WO2023182512A1 - 特発性肺線維症の治療または予防剤 - Google Patents

特発性肺線維症の治療または予防剤 Download PDF

Info

Publication number
WO2023182512A1
WO2023182512A1 PCT/JP2023/011960 JP2023011960W WO2023182512A1 WO 2023182512 A1 WO2023182512 A1 WO 2023182512A1 JP 2023011960 W JP2023011960 W JP 2023011960W WO 2023182512 A1 WO2023182512 A1 WO 2023182512A1
Authority
WO
WIPO (PCT)
Prior art keywords
inhibitor
molecule
ipf
agent
molecules
Prior art date
Application number
PCT/JP2023/011960
Other languages
English (en)
French (fr)
Inventor
夏目 やよい 北谷
眞里 伊藤
正孝 黒田
賢司 水口
淳 足立
毅 朝長
淳 熊ノ郷
吉人 武田
修功 上田
Original Assignee
国立研究開発法人医薬基盤・健康・栄養研究所
国立大学法人大阪大学
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人医薬基盤・健康・栄養研究所, 国立大学法人大阪大学, 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人医薬基盤・健康・栄養研究所
Publication of WO2023182512A1 publication Critical patent/WO2023182512A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41661,3-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. phenytoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4436Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a heterocyclic ring having sulfur as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/5025Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/565Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids not substituted in position 17 beta by a carbon atom, e.g. estrane, estradiol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present disclosure provides a therapeutic or preventive agent for idiopathic pulmonary fibrosis, a method using the same for treating or preventing a patient suffering from idiopathic pulmonary fibrosis or a patient at risk of suffering from idiopathic pulmonary fibrosis, and a method for treating or preventing idiopathic pulmonary fibrosis using the same.
  • markers or diagnostic agents More specifically, the present disclosure relates to a technology for constructing a molecular network related to a disease based on medical information and using this molecular network to find a target therapeutic agent or diagnostic agent.
  • drug discovery target search is performed by patient stratification, and based on the results, idiopathic
  • target diseases such as pulmonary fibrosis.
  • the present disclosure provides: (Item 1) A treatment or prevention agent for idiopathic pulmonary fibrosis (IPF), comprising an ABL inhibitor, a RET inhibitor, an SRC family inhibitor, an ERK1/2 phosphorylation inhibitor, or a FLT3 inhibitor.
  • the therapeutic or preventive agent has a function as an inhibitor of at least two of ABL inhibitor, RET inhibitor, SRC family inhibitor, ERK1/2 phosphorylation inhibitor, and FLT3 inhibitor. The therapeutic or prophylactic agent described.
  • Preventive agent. The therapeutic or prophylactic agent according to any one of the above items, comprising ponatinib.
  • a composition comprising an ABL inhibitor, a RET inhibitor, an SRC family inhibitor, an ERK1/2 phosphorylation inhibitor, or a FLT3 inhibitor for treating or preventing idiopathic pulmonary fibrosis (IPF).
  • composition contains a drug having a function as an inhibitor of at least two of ABL inhibitor, RET inhibitor, SRC family inhibitor, ERK1/2 phosphorylation inhibitor, and FLT3 inhibitor.
  • the composition according to any one of the above.
  • the composition comprises an agent that functions as an ABL inhibitor, a RET inhibitor, an SRC family inhibitor, an ERK1/2 phosphorylation inhibitor, and a FLT3 inhibitor.
  • the composition comprises an agent that functions as an ABL inhibitor, a RET inhibitor, an SRC family inhibitor, an ERK1/2 phosphorylation inhibitor, and a FLT3 inhibitor.
  • a method for treating or preventing a patient suffering from idiopathic pulmonary fibrosis or at risk of suffering from idiopathic pulmonary fibrosis comprising: a therapeutically or prophylactically effective amount of an ABL inhibitor, a RET inhibitor, an SRC family inhibitor, or an ERK1/2 phosphorus
  • the step of administering administers a drug that functions as an inhibitor of at least two of ABL inhibitors, RET inhibitors, SRC family inhibitors, ERK1/2 phosphorylation inhibitors, and FLT3 inhibitors.
  • a marker or diagnostic agent for idiopathic pulmonary fibrosis comprising a hub molecule in a network constituted by molecules related to one or more medical information for idiopathic pulmonary fibrosis (IPF), or a detection agent thereof.
  • the molecule is ANXA7, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, MRPS17, AGRN, SRI, ALOX12, PEF1, PNP, FHL1, PCMT1, PIP4P2, HEBP2, CAPN1, PLXDC2, PTPN6, LYN, TAOK3, RAN, According to any one of the above items, which is one or more molecules selected from the group consisting of CNP, MIF, CD68, CRKL, EHD3, ITGB3, MFSD2B, PARVB, PCMT1, PLEK, PTP4A2, RAP1B, and TSPAN15. marker or diagnostic agent.
  • (Item A3) Any one of the above items, wherein the molecule is selected from the group consisting of ANXA7, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, MRPS17, SRI, ALOX12, PEF1, PTPN6, LYN, RAN, and MIF. Markers or diagnostic agents as described. (Item A4) The marker or diagnostic agent according to any one of the above items, wherein the molecule is selected from the group consisting of LYN, PTPN6, MIF, and RAN.
  • the marker or diagnostic agent according to any one of the above items comprising a molecule related to multiple medical information of idiopathic pulmonary fibrosis (IPF) or a detection agent thereof.
  • the molecule is one or more molecules selected from the group consisting of ANXA7, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, MRPS17, AGRN, SRI, ALOX12, PEF1. Markers or diagnostic agents as described.
  • the medical information includes characteristic interpretation findings of IPF, medical examination records, and/or blood test values.
  • a marker or diagnostic agent for idiopathic pulmonary fibrosis comprising a molecule that controls the expression of molecules related to multiple medical information for idiopathic pulmonary fibrosis (IPF), or a detection agent thereof.
  • the molecule is ANXA7, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, MRPS17, AGRN, SRI, ALOX12, PEF1, PNP, FHL1, PCMT1, PIP4P2, HEBP2, CAPN1, PLXDC2, PTPN6, LYN, TAOK3, RAN, According to any one of the above items, which is one or more molecules selected from the group consisting of CNP, MIF, CD68, CRKL, EHD3, ITGB3, MFSD2B, PARVB, PCMT1, PLEK, PTP4A2, RAP1B, and TSPAN15. treatment or prevention agent.
  • a therapeutic or prophylactic agent according to any one of the above items comprising a modulator or inhibitor of a molecule associated with multiple clinical information of idiopathic pulmonary fibrosis (IPF).
  • the molecule is one or more molecules selected from the group consisting of ANXA7, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, MRPS17, AGRN, SRI, ALOX12, PEF1.
  • the therapeutic or prophylactic agent described. The therapeutic or preventive agent according to any one of the above items, wherein the medical information includes characteristic interpretation findings of IPF, medical records, and/or blood test values.
  • (Item B8) The therapeutic or prophylactic agent according to any one of the above items, wherein the modulator or inhibitor comprises a compound or drug listed in the right column of the table below.
  • (Item C1) A screening method for searching for therapeutic or preventive agents for a certain disease, the method comprising: identifying molecules with specific network-related regulatory effects associated with the disease; and confirming whether the molecule functions as a therapeutic or preventive agent for the disease.
  • (Item C2) The method according to any of the above items, wherein the network is constructed based on one or more medical information for the disease.
  • (Item C3) The method according to any one of the above items, wherein the medical information includes diagnostic findings characteristic of the disease, medical examination records, and/or blood test values.
  • the step of confirming is (a) collecting information on the molecule using existing databases and/or article information and confirming its relationship with the disease; (b) confirming the expression of the molecule in fibrotic tissue; (c) searching for information on compounds related to the regulation of the molecule using existing databases and/or article information; (d) reproducing the fibrosis phenomenon at the cellular level and confirming the action of the molecule; and/or (e) identifying a network constituted by the molecule and determining whether the network exhibits an abnormality in the disease.
  • IPF idiopathic pulmonary fibrosis
  • the present disclosure makes it possible to search for drug discovery targets in a data-driven manner using human data. This provides a promising drug discovery target for incurable diseases such as idiopathic pulmonary fibrosis, where the disease onset mechanism is not fully understood at the molecular level.
  • FIG. 1A is a flowchart of medical information and serum sample collection in one embodiment of the present disclosure.
  • FIG. 1B is a schematic diagram illustrating a medical information structuring process in an embodiment of the present disclosure.
  • FIG. 2A is a cohort data structure diagram according to an embodiment of the present disclosure.
  • FIG. 2B is a conceptual diagram of an analysis workflow according to an embodiment of the present disclosure.
  • FIG. 2C is a conceptual diagram of subset binding according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram showing protein interactions (PPI) and hub molecules by TargetMine of proteins found through analysis in an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram showing a network formed by core molecules of IPA in an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing a regulatory relationship network by ponatinib based on upstream regulatory factor analysis of the core molecule, in an embodiment of the present disclosure.
  • FIG. 6 is a photograph showing the results of confirming the expression of major proteins in a lesion in an embodiment of the present disclosure (immunostaining, independent cohort).
  • FIG. 7A is a graph showing the EMT inhibitory effect of SB431542.
  • FIG. 7B is a graph showing the EMT inhibitory effect of ponatinib.
  • ABL refers to the abelson (abl) gene or its gene product.
  • Tyrosine protein kinase ABL1 known as ABL1
  • ABL1 is a protein encoded by the ABL1 gene located on chromosome 9 in humans, and is said to be involved in the processes of cell differentiation, cell division, cell adhesion, and/or stress response.
  • c-Abl refers to a gene found within the mammalian genome
  • v-Abl refers to a viral gene originally isolated from the Abelson murine leukemia virus.
  • ABL inhibitor refers to an agent that reduces or eliminates the function of ABL by inhibiting the function, expression, or production of Abl.
  • ABL inhibitors include ponatinib, temozolomide, imatinib, sunitinib, nilotinib, saracatinib, umbralisib, bosutinib, and the like. However, it is not limited to these.
  • RET is a receptor tyrosine kinase that binds extracellular signaling molecules of the GDNF family, and is encoded by the RET gene in humans. Loss-of-function mutations in the RET gene are associated with the development of Hirschsprung's disease, and gain-of-function mutations are associated with various cancer types, including medullary thyroid carcinoma and multiple endocrine adenomatosis types 2A and 2B. related to onset. Mutations in RET have been shown to induce dysregulation of genes encoding inflammatory mediators that regulate thyroid cell function, such as chemokine receptors, cytokines, and metalloproteases.
  • RET inhibitor refers to an agent that reduces or eliminates the function of RET by inhibiting the function, expression, or production of RET.
  • RET inhibitors include, for example, ponatinib, imatinib, sorafenib, sunitinib, cabozantinib, crizotinib, motesanib, pazopanib, alectinib ( Examples include, but are not limited to, alectinib, pralsetinib, selpercatinib, lenvatinib, vandetanib, and the like.
  • SRC Proto-oncogene tyrosine-protein kinase Src
  • Src Proto-oncogene tyrosine-protein kinase Src
  • This protein phosphorylates specific tyrosine residues on other proteins. It has been suggested that increased activity of c-Src tyrosine kinase is associated with cancer progression by promoting other signals.
  • c-Src contains an SH2 domain, an SH3 domain, and a tyrosine kinase domain.
  • Src family kinases There are nine types of Src family kinases: c-Src, YES1, FYN, FGR, LYN, BLK, HCK, and Lck. Expression of these Src family members is not the same across all tissues and cell types. Src, Fyn, Yes are ubiquitously expressed in all cell types, while others are commonly found in hematopoietic cells. Src family kinases are important intracellular signal transduction proteins involved in acute inflammatory responses, and their phosphorylation is one of the factors that determines the level of expression and production of inflammatory mediators.
  • SRC family inhibitor refers to an agent that reduces or eliminates the function of Src family kinases by inhibiting the function, expression, or production of Src family kinases.
  • SRC family inhibitors include ponatinib, afatinib, dasatinib, saracatinib, bosutinib, vandetanib, nilotinib, erlotinib, etc. Examples include, but are not limited to.
  • ERK1/2 is one of the MAPK (mitogen-activated protein kinase) subfamily, and consists of ERK1 with a molecular weight of 44 kDa and ERK2 with a molecular weight of 42 kDa.
  • the primary structure of the amino acid sequences has 85% homology with each other.
  • ERK1/2 transmits signals from cell surface receptors to nuclear transcription factors and regulates various cellular processes.
  • ERK1/2 is known to be stimulated by cytokines, growth factors, irradiation, fluctuations in osmotic pressure and temperature, physical stress, and the like.
  • Activation of ERK1 and ERK2 is caused by dual phosphorylation of the TEY motif of the human Thr202/Tyr204 sequence or the rat/mouse Thr183/Tyr185 sequence of upstream MAP kinases MEK1 and MEK2.
  • Activated MAP kinase translocates to the nucleus, where it phosphorylates transcription factors that regulate cell proliferation, apoptosis, differentiation, etc.
  • ERK1/2 phosphorylation inhibitor refers to an agent that reduces or eliminates the function of ERK1/2 by inhibiting the function, expression, or production of ERK1/2.
  • ERK1/2 inhibitors include ponatinib, vemurafenib, daberafenib, and selumetinib. , encorafenib, binimetinib, etc., but are not limited to these.
  • FLT3 is a protein encoded by the FLT3 gene in humans, and is also known as CD135 or fetal liver kinase-2 (Flk2).
  • FLT3 is a cytokine receptor belonging to receptor tyrosine kinase class III. It is expressed on the surface of many hematopoietic progenitor cells, and FLT3 signal transduction is important for the normal development of hematopoietic stem cells and progenitor cells.
  • the FLT3 gene is one of the most frequently mutated genes in acute myeloid leukemia (AML), and high levels of wild-type FLT3 are found in the blast cells of some AML patients without mutations in FLT3. It has been reported. These high values may be associated with poor prognosis.
  • FLT3 inhibitor refers to an agent that reduces or eliminates the function of FLT3 by inhibiting the function, expression, or production of FLT3.
  • FLT3 inhibitors include ponatinib, nintedanib, regorafenib, sunitinib, midostaurin, zotiraciclib, sorafenib, cabozantinib, crizotinib ( crizotinib), imatinib, quizartinib, famitinib, crenolanib, pralsetinib, gilteritinib, dovitinib, brigatinib, fedratinib, pexidartinib Bu ( Examples include, but are not limited to, pexidartinib, amvatinib, and lestaurtinib.
  • a certain substance may have only one inhibitory effect of each, but may have two or more inhibitory effects. It is understood that the same substance can have the inhibitory effect of
  • medical information is interpreted in a broad sense and refers to any information that a medical professional has learned about a patient's physical condition, medical condition, treatment, etc. during the course of medical treatment. Examples include diagnostic findings, medical records, and/or blood test values characteristic of the disease.
  • molecules related to medical information refer to molecules whose function, expression, production, etc. change in response to changes in medical information.
  • a "hub molecule” refers to a molecule that frequently interacts with other molecules in a network constructed by multiple molecules.
  • a hub molecule refers to a molecule that, compared to other molecules, modulating the hub molecule modulates more networks than modulating other molecules.
  • Treatment means either prophylactic and/or therapeutic in a broad sense, and in a narrow sense, treatment of at least one symptom of a disease or condition with the aim of improving (curing) a pathological condition. to alleviate, attenuate, or ameliorate, prevent additional symptoms, inhibit a disease or condition, e.g., prevent the development of a disease or condition, alleviate a disease or condition, or cause regression of a disease or condition. Includes causing, alleviating a condition caused by a disease or condition, or cessation of symptoms of a disease or condition.
  • treatment refers to alleviating, attenuating, or improving at least one symptom of a disease or condition for the purpose of improving (curing) a pathological condition.
  • prevention refers to clinical prevention of a disease state in a subject who is exposed to or may be susceptible to the disease state, but who is not yet experiencing or exhibiting symptoms of the disease state. Indicates that symptoms will not develop.
  • gene refers to a factor that defines genetic traits, and “gene” may be a nucleic acid itself, and refers to “polynucleotide,” “oligonucleotide,” “RNA,” and “DNA.” sometimes refers to a protein, polypeptide, oligopeptide or peptide encoded by a nucleic acid, and can be understood appropriately by those skilled in the art depending on the context. Genes encoding such proteins may be endogenous or exogenous to the target organism. Furthermore, these known genes can be used as appropriate. As a gene, it can be used regardless of its origin.
  • genes may be derived from organisms of other species or genera other than the target organism, or may be derived from organisms such as animals, plants, fungi (molds, etc.), and bacteria. It may be something. Information regarding such genes can be appropriately obtained by those skilled in the art by accessing websites such as NCBI (National Center for Biotechnology Information; http://www.ncbi.nlm.nih.gov). These genes may be genes encoding proteins that have a certain relationship with sequence information disclosed in databases, etc., as long as they have each activity.
  • protein As used herein, "protein,” “polypeptide,” “oligopeptide” and “peptide” are used interchangeably herein and refer to a polymer of amino acids of any length. This polymer may be linear, branched, or cyclic. Amino acids may be natural or non-natural, or may be modified amino acids. The term can also encompass multiple polypeptide chains assembled into a complex. The term also encompasses naturally occurring or artificially modified amino acid polymers. Such modifications include, for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation or any other manipulation or modification (eg, conjugation with a labeling moiety).
  • amino acid is a general term for organic compounds having an amino group and a carboxyl group.
  • amino acid sequence may be chemically modified.
  • any amino acid in the amino acid sequence may form a salt or a solvate.
  • any amino acid in the amino acid sequence may be L-type or D-type.
  • the protein according to the embodiment of the present disclosure includes the above-mentioned "specific amino acid sequence.”
  • Chemical modifications that amino acids contained in proteins undergo in vivo include, for example, N-terminal modification (e.g., acetylation, myristoylation, etc.), C-terminal modification (e.g., amidation, glycosylphosphatidylinositol addition, etc.), or side chain modification. Modifications (eg, phosphorylation, glycosylation, etc.) are known. Amino acids may be natural or non-natural as long as they meet the objectives of this disclosure.
  • Polynucleotide refers to a polymer of nucleotides of any length, including DNA and RNA.
  • the term also includes “oligonucleotide derivatives” or “polynucleotide derivatives.”
  • oligonucleotide derivative refers to oligonucleotides or polynucleotides that include derivatives of nucleotides or have unusual linkages between nucleotides, and are used interchangeably.
  • oligonucleotides include, for example, 2'-O-methyl-ribonucleotides, oligonucleotide derivatives in which phosphodiester bonds in oligonucleotides are converted to phosphorothioate bonds, and phosphodiester bonds in oligonucleotides.
  • Examples include oligonucleotide derivatives substituted with '-methoxyethoxyribose.
  • a particular nucleic acid sequence may also include conservatively modified variants (e.g., degenerate codon substitutions) and complementary sequences thereof, as well as the explicitly indicated sequence. It is intended to include. Specifically, degenerate codon substitutions create sequences in which the third position of one or more selected (or all) codons is replaced with a mixed base and/or deoxyinosine residue. (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem.
  • Nucleic acid is also used herein interchangeably with gene, cDNA, mRNA, oligonucleotide, and polynucleotide. As used herein, “nucleotides” may be natural or non-natural.
  • Amino acids may be referred to herein by either their commonly known three-letter symbol or the one-letter symbol recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides may also be referred to by their commonly recognized one-letter codes.
  • comparisons of similarity, identity, and homology of amino acid sequences and base sequences are calculated using default parameters using BLAST, a sequence analysis tool.
  • the identity search can be performed using, for example, NCBI's BLAST 2.2.28 (published on April 2, 2013).
  • the identity value in this specification usually refers to the value obtained when alignment is performed using the above-mentioned BLAST under default conditions. However, if a higher value is obtained by changing the parameters, the highest value is taken as the identity value. When identity is evaluated in multiple areas, the highest value among them is taken as the identity value. Similarity is a value that takes into account similar amino acids in addition to identity.
  • an agent for treating or preventing idiopathic pulmonary fibrosis including an ABL inhibitor, a RET inhibitor, an SRC family inhibitor, an ERK1/2 phosphorylation inhibitor, or a FLT3 inhibitor. be done.
  • Idiopathic pulmonary fibrosis is a chronic, progressive, and intractable respiratory disease, and is included in the designated intractable disease idiopathic interstitial pneumonias (IIPs).
  • IPF has an extremely poor prognosis, with an average survival period of 3 to 5 years after diagnosis, and a survival period of less than 2 months after acute exacerbation. It often does not respond to steroids, and the only two drug treatment options are the antifibrotic drugs pirfenidone and nintedanib, and their therapeutic effects are limited, and no fundamental treatment has been established. Since the pathogenic mechanism of this disease is unknown, innovative approaches to searching for drug targets that do not rely on conventional methods are required.
  • Exosomes are extracellular endoplasmic reticulum with a diameter of 30 nm to 100 nm that are secreted by most cells.
  • the lipids, proteins, miRNAs, metabolites, etc. contained within exosomes are transferred to other cells, thereby transmitting various intercellular information. It has become clear that the expression status of these molecules is deeply related to the state of cells and the progression of diseases in many diseases including cancer. With these discoveries, attention has been focused on the use of exosomes to search for biomarkers and apply them to drug discovery.
  • the present inventors have identified biomarkers that correlate with pathological conditions and severity through proteome analysis of exosomes for respiratory diseases including COPD.
  • the idiopathic pulmonary fibrosis (IPF) treatment or prevention agent of the present disclosure is an ABL inhibitor, a RET inhibitor, an SRC family inhibitor, an ERK1/2 phosphorylation inhibitor, or a FLT3 inhibitor.
  • it may be an agent that functions as an inhibitor of at least two of these.
  • the therapeutic or preventive agent for idiopathic pulmonary fibrosis (IPF) of the present disclosure includes a function as an ABL inhibitor, RET inhibitor, SRC family inhibitor, ERK1/2 phosphorylation inhibitor, or FLT3 inhibitor, and preferably
  • the therapeutic or preventive agent has a function as an inhibitor of at least two of ABL inhibitor, RET inhibitor, SRC family inhibitor, ERK1/2 phosphorylation inhibitor, and FLT3 inhibitor, and
  • the therapeutic or preventive agent functions as an ABL inhibitor, RET inhibitor, SRC family inhibitor, ERK1/2 phosphorylation inhibitor, and FLT3 inhibitor.
  • the ABL inhibitor refers to an agent that reduces or eliminates the function of ABL by inhibiting the function, expression, or production of Abl, such as ponatinib, temozolomide, and imatinib.
  • Abl such as ponatinib, temozolomide, and imatinib.
  • examples include, but are not limited to, imatinib, sunitinib, nilotinib, saracatinib, umbralisib, bosutinib, and the like.
  • the RET inhibitor refers to an agent that reduces or eliminates the function of RET by inhibiting the function, expression, or production of RET, such as ponatinib, imatinib, and sorafenib. (sorafenib), sunitinib, cabozantinib, crizotinib, motesanib, pazopanib, alectinib, pralsetinib, selpercatinib, lenvatinib, vandetanib Examples include (vandetanib), but are not limited to these.
  • the SRC family inhibitor refers to an agent that reduces or eliminates the function of Src family kinase by inhibiting the function, expression, or production of Src family kinase, such as ponatinib, afatinib, etc.
  • Src family kinase such as ponatinib, afatinib, etc.
  • examples include, but are not limited to, afatinib, dasatinib, saracatinib, bosutinib, vandetanib, nilotinib, erlotinib, and the like.
  • the ERK1/2 phosphorylation inhibitor refers to an agent that reduces or eliminates the function of ERK1/2 by inhibiting the function, expression, or production of ERK1/2, such as ponatinib (ponatinib). ), vemurafenib, daberafenib, selumetinib, encorafenib, binimetinib, etc., but are not limited to these.
  • the FLT3 inhibitor refers to an agent that reduces or eliminates the function of FLT3 by inhibiting the function, expression, or production of FLT3, such as ponatinib, nintedanib, and regorafenib.
  • any molecule that has the function of inhibiting these five intermediate molecules can function as a therapeutic or preventive agent for IPF according to the present disclosure.
  • a therapeutic or preventive agent may include the above-mentioned Among them, ponatinib can be preferably used.
  • the IPF treatment or prevention agent of the present disclosure has at least the function of an ERK1/2 inhibitor or an SRC family inhibitor. It is preferable that In another embodiment, the IPF treatment or prevention agent of the present disclosure preferably functions as an ERK1/2 inhibitor and an SRC family inhibitor.
  • the IPF treatment or prevention agents of the present disclosure in addition to functioning as ERK1/2 inhibitors and/or SRC family inhibitors, are FLT3 inhibitors, RET inhibitors, and/or ABL inhibitors. It is preferable that the agent has a function as an agent.
  • the idiopathic pulmonary fibrosis comprises a hub molecule in a network constituted by molecules related to one or more medical information of idiopathic pulmonary fibrosis (IPF), or a detection agent thereof. markers or diagnostic agents are provided.
  • symptoms of IPF e.g., characteristics Detection of proteins that co-occur with clinical findings, clinical records, and/or blood test data. That is, these molecules can be said to be molecules whose expression changes in relation to the symptoms of IPF, and specifically, such molecules include ANXA7, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, MRPS17, AGRN, SRI, ALOX12, PEF1, PNP, FHL1, PCMT1, PIP4P2, HEBP2, CAPN1, PLXDC2, PTPN6, LYN, TAOK3, RAN, CNP, MIF, CD68, CRKL, EHD3, ITGB3, MFS D2B, PARVB, PCMT1, Mention may be made of PLEK, PTP4A2, RAP1B, and TSPAN15.
  • such molecules can include ANXA7, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, MRPS17, SRI, ALOX12, PEF1, PTPN6, LYN, RAN, and MIF.
  • hub molecules molecules that are directly or indirectly related to more molecules among the 20 molecules.
  • such hub molecules include LYN, PTPN6, MIF, and RAN.
  • the marker or diagnostic agent of the present disclosure can include a molecule associated with multiple clinical information of idiopathic pulmonary fibrosis (IPF), or a detection agent thereof.
  • core molecules can also include ANXA7, ITIH1, ITIH2, ITIH3, ITIH4, ITIH5, ITIH6, MRPS17, AGRN, SRI, ALOX12, and PEF1.
  • the marker or diagnostic agent of the present disclosure can include a molecule that controls the expression of molecules related to multiple medical information of idiopathic pulmonary fibrosis (IPF), or a detection agent thereof, and specifically, , such molecules may include ESR1, CCDN1, NOS2, CCR2, PRKAA1, MKNK1, and MMP14.
  • IPF idiopathic pulmonary fibrosis
  • a regulator or inhibitor of such a molecule can be said to be a regulator or inhibitor of a molecule related to the symptoms of IPF, and thus can be used as a therapeutic or preventive agent for IPF.
  • proteins that co-occur with IPF symptoms include molecules exemplified elsewhere in this specification.
  • upstream regulatory molecules by searching for upstream molecules that control the expression of the core molecule as described above, upstream regulatory molecules can be obtained, and the upstream regulatory molecules themselves may also have some involvement in the pathology of IPF. It can be thought of as a molecule. Therefore, modulators or inhibitors of such upstream regulatory molecules are also believed to function as therapeutic or preventive agents for IPF. Therefore, the therapeutic or preventive agent for IPF of the present disclosure can include a modulator or inhibitor of a molecule related to multiple medical information of IPF, and specifically, such molecules include those described herein. Mention may be made of the molecules exemplified elsewhere in .
  • a modulator or inhibitor of a hub molecule in a network constituted by molecules associated with one or more clinical information of idiopathic pulmonary fibrosis may be, for example, Examples include, but are not limited to, the compounds or drugs listed in the column.
  • a screening method for searching for therapeutic or preventive agents for a certain disease comprising: identifying a molecule having a specific network-related regulatory effect related to the disease; A method is provided that includes the step of confirming whether the method functions as a therapeutic or preventive agent for a disease.
  • an algorithm that connects and detects a group of related items between disparate data to detect symptoms of IPF (e.g., characteristic diagnosing findings, medical records, etc.) from medical information and proteome data. , and/or blood test value data) can be detected. Therefore, by using similar methods to discover networks composed of disease-related molecules for other diseases, and identifying the molecules that make up these networks and the molecules that have regulatory effects on those molecules, we can It can be expected to function as a therapeutic or preventive agent for the disease.
  • IPF characteristic diagnosing findings, medical records, etc.
  • the method of the present disclosure can contribute to patient diagnosis and differentiation without using invasive methods, it can also be applied to intractable diseases whose disease onset mechanisms are not fully understood at the molecular level.
  • diseases include idiopathic interstitial pneumonias (IIPs) for which the cause cannot be identified, and IIP is a clinicopathological disease unit that is associated with idiopathic pulmonary fibrosis (idiopathic pulmonary fibrosis).
  • IPF pulmonary fibrosis
  • NSIP nonspecific interstitial pneumonia
  • COP cryptogenic organizing pneumonia
  • idiopathic bronchiolitis obliterans organizing pneumonia: idiopathic BOOP acute interstitial pneumonia
  • AIP acute interstitial pneumonia
  • DIP desquamative interstitial pneumonia
  • RB-ILD respiratory bronchiolitis associated interstitial lung disease
  • LIP lymphocytic interstitial pneumonia
  • whether or not the molecules constituting the network and the molecules that have a regulatory effect on these molecules function as therapeutic or preventive agents for the disease can be determined by, for example, the following methods or combinations thereof.
  • an ABL inhibitor, RET inhibitor, SRC family inhibitor, ERK1/2 phosphorylation inhibitor, or FLT3 inhibitor for treating or preventing idiopathic pulmonary fibrosis is provided.
  • a composition comprising: In one embodiment of the present disclosure, each inhibitor included in such a composition can be as described elsewhere herein.
  • a method for treating or preventing a patient suffering from idiopathic pulmonary fibrosis or a patient at risk of suffering from idiopathic pulmonary fibrosis comprising: a therapeutically or prophylactically effective amount of an ABL inhibitor, a RET inhibitor;
  • a method is provided comprising administering to the subject an SRC family inhibitor, an ERK1/2 phosphorylation inhibitor, or a FLT3 inhibitor.
  • each inhibitor used in such a method can be as described elsewhere herein.
  • Short Protocols in Molecular Biology A Compendium of Methods from Current Protocols in Molecular Biology, Green Pub. Associates; Ausubel, F. M. (1995). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Green Pub. Associates; Innis, M. A. et al. (1995). PCR Strategies, Academic Press; Ausubel, F. M. (1999). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, and Ann ual updates; Sninsky, J. J. et al. (1999).
  • gene synthesis and fragment synthesis services such as GeneArt, GenScript, and Integrated DNA Technologies (IDT) can be used, as well as other services such as Gait. , M. J. (1985). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Gait, M. J. (1990). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Eckstein, F. (1991). Oligonucleotides and Analogues: A Practical Approach, IRL Press; Adams, R. L. et al. (1992). The Biochemistry of the Nucleic Acids, Chapman &Hall; Shabarova, Z. et al. (1994).
  • Table 3 shows the number of patients for whom clinical information (medical information and blood samples) was collected in this example and their characteristics.
  • FIG. 1A The overall flow of data collection is shown in Figure 1A.
  • Input data generation from collection of medical information was performed according to the procedure shown in FIG. 1B.
  • medical information electronic medical record entries
  • CT image interpretation findings blood biochemical test values
  • basic information basic information
  • initial consultation questionnaire initial consultation questionnaire
  • electronic medical record entries can be entered at the time of the consultation using a format (called a template) created by setting items in advance, or entries that have already been freely written in natural language or the first visit.
  • Information was manually extracted from the medical questionnaire into the template and collected as structured data.
  • image interpretation findings natural language processing is used to pair information related to a lesion with information about the site where it was observed, and then determine whether the lesion was observed (positive), not observed (negative), or suspected.
  • Example 2 Analysis of medical information and proteome data
  • the structure of the cohort dataset used for analysis is shown in FIG. 2A, and the workflow of the analysis is shown in FIG. 2B.
  • a newly developed algorithm, subset binding was used to detect patient stratification rules using structured medical information and proteome data.
  • Subset binding is an algorithm that connects and detects a group of related items between different types of data, and detects related items between phenotype information such as medical information and biomolecular information such as omics data.
  • the aim is to obtain data-driven patient stratification rules (e.g., patterns such as patients with high expression of biomolecules A, B, and C tend to have reticular opacities and traction bronchiectasis). There is.
  • Subset binding uses fuzzy association rule mining as the underlying technology, and allows two input matrices (e.g., proteome data and structured medical information).The rows must be the same, but the number of columns can be different. ) After calculating the membership values for each using the membership function, the frequent itemsets are detected, and an association rule is generated by linking the frequent itemsets derived from both data ( Figure 2C). By using this algorithm, it is possible to analyze data that includes a mixture of continuous and discrete values, as is commonly seen in medical information, without using any special preprocessing or prior knowledge.
  • Table 4A lists the top 20 protein names that co-occurred with IPF's characteristic radiographic findings, medical records, and blood test data due to subset binding (SB). The 11 proteins raised are shown in Table 4B.
  • MRPS17 28S ribosomal protein S17, mitochondria
  • PEF1 Peflin
  • LYN Tyrosine- These included protein kinase Lyn), PTPN6 (Tyrosine-protein phosphatase non-receptor type 6), MIF (Macrophagemigration inhibitory factor), and RAN (GTP-binding nuclear protein Ran).
  • TargetMine data warehouse
  • the four molecules that were found to be highly related to IPF mentioned above were also found in the protein interactions of these 20 molecules. It was found that it is a hub molecule (Figure 3, Table 6).
  • pathway analysis was performed using IPA (Ingenuity Pathway Analysis), and the canonical pathway was identified as acute phase Response Signaling, Eicosanoid Signaling, Agrin interactions.
  • IPA Ingenuity Pathway Analysis
  • the canonical pathway was identified as acute phase Response Signaling, Eicosanoid Signaling, Agrin interactions.
  • LXR/RXR Activation LXR/RXR Activation
  • FXR/RXR Activation etc.
  • disease and function pathway Development Disorder, Hereditary Disorder, Immunological Disease, Neurological Disease, Organismal Inju ry and Abnormalities etc. were extracted.
  • LYN and PTPN6 were found to have phenotypes such as inflammation in the lungs, but for other molecules, there was no data or only reports of effects on other organs.
  • Example 4 Expression of molecules in fibrotic tissue
  • Table 8 The results obtained are listed in Table 8.
  • EMT inhibition effect The importance of epithelial mesenchymal transition (EMT) has been suggested in the mechanism of lung fibrosis in IPF.
  • EMT epithelial mesenchymal transition
  • EMT epithelial mesenchymal transition
  • fibrosis inhibitory effect Suggests fibrosis inhibitory effect. Furthermore, the phenomenon of fibrosis occurs in many organs such as the liver and skin, and there are many patients affected by each organ. Additionally, it has recently become clear that fibrosis is associated with the onset of cancer, and in fact, approximately 30% of IPF patients develop cancer. Therefore, it is expected that searching for targets, including ponatinib, based on elucidating the true nature of fibrosis in IPF will lead to treatments for many fibrotic diseases in other organs and elucidation of the mechanisms of cancer development. In the future, further elucidation of the molecular mechanisms, such as EMT, metabolic pathway research, and phosphorylation signal research, will contribute to the treatment and early diagnosis of IPF.
  • targets including ponatinib
  • Extracellular vesicles were purified from 200 ⁇ l of serum using a MagCapture isolation kit (Fujifilm Wako). Proteins in extracellular vesicles were reduced with tris(2-carboxyethyl)phosphine, alkylated with iodoacetamide, digested with trypsin, and desalted. The pretreated samples were subjected to LC-MS/MS analysis using the data independent acquisition (DIA) method. Data analysis was performed using DIA analysis software Spectranout, and run-wise imputation was performed on missing values. As a quality control, one commercially available serum sample was added to every 15 samples to ensure quality from sample preparation to data analysis. In addition, DIA analysis of HeLa cell digests was performed as a quality control for mass spectrometry.
  • DIA data independent acquisition
  • medical records can be obtained as structured data entered by the doctor using a template created by listing 102 necessary information items in advance, or manually by the National Institute of Biomedical Innovation from free entry text data.
  • the template was then curated into structured data.
  • important expressions are tagged manually or using natural language processing techniques, and site-lesion pairs and those pairs are classified as positive, negative, and suspect.
  • We obtained structured data consisting of three cases.
  • the blood test values were structured by selecting 173 important items and curation.
  • information was curated and added to the template items of the medical examination record.
  • Tagging protocol Tag classification is used to assign tags to expressions that appear in clinical texts such as medical examination records and radiology findings that correspond to medical concepts such as disease names, disease names, and site names. Ta.
  • Subset binding We proposed the idea of ⁇ subset binding,'' which uses the co-occurrence of disparate data to discover mutually related attributes, and developed a new algorithm for subset binding by extending the FARM technology.
  • Subset binding uses the FARM (Fuzzy Association Rule Mining) method to search for frequently occurring items from two data, proteome data and medical information, so that the antecedent is obtained from one data and the consequent from the other.
  • Discover association rules patterns of co-occurrence between items within frequent items.
  • min number of items 8, 4, 5, 4 for the proteome, the CT reading report, the EHR, and the blood test, respectively.
  • min lift 2, 3, 3 for the association rules between proteome - CT reading report, the proteome - EHR, and the proteome - blood test, respectively.
  • IPA Ingenuity pathway analysis
  • upstream regulator is used to refer to a biomolecule that can affect the expression of another biomolecule, such as a drug, chemical, kinase, receptor, microRNA, cytokine, or Including transcription factors.
  • FFPE Form fixed paraffin embedded
  • HE hematoxylin and eosin
  • MT Masson's trichrome
  • OptiView DAB universal kit was used as a detection reagent, and staining was simultaneously performed using an antibody dilution solution as a negative control for each antibody to evaluate IHC staining for each antibody.
  • the stained specimen was photographed using a bright field slide scanner with an objective lens set at 20x magnification, and the image file was saved in SVS format.
  • the textile specimens were examined under a bright field microscope and evaluated for fibrosis and IHC.
  • Coating agent Fibronectin/Collagen I/BSA Seeding cell concentration: 2.5 ⁇ 10 4 , 3.5 ⁇ 10 4 cells/mL Immediately after adding the drug 24 hours after seeding, TGF- ⁇ was added to a concentration of 3 ng/mL. Cells were collected 48 hours after addition of TGF- ⁇ . The leftmost column of each graph is a complete negative control with "no TGF added.”
  • EMT was evaluated using the suppression of the expression of E-cadherin, an epithelial marker, and the enhancement of the expression of Fibronectin and Snail, which are mesenchymal markers, as indicators.
  • BEAS-2B cells purchased from ATCC were incubated with fibronectin/collagen I/mL at 2.5 x 10 4 or 3.5 x 10 4 cells/mL (medium; BEGM Bu, lletKit; Bronchial epithelial cell basal medium, Lonza Co., Ltd.). The cells were seeded onto a 96-well plate coated with BSA, and 24 hours later, the test drug was added, and then TGF- ⁇ (Proteintech) was added to a final concentration of 3 ng/mL.
  • Example 6 Treatment example
  • the prophylactic or therapeutic agent for IPF e.g., ponatinib
  • a target subject patient or subject expected to be treated
  • a prophylactically or therapeutically effective amount calculated based on the above Examples. If the preparation is already commercially available, that preparation is used, or if it is not commercially available, an appropriate preparation is used.
  • a single drug or a combination of drugs is selected that has any or more of the following functions: ABL inhibitor, RET inhibitor, SRC family inhibitor, ERK1/2 phosphorylation inhibitor, or FLT3 inhibitor.
  • the progress of the subjects will be observed to confirm improvement, aggravation, or prevention of onset of target diseases such as IPF.
  • Example 7 EMT inhibitory effect of ponatinib related drugs/compounds and effectiveness evaluation of BLM model
  • the bleomycin (BLM)-induced pulmonary fibrosis model is a standard IPF model and is used for drug efficacy evaluation.
  • BLM bleomycin
  • drug discovery targets in a data-driven manner using human data, so drug discovery targets can be searched for intractable diseases whose disease onset mechanisms are not fully understood at the molecular level. It can be implemented. Therefore, it is expected to be applied in the medical field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

【課題】 特発性肺線維症の治療または予防剤を提供すること。 【解決手段】 ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤を含む、特発性肺線維症(IPF)の治療または予防剤。

Description

特発性肺線維症の治療または予防剤
 本開示は、特発性肺線維症の治療または予防剤、それを利用した特発性肺線維症に罹患した患者またはそのおそれがある患者を治療または予防するための方法、および特発性肺線維症のマーカーまたは診断剤に関する。より詳しくは、本開示は、診療情報をもとに疾患に関連する分子ネットワークを構築し、この分子ネットワークを利用して、目的の治療剤や診断剤を見出す技術に関する。
 現在の創薬においては、臨床試験第2相におけるPOC(Proof of concept)取得の失敗率が高いことが知られている。特発性肺線維症は深刻な疾患であるが、有効性の高い医薬品はまだ提供されていない。
 本開示では、創薬標的探索の対象疾患患者の診療情報や、診療情報と紐づけられたオミックスデータを用いることで、患者層別化による創薬標的探索を行い、その結果に基づき、特発性肺線維症等の目的の疾患に対する治療剤やそのマーカーを提供する。
 したがって、本開示は以下を提供する。
(項目1)
 ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤を含む、特発性肺線維症(IPF)の治療または予防剤。
(項目2)
 前記治療または予防剤が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤のうち、少なくとも2以上の阻害剤としての機能を有する、上記項目に記載の治療または予防剤。
(項目3)
 前記治療または予防剤が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤としての機能を有する、上記項目のいずれか一項に記載の治療または予防剤。
(項目4)
 ポナチニブを含む、上記項目のいずれか一項に記載の治療または予防剤。
(項目a1)
 特発性肺線維症(IPF)を治療または予防するための、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤を含む組成物。
(項目a2)
 前記組成物が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤のうち、少なくとも2以上の阻害剤としての機能を有する薬剤を含む、上記項目のいずれか一項に記載の組成物。
(項目a3)
 前記組成物が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤としての機能を有する薬剤を含む、上記項目のいずれか一項に記載の組成物。
(項目a4)
 ポナチニブを含む、上記項目のいずれか一項に記載の組成物。
(項目b1)
 特発性肺線維症に罹患した患者またはそのおそれがある患者を治療または予防するための方法であって、治療または予防有効量のABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤を該対象に投与する工程を含む、方法。
(項目b2)
 前記投与する工程が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤のうち、少なくとも2以上の阻害剤としての機能を有する薬剤を投与することを特徴とする、上記項目のいずれか一項に記載の方法。
(項目b3)
 前記投与する工程が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤としての機能を有する薬剤を投与することを特徴とする、上記項目のいずれか一項に記載の方法。
(項目b4)
 前記投与する工程が、ポナチニブを投与することを特徴とする、上記項目のいずれか一項に記載の方法。
(項目A1)
 特発性肺線維症(IPF)の1または複数の診療情報に関連する分子によって構成されるネットワークにおけるハブ分子、またはその検出剤を含む、特発性肺線維症(IPF)のマーカーまたは診断剤。
(項目A2)
 前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、AGRN、SRI、ALOX12、PEF1、PNP、FHL1、PCMT1、PIP4P2、HEBP2、CAPN1、PLXDC2、PTPN6、LYN、TAOK3、RAN、CNP、MIF、CD68、CRKL、EHD3、ITGB3、MFSD2B、PARVB、PCMT1、PLEK、PTP4A2、RAP1B、およびTSPAN15からなる群から選択される1または複数の分子である、上記項目のいずれか一項に記載のマーカーまたは診断剤。
(項目A3)
 前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、SRI、ALOX12、PEF1、PTPN6、LYN、RAN、およびMIFからなる群から選択される、上記項目のいずれか一項に記載のマーカーまたは診断剤。
(項目A4)
 前記分子が、LYN、PTPN6、MIF、及びRANからなる群から選択される、上記項目のいずれか一項に記載のマーカーまたは診断剤。
(項目A5)
 特発性肺線維症(IPF)の複数の診療情報に関連する分子、またはその検出剤を含む、上記項目のいずれか一項に記載のマーカーまたは診断剤。
(項目A6)
 前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、AGRN、SRI、ALOX12、PEF1からなる群から選択される1または複数の分子である、上記項目のいずれか一項に記載のマーカーまたは診断剤。
(項目A7)
 前記診療情報が、IPFの特徴的な読影所見、診察記録、および/または血液検査値を含む、上記項目のいずれか一項に記載のマーカーまたは診断剤。
(項目A8)
 特発性肺線維症(IPF)の複数の診療情報に関連する分子の発現を制御する分子、またはその検出剤を含む、特発性肺線維症(IPF)のマーカーまたは診断剤。
(項目A9)
 前記分子が、ESR1、CCDN1、NOS2、CCR2、PRKAA1、MKNK1、及びMMP14からなる群から選択される1または複数の分子である、上記項目のいずれか一項に記載のマーカーまたは診断剤。
(項目B1)
 特発性肺線維症(IPF)の1または複数の診療情報に関連する分子によって構成されるネットワークにおけるハブ分子の調節剤または阻害剤を含む、IPFの治療または予防剤。
(項目B2)
 前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、AGRN、SRI、ALOX12、PEF1、PNP、FHL1、PCMT1、PIP4P2、HEBP2、CAPN1、PLXDC2、PTPN6、LYN、TAOK3、RAN、CNP、MIF、CD68、CRKL、EHD3、ITGB3、MFSD2B、PARVB、PCMT1、PLEK、PTP4A2、RAP1B、およびTSPAN15からなる群から選択される1または複数の分子である、上記項目のいずれか一項に記載の治療または予防剤。
(項目B3)
 前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、SRI、ALOX12、PEF1、PTPN6、LYN、RAN、およびMIFからなる群から選択される、上記項目のいずれか一項に記載の治療または予防剤。
(項目B4)
 前記分子が、LYN、PTPN6、MIF、及びRANからなる群から選択される、上記項目のいずれか一項に記載の治療または予防剤。
(項目B5)
 特発性肺線維症(IPF)の複数の診療情報に関連する分子の調節剤または阻害剤を含む、上記項目のいずれか一項に記載の治療または予防剤。
(項目B6)
 前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、AGRN、SRI、ALOX12、PEF1からなる群から選択される1または複数の分子である、上記項目のいずれか一項に記載の治療または予防剤。
(項目B7)
 前記診療情報が、IPFの特徴的な読影所見、診察記録、および/または血液検査値を含む、上記項目のいずれか一項に記載の治療または予防剤。
(項目B8)
 前記調節剤または阻害剤が、以下の表の右欄に記載される化合物または薬剤を含む、上記項目のいずれか一項に記載の治療または予防剤。
(項目C1)
 ある疾患の治療または予防剤を探索するためのスクリーニング方法であって、
 該疾患に関連する特定のネットワーク関連の調節作用を有する分子を同定する工程と、
 該分子を該疾患の治療または予防剤として機能するかどうかを確認する工程と
を含む、方法。
(項目C2)
 前記ネットワークが、前記疾患の1または複数の診療情報に基づいて構築される、上記項目のいずれか一項に記載の方法。
(項目C3)
 前記診療情報が、前記疾患の特徴的な読影所見、診察記録、および/または血液検査値を含む、上記項目のいずれか一項に記載の方法。
(項目C4)
 前記確認する工程が、
(a)既存のデータベースおよび/または論文情報を用いて前記分子の情報を収集し、前記疾患との関係性を確認する工程、
(b)線維化組織における前記分子の発現を確認する工程、
(c)既存のデータベースおよび/または論文情報を用いて前記分子の制御に関連する化合物の情報を検索する工程、
(d)線維化現象を細胞レベルで再現し、前記分子の作用を確認する工程、および/または
(e)前記分子によって構成されるネットワークを特定し、該ネットワークが前記疾患において異常を示しているかどうかを確認する工程
のいずれか1つまたは複数によって行われる、上記項目のいずれか一項に記載の方法。
(項目C5)
 前記疾患が、特発性肺線維症(IPF)を含む、上記項目のいずれか一項に記載の方法。
 本開示において、上記の1つまたは複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供され得ることが意図される。なお、本開示のさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。
 なお、上記した以外の本開示の特徴及び顕著な作用・効果は、以下の発明の実施形態の項及び図面を参照することで、当業者にとって明確となる。
 本開示により、ヒトのデータを用いてデータ駆動的に創薬標的探索をすることが可能となる。これにより、疾患発症メカニズムなどが分子レベルで十分に理解されていない特発性肺線維症等の難病について有望な創薬標的を提供する。
図1Aは、本開示の一実施形態における診療情報および血清サンプル収集のフローチャートである。 図1Bは、本開示の一実施形態における診療情報の構造化プロセスを示す模式図である。 図2Aは、本開示の一実施形態に係るコホートデータ構造図である。 図2Bは、本開示の一実施形態に係る解析ワークフローの概念図である。 図2Cは、本開示の一実施形態に係るsubset bindingの概念図である。 図3は、本開示の一実施形態において、解析によって見出されたタンパク質のTargetMineによるタンパク質相互作用(PPI)とハブ分子を示す模式図である。 図4は、本開示の一実施形態において、IPAによるコア分子が構成するネットワークを示す模式図である。7つのコア分子のすべてが乗っているネットワーク(Carbohydrate Metabolism、Small Molecule Biochemistry、Cellular Assembly and Organization)を見出した。 図5は、本開示の一実施形態において、コア分子の上流制御因子解析に基づくponatinibによる制御関係ネットワークを示す模式図である。 図6は、本開示の一実施形態において、主要なタンパク質の病変部における発現を確認した結果を示す写真である(免疫染色、独立コホート)。 図7Aは、SB431542によるEMT阻害作用を示すグラフである。 図7Bは、ポナチニブによるEMT阻害作用を示すグラフである。
 以下、本開示を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
 以下に本明細書において特に使用される用語の定義および/または基本的技術内容を適宜説明する。
 本明細書において、「約」とは、後に続く数値の±10%を意味する。
 本明細書において、「ABL」とは、abelson(abl)遺伝子またはその遺伝子産物をいう。ABL1として知られるチロシンプロテインキナーゼABL1は、ヒトでは第9染色体上にあるABL1遺伝子によってコードされ、細胞分化、細胞分裂、細胞接着および/またはストレス応答のプロセスに関与すると言われているタンパク質である。c-Ablは哺乳類ゲノム内で見つかった遺伝子を指し、v-Ablは当初Abelson murine leukemia virusから分離されたウイルス性遺伝子を指す。
 本明細書において、「ABL阻害剤」とは、Ablの機能、発現または産生などを阻害することで、ABLとしての機能を低減または消失させる剤をいう。ABL阻害剤としては、例えば、ポナチニブ(ponatinib)、テモゾロミド(temozolomide)、イマチニブ(imatinib)、スニチニブ(sunitinib)、ニロチニブ(nilotinib)、サラカチニブ(saracatinib)、ウムブラリシブ(umbralisib)、ボスチニブ(bosutinib)などを挙げることができるが、これらに限られるものではない。
 本明細書において、「RET」とは、GDNFファミリーの細胞外シグナル伝達分子を結合する受容体型チロシンキナーゼであり、ヒトではRET遺伝子にコードされる。RET遺伝子の機能喪失型変異はヒルシュスプルング病の発症と関係しており、機能獲得型変異は甲状腺髄様癌、多発性内分泌腺腫症2A型と2B型を含む、さまざまなタイプのがんの発症と関係している。RETにおける変異は、甲状腺細胞の機能を調節する炎症メディエーター、たとえばケモカイン受容体、サイトカイン、メタロプロテアーゼなどをコードする遺伝子の調節不全を誘導することが示されている。
 本明細書において、「RET阻害剤」とは、RETの機能、発現または産生などを阻害することで、RETとしての機能を低減または消失させる剤をいう。RET阻害剤としては、例えば、ポナチニブ(ponatinib)、イマチニブ(imatinib)、ソラフェニブ(sorafenib)、スニチニブ(sunitinib)、カボザンチニブ(cabozantinib)、クリゾチニブ(crizotinib)、モテサニブ(motesanib)、パゾパニブ(pazopanib)、アレクチニブ(alectinib)、プラルセチニブ(pralsetinib)、セルペルカチニブ(selpercatinib)、レンバチニブ(lenvatinib)、バンデタニブ(vandetanib)などを挙げることができるが、これらに限られるものではない。
 本明細書において、「SRC」(Proto-oncogene tyrosine-protein kinase Src)とは、ヒトにおいてSRC遺伝子にコードされる非受容体型チロシンキナーゼタンパク質である。がん原遺伝子c-Srcあるいは単にc-Srcとしても知られている。このタンパク質は他のタンパク質の特定のチロシン残基をリン酸化する。c-Srcチロシンキナーゼの活性の上昇は、他のシグナルを促進することによってがんの進行と関連していることが示唆されている。c-SrcはSH2ドメイン、SH3ドメイン、チロシンキナーゼドメインを含んでいる。Srcファミリーキナーゼには、c-Src、YES1、FYN、FGR、LYN、BLK、HCK、Lckの9種類が存在する。これらのSrcファミリーの発現は、全ての組織ならびに細胞種全体で同じではない。Src、Fyn、Yesは、全ての細胞種で遍在的に発現しているが、その他は造血細胞において一般に見られる。Srcファミリーキナーゼは、急性炎症反応に関与する細胞内シグナル伝達タンパク質として重要であり、そのリン酸化は炎症性メディエーターの発現や産生の程度を決定する要素の一つである。
 本明細書において、「SRCファミリー阻害剤」とは、Srcファミリーキナーゼの機能、発現または産生などを阻害することで、Srcファミリーキナーゼとしての機能を低減または消失させる剤をいう。SRCファミリー阻害剤としては、例えば、ポナチニブ(ponatinib)、アファチニブ(afatinib)、ダサチニブ(dasatinib)、サラカチニブ(saracatinib)、ボスチニブ(bosutinib)、バンデタニブ(vandetanib)、ニロチニブニロチニブ(nilotinib)、エルロチニブ(erlotinib)などを挙げることができるが、これらに限られるものではない。
 本明細書において、「ERK1/2」とは、MAPK(mitogen-activated protein kinase)のサブファミリーのうちの1つであり、分子量が44kDaのERK1と42kDaのERK2からなる。アミノ酸配列の一次構造は互いに85%の相同性を有する。ERK1/2は、細胞表面受容体からのシグナルを核転写因子に伝達し、さまざまな細胞プロセスを調節する。またERK1/2は、サイトカイン、成長因子、照射、浸透圧や温度の変動、物理的ストレスなどによって刺激されることが知られている。ERK1およびERK2の活性化は、上流MAPキナーゼであるMEK1およびMEK2の、ヒトThr202/Tyr204配列もしくはラット・マウスのThr183/Tyr185配列のT-E-Yモチーフが2重リン酸化されることにより起こる。活性化されたMAPキナーゼは核に移行し、そこで細胞増殖、アポトーシス、分化などを調節する転写因子をリン酸化する。
 本明細書において、「ERK1/2リン酸化阻害剤」とは、ERK1/2の機能、発現または産生などを阻害することで、ERK1/2としての機能を低減または消失させる剤をいう。ERK1/2阻害剤としては、例えば、ポナチニブ(ponatinib)、ベムラフェ
ニブ(vemurafenib)、ダベラフェニブ(daberafenib)、セルメチニブ(selumetinib)
、エンコラフェニブ(encorafenib)、ビニメチニブ(binimetinib)などを挙げることができるが、これらに限られるものではない。
 本明細書において、「FLT3」とは、ヒトにおいてはFLT3遺伝子によってコードされているタンパク質であり、CD135またはfetal liver kinase-2(Flk2)としても知られている。FLT3は、受容体型チロシンキナーゼクラスIIIに属するサイトカイン受容体である。多くの造血前駆細胞の表面に発現しており、FLT3のシグナル伝達は、造血幹細胞や前駆細胞の正常な発生に重要である。FLT3遺伝子は、急性骨髄性白血病(AML)において最も頻繁に変異する遺伝子の一つであり、FLT3に変異のない一部のAML患者の芽球では、野生型のFLT3が高レベルであることが報告されている。これらの高値は予後不良と関連する可能性がある。
 本明細書において、「FLT3阻害剤」とは、FLT3の機能、発現または産生などを阻害することで、FLT3としての機能を低減または消失させる剤をいう。FLT3阻害剤としては、例えば、ポナチニブ(ponatinib)、ニンテダニブ(nintedanib)、レゴラフェニブ(regorafenib)、スニチニブ(sunitinib)、ミドスタウリン(midostaurin)、ゾチラシクリブ(zotiraciclib)、ソラフェニブ(sorafenib)、カボザンチニブ(cabozantinib)、クリゾチニブ(crizotinib)、イマチニブ(imatinib)、キザルチニブ(quizartinib)、ファミチニブ(famitinib)、クレノラニブ(crenolanib)、プラルセチ
ニブ(pralsetinib)、ジルテルチニブ(gilteritinib)、ドビチニブ(dovitinib)、ブリガチニブ(brigatinib)、フェドラチニブ(fedratinib)、ペキシダルチニブ(pexidartinib)、アムバチニブ(amuvatinib)、レスタウルチニブ(lestaurtinib)などを挙げることができるが、これらに限られるものではない。
 本開示において、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤について、ある物質は各々の1つの阻害効果しかない場合もあるが、2つ以上の阻害効果を同じ物質が有し得ることが理解される。
 本明細書において、「診療情報」とは、広義に解釈され、診療の過程で、患者の身体状況、病状、治療等について、医療従事者が知り得たあらゆる情報をいう。例えば、疾患に特徴的な読影所見、診察記録、および/または血液検査値を含む。
 本明細書において、「診療情報に関連する分子」とは、診療情報の変化に応じて機能、発現または産生などが変動する分子をいう。
 本明細書において、「ハブ分子」とは、複数の分子によって構築されるネットワークにおいて、他の分子との相互作用が多い分子をいう。代表的には、ハブ分子は、他の分子と比較して、当該ハブ分子を調節すると、他の分子を調節するよりも多くのネットワークが調節される分子をいう。
 本明細書において「治療」とは、広義には予防的および/または治療的のいずれかで、狭義には病的な状態からの改善(治癒)を目的として、疾患または状態の少なくとも1つの症状を緩和する、弱化させる、または改善すること、追加の症状を予防する、疾患または状態を阻害する、例えば、疾患または状態の発症を抑止する、疾患または状態を軽減する、疾患または状態の後退を引き起こす、疾患または状態により引き起こされる状態を軽減する、または疾患または状態の症状を停止させることを含む。本明細書において「治療」とは、病的な状態からの改善(治癒)を目的として、疾患または状態の少なくとも1つの症状を緩和する、弱化させる、または改善することをいう。
 本明細書において「予防」とは、疾患状態に曝露されるまたはこれに罹患し易い恐れがあるが、疾患状態の症状をまだ経験していないかまたは示していない対象において、疾患状態の臨床的症状を発症させないことを表す。
 本明細書において、「遺伝子」とは、遺伝形質を規定する因子をいい、「遺伝子」は、核酸自体であり得、「ポリヌクレオチド」、「オリゴヌクレオチド」「RNA」および「DNA」を指すことがあり、時に核酸によってコードされるタンパク質、ポリペプチド、オリゴペプチド又はペプチドを指すこともあり、当業者は文脈に応じて適切に理解し得る。こうしたタンパク質をコードする遺伝子は、対象となる生物において内因性であってもよいし、外因性であってもよい。また、公知のこれらの遺伝子を適宜利用できる。遺伝子としては、由来を問わないで利用できる。すなわち、遺伝子は、対象となる生物以外の他の種の生物、他の属の生物に由来するものであってもよいし、動物、植物、真菌(カビ等)、細菌などの生物に由来するものであってもよい。こうした遺伝子に関する情報は、当業者であれば、NCBI(National Center for Biotechnology Information;http://www.ncbi.nlm.nih.gov)等のHPにアクセスすることにより適宜入手できる。これらの遺伝子は、各活性を有する限りにおいて、データベース等において開示される配列情報と一定の関係を有するタンパク質をコードする遺伝子であってもよい。
 本明細書において「タンパク質」、「ポリペプチド」、「オリゴペプチド」および「ペプチド」は、本明細書において同じ意味で使用され、任意の長さのアミノ酸のポリマーをいう。このポリマーは、直鎖であっても分岐していてもよく、環状であってもよい。アミノ酸は、天然のものであっても非天然のものであってもよく、改変されたアミノ酸であってもよい。この用語はまた、複数のポリペプチド鎖の複合体へとアセンブルされたものを包含し得る。この用語はまた、天然または人工的に改変されたアミノ酸ポリマーも包含する。そのような改変としては、例えば、ジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化または任意の他の操作もしくは改変(例えば、標識成分との結合体化)が包含される。この定義にはまた、例えば、アミノ酸の1または2以上のアナログを含むポリペプチド(例えば、非天然アミノ酸などを含む)、ペプチド様化合物(例えば、ペプトイド)および当該分野において公知の他の改変が包含される。本明細書において、「アミノ酸」は、アミノ基とカルボキシル基を持つ有機化合物の総称である。本開示の実施形態に係る抗体が「特定のアミノ酸配列」を含むとき、そのアミノ酸配列中のいずれかのアミノ酸が化学修飾を受けていてもよい。また、そのアミノ酸配列中のいずれかのアミノ酸が塩、または溶媒和物を形成していてもよい。また、そのアミノ酸配列中のいずれかのアミノ酸がL型、またはD型であってもよい。それらのような場合でも、本開示の実施形態に係る蛋白質は、上記「特定のアミノ酸配列」を含むといえる。蛋白質に含まれるアミノ酸が生体内で受ける化学修飾としては、例えば、N末端修飾(例えば、アセチル化、ミリストイル化等)、C末端修飾(例えば、アミド化、グリコシルホスファチジルイノシトール付加等)、または側鎖修飾(例えば、リン酸化、糖鎖付加等)等が知られている。アミノ酸は、本開示の目的を満たす限り、天然のものでも非天然のものでもよい。
 本明細書において「ポリヌクレオチド」、「オリゴヌクレオチド」および「核酸」は、本明細書において同じ意味で使用され、任意の長さのヌクレオチドのポリマーをいい、DNAおよびRNAが含まれる。この用語はまた、「オリゴヌクレオチド誘導体」または「ポリヌクレオチド誘導体」を含む。「オリゴヌクレオチド誘導体」または「ポリヌクレオチド誘導体」とは、ヌクレオチドの誘導体を含むか、またはヌクレオチド間の結合が通常とは異なるオリゴヌクレオチドまたはポリヌクレオチドをいい、互換的に使用される。そのようなオリゴヌクレオチドとして具体的には、例えば、2’-O-メチル-リボヌクレオチド、オリゴヌクレオチド中のリン酸ジエステル結合がホスホロチオエート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリン酸ジエステル結合がN3’-P5’ホスホロアミデート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリボースとリン酸ジエステル結合とがペプチド核酸結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のウラシルがC-5プロピニルウラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のウラシルがC-5チアゾールウラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のシトシンがC-5プロピニルシトシンで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のシトシンがフェノキサジン修飾シトシン(phenoxazine-modified cytosine)で置換されたオリゴヌクレオチド誘導体、DNA中のリボースが2’-O-プロピルリボースで置換されたオリゴヌクレオチド誘導体およびオリゴヌクレオチド中のリボースが2’-メトキシエトキシリボースで置換されたオリゴヌクレオチド誘導体などが例示される。他にそうではないと示されなければ、特定の核酸配列はまた、明示的に示された配列と同様に、その保存的に改変された改変体(例えば、縮重コドン置換体)および相補配列を包含することが企図される。具体的には、縮重コドン置換体は、1またはそれ以上の選択された(または、すべての)コドンの3番目の位置が混合塩基および/またはデオキシイノシン残基で置換された配列を作成することにより達成され得る(Batzer et al., Nucleic Acid Res.19:5081(1991);Ohtsuka et al., J. Biol. Chem. 260: 2605-2608(1985);Rossolini et al., Mol.Cell.Probes 8:91-98(1994))。本明細書において「核酸」はまた、遺伝子、cDNA、mRNA、オリゴヌクレオチド、およびポリヌクレオチドと互換可能に使用される。本明細書において「ヌクレオチド」は、天然のものでも非天然のものでもよい。
 アミノ酸は、その一般に公知の3文字記号か、またはIUPAC-IUB Biochemical Nomenclature Commissionにより推奨される1文字記号のいずれかにより、本明細書中で言及され得る。ヌクレオチドも同様に、一般に認知された1文字コードにより言及され得る。本明細書では、アミノ酸配列および塩基配列の類似性、同一性および相同性の比較は、配列分析用ツールであるBLASTを用いてデフォルトパラメータを用いて算出される。同一性の検索は例えば、NCBIのBLAST2.2.28(2013.4.2発行)を用いて行うことができる。本明細書における同一性の値は通常は上記BLASTを用い、デフォルトの条件でアラインした際の値をいう。ただし、パラメータの変更により、より高い値が出る場合は、最も高い値を同一性の値とする。複数の領域で同一性が評価される場合はそのうちの最も高い値を同一性の値とする。類似性は、同一性に加え、類似のアミノ酸についても計算に入れた数値である。
 (好ましい実施形態)
 以下に本開示の好ましい実施形態を説明する。以下に提供される実施形態は、本開示のよりよい理解のために提供されるものであり、本開示の範囲は以下の記載に限定されるべきでない。したがって、当業者は、本明細書中の記載を参酌して、本開示の範囲内で適宜改変を行うことができることは明らかである。また、本開示の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができる。
(予防または治療剤)
 本開示の一局面において、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤を含む、特発性肺線維症(IPF)の治療または予防剤が提供される。
 特発性肺線維症(idiopathic pulmonary fibrosis:IPF)は、慢性かつ進行性の難治性呼吸器疾患であり、指定難病特発性間質性肺炎(idiopathic interstitial pneumonias:IIPs)に含まれる。IPFは診断確定後の平均生存期間は3~5年、急性憎悪後の生存期間は2か月以内ときわめて予後不良である。ステロイドに反応しない場合が多く、薬剤治療の選択肢は抗線維化薬のピルフェニドンとニンテダニブの2剤のみであり、その治療効果は限定的であり、根本的な治療法は確立されていない。本症の発病機構が不明であるために、従来法に依らない革新的な創薬ターゲット探索へのアプローチが求められている。
 エクソソームは、ほとんどの細胞が分泌する直径30nm~100nmの細胞外小胞体であり、エクソソーム内に含まれる脂質、タンパク質、miRNA、代謝物質などが他細胞へ受け渡されることで、様々な細胞間情報伝達を担うことが判明し、これらの分子の発現状態が細胞の状態や疾患の進展と深く関係していることが、がんをはじめとする多くの疾患で明らかになってきた。これらの発見に伴ってエクソソームを用いたバイオマーカーの探索や創薬への応用に注目が集まってきた。本発明者らは、COPDをはじめとする呼吸器疾患エクソソームのプロテオーム解析から、病態や重症度と相関するバイオマーカーを同定してきた。また、IPFについては、血清エクソソームに含まれるmiRNAがIPF患者肺組織のmiRNA発現の特異的な変化を反映していることが示唆された。そこで、様々な細胞が関与し、多様な病態を示すIPFを含む特発性間質性肺炎の患者血清中エクソソームの解析は、その多様な病態を反映する可能性が高く、近年発達がめざましいプロテオーム解析技術を活用した網羅的な分子情報の取得に取り組んだ。以上の背景のもと、本発明者らは、IPFを含む間質性肺炎の診療情報・血清エクソソームのプロテオームデータのデータベース構築と患者層別化アルゴリズムの開発を行った。
 本開示の一実施形態において、本開示の特発性肺線維症(IPF)の治療または予防剤は、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤であってもよく、あるいは、これらのうち少なくとも2つの阻害剤としての機能を備える剤であってもよい。本開示の特発性肺線維症(IPF)の治療または予防剤は、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤としての機能を含み、好ましくは前記治療または予防剤が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤のうち、少なくとも2以上の阻害剤としての機能を有し、さらに好ましくは、前記治療または予防剤が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤としての機能を有するものである。
 一実施形態において、ABL阻害剤は、Ablの機能、発現または産生などを阻害することで、ABLとしての機能を低減または消失させる剤をいい、例えば、ポナチニブ(ponatinib)、テモゾロミド(temozolomide)、イマチニブ(imatinib)、スニチニブ(sunitinib)、ニロチニブ(nilotinib)、サラカチニブ(saracatinib)、ウムブラリシブ(umbralisib)、ボスチニブ(bosutinib)などを挙げることができるが、これらに限られるものではない。
 一実施形態において、RET阻害剤は、RETの機能、発現または産生などを阻害することで、RETとしての機能を低減または消失させる剤をいい、例えば、ポナチニブ(ponatinib)、イマチニブ(imatinib)、ソラフェニブ(sorafenib)、スニチニブ(sunitinib)、カボザンチニブ(cabozantinib)、クリゾチニブ(crizotinib)、モテサニブ(motesanib)、パゾパニブ(pazopanib)、アレクチニブ(alectinib)、プラルセチニブ(pralsetinib)、セルペルカチニブ(selpercatinib)、レンバチニブ(lenvatinib)、バンデタニブ(vandetanib)ななどを挙げることができるが、これらに限られるものではない。
 一実施形態において、SRCファミリー阻害剤は、Srcファミリーキナーゼの機能、発現または産生などを阻害することで、Srcファミリーキナーゼとしての機能を低減または消失させる剤をいい、例えば、ポナチニブ(ponatinib)、アファチニブ(afatinib)、ダサチニブ(dasatinib)、サラカチニブ(saracatinib)、ボスチニブ(bosutinib)、バンデタニブ(vandetanib)、ニロチニブニロチニブ(nilotinib)、エルロチニブ(erlotinib)などを挙げることができるが、これらに限られるものではない。
 一実施形態において、ERK1/2リン酸化阻害剤は、ERK1/2の機能、発現または産生などを阻害することで、ERK1/2としての機能を低減または消失させる剤をいい、例えば、ポナチニブ(ponatinib)、ベムラフェニブ(vemurafenib)、ダベラフェニブ(daberafenib)、セルメチニブ(selumetinib)、エンコラフェニブ(encorafenib)、ビニメチニブ(binimetinib)などを挙げることができるが、これらに限られるもので
はない。
 一実施形態において、FLT3阻害剤は、FLT3の機能、発現または産生などを阻害することで、FLT3としての機能を低減または消失させる剤をいい、例えば、ポナチニブ(ponatinib)、ニンテダニブ(nintedanib)、レゴラフェニブ(regorafenib)、スニチニブ(sunitinib)、ミドスタウリン(midostaurin)、ゾチラシクリブ(zotiraciclib)、ソラフェニブ(sorafenib)、カボザンチニブ(cabozantinib)、クリゾチニブ(crizotinib)、イマチニブ(imatinib)、キザルチニブ(quizartinib)、ファミチニブ(famitinib)、クレノラニブ(crenolanib)、プラルセチニブ(pralsetinib)、ジルテルチニブ(gilteritinib)、ドビチニブ(dovitinib)、ブリガチニブ(brigatinib)、フェドラチニブ(fedratinib)、ペキシダルチニブ(pexidartinib)、アムバチニブ(amuvatinib)、レスタウルチニブ(lestaurtinib)などを挙げることができるが、これらに限られるものではない。
 本開示においては、実施例において説明するとおり、IPF患者の診療情報をもとに関連分子を抽出し、その分子の発現を制御する中間分子として、ABL、RET、SRCファミリー、ERK1/2、およびFLT3を見出している。そのため、これらの5つの中間分子を阻害する機能を備えた分子であれば、本開示のIPFの治療または予防剤として機能し得るといえ、例えば、そのような治療または予防剤としては、上記のようなABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤を挙げることができ、好ましくはポナチニブを用いることができる。
 抗線維化薬として臨床使用されているニンテダニブがIPF治療にも使用できることや、線維化や炎症といったIPFに関係する現象についての報告があるかどうか、また当該分子を抑制することにより、より多くの下流分子が同時に抑制できるかどうかといった点を考慮すると、本開示の一実施形態において、本開示のIPFの治療または予防剤は、少なくともERK1/2阻害剤、またはSRCファミリー阻害剤としての機能を備えていることが好ましい。また他の実施形態において、本開示のIPFの治療または予防剤は、ERK1/2阻害剤およびSRCファミリー阻害剤としての機能を備えていることが好ましい。さらに他の実施形態において、本開示のIPFの治療または予防剤は、ERK1/2阻害剤および/またはSRCファミリー阻害剤としての機能に加えて、FLT3阻害剤、RET阻害剤、および/またはABL阻害剤としての機能を含むことが好ましい。
(IPFマーカーまたは診断剤)
 本開示の一局面において、特発性肺線維症(IPF)の1または複数の診療情報に関連する分子によって構成されるネットワークにおけるハブ分子、またはその検出剤を含む、特発性肺線維症(IPF)のマーカーまたは診断剤が提供される。
 実施例において示したとおり、本開示においては、異種データ間で連関のある項目群を紐付けて検出するアルゴリズム(subset binding)を用いて、診療情報とプロテオームデータから、IPFの症状(例えば、特徴的な読影所見、診察記録、および/または血液検査値データなど)と共起するタンパク質を検出している。すなわち、これらの分子は、IPFの症状に関連してその発現が変動する分子ということができ、具体的には、そのような分子として、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、AGRN、SRI、ALOX12、PEF1、PNP、FHL1、PCMT1、PIP4P2、HEBP2、CAPN1、PLXDC2、PTPN6、LYN、TAOK3、RAN、CNP、MIF、CD68、CRKL、EHD3、ITGB3、MFSD2B、PARVB、PCMT1、PLEK、PTP4A2、RAP1B、およびTSPAN15を挙げることができる。
 一実施形態において、そのような分子として、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、SRI、ALOX12、PEF1、PTPN6、LYN、RAN、およびMIFを挙げることができる。他の実施形態において、IPFの特徴的な読影所見、診察記録、血液検査値データと共起する20個のタンパク質について、互いにどのように関係しているのかを調査すると、相互への関連が特に多い分子を4つ見出すことができ、これらの分子は、直接、あるいは間接的に20個の分子の中のより多くの分子と関係している分子(ハブ分子)ということができる。具体的に、そのようなハブ分子として、LYN、PTPN6、MIF、及びRANを挙げることができる。
 また本開示の一実施形態において、subset bindingを用いて、診療情報とプロテオームデータを解析すると、複数の診療情報と共起したタンパク質(コア分子)を得ることができる。したがって、一実施形態において、本開示のマーカーまたは診断剤は、特発性肺線維症(IPF)の複数の診療情報に関連する分子、またはその検出剤を含むことができる。またこのようなコア分子としては、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、AGRN、SRI、ALOX12、およびPEF1を挙げることができる。
 また本開示の一実施形態において、上記のようなコア分子の発現を制御する上流の分子を探索することで、上流制御分子を得ることができ、その上流制御分子自体も、IPFの病態に何らかの関与をしている分子と考えることができる。したがって、本開示のマーカーまたは診断剤としては、特発性肺線維症(IPF)の複数の診療情報に関連する分子の発現を制御する分子、またはその検出剤を含むことができ、具体的には、そのような分子としては、ESR1、CCDN1、NOS2、CCR2、PRKAA1、MKNK1、及びMMP14を挙げることができる。
 本開示においては、異種データ間で連関のある項目群を紐付けて検出するアルゴリズム(subset binding)を用いて、診療情報とプロテオームデータから、IPFの症状(例
えば、特徴的な読影所見、診察記録、および/または血液検査値データなど)と共起するタンパク質を検出している。したがって、このような分子の調節剤または阻害剤は、IPFの症状に関連する分子の調節剤または阻害剤といえることから、IPFの治療または予防剤として用いることができる。具体的に、IPFの症状と共起するタンパク質としては、本明細書の他の箇所で例示した分子を挙げることができる。
 一実施形態において、上記のようなコア分子の発現を制御する上流の分子を探索することで、上流制御分子を得ることができ、その上流制御分子自体も、IPFの病態に何らかの関与をしている分子と考えることができる。したがって、そのような上流制御分子の調節剤または阻害剤もIPFの治療または予防剤として機能すると考えられる。そのため、本開示のIPFの治療または予防剤は、IPFの複数の診療情報に関連する分子の調節剤または阻害剤を含むことができ、具体的には、そのような分子としては、本明細書の他の箇所で例示した分子を挙げることができる。
 本開示の一実施形態において、特発性肺線維症(IPF)の1または複数の診療情報に関連する分子によって構成されるネットワークにおけるハブ分子の調節剤または阻害剤としては、例えば以下の表の右欄に記載される化合物または薬剤を挙げることができるが、これらに限られるものではない。


(スクリーニング方法)
 本開示の一局面において、ある疾患の治療または予防剤を探索するためのスクリーニング方法であって、該疾患に関連する特定のネットワーク関連の調節作用を有する分子を同定する工程と、該分子を該疾患の治療または予防剤として機能するかどうかを確認する工程とを含む、方法が提供される。
 本開示においては、異種データ間で連関のある項目群を紐付けて検出するアルゴリズム(subset binding)を用いて、診療情報とプロテオームデータから、IPFの症状(例
えば、特徴的な読影所見、診察記録、および/または血液検査値データなど)と共起するタンパク質を検出することができる。したがって、同様の手法を用いて、他の疾患についても、疾患に関連する分子によって構成されるネットワークを見出し、そのネットワークを構成する分子や、その分子の調節作用を有する分子を同定することで、当該疾患の治療または予防剤として機能することが期待できる。
 本開示の方法は、侵襲的手法をとることなく、患者診断や鑑別に資することができるため、対象疾患として、疾患発症メカニズムなどが分子レベルで十分に理解されていない難病にも適用することができる。例えば、そのような疾患としては、原因が特定できない特発性間質性肺炎(idiopathic interstitial pneumonias:IIPs)を挙げることができ、IIPは、臨床病理学的疾患単位として、特発性肺線維症(idiopathic pulmonary fibrosis:IPF)、非特異性間質性肺炎(nonspecific interstitial pneumonia:NSIP)、特発性器質化肺炎(cryptogenic organizing pneumonia:COP、idiopathic bronchiolitis obliterans organizing pneumonia:idiopathic BOOP)、急性間質性肺炎(acute interstitial pneumonia:AIP)、剥離性間質性肺炎(desquamative interstitial pneumonia:DIP)、呼吸細気管支炎を伴う間質性肺疾患(respiratory bronchiolitis associated interstitial lung disease:RB-ILD)、リンパ球性間質性肺炎(lymphocytic interstitial pneumonia:LIP)などに分類される。厚生労働省の特定疾患認定基準では、NSIP、COPなどのIPF以外のIIPsの診断には外科的肺生検(surgical lung biopsy:SLB)を必要としているため、本開示の方法は特に有用である。
 一実施形態において、上記ネットワークを構成する分子や、その分子の調節作用を有する分子が、当該疾患の治療または予防剤として機能するかどうかは、例えば、以下のような手法、またその組み合わせによって妥当性を確認することができる:
 既存のデータベースや論文情報を用いて分子の情報を収集し疾患との関係性を確認する、
 線維化組織における分子の発現を確認する、
 既存のデータベースや論文情報を用いて分子の制御にかかわる化合物情報を見出す、
 線維化現象を細胞レベルで再現し、化合物の作用を確認する、
 当該分子が構成分子となっているネットワークを特定し、そのネットワークが疾患において異常を示しているのかどうかを確認する。
 本開示の他の局面において、特発性肺線維症(IPF)を治療または予防するための、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤を含む組成物が提供される。本開示の一実施形態において、このような組成物に含まれる各阻害剤は、本明細書の他の箇所に記載したものを用いることができる。
 また本開示の他の局面において、特発性肺線維症に罹患した患者またはそのおそれがある患者を治療または予防するための方法であって、治療または予防有効量のABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤を該対象に投与する工程を含む、方法が提供される。本開示の一実施形態において、このような方法において使用される各阻害剤は、本明細書の他の箇所に記載したものを用いることができる。
 (一般技術)
 本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、Sambrook J. et al.(1989). Molecular Cloning: A Laboratory Manual, Cold Spring Harborおよびその3rd Ed.(2001); Ausubel, F.M.(1987).Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Ausubel, F.M.(1989). Short Protocols in Molecular Biology: A Compendium of Methods
 from Current Protocols in Molecular Biology, Greene Pub. Associates and Wiley-Interscience; Innis, M.A.(1990).PCR Protocols: A Guide to Methods and Applications, Academic Press; Ausubel, F.M.(1992).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Ausubel, F.M. (1995).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Greene Pub. Associates; Innis, M.A. et al.(1995).PCR Strategies, Academic Press; Ausubel, F.M.(1999).Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, Wiley, and annual updates; Sninsky, J.J. et al.(1999).
 PCR Applications: Protocols for Functional Genomics, Academic Press、別冊実験医学「遺伝子導入&発現解析実験法」羊土社、1997などに記載されており、これらは本明細書において関連する部分(全部であり得る)が参考として援用される。
 人工的に合成した遺伝子を作製するためのDNA合成技術および核酸化学については、例えばGeneArt、GenScript、Integrated DNA Technologies(IDT)などの遺伝子合成やフラグメント合成サービスを用いることもでき、その他、例えば、Gait, M.J.(1985). Oligonucleotide Synthesis: A Practical Approach, IRL Press; Gait, M.J.(1990). Oligonucleotide Synthesis: A Practical Approach, IRL
 Press; Eckstein, F.(1991). Oligonucleotides and Analogues: A Practical Approach, IRL Press; Adams, R.L. et al.(1992). The Biochemistry of the Nucleic Acids, Chapman & Hall; Shabarova, Z. et al.(1994).Advanced Organic Chemistry of Nucleic Acids, Weinheim; Blackburn, G.M. et al.(1996). Nucleic Acids in Chemistry and Biology, Oxford University Press; Hermanson, G.T.(I996). Bioconjugate Techniques, Academic Pressなどに記載されており、これらは本明細書において関連する部分が参考として援用される。
 本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値」の「範囲内」と明記した場合、その範囲には2つの値自体も含む。
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
 以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したのではない。従って、本開示の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。
(実施例1:臨床情報の収集)
 本実施例において臨床情報(診療情報および血液サンプル)を収集した患者数およびその特性を表3に示す。
 データ収集の全体の流れを図1Aに示した。診療情報(電子カルテ記載事項、CT画像読影所見、血液生化学検査値、基本情報、初診時問診票)の収集から入力データ生成については図1Bに示す手順に従って行った。例えば、電子カルテ記載事項(診察記録と呼ぶ)は、あらかじめ項目を設定して作成したフォーマット(テンプレートと呼ぶ)を用いて診察時に入力する、もしくは、すでに自然言語で自由記載された記載事項や初診時問診票からマニュアルでそのテンプレートに情報を抜き出して、構造化データとして収集した。例えば読影所見は自然言語処理により病変に関連する情報とそれが観察された部位に関する情報をペアとし、さらにその病変が認められたのか(positive)、認められなかったのか(negative)、あるいは疑われるのか(suspected)の情報を紐付けた形で機械的に抽出し、マニュアルで修正後にその特徴をone-hot vectorで表現してその後の解析に用いることとした。また血液検査結果は、あらかじめ選択した項目にその検査値をマニュアルで抽出して構造化データとして収集した。また、上記の診療情報は、プロテオームデータを取得するための血清を得るための採血日、あるいは近い日付にて収集した。なお、プロテオームデータは、血清よりエクソソームを分離後、マススペクトロメトリーにより、含有するタンパク質を網羅的に測定した。それぞれ、欠損値を補填し、診療情報6600×602例、プロテオーム2000×602例のデータセットを計算に供した。
(実施例2:診療情報およびプロテオームデータの解析)
 解析に供したコホートデータセット構造を図2Aに、解析のワークフローを図2Bにそれぞれ示した。構造化された診療情報、及びプロテオームデータを用いた患者層別化ルールの検出には、新たに開発したアルゴリズムであるsubset bindingを用いた。Subset bindingは異種データ間で連関のある項目群を紐付けて検出するアルゴリズムであり、診療情報のようなフェノタイプ情報とオミックスデータのような生体分子情報の間で連関のある項目同士を検出することによって患者層別化ルール(例えば、生体分子A,B,Cの発現が高い患者では網状影、牽引性気管支拡張が認められる傾向がある、といったパターン)をデータ駆動的に得ることを目的としている。Subset bindingはfuzzy association rule miningを基盤技術として用いており、入力した2つの行列(例えば、プロテオームデータと構造化された診療情報。行が同じである必要があるが列数は異なっていてもよい)それぞれに対してmembership functionを用いてmembership valuesを算出後にfrequent itemsetsを検出し、両データ由来のfrequent itemsetsを紐づけるようにしてassociation ruleを生成する(図2C)。このアルゴリズムを用いることにより、診療情報に一般的に見られるように連続値と離散値が混在するようなデータに対しても特別な前処理や事前知識を用いることなく解析を行うことができる。
(実施例3:疾患関連分子の抽出)
 SB(subset binding)によりIPFの特徴的な読影所見、診察記録、血液検査値データと共起した上位20個のタンパク質名を表4Aに、IPFの特徴的な読影所見のうち、蜂巣肺と共起した11個のタンパク質を表4Bに示した。

 IPFとの関連性をQiagen databaseを用いて検索し、表5Aおよび5Bにまとめて示した。
 関連性が既報にみとめられない分子としてMRPS17(28S ribosomal protein S17、mitochondrial)とPEF1(Peflin)があり、逆にIPFとの関連性が多くの分子を介して認められた分子としてLYN(Tyrosine-protein kinase Lyn)、PTPN6(Tyrosine-protein phosphatase non-receptor type 6)、MIF(Macrophagemigration inhibitory factor)やRAN(GTP-binding nuclear protein Ran)が含まれていた。また、20分子間のタンパク質相互関係を、TargetMine(データウェアハウス)を用いて検索した結果、上述のIPFとの関連性が多く認められた4つの分子がこれら20分子のタンパク質相互作用においても、ハブの分子となっていることがわかった(図3、表6)。
 さらに複数の診療情報と共起したタンパク質7つ(コア分子と呼ぶ)を用いて、IPA(Ingenuity pathway analysis)を用いて、パスウェイ解析を行い、canonical pathwayとしてacute phase Response Signaling, Eicosanoid Signaling, Agrin interactions at Neuromuscular Junction, LXR/RXR Activation, FXR/RXR Activationなどを、またdisease and function pathwayとして、Development Disorder, Hereditary Disorder, Immunological Disease, Neurological Disease, Organismal Injury and Abnormalitiesなどが抽出された。
 さらに、これらの分子が構成する分子ネットワークを探索した結果、すべての分子がマップされるCarbohydrate Metabolism, Small MoleculeBiochemistry, CellularAssembly and Organizationを見いだした。このネットワーク上におけるコア分子7つを含む分子間の制御関係を図4に描画した。また、IPAのcausal network analysisを用いて7つのコア分子の発現に関する上流制御関係を探索し、図5に示すように、ESR1,CCDN1,CCR2,NOS2,MMP14といった分子により制御されており、これらの分子をSRCfamily、ERK1/2、ABL1といったリン酸化シグナル関連蛋白が制御し、これらをより上流で一括した制御するponatinibを特定するに至った。
 MGIデータベース(URL: http://www.informatics.jax.org/)およびJAXKOマウスフェノタイプデータベース(URL:https://www.jax.org/jax-mice-and-services)を用いて、コア分子およびハブ分子のKOマウスの有無とフェノタイプ検索を行い、表7Aおよび7Bにまとめて示した。

 
 LYNやPTPN6は、肺に炎症などのフェノタイプを有することが判明したが、他の分子については、データがないか、他の臓器への影響が報告されているのみであった。
(実施例4:線維化組織における分子の発現)
 SBにより提示された20分子のうち、7つのコア蛋白および4つのハブ蛋白について、患者肺における発現の有無および線維化部位における発現の増加の有無を確認した。がんを併発し、手術適用となったIPF患者の肺の線維化部位と正常部位について、一次抗体を用いて免疫染色により確認した。その結果、図6に代表的な染色図を示すように、MC(マッソントリクローム)染色により明らかな線維化をみとめた組織において、Lynを例に示したように、明らかな発現増強が認められた。得られた結果を表8に一覧で示した。
 ITIHを除いてほぼすべての蛋白分子が線維化部位、特に上皮細胞、炎症細胞において発現が増強していることが確認できた。
(実施例5:EMT阻害作用)
 IPFにおける肺線維化の機序に上皮間葉転換(Epithelial mesenchymaltransition;EMT)の重要性が示唆されている。本実施例では、ヒト正常気道上皮細胞BEAS-2Bを用いてTGF-betaによってEMTを誘導する試験系を確立に成功し、さらに、ポナチニブのEMT阻害作用が確認できた(図7)。
 IPFにおける肺線維化の機序に上皮間葉転換(Epithelial mesenchymal transition;EMT)の重要性が示唆されている。本実施例では、一般にEMTに用いられるA549細胞に加えて、ヒト正常気道上皮細胞BEAS-2Bを用いてTGF-betaによってEMTを誘導するシステムを確立し、ポナチニブのEMT阻害作用が検証できた。ニンテダニブについては、その線維化抑制作用のメカニズムの一つとして、EMT抑制作用が報告されており、本実施例において見いだしたIPF関連分子を上流で制御するポナチニブがEMTを抑制したことは、ポナチニブの線維化抑制作用を示唆する。また線維化という現象は肝臓、皮膚など多くの臓器で起こり、それぞれ多数の罹患患者が存在している。また、線維化ががんの発症に関連していることも最近明らかになり、事実、IPFの約3割にがんが併発している。したがって、ポナチニブをはじめとして、IPFにおける線維化の本態解明に基づくターゲット探索により、他の臓器における多くの線維化疾患の治療法やがん発生メカニズムの解明にもつながることが期待できる。今後、EMT、代謝パスウェイ研究やリン酸化シグナル研究など、さらなる分子メカニズムの解明を行うことで、IPFの治療や早期診断に寄与できる。
方法
(血清収集)
(採血、処理、冷凍保存の条件)
 大阪大学医学部附属病院あるいはその各研究協力機関において診療を受け、IPFを含む間質性肺炎の診断となった患者で、「説明文書」に基づき、担当医もしくは説明担当者が十分な説明を行い、研究への参加に文書による同意を得た16歳以上の患者について、診療において研究用に血液10mLを採取した。採取した血液は室温に1時間静置したのち、3000rpm、10分遠心分離を行い、上清を血清として分離した。分離した血清は即時に凍結し、-80度のフリーザーにて保存、保管した。また、検査の結果器質的な呼吸器疾患を有さないと診断された方々についても同様の手法により血清を収集した。
(プロテオーム解析のプロトコル)
 血清200μlからMagCapture isolation kit(Fujifilm Wako)を用いて細胞外小胞を精製した。細胞外小胞中のタンパク質をトリス(2-カルボキシエチル)ホスフィンによる還元・ヨードアセトアミドによるアルキル化を行い、トリプシン消化、脱塩を行った。前処理したサンプルをData independent acquisition(DIA)法を用いたLC-MS/MS解析を実施した。データ解析は、DIA解析ソフトSpectranoutを用いて実施し、欠損値にはrun-wise imputationを行った。Quality controlとして、15検体毎に市販血清1検体を加えて、サンプル調製からデータ解析までの品質保証を行った。また質量分析のQuality controlとしてHeLa細胞消化物のDIA解析を実施した。
(診療情報の収集プロトコル)
 大阪大学医学部付属病院のデータセンターにセキュアに集積されている診療情報は、同医学部医療情報部の協力により、患者IDの匿名化ののち、暗号化されたHDに格納され、医薬基盤研に供出された。
 診療情報のうち、診察記録は、必要な情報102項目をあらかじめリストして作成したテンプレートを用いて医師が入力したものを構造化データとして入手し、もしくは医薬基盤研において自由記載事項テキストデータよりマニュアルでテンプレートにキュレーションを行って構造化データとした。読影所見は、マニュアルあるいは自然言語処理手法を用いて、重要表現にタグ付けを行い、部位と病変のペアとそれらのペアが認められる(positive)、認められない(negative)および疑われる(suspect)の3つの場合分けからなる構造化データを得た。血液検査値は、173項目の重要項目を選択してキュレーションを行い、構造化した。初診時問診票、基本情報は、診察記録のテンプレート項目に情報をキュレーションして追加した。また、構造化にあたり、欠損値補填の手法について、欠損の意味を確認するとともに、主として健常者基準値を用いて補填を行った。
(読影所見NLPのプロトコル)
 タグ付けのプロトコル
 診察記録や読影所見などの臨床テキストに出現する表現のうち、病名、疾患名、部位名などの医学的な概念に相当する範囲に対してタグを付与するため、タグ分類を行った。
 上述のタグ分類にしたがって、実例をもとにアノテーションガイドラインを作成し、診察記録、読影所見において、タグ付けおよび重要語句の抽出を行った。なお、タグ付けの正当性については、医学的知識を有する専門家による確認を行い、正解データを作成した。得られたコーパスを用いて、医療表現認識・関係推定システムの設定を行い、日本語BERT モデルを用いる抽出システムを構築した。
(subset binding)
 異種データ間の共起性を利用して相互に関連する属性を発見する「subset binding」という考え方を提唱し、FARM技術を拡張してsubset bindingを行う新しいアルゴリズムを開発した。Subset bindingは、FARM(Fuzzy Association Rule Mining)手法を用い、プロテオームデータと診療情報の2つのデータから頻出項目を検索し、前件が一方のデータから、後件が他方のデータから得られるように関連ルール(頻出項目内の項目間の共起のパターン)を発見する。診療情報とリンクしているプロテオームデータは、以下のようなパラメータ設定でsubset bindingを行い、解析を行った。
min support = 0.12, 0.02, 0.02, 0.02 for the proteome, the CT reading report, the EHR, and the blood test, respectively. 
min number of items = 8, 4, 5, 4 for the proteome, the CT reading
 report, the EHR, and the blood test, respectively. 
min lift = 2, 3, 3 for the association rules between proteome - CT
 reading report, the proteome - EHR, and the proteome - blood test,
 respectively.
(IPA)
 ingenuity pathway analysis (IPA)ソフトウェア(QIAGEN, Redwood 185 City, CA)と、タンパク質の生物学的メカニズム、相互作用、機能を記述した利用可能な出版物に依拠する一般的なIPAデータベースを用いて、疾患およびパスウェイ解析とネットワーク生成を行った。IPAでは、「上流調節因子」とは、別の生体分子の発現に影響を与える可能性のある生体分子を指すために使用され、薬剤、化学物質、キナーゼ、受容体、マイクロRNA、サイトカイン、または転写因子などを含む。
(免疫染色)
 肺がんを併発し、大阪大学医学部付属病院にて手術適用となったIPF患者5名(現在2 名)の摘出肺の線維化部位と正常部位を分離し、それぞれをホルマリンリン酸緩衝液にて固定した。
 ホルマリン固定済みの肺組織から、組織切片の長径に沿って切り出しを行い、FFPE(Formalin fixed paraffin embedded)ブロックを作製し、滑走式ミクロトームを用いて、厚さ4μmに薄切して未染色標本を作製した。未染色標本はHE(ヘマトキシリンエオジン)染色、MT(マッソントリクローム)染色を実施し、炎症および線維化を確認した。さらに、未染色標本を用いて、解析によって見出されたタンパク質の特異抗体を用いるIHC(Immunohistochemistry)法による染色を実施した。検出試薬はOptiView DABユニバーサルキットを使用し、また、抗体ごとに陰性コントロールとして抗体希釈液を用いた染色を同時に実施し、各抗体に対するIHC染色の評価を行った。なお、染色標本は明視野スライドスキャナーを用いて、対物レンズ20倍の設定で撮影し、画像ファイルをSVS形式で保存した。
 染織標本は、明視野顕微鏡下にて検鏡し、線維化の評価、IHCの評価を行った。
(EMT実験)
コーティング剤:フィブロネクチン/コラーゲンI/BSA
播種細胞濃度:2.5×10、3.5×10cells/mL
播種24時間後に薬剤を添加した直後にTGF-βを3ng/mLとなるよう添加
TGF-β添加48時間後に細胞を回収
各グラフの一番左のカラムは「TGF添加無し」の完全ネガティブコントロール
 EMTは、上皮性マーカーであるE-cadherinの発現抑制と、間葉系マーカーであるFibronectinおよびSnailの発現増強を指標として評価することとした。ATCCより購入したBEAS-2B細胞を2.5×10あるいは3.5×10cells/mL(培地;BEGM Bu、lletKit ;Bronchial epithelial cell basal medium、Lonza株式会社)で、フィブロネクチン/コラーゲンI/BSAでコーティングした96wellプレートへ播種し、24時間後に被験薬剤を添加したのち、TGF-β(Proteintech)を終濃度3ng/mLとなるように添加した。TGF-β添加48時間後に、SuperPrep II Cell Lysis & RT Kit for qPCR(東洋紡株式会社)を用いて細胞溶解およびRTを行い、上述のEMTマーカー遺伝子群の発現量をqPCRにより測定した。qPCRには、THUNDERBIRD Probe qPCR Mix(東洋紡株式会社)を用い、各マーカープローブにはTaqMan Probe(サーモフィッシャーサイエンティフィック株式会社)を用いた。
 (実施例6:治療例)
 上記実施例などで同定したIPFの予防または治療剤(例えば、ポナチニブ)を上記実施例に基づき算出した予防または治療有効量、対象となる被験者(患者または予防を期待される被験者)に投与する。製剤は、すでに市販されているものであればその製剤、市販されていない場合は適宜製剤化した上で使用する。ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤のいずれかまたは複数の機能を有する単一の薬剤または複数の薬剤の組み合わせを選択する。
 被験者について、経過を観察してIPFなどの対象疾患の改善または悪化もしくは発症の防止を確認する。
 以上の結果、本開示で同定した治療または予防剤の効果を確認することができる。
 (実施例7:ポナチニブの同類薬/化合物によるEMT阻害作用およびBLMモデルの有効性評価)
 ブレオマイシン(BLM)誘発肺線維症モデルは、IPFモデルのスタンダードモデルであり、薬効評価に使用される。マウスまたはラットにBLMを投与することにより、線維性肥厚、線維芽細胞の増殖、間質性の線維化、肺胞マクロファージの増加などを誘発させ、候補薬剤によるその抑制効果を確認する。
 EMT阻害作用が確認できたポナチニブに加えて、ポナチニブが制御し、かつコア分子の発現制御を行う5分子(ABL、RET、SRCファミリー、ERK1/2、およびFLT3)のいずれかを制御する薬剤(イマチニブ、スニチニブ、ニロチニブ、ボスチニブ、ニンテダニブ、およびソラフェニブ)について、EMT阻害作用およびBLMモデルにおける有効性評価を確認する。

 
 ポナチニブ、イマチニブ、スニチニブ、ニンテダニブ、およびソラフェニブについては、EMT阻害作用およびBLMモデルにおける有効性が確認できることが報告されている。
 (注記)
 以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願及び他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本願は、日本国特許庁に2022年3月25日に出願された特願2022-50865に対して優先権主張をするものであり、その内容はその全体があたかも本願の内容を構成するのと同様に参考として援用される。
 本開示によれば、ヒトのデータを用いてデータ駆動的に創薬標的探索をすることができるため、疾患発症メカニズムなどが分子レベルで十分に理解されていない難病についても、創薬標的探索を実施することができる。そのため、医療分野において応用が期待される。

Claims (30)

  1.  ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤を含む、特発性肺線維症(IPF)の治療または予防剤。
  2.  前記治療または予防剤が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤のうち、少なくとも2以上の阻害剤としての機能を有する、請求項1に記載の治療または予防剤。
  3.  前記治療または予防剤が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤としての機能を有する、請求項1または2に記載の治療または予防剤。
  4.  ポナチニブを含む、請求項1~3のいずれか一項に記載の治療または予防剤。
  5.  特発性肺線維症(IPF)を治療または予防するための、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、またはFLT3阻害剤を含む組成物。
  6.  前記組成物が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤のうち、少なくとも2以上の阻害剤としての機能を有する薬剤を含む、請求項5に記載の組成物。
  7.  前記組成物が、ABL阻害剤、RET阻害剤、SRCファミリー阻害剤、ERK1/2リン酸化阻害剤、およびFLT3阻害剤としての機能を有する薬剤を含む、請求項5または6に記載の組成物。
  8.  ポナチニブを含む、請求項5~7のいずれか一項に記載の組成物。
  9.  特発性肺線維症(IPF)の1または複数の診療情報に関連する分子によって構成されるネットワークにおけるハブ分子、またはその検出剤を含む、特発性肺線維症(IPF)のマーカーまたは診断剤。
  10.  前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、AGRN、SRI、ALOX12、PEF1、PNP、FHL1、PCMT1、PIP4P2、HEBP2、CAPN1、PLXDC2、PTPN6、LYN、TAOK3、RAN、CNP、MIF、CD68、CRKL、EHD3、ITGB3、MFSD2B、PARVB、PCMT1、PLEK、PTP4A2、RAP1B、およびTSPAN15からなる群から選択される1または複数の分子である、請求項9に記載のマーカーまたは診断剤。
  11.  前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、SRI、ALOX12、PEF1、PTPN6、LYN、RAN、およびMIFからなる群から選択される請求項9または10に記載のマーカーまたは診断剤。
  12.  前記分子が、LYN、PTPN6、MIF、及びRANからなる群から選択される、請求項9~11のいずれか一項に記載のマーカーまたは診断剤。
  13.  特発性肺線維症(IPF)の複数の診療情報に関連する分子、またはその検出剤を含む、請求項9に記載のマーカーまたは診断剤。
  14.  前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、AGRN、SRI、ALOX12、PEF1からなる群から選択される1または複数の分子である、請求項13に記載のマーカーまたは診断剤。
  15.  前記診療情報が、IPFの特徴的な読影所見、診察記録、および/または血液検査値を含む、請求項9~14のいずれか一項に記載のマーカーまたは診断剤。
  16.  特発性肺線維症(IPF)の複数の診療情報に関連する分子の発現を制御する分子、またはその検出剤を含む、特発性肺線維症(IPF)のマーカーまたは診断剤。
  17.  前記分子が、ESR1、CCDN1、NOS2、CCR2、PRKAA1、MKNK1、及びMMP14からなる群から選択される1または複数の分子である、請求項16に記載のマーカーまたは診断剤。
  18.  特発性肺線維症(IPF)の1または複数の診療情報に関連する分子によって構成されるネットワークにおけるハブ分子の調節剤または阻害剤を含む、IPFの治療または予防剤。
  19.  前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、AGRN、SRI、ALOX12、PEF1、PNP、FHL1、PCMT1、PIP4P2、HEBP2、CAPN1、PLXDC2、PTPN6、LYN、TAOK3、RAN、CNP、MIF、CD68、CRKL、EHD3、ITGB3、MFSD2B、PARVB、PCMT1、PLEK、PTP4A2、RAP1B、およびTSPAN15からなる群から選択される1または複数の分子である、請求項18に記載の治療または予防剤。
  20.  前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、SRI、ALOX12、PEF1、PTPN6、LYN、RAN、およびMIFからなる群から選択される請求項18または19に記載の治療または予防剤。
  21.  前記分子が、LYN、PTPN6、MIF、及びRANからなる群から選択される、請求項18~20のいずれか一項に記載の治療または予防剤。
  22.  特発性肺線維症(IPF)の複数の診療情報に関連する分子の調節剤または阻害剤を含む、請求項18に記載の治療または予防剤。
  23.  前記分子が、ANXA7、ITIH1、ITIH2、ITIH3、ITIH4、ITIH5、ITIH6、MRPS17、AGRN、SRI、ALOX12、PEF1からなる群から選択される1または複数の分子である、請求項22に記載の治療または予防剤。
  24.  前記診療情報が、IPFの特徴的な読影所見、診察記録、および/または血液検査値を含む、請求項18~23のいずれか一項に記載の治療または予防剤。
  25.  前記調節剤または阻害剤が、以下の表の右欄に記載される化合物または薬剤を含む、請求項18~24のいずれか一項に記載の治療または予防剤。

  26.  ある疾患の治療または予防剤を探索するためのスクリーニング方法であって、
     該疾患に関連する特定のネットワーク関連の調節作用を有する分子を同定する工程と、
     該分子を該疾患の治療または予防剤として機能するかどうかを確認する工程と
    を含む、方法。
  27.  前記ネットワークが、前記疾患の1または複数の診療情報に基づいて構築される、請求項26に記載の方法。
  28.  前記診療情報が、前記疾患の特徴的な読影所見、診察記録、および/または血液検査値を含む、請求項27に記載の方法。
  29.  前記確認する工程が、
    (a)既存のデータベースおよび/または論文情報を用いて前記分子の情報を収集し、前記疾患との関係性を確認する工程、
    (b)線維化組織における前記分子の発現を確認する工程、
    (c)既存のデータベースおよび/または論文情報を用いて前記分子の制御に関連する化合物の情報を検索する工程、
    (d)線維化現象を細胞レベルで再現し、前記分子の作用を確認する工程、および/または
    (e)前記分子によって構成されるネットワークを特定し、該ネットワークが前記疾患において異常を示しているかどうかを確認する工程
    のいずれか1つまたは複数によって行われる、請求項26~28のいずれか一項に記載の方法。
  30.  前記疾患が、特発性肺線維症(IPF)を含む、請求項26~29のいずれか一項に記載の方法。
PCT/JP2023/011960 2022-03-25 2023-03-24 特発性肺線維症の治療または予防剤 WO2023182512A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022050865 2022-03-25
JP2022-050865 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182512A1 true WO2023182512A1 (ja) 2023-09-28

Family

ID=88101739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011960 WO2023182512A1 (ja) 2022-03-25 2023-03-24 特発性肺線維症の治療または予防剤

Country Status (1)

Country Link
WO (1) WO2023182512A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021522163A (ja) * 2018-04-23 2021-08-30 ティーエルシー バイオファーマシューティカルズ、インク. 肺疾患の処置に使用するための吸入可能なリポソーム徐放性組成物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021522163A (ja) * 2018-04-23 2021-08-30 ティーエルシー バイオファーマシューティカルズ、インク. 肺疾患の処置に使用するための吸入可能なリポソーム徐放性組成物

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "About AI drug discovery target search platform using genomic information etc.", 8TH EXPERT COMMITTEE MEETING ON THE PROMOTION OF WHOLE GENOME ANALYSIS, MINISTRY OF HEALTH, LABOUR AND WELFARE, JP, 2 March 2022 (2022-03-02), JP, pages 1 - 10, XP009550047 *
BONELLA, FRANCE SCO ET AL.: "Idiopathic pulmonary fibrosis: current treatment options and critical appraisal of nintedanib", DRUG DESIGN. DEVELOPMENT AND THERAPY, vol. 9, 2015, pages 6407 - 6419, XP009510386, DOI: http://dx.doi.org/10.2147/DDDT.S76648 *
BRODY STEVEN L., GUNSTEN SEAN P., LUEHMANN HANNAH P., SULTAN DEBBIE H., HOELSCHER MICHELLE, HEO GYU SEONG, PAN JIEHONG, KOENITZER : "Chemokine Receptor 2–targeted Molecular Imaging in Pulmonary Fibrosis. A Clinical Trial", AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, AMERICAN THORACIC SOCIETY, US, vol. 203, no. 1, 1 January 2021 (2021-01-01), US , pages 78 - 89, XP093095201, ISSN: 1073-449X, DOI: 10.1164/rccm.202004-1132OC *
CHENE, GERALD ET AL.: "B280: Specialized-proresolving mediators and transcriptomic signatures in bleomycin-induced lung fibrosis", INFLAMMATION RESEARCH, BIRKHAEUSER VERSLAG , BASEL, CH, vol. 64, no. 2, 30 November 2014 (2014-11-30), CH , pages 214, XP009549066, ISSN: 1023-3830 *
GRZEŚK GRZEGORZ, WOŹNIAK-WIŚNIEWSKA ANITA, BŁAŻEJEWSKI JAN, GÓRNY BARTOSZ, WOŁOWIEC ŁUKASZ, ROGOWICZ DANIEL, NOWACZYK ALICJA: "The Interactions of Nintedanib and Oral Anticoagulants—Molecular Mechanisms and Clinical Implications", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 22, no. 1, pages 282, XP093095196, DOI: 10.3390/ijms22010282 *
LI XURAN, ZHOU YING, ZOU RUYI, CHEN HAORAN, LIU XIAOQIN, QIU XIAOHUA, XIAO YONGLONG, CAI HOURONG, DAI JINGHONG: "Associations of Serological Biomarkers of sICAM-1, IL-1 β , MIF, and su-PAR with 3-Month Mortality in Acute Exacerbation of Idiopathic Pulmonary Fibrosis", MEDIATORS OF INFLAMMATION., RAPID COMMUNICATION OF OXFORD LTD., OXFORD., GB, vol. 2020, 6 July 2020 (2020-07-06), GB , pages 1 - 9, XP093095198, ISSN: 0962-9351, DOI: 10.1155/2020/4534272 *
LI YUPENG, CHEN SHIBIN, LI XINCHENG, WANG XUE, LI HUIWEN, NING SHANGWEI, CHEN HONG: "CD247, a Potential T Cell–Derived Disease Severity and Prognostic Biomarker in Patients With Idiopathic Pulmonary Fibrosis", FRONTIERS IN IMMUNOLOGY, vol. 12, XP093095197, DOI: 10.3389/fimmu.2021.762594 *
PLACIDO LUIS, ROMERO YAIR, MALDONADO MARIEL, TOSCANO-MARQUEZ FERNANDA, RAMÍREZ REMEDIOS, CALYECA JAZMÍN, MORA ANA L., SELMAN MOISÉ: "Loss of MT1-MMP in Alveolar Epithelial Cells Exacerbates Pulmonary Fibrosis", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 22, no. 6, pages 2923, XP093095202, DOI: 10.3390/ijms22062923 *
QU YUBEI, ZHANG LIANG, KANG ZECHUN, JIANG WANGLIN, LV CHANGJUN: "Ponatinib ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway", PULMORNARY PHARMACOLOGY & THERAPEUTICS, ACADEMIC PRESS, GB, vol. 34, 1 October 2015 (2015-10-01), GB , pages 1 - 7, XP093095195, ISSN: 1094-5539, DOI: 10.1016/j.pupt.2015.07.004 *
ULITINA, ANNA ET AL.: "Association between AGTTGFB1ESR1 and VDR gene variants with idiopathic pulmonary fibrosis (IPF) and pulmonary sarcoidosis (PS) clinical features", EUROPEAN RESPIRATORY JOURNAL, EUROPEAN RESPIRATORY SOCIETY, vol. 50, no. 61, 30 November 2016 (2016-11-30), pages OA 2906, XP009549051, DOI: 10.1183/1393003.congress-2017.OA2906 *
WANG YUNGUAN, YELLA JASWANTH K., GHANDIKOTA SUDHIR, CHERUKURI TEJASWINI C., EDIGA HARSHAVARDHANA H., MADALA SATISH K., JEGGA ANIL : "Pan-transcriptome-based candidate therapeutic discovery for idiopathic pulmonary fibrosis", THERAPEUTIC ADVANCES IN RESPIRATORY DISEASE, vol. 14, 1 January 2020 (2020-01-01), pages 175346662097114, XP093095203, ISSN: 1753-4666, DOI: 10.1177/1753466620971143 *

Similar Documents

Publication Publication Date Title
Ahlberg et al. Rare truncating variants in the sarcomeric protein titin associate with familial and early-onset atrial fibrillation
Parikh et al. Colonic epithelial cell diversity in health and inflammatory bowel disease
Wirka et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis
Wu et al. MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche
Economopoulou et al. Beyond BRCA: new hereditary breast cancer susceptibility genes
Konno et al. Haploinsufficiency of CSF-1R and clinicopathologic characterization in patients with HDLS
Baker et al. Opposing roles for p16Ink4a and p19Arf in senescence and ageing caused by BubR1 insufficiency
Zhao et al. A brain somatic RHEB doublet mutation causes focal cortical dysplasia type II
Zhao et al. Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma
Duy et al. Impaired neurogenesis alters brain biomechanics in a neuroprogenitor-based genetic subtype of congenital hydrocephalus
Qin et al. Angiomyolipoma have common mutations in TSC2 but no other common genetic events
Wormser et al. SCAPER localizes to primary cilia and its mutation affects cilia length, causing Bardet-Biedl syndrome
Hateboer et al. Location of mutations within the PKD2 gene influences clinical outcome
Feletti et al. Von Hippel-Lindau disease: an evaluation of natural history and functional disability
Ahvenainen et al. Loss of ATRX/DAXX expression and alternative lengthening of telomeres in uterine leiomyomas
McCarthy et al. Insights into genetic alterations of liver metastases from uveal melanoma
Watson et al. Distal lung epithelial progenitor cell function declines with age
Cavallin et al. WDR81 mutations cause extreme microcephaly and impair mitotic progression in human fibroblasts and Drosophila neural stem cells
Barak et al. PPIL4 is essential for brain angiogenesis and implicated in intracranial aneurysms in humans
Tai-Nagara et al. Blood and lymphatic systems are segregated by the FLCN tumor suppressor
Zhao et al. A germline CHEK2 mutation in a family with papillary thyroid cancer
Li et al. miR-184 targets TP63 to block idiopathic pulmonary fibrosis by inhibiting proliferation and epithelial–mesenchymal transition of airway epithelial cells
Wu et al. Fosl1 is vital to heart regeneration upon apex resection in adult Xenopus tropicalis
Giannikou et al. Subependymal giant cell astrocytomas are characterized by mTORC1 hyperactivation, a very low somatic mutation rate, and a unique gene expression profile
Jordan et al. The role of FREM2 and FRAS1 in the development of congenital diaphragmatic hernia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775105

Country of ref document: EP

Kind code of ref document: A1