WO2023184160A1 - 一种显示模组、电子终端以及位置检测方法 - Google Patents

一种显示模组、电子终端以及位置检测方法 Download PDF

Info

Publication number
WO2023184160A1
WO2023184160A1 PCT/CN2022/083731 CN2022083731W WO2023184160A1 WO 2023184160 A1 WO2023184160 A1 WO 2023184160A1 CN 2022083731 W CN2022083731 W CN 2022083731W WO 2023184160 A1 WO2023184160 A1 WO 2023184160A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
substrate
display module
sub
Prior art date
Application number
PCT/CN2022/083731
Other languages
English (en)
French (fr)
Inventor
刘宗民
王亚丽
李必奇
曲峰
黄继景
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/083731 priority Critical patent/WO2023184160A1/zh
Priority to CN202280000606.8A priority patent/CN117337424A/zh
Publication of WO2023184160A1 publication Critical patent/WO2023184160A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present disclosure belongs to the field of display technology, and specifically relates to a display module, an electronic terminal and a position detection method.
  • touch screens Touch Screen Panel
  • capacitive touch screens resistive touch screens
  • infrared touch screens surface acoustic wave touch screens
  • electromagnetic touch screens electromagnetic touch screens
  • vibration induction touch screens Because capacitive touch screens have the advantages of supporting multi-touch, strong noise resistance, mature technology, and low manufacturing costs, they have become the mainstream technology for consumer electronics such as mobile phones and tablet computers.
  • a capacitive touch screen in the prior art is as follows: a first electrode and a second electrode, that is, a touch electrode, for determining the position information of a touch point are provided on the substrate, and holes are dug to make them in the same position.
  • the touch electrodes in a row or the same column are electrically connected to determine the coordinates of the X-axis or Y-axis of the touch point.
  • This type of capacitive touch screen is often used in small-sized display panels. When used in large-sized or extra-large display panels, the cost of implementing the touch function is relatively high.
  • the present invention aims to solve at least one of the technical problems existing in the prior art and provide a display module, an electronic terminal and a position detection method.
  • the present disclosure provides a display module, which includes a display panel and a plurality of antenna units integrated on the display panel; wherein the display panel includes a plurality of pixel units, and any of the pixel units Coverage by a beam radiated at a central frequency by at least three of said antenna elements.
  • the display panel includes a first substrate and a second substrate arranged oppositely, and a liquid crystal layer arranged between the first substrate and the second substrate;
  • the antenna unit includes a first radiating part arranged oppositely. and a reference electrode; the first radiation part is integrated on the second substrate, and the reference electrode is integrated on the first substrate.
  • the first substrate includes a first base substrate, and a driving layer provided on a side of the first base substrate close to the liquid crystal layer; the driving layer serves as a reference electrode for each of the antenna units.
  • the second substrate includes a second base substrate, and a color filter layer disposed on a side of the second base substrate close to the liquid crystal layer; the first radiation part is disposed on the first substrate The side of the substrate facing away from the color filter layer.
  • a first radiation layer is integrated on the second substrate; the first radiation part is located in the first radiation layer; the first radiation layer also includes the first radiation layer located adjacent to the first radiation layer. and a redundant radiating part between the parts, and the redundant radiating part is disconnected from the first radiating part.
  • the first radiation layer includes a metal grid structure;
  • the metal grid structure includes a plurality of first metal lines and second metal lines arranged in a cross; the first metal lines and the second metal lines are both It is disconnected and provided at the interface between the first radiating part and the redundant radiating part.
  • the antenna unit is a directional antenna.
  • the antenna unit is a Yagi antenna.
  • the frequency band of the electromagnetic waves radiated by the antenna unit is a millimeter wave frequency band.
  • control unit is configured to control the antenna unit to radiate electromagnetic waves of the first frequency and receive the electromagnetic waves reflected by the touch object according to the position of the touch object to be detected.
  • electromagnetic wave the data processing unit is configured to generate the position of the touch object to be detected according to the first frequency and the frequency of the reflected electromagnetic wave.
  • It also includes: a signal transmission unit; a first end of the signal transmission unit is communicatively connected to the antenna unit, and a second end of the signal transmission unit is communicatively connected to the data processing unit and/or the control unit.
  • the signal transmission unit includes a first signal transmission part, a second signal transmission part and a third signal transmission part disposed between the first signal transmission part and the second transmission part; the first signal The transmission part covers the first end of the signal transmission unit; the second signal transmission part covers the second end of the signal transmission unit; the first signal transmission part and the second signal transmission part include ACF glue;
  • the third signal transmission part includes an LCP substrate and a signal line.
  • the signal line includes at least one of a microstrip line or a stripline.
  • the data processing unit includes a signal generation sub-module, a power molecule module, a mixing sub-module, an intermediate frequency signal processing sub-module, an analog-to-digital conversion sub-module, a baseband signal processing sub-module and a position calculation sub-module;
  • the signal generation sub-module module configured to generate a first reference signal according to the first frequency;
  • the work molecule module configured to generate a first sub-reference signal according to the first reference signal;
  • the first sub-reference signal The frequency includes the first frequency;
  • the mixing sub-module is configured to generate a first mixing signal according to the reflected signal received by the antenna unit and the first sub-reference signal;
  • the intermediate frequency signal processing sub-module module configured to generate a first intermediate frequency signal according to the first mixed frequency signal;
  • the analog-to-digital conversion sub-module configured to generate a first digital signal according to the first intermediate frequency signal;
  • the baseband signal processing The sub-module is configured to generate distance information based on
  • the present disclosure provides a position detection method, which can be applied to the above-mentioned display module.
  • the display module includes N groups of antenna units.
  • the position detection method includes: the i-th group of antenna units radiates the The electromagnetic wave of the first frequency; the i-th group of antenna units receives the electromagnetic wave of the second frequency; the data processing unit generates the i-th group of distance information according to the first frequency and the second frequency; the data processing The unit generates the position of the touch object to be detected based on N sets of distance information; 1 ⁇ i ⁇ N, 3 ⁇ N; i and N are both positive integers.
  • the step of radiating the electromagnetic wave of the first frequency by the j+1th group of antenna units and the step of generating the jth group of position information occur simultaneously; 1 ⁇ j ⁇ N; j is a positive integer.
  • the present disclosure also provides an electronic terminal, which includes the display module as described above.
  • the electronic terminal includes at least one or more of a refrigerator, a washing machine, and a display device.
  • Figure 1 is an exemplary display substrate
  • Figure 2 is a schematic cross-sectional view of the display substrate shown in Figure 1;
  • Figure 3 is an equivalent circuit diagram of a pixel unit in the display substrate shown in Figure 1;
  • Figure 4 is a schematic diagram of an exemplary touch substrate
  • Figure 5 is a schematic diagram of a display module according to an embodiment of the present disclosure.
  • Figure 6 is a schematic diagram of a Yagi antenna according to an embodiment of the present disclosure.
  • Figure 7 is another schematic diagram of a display module according to an embodiment of the present disclosure.
  • Figure 8 is another schematic diagram of a display module according to an embodiment of the present disclosure.
  • Figure 9 is a partially enlarged schematic diagram of the first radiation part according to the embodiment of the present disclosure.
  • Figure 10 is another partially enlarged schematic diagram of the redundant radiating part according to an embodiment of the present disclosure.
  • Figure 11 is another schematic diagram of a display module according to an embodiment of the present disclosure.
  • Figure 12 is a schematic diagram of a data processing unit according to an embodiment of the present disclosure.
  • Figure 13 is a schematic flow chart of a position detection method according to an embodiment of the present disclosure.
  • Figure 14 is another schematic flowchart of a position detection method according to an embodiment of the present disclosure.
  • Figure 1 is an exemplary display substrate.
  • the display substrate includes a plurality of pixel units 10 arranged in an array along a first direction and a second direction; wherein the first direction and the second direction intersect, and one of them may be The row direction and the other is the column direction.
  • the first direction is the row direction and the second direction is the column direction for description.
  • the plurality of pixel units 10 may include, but is not limited to, a red pixel unit 10, a green pixel unit 10, a blue pixel unit 10, etc.
  • the display substrate has a display area Q1 and a peripheral area Q2 surrounding the display area Q1.
  • the display substrate includes a display substrate and an opposite substrate arranged oppositely, and a liquid crystal arranged between the display substrate and the opposite substrate.
  • the display substrate and the opposite substrate are fixed through the frame sealant 9 provided in the peripheral area Q2.
  • the display substrate may be an array substrate, and the opposite substrate may be a color filter substrate 13 .
  • the display substrate can also be a COA substrate (Color On Array), and the corresponding opposite substrate can be a cover plate.
  • the display substrate is an array substrate and the counter substrate is the color filter substrate 13 as an example for description.
  • FIG. 2 is a cross-sectional view of the display substrate of Figure 1; with reference to Figure 2, the structure of the display substrate will be described in detail; as shown in Figure 2, the display substrate includes a third substrate 1 and is disposed on the third substrate 1 A plurality of pixel units 10, the structure of the pixel unit 10 includes: a first metal layer 2, a first interlayer insulating layer 3, an active semiconductor layer 4, a second metal layer 5, which are sequentially on the third base substrate 1.
  • the second interlayer insulating layer 6 the first transparent conductive layer, the liquid crystal layer 11 and the color filter substrate 13 .
  • the first metal layer 2 is provided on one side of the third base substrate 1, and the first metal layer 2 includes the control electrode of each thin film transistor TFT located in the display area Q1, and the second plate of the storage capacitor Cst;
  • the interlayer insulating layer 3 is disposed on the side of the first metal layer 2 facing away from the third base substrate 1; the active semiconductor layer 4 is disposed on the side of the first interlayer insulating layer 3 facing away from the third base substrate 1.
  • the source semiconductor layer 4 includes the channel region and the source and drain doping regions of each thin film transistor TFT in the display area Q1; the second metal layer 5 is provided on the active semiconductor layer 4 and the first interlayer insulating layer 3, facing away from the third substrate.
  • the second metal layer 5 includes the first electrode and the second electrode of each thin film transistor TFT located in the display area Q1; the second interlayer insulating layer 6 and the first transparent conductive layer are respectively arranged in the second
  • the first transparent conductive layer includes the pixel electrodes 7 of each pixel unit 10 of the display area Q1 , and the pixel electrodes 7 pass through the third connection through the second interlayer insulating layer 6
  • the hole is connected to the drain of the thin film transistor TFT.
  • the color filter substrate 13 is arranged opposite to the first transparent conductive layer, and the two are connected through the frame sealant 9 .
  • the frame sealant 9 and the liquid crystal layer 11 are located between the color filter substrate 13 and the second interlayer insulating layer 6 .
  • a common electrode 12 is provided on the side of the color filter substrate 13 opposite to the first transparent conductive layer.
  • Figure 3 is a schematic diagram of an equivalent circuit of a pixel unit 10 in the above display substrate; as shown in Figure 3, the equivalent circuit includes a thin film transistor TFT, a storage capacitor Cst, and a liquid crystal capacitor Clc; the first electrode of the thin film transistor TFT is connected to data line, the second electrode of the thin film transistor TFT is connected to the first plate of the storage capacitor Cst and the first plate of the liquid crystal capacitor Clc, the control electrode of the thin film transistor TFT is connected to the gate line; the second plate of the storage capacitor Cst is connected to the common electrode Line 14; the second plate of the liquid crystal capacitor Clc is connected to the common electrode line 14.
  • the thin film transistor TFT is gated, and the corresponding gray scale display is realized through the data line voltage signal written on the data line.
  • the exemplary display substrate further includes a touch substrate as shown in FIG. 4 , so that the exemplary display substrate has a touch function.
  • the touch substrate includes a fourth base substrate, a plurality of first electrodes 15 disposed on the fourth base substrate and arranged side by side along the first direction, and a plurality of third electrodes 15 arranged side by side along the second direction.
  • the plurality of first electrodes 15 include a plurality of first electrode blocks 17 arranged side by side along the second direction, and a first connecting portion 19 connected between any adjacently arranged first electrode blocks 17; a plurality of Each of the second electrodes 16 includes a plurality of second electrode blocks 18 arranged along the second direction, and second connecting portions 21 are connected between any adjacently arranged second electrode blocks 18 .
  • a first insulating layer is provided between the layer where the first connecting portion 19 is located and the layer where the first electrode 15 and the second electrode 16 are located.
  • a plurality of first through holes 20 are also provided on the first insulating layer. The first through holes 20 and The orthographic projection of the first connecting portion 19 on the third base substrate 1 at least partially overlaps.
  • the first connection portion 19 connects the adjacent first electrode blocks 17 through the first through holes 20 .
  • first electrode 15 and two second electrodes 16 are used for illustration in FIG. 4 .
  • the first electrode blocks 17 and the second electrode blocks 18 are arranged in a matrix along the first direction and the second direction.
  • the first electrode blocks 17 arranged along the second direction pass through the first rotation provided in the first through hole 20 in sequence.
  • the connecting electrode and the first connecting part 19 are electrically connected to form the first electrode 15, and the second electrode blocks 18 arranged along the first direction are electrically connected through the second connecting parts 21 arranged on the same layer to form the second electrode 16.
  • a first electrode block 17 in a first electrode 15 and a second electrode block 18 in an adjacent second electrode 16 form a first coupling capacitor.
  • the first electrode 15 and the second electrode 16 are on the fourth substrate.
  • a plurality of first coupling capacitors arranged in an array are formed on the substrate.
  • a touch object touches the touch substrate for example, when a human finger touches the touch substrate, part of the charge from the driving electrode is transferred to the ground through the finger, and the charge flowing through the first coupling capacitor becomes less, and the sensing electrode is in the hand.
  • the charge received at the touch location is significantly reduced, thereby determining the location of the finger touch.
  • the cost of the display module implementing the touch function is relatively high.
  • the exemplary display substrate can only perform contact touch and cannot implement non-contact touch.
  • embodiments of the present disclosure provide a display module, an electronic terminal, and a position detection method.
  • an embodiment of the present disclosure provides a display module, which includes a display panel 22 and a plurality of antenna units 23 integrated on the display panel 22 .
  • the display panel 22 includes a plurality of pixel units 10, and any pixel unit 10 is covered by beams radiated by at least three antenna units 23 at a center frequency.
  • the pixel unit 10 emits light according to the picture to be displayed by the display module.
  • the antenna unit 23 radiates the electromagnetic wave of the first frequency and receives the electromagnetic wave reflected by the touch object.
  • the touch object may be a human finger or a stylus. The following description will only take an example in which the touch object is a human finger.
  • any pixel unit 10 is covered by the beams radiated by at least three antenna units 23 at the center frequency
  • the finger is covered by the beams radiated by at least three antenna units 23 at the center frequency.
  • the electromagnetic wave of the first frequency radiated by any antenna unit 23 is reflected by the finger, and the reflected electromagnetic wave is received by the antenna unit 23 .
  • the distance information between the finger and each antenna unit 23 can be obtained.
  • the position information of the finger can be obtained by calculating the distance information between the finger and each antenna unit 23 .
  • the position information of the finger can be mapped to the screen to be displayed by the display module, so that the finger can touch the display module.
  • the coordinates of the first antenna unit A in the horizontal direction are (Xa, Ya); the coordinates of the second antenna unit B in the horizontal direction are (Xb, Yb); and the coordinates of the third antenna unit C in the horizontal direction are (Xc, Yc).
  • the difference between the radiation frequency and the reception frequency of unit B and the third antenna unit C, k is the modulation slope of the chirp continuous wave. Therefore, by calculating ⁇ fa, ⁇ fb and ⁇ fc of the first antenna unit A, the second antenna unit B and the third antenna unit C respectively, the distance X1, the distance between the finger and the first antenna unit A in the horizontal direction can be calculated respectively.
  • the distance X2 between the two antenna units B and the distance X3 between the third antenna unit 23 Since the distance of the first antenna unit A The distance of the second antenna unit B The distance of the third antenna unit C Therefore, the coordinates of the finger in the horizontal direction O(X 0 , Y 0 ) can be calculated based on the preset values of Xa, X 0 , Y 0 ) are mapped onto the screen to be displayed by the display module, so that the finger can touch the display module.
  • the touch function can be implemented on a large-sized or ultra-large-sized display module in a low-cost manner.
  • the electromagnetic waves radiated by the antenna unit 23 cover the pixel unit 10 and the area above the pixel unit 10, the touch function can also be realized when the finger does not touch the display module.
  • the display module can be controlled through gestures.
  • the frequency band of the electromagnetic waves radiated by the antenna unit 23 is a millimeter wave frequency band.
  • the frequency of the electromagnetic waves radiated by the antenna unit 23 is 60 GHz.
  • antenna element 23 is a directional antenna. Since the directivity of the directional antenna is single, when processing the distance information between the finger and each antenna unit 23, the noise of the signal is smaller, and the signal processing is simpler. In some embodiments, since the directivity of the Yagi antenna 29 is better, the antenna unit 23 may be the Yagi antenna 29 as shown in FIG. 6 . The following description only takes the antenna unit 23 as the Yagi antenna 29 as an example.
  • the display panel 22 includes a first substrate 24 and a second substrate 25 arranged oppositely, and is arranged between the first substrate 24 and the second substrate 25 liquid crystal layer 11.
  • the antenna unit 23 includes a first radiating part 261 and a reference electrode arranged oppositely.
  • the first radiating part 261 is integrated on the second substrate 25
  • the reference electrode is integrated on the first substrate 24 .
  • the first radiating part 261 is used to convert the signal fed therein into an electromagnetic wave of a first frequency, and to receive the electromagnetic wave reflected by the finger.
  • the reference electrode is used as a return path for the electrical signal on the first radiating part 261. In this way, the antenna unit 23 can radiate and receive electromagnetic waves.
  • the reference electrode may be electrically connected to the ground terminal.
  • the first substrate 24 includes a first base substrate 241 and a driving layer 242 disposed on a side of the first base substrate 241 close to the liquid crystal layer 11 .
  • the driving layer 242 serves as a reference electrode for each antenna unit 23 .
  • the driving layer 242 may be a driving circuit including a plurality of thin film transistors (TFTs) in the pixel unit 10, which is used to control the light-emitting device in the pixel unit 10 to emit light. In the embodiment of the present disclosure, in this way, there is no need to set up a new reference electrode layer, which reduces the process difficulty.
  • TFTs thin film transistors
  • the second substrate 25 includes a second base substrate 251 and a color filter layer 252 disposed on a side of the second base substrate 251 close to the liquid crystal layer 11 , and the first radiating part 261 is disposed on the first The side of the base substrate 241 facing away from the color filter layer 252 .
  • the display module includes a light guide plate 33 and a display panel 22 disposed on one side of the light guide plate 33 .
  • the display panel 22 includes a first polarizer disposed on one side of the light guide plate 33 in order away from the light guide plate 33 . 34.
  • the first substrate 24, the liquid crystal layer 11, the second substrate 25, the plurality of first radiation parts 261 and the second polarizer 36 are examples of the first radiation parts 261 and the second polarizer 36.
  • the light guide plate 33 is used to transmit the light generated by the light source to the display panel 22; the first polarizer 34 is used to filter the polarized light in the fifth direction; the first substrate 24 includes a first polarizer arranged in a direction away from the light guide plate 33.
  • the base substrate 241 and the driving layer 242, the driving layer 242 is used to control the corresponding pixel unit 10 to emit light; the liquid crystal layer 11 is used to regularly refract the light passing through it under the control of the electric field loaded on it;
  • the second substrate 25 includes a second substrate substrate 251 disposed toward the light guide plate 33 and a color filter layer 252 .
  • the color filter layer 252 is used to convert the light emitted through the liquid crystal layer 11 into light of a corresponding color; the second polarizer 36
  • the first radiation part 261 is used to filter the polarized light in the sixth direction, and the sixth direction and the fifth direction are perpendicular to each other; the first radiation part 261 is used to convert the signal fed therein into an electromagnetic wave of the first frequency, and receive the light reflected by the finger. electromagnetic waves. In the embodiment of the present disclosure, in this way, the loss of the antenna unit 23 is lower.
  • the display module includes: a first radiating layer 26 integrated on the second substrate 25 , and the first radiating layer 26 further includes an adjacent first radiating part 261 .
  • the redundant radiating part 262 is provided disconnected from the first radiating part 261 .
  • the first radiating part 261 is disposed on a side of the first base substrate 241 facing away from the color filter layer 252
  • the first radiating layer 26 is disposed on a side of the first base substrate 241 facing away from the color filter layer 252 . one side. In this way, the first radiating part 261 and the redundant radiating part 262 are easily installed in the display module.
  • the redundant radiating part 262 is provided to ensure the display effect of the display module and eliminate the step difference of the first radiating part 261.
  • FIG. 9 is a partially enlarged schematic diagram of the first radiating part 261
  • FIG. 10 is a partially enlarged schematic diagram of the redundant radiating part 262
  • the first radiation layer 26 includes a metal grid structure
  • the metal grid structure includes a plurality of first metal lines 27 and second metal lines 28 arranged in a crosswise manner.
  • the first metal lines 27 and the second metal lines 28 They are all disconnected at the interface between the first radiating part 261 and the redundant radiating part 262 .
  • the first metal wires 27 and the second metal wires 28 are arranged to cross along the third direction and the fourth direction respectively, forming a rhombus-shaped grid structure as shown in FIG.
  • the angle between the third direction and the fourth direction may range from 63° to 67°; the line width of the first metal line 27 and the second metal line 28 may be 5 microns ⁇ 10%; the first radiation layer
  • the thickness of 26 may be 1 micron ⁇ 10%; the side length of each rhombus in the rhombus-shaped grid structure may be 18.63 microns.
  • the first radiating part 261 will not affect the light transmission of the display module, that is, it will not affect the display effect of the display module, thus realizing a transparent antenna structure.
  • the size of the redundant radiating part 262 may be the same as the size of the diamond-shaped grid structure.
  • the redundant radiating part 262 will not affect the light transmission of the display module, and the preparation of the redundant radiating part 262 is easy. For example, a complete diamond-shaped metal grid is formed, and then the areas that need to be disconnected are cut with a laser, and finally the first radiation layer 26 including the redundant radiation part 262 and the first radiation part 261 is obtained.
  • the redundant radiating part 262 by providing the redundant radiating part 262, the display effect of the display module is ensured and the step difference of the first radiating part 261 is eliminated.
  • the display module further includes a control unit 30 and a data processing unit 31 .
  • the control unit 30 is configured to control the antenna unit 23 to radiate electromagnetic waves of a first frequency and receive electromagnetic waves reflected by the touch object according to the position of the touch object to be detected.
  • the data processing unit 31 is configured to generate the position of the touch object to be detected according to the first frequency and the frequency of the electromagnetic wave reflected by the touch object.
  • control unit 30 and the data processing unit 31 can be integrated into a system on a chip (System on a Chip, abbreviation: SoC), which can be an FPGA (Field Programmable Gate Array), At least one or more of a central processing unit (central processing unit, CPU), a microcontroller unit 30 (Microcontroller Unit, MCU), and a digital signal processor (Digital Signal Processor, DSP).
  • SoC System on a Chip
  • CPU central processing unit
  • MCU Microcontroller Unit
  • DSP Digital Signal Processor
  • the specific structure of the data processing unit 31 may include a signal generation sub-module 311, a power molecule module 312, a mixing sub-module 313, an intermediate frequency signal processing sub-module 314, and an analog-to-digital conversion sub-module. 315.
  • the signal generation sub-module 311 is configured to generate a first reference signal according to the first frequency.
  • the work molecule module 312 is configured to generate a first sub-reference signal according to the first reference signal.
  • the mixing sub-module 313 is configured to generate a first mixing signal according to the reflected signal received by the antenna unit 23 and the first sub-reference signal.
  • the intermediate frequency signal processing sub-module 314 is configured to generate a first intermediate frequency signal according to the first mixed frequency signal.
  • the analog-to-digital conversion sub-module 315 is configured to generate a first digital signal according to the first intermediate frequency signal.
  • the baseband signal processing sub-module 316 is configured to generate distance information according to the first digital signal.
  • the position calculation sub-module 317 is configured to generate the position of the touch object to be detected based on multiple sets of distance information.
  • the signal generation sub-module 311 generates a chirp continuous wave as the first reference signal according to the first frequency of the signal to be radiated by the antenna unit 23, and transmits it to the work molecule module 312.
  • the work molecule module 312 divides the first reference signal into two identical first sub-reference signals, and the frequency of the first sub-reference signal includes the first frequency.
  • the first sub-reference signal output by the power molecule module 312 is amplified and filtered, and then transmitted to the antenna unit 23.
  • the antenna unit 23 radiates electromagnetic waves of the first frequency and receives the electromagnetic waves reflected by the fingers.
  • the mixing sub-module 313 receives the electromagnetic wave reflected by the finger, and mixes it with a first sub-reference signal output by the power molecule module 312 to generate a first mixing signal.
  • the frequency of the first mixing signal may be the difference between the frequency of the electromagnetic wave reflected by the finger and the frequency of the first sub-reference signal.
  • the intermediate frequency signal processing sub-module 314 receives the first mixed frequency signal and processes it to generate a first intermediate frequency signal.
  • the analog-to-digital conversion sub-module 315 receives the first intermediate frequency signal and converts the first intermediate frequency signal into a digital signal, and finally generates a first digital signal and transmits it to the baseband signal processing sub-module 316.
  • the baseband signal processing sub-module 316 receives the first digital signal generated by the analog-to-digital conversion sub-module 315 and processes it to generate distance information.
  • the position calculation sub-module 317 generates the position of the touch object based on at least three sets of distance information.
  • the display module also includes a signal transmission unit 32 .
  • the signal transmission unit 32 communicatively connects the PCB board and each antenna unit 23 . Specifically, the first end of the signal transmission unit 32 is communicatively connected to the antenna unit 23 , and the second end of the signal transmission unit 32 is communicatively connected to the data processing unit 31 and the control unit 30 . In this way, signal transmission between the antenna unit 23 and the PCB board is completed.
  • the signal transmission unit 32 includes a first signal transmission part 321 , a second signal transmission part 322 , and a third signal transmission part 323 disposed between the first signal transmission part 321 and the second signal transmission part 322 .
  • the first signal transmission part 321 covers the first end of the signal transmission unit 32
  • the second signal transmission part 322 covers the second end of the signal transmission unit 32 .
  • the third signal transmission part 323 includes a low-loss LCP substrate and a signal line.
  • the signal lines may be microstrip or stripline.
  • the first signal transmission part 321 and the second signal transmission part 322 include ACF glue, where the metal particles in the ACF glue have a larger diameter, and the diameter range of the metal particles can be greater than 10 microns.
  • ACF glue binds the antenna unit 23 and the signal line. In the embodiment of the present disclosure, in this way, the signal loss in the signal transmission unit 32 is lower.
  • the present disclosure provides an electronic terminal, which includes the display module as described in the above embodiment.
  • the electronic terminal may be any one of a refrigerator, a washing machine, and a display device including a display function.
  • the display device may be: a flexible wearable device, a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, or any other product or component with a display function.
  • Other essential components of the display device are understood by those of ordinary skill in the art, and will not be described in detail here, nor should they be used to limit the present invention.
  • the present disclosure provides a position detection method, which can be applied to the display module as described above.
  • the display module includes N groups of antenna units 23, as shown in Figure 13.
  • the position detection method includes:
  • the i-th group of antenna units 23 radiates electromagnetic waves of the first frequency.
  • the i-th group of antenna units 23 receives the electromagnetic waves reflected by the fingers.
  • the data processing unit 31 generates the i-th set of distance information according to the first frequency and the frequency of the electromagnetic wave reflected by the touch object to be detected.
  • the data processing unit 31 generates the position of the touch object to be detected based on N sets of distance information; 1 ⁇ i ⁇ N, 3 ⁇ N; i and N are both positive integers.
  • the electromagnetic wave of the first frequency radiated by the i-th group of antenna units 23 and the electromagnetic wave reflected by the touch object are used as the i-th group of detection signals.
  • the data processing unit 31 processes the i-th group of detection signals to generate distance information between the touch object and the i-th group of antenna units 23.
  • the data processing unit 31 generates the position of the touch object to be detected based on N groups of distance information.
  • the position of the touch object on the display module is detected through the antenna unit 23, so that it is possible to detect the position of the touch object on the display module of a large or super large size in a low-cost manner.
  • Implement touch function on the group because the electromagnetic waves radiated by the antenna unit 23 cover the pixel unit 10 and the area above the pixel unit 10, the touch function can also be realized when the finger does not touch the display module. Furthermore, the display module can be controlled through gestures.
  • the step of generating distance information by each group of antenna units 23 can be performed independently, or can be performed at least partially simultaneously.
  • the following description only takes the example of generating distance information by each group of antenna units 23 through time division multiplexing. .
  • the step of radiating the electromagnetic wave of the first frequency by the j+1th group of antenna units 23 and the step of generating the jth group of position information occur simultaneously; 1 ⁇ j ⁇ N; j is a positive integer.
  • the value of N may be 3, so the values of j are 1 and 2 respectively.
  • the location detection method includes:
  • the first group of antenna units 23 radiates electromagnetic waves of the first frequency.
  • the first group of antenna units 23 receives the electromagnetic waves reflected by the fingers.
  • the data processing unit 31 generates the i-th set of distance information based on the first frequency and the frequency of the electromagnetic wave reflected by the finger.
  • step S103 When step S103 occurs:
  • the second group of antenna units 23 radiates electromagnetic waves of the first frequency.
  • the second group of antenna units 23 receives the electromagnetic waves reflected by the fingers.
  • the data processing unit 31 generates the i-th set of distance information according to the first frequency and the frequency of the electromagnetic wave reflected by the finger.
  • step S203 When step S203 occurs:
  • the third group of antenna units 23 radiates electromagnetic waves of the first frequency.
  • the second group of antenna units 23 receives the electromagnetic waves reflected by the fingers.
  • the data processing unit 31 generates the i-th set of distance information according to the first frequency and the frequency of the electromagnetic wave reflected by the finger.
  • step S303 is completed:
  • the data processing unit 31 generates the position of the touch object to be detected based on the three sets of distance information.
  • the time required for one position detection is shortened through time division multiplexing.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种显示模组、应用于显示模组的位置检测方法以及电子终端,显示模组包括显示面板(22)和集成在显示面板(22)上多个天线单元(23)。显示面板包括多个像素单元(10),且任一像素单元(10)由至少三个天线单元(23)在中心频率下辐射的波束覆盖。显示模组既可实现接触式,也可实现非接触式触控。

Description

一种显示模组、电子终端以及位置检测方法 技术领域
本公开属于显示技术领域,具体涉及一种显示模组、电子终端以及位置检测方法。
背景技术
随着显示技术的飞速发展,包含触控屏(Touch Screen Panel)的显示设备已经被广泛应用于人们的生活中。按照工作原理,触摸屏可以分为:电容式触摸屏、电阻式触摸屏、红外线式触摸屏、表面声波式触摸屏、电磁式触摸屏以及振波感应式触摸屏等。由于电容式触摸屏具有支持多点触控、抗噪声能力强、技术成熟、制备成本低廉等优点,已成为手机、平板电脑等消费类电子产品的主流技术。
现有技术中的一种电容式触摸屏的工作原理为:在基板上设置有用于确定触摸点位置信息的第一电极和第二电极,即触控电极,并通过挖孔的方式,使处于同一行或同一列的触控电极实现电连接,以用于确定触摸点的X轴或Y轴的坐标。该种电容式触摸屏常用于小尺寸显示面板中,当被应用于大尺寸或超大显示面板中时,实现触控功能的成本较高。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种显示模组、电子终端以及位置检测方法。
第一方面,本公开提供了一种显示模组,其包括显示面板和集成在所述显示面板上多个天线单元;其中,所述显示面板包括多个像素单元,且任一所述像素单元由至少三个所述天线单元在中心频率下辐射的波束覆盖。
其中,所述显示面板包括相对设置的第一基板和第二基板,以及设置在所述第一基板和所述第二基板之间的液晶层;所述天线单元包括相对设置的第一辐射部和参考电极;所述第一辐射部集成在所述第二基板上,所述参考电极集成在所述第一基板上。
其中,所述第一基板包括第一衬底基板,以及设置在第一衬底基板靠近所述液晶层一侧的驱动层;所述驱动层作为各所述天线单元的参考电极。
其中,所述第二基板包括第二衬底基板,以及设置在所述第二衬底基板靠近所述液晶层一侧的彩膜层;所述第一辐射部设置在所述第一衬底基板背离所述彩膜层的一侧。
其中,所述第二基板上集成有第一辐射层;所述第一辐射部位于第一辐射层;所述第一辐射层还包括与所述位于所述相邻设置的所述第一辐射部之间的冗余辐射部,且所述冗余辐射部与所述第一辐射部断开设置。
其中,所述第一辐射层包括金属网格结构;所述金属网格结构包括交叉设置的多条第一金属线和第二金属线;所述第一金属线和所述第二金属线均在所述第一辐射部和所述冗余辐射部的交界位置断开设置。
其中,所述天线单元为定向天线。
其中,所述天线单元为八木天线。
其中,所述天线单元所辐射的电磁波的频段为毫米波频段。
其中,还包括:控制单元和数据处理单元;所述控制单元,被配置为根据待检测的触控物的位置,控制所述天线单元辐射第一频率的电磁波并接收所述触控物所反射的电磁波;所述数据处理单元,被配置为根据所述第一频率和所述反射的电磁波的频率,生成所述待检测的触控物的位置。
其中,还包括:信号传输单元;所述信号传输单元的第一端和所述天线单元通信连接,所述信号传输单元的第二端和数据处理单元和/或控制单元通信连接。
其中,所述信号传输单元包括第一信号传输部、第二信号传输部以及设置在所述第一信号传输部和所述第二传输部之间的第三信号传输部;所述第一信号传输部覆盖所述信号传输单元的第一端;所述第二信号传输部覆盖所述信号传输单元的第二端;所述第一信号传输部和所述第二信号传输部包括ACF胶;所述第三信号传输部包括LCP基材以及信号线。
其中,所述信号线包括微带线或带状线中的至少一种。
其中,所述数据处理单元包括信号发生子模块、功分子模块、混频子模块、中频信号处理子模块、模数转换子模块、基带信号处理子模块以及位置计算子模块;所述信号发生子模块,被配置为根据所述第一频率,生成第一参考信号;所述功分子模块,被配置为根据所述第一参考信号,生成第一子参考信号;所述第一子参考信号的频率包括所述第一频率;所述混频子模块,被配置为根据所述天线单元接收到的反射信号和所述第一子参考信号,生成第一混频信号;所述中频信号处理子模块,被配置为根据所述第一混频信号,生成第一中频信号;所述模数转换子模块,被配置为根据所述第一中频信号,生成第一数字信号;所述基带信号处理子模块,被配置为根据所述第一数字信号,生成距离信息;所述位置计算子模块,被配置为根据多组所述距离信息,生成所述待检测触控物的位置。
第二方面,本公开提供了一种位置检测方法,可应用于如上述显示模组中,所述显示模组包括N组天线单元,所述位置检测方法包括:第i组天线单元辐射所述第一频率的电磁波;所述第i组天线单元接收所述第二频率的电磁波;所述数据处理单元根据所述第一频率和所述第二频率生成第i组距离信息;所述数据处理单元根据N组所述距离信息,生成所述待检测的触控物的位置;1≤i≤N,3≤N;i和N都为正整数。
其中,第j+1组天线单元辐射所述第一频率的电磁波的步骤和生成所述第j组位置信息的步骤同时发生;1≤j<N;j为正整数。
第三方面,本公开还提供了一种电子终端,其包括如上所述的显示模组。
其中,所述电子终端至少包括冰箱、洗衣机以及显示装置中的至少一种或多种。
附图说明
图1示例性的一种显示基板;
图2为图1所示的显示基板的一种截面示意图;
图3为图1所示的显示基板中一个像素单元的等效电路示意图;
图4为一种示例性的触控基板示意图;
图5为本公开实施例的显示模组的一种示意图;
图6为本公开实施例的八木天线的示意图;
图7为本公开实施例的显示模组的另一种示意图;
图8为本公开实施例的显示模组的另一种示意图;
图9为本公开实施例的第一辐射部的一种局部放大示意图;
图10为本公开实施例的冗余辐射部的另一种局部放大示意图;
图11为本公开实施例的显示模组的另一种示意图;
图12为本公开实施例的数据处理单元的一种示意图;
图13为本公开实施例的位置检测方法的一种流程示意图;
图14为本公开实施例的位置检测方法的另一种流程示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对 位置改变后,则该相对位置关系也可能相应地改变。
图1是一种示例性的显示基板,该显示基板包括沿第一方向和第二方向呈阵列排布的多个像素单元10;其中,第一方向和第二方向相交,其中一者可以为行方向,另一者为列方向,在本公开实施例中以第一方向为行方向,第二方向为列方向进行描述。其中,在本公开实施例中多个像素单元10可以包括但不限于包括红色像素单元10、绿色像素单元10、蓝色像素单元10等。
如图1所示,该显示基板具有显示区Q1和环绕显示区Q1的周边区Q2,该显示基板包括相对设置的显示基板和对置基板,以及设置在显示基板和对置基板之间的液晶层1111,显示基板和对置基板通过设置在周边区Q2的封框胶9完成固定。其中,显示基板可以为阵列基板,对置基板可以为彩膜基板13。当然,显示基板还可以是COA基板(Color On Array),相应的对置基板可以为盖板。在公开实施例中以显示基板为阵列基板,对置基板为彩膜基板13为例进行说明。
图2为图1的显示基板截面图;参照图2,对显示基板的结构进行具体说明;如图2所示,显示基板包括第三衬底基板1,和设置在第三衬底基板1上的多个像素单元10,像素单元10的结构包括:依次在第三衬底基板1上的第一金属层2、第一层间绝缘层3、有源半导体层4、第二金属层5、第二层间绝缘层6、第一透明导电层、液晶层11和彩膜基板13。其中,第一金属层2设置于第三衬底基板1的一侧,该第一金属层2包括位于显示区Q1的各薄膜晶体管TFT的控制极,以及存储电容Cst的第二极板;第一层间绝缘层3设置于第一金属层2背离第三衬底基板1的一侧;有源半导体层4设置于第一层间绝缘层3背离第三衬底基板1的一侧,有源半导体层4包括显示区Q1的各薄膜晶体管TFT的沟道区和源漏掺杂区;第二金属层5设置于有源半导体层4和第一层间绝缘层3,背离第三衬底基板1的一侧,该第二金属层5包括位于显示区Q1的各薄膜晶体管TFT的第一极和第二极;第二层间绝缘层6和第一透明导电层分别依次设置于第二金属层5背离第三 衬底基板1的一侧,第一透明导电层包括显示区Q1的各个像素单元10的像素电极7,像素电极7通过贯穿第二层间绝缘层6的第三连接过孔与薄膜晶体管TFT的漏极相连。彩膜基板13与第一透明导电层相对设置,通过封框胶9将二者相连接,封框胶9和液晶层11处于彩膜基板13和第二层间绝缘层6之间。彩膜基板13相对第一透明导电层的一侧设置有公共电极12。
图3为上述显示基板中一个像素单元10的等效电路示意图;如图3所示,该等效电路包括薄膜晶体管TFT、存储电容Cst、液晶电容Clc;该薄膜晶体管TFT的第一极连接数据线,该薄膜晶体管TFT第二极连接存储电容Cst的第一极板和液晶电容Clc的第一极板,该薄膜晶体管TFT的控制极连接栅线;存储电容Cst的第二极板连接公共电极线14;液晶电容Clc的第二极板连接公共电极线14。当栅线被写入工作电平信号时,薄膜晶体管TFT被选通,通过数据线上所写入的数据线电压信号实现相应灰阶的显示。
在示例性的实施例中,继续参照图2,示例性的显示基板还包括如图4所示的触控基板,以使得示例性的显示基板具有触控功能。具体参照图4,触控基板包括第四衬底基板,设置在第四衬底基板上、且沿第一方向并排设置的多个第一电极15,以及沿第二方向并排设置的多个第二电极16;多个第一电极15中包括沿第二方向并排设置的多个第一电极块17,以及任意相邻设置的第一电极块17之间连接的第一连接部19;多个第二电极16中的每个包括沿第二方向设置的多个第二电极块18,以及任意相邻设置的第二电极块18之间连接第二连接部21。第一连接部19所在层和第一电极15、第二电极16所在层之间设置有第一绝缘层,第一绝缘层上还设置有多个第一通孔20,第一通孔20和第一连接部19在第三衬底基板1上的正投影至少部分重叠。第一连接部19通过第一通孔20连接相邻设置的第一电极块17。
在该种示例性的触控基板中,如图4所示,图4中仅以一个第一电极15和两个第二电极16为例进行说明。第一电极块17和第二电极块18沿第一方向和第二方向呈矩阵排布,沿第二方向排布的第一电极块17依次通过设置于第一通孔20内的第一转接电极和第一连接部19电连接组成第一电极 15,沿第一方向排布的第二电极块18依次通过同层设置的第二连接部21电连接组成第二电极16。一个第一电极15中的第一电极块17和一个与其相邻的第二电极16中的第二电极块18形成一个第一耦合电容,第一电极15和第二电极16在第四衬底基板上形成多个呈阵列排布的第一耦合电容。当有一触控物触摸上述触控基板时,例如人的手指触摸上述触摸基板时,驱动电极传来的电荷部分通过手指传入大地,流经第一耦合电容的电荷变少,感应电极在手触控位置接收的电荷明显减小,从而确定手指触控的位置。
在示例性的显示基板中,当其被应用在大尺寸或超大尺寸的显示模组中时,显示模组实现触控功能的成本较高。同时,由于触控基板自身结构限制,示例性的显示基板仅可进行接触式触控,无法实现非接触式触控。
针对上述问题,本公开实施例提供了一种显示模组、电子终端以及位置检测方法。
第一方面,本公开实施例提供了一种显示模组,其包括显示面板22和集成在显示面板22上多个天线单元23。显示面板22包括多个像素单元10,且任一像素单元10由至少三个天线单元23在中心频率下辐射的波束覆盖。在本公开实施例中,像素单元10根据显示模组待显示的画面发光。天线单元23辐射第一频率的电磁波并接收第一频率的电磁波被触控物反射的电磁波。在本公开实施例中,触控物可以是人的手指或触控笔,以下仅以触控物是人的手指为例进行说明。由于任一像素单元10由至少三个天线单元23在中心频率下辐射的波束覆盖,因此当手指位于像素单元10所在区域时,手指被至少三个天线单元23在中心频率下辐射的波束覆盖。此时,任一天线单元23辐射的第一频率的电磁波,第一频率的电磁波被手指所反射,反射后的电磁波被天线单元23接收。对每个天线单元23的辐射频率和接收频率进行处理,即可得到手指和每个天线单元23之间的距离信息。由于手指被至少三个天线单元23在中心频率下辐射的波束覆盖,因此可以通过计算手指和每个天线单元23之间的距离信息,得到手指的位置信息。此时可以将手指的位置信息映射到显示模组待显示的画面上,即可实现手指对显示模组 的触控。
具体的,如图5所示,在本公开实施例中仅以一个像素单元10被三个天线单元23在中心频率下辐射的波束覆盖为例进行说明。其中,第一天线单元A在水平方向上的坐标为(Xa,Ya);第二天线单元B在水平方向上的坐标为(Xb,Yb);第三天线单元C在水平方向上的坐标为(Xc,Yc)。在该种情况下,手指在水平方向上和第一天线单元A之间的距离X1=v*Δfa/2k;手指在水平方向上和第二天线单元B之间的距离X2=v*Δfb/2k;手指在水平方向上和第三天线单元C之间的距离X3=v*Δfc/2k;其中,v是电磁波传输的速度,Δfa、Δfb以及Δfc分别是第一天线单元A、第二天线单元B以及第三天线单元C的辐射频率和接收频率之差,k是线性调频连续波的调制斜率。因此,分别计算第一天线单元A、第二天线单元B以及第三天线单元C的Δfa、Δfb以及Δfc,即可计算分别计算出手指在水平方向上和第一天线单元A的距离X1、第二天线单元B的距离X2以及第三天线单元23的距离X3。由于第一天线单元A的距离
Figure PCTCN2022083731-appb-000001
第二天线单元B的距离
Figure PCTCN2022083731-appb-000002
第三天线单元C的距离
Figure PCTCN2022083731-appb-000003
因此可以根据预设好的Xa、Xb以及Xc以及Ya、Yb以及Yc的值,计算出手指在水平方向上的坐标O(X 0,Y 0),通过将手指在水平方向上的坐标O(X 0,Y 0)映射到显示模组待显示的画面上,即可实现手指对显示模组的触控。
在本公开实施例中,通过该种方式可以实现以低成本的方式,在大尺寸或超大尺寸的显示模组上实现触控功能。同时由于天线单元23辐射的电磁波覆盖像素单元10以及像素单元10上方区域,因此手指在不接触显示模组时,也可以实现对触控功能。进一步的,可以通过手势对显示模组进行控制。
在一些实施例中,为了保证位置信息的精度,天线单元23所辐射的电磁波的频段为毫米波频段,例如:天线单元23所辐射的电磁波的频率为60GHz。
在一些实施例中,天线单元23为定向天线。由于定向天线的方向性单 一,因此在处理手指和每个天线单元23之间的距离信息时,信号的噪声较小,信号的处理较为简便。在一些实施例中,由于八木天线29的方向性较好,天线单元23可以是如图6所示的八木天线29。以下仅以天线单元23为八木天线29为例进行说明。
具体的,在一些实施例中,如图7所示,显示面板22包括相对设置的第一基板24和第二基板25,以及设置在所述第一基板24和所述第二基板25之间的液晶层11。天线单元23包括相对设置的第一辐射部261和参考电极,第一辐射部261集成在第二基板25上,参考电极集成在所述第一基板24上。在本公开实施例中,第一辐射部261用于将馈入其中的信号转换成第一频率的电磁波,并接收手指所反射的电磁波。参考电极用作第一辐射部261上的电信号的返回路径,通过该种方式,实现天线单元23对电磁波的辐射和接收。
在一些实施例中,参考电极可以和接地端电连接。在一些实施例中,第一基板24包括第一衬底基板241,以及设置在第一衬底基板241靠近所述液晶层11一侧的驱动层242。驱动层242作为各所述天线单元23的参考电极。在本公开实施例中,驱动层242可以是像素单元10中的包括多个薄膜晶体管(Thin Film Transistor,TFT)的驱动电路,其用于控制像素单元10中的发光器件发光。在本公开实施例中,通过该种方式,不需要设置新的参考电极层,降低了工艺难度。
在一些实施例中,第二基板25包括第二衬底基板251,以及设置在所述第二衬底基板251靠近液晶层11一侧的彩膜层252,第一辐射部261设置在第一衬底基板241背离彩膜层252的一侧。具体如图8所示,显示模组包括包括导光板33以及设置在导光板33一侧的显示面板22,显示面板22包括背离导光板33方向依次设置在导光板33一侧的第一偏光片34、第一基板24、液晶层11、第二基板25、多个第一辐射部261以及第二偏光片36。其中,导光板33用于将光源所产生的光传输至显示面板22内;第一偏光片34用于滤过第五方向的偏振光;第一基板24包括背离导光板33方向设置的第 一衬底基板241以及驱动层242,驱动层242用于控制与其对应的像素单元10发光;液晶层11用于在加载在其上的电场的控制下,将穿越其中的光线有规律的折射出;第二基板25包括朝向导光板33方向设置的第二衬底基板251以及彩膜层252,彩膜层252用于将经由液晶层11射出的光转换成相应颜色的光;第二偏光片36用于滤过第六方向的偏振光,第六方向与第五方向之间相互垂直;第一辐射部261用于将馈入其中的信号转换成第一频率的电磁波,并接收手指所反射的电磁波。在本公开实施例中,通过该种方式,天线单元23的损耗较低。
在一些实施例中,继续参照图8,显示模组包括:集成在第二基板25上的第一辐射层26,第一辐射层26还包括与位于相邻设置的第一辐射部261之间的冗余辐射部262,且冗余辐射部262与所述第一辐射部261断开设置。在本公开实施例中,由于第一辐射部261设置在第一衬底基板241背离彩膜层252的一侧,因此第一辐射层26设置在第一衬底基板241背离彩膜层252的一侧。通过该种方式,第一辐射部261和冗余辐射部262便于安装在显示模组中。同时通过设置冗余辐射部262,保证显示模组的显示效果以及消除第一辐射部261的段差。
具体的,如图9和图10所示,图9是第一辐射部261的一种局部放大示意图,图10是冗余辐射部262的一种局部放大示意图。在一些实施例中,第一辐射层26包括金属网格结构,金属网格结构包括交叉设置的多条第一金属线27和第二金属线28,第一金属线27和第二金属线28均在第一辐射部261和冗余辐射部262的交界位置断开设置。如图9所示,第一金属线27和第二金属线28分别沿第三方向和第四方向交叉设置,构成如图9所示的菱形状网格结构。其中,第三方向和第四方向之间的夹角的范围可以是63°-67°;第一金属线27和第二金属线28的线宽可以是5微米±10%;第一辐射层26的厚度可以是1微米±10%;菱形状网格结构中的各个菱形的边长可以是18.63微米。通过该种方式,第一辐射部261不会对显示模组的透光产生影响,即不影响显示模组的显示效果,实现了一种透明的天线结构。同时, 参照图10,冗余辐射部262的尺寸可以和菱形状网格结构的尺寸相同,冗余辐射部262中的第一金属线27和第二金属线28相交的区域附近存在间隔将第一辐射部261和冗余辐射部262之间断开。通过该种方式,冗余辐射部262不会对显示模组的透光产生影响,同时易于冗余辐射部262的制备。例如:形成一个完整的菱形状金属网格,再通过激光对需要断开的区域进行切割,最终得到包括冗余辐射部262和第一辐射部261的第一辐射层26。同时,在本公开实施例中,通过设置冗余辐射部262,保证了显示模组的显示效果并且消除了第一辐射部261的段差。
在一些实施例中,如图11所示,显示模组还包括控制单元30和数据处理单元31。控制单元30被配置为根据待检测的触控物的位置,控制所述天线单元23辐射第一频率的电磁波并接收触控物所反射的电磁波。数据处理单元31被配置为根据第一频率和触控物所反射的电磁波的频率,生成待检测的触控物的位置。在本公开实施例中,如图11所示,控制单元30和数据处理单元31可以集成在一个片上系统内(System on a Chip,缩写:SoC),其可以是FPGA(Field Programmable Gate Array)、中央处理器(central processing unit,CPU)、微控制单元30(Microcontroller Unit,MCU)以及数字信号处理器(Digital Signal Processor,DSP)中的至少一种或多种。在本公开实施例中,控制单元30和数据处理单元31的硬件结构被设置在一块PCB板上。
在一些实施例中,如图12所示,数据处理单元31的具体结构可以包括信号发生子模块311、功分子模块312、混频子模块313、中频信号处理子模块314、模数转换子模块315、基带信号处理子模块316以及位置计算子模块317。信号发生子模块311被配置为根据所述第一频率,生成第一参考信号。功分子模块312被配置为根据所述第一参考信号,生成第一子参考信号。混频子模块313被配置为根据所述天线单元23接收到的反射信号和所述第一子参考信号,生成第一混频信号。中频信号处理子模块314被配置为根据所述第一混频信号,生成第一中频信号。模数转换子模块315被配置为根据 所述第一中频信号,生成第一数字信号。基带信号处理子模块316被配置为根据所述第一数字信号,生成距离信息。位置计算子模块317,被配置为根据多组所述距离信息,生成待检测触控物的位置。
具体的,信号发生子模块311根据天线单元23所要辐射的信号的第一频率,生成线性调频连续波作为第一参考信号,并传输至功分子模块312。功分子模块312将第一参考信号分成相同的两路第一子参考信号,第一子参考信号的频率包括第一频率。功分子模块312输出的一路第一子参考信号经放大滤波后,传输至天线单元23,天线单元23接收到第一子参考信号后辐射第一频率的电磁波,并接收手指所反射的电磁波。混频子模块313接收到手指反射的电磁波,并将其与功分子模块312输出的一路第一子参考信号混频,生成第一混频信号。此时,第一混频信号的频率可以是手指反射的电磁波的频率和第一子参考信号的频率之差。中频信号处理子模块314接收到第一混频信号,并对其进行处理生成第一中频信号。模数转换子模块315接收第一中频信号并将第一中频信号转换成数字信号,最终生成第一数字信号传输至基带信号处理子模块316。基带信号处理子模块316接收模数转换子模块315生成的第一数字信号,并对其进行处理生成距离信息。位置计算子模块317根据至少三组距离信息生成触控物的位置。
在一些实施例中,如图11所示,显示模组还包括信号传输单元32,信号传输单元32将PCB板和各个天线单元23通信连接。具体的,信号传输单元32的第一端和天线单元23通信连接,信号传输单元32的第二端与数据处理单元31和控制单元30通信连接。通过该种方式,完成天线单元23和PCB板之间的信号传输。
在一些实施例中,信号传输单元32包括第一信号传输部321、第二信号传输部322以及设置在第一信号传输部321和第二信号传输部322之间的第三信号传输部323。第一信号传输部321覆盖信号传输单元32的第一端,第二信号传输部322覆盖信号传输单元32的第二端。第三信号传输部323包括低损耗的LCP基材以及信号线。在一些实施例中,信号线可以是微带线或 带状线。第一信号传输部321和第二信号传输部322包括ACF胶,其中ACF胶中的金属粒子直径较大,金属粒子的直径范围可以大于10微米。ACF胶将天线单元23和信号线之间相绑定。在本公开实施例中,通过该种方式,信号传输单元32中的信号损耗较低。
第二方面,本公开提供可一种电子终端,其包括如上实施例所述的的显示模组。在一些实施例中,电子终端可以是包括显示功能的冰箱、洗衣机以及显示装置中的任意一种。
本公开实施例所提供的显示装置可以为:柔性可穿戴设备、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。
第三方面,本公开提供了一种位置检测方法,其可应用于如上所述的显示模组中。显示模组包括N组天线单元23,如图13所示,位置检测方法包括:
S1、第i组天线单元23辐射第一频率的电磁波。
S2、第i组天线单元23接收手指所反射的电磁波。
S3、数据处理单元31根据所述第一频率和待检测的触控物所反射的电磁波的频率生成第i组距离信息。
S4、数据处理单元31根据N组距离信息,生成待检测的触控物的位置;1≤i≤N,3≤N;i和N都为正整数。
在本公开实施例中,通过第i组天线单元23辐射的第一频率的电磁波和触控物反射的电磁波作为第i组检测信号。数据处理单元31对第i组检测信号进行处理生成触控物和第i组天线单元23的距离信息,同时数据处理单元31根据N组距离信息,生成待检测的触控物的位置。在本公开实施例中,通过该种方式,实现了通过天线单元23对显示模组上的触控物的位置进行检测,以使得可以通过低成本的方式,在大尺寸或超大尺寸的显示模组上实 现触控功能。同时由于天线单元23辐射的电磁波覆盖像素单元10以及像素单元10上方区域,因此手指在不接触显示模组时,也可以实现对触控功能。进一步的,可以通过手势对显示模组进行控制。
在一些实施例中,每一组天线单元23生成距离信息的步骤可以各自独立进行,也可以至少部分同时进行,以下仅以每组天线单元23通过时分复用的方式生成距离信息为例进行说明。第j+1组天线单元23辐射所述第一频率的电磁波的步骤和生成所述第j组位置信息的步骤同时发生;1≤j<N;j为正整数。
在本公开实施例中,N的值可以是3,因此j的值分别为1和2。以下仅以N=3,j=1,2为例进行说明。在该种情况下,如图14所示,位置检测方法包括:
S101、第1组天线单元23辐射第一频率的电磁波。
S102、第1组天线单元23接收手指所反射的电磁波。
S103、数据处理单元31根据所述第一频率和手指所反射的电磁波的频率生成第i组距离信息。
当步骤S103发生时:
S201、第2组天线单元23辐射第一频率的电磁波。
S202、第2组天线单元23接收手指所反射的电磁波。
S203、数据处理单元31根据所述第一频率和手指所反射的电磁波的频率生成第i组距离信息。
当步骤S203发生时:
S301、第3组天线单元23辐射第一频率的电磁波。
S302、第2组天线单元23接收手指所反射的电磁波。
S303、数据处理单元31根据所述第一频率和手指所反射的电磁波的频率生成第i组距离信息。
步骤S303完成后:
S4、数据处理单元31根据3组距离信息,生成待检测的触控物的位置。
至此完成一次位置检测。在本公开实施例中,通过时分复用的方式,缩短了进行一次位置检测所需要的时间。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (18)

  1. 一种显示模组,其包括显示面板和集成在所述显示面板上多个天线单元;其中,所述显示面板包括多个像素单元,且任一所述像素单元由至少三个所述天线单元在中心频率下辐射的波束覆盖。
  2. 根据权利要求1所述的显示模组,其中,所述显示面板包括相对设置的第一基板和第二基板,以及设置在所述第一基板和所述第二基板之间的液晶层;所述天线单元包括相对设置的第一辐射部和参考电极;所述第一辐射部集成在所述第二基板上,所述参考电极集成在所述第一基板上。
  3. 根据权利要求2所述的显示模组,其中,所述第一基板包括第一衬底基板,以及设置在第一衬底基板靠近所述液晶层一侧的驱动层;所述驱动层作为各所述天线单元的参考电极。
  4. 根据权利要求2所述的显示模组,其中,所述第二基板包括第二衬底基板,以及设置在所述第二衬底基板靠近所述液晶层一侧的彩膜层;所述第一辐射部设置在所述第一衬底基板背离所述彩膜层的一侧。
  5. 根据权利要求2所述的显示模组,其中,所述第二基板上集成有第一辐射层;所述第一辐射部位于第一辐射层;所述第一辐射层还包括与所述位于所述相邻设置的所述第一辐射部之间的冗余辐射部,且所述冗余辐射部与所述第一辐射部断开设置。
  6. 根据权利要求5所述的显示模组,其中,所述第一辐射层包括金属网格结构;所述金属网格结构包括交叉设置的多条第一金属线和第二金属线;所述第一金属线和所述第二金属线均在所述第一辐射部和所述冗余辐射部的交界位置断开设置。
  7. 根据权利要求1所述的显示模组,其中,所述天线单元为定向天线。
  8. 根据权利要求7所述的显示模组,其中,所述天线单元为八木天线。
  9. 根据权利要求1所述的显示模组,其中,所述天线单元所辐射的电磁波的频段为毫米波频段。
  10. 根据权利要求1所述的显示模组,其中,还包括:控制单元和数据 处理单元;
    所述控制单元,被配置为根据待检测的触控物的位置,控制所述天线单元辐射第一频率的电磁波并接收所述触控物所反射的电磁波;
    所述数据处理单元,被配置为根据所述第一频率和所述反射的电磁波的频率,生成所述待检测的触控物的位置。
  11. 根据权利要求1所述的显示模组,其中,还包括:信号传输单元;
    所述信号传输单元的第一端和所述天线单元通信连接,所述信号传输单元的第二端和数据处理单元和/或控制单元通信连接。
  12. 根据权利要求11所述的显示模组,其中,所述信号传输单元包括第一信号传输部、第二信号传输部以及设置在所述第一信号传输部和所述第二传输部之间的第三信号传输部;所述第一信号传输部覆盖所述信号传输单元的第一端;所述第二信号传输部覆盖所述信号传输单元的第二端;
    所述第一信号传输部和所述第二信号传输部包括ACF胶;
    所述第三信号传输部包括LCP基材以及信号线。
  13. 根据权利要求12所述的显示模组,其中,所述信号线包括微带线或带状线中的至少一种。
  14. 根据权利要求10所述的显示模组,其中,所述数据处理单元包括信号发生子模块、功分子模块、混频子模块、中频信号处理子模块、模数转换子模块、基带信号处理子模块以及位置计算子模块;
    所述信号发生子模块,被配置为根据所述第一频率,生成第一参考信号;
    所述功分子模块,被配置为根据所述第一参考信号,生成第一子参考信号;所述第一子参考信号的频率包括所述第一频率;
    所述混频子模块,被配置为根据所述天线单元接收到的反射信号和所述第一子参考信号,生成第一混频信号;
    所述中频信号处理子模块,被配置为根据所述第一混频信号,生成第一中频信号;
    所述模数转换子模块,被配置为根据所述第一中频信号,生成第一数字信号;
    所述基带信号处理子模块,被配置为根据所述第一数字信号,生成距离信息;
    所述位置计算子模块,被配置为根据多组所述距离信息,生成所述待检测触控物的位置。
  15. 一种位置检测方法,可应用于如权利要求1-14中任一项所述的显示模组中,所述显示模组包括N组天线单元,所述位置检测方法包括:
    第i组天线单元辐射所述第一频率的电磁波;所述第i组天线单元接收所述第二频率的电磁波;所述数据处理单元根据所述第一频率和所述第二频率生成第i组距离信息;
    所述数据处理单元根据N组所述距离信息,生成所述待检测的触控物的位置;1≤i≤N,3≤N;i和N都为正整数。
  16. 根据权利要求15所述的位置检测方法,其中,第j+1组天线单元辐射所述第一频率的电磁波的步骤和生成所述第j组位置信息的步骤同时发生;1≤j<N;j为正整数。
  17. 一种电子终端,其包括如权利要求1-14中任一项所述的显示模组。
  18. 根据权利要求17所述的电子终端,其中,所述电子终端包括冰箱、洗衣机以及显示装置中的任意一种。
PCT/CN2022/083731 2022-03-29 2022-03-29 一种显示模组、电子终端以及位置检测方法 WO2023184160A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/083731 WO2023184160A1 (zh) 2022-03-29 2022-03-29 一种显示模组、电子终端以及位置检测方法
CN202280000606.8A CN117337424A (zh) 2022-03-29 2022-03-29 一种显示模组、电子终端以及位置检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/083731 WO2023184160A1 (zh) 2022-03-29 2022-03-29 一种显示模组、电子终端以及位置检测方法

Publications (1)

Publication Number Publication Date
WO2023184160A1 true WO2023184160A1 (zh) 2023-10-05

Family

ID=88198395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083731 WO2023184160A1 (zh) 2022-03-29 2022-03-29 一种显示模组、电子终端以及位置检测方法

Country Status (2)

Country Link
CN (1) CN117337424A (zh)
WO (1) WO2023184160A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076911A (zh) * 2011-10-25 2013-05-01 美国博通公司 包括三维触摸屏的便携式计算设备
FR3006435A1 (fr) * 2013-05-31 2014-12-05 Peugeot Citroen Automobiles Sa Dispositif de saisie de donnees sans contact
CN104932692A (zh) * 2015-06-24 2015-09-23 京东方科技集团股份有限公司 三维触摸感测方法、三维显示设备、可穿戴设备
CN106932947A (zh) * 2017-05-16 2017-07-07 京东方科技集团股份有限公司 阵列基板、显示面板和人机交互终端
CN106950748A (zh) * 2017-05-12 2017-07-14 京东方科技集团股份有限公司 显示装置、彩膜基板、移动终端及其驱动方法
CN110275616A (zh) * 2019-06-14 2019-09-24 Oppo广东移动通信有限公司 手势识别模组、控制方法和电子装置
CN111201506A (zh) * 2017-08-18 2020-05-26 苹果公司 检测对表面的触摸输入
WO2021147945A1 (zh) * 2020-01-22 2021-07-29 京东方科技集团股份有限公司 天线单元及其制备方法、显示装置以及电子设备
WO2021233284A1 (zh) * 2020-05-20 2021-11-25 维沃移动通信有限公司 检测方法、装置和电子设备
WO2021233283A1 (zh) * 2020-05-20 2021-11-25 维沃移动通信有限公司 电子设备
CN114002874A (zh) * 2020-07-28 2022-02-01 京东方科技集团股份有限公司 显示面板及显示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103076911A (zh) * 2011-10-25 2013-05-01 美国博通公司 包括三维触摸屏的便携式计算设备
FR3006435A1 (fr) * 2013-05-31 2014-12-05 Peugeot Citroen Automobiles Sa Dispositif de saisie de donnees sans contact
CN104932692A (zh) * 2015-06-24 2015-09-23 京东方科技集团股份有限公司 三维触摸感测方法、三维显示设备、可穿戴设备
CN106950748A (zh) * 2017-05-12 2017-07-14 京东方科技集团股份有限公司 显示装置、彩膜基板、移动终端及其驱动方法
CN106932947A (zh) * 2017-05-16 2017-07-07 京东方科技集团股份有限公司 阵列基板、显示面板和人机交互终端
CN111201506A (zh) * 2017-08-18 2020-05-26 苹果公司 检测对表面的触摸输入
CN110275616A (zh) * 2019-06-14 2019-09-24 Oppo广东移动通信有限公司 手势识别模组、控制方法和电子装置
WO2021147945A1 (zh) * 2020-01-22 2021-07-29 京东方科技集团股份有限公司 天线单元及其制备方法、显示装置以及电子设备
WO2021233284A1 (zh) * 2020-05-20 2021-11-25 维沃移动通信有限公司 检测方法、装置和电子设备
WO2021233283A1 (zh) * 2020-05-20 2021-11-25 维沃移动通信有限公司 电子设备
CN114002874A (zh) * 2020-07-28 2022-02-01 京东方科技集团股份有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN117337424A (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
JP5530515B2 (ja) 液晶パネル、液晶表示装置
US10599278B2 (en) Touch structure, array substrate and display device
US10705367B2 (en) Touch display panel having touch line formed on the same layer as the gate line
US10394354B2 (en) Array substrate, touch display panel and display apparatus
US10790310B2 (en) Array substrate, display panel and display device with metal connecting member to reduce contact resistance
US11216099B2 (en) Array substrate and manufacturing method thereof, display panel and display device
US10067613B2 (en) Touch display device
US10649589B2 (en) Touch apparatus, electronic device and preparing method
US11334179B2 (en) Display panel to mitigate short-circuiting between touch electrodes, and display device
US20210026178A1 (en) Array substrate, display panel and man-machine interactive terminal
WO2016086525A1 (zh) 触控显示装置
US10671224B2 (en) Cell touch screen, method for driving the same, and display device
WO2021233284A1 (zh) 检测方法、装置和电子设备
US11502159B2 (en) Touch display panel and display device
EP2490108A2 (en) Touch Screen
CN104793828A (zh) 阵列基板、显示面板及显示装置
WO2021233283A1 (zh) 电子设备
US20180059848A1 (en) Display substrate, in-cell touch screen and display device
US20220019303A1 (en) Touch substrate, display panel, and display device
US10459552B2 (en) Array substrate, method for manufacturing the same and method for driving the same, touch panel and display device
WO2020020347A1 (zh) 功能面板及其制造方法、终端
US20210333910A1 (en) Touch Display Substrate, Touch Display Method and Touch Display Device
US11099440B2 (en) Display device and array substrate thereof
WO2023184160A1 (zh) 一种显示模组、电子终端以及位置检测方法
US11989368B2 (en) Display panel and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000606.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934016

Country of ref document: EP

Kind code of ref document: A1