:SRS资源集合包括多个第一候选SRS资源,其中,第一候选SRS资源均为单端口SRS资源,其中,每个端口对应一个数据传输层。或者,Type 1: The SRS resource set includes multiple first candidate SRS resources, where the first candidate SRS resources are all single-port SRS resources, and each port corresponds to a data transmission layer. or,
第一类型:SRS资源集合包括至少一个第二候选SRS资源,不同的第二候选SRS资源具有不同数量的端口。例如,第二候选SRS资源1,端口数量为1,第二候选SRS资源2,端口数量为2,第二候选SRS资源3,端口数量为3,第二候选SRS资源4,端口数量为4,依次类推,第二候选SRS资源8,端口数量为8。其中,每个端口对应一个数据传输层。或者,First type: The SRS resource set includes at least one second candidate SRS resource, and different second candidate SRS resources have different numbers of ports. For example, the second candidate SRS resource 1, the number of ports is 1, the second candidate SRS resource 2, the number of ports is 2, the second candidate SRS resource 3, the number of ports is 3, the second candidate SRS resource 4, the number of ports is 4, By analogy, the second candidate SRS resource is 8, and the number of ports is 8. Among them, each port corresponds to a data transmission layer. or,
第三类型:所述SRS资源集合包括一个第三候选SRS资源,该第三候选SRS资源有多个候选端口。端口数量的取值可以包括1,2,3,4,5,6,7,8,其中,每个端口对应一个数据传输层。Third type: the SRS resource set includes a third candidate SRS resource, and the third candidate SRS resource has multiple candidate ports. The value of the number of ports can include 1, 2, 3, 4, 5, 6, 7, and 8, where each port corresponds to a data transmission layer.
可选地,网络设备通过高层信令向终端设备配置一个功能为非码本的SRS资源集合。例如,网络设备可以通过RRC信令或MAC-CE信令向终端设备配置该SRS资源集合。Optionally, the network device configures an SRS resource set with a non-codebook function to the terminal device through high-layer signaling. For example, the network device may configure the SRS resource set to the terminal device through RRC signaling or MAC-CE signaling.
可选地,SRS资源集合可以为一个周期性SRS资源集合,或者为一个半持续SRS资源集合,或者为一个非周期性SRS资源集合。Optionally, the SRS resource set may be a periodic SRS resource set, a semi-persistent SRS resource set, or an aperiodic SRS resource set.
本申请实施例中,终端设备在获取到网络设备配置的SRS资源集合后,可以基于初始预编码矩阵,对SRS资源集合中配置的SRS资源进行预编码,向网络设备发送采用预编码的SRS资源。预编码的SRS资源可以用于获取CSI,进而可以获取到信道估计信息,该信道估计信息可以反映信道条件、预调度多用户的干扰情况和/或信道噪声等调度因素。In the embodiment of this application, after obtaining the SRS resource set configured by the network device, the terminal device can precode the SRS resources configured in the SRS resource set based on the initial precoding matrix, and send the precoded SRS resources to the network device. . The precoded SRS resources can be used to obtain CSI, and then channel estimation information can be obtained. The channel estimation information can reflect scheduling factors such as channel conditions, pre-scheduled multi-user interference, and/or channel noise.
本申请实施例中,关于初始预编码矩阵的确定过程可参加上述实施例中相关内容的记载,此处不再赘述。In the embodiment of the present application, the determination process of the initial precoding matrix can be found in the description of the relevant content in the above embodiment, and will not be described again here.
步骤S42,基于预编码的SRS资源,从SRS资源集合中确定第一资源组合。Step S42: Based on the precoded SRS resources, determine a first resource combination from the SRS resource set.
其中,第一资源组合为包括一个或多个SRS资源的SRS资源组合,或者为同一个SRS资源的端口组合。The first resource combination is an SRS resource combination including one or more SRS resources, or a port combination of the same SRS resource.
可选地,网络设备可以接收到预编码SRS资源进行信道估计,获取信道估计信息,由于信道估计信息可以反映出信道条件、多用户的干扰情况和/或信道噪声,进而可以基于信道估计信息确定出终端设备的TRI。也就是说,网络设备可以综合考虑估计的上行信道信息、预调度用户的干扰情况等调度因素,从为终端设备配置的SRS资源集合中确定出PUSCH传输使用的第一资源组合。进一步地网络设备基于第一资源组合可以确定出目标预编码矩阵,以及基于第一资源组合内资源的数量确定出目标预编码矩阵对应的数据传输层数,即网络设备基于预编码的SRS资源,从SRS资源集合中选出第一资源组合,并且确定出PUSCH传输使用的预编码矩阵,以及PUSCH实际传输使用的数据传输层数的指示信息TRI。Optionally, the network device can receive precoded SRS resources for channel estimation and obtain channel estimation information. Since the channel estimation information can reflect channel conditions, multi-user interference and/or channel noise, the network device can further determine based on the channel estimation information. Output the TRI of the terminal device. That is to say, the network device can comprehensively consider scheduling factors such as estimated uplink channel information and interference conditions of pre-scheduled users, and determine the first resource combination used for PUSCH transmission from the SRS resource set configured for the terminal device. Further, the network device can determine the target precoding matrix based on the first resource combination, and determine the number of data transmission layers corresponding to the target precoding matrix based on the number of resources in the first resource combination, that is, the network device is based on the precoding SRS resources, The first resource combination is selected from the SRS resource set, and the precoding matrix used for PUSCH transmission and the indication information TRI of the number of data transmission layers used for actual PUSCH transmission are determined.
步骤S43,基于第一资源组合内SRS资源或SRS资源的端口的数量,生成指示信息,其中,指示信息用于指示PUSCH传输使用预编码矩阵和对应的TRI。Step S43: Generate indication information based on the number of SRS resources or ports of SRS resources in the first resource combination, where the indication information is used to instruct PUSCH transmission to use the precoding matrix and the corresponding TRI.
一种情况下,确定SRS资源集合为资源配置类型一,则第一资源组合包括一个或多个第一SRS资源,其中,第一SRS资源为所述SRS资源集合内由网络设备选出的第一候选SRS资源。进一步地,网络设备可以确定出第一SRS资源的数量,基于该数量确定指示信息。在该种情况下,一个第一候选SRS资源对应一个数据传输层,网络设备确定出第一SRS资源的数量,就可以确定出PUSCH实际传输使用的数据传输层,即可以确定出用于指示该数据传输层的指示信息。In one case, it is determined that the SRS resource set is resource configuration type one, then the first resource combination includes one or more first SRS resources, where the first SRS resource is the first SRS resource selected by the network device in the SRS resource set. A candidate SRS resource. Further, the network device may determine the number of first SRS resources, and determine the indication information based on the number. In this case, a first candidate SRS resource corresponds to a data transmission layer. The network device determines the number of the first SRS resource, and can determine the data transmission layer used for actual transmission of PUSCH, and can determine the data transmission layer used to indicate the Instructions for the data transport layer.
另一种情况下,确定SRS资源集合为资源配置类型二,则第一资源组合包括一个第二SRS资源,其中,第二SRS资源为SRS资源集合内由网络设备选出的第二候选SRS资源。网络设备基于第二SRS 资源被配置的端口数量,生成指示信息。在该种情况下,网络设备确定出第二SRS资源的数量,就可以确定出PUSCH实际传输使用的数据传输层,即可以确定出用于指示该数据传输层的指示信息。例如,第二SRS资源为SRS资源集合中第二候选SRS资源#2,其中第二候选SRS资源#2包括端口#0,#1和#2,基于第二SRS资源的端口数量,可以确定出PUSCH实际传输使用的数据传输层为3。In another case, it is determined that the SRS resource set is resource configuration type 2, then the first resource combination includes a second SRS resource, where the second SRS resource is a second candidate SRS resource selected by the network device in the SRS resource set. . The network device generates indication information based on the number of ports configured for the second SRS resource. In this case, the network device can determine the data transmission layer used for actual transmission of PUSCH by determining the number of second SRS resources, and can determine the indication information used to indicate the data transmission layer. For example, the second SRS resource is the second candidate SRS resource #2 in the SRS resource set, where the second candidate SRS resource #2 includes ports #0, #1 and #2. Based on the number of ports of the second SRS resource, it can be determined The data transmission layer used for actual transmission of PUSCH is 3.
又一种情况下,确定SRS资源集合为资源配置类型三,则第一资源组合包括一个或多个第一端口,第一端口为多个候选端口中由网络设备选出的端口。进一步地,网络设备基于第一端口的数量,生成指示信息。例如,第三候选SRS资源包括候选端口#0至#7,网络设备可以确定出候选端口#0和候选端口#1作为第一端口,则基于第一端口的数量,可以确定出PUSCH实际传输使用的数据传输层为2。In another case, it is determined that the SRS resource set is resource configuration type three, then the first resource combination includes one or more first ports, and the first port is a port selected by the network device among multiple candidate ports. Further, the network device generates indication information based on the number of the first ports. For example, the third candidate SRS resource includes candidate ports #0 to #7. The network device can determine candidate port #0 and candidate port #1 as the first port. Then based on the number of first ports, the actual transmission usage of PUSCH can be determined. The data transfer layer is 2.
可选地,可以采用3比特数进行编码,确定为指示信息,将指示信息发送给终端设备。例如,确定出PUSCH实际传输使用的数据传输层2,编码为101作为指示信息。确定出PUSCH实际传输使用的数据传输层为5,编码为101作为指示信息。Optionally, a 3-bit number can be used for encoding, determined as indication information, and the indication information is sent to the terminal device. For example, the data transmission layer 2 used for actual transmission of PUSCH is determined and encoded as 101 as the indication information. It is determined that the data transmission layer used for actual transmission of PUSCH is 5, and the encoding is 101 as the indication information.
步骤S44,向终端设备发送指示信息。Step S44: Send instruction information to the terminal device.
可选地,通过SRI作为指示信息,通过该SRI指示TRI。可选地,指示信息也可以直接为TRI。可选地,通过SRI的指示域,将TRI发送给终端设备,也就是说复用现有SRI的指示域,通过该指示域,向终端设备指示TRI,该指示域上可以携带可索引TRI的索引值。可选地,网络设备可以通过DCI信令,将指示信息发送给终端设备。Optionally, the SRI is used as the indication information, and the TRI is indicated through the SRI. Optionally, the indication information can also be directly TRI. Optionally, the TRI is sent to the terminal device through the indication field of the SRI, that is to say, the indication field of the existing SRI is reused, and the TRI is indicated to the terminal device through the indication field. The indication field can carry an indexable TRI. index value. Optionally, the network device can send the indication information to the terminal device through DCI signaling.
需要说明的时,第一资源组合内选择的SRS资源需要应用高层配置的最大传输层数RANK作为码本子集限制,也就是说,终端设备确定的目标预编码矩阵对应的数据传输层数,小于或者等于该终端设备所支持的最大数据传输层数。When it is necessary to explain, the SRS resources selected in the first resource combination need to apply the maximum number of transmission layers RANK configured by the higher layer as the codebook subset limit, that is to say, the number of data transmission layers corresponding to the target precoding matrix determined by the terminal equipment, Less than or equal to the maximum number of data transmission layers supported by the terminal device.
本申请实施例中,接收终端设备发送的非码本的SRS资源集合对应的预编码SRS资源,基于预编码SRS资源,从SRS资源集合中选出第一资源组合,基于第一资源组合内SRS资源或端口的数量,生成指示信息,其中,指示信息用于确定PUSCH传输使用的预编码矩阵和对应的TRI。本申请实施例中,构建了候选数据传输层与候选资源组合的映射关系,只需要传输指示TRI的指示信息,使得占用的比特个数较少,能够降低传输信令的开销。进一步地,基于TRI就可以指示出满足PUSCH传输要求的预编码矩阵,提高PUSCH传输的安全性、准确性和可靠性,无需对现有SRI映射表进行扩展,在数据传输层增加的场景下,通过指示信息就可以指示支持8层的PUSCH传输的预编码矩阵。In the embodiment of the present application, the precoded SRS resources corresponding to the non-codebook SRS resource set sent by the terminal device are received, based on the precoded SRS resources, the first resource combination is selected from the SRS resource set, and the first resource combination is selected based on the SRS in the first resource combination. The number of resources or ports is used to generate indication information, where the indication information is used to determine the precoding matrix and corresponding TRI used for PUSCH transmission. In the embodiment of the present application, the mapping relationship between the candidate data transmission layer and the candidate resource combination is constructed, and only the indication information indicating the TRI needs to be transmitted, so that the number of occupied bits is smaller and the overhead of transmission signaling can be reduced. Furthermore, based on TRI, it is possible to indicate the precoding matrix that meets the PUSCH transmission requirements, improving the security, accuracy and reliability of PUSCH transmission. There is no need to expand the existing SRI mapping table. In the scenario where the data transmission layer is added, The precoding matrix that supports 8-layer PUSCH transmission can be indicated through the indication information.
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。In the above embodiments provided by the present application, the methods provided by the embodiments of the present application are introduced from the perspectives of network equipment and terminal equipment respectively. In order to implement each function in the method provided by the above embodiments of the present application, network equipment and terminal equipment may include hardware structures and software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules. A certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
请参见图5,为本申请实施例提供的一种通信装置50的结构示意图。图7所示的通信装置70可包括收发模块501和处理模块502。收发模块501可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块501可以实现发送功能和/或接收功能。Please refer to FIG. 5 , which is a schematic structural diagram of a communication device 50 provided by an embodiment of the present application. The communication device 70 shown in FIG. 7 may include a transceiver module 501 and a processing module 502. The transceiving module 501 may include a sending module and/or a receiving module. The sending module is used to implement the sending function, and the receiving module is used to implement the receiving function. The transceiving module 501 may implement the sending function and/or the receiving function.
通信装置50可以是终端设备(如前述方法实施例中的网络设备),也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。或者,通信装置50可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。The communication device 50 may be a terminal device (such as the network device in the foregoing method embodiment), a device in the network device, or a device that can be used in conjunction with the network device. Alternatively, the communication device 50 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
通信装置50为终端设备:The communication device 50 is a terminal device:
收发模块502,用于向网络设备发送非码本的SRS资源集合中经过预编码的SRS资源,以及接收所 述网络设备发送的指示信息,所述指示信息用于确定PUSCH传输使用的预编码矩阵所对应的TRI;The transceiver module 502 is configured to send precoded SRS resources in the non-codebook SRS resource set to the network device, and receive indication information sent by the network device, where the indication information is used to determine the precoding matrix used for PUSCH transmission. The corresponding TRI;
处理模块501,用于基于所述TRI,通过候选数据传输层与候选资源组合之间的第一映射关系,确定所述TRI对应的第一资源组合,并基于所述第一资源组合,确定所述PUSCH传输使用的预编码矩阵;其中,所述第一资源组合为基于所述预编码的SRS资源从所述SRS资源集合中确定,该第一资源组合为一个或多个SRS资源的组合,或者该第一资源组合为一个SRS资源的端口组合,基于所述第一资源组合,确定所述PUSCH传输使用的预编码矩阵。The processing module 501 is configured to determine the first resource combination corresponding to the TRI based on the first mapping relationship between the candidate data transmission layer and the candidate resource combination based on the TRI, and determine the first resource combination based on the first resource combination. The precoding matrix used for PUSCH transmission; wherein the first resource combination is determined from the SRS resource set based on the precoded SRS resources, and the first resource combination is a combination of one or more SRS resources, Or the first resource combination is a port combination of SRS resources, and the precoding matrix used for the PUSCH transmission is determined based on the first resource combination.
可选地,收发模块502,还用于接收探测参考信号资源指示SRI,所述SRI用于指示所述TRI;或者,接收所述TRI。Optionally, the transceiving module 502 is also configured to receive a sounding reference signal resource indication SRI, where the SRI is used to indicate the TRI; or, receive the TRI.
可选地,处理模块501,还用于:Optionally, the processing module 501 is also used to:
所述SRI指示用于所述TRI的情况下,基于所述SRI和候选SRI与候选TRI之间的第二映射关系,确定所述TRI;When the SRI indication is used for the TRI, the TRI is determined based on the second mapping relationship between the SRI and the candidate SRI and the candidate TRI;
基于所述第一映射关系,确定所述TRI对应的第一资源组合。Based on the first mapping relationship, a first resource combination corresponding to the TRI is determined.
可选地,所述SRS资源集合的资源配置类型为:Optionally, the resource configuration type of the SRS resource set is:
第一类型:所述SRS资源集合包括多个第一候选SRS资源,所述第一候选SRS资源均为单端口SRS资源;或者First type: the SRS resource set includes multiple first candidate SRS resources, and the first candidate SRS resources are all single-port SRS resources; or
第二类型:所述SRS资源集合包括至少一个第二候选SRS资源,不同的所述第二候选SRS资源有不同数量的端口;或者Second type: the SRS resource set includes at least one second candidate SRS resource, and different second candidate SRS resources have different numbers of ports; or
第三类型:所述SRS资源集合包括一个第三候选SRS资源,所述第三候选SRS资源配置有多个候选端口。Third type: the SRS resource set includes a third candidate SRS resource, and the third candidate SRS resource is configured with multiple candidate ports.
可选地,处理模块501,还用于:确定所述SRS资源集合的资源配置为所述第一类型,所述第一资源组合包括的一个或多个第一SRS资源,所述第一SRS资源为所述SRS资源集合内由所述网络设备测量得到的第一候选SRS资源;Optionally, the processing module 501 is further configured to: determine that the resource configuration of the SRS resource set is the first type, that the first resource combination includes one or more first SRS resources, and that the first SRS The resource is the first candidate SRS resource measured by the network device in the SRS resource set;
确定所述第一SRS资源对应使用的预编码向量;Determine the precoding vector corresponding to the first SRS resource;
基于所述第一SRS资源对应使用的预编码向量,确定所述PUSCH传输使用的目标预编码矩阵。Based on the precoding vector corresponding to the first SRS resource, the target precoding matrix used for the PUSCH transmission is determined.
可选地,第一映射关系包括候选TRI与第一候选SRS资源之间的对应关系,不同的所述候选TRI对应不同的由一个或多个所述第一候选SRS资源组合成的候选资源组合,其中,所述候选TRI的取值顺序递增,则所述候选资源组合内包括的第一候选SRS资源的数量和编号也顺序递增。Optionally, the first mapping relationship includes a correspondence relationship between candidate TRIs and first candidate SRS resources, and different candidate TRIs correspond to different candidate resource combinations composed of one or more first candidate SRS resources. , where the values of the candidate TRIs increase sequentially, then the number and number of the first candidate SRS resources included in the candidate resource combination also increase sequentially.
可选地,处理模块501,还用于:Optionally, the processing module 501 is also used to:
确定所述SRS资源集合的资源配置为所述第一类型,所述第一资源组合包括一个第二SRS资源,所述第二SRS资源为所述SRS资源接中由所述网络设备测量得到的第二候选SRS资源;Determine that the resource configuration of the SRS resource set is the first type, the first resource combination includes a second SRS resource, and the second SRS resource is the SRS resource measured by the network device. Second candidate SRS resource;
确定所述第二SRS资源对应的端口组合所使用的预编码矩阵;Determine the precoding matrix used by the port combination corresponding to the second SRS resource;
将所述第二SRS资源对应使用的预编码矩阵,确定为所述PUSCH传输使用的目标预编码矩阵。The precoding matrix used corresponding to the second SRS resource is determined as the target precoding matrix used for the PUSCH transmission.
可选地,第一映射关系包括候选TRI与第二候选SRS资源之间的对应关系,所述候选TRI的取值与所述第二候选SRS资源的编号一一对应,其中,所述候选TRI的取值顺序递增,则所述第二候选SRS资源的编号和所包括的端口数量也顺序递增。Optionally, the first mapping relationship includes a correspondence relationship between the candidate TRI and the second candidate SRS resource, and the value of the candidate TRI corresponds to the number of the second candidate SRS resource, wherein the candidate TRI The values of are sequentially increasing, then the number of the second candidate SRS resource and the number of ports included are also sequentially increasing.
可选地,处理模块501,还用于:Optionally, the processing module 501 is also used to:
确定所述SRS资源集合的资源配置为所述第一类型,所述第一资源组合包括一个或多个第一端口,所述第一端口为所述多个候选端口中由所述网络设备测量得到的端口;Determine that the resource configuration of the SRS resource set is the first type, the first resource combination includes one or more first ports, and the first port is one of the plurality of candidate ports measured by the network device. the port obtained;
获取所述第一端口的预编码向量,并基于所述第一端口对应的预编码向量,确定所述PUSCH传输使用的预编码矩阵。Obtain the precoding vector of the first port, and determine the precoding matrix used for the PUSCH transmission based on the precoding vector corresponding to the first port.
可选地,第一映射关系包括候选TRI与候选端口之间的对应关系,不同的所述候选TRI对应不同的由一个或多个所述候选端口合成的候选端口组合,其中,所述候选TRI的取值顺序递增,则所述候选端口组合内包括的候选端口数量和端口编号也顺序递增。Optionally, the first mapping relationship includes a correspondence relationship between candidate TRIs and candidate ports, and different candidate TRIs correspond to different candidate port combinations composed of one or more candidate ports, wherein the candidate TRIs The values of are sequentially increasing, then the number of candidate ports and port numbers included in the candidate port combination are also sequentially increasing.
可选地,SRS资源集合为以下类型中的一种:Optionally, the SRS resource collection is one of the following types:
周期SRS资源集合;或者Periodic SRS resource collection; or
半持续SRS资源集合;或者Semi-persistent SRS resource collection; or
非周期SRS资源集合。Aperiodic SRS resource collection.
可选地,目标预编码矩阵对应的数据传输层数小于或者等于所述终端设备支持的最大数据传输层数Optionally, the number of data transmission layers corresponding to the target precoding matrix is less than or equal to the maximum number of data transmission layers supported by the terminal device.
通信装置50为网络设备:The communication device 50 is a network device:
收发模块502,用于接收终端设备发送的非码本的SRS资源中集合经过预编码的SRS资源,并向所述终端设备发送指示信息,其中,所述指示信息用于指示PUSCH实际传输所使用的目标预编码矩阵以及对应的TRI;The transceiver module 502 is configured to receive a set of precoded SRS resources from non-codebook SRS resources sent by the terminal equipment, and send indication information to the terminal equipment, where the indication information is used to indicate the PUSCH used for actual transmission. The target precoding matrix and the corresponding TRI;
处理模块501,用于基于所述预编码的SRS资源,从所述SRS资源集合中确定第一资源组合,并基于所述第一资源组合内SRS资源或端口的数量,生成所述指示信息;其中,所述第一资源组合为一个或多个SRS资源的源组合,或者所述第一资源组合为一个SRS资源的端口组合。The processing module 501 is configured to determine a first resource combination from the SRS resource set based on the precoded SRS resources, and generate the indication information based on the number of SRS resources or ports in the first resource combination; The first resource combination is a source combination of one or more SRS resources, or the first resource combination is a port combination of SRS resources.
可选地,收发模块502,还用于:Optionally, the transceiver module 502 is also used to:
将所述指示信息确定为SRI,并发送给所述终端设备,其中,所述SRI用于指示TRI;或者,Determine the indication information as SRI and send it to the terminal device, where the SRI is used to indicate TRI; or,
将所述指示信息确定为所述TRI,并发送给所述终端设备。The indication information is determined as the TRI and sent to the terminal device.
可选地,SRS资源集合的资源配置类型为:Optionally, the resource configuration type of the SRS resource collection is:
第一类型:所述SRS资源集合包括多个第一候选SRS资源,所述第一候选SRS资源均为单端口SRS资源;或者First type: the SRS resource set includes multiple first candidate SRS resources, and the first candidate SRS resources are all single-port SRS resources; or
第二类型:所述SRS资源集合包括至少一个第二候选SRS资源,不同的所述第二候选SRS资源有不同数量的端口;或者Second type: the SRS resource set includes at least one second candidate SRS resource, and different second candidate SRS resources have different numbers of ports; or
第三类型:所述SRS资源集合包括一个第三候选SRS资源,所述第三候选SRS资源配置有多个候选端口。Third type: the SRS resource set includes a third candidate SRS resource, and the third candidate SRS resource is configured with multiple candidate ports.
可选地,处理模块501,还用于:Optionally, the processing module 501 is also used to:
确定所述SRS资源集合的资源配置为所述第一类型,则所述第一资源组合包括一个或多个第一SRS资源,所述第一SRS资源为所述SRS资源集合内由所述网络设备测量得到的第一候选SRS资源;It is determined that the resource configuration of the SRS resource set is the first type, then the first resource combination includes one or more first SRS resources, and the first SRS resource is the network resource in the SRS resource set. The first candidate SRS resource measured by the device;
获取所述第一SRS资源的数量,基于所述数量确定所述指示信息。Obtain the quantity of the first SRS resource, and determine the indication information based on the quantity.
可选地,处理模块501,还用于:Optionally, the processing module 501 is also used to:
确定所述SRS资源集合的资源配置为所述第二类型,则所述第一资源组合包括一个第二SRS资源,所述第二SRS资源为所述SRS资源集合内由所述网络设备测量得到的第二候选SRS资源;It is determined that the resource configuration of the SRS resource set is the second type, then the first resource combination includes a second SRS resource, and the second SRS resource is measured by the network device in the SRS resource set. The second candidate SRS resource;
基于所述第二SRS资源被配置的端口数量,生成所述指示信息。The indication information is generated based on the number of ports configured with the second SRS resource.
可选地,处理模块501,还用于:Optionally, the processing module 501 is also used to:
确定所述SRS资源集合的资源配置为所述第三类型,则所述第一资源组合包括一个或多个第一端口,所述第一端口为所述多个候选端口中由所述网络设备测量得到的端口;It is determined that the resource configuration of the SRS resource set is the third type, then the first resource combination includes one or more first ports, and the first port is one of the plurality of candidate ports provided by the network device. The measured port;
基于所述第一端口的数量,生成所述指示信息。The indication information is generated based on the number of the first ports.
可选地,SRS资源集合为以下类型中的一种:Optionally, the SRS resource collection is one of the following types:
周期SRS资源集合;或者Periodic SRS resource collection; or
半持续SRS资源集合;或者Semi-persistent SRS resource collection; or
非周期SRS资源集合。Aperiodic SRS resource collection.
可选地,PUSCH传输使用的预编码矩阵对应的数据传输层数,小于或者等于所述终端设备支持的最大数据传输层数。Optionally, the number of data transmission layers corresponding to the precoding matrix used for PUSCH transmission is less than or equal to the maximum number of data transmission layers supported by the terminal device.
请参见图6,图6是本申请实施例提供的另一种通信装置60的结构示意图。通信装置60可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。Please refer to FIG. 6 , which is a schematic structural diagram of another communication device 60 provided by an embodiment of the present application. The communication device 60 may be a network device, a terminal device (such as the terminal device in the foregoing method embodiment), a chip, a chip system, a processor, etc. that supports the network device to implement the above method, or a terminal device that supports A chip, chip system, or processor that implements the above method. The device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
通信装置60可以包括一个或多个处理器601。处理器601可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。 Communication device 60 may include one or more processors 601. The processor 601 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit. The baseband processor can be used to process communication protocols and communication data. The central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
可选的,通信装置60中还可以包括一个或多个存储器602,其上可以存有计算机程序604,处理器601执行所述计算机程序604,以使得通信装置60执行上述方法实施例中描述的方法。可选的,所述存储器602中还可以存储有数据。通信装置60和存储器602可以单独设置,也可以集成在一起。Optionally, the communication device 60 may also include one or more memories 602, on which a computer program 604 may be stored. The processor 601 executes the computer program 604, so that the communication device 60 performs the steps described in the above method embodiments. method. Optionally, the memory 602 may also store data. The communication device 60 and the memory 602 can be provided separately or integrated together.
可选的,通信装置60还可以包括收发器605、天线606。收发器605可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器605可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。Optionally, the communication device 60 may also include a transceiver 605 and an antenna 606. The transceiver 605 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions. The transceiver 605 may include a receiver and a transmitter. The receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function; the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
可选的,通信装置60中还可以包括一个或多个接口电路607。接口电路607用于接收代码指令并传输至处理器601。处理器601运行所述代码指令以使通信装置60执行上述方法实施例中描述的方法。Optionally, the communication device 60 may also include one or more interface circuits 607. The interface circuit 607 is used to receive code instructions and transmit them to the processor 601 . The processor 601 executes the code instructions to cause the communication device 60 to perform the method described in the above method embodiment.
在一种实现方式中,处理器601中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。In one implementation, the processor 601 may include a transceiver for implementing receiving and transmitting functions. For example, the transceiver may be a transceiver circuit, an interface, or an interface circuit. The transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together. The above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
在一种实现方式中,处理器601可以存有计算机程序603,计算机程序603在处理器601上运行,可使得通信装置60执行上述方法实施例中描述的方法。计算机程序603可能固化在处理器601中,该种情况下,处理器601可能由硬件实现。In one implementation, the processor 601 may store a computer program 603, and the computer program 603 runs on the processor 601, causing the communication device 60 to perform the method described in the above method embodiment. The computer program 603 may be solidified in the processor 601, in which case the processor 601 may be implemented by hardware.
在一种实现方式中,通信装置60可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。In one implementation, the communication device 60 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments. The processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc. The processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图6的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:The communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiment), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may be Not limited by Figure 6. The communication device may be a stand-alone device or may be part of a larger device. For example, the communication device may be:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;(1) Independent integrated circuit IC, or chip, or chip system or subsystem;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;(2) A collection of one or more ICs. Optionally, the IC collection may also include storage components for storing data and computer programs;
(3)ASIC,例如调制解调器(Modem);(3)ASIC, such as modem;
(4)可嵌入在其他设备内的模块;(4) Modules that can be embedded in other devices;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;(5) Receivers, terminal equipment, intelligent terminal equipment, cellular phones, wireless equipment, handheld devices, mobile units, vehicle-mounted equipment, network equipment, cloud equipment, artificial intelligence equipment, etc.;
(6)其他等等。(6) Others, etc.
对于通信装置可以是芯片或芯片系统的情况,可参见图7所示的芯片的结构示意图。图7所示的芯片包括处理器701和接口702。其中,处理器701的数量可以是一个或多个,接口702的数量可以是多个。For the case where the communication device may be a chip or a chip system, please refer to the schematic structural diagram of the chip shown in FIG. 7 . The chip shown in Figure 7 includes a processor 701 and an interface 702. The number of processors 701 may be one or more, and the number of interfaces 702 may be multiple.
可选的,芯片还包括存储器703,存储器703用于存储必要的计算机程序和数据。Optionally, the chip also includes a memory 703, which is used to store necessary computer programs and data.
芯片可用于实现上述任一方法实施例的功能。The chip can be used to implement the functions of any of the above method embodiments.
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。Those skilled in the art can also understand that the various illustrative logical blocks and steps listed in the embodiments of this application can be implemented by electronic hardware, computer software, or a combination of both. Whether such functionality is implemented in hardware or software depends on the specific application and overall system design requirements. Those skilled in the art can use various methods to implement the described functions for each specific application, but such implementation should not be understood as exceeding the protection scope of the embodiments of the present application.
本申请实施例还提供一种通信系统,该系统包括前述图5实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括前述图6实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置。Embodiments of the present application also provide a communication system, which includes a communication device as a terminal device (such as the terminal device in the foregoing method embodiment) and a communication device as a network device in the embodiment of FIG. 5 , or the system includes The communication device as a terminal device (such as the terminal device in the foregoing method embodiment) and the communication device as a network device in the aforementioned embodiment of FIG. 6 .
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。In the above embodiments, it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. When implemented using software, it may be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer programs. When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part. The computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device. The computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means. The computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated therein. The available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。Persons of ordinary skill in the art can understand that the first, second, and other numerical numbers involved in this application are only for convenience of description and are not used to limit the scope of the embodiments of this application and also indicate the order.
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application. In the embodiment of this application, for a technical feature, the technical feature is distinguished by "first", "second", "third", "A", "B", "C" and "D", etc. The technical features described in "first", "second", "third", "A", "B", "C" and "D" are in no particular order or order.
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。The corresponding relationships shown in each table in this application can be configured or predefined. The values of the information in each table are only examples and can be configured as other values, which are not limited by this application. When configuring the correspondence between information and each parameter, it is not necessarily required to configure all the correspondences shown in each table. For example, in the table in this application, the corresponding relationships shown in some rows may not be configured. For another example, appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc. The names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device. When implementing the above tables, other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Those of ordinary skill in the art will appreciate that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented with electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and simplicity of description, the specific working processes of the systems, devices and units described above can be referred to the corresponding processes in the foregoing method embodiments, and will not be described again here.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present application, but the protection scope of the present application is not limited thereto. Any person familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed in the present application. should be covered by the protection scope of this application. Therefore, the protection scope of this application should be subject to the protection scope of the claims.

Claims (28)

  1. 一种基于非码本的物理上行共享信道PUSCH接收信息的方法,其特征在于,由终端设备执行,所述方法包括:A method for receiving information on a non-codebook physical uplink shared channel PUSCH, characterized in that it is executed by a terminal device, and the method includes:
    向网络设备发送非码本的探测参考信号SRS资源集合中经过预编码的SRS资源;Send the precoded SRS resources in the non-codebook sounding reference signal SRS resource set to the network device;
    接收所述网络设备发送的指示信息,所述指示信息用于指示PUSCH传输使用的预编码矩阵所对应的传输秩指示TRI;Receive indication information sent by the network device, where the indication information is used to indicate the transmission rank indication TRI corresponding to the precoding matrix used for PUSCH transmission;
    基于所述TRI,通过候选数据传输层与候选资源组合之间的第一映射关系,确定所述TRI对应的第一资源组合,其中,所述第一资源组合为基于所述预编码的SRS资源从所述SRS资源集合中确定,该第一资源组合为一个或多个SRS资源的组合,或者该第一资源组合为一个SRS资源的端口组合;Based on the TRI, determine the first resource combination corresponding to the TRI through the first mapping relationship between the candidate data transmission layer and the candidate resource combination, where the first resource combination is an SRS resource based on the precoding It is determined from the SRS resource set that the first resource combination is a combination of one or more SRS resources, or that the first resource combination is a port combination of SRS resources;
    基于所述第一资源组合,确定所述PUSCH传输使用的预编码矩阵。Based on the first resource combination, a precoding matrix used for the PUSCH transmission is determined.
  2. 根据权利要求1所述的方法,其特征在于,所述接收网络设备发送的指示信息,包括:The method according to claim 1, characterized in that the receiving instruction information sent by the network device includes:
    接收探测参考信号资源指示SRI,所述SRI用于指示所述TRI;或者,接收所述TRI。Receive a sounding reference signal resource indication SRI, where the SRI is used to indicate the TRI; or, receive the TRI.
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述TRI,通过候选数据传输层与候选资源组合之间的第一映射关系,确定第一资源组合,包括:The method according to claim 2, characterized in that, based on the TRI, determining the first resource combination through the first mapping relationship between the candidate data transmission layer and the candidate resource combination includes:
    所述SRI指示用于所述TRI的情况下,基于所述SRI,和候选SRI与候选TRI之间的第二映射关系,确定所述TRI;When the SRI indication is used for the TRI, the TRI is determined based on the SRI and the second mapping relationship between the candidate SRI and the candidate TRI;
    基于所述第一映射关系,确定所述TRI对应的第一资源组合。Based on the first mapping relationship, a first resource combination corresponding to the TRI is determined.
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述SRS资源集合的资源配置类型为:The method according to any one of claims 1-3, characterized in that the resource configuration type of the SRS resource set is:
    第一类型:所述SRS资源集合包括多个第一候选SRS资源,所述第一候选SRS资源均为单端口SRS资源;或者First type: the SRS resource set includes multiple first candidate SRS resources, and the first candidate SRS resources are all single-port SRS resources; or
    第二类型:所述SRS资源集合包括至少一个第二候选SRS资源,不同的所述第二候选SRS资源有不同数量的端口;或者Second type: the SRS resource set includes at least one second candidate SRS resource, and different second candidate SRS resources have different numbers of ports; or
    第三类型:所述SRS资源集合包括一个第三候选SRS资源,所述第三候选SRS资源有多个候选端口。Third type: the SRS resource set includes a third candidate SRS resource, and the third candidate SRS resource has multiple candidate ports.
  5. 根据权利要求4所述的方法,其特征在于,所述基于所述第一资源组合,确定所述PUSCH传输使用的预编码矩阵,包括:The method according to claim 4, characterized in that, based on the first resource combination, determining the precoding matrix used for the PUSCH transmission includes:
    确定所述SRS资源集合的资源配置为所述第一类型,所述第一资源组合包括的一个或多个第一SRS资源,所述第一SRS资源为所述SRS资源集合内由所述网络设备测量得到的第一候选SRS资源;Determine that the resource configuration of the SRS resource set is the first type, the first resource combination includes one or more first SRS resources, and the first SRS resource is the network resource in the SRS resource set. The first candidate SRS resource measured by the device;
    确定所述第一SRS资源对应使用的预编码向量;Determine the precoding vector corresponding to the first SRS resource;
    基于所述第一SRS资源对应使用的预编码向量,确定所述预编码矩阵。The precoding matrix is determined based on the precoding vector corresponding to the first SRS resource.
  6. 根据权利要求5所述的方法,其特征在于,所述第一映射关系包括候选TRI与第一候选SRS资源之间的对应关系,不同的所述候选TRI对应不同的由一个或多个所述第一候选SRS资源组合成的候 选资源组合,其中,所述候选TRI的取值顺序递增,则所述候选资源组合内包括的第一候选SRS资源的数量和编号也顺序递增。The method of claim 5, wherein the first mapping relationship includes a correspondence relationship between candidate TRIs and first candidate SRS resources, and different candidate TRIs correspond to different ones of one or more of the A candidate resource combination composed of first candidate SRS resources, wherein the values of the candidate TRIs increase sequentially, and the number and number of the first candidate SRS resources included in the candidate resource combination also increase sequentially.
  7. 根据权利要求4所述的方法,其特征在于,所述基于所述第一资源组合,确定所述PUSCH传输使用的预编码矩阵,包括:The method according to claim 4, characterized in that, based on the first resource combination, determining the precoding matrix used for the PUSCH transmission includes:
    确定所述SRS资源集合的资源配置为所述第二类型,所述第一资源组合包括一个第二SRS资源,所述第二SRS资源为所述SRS资源接中由所述网络设备测量得到的第二候选SRS资源;Determine that the resource configuration of the SRS resource set is the second type, the first resource combination includes a second SRS resource, and the second SRS resource is the SRS resource measured by the network device. Second candidate SRS resource;
    确定所述第二SRS资源对应的端口组合所使用的预编码矩阵;Determine the precoding matrix used by the port combination corresponding to the second SRS resource;
    将所述第二SRS资源对应使用的预编码矩阵,确定为所述预编码矩阵。The precoding matrix used correspondingly to the second SRS resource is determined as the precoding matrix.
  8. 根据权利要求7所述的方法,其特征在于,所述第一映射关系包括候选TRI与第二候选SRS资源之间的对应关系,所述候选TRI的取值与所述第二候选SRS资源的编号一一对应,其中,所述候选TRI的取值顺序递增,则所述第二候选SRS资源的编号和所包括的端口数量也顺序递增。The method according to claim 7, characterized in that the first mapping relationship includes a correspondence relationship between candidate TRI and second candidate SRS resources, and the value of the candidate TRI and the value of the second candidate SRS resource are The numbers correspond to one-to-one, and if the values of the candidate TRIs increase sequentially, then the numbers of the second candidate SRS resources and the number of ports included also increase sequentially.
  9. 根据权利要求4所述的方法,其特征在于,所述基于所述第一资源组合,确定所述PUSCH传输使用的预编码矩阵,包括:The method according to claim 4, characterized in that, based on the first resource combination, determining the precoding matrix used for the PUSCH transmission includes:
    确定所述SRS资源集合的资源配置为所述第三类型,所述第一资源组合包括一个或多个第一端口,所述第一端口为所述多个候选端口中由所述网络设备选择的端口;Determine that the resource configuration of the SRS resource set is the third type, the first resource combination includes one or more first ports, and the first port is selected by the network device from the plurality of candidate ports. port;
    获取所述第一端口的预编码向量,并基于所述第一端口对应的预编码向量,确定所述目标预编码矩阵。Obtain the precoding vector of the first port, and determine the target precoding matrix based on the precoding vector corresponding to the first port.
  10. 根据权利要求8所述的方法,其特征在于,所述第一映射关系包括候选TRI与候选端口之间的对应关系,不同的所述候选TRI对应不同的由一个或多个所述候选端口合成的候选端口组合,其中,所述候选TRI的取值顺序递增,则所述候选端口组合内包括的候选端口数量和端口编号也顺序递增。The method according to claim 8, characterized in that the first mapping relationship includes a correspondence relationship between candidate TRIs and candidate ports, and different candidate TRIs corresponding to different ones are synthesized by one or more candidate ports. Candidate port combinations, wherein the values of the candidate TRIs increase sequentially, then the number of candidate ports and port numbers included in the candidate port combinations also increase sequentially.
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述SRS资源集合为以下一种:The method according to any one of claims 1-10, characterized in that the SRS resource set is one of the following:
    周期SRS资源集合;或者Periodic SRS resource collection; or
    半持续SRS资源集合;或者Semi-persistent SRS resource collection; or
    非周期SRS资源集合。Aperiodic SRS resource collection.
  12. 根据权利要求1-10任一项所述的方法,其特征在于,所述预编码矩阵对应的数据传输层数小于或者等于所述终端设备支持的最大数据传输层数。The method according to any one of claims 1 to 10, characterized in that the number of data transmission layers corresponding to the precoding matrix is less than or equal to the maximum number of data transmission layers supported by the terminal device.
  13. 一种基于非码本的PUSCH发送信息的方法,其特征在于,由网络设备执行,所述方法包括:A method for transmitting information based on non-codebook PUSCH, characterized in that it is executed by a network device, and the method includes:
    接收终端设备发送的非码本的SRS资源集合中经过预编码的SRS资源;Receive precoded SRS resources in the non-codebook SRS resource set sent by the terminal device;
    基于所述预编码的SRS资源,从所述SRS资源集合中确定第一资源组合,其中,所述第一资源组合为包括一个或多个SRS资源的SRS资源组合,或者所述述第一资源组合为一个SRS资源的端口组合;Based on the precoded SRS resources, a first resource combination is determined from the SRS resource set, wherein the first resource combination is an SRS resource combination including one or more SRS resources, or the first resource combination Port combination combined into one SRS resource;
    基于所述第一资源组合内SRS资源或SRS资源的端口的数量,生成指示信息,其中,所述指示信 息用于指示PUSCH传输使用的预编码矩阵以及对应的TRI;Generate indication information based on the number of SRS resources or ports of SRS resources in the first resource combination, where the indication information is used to indicate the precoding matrix used for PUSCH transmission and the corresponding TRI;
    向所述终端设备发送所述指示信息。Send the instruction information to the terminal device.
  14. 根据权利要求13所述的方法,其特征在于,所述将所述指示信息发送给所述终端设备,包括:The method according to claim 13, wherein sending the indication information to the terminal device includes:
    将所述指示信息确定为探测参考信号资源指示SRI,并发送给所述终端设备,其中,所述SRI用于指示所述TRI;或者,Determine the indication information as a sounding reference signal resource indication SRI, and send it to the terminal device, where the SRI is used to indicate the TRI; or,
    将所述指示信息确定为所述TRI,并发送给所述终端设备。The indication information is determined as the TRI and sent to the terminal device.
  15. 根据权利要求13或14所述的方法,其特征在于,所述SRS资源集合的资源配置类型为:The method according to claim 13 or 14, characterized in that the resource configuration type of the SRS resource set is:
    第一类型:所述SRS资源集合包括多个第一候选SRS资源,所述第一候选SRS资源均为单端口SRS资源;或者First type: the SRS resource set includes multiple first candidate SRS resources, and the first candidate SRS resources are all single-port SRS resources; or
    第二类型:所述SRS资源集合包括至少一个第二候选SRS资源,不同的所述第二候选SRS资源有不同数量的端口;或者Second type: the SRS resource set includes at least one second candidate SRS resource, and different second candidate SRS resources have different numbers of ports; or
    第三类型:所述SRS资源集合包括一个第三候选SRS资源,所述第三候选SRS资源配置有多个候选端口。Third type: the SRS resource set includes a third candidate SRS resource, and the third candidate SRS resource is configured with multiple candidate ports.
  16. 根据权利要求15所述的方法,其特征在于,所述基于所述第一资源组合内资源的数量,生成指示信息,包括:The method of claim 15, wherein generating indication information based on the number of resources in the first resource combination includes:
    确定所述SRS资源集合的资源配置为所述第一类型,则所述第一资源组合包括一个或多个第一SRS资源,所述第一SRS资源为所述SRS资源集合内由所述网络设备测量得到的第一候选SRS资源;It is determined that the resource configuration of the SRS resource set is the first type, then the first resource combination includes one or more first SRS resources, and the first SRS resource is the network resource in the SRS resource set. The first candidate SRS resource measured by the device;
    获取所述第一SRS资源的数量,基于所述数量确定所述指示信息。Obtain the quantity of the first SRS resource, and determine the indication information based on the quantity.
  17. 根据权利要求15所述的方法,其特征在于,所述基于所述第一资源组合内资源的数量,生成指示信息,包括:The method of claim 15, wherein generating indication information based on the number of resources in the first resource combination includes:
    确定所述SRS资源集合的资源配置为所述第二类型,则所述第一资源组合包括一个第二SRS资源,所述第二SRS资源为所述SRS资源集合内由所述网络设备测量得到的第二候选SRS资源;It is determined that the resource configuration of the SRS resource set is the second type, then the first resource combination includes a second SRS resource, and the second SRS resource is measured by the network device in the SRS resource set. The second candidate SRS resource;
    基于所述第二SRS资源具有的端口数量,生成所述指示信息。The indication information is generated based on the number of ports of the second SRS resource.
  18. 根据权利要求15所述的方法,其特征在于,所述基于所述第一资源组合内资源的数量,生成指示信息,包括:The method of claim 15, wherein generating indication information based on the number of resources in the first resource combination includes:
    确定所述SRS资源集合的资源配置为所述第三类型,则所述第一资源组合包括一个或多个第一端口,所述第一端口为所述多个候选端口中由所述网络设备测量得到的端口;It is determined that the resource configuration of the SRS resource set is the third type, then the first resource combination includes one or more first ports, and the first port is one of the plurality of candidate ports provided by the network device. The measured port;
    基于所述第一端口的数量,生成所述指示信息。The indication information is generated based on the number of the first ports.
  19. 根据权利要求10-15中任一项所述的方法,其特征在于,所述SRS资源集合为以下类型中的一种:The method according to any one of claims 10-15, characterized in that the SRS resource set is one of the following types:
    周期SRS资源集合;或者Periodic SRS resource collection; or
    半持续SRS资源集合;或者Semi-persistent SRS resource collection; or
    非周期SRS资源集合。Aperiodic SRS resource collection.
  20. 根据权利要求10-15中任一项所述的方法,其特征在于,所述预编码矩阵对应的数据传输层数小于或者等于所述终端设备支持的最大数据传输层数。The method according to any one of claims 10 to 15, characterized in that the number of data transmission layers corresponding to the precoding matrix is less than or equal to the maximum number of data transmission layers supported by the terminal device.
  21. 一种终端设备,其特征在于,包括:A terminal device, characterized by including:
    收发模块,用于向网络设备发送非码本的SRS资源集合中经过预编码的SRS资源,以及接收所述网络设备发送的指示信息,所述指示信息用于指示PUSCH传输使用的预编码矩阵对应的TRI;A transceiver module, configured to send precoded SRS resources in a non-codebook SRS resource set to a network device, and receive indication information sent by the network device, where the indication information is used to indicate the corresponding precoding matrix used for PUSCH transmission. TRI;
    处理模块,用于基于所述TRI,通过候选数据传输层与候选资源组合之间的第一映射关系,确定所述TRI对应的第一资源组合,并基于所述第一资源组合,确定所述PUSCH传输使用的预编码矩阵;其中,所述第一资源组合为基于所述预编码的SRS资源从所述SRS资源集合中确定,所述第一资源组合包括一个或多个SRS资源的SRS资源组合,或者所述第一资源组合为一个SRS资源的端口组合;A processing module configured to determine the first resource combination corresponding to the TRI based on the first mapping relationship between the candidate data transmission layer and the candidate resource combination based on the TRI, and determine the first resource combination based on the first resource combination. A precoding matrix used for PUSCH transmission; wherein the first resource combination is determined from the SRS resource set based on the precoded SRS resources, and the first resource combination includes SRS resources of one or more SRS resources. combination, or the first resource combination is a port combination of SRS resources;
  22. 一种网络设备,其特征在于,包括:A network device, characterized by including:
    收发模块,用于接收终端设备发送的非码本的SRS资源集合中经过预编码的SRS资源,并向所述终端设备发送指示信息,其中,所述指示信息用于指示PUSCH传输使用的预编码矩阵以及对应的TRI;A transceiver module, configured to receive precoded SRS resources in a non-codebook SRS resource set sent by the terminal equipment, and send indication information to the terminal equipment, where the indication information is used to indicate the precoding used for PUSCH transmission. Matrix and corresponding TRI;
    处理模块,用于基于所述预编码的SRS资源,从所述SRS资源集合中确定第一资源组合,并基于所述第一资源组合内SRS资源或SRS资源的端口的数量,生成所述指示信息;其中,所述第一组合组合为包括一个或多个SRS资源的SRS资源组合,或者所述第一资源组合为一个SRS资源的端口组合。A processing module configured to determine a first resource combination from the SRS resource set based on the precoded SRS resources, and generate the indication based on the number of SRS resources or ports of SRS resources in the first resource combination. Information; wherein the first combination is an SRS resource combination including one or more SRS resources, or the first resource combination is a port combination of SRS resources.
  23. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法。A communication device, characterized in that the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the device executes the claims The method described in any one of 1 to 12.
  24. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至20中任一项所述的方法。A communication device, characterized in that the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the device executes the claims The method described in any one of 13 to 20.
  25. 一种通信装置,其特征在于,包括:处理器和接口电路;A communication device, characterized by including: a processor and an interface circuit;
    所述接口电路,用于接收代码指令并传输至所述处理器;The interface circuit is used to receive code instructions and transmit them to the processor;
    所述处理器,用于运行所述代码指令以执行如权利要求1至12中任一项所述的方法。The processor is configured to run the code instructions to perform the method according to any one of claims 1 to 12.
  26. 一种通信装置,其特征在于,包括:处理器和接口电路;A communication device, characterized by including: a processor and an interface circuit;
    所述接口电路,用于接收代码指令并传输至所述处理器;The interface circuit is used to receive code instructions and transmit them to the processor;
    所述处理器,用于运行所述代码指令以执行如权利要求13至20中任一项所述的方法。The processor is configured to run the code instructions to perform the method according to any one of claims 13 to 20.
  27. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12中任一项所述的方法被实现。A computer-readable storage medium for storing instructions, which when executed, enables the method according to any one of claims 1 to 12 to be implemented.
  28. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求13至20中任一项所述的方法被实现。A computer-readable storage medium configured to store instructions that, when executed, enable the method according to any one of claims 13 to 20 to be implemented.
PCT/CN2022/084685 2022-03-31 2022-03-31 Method for receiving/sending information on basis of non-codebook pusch, and apparatuses therefor WO2023184450A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000698.XA CN117158087A (en) 2022-03-31 2022-03-31 Method and device for receiving/sending information by PUSCH (physical uplink shared channel) based on non-codebook
PCT/CN2022/084685 WO2023184450A1 (en) 2022-03-31 2022-03-31 Method for receiving/sending information on basis of non-codebook pusch, and apparatuses therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084685 WO2023184450A1 (en) 2022-03-31 2022-03-31 Method for receiving/sending information on basis of non-codebook pusch, and apparatuses therefor

Publications (1)

Publication Number Publication Date
WO2023184450A1 true WO2023184450A1 (en) 2023-10-05

Family

ID=88198787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084685 WO2023184450A1 (en) 2022-03-31 2022-03-31 Method for receiving/sending information on basis of non-codebook pusch, and apparatuses therefor

Country Status (2)

Country Link
CN (1) CN117158087A (en)
WO (1) WO2023184450A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999476A (en) * 2017-08-11 2020-04-10 高通股份有限公司 Transmission rank and precoder signaling in uplink non-codebook based transmissions
CN112055995A (en) * 2018-03-13 2020-12-08 中兴通讯股份有限公司 Transmission based on candidate resources or candidate resource groups
US20210352665A1 (en) * 2018-11-01 2021-11-11 Lg Electronics Inc. Method for receiving pusch in wireless communication system and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110999476A (en) * 2017-08-11 2020-04-10 高通股份有限公司 Transmission rank and precoder signaling in uplink non-codebook based transmissions
CN112055995A (en) * 2018-03-13 2020-12-08 中兴通讯股份有限公司 Transmission based on candidate resources or candidate resource groups
US20210352665A1 (en) * 2018-11-01 2021-11-11 Lg Electronics Inc. Method for receiving pusch in wireless communication system and apparatus therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on non-codebook based transmission for UL", 3GPP DRAFT; R1-1710277 UL_NON-CB_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Qingdao, P.R. China; 20170627 - 20170630, 26 June 2017 (2017-06-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051299493 *

Also Published As

Publication number Publication date
CN117158087A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
CN113824481B (en) Uplink transmission method, device, chip system and storage medium
WO2023184372A1 (en) Uplink channel sending and receiving method and apparatus
WO2024050776A1 (en) Information determination method/apparatus/device and storage medium
WO2023050234A1 (en) Method for adjusting sounding reference signal (srs) resource, and apparatus therefor
WO2023184450A1 (en) Method for receiving/sending information on basis of non-codebook pusch, and apparatuses therefor
WO2023184451A1 (en) Non-codebook-based method and apparatus for sending and receiving information in pusch
WO2023184449A1 (en) Method and apparatus for sending tri, and method and apparatus for receiving tri
WO2024026796A1 (en) Method and apparatus for determining precoding matrix for uplink mimo transmission
WO2024031718A1 (en) Precoding indication method and apparatus for non-codebook-based pusch transmission supportive of 8tx
WO2024031719A1 (en) Precoding indication method and apparatus supporting 8tx codebook-based pusch transmission
WO2023184448A1 (en) Information sending/receiving method and apparatus based on non-codebook-based pusch
WO2024026797A1 (en) Precoding matrix determination methods and apparatus for uplink mimo transmission
WO2023201500A1 (en) Codebook-based pusch transmission method and apparatus therefor
WO2023236222A1 (en) Indication methods for transmission configuration indication state, and apparatuses
WO2023050154A1 (en) Transmission configuration method and apparatus for multiple transmission and reception points (trps)
WO2024077619A1 (en) Information determination method/apparatus/device and storage medium
WO2024065333A1 (en) Method for determining fully coherent transmission codebook of eight antenna ports for uplink mimo transmission, and apparatus therefor
WO2024026798A1 (en) Method for determining precoding matrix for uplink mimo transmission, and apparatus for same
WO2023168575A1 (en) Antenna switching capability reporting method and apparatus using same
WO2023216166A1 (en) Method and apparatus for measuring coherent bandwidth
WO2024016186A1 (en) Multi-panel enhanced transmission configuration method, and apparatus therefor
WO2023236223A1 (en) Method and apparatus for indicating transmission configuration indication state
WO2024000529A1 (en) Channel state information feedback method and apparatus
WO2024000179A1 (en) Method for determining antenna fully-coherent transmission codeword of uplink mimo transmission, and apparatus
WO2024050774A1 (en) Information determination method/apparatus/device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934287

Country of ref document: EP

Kind code of ref document: A1