WO2023182702A1 - Artificial intelligence diagnosis data processing device and method for digital pathology images - Google Patents

Artificial intelligence diagnosis data processing device and method for digital pathology images Download PDF

Info

Publication number
WO2023182702A1
WO2023182702A1 PCT/KR2023/003136 KR2023003136W WO2023182702A1 WO 2023182702 A1 WO2023182702 A1 WO 2023182702A1 KR 2023003136 W KR2023003136 W KR 2023003136W WO 2023182702 A1 WO2023182702 A1 WO 2023182702A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
polygon
artificial intelligence
images
converting
Prior art date
Application number
PCT/KR2023/003136
Other languages
French (fr)
Korean (ko)
Inventor
윤길중
김승종
Original Assignee
주식회사 몰팩바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 몰팩바이오 filed Critical 주식회사 몰팩바이오
Publication of WO2023182702A1 publication Critical patent/WO2023182702A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Definitions

  • the present invention converts a pathology slide image into matrix data, corrects the converted matrix data according to a preset threshold, converts the obtained corrected image into a polygon image, and calculates the polygon area from the converted polygon image. After that, the extracted polygons extracted by filtering according to the calculated polygon area are converted to a file format for artificial intelligence diagnosis and returned, thereby providing artificial intelligence diagnosis data of digital pathology images that can effectively process pathology images for artificial intelligence learning. It relates to a processing device and method.
  • an artificial intelligence (AI) system is a computer system that implements human-level intelligence, and refers to a system in which machines learn and make decisions on their own and become smarter.
  • Machine learning refers to an algorithm that classifies and learns the characteristics of input data on its own
  • element technologies include machine learning such as deep learning. It is a technology that utilizes algorithms and can consist of technical fields such as linguistic understanding, visual understanding, inference/prediction, knowledge expression, and motion control.
  • fields where artificial intelligence technology is applied may include, for example, linguistic understanding, visual understanding, reasoning and prediction, knowledge expression, and motion control.
  • fields where artificial intelligence technology is applied may include, for example, linguistic understanding, visual understanding, reasoning and prediction, knowledge expression, and motion control.
  • visual understanding for example, object recognition and object tracking
  • technologies such as image search, person recognition, scene understanding, spatial understanding, and image improvement.
  • CNN convolutional neural network
  • This CNN is a model that mimics the human brain function created based on the assumption that when a person recognizes an object, he or she extracts the basic features of the object and then performs complex calculations in the brain to recognize the object based on the results.
  • Various filters to extract image features through convolution operations and pooling or non-linear activation functions to add non-linear characteristics can be used.
  • the present invention converts a pathology slide image into matrix data, corrects the converted matrix data according to a preset threshold, converts the obtained correction image into a polygon image, and calculates the polygon area from the converted polygon image, Artificial intelligence diagnosis data processing of digital pathology images that can effectively process artificial intelligence diagnosis data of pathology images by converting and returning the extracted polygons extracted by filtering according to the calculated polygon area into a file format for artificial intelligence diagnosis.
  • the purpose is to provide a device and method.
  • an image pre-processing unit for converting a pathology slide image into matrix data; a smoothing processor that corrects the converted matrix data according to a preset threshold; a polygon generator that converts the correction image obtained through the smoothing processing unit into a polygon image; an area calculation unit that calculates the polygon area from the converted polygon image; And a result output unit that converts the extracted polygon extracted by filtering according to the calculated polygon area into a file format for artificial intelligence diagnosis and returns it.
  • An artificial intelligence diagnostic data processing device for a digital pathology image including a.
  • the image pre-processing unit divides the pathology slide image into patch images of a preset size, and then divides the pathology slide image into patch images of a preset size, and then divides the pathological slide image into patch images of a preset size, and then outputs binary data results according to the diagnosis results of each patch image.
  • An artificial intelligence diagnostic data processing device for converting digital pathology images into matrix data may be provided.
  • the smoothing processor applies a Gaussian blur effect (Gaussian smoothing, Gaussian blur) to the matrix data and then corrects the artificial intelligence diagnostic data of the digital pathology image according to the preset threshold.
  • Gaussian blur effect Gaussian smoothing, Gaussian blur
  • a processing device may be provided.
  • the polygon generator converts the coordinates of the correction image into points and then converts them into the polygon image using a concave hull algorithm.
  • An intelligent diagnostic data processing device may be provided.
  • the result output unit may be provided with an artificial intelligence diagnostic data processing device for a digital pathology image that calculates the polygon area using a shoelace formula in the polygon image. .
  • converting a pathology slide image into matrix data Obtaining a corrected image by correcting the converted matrix data according to a preset threshold; Converting the obtained correction image into a polygon image; Calculating a polygon area from the converted polygon image; and converting and returning the extracted polygons extracted by filtering according to the calculated polygon area into a file format for artificial intelligence diagnosis.
  • a method of processing artificial intelligence diagnostic data of a digital pathology image may be provided, including:
  • the step of converting to matrix data includes dividing the pathology slide image into patch images of a preset size, and then binary data results output according to the diagnosis results of each patch image.
  • An artificial intelligence diagnostic data processing method of a digital pathology image that converts the value into the matrix data may be provided.
  • the step of acquiring the corrected image includes applying Gaussian smoothing (Gaussian blur) to the matrix data and then correcting the digital pathology image according to the preset threshold.
  • Gaussian smoothing Gaussian blur
  • An artificial intelligence diagnostic data processing method may be provided.
  • the step of converting into a polygon image includes converting the coordinates of the correction image into points and then converting the digital image into the polygon image using a concave hull algorithm.
  • a method of processing artificial intelligence diagnostic data of pathology images may be provided.
  • the step of calculating the polygon area includes an artificial intelligence diagnostic data processing method of a digital pathology image that calculates the polygon area using a shoelace formula in the polygon image.
  • the present invention converts a pathology slide image into matrix data, corrects the converted matrix data according to a preset threshold, converts the obtained correction image into a polygon image, and calculates the polygon area from the converted polygon image, By converting and returning the extracted polygons extracted by filtering according to the calculated polygon area into a file format for artificial intelligence diagnosis, the processing of artificial intelligence diagnosis data of pathology images can be effectively performed.
  • FIG. 1 is a block diagram showing an artificial intelligence diagnostic data processing device for digital pathology images according to an embodiment of the present invention
  • FIGS. 2 to 10 are diagrams for explaining the processing of pathology images in an artificial intelligence diagnostic data processing device for digital pathology images according to an embodiment of the present invention
  • Figure 11 is a flow chart showing the process of processing digital pathology images into artificial intelligence diagnosis data according to another embodiment of the present invention.
  • 12 to 22 are diagrams for explaining a process of processing digital pathology images into artificial intelligence diagnosis data according to another embodiment of the present invention.
  • Figure 1 is a block diagram showing an artificial intelligence diagnosis data processing device of a digital pathology image according to an embodiment of the present invention
  • Figures 2 to 10 are artificial intelligence diagnosis data of a digital pathology image according to an embodiment of the present invention. This is a diagram to explain processing a pathology image in a processing device.
  • the artificial intelligence diagnostic data processing device for digital pathology images includes an image pre-processing unit 110, a smoothing processing unit 120, a polygon generating unit 130, and area calculation. It may include a unit 140, a result output unit 150, etc.
  • the image preprocessing unit 110 converts the pathology slide image into matrix data. After dividing the pathology slide image into patch images of a preset size, the binary data result value is output according to the diagnosis result of each patch image. It can be converted to matrix data.
  • the slide image when diagnosing a pathology slide using artificial intelligence, the slide image exceeds tens of thousands to hundreds of thousands of pixels, so it must be divided according to a preset size for diagnosis.
  • the divided patch images can be analyzed, learned, and diagnosed using artificial intelligence.
  • misdiagnosis may occur in a local area during the analysis, learning, and diagnosis process of artificial intelligence, and there was a problem in clearly recognizing the boundary of the diagnosis area when diagnosing each part on a patch image basis, which will be described later.
  • the image processing process must be performed.
  • a classification method using CNN convolution neural network
  • binary data of 0 or 1 is output for each patch image as a result
  • the entire pathology slide image is divided into patches of a preset size.
  • each patch image is diagnosed and output as binary data, and then the output binary data can be converted into matrix data.
  • a converted image as shown in FIG. 4 can be obtained.
  • the smoothing processing unit 120 corrects the converted matrix data according to a preset threshold. After applying Gaussian blurring (Gaussian blur) to the matrix data converted through the image preprocessing unit 110, the preset It can be corrected according to the threshold.
  • Gaussian blurring Gaussian blur
  • the matrix data converted through the image pre-processing unit 110 has a size of (existing image resolution/patch size), and is spaced apart from the main area (area of a certain size or more) of the converted image in the form of a small dot.
  • correction can be made by readjusting the resulting value of the matrix data using a preset threshold to dichotomize it based on a certain value.
  • the Gaussian blur effect emphasizes the main area of the converted image or the surrounding background by smoothing, blurring, blurring, crushing, or distorting a specific area or the entire conversion image of matrix data.
  • blurring noise in the converted image can be primarily removed as shown in FIG. 5.
  • the converted image to which the Gaussian blur effect is applied can be obtained as a corrected image as shown in FIG. 6 by applying a preset threshold.
  • the polygon generator 130 converts the corrected image obtained through the smoothing processing unit 120 into a polygon image. After converting the coordinates of the corrected image into points, a polygon is created using the concave hull algorithm. It can be converted to an image.
  • a polygon can be drawn using an algorithm and converted into a polygon image with a plurality of polygons as shown in FIG. 8.
  • the Concave Hull algorithm creates a convex polygon (polygon) using some of the points when there are multiple points on a two-dimensional plane, and creates a polygon to include all points inside the convex polygon (polygon). This can be done by setting one reference point with the smallest Y coordinate in the point conversion image, aligning other points in a counterclockwise direction based on the set reference point, and sequentially connecting the outer points according to the angle, as shown in FIG. You can create a polygon image like this.
  • the area calculation unit 140 calculates the polygon area from the converted polygon image, and can calculate the polygon area using a shoelace formula from the polygon image generated through the polygon generation unit 130.
  • polygon image generated through the polygon generator 130
  • area of each polygon can be calculated using the new root formula for each polygon.
  • the shoelace formula is a formula for calculating the area of a polygon when the coordinates of the vertices on the coordinate plane are known.
  • the area of the polygon can be calculated by crossing and multiplying the coordinate values of each vertex of the polygon.
  • the area calculation unit 140 can use the area calculated from the corresponding pathology slide image to specify the main area of each polygon as shown in FIG. 9.
  • the result output unit 150 can convert the extracted polygons extracted by filtering according to the calculated polygon area into a file format for artificial intelligence diagnosis and return it.
  • the result output unit 150 can compare the polygon area calculated through the area calculation unit 140 with a preset size condition.
  • the preset size condition may be based on 1/2 of the size (i.e., area) of the largest polygon.
  • polygons whose size is relatively smaller than the preset size condition are removed, polygons that are the same as the preset size condition or relatively large are left, and then only the extracted polygons remain, and the extracted polygon image can be saved as a polygon. It can be converted to a set file format (e.g. xml, json, etc.), and the converted extracted polygon image can be returned for artificial intelligence learning, diagnostic data visualization, etc.
  • a set file format e.g. xml, json, etc.
  • the extracted polygon image can be converted into an image in which a plurality of extracted polygons are applied to the input pathology slide image as shown in FIG. 10.
  • one embodiment of the present invention converts the pathology slide image into matrix data, corrects the converted matrix data according to a preset threshold, converts the obtained correction image into a polygon image, and converts the polygon image into a polygon image. After calculating the area, the extracted polygons filtered according to the calculated polygon area are converted to a file format for artificial intelligence diagnosis and returned, thereby effectively processing artificial intelligence diagnosis data of pathology images.
  • Figure 11 is a flow chart showing the process of processing digital pathology images into artificial intelligence diagnosis data according to another embodiment of the present invention
  • Figures 12 to 22 are flow charts showing the process of processing digital pathology images into artificial intelligence diagnosis data according to another embodiment of the present invention. This is a diagram to explain the process of processing data.
  • the image pre-processing unit 110 can convert the pathology slide image into matrix data (step 1110).
  • the image pre-processing unit 110 divides the pathology slide image into patch images of a preset size, and then converts the pathological slide image into a binary data result value output according to the diagnosis result of each patch image. This can be converted to matrix data.
  • a classification method using CNN convolution neural network
  • binary data of 0 or 1 for each patch image is set to be output as a result, and the overall result as shown in FIG. 12
  • a patch image is created by dividing the pathology slide image into a specific image size, and as shown in Figure 13, artificial intelligence converts the patch images for which the diagnosis has been completed into binary data, and then uses the location information and diagnosis information of the patch image.
  • a converted image as shown in FIG. 14 can be obtained.
  • (label 0) indicates positive and (label 1) indicates negative
  • the diagnosis is made as 0 or 1
  • the location information By backtracking, diagnostic information can be output as binary data of 0 or 1 at the corresponding location.
  • the smoothing processing unit 120 can obtain a corrected image by correcting the matrix data converted through the image pre-processing unit 110 according to a preset threshold (step 1120).
  • the smoothing unit 120 may apply a Gaussian blur effect to the matrix data and then correct it according to a preset threshold.
  • the matrix data converted through the image pre-processing unit 110 has a size of (existing image resolution/patch size), and is spaced apart from the main area (area of a certain size or more) of the converted image as shown in Figure 14.
  • the resulting value of the matrix data is obtained by using a preset threshold to dichotomize based on a certain value. By correcting by readjusting , a corrected image as shown in FIG. 16 can be obtained.
  • the polygon generator 130 can convert the corrected image obtained through the smoothing processor 120 into a polygon image (1130).
  • the polygon generator 130 may convert the coordinates of the correction image into points and then convert them into a polygon image using the concave hull algorithm.
  • the correction image shown in FIG. 16 can be displayed as shown in FIG. 17 when applied to a pathology slide image, where the coordinates of each midpoint of the correction image obtained through the smoothing processing unit 120 are points.
  • polygons are drawn using the concave hull algorithm for the positive part of the result, and a plurality of polygons as shown in FIG. 19 are generated.
  • a polygon image It can be converted to .
  • the area calculation unit 140 can calculate the polygon area from the polygon image converted through the polygon generation unit 130 (step 1140).
  • the area calculation unit 140 can calculate the polygon area using the shoelace formula in the polygon image.
  • the polygon image generated through the polygon generation unit 130 includes a plurality of There may be polygons, and the area of each polygon can be calculated using the new root formula for each polygon.
  • the area calculation unit 140 can use the area calculated from the corresponding pathology slide image to specify the main area of each polygon as shown in FIG. 20.
  • the result output unit 150 can convert the extracted polygons extracted by filtering according to the polygon area calculated through the area calculation unit 140 into a file format for artificial intelligence diagnosis and return it (step 1150).
  • the result output unit 150 applies the polygon image in which a plurality of polygons are generated to the input pathology slide image, as shown in FIG. 20.
  • the main area of each polygon can be expressed as an original application image that is specified, and the polygon area calculated through the area calculation unit 140 can be compared with a preset size condition.
  • the preset size condition may be based on 1/2 of the size (i.e., area) of the largest polygon.
  • another embodiment of the present invention converts the pathology slide image into matrix data, corrects the converted matrix data according to a preset threshold, converts the obtained correction image into a polygon image, and converts the polygon image into a polygon image. After calculating the area, the extracted polygons filtered according to the calculated polygon area are converted to a file format for artificial intelligence diagnosis and returned, thereby effectively processing artificial intelligence diagnosis data of pathology images.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Primary Health Care (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Biophysics (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computing Systems (AREA)
  • Pathology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Geometry (AREA)

Abstract

The present invention relates to an artificial intelligence diagnosis data processing device and method for digital pathology images. The artificial intelligence diagnosis data processing device comprises: an image pre-treatment unit for converting pathology slice images into matrix data; a smoothing processing unit for correcting the converted matrix data according to a preset threshold value; a polygon generation unit for converting a correction image obtained through the smoothing process unit into a polygon image; an area calculation unit for calculating a polygon's area in the converted polygon image; and a result output unit that converts an extraction polygon, which is extracted by filtering according to the calculated polygon's area, into a file format for artificial intelligence diagnosis and returns same. Thus, artificial intelligence diagnosis data of pathology images can be effectively processed.

Description

디지털 병리이미지의 인공지능 진단 데이터 처리 장치 및 그 방법Artificial intelligence diagnostic data processing device and method for digital pathology images
본 발명은 본 발명은 병리슬라이드이미지를 매트릭스데이터로 변환하고, 변환된 매트릭스데이터를 기 설정된 임계값에 따라 보정하며, 획득된 보정이미지를 폴리곤이미지로 변환하고, 변환된 폴리곤이미지에서 폴리곤 넓이를 산출한 후에, 산출된 폴리곤 넓이에 따라 필터링하여 추출된 추출폴리곤을 인공지능 진단을 위한 파일형식으로 변환하여 반환함으로써, 인공지능 학습을 위해 병리이미지를 효과적으로 처리할 수 있는 디지털 병리이미지의 인공지능 진단 데이터 처리 장치 및 그 방법에 관한 것이다.The present invention converts a pathology slide image into matrix data, corrects the converted matrix data according to a preset threshold, converts the obtained corrected image into a polygon image, and calculates the polygon area from the converted polygon image. After that, the extracted polygons extracted by filtering according to the calculated polygon area are converted to a file format for artificial intelligence diagnosis and returned, thereby providing artificial intelligence diagnosis data of digital pathology images that can effectively process pathology images for artificial intelligence learning. It relates to a processing device and method.
잘 알려진 바와 같이, 인공지능(AI : artificial intelligence) 시스템은 인간 수준의 지능을 구현하는 컴퓨터 시스템으로, 기계가 스스로 학습하고 판단하며 똑똑해지는 시스템을 의미한다.As is well known, an artificial intelligence (AI) system is a computer system that implements human-level intelligence, and refers to a system in which machines learn and make decisions on their own and become smarter.
이러한 인공지능 시스템은 사용할수록 인식률이 향상되고, 사용자의 취향을 더욱 정확하게 이해할 수 있게 되기 때문에, 기존의 규칙 기반 스마트 시스템은 점차 딥러닝 기반의 인공지능 시스템으로 대체되고 있다.Because the recognition rate of these artificial intelligence systems improves as they are used and they can more accurately understand users' tastes, existing rule-based smart systems are gradually being replaced by deep learning-based artificial intelligence systems.
상술한 바와 같은 인공지능 기술은 기계 학습 및 기계 학습을 활용한 요소 기술들로 구성되는데, 기계 학습은 입력 데이터들의 특징을 스스로 분류하여 학습하는 알고리즘을 의미하며, 요소 기술은 딥러닝 등의 기계학습 알고리즘을 활용하는 기술로서, 언어적 이해, 시각적 이해, 추론/예측, 지식 표현, 동작 제어 등의 기술 분야로 구성될 수 있다.Artificial intelligence technology as described above consists of machine learning and element technologies utilizing machine learning. Machine learning refers to an algorithm that classifies and learns the characteristics of input data on its own, and element technologies include machine learning such as deep learning. It is a technology that utilizes algorithms and can consist of technical fields such as linguistic understanding, visual understanding, inference/prediction, knowledge expression, and motion control.
여기에서, 인공지능 기술이 응용되는 분야는 예를 들어 언어적 이해, 시각적 이해, 추론 및 예측, 지식 표현, 동작 제어 등을 포함할 수 있는데, 특히 시각적 이해 분야에서는 예를 들어 객체인식, 객체추적, 영상검색, 사람인식, 장면이해, 공간이해, 영상개선 등의 기술을 포함할 수 있다.Here, fields where artificial intelligence technology is applied may include, for example, linguistic understanding, visual understanding, reasoning and prediction, knowledge expression, and motion control. In particular, in the field of visual understanding, for example, object recognition and object tracking , may include technologies such as image search, person recognition, scene understanding, spatial understanding, and image improvement.
최근에는 인공지능 알고리즘 중에서 딥러닝(deep learning)이 다양한 분야에서 각광받고 있는데, 특히 객체인식(object recognition) 분야에서는 딥러닝의 일종인 CNN(convolutional neural network)이라는 기술이 각광받고 있다.Recently, among artificial intelligence algorithms, deep learning has been in the spotlight in various fields. Especially in the field of object recognition, a technology called convolutional neural network (CNN), a type of deep learning, is in the spotlight.
이러한 CNN은 사람이 물체를 인식할 때 물체의 기본적인 특징들을 추출한 다음 뇌 속에서 복잡한 계산을 거쳐 그 결과를 기반으로 물체를 인식한다는 가정을 기반으로 만들어진 사람의 뇌 기능을 모사한 모델로서, 일반적으로 컨볼루션(convolution) 연산을 통해 영상의 특징을 추출하기 위한 다양한 필터와 비선형적인 특성을 더하기 위한 풀링(pooling) 또는 비선형활성화(non-linear activation) 함수(예를 들면, sigmod, ReLU(rectified linear unit) 등을 포함함) 등을 사용할 수 있다.This CNN is a model that mimics the human brain function created based on the assumption that when a person recognizes an object, he or she extracts the basic features of the object and then performs complex calculations in the brain to recognize the object based on the results. Various filters to extract image features through convolution operations and pooling or non-linear activation functions to add non-linear characteristics (e.g., sigmod, ReLU (rectified linear unit) ), etc.) can be used.
한편, 현대의학에서 효과적인 질병의 진단 및 환자의 치료를 위해 의료영상은 매우 중요한 도구로 사용되고 있고, 영상기술발달은 더욱 정교한 의료영상 데이터를 획득할 수 있도록 하지만, 그에 대응하여 데이터의 양은 점차 방대해지고 있어 의료영상 데이터를 인간의 시각에 의존하여 분석하는 데 어려움이 많다.Meanwhile, in modern medicine, medical imaging is used as a very important tool for effective disease diagnosis and patient treatment. Developments in imaging technology enable the acquisition of more sophisticated medical imaging data, but in response, the amount of data is becoming increasingly vast. Therefore, it is difficult to analyze medical image data relying on human vision.
상술한 바와 같은 문제점을 해결하기 위해 다양한 의료 기기(예를 들면, 초음파, CT(computed tomography), MRI(magnetic resonance imaging) 등)를 통해 방대한 병리이미지를 획득하고, 인공지능을 이용하여 방대한 병리이미지를 분석 및 학습함으로써 질병을 진단하는 다양한 기술이 연구 개발되고 있는데, 인공지능 진단 성능을 향상시키기 위한 처리 기술도 함께 연구되고 있다.In order to solve the above-mentioned problems, extensive pathological images are acquired through various medical devices (e.g., ultrasound, CT (computed tomography), MRI (magnetic resonance imaging), etc.), and artificial intelligence is used to obtain extensive pathological images. Various technologies for diagnosing diseases by analyzing and learning are being researched and developed, and processing technologies to improve artificial intelligence diagnostic performance are also being researched.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
1. 한국등록특허 제10-2237696호(2021.04.02.등록)1. Korean Patent No. 10-2237696 (registered on 2021.04.02)
본 발명은 병리슬라이드이미지를 매트릭스데이터로 변환하고, 변환된 매트릭스데이터를 기 설정된 임계값에 따라 보정하며, 획득된 보정이미지를 폴리곤이미지로 변환하고, 변환된 폴리곤이미지에서 폴리곤 넓이를 산출한 후에, 산출된 폴리곤 넓이에 따라 필터링하여 추출된 추출폴리곤을 인공지능 진단을 위한 파일형식으로 변환하여 반환함으로써, 병리이미지의 인공지능 진단 데이터의 처리를 효과적으로 이행할 수 있는 디지털 병리이미지의 인공지능 진단 데이터 처리 장치 및 그 방법을 제공하고자 한다.The present invention converts a pathology slide image into matrix data, corrects the converted matrix data according to a preset threshold, converts the obtained correction image into a polygon image, and calculates the polygon area from the converted polygon image, Artificial intelligence diagnosis data processing of digital pathology images that can effectively process artificial intelligence diagnosis data of pathology images by converting and returning the extracted polygons extracted by filtering according to the calculated polygon area into a file format for artificial intelligence diagnosis. The purpose is to provide a device and method.
본 발명의 실시예들의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The purposes of the embodiments of the present invention are not limited to the purposes mentioned above, and other purposes not mentioned will be clearly understood by those skilled in the art from the description below. .
본 발명의 일 측면에 따르면, 병리슬라이드이미지를 매트릭스데이터로 변환하는 이미지전처리부; 상기 변환된 매트릭스데이터를 기 설정된 임계값에 따라 보정하는 평활화처리부; 상기 평활화처리부를 통해 획득된 보정이미지를 폴리곤이미지로 변환하는 폴리곤생성부; 상기 변환된 폴리곤이미지에서 폴리곤 넓이를 산출하는 넓이산출부; 및 상기 산출된 폴리곤 넓이에 따라 필터링하여 추출된 추출폴리곤을 인공지능 진단을 위한 파일형식으로 변환하여 반환하는 결과출력부;를 포함하는 디지털 병리이미지의 인공지능 진단 데이터 처리 장치가 제공될 수 있다.According to one aspect of the present invention, an image pre-processing unit for converting a pathology slide image into matrix data; a smoothing processor that corrects the converted matrix data according to a preset threshold; a polygon generator that converts the correction image obtained through the smoothing processing unit into a polygon image; an area calculation unit that calculates the polygon area from the converted polygon image; And a result output unit that converts the extracted polygon extracted by filtering according to the calculated polygon area into a file format for artificial intelligence diagnosis and returns it. An artificial intelligence diagnostic data processing device for a digital pathology image including a.
또한, 본 발명의 일 측면에 따르면, 상기 이미지전처리부는, 상기 병리슬라이드이미지를 기 설정된 크기의 패치이미지로 분할한 후, 각각의 상기 패치이미지의 진단 결과에 따라 출력되는 바이너리데이터 결과값으로 하여 상기 매트릭스데이터로 변환하는 디지털 병리이미지의 인공지능 진단 데이터 처리 장치가 제공될 수 있다.In addition, according to one aspect of the present invention, the image pre-processing unit divides the pathology slide image into patch images of a preset size, and then divides the pathology slide image into patch images of a preset size, and then divides the pathological slide image into patch images of a preset size, and then outputs binary data results according to the diagnosis results of each patch image. An artificial intelligence diagnostic data processing device for converting digital pathology images into matrix data may be provided.
또한, 본 발명의 일 측면에 따르면, 상기 평활화처리부는, 상기 매트릭스데이터를 가우시안흐림효과(Gaussian smoothing, Gaussian blur)를 적용한 후에, 상기 기 설정된 임계값에 따라 보정하는 디지털 병리이미지의 인공지능 진단 데이터 처리 장치가 제공될 수 있다.In addition, according to one aspect of the present invention, the smoothing processor applies a Gaussian blur effect (Gaussian smoothing, Gaussian blur) to the matrix data and then corrects the artificial intelligence diagnostic data of the digital pathology image according to the preset threshold. A processing device may be provided.
또한, 본 발명의 일 측면에 따르면, 상기 폴리곤생성부는, 상기 보정이미지의 좌표를 점으로 변환한 후에, 컨케이브헐알고리즘(concave hull algorithm)을 이용하여 상기 폴리곤이미지로 변환하는 디지털 병리이미지의 인공지능 진단 데이터 처리 장치가 제공될 수 있다.In addition, according to one aspect of the present invention, the polygon generator converts the coordinates of the correction image into points and then converts them into the polygon image using a concave hull algorithm. An intelligent diagnostic data processing device may be provided.
또한, 본 발명의 일 측면에 따르면, 상기 결과출력부는, 상기 폴리곤이미지에서 신발끈공식(shoelace formula)을 이용하여 상기 폴리곤 넓이를 산출하는 디지털 병리이미지의 인공지능 진단 데이터 처리 장치가 제공될 수 있다.In addition, according to one aspect of the present invention, the result output unit may be provided with an artificial intelligence diagnostic data processing device for a digital pathology image that calculates the polygon area using a shoelace formula in the polygon image. .
본 발명의 다른 측면에 따르면, 병리슬라이드이미지를 매트릭스데이터로 변환하는 단계; 상기 변환된 매트릭스데이터를 기 설정된 임계값에 따라 보정하여 보정이미지를 획득하는 단계; 상기 획득된 보정이미지를 폴리곤이미지로 변환하는 단계; 상기 변환된 폴리곤이미지에서 폴리곤 넓이를 산출하는 단계; 및 상기 산출된 폴리곤 넓이에 따라 필터링하여 추출된 추출폴리곤을 인공지능 진단을 위한 파일형식으로 변환하여 반환하는 단계:를 포함하는 디지털 병리이미지의 인공지능 진단 데이터 처리 방법이 제공될 수 있다.According to another aspect of the present invention, converting a pathology slide image into matrix data; Obtaining a corrected image by correcting the converted matrix data according to a preset threshold; Converting the obtained correction image into a polygon image; Calculating a polygon area from the converted polygon image; and converting and returning the extracted polygons extracted by filtering according to the calculated polygon area into a file format for artificial intelligence diagnosis. A method of processing artificial intelligence diagnostic data of a digital pathology image may be provided, including:
또한, 본 발명의 다른 측면에 따르면, 상기 매트릭스데이터로 변환하는 단계는, 상기 병리슬라이드이미지를 기 설정된 크기의 패치이미지로 분할한 후, 각각의 상기 패치이미지의 진단 결과에 따라 출력되는 바이너리데이터 결과값으로 하여 상기 매트릭스데이터로 변환하는 디지털 병리이미지의 인공지능 진단 데이터 처리 방법이 제공될 수 있다.In addition, according to another aspect of the present invention, the step of converting to matrix data includes dividing the pathology slide image into patch images of a preset size, and then binary data results output according to the diagnosis results of each patch image. An artificial intelligence diagnostic data processing method of a digital pathology image that converts the value into the matrix data may be provided.
또한, 본 발명의 다른 측면에 따르면, 상기 보정이미지를 획득하는 단계는, 상기 매트릭스데이터를 가우시안흐림효과(Gaussian smoothing, Gaussian blur)를 적용한 후에, 상기 기 설정된 임계값에 따라 보정하는 디지털 병리이미지의 인공지능 진단 데이터 처리 방법이 제공될 수 있다.In addition, according to another aspect of the present invention, the step of acquiring the corrected image includes applying Gaussian smoothing (Gaussian blur) to the matrix data and then correcting the digital pathology image according to the preset threshold. An artificial intelligence diagnostic data processing method may be provided.
또한, 본 발명의 다른 측면에 따르면, 상기 폴리곤이미지로 변환하는 단계는, 상기 보정이미지의 좌표를 점으로 변환한 후에, 컨케이브헐알고리즘(concave hull algorithm)을 이용하여 상기 폴리곤이미지로 변환하는 디지털 병리이미지의 인공지능 진단 데이터 처리 방법이 제공될 수 있다.In addition, according to another aspect of the present invention, the step of converting into a polygon image includes converting the coordinates of the correction image into points and then converting the digital image into the polygon image using a concave hull algorithm. A method of processing artificial intelligence diagnostic data of pathology images may be provided.
또한, 본 발명의 다른 측면에 따르면, 상기 폴리곤 넓이를 산출하는 단계는, 상기 폴리곤이미지에서 신발끈공식(shoelace formula)을 이용하여 상기 폴리곤 넓이를 산출하는 디지털 병리이미지의 인공지능 진단 데이터 처리 방법이 제공될 수 있다.In addition, according to another aspect of the present invention, the step of calculating the polygon area includes an artificial intelligence diagnostic data processing method of a digital pathology image that calculates the polygon area using a shoelace formula in the polygon image. can be provided.
본 발명은 병리슬라이드이미지를 매트릭스데이터로 변환하고, 변환된 매트릭스데터를 기 설정된 임계값에 따라 보정하며, 획득된 보정이미지를 폴리곤이미지로 변환하고, 변환된 폴리곤이미지에서 폴리곤 넓이를 산출한 후에, 산출된 폴리곤 넓이에 따라 필터링하여 추출된 추출폴리곤을 인공지능 진단을 위한 파일형식으로 변환하여 반환함으로써, 병리이미지의 인공지능 진단 데이터의 처리를 효과적으로 이행할 수 있다.The present invention converts a pathology slide image into matrix data, corrects the converted matrix data according to a preset threshold, converts the obtained correction image into a polygon image, and calculates the polygon area from the converted polygon image, By converting and returning the extracted polygons extracted by filtering according to the calculated polygon area into a file format for artificial intelligence diagnosis, the processing of artificial intelligence diagnosis data of pathology images can be effectively performed.
도 1은 본 발명의 일 실시예에 따른 디지털 병리이미지의 인공지능 진단 데이터 처리 장치를 나타낸 블록구성도이고,1 is a block diagram showing an artificial intelligence diagnostic data processing device for digital pathology images according to an embodiment of the present invention;
도 2 내지 도 10은 본 발명의 일 실시예에 따른 디지털 병리이미지의 인공지능 진단 데이터 처리 장치에서 병리이미지를 처리하는 것을 설명하기 위한 도면이며,2 to 10 are diagrams for explaining the processing of pathology images in an artificial intelligence diagnostic data processing device for digital pathology images according to an embodiment of the present invention;
도 11은 본 발명의 다른 실시예에 따른 디지털 병리이미지를 인공지능 진단 데이터로 처리하는 과정을 나타낸 플로우차트이고,Figure 11 is a flow chart showing the process of processing digital pathology images into artificial intelligence diagnosis data according to another embodiment of the present invention;
도 12 내지 도 22는 본 발명의 다른 실시예에 따른 디지털 병리이미지를 인공지능 진단 데이터로 처리하는 과정을 설명하기 위한 도면이다.12 to 22 are diagrams for explaining a process of processing digital pathology images into artificial intelligence diagnosis data according to another embodiment of the present invention.
본 발명의 실시예들에 대한 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the embodiments of the present invention and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms. The present embodiments are merely provided to ensure that the disclosure of the present invention is complete and to be understood by those skilled in the art. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.
본 발명의 실시예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. In describing embodiments of the present invention, if a detailed description of a known function or configuration is judged to unnecessarily obscure the gist of the present invention, the detailed description will be omitted. The terms described below are terms defined in consideration of functions in the embodiments of the present invention, and may vary depending on the intention or custom of the user or operator. Therefore, the definition should be made based on the contents throughout this specification.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings.
도 1은 본 발명의 일 실시예에 따른 디지털 병리이미지의 인공지능 진단 데이터 처리 장치를 나타낸 블록구성도이고, 도 2 내지 도 10은 본 발명의 일 실시예에 따른 디지털 병리이미지의 인공지능 진단 데이터 처리 장치에서 병리이미지를 처리하는 것을 설명하기 위한 도면이다.Figure 1 is a block diagram showing an artificial intelligence diagnosis data processing device of a digital pathology image according to an embodiment of the present invention, and Figures 2 to 10 are artificial intelligence diagnosis data of a digital pathology image according to an embodiment of the present invention. This is a diagram to explain processing a pathology image in a processing device.
도 1 내지 도 10을 참조하면, 본 발명의 일 실시예에 따른 디지털 병리이미지의 인공지능 진단 데이터 처리 장치는 이미지전처리부(110), 평활화처리부(120), 폴리곤생성부(130), 넓이산출부(140), 결과출력부(150) 등을 포함할 수 있다.1 to 10, the artificial intelligence diagnostic data processing device for digital pathology images according to an embodiment of the present invention includes an image pre-processing unit 110, a smoothing processing unit 120, a polygon generating unit 130, and area calculation. It may include a unit 140, a result output unit 150, etc.
이미지전처리부(110)는 병리슬라이드이미지를 매트릭스데이터로 변환하는 것으로, 병리슬라이드이미지를 기 설정된 크기의 패치이미지로 분할한 후, 각각의 패치이미지의 진단 결과에 따라 출력되는 바이너리데이터 결과값으로 하여 매트릭스데이터로 변환할 수 있다.The image preprocessing unit 110 converts the pathology slide image into matrix data. After dividing the pathology slide image into patch images of a preset size, the binary data result value is output according to the diagnosis result of each patch image. It can be converted to matrix data.
예를 들면, 도 2에 도시한 바와 같이 인공지능으로 병리슬라이드를 진단할 경우 슬라이드이미지가 수만에서 수십만 픽셀을 초과하기 때문에 기 설정된 크기에 따라 분할하여 진단해야만 한다.For example, as shown in Figure 2, when diagnosing a pathology slide using artificial intelligence, the slide image exceeds tens of thousands to hundreds of thousands of pixels, so it must be divided according to a preset size for diagnosis.
이에 따라, 전체 슬라이드이미지를 기 설정된 크기(예를 들면, 256픽셀, 512픽셀 등)의 패치이미지로 분할한 후에, 분할된 패치이미지에 대해 인공지능으로 분석, 학습 및 진단할 수 있다.Accordingly, after dividing the entire slide image into patch images of a preset size (e.g., 256 pixels, 512 pixels, etc.), the divided patch images can be analyzed, learned, and diagnosed using artificial intelligence.
이 경우 인공지능의 분석, 학습 및 진단 과정 중에 국소적인 부분에서 오진단이 발생할 수 있고, 패치이미지 단위로 각각의 부분부분 진단하기에는 진단영역의 경계부분을 명확하게 인식하기 어려운 문제가 있었기 때문에, 후술하는 과정의 이미지 처리 과정을 수행해야만 한다.In this case, misdiagnosis may occur in a local area during the analysis, learning, and diagnosis process of artificial intelligence, and there was a problem in clearly recognizing the boundary of the diagnosis area when diagnosing each part on a patch image basis, which will be described later. The image processing process must be performed.
먼저, 인공지능 모델 중에서 CNN(convolution neural network)를 이용한 분류방식을 적용하되, 각 패치이미지 당 0 또는 1의 바이너리데이터가 결과로 출력되는 것으로 하여 설정하고, 전체 병리슬라이드이미지를 기 설정된 크기의 패치이미지로 분할한 후에, 각각의 패치이미지를 진단하여 바이너리데이터로 출력한 후에, 출력된 바이너리데이터로 매트릭스데이터로 변환할 수 있다.First, a classification method using CNN (convolution neural network) is applied among the artificial intelligence models, but binary data of 0 or 1 is output for each patch image as a result, and the entire pathology slide image is divided into patches of a preset size. After dividing into images, each patch image is diagnosed and output as binary data, and then the output binary data can be converted into matrix data.
예를 들면, 도 3에 도시한 바와 같은 병리슬라이드이미지를 분할하고, 분할된 패치이미지 당 한 픽셀의 결과로 하여 매트릭스데이터로 변환할 경우 도 4에 도시한 바와 같은 변환이미지가 획득될 수 있다.For example, when a pathology slide image as shown in FIG. 3 is divided and converted into matrix data as a result of one pixel per divided patch image, a converted image as shown in FIG. 4 can be obtained.
평활화처리부(120)는 변환된 매트릭스데이터를 기 설정된 임계값에 따라 보정하는 것으로, 이미지전처리부(110)를 통해 변환된 매트릭스데이터를 가우시안흐림효과(Gaussian smoothing, Gaussian blur)를 적용한 후에, 기 설정된 임계값에 따라 보정할 수 있다.The smoothing processing unit 120 corrects the converted matrix data according to a preset threshold. After applying Gaussian blurring (Gaussian blur) to the matrix data converted through the image preprocessing unit 110, the preset It can be corrected according to the threshold.
예를 들면, 이미지전처리부(110)를 통해 변환된 매트릭스데이터는 (기존이미지해상도/패치사이즈)의 크기를 갖는데, 변환이미지의 주영역(일정 크기 이상인 영역)에서 이격되어 작은 점과 같은 형태로 나타나는 값들(노이즈)을 제거하기 위해 가우시안흐림효과를 적용한 후에, 일정 수치를 기준으로 양분화시키기 위해 기 설정된 임계값을 이용하여 메트릭스데이터의 결과값을 재조정하는 방식으로 보정할 수 있다.For example, the matrix data converted through the image pre-processing unit 110 has a size of (existing image resolution/patch size), and is spaced apart from the main area (area of a certain size or more) of the converted image in the form of a small dot. After applying a Gaussian blur effect to remove the appearing values (noise), correction can be made by readjusting the resulting value of the matrix data using a preset threshold to dichotomize it based on a certain value.
여기에서, 가우시안흐림효과는 매트릭스데이터의 변환이미지의 특정 영역이나 전체를 부드럽게 하거나, 뿌옇게 만들거나, 흐릿하게 하거나, 뭉개거나, 왜곡하는 등의 방식으로 변환이미지의 주영역을 강조하거나, 주변의 배경을 흐리게 하여 도 5에 도시한 바와 같이 변환이미지의 노이즈를 일차적으로 제거할 수 있다.Here, the Gaussian blur effect emphasizes the main area of the converted image or the surrounding background by smoothing, blurring, blurring, crushing, or distorting a specific area or the entire conversion image of matrix data. By blurring, noise in the converted image can be primarily removed as shown in FIG. 5.
이 후에, 가우시안흐림효과가 적용된 변환이미지는 기 설정된 임계값을 적용하여 도 6에 도시한 바와 같은 보정이미지가 획득될 수 있다.After this, the converted image to which the Gaussian blur effect is applied can be obtained as a corrected image as shown in FIG. 6 by applying a preset threshold.
폴리곤생성부(130)는 평활화처리부(120)를 통해 획득된 보정이미지를 폴리곤이미지로 변환하는 것으로, 보정이미지의 좌표를 점으로 변환한 후에, 컨케이브헐알고리즘(concave hull algorithm)을 이용하여 폴리곤이미지로 변환할 수 있다.The polygon generator 130 converts the corrected image obtained through the smoothing processing unit 120 into a polygon image. After converting the coordinates of the corrected image into points, a polygon is created using the concave hull algorithm. It can be converted to an image.
예를 들면, 평활화처리부(120)를 통해 획득된 보정이미지의 각 중간지점 좌표를 점으로 변환하여 도 7에 도시한 바와 같은 점변환이미지로 변환한 후에, 그 결과값 중에서 양성부분을 컨케이브헐알고리즘을 이용하여 폴리곤을 그려 도 8에 도시한 바와 같은 복수의 폴리곤이 생성된 폴리곤이미지로 변환할 수 있다.For example, after converting the coordinates of each midpoint of the correction image obtained through the smoothing processing unit 120 into points and converting them into a point conversion image as shown in FIG. 7, the positive part of the result is concatenated. A polygon can be drawn using an algorithm and converted into a polygon image with a plurality of polygons as shown in FIG. 8.
여기에서, 컨케이브헐알고리즘은 2차원 평면상에 복수의 점이 있을 경우 그 점들 중 일부를 이용하여 볼록 다각형(폴리곤)을 만들되, 볼록 다각형(폴리곤) 내부에 모든 점을 포함시키도록 폴리곤을 생성할 수 있는데, 점변환이미지에서 Y좌표가 가장 작은 하나의 기준점을 설정하고, 설정된 기준점을 기준으로 다른 점들을 반시계방향으로 정렬시키며, 각도에 따라 순착적으로 외곽점들을 연결하여 도 8에 도시한 바와 같은 폴리곤이미지를 생성할 수 있다.Here, the Concave Hull algorithm creates a convex polygon (polygon) using some of the points when there are multiple points on a two-dimensional plane, and creates a polygon to include all points inside the convex polygon (polygon). This can be done by setting one reference point with the smallest Y coordinate in the point conversion image, aligning other points in a counterclockwise direction based on the set reference point, and sequentially connecting the outer points according to the angle, as shown in FIG. You can create a polygon image like this.
넓이산출부(140)는 변환된 폴리곤이미지에서 폴리곤 넓이를 산출하는 것으로, 폴리곤생성부(130)를 통해 생성된 폴리곤이미지에서 신발끈공식(shoelace formula)을 이용하여 폴리곤 넓이를 산출할 수 있다.The area calculation unit 140 calculates the polygon area from the converted polygon image, and can calculate the polygon area using a shoelace formula from the polygon image generated through the polygon generation unit 130.
예를 들면, 폴리곤생성부(130)를 통해 생성된 폴리곤이미지에는 복수의 폴리곤이 존재할 수 있는데, 각각의 폴리곤에 대해 신발근공식을 이용하여 각 폴리곤 넓이를 각각 산출할 수 있다.For example, there may be a plurality of polygons in the polygon image generated through the polygon generator 130, and the area of each polygon can be calculated using the new root formula for each polygon.
여기에서, 신발끈공식은 좌표평면 상에서 꼭지점의 좌표를 알 경우 다각형의 면적을 구하는 공식으로, 다각형의 각 꼭지점의 좌표값을 교차하여 곱하는 방식으로 폴리곤의 넓이를 산출할 수 있다.Here, the shoelace formula is a formula for calculating the area of a polygon when the coordinates of the vertices on the coordinate plane are known. The area of the polygon can be calculated by crossing and multiplying the coordinate values of each vertex of the polygon.
이와 같이 각각의 폴리곤 넓이를 산출할 경우 넓이산출부(140)에서는 해당 병리슬라이드이미지에서 산출된 넓이를 이용하여 도 9에 도시한 바와 같이 각각의 폴리곤의 주요 영역을 특정할 수 있다.When calculating the area of each polygon in this way, the area calculation unit 140 can use the area calculated from the corresponding pathology slide image to specify the main area of each polygon as shown in FIG. 9.
결과출력부(150)는 산출된 폴리곤 넓이에 따라 필터링하여 추출된 추출폴리곤을 인공지능 진단을 위한 파일형식으로 변환하여 반환할 수 있다.The result output unit 150 can convert the extracted polygons extracted by filtering according to the calculated polygon area into a file format for artificial intelligence diagnosis and return it.
예를 들면, 복수의 폴리곤이 생성된 폴리곤이미지를 입력된 병리슬라이드이미지에 적용할 경우 도 9에 도시한 바와 같이 각 폴리곤의 주요 영역이 특정되는 원본적용이미지로 나타낼 수 있는데, 결과출력부(150)는 넓이산출부(140)를 통해 산출된 폴리곤 넓이를 기 설정된 크기조건과 비교할 수 있다. 여기에서, 기 설정된 크기조건은 가장 큰 폴리곤 크기(즉, 넓이)의 1/2를 기준으로 할 수 있다.For example, when applying a polygon image in which a plurality of polygons are generated to an input pathology slide image, it can be displayed as an original applied image in which the main area of each polygon is specified, as shown in FIG. 9, and the result output unit 150 ) can compare the polygon area calculated through the area calculation unit 140 with a preset size condition. Here, the preset size condition may be based on 1/2 of the size (i.e., area) of the largest polygon.
그 비교 결과, 기 설정된 크기조건보다 상대적으로 작은 크기인 폴리곤은 제거하고, 기 설정된 크기조건과 같거나, 상대적으로 큰 폴리곤은 잔류시킨 후에, 추출폴리곤만 남은 추출폴리곤이미지를 폴리곤으로 저장할 수 있는 기 설정된 파일포맷(예를 들면, xml, json 등)으로 변환하고, 그 변환된 추출폴리곤이미지를 인공지능 학습, 진단 데이터 가시화 등을 위해 반환할 수 있다.As a result of the comparison, polygons whose size is relatively smaller than the preset size condition are removed, polygons that are the same as the preset size condition or relatively large are left, and then only the extracted polygons remain, and the extracted polygon image can be saved as a polygon. It can be converted to a set file format (e.g. xml, json, etc.), and the converted extracted polygon image can be returned for artificial intelligence learning, diagnostic data visualization, etc.
여기에서, 추출폴리곤이미지는 도 10에 도시한 바와 같이 입력된 병리슬라이드이미지에 복수의 추출폴리곤이 적용된 이미지로 하여 변환할 수 있다.Here, the extracted polygon image can be converted into an image in which a plurality of extracted polygons are applied to the input pathology slide image as shown in FIG. 10.
따라서, 본 발명의 일 실시예는 병리슬라이드이미지를 매트릭스데이터로 변환하고, 변환된 매트릭스데이터를 기 설정된 임계값에 따라 보정하며, 획득된 보정이미지를 폴리곤이미지로 변환하고, 변환된 폴리곤이미지에서 폴리곤 넓이를 산출한 후에, 산출된 폴리곤 넓이에 따라 필터링하여 추출된 추출폴리곤을 인공지능 진단을 위한 파일형식으로 변환하여 반환함으로써, 병리이미지의 인공지능 진단 데이터의 처리를 효과적으로 이행할 수 있다.Therefore, one embodiment of the present invention converts the pathology slide image into matrix data, corrects the converted matrix data according to a preset threshold, converts the obtained correction image into a polygon image, and converts the polygon image into a polygon image. After calculating the area, the extracted polygons filtered according to the calculated polygon area are converted to a file format for artificial intelligence diagnosis and returned, thereby effectively processing artificial intelligence diagnosis data of pathology images.
도 11은 본 발명의 다른 실시예에 따른 디지털 병리이미지를 인공지능 진단 데이터로 처리하는 과정을 나타낸 플로우차트이고, 도 12 내지 도 22는 본 발명의 다른 실시예에 따른 디지털 병리이미지를 인공지능 진단 데이터로 처리하는 과정을 설명하기 위한 도면이다.Figure 11 is a flow chart showing the process of processing digital pathology images into artificial intelligence diagnosis data according to another embodiment of the present invention, and Figures 12 to 22 are flow charts showing the process of processing digital pathology images into artificial intelligence diagnosis data according to another embodiment of the present invention. This is a diagram to explain the process of processing data.
도 11 내지 도 22를 참조하면, 이미지전처리부(110)에서는 병리슬라이드이미지를 매트릭스데이터로 변환할 수 있다(단계1110).Referring to FIGS. 11 to 22, the image pre-processing unit 110 can convert the pathology slide image into matrix data (step 1110).
상기 매트릭스데이터로 변환하는 단계(1110)에서 이미지전처리부(110)에서는, 병리슬라이드이미지를 기 설정된 크기의 패치이미지로 분할한 후, 각각의 패치이미지의 진단 결과에 따라 출력되는 바이너리데이터 결과값으로 하여 매트릭스데이터로 변환할 수 있다.In the step 1110 of converting to matrix data, the image pre-processing unit 110 divides the pathology slide image into patch images of a preset size, and then converts the pathological slide image into a binary data result value output according to the diagnosis result of each patch image. This can be converted to matrix data.
예를 들면, 인공지능 모델 중에서 CNN(convolution neural network)를 이용한 분류방식을 적용하되, 각 패치이미지 당 0 또는 1의 바이너리데이터가 결과로 출력되는 것으로 하여 설정하고, 도 12에 도시한 바와 같은 전체 병리슬라이드이미지를 특정 이미지 크기로 분할하여 패치이미지를 만들고, 도 13에서 도시한 바와 같이 인공지능이 진단을 완료한 패치이미지들을 바이너리데이터로 변환한 후에, 해당 패치이미지의 위치 정보와 진단정보를 이용하여 매트릭스데이터로 변환함으로써, 도 14에 도시한 바와 같은 변환이미지가 획득될 수 있다.For example, among the artificial intelligence models, a classification method using CNN (convolution neural network) is applied, but binary data of 0 or 1 for each patch image is set to be output as a result, and the overall result as shown in FIG. 12 A patch image is created by dividing the pathology slide image into a specific image size, and as shown in Figure 13, artificial intelligence converts the patch images for which the diagnosis has been completed into binary data, and then uses the location information and diagnosis information of the patch image. By converting into matrix data, a converted image as shown in FIG. 14 can be obtained.
여기에서, 도 13에 도시한 바와 같은 패치이미지들에서 (label 0)이 양성, (label 1)이 음성을 나타내며, WSI에서 각 패치에서 이미지를 진단한 뒤 0 혹은 1로 진단을 내리고, 위치정보를 역추적하여 해당 위치에 0 혹은 1의 바이너리데이터로 진단정보를 출력할 수 있다.Here, in the patch images as shown in FIG. 13, (label 0) indicates positive and (label 1) indicates negative, and after diagnosing the image in each patch in WSI, the diagnosis is made as 0 or 1, and the location information By backtracking, diagnostic information can be output as binary data of 0 or 1 at the corresponding location.
그리고, 평활화처리부(120)에서는 이미지전처리부(110)를 통해 변환된 매트릭스데이터를 기 설정된 임계값에 따라 보정하여 보정이미지를 획득할 수 있다(단계1120).Then, the smoothing processing unit 120 can obtain a corrected image by correcting the matrix data converted through the image pre-processing unit 110 according to a preset threshold (step 1120).
상기 보정이미지를 획득하는 단계(1120)에서 평활화처리부(120)에서는, 매트릭스데이터를 가우시안흐림효과를 적용한 후에, 기 설정된 임계값에 따라 보정할 수 있다.In the step 1120 of acquiring the corrected image, the smoothing unit 120 may apply a Gaussian blur effect to the matrix data and then correct it according to a preset threshold.
예를 들면, 이미지전처리부(110)를 통해 변환된 매트릭스데이터는 (기존이미지해상도/패치사이즈)의 크기를 갖는데, 도 14에 도시한 바와 같은 변환이미지의 주영역(일정 크기 이상인 영역)에서 이격되어 작은 점과 같은 형태로 나타나는 값들(노이즈)을 제거하기 위해 도 15에 도시한 바와 같이 가우시안흐림효과를 적용한 후에, 일정 수치를 기준으로 양분화시키기 위해 기 설정된 임계값을 이용하여 메트릭스데이터의 결과값을 재조정하는 방식으로 보정함으로써, 도 16에 도시한 바와 같은 보정이미지가 획득될 수 있다.For example, the matrix data converted through the image pre-processing unit 110 has a size of (existing image resolution/patch size), and is spaced apart from the main area (area of a certain size or more) of the converted image as shown in Figure 14. After applying the Gaussian blur effect as shown in FIG. 15 to remove the values (noise) that appear in the form of small dots, the resulting value of the matrix data is obtained by using a preset threshold to dichotomize based on a certain value. By correcting by readjusting , a corrected image as shown in FIG. 16 can be obtained.
다음에, 폴리곤생성부(130)에서는 평활화처리부(120)를 통해 획득된 보정이미지를 폴리곤이미지로 변환할 수 있다(1130).Next, the polygon generator 130 can convert the corrected image obtained through the smoothing processor 120 into a polygon image (1130).
상기 폴리곤이미지로 변환하는 단계(1130)에서 폴리곤생성부(130)에서는, 보정이미지의 좌표를 점으로 변환한 후에, 컨케이브헐알고리즘을 이용하여 폴리곤이미지로 변환할 수 있다.In the step 1130 of converting to a polygon image, the polygon generator 130 may convert the coordinates of the correction image into points and then convert them into a polygon image using the concave hull algorithm.
예를 들면, 도 16에 도시한 바와 같은 보정이미지는 병리슬라이드이미지에 적용할 경우 도 17에 도시한 바와 같이 나타낼 수 있는데, 평활화처리부(120)를 통해 획득된 보정이미지의 각 중간지점 좌표를 점으로 변환하여 도 18에 도시한 바와 같은 점변환이미지로 변환한 후에, 그 결과값 중에서 양성부분을 컨케이브헐알고리즘을 이용하여 폴리곤을 그려 도 19에 도시한 바와 같은 복수의 폴리곤이 생성된 폴리곤이미지로 변환할 수 있다.For example, the correction image shown in FIG. 16 can be displayed as shown in FIG. 17 when applied to a pathology slide image, where the coordinates of each midpoint of the correction image obtained through the smoothing processing unit 120 are points. After converting it into a point conversion image as shown in FIG. 18, polygons are drawn using the concave hull algorithm for the positive part of the result, and a plurality of polygons as shown in FIG. 19 are generated. A polygon image. It can be converted to .
그리고, 넓이산출부(140)에서는 폴리곤생성부(130)를 통해 변환된 폴리곤이미지에서 폴리곤 넓이를 산출할 수 있다(단계1140).Also, the area calculation unit 140 can calculate the polygon area from the polygon image converted through the polygon generation unit 130 (step 1140).
상기 폴리곤 넓이를 산출하는 단계(1140)에서 넓이산출부(140)에서는, 폴리곤이미지에서 신발끈공식을 이용하여 폴리곤 넓이를 산출할 수 있는데, 폴리곤생성부(130)를 통해 생성된 폴리곤이미지에는 복수의 폴리곤이 존재할 수 있으며, 각각의 폴리곤에 대해 신발근공식을 이용하여 각 폴리곤 넓이를 각각 산출할 수 있다.In the step of calculating the polygon area (1140), the area calculation unit 140 can calculate the polygon area using the shoelace formula in the polygon image. The polygon image generated through the polygon generation unit 130 includes a plurality of There may be polygons, and the area of each polygon can be calculated using the new root formula for each polygon.
이와 같이 각각의 폴리곤 넓이를 산출할 경우 넓이산출부(140)에서는 해당 병리슬라이드이미지에서 산출된 넓이를 이용하여 도 20에 도시한 바와 같이 각각의 폴리곤의 주요 영역을 특정할 수 있다.When calculating the area of each polygon in this way, the area calculation unit 140 can use the area calculated from the corresponding pathology slide image to specify the main area of each polygon as shown in FIG. 20.
다음에, 결과출력부(150)에서는 넓이산출부(140)를 통해 산출된 폴리곤 넓이에 따라 필터링하여 추출된 추출폴리곤을 인공지능 진단을 위한 파일형식으로 변환하여 반환할 수 있다(단계1150).Next, the result output unit 150 can convert the extracted polygons extracted by filtering according to the polygon area calculated through the area calculation unit 140 into a file format for artificial intelligence diagnosis and return it (step 1150).
상기 인공지능 진단을 위한 파일형식으로 변환하여 반환하는 단계(1150)에서 결과출력부(150)에서는, 복수의 폴리곤이 생성된 폴리곤이미지를 입력된 병리슬라이드이미지에 적용할 경우 도 20에 도시한 바와 같이 각 폴리곤의 주요 영역이 특정되는 원본적용이미지로 나타낼 수 있는데, 넓이산출부(140)를 통해 산출된 폴리곤 넓이를 기 설정된 크기조건과 비교할 수 있다. 여기에서, 기 설정된 크기조건은 가장 큰 폴리곤 크기(즉, 넓이)의 1/2를 기준으로 할 수 있다.In the step 1150 of converting and returning the file format for artificial intelligence diagnosis, the result output unit 150 applies the polygon image in which a plurality of polygons are generated to the input pathology slide image, as shown in FIG. 20. Likewise, the main area of each polygon can be expressed as an original application image that is specified, and the polygon area calculated through the area calculation unit 140 can be compared with a preset size condition. Here, the preset size condition may be based on 1/2 of the size (i.e., area) of the largest polygon.
그 비교 결과, 기 설정된 크기조건보다 상대적으로 작은 크기인 폴리곤은 제거하고, 기 설정된 크기조건과 같거나, 상대적으로 큰 폴리곤은 잔류시킨 후에, 도 21에 도시한 바와 같이 추출폴리곤만 남은 추출폴리곤이미지를 도 22에 도시한 바와 같이 폴리곤으로 저장할 수 있는 기 설정된 파일포맷(예를 들면, xml, json 등)으로 변환하고, 그 변환된 추출폴리곤이미지를 인공지능 학습, 진단 데이터 가시화 등을 위해 반환할 수 있다.As a result of the comparison, polygons whose size is relatively smaller than the preset size condition are removed, polygons that are the same as the preset size condition or relatively large are left, and then only the extracted polygons remain, as shown in FIG. 21. As shown in Figure 22, convert to a preset file format (e.g., xml, json, etc.) that can be saved as a polygon, and return the converted extracted polygon image for artificial intelligence learning, diagnostic data visualization, etc. You can.
따라서, 본 발명의 다른 실시예는 병리슬라이드이미지를 매트릭스데이터로 변환하고, 변환된 매트릭스데이터를 기 설정된 임계값에 따라 보정하며, 획득된 보정이미지를 폴리곤이미지로 변환하고, 변환된 폴리곤이미지에서 폴리곤 넓이를 산출한 후에, 산출된 폴리곤 넓이에 따라 필터링하여 추출된 추출폴리곤을 인공지능 진단을 위한 파일형식으로 변환하여 반환함으로써, 병리이미지의 인공지능 진단 데이터의 처리를 효과적으로 이행할 수 있다.Therefore, another embodiment of the present invention converts the pathology slide image into matrix data, corrects the converted matrix data according to a preset threshold, converts the obtained correction image into a polygon image, and converts the polygon image into a polygon image. After calculating the area, the extracted polygons filtered according to the calculated polygon area are converted to a file format for artificial intelligence diagnosis and returned, thereby effectively processing artificial intelligence diagnosis data of pathology images.
이상의 설명에서는 본 발명의 다양한 실시예들을 제시하여 설명하였으나 본 발명이 반드시 이에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함을 쉽게 알 수 있을 것이다.In the above description, various embodiments of the present invention have been presented and explained, but the present invention is not necessarily limited thereto, and those skilled in the art will understand various embodiments without departing from the technical spirit of the present invention. It will be easy to see that branch substitutions, transformations, and changes are possible.
[부호의 설명][Explanation of symbols]
110 : 이미지전처리부110: Image pre-processing unit
120 : 평활화처리부120: Smoothing processing unit
130 : 폴리곤생성부130: polygon creation unit
140 : 넓이산출부140: Area calculation unit
150 : 결과출력부150: Result output unit

Claims (10)

  1. 병리슬라이드이미지를 매트릭스데이터로 변환하는 이미지전처리부;An image pre-processing unit that converts pathology slide images into matrix data;
    상기 변환된 매트릭스데이터를 기 설정된 임계값에 따라 보정하는 평활화처리부;a smoothing processor that corrects the converted matrix data according to a preset threshold;
    상기 평활화처리부를 통해 획득된 보정이미지를 폴리곤이미지로 변환하는 폴리곤생성부;a polygon generator that converts the correction image obtained through the smoothing processing unit into a polygon image;
    상기 변환된 폴리곤이미지에서 폴리곤 넓이를 산출하는 넓이산출부; 및an area calculation unit that calculates the polygon area from the converted polygon image; and
    상기 산출된 폴리곤 넓이에 따라 필터링하여 추출된 추출폴리곤을 인공지능 진단을 위한 파일형식으로 변환하여 반환하는 결과출력부;A result output unit that converts and returns the extracted polygons filtered and extracted according to the calculated polygon area into a file format for artificial intelligence diagnosis;
    를 포함하는 디지털 병리이미지의 인공지능 진단 데이터 처리 장치.An artificial intelligence diagnostic data processing device for digital pathology images including.
  2. 청구항 1에 있어서,In claim 1,
    상기 이미지전처리부는,The image preprocessing unit,
    상기 병리슬라이드이미지를 기 설정된 크기의 패치이미지로 분할한 후, 각각의 상기 패치이미지의 진단 결과에 따라 출력되는 바이너리데이터 결과값으로 하여 상기 매트릭스데이터로 변환하는After dividing the pathology slide image into patch images of a preset size, converting the binary data result value output according to the diagnosis result of each patch image into the matrix data.
    디지털 병리이미지의 인공지능 진단 데이터 처리 장치.Artificial intelligence diagnostic data processing device for digital pathology images.
  3. 청구항 2에 있어서,In claim 2,
    상기 평활화처리부는,The smoothing processing unit,
    상기 매트릭스데이터를 가우시안흐림효과(Gaussian smoothing, Gaussian blur)를 적용한 후에, 상기 기 설정된 임계값에 따라 보정하는After applying Gaussian smoothing (Gaussian blur) to the matrix data, correction is performed according to the preset threshold.
    디지털 병리이미지의 인공지능 진단 데이터 처리 장치.Artificial intelligence diagnostic data processing device for digital pathology images.
  4. 청구항 3에 있어서,In claim 3,
    상기 폴리곤생성부는,The polygon generator,
    상기 보정이미지의 좌표를 점으로 변환한 후에, 컨케이브헐알고리즘(concave hull algorithm)을 이용하여 상기 폴리곤이미지로 변환하는After converting the coordinates of the correction image into points, converting them into the polygon image using the concave hull algorithm.
    디지털 병리이미지의 인공지능 진단 데이터 처리 장치.Artificial intelligence diagnostic data processing device for digital pathology images.
  5. 청구항 4에 있어서,In claim 4,
    상기 넓이산출부는,The area calculation unit,
    상기 폴리곤이미지에서 신발끈공식(shoelace formula)을 이용하여 상기 폴리곤 넓이를 산출하는Calculate the polygon area using the shoelace formula in the polygon image.
    디지털 병리이미지의 인공지능 진단 데이터 처리 장치.Artificial intelligence diagnostic data processing device for digital pathology images.
  6. 병리슬라이드이미지를 매트릭스데이터로 변환하는 단계;Converting pathology slide images into matrix data;
    상기 변환된 매트릭스데이터를 기 설정된 임계값에 따라 보정하여 보정이미지를 획득하는 단계;Obtaining a corrected image by correcting the converted matrix data according to a preset threshold;
    상기 획득된 보정이미지를 폴리곤이미지로 변환하는 단계;Converting the obtained correction image into a polygon image;
    상기 변환된 폴리곤이미지에서 폴리곤 넓이를 산출하는 단계; 및Calculating a polygon area from the converted polygon image; and
    상기 산출된 폴리곤 넓이에 따라 필터링하여 추출된 추출폴리곤을 인공지능 진단을 위한 파일형식으로 변환하여 반환하는 단계:Step of converting and returning the extracted polygons extracted by filtering according to the calculated polygon area into a file format for artificial intelligence diagnosis:
    를 포함하는 디지털 병리이미지의 인공지능 진단 데이터 처리 방법.Artificial intelligence diagnostic data processing method of digital pathology images including.
  7. 청구항 6에 있어서,In claim 6,
    상기 매트릭스데이터로 변환하는 단계는,The step of converting to matrix data is,
    상기 병리슬라이드이미지를 기 설정된 크기의 패치이미지로 분할한 후, 각각의 상기 패치이미지의 진단 결과에 따라 출력되는 바이너리데이터 결과값으로 하여 상기 매트릭스데이터로 변환하는After dividing the pathology slide image into patch images of a preset size, the resulting binary data output according to the diagnosis result of each patch image is converted to the matrix data.
    디지털 병리이미지의 인공지능 진단 데이터 처리 방법.Artificial intelligence diagnostic data processing method of digital pathology images.
  8. 청구항 7에 있어서,In claim 7,
    상기 보정이미지를 획득하는 단계는,The step of acquiring the corrected image is,
    상기 매트릭스데이터를 가우시안흐림효과(Gaussian smoothing, Gaussian blur)를 적용한 후에, 상기 기 설정된 임계값에 따라 보정하는After applying Gaussian smoothing (Gaussian blur) to the matrix data, correction is performed according to the preset threshold.
    디지털 병리이미지의 인공지능 진단 데이터 처리 방법.Artificial intelligence diagnostic data processing method of digital pathology images.
  9. 청구항 8에 있어서,In claim 8,
    상기 폴리곤이미지로 변환하는 단계는,The step of converting to a polygon image is,
    상기 보정이미지의 좌표를 점으로 변환한 후에, 컨케이브헐알고리즘(concave hull algorithm)을 이용하여 상기 폴리곤이미지로 변환하는After converting the coordinates of the correction image into points, converting them into the polygon image using the concave hull algorithm.
    디지털 병리이미지의 인공지능 진단 데이터 처리 방법.Artificial intelligence diagnostic data processing method of digital pathology images.
  10. 청구항 9에 있어서,In claim 9,
    상기 폴리곤 넓이를 산출하는 단계는,The step of calculating the polygon area is,
    상기 폴리곤이미지에서 신발끈공식(shoelace formula)을 이용하여 상기 폴리곤 넓이를 산출하는Calculate the polygon area using the shoelace formula in the polygon image.
    디지털 병리이미지의 인공지능 진단 데이터 처리 방법.Artificial intelligence diagnostic data processing method of digital pathology images.
PCT/KR2023/003136 2022-03-25 2023-03-08 Artificial intelligence diagnosis data processing device and method for digital pathology images WO2023182702A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0037038 2022-03-25
KR1020220037038A KR102476888B1 (en) 2022-03-25 2022-03-25 Artificial diagnostic data processing apparatus and its method in digital pathology images

Publications (1)

Publication Number Publication Date
WO2023182702A1 true WO2023182702A1 (en) 2023-09-28

Family

ID=84439339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003136 WO2023182702A1 (en) 2022-03-25 2023-03-08 Artificial intelligence diagnosis data processing device and method for digital pathology images

Country Status (2)

Country Link
KR (1) KR102476888B1 (en)
WO (1) WO2023182702A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102476888B1 (en) * 2022-03-25 2022-12-13 주식회사 몰팩바이오 Artificial diagnostic data processing apparatus and its method in digital pathology images

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102476888B1 (en) * 2022-03-25 2022-12-13 주식회사 몰팩바이오 Artificial diagnostic data processing apparatus and its method in digital pathology images

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102237696B1 (en) 2019-04-29 2021-04-08 계명대학교 산학협력단 A artificial intelligence computer aided diagnosis system for automated analysis of cervical cancer cell image and its control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102476888B1 (en) * 2022-03-25 2022-12-13 주식회사 몰팩바이오 Artificial diagnostic data processing apparatus and its method in digital pathology images

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BANDI, P. ET AL.: "Comparison of different methods for tissue segmentation in histopathological whole- slide images", 2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017, 18 April 2017 (2017-04-18), Melbourne, VIC, Australia, pages 591 - 595, XP055606693, DOI: 10.1109/ ISBI.2017.7950590 *
BEJNORDI, B. E. ET AL.: "Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images", IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 35, no. 9, September 2016 (2016-09-01), pages 2141 - 2150, XP011621364, DOI: 10.1109/TMI.2016.2550620 *
LI GAOHE, ZHANG YANLI, XU BO, LI XINHAO: "Image Analysis and Processing of Skin Cell Injury Based on OpenCV", JOURNAL OF PHYSICS: CONFERENCE SERIES, INSTITUTE OF PHYSICS PUBLISHING, GB, vol. 1237, no. 3, 1 June 2019 (2019-06-01), GB , pages 032003, XP093095786, ISSN: 1742-6588, DOI: 10.1088/1742-6596/1237/3/032003 *
PRATONDO, A. ET AL.: "Integrating machine learning with region-based active contour modelsin medical image segmentation", JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, vol. 43, February 2017 (2017-02-01), pages 1 - 9, XP029888052, DOI: http://dx.doi.org/10.1016/j.jvcir. 2016.11.01 9 *

Also Published As

Publication number Publication date
KR102476888B1 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
CN110909780B (en) Image recognition model training and image recognition method, device and system
JP6947759B2 (en) Systems and methods for automatically detecting, locating, and semantic segmenting anatomical objects
WO2019132590A1 (en) Method and device for transforming image
WO2023182702A1 (en) Artificial intelligence diagnosis data processing device and method for digital pathology images
CN110390674A (en) Image processing method, device, storage medium, equipment and system
WO2021210797A1 (en) Artificial intelligence-based cloud platform system for reading medical images
WO2021210796A1 (en) Artificial intelligence-based cloud platform system for reading medical image
WO2021137454A1 (en) Artificial intelligence-based method and system for analyzing user medical information
WO2019132588A1 (en) Image analysis device and method based on image feature and context
WO2019189972A1 (en) Method for analyzing iris image by artificial intelligence so as to diagnose dementia
WO2024111914A1 (en) Method for converting medical images by means of artificial intelligence with improved versatility and device therefor
CN110197722B (en) AI-CPU system platform
KR102036052B1 (en) Artificial intelligence-based apparatus that discriminates and converts medical image conformity of non-standardized skin image
WO2023008849A1 (en) Three-dimensional tooth image display apparatus and method, and method for training three-dimensional tooth image display apparatus
WO2022158843A1 (en) Method for refining tissue specimen image, and computing system performing same
WO2022139068A1 (en) Deep learning-based lung disease diagnosis assistance system and deep learning-based lung disease diagnosis assistance method
CN115154828A (en) Brain function remodeling method, system and equipment based on brain-computer interface technology
CN114972291A (en) Medical image structured automatic labeling method and system based on hybrid enhanced intelligence
WO2021107661A2 (en) Data processing method using learning model
WO2021015490A2 (en) Method and device for analyzing specific area of image
WO2021015489A2 (en) Method and device for analyzing peculiar area of image by using encoder
CN113796850A (en) Parathyroid MIBI image analysis system, computer device, and storage medium
WO2023018254A1 (en) Method and apparatus for diagnosing skin disease by using image processing
WO2023234757A1 (en) Method and system for processing image for nail analysis, and non-transitory computer-readable recording medium
WO2023033375A1 (en) Dental diagnosis apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775200

Country of ref document: EP

Kind code of ref document: A1