WO2023182462A1 - Magnetic marker - Google Patents

Magnetic marker Download PDF

Info

Publication number
WO2023182462A1
WO2023182462A1 PCT/JP2023/011654 JP2023011654W WO2023182462A1 WO 2023182462 A1 WO2023182462 A1 WO 2023182462A1 JP 2023011654 W JP2023011654 W JP 2023011654W WO 2023182462 A1 WO2023182462 A1 WO 2023182462A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic marker
magnets
magnetic
magnet
adhesive material
Prior art date
Application number
PCT/JP2023/011654
Other languages
French (fr)
Japanese (ja)
Inventor
道治 山本
知彦 長尾
均 青山
Original Assignee
愛知製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛知製鋼株式会社 filed Critical 愛知製鋼株式会社
Publication of WO2023182462A1 publication Critical patent/WO2023182462A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/03Control of position or course in two dimensions using near-field transmission systems, e.g. inductive-loop type
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]

Definitions

  • the present invention relates to magnetic markers placed on roads to assist vehicle driving.
  • Patent Document 1 magnetic marker systems for vehicles that utilize magnetic markers placed on roads have been known (for example, see Patent Document 1). Such magnetic marker systems are intended for vehicles equipped with magnetic sensors. When a vehicle detects magnetic markers placed along the lane, various types of driving support, such as automatic steering control and lane departure warning, are realized.
  • the magnetic marker may fall off the road and the function of the magnetic marker may be lost all at once.
  • the present invention has been made in view of the above-mentioned conventional problems, and aims to provide a magnetic marker that has the possibility of maintaining its function even when pavement is damaged.
  • the present invention is a magnetic marker buried in a road surface for use in vehicle driving support,
  • the magnetic marker is an aggregate of a plurality of magnets, and the plurality of magnets are connected to form a column.
  • the magnetic marker of the present invention is an assembly in which a plurality of magnets are connected to form a column.
  • This magnetic marker is divided into a plurality of parts and becomes easy to separate from each other because the connection between the magnets is impaired.
  • holes called potholes may occur as cracks in the road surface progress.
  • a pothole near a magnetic marker gradually expands and the magnetic marker is exposed on its inner circumferential surface, if a portion can be separated as described above, there is a risk that the entire magnetic marker will immediately fall off the road. can be reduced. If even part of the magnetic marker remains on the road side, some of the magnetic functions of the magnetic marker can be maintained.
  • FIG. 3 is an explanatory diagram showing magnetic markers placed on a road in Example 1.
  • FIG. 1 is a sectional view showing a road pavement structure in Example 1.
  • FIG. 2 is an explanatory diagram of the internal structure of a magnetic marker in Example 1.
  • FIG. 7 is an explanatory diagram of the internal structure of a magnetic marker in Example 2.
  • FIG. 3 is a cross-sectional view of a granular magnet in Example 2.
  • FIG. 7 is an explanatory diagram of a guide member in Example 2.
  • FIG. 7 is an explanatory diagram of the internal structure of a magnetic marker in Example 3.
  • FIG. 7 is a perspective view showing a magnetic marker in Example 4.
  • FIG. 8 is an explanatory diagram of the cross-sectional structure of the magnetic marker in Example 4 (view taken along the line AA in FIG.
  • FIG. 7 is an explanatory diagram of another magnet sheet in Example 4.
  • FIG. 7 is an explanatory diagram of another method of joining magnet sheets in Example 4.
  • FIG. 7 is a perspective view of a magnetic marker in Example 5.
  • FIG. 7 is a perspective view of another magnetic marker in Example 5.
  • FIG. 7 is a cross-sectional view of a magnetic marker in Example 6.
  • FIG. 7 is a perspective view of a magnetic marker in Example 7.
  • FIG. 7 is a perspective view of another magnetic marker in Example 7.
  • FIG. 7 is an explanatory diagram of a marker bar in Example 8.
  • FIG. 9 is an explanatory diagram showing how a magnetic marker is cut out from a marker rod in Example 8.
  • FIG. 9 is an explanatory diagram of the state in which the tip of the marker rod is inserted into the accommodation hole in Example 8.
  • FIG. 9 is an explanatory diagram of step 1 of separating the magnetic marker at the tip of the marker rod in Example 8.
  • FIG. 7 is an explanatory diagram of the second procedure for separating the magnetic marker at the tip of the marker rod in Example 8.
  • FIG. 9 is an explanatory diagram of the procedure for cutting off the magnetic marker at the tip of the marker rod and placing it in the accommodation hole in Example 8.
  • FIG. 9 is a perspective view of a magnetic marker including a wireless tag in Example 9.
  • FIG. 9 is a front view of the developed shape of the secondary antenna in Example 9.
  • Example 1 This example is an example of a magnetic marker 1 arranged on a road 3 so as to be detected by a magnetic sensor (not shown) attached to a vehicle. According to the magnetic marker 1, it is possible to support the driving operation of the vehicle by the driver or to control the vehicle to realize automatic driving that does not depend on the driver's operation. The contents will be explained with reference to FIGS. 1 to 3.
  • the magnetic marker 1 (FIG. 1) of this example is a buried type magnetic marker, and is installed (buried) in a state of being accommodated in a 30 mm deep accommodation hole 30 provided in the road surface 3S.
  • the magnetic marker 1 has a columnar shape with a diameter of 30 mm and a height of 20 mm. Since the height of the magnetic marker 1 is 20 mm with respect to the depth of the accommodation hole 30 mm, the upper surface of the magnetic marker 1 placed in the accommodation hole 30 is set back about 10 mm from the road surface.
  • the accommodating hole 30 is filled with a polymeric material such as asphalt or a resin material. As a result, a lid 31 made of asphalt, resin material, or the like is formed on the upper surface side of the magnetic marker 1.
  • the cross-sectional structure (Fig. 2) of a road 3 paved with asphalt etc. roughly consists of a subgrade 3C made of compacted soil, a subgrade 3B made of granular materials such as crushed stone or crush run (an example of a base layer), and a heated asphalt mixture. It has a three-layer structure: a surface layer 3A.
  • the heated asphalt mixture is an asphalt mixture in which coarse aggregate 331, fine aggregate 332, filler, and asphalt are mixed in a heated state.
  • the layer thickness of the surface layer 3A is, for example, about 10 cm.
  • the coarse aggregate 331 is, for example, crushed stone with a particle size of 2.5 to 5 mm.
  • Fine aggregate 332 is, for example, aggregate that passes through a 2.36 mm sieve and remains on a 0.075 mm sieve.
  • the fine aggregate 332 is, for example, sand with a particle size of 0.075 to 2.36 mm.
  • the filler which is not shown, is a mineral powder that passes through a 0.075 mm sieve.
  • the filler is, for example, stone powder made from powdered limestone.
  • a pothole is a hole that occurs when a part of the surface layer 3A made of the heated asphalt mixture peels off from the road surface 3S. Potholes occur, for example, when the connection structure between the coarse aggregates 331 in the heated asphalt mixture forming the surface layer 3A is impaired.
  • the magnetic marker 1 (FIG. 3) is a substantially cylindrical molded product in which granular magnets 10 (hereinafter simply referred to as magnets 10) having a diameter of about 1 mm are dispersed in a molding material. That is, this magnetic marker 1 is an aggregate of a plurality of granular magnets 10, and the plurality of magnets 10 are connected so as to form a columnar shape as a whole using a molding material as a connecting material. As mentioned above, the outer dimensions of the magnetic marker 1 are 30 mm in diameter and 20 mm in height. The magnetic marker 1 is magnetized after molding, so that the direction of the magnetic pole of each magnet 10 is constant. Note that FIG. 3 is a perspective view showing a cross section including the central axis of the columnar magnetic marker 1.
  • the magnet 10 is an isotropic ferrite plastic magnet in which iron oxide magnetic powder, which is a magnetic material, is dispersed in a polymeric material that forms a base material.
  • the polymer material is, for example, nylon 12.
  • nylon 12 for example, rubber, PPS (Poly Phenylene Sulfide), nylon 66, etc. may also be used.
  • BHmax maximum energy product
  • the molding material forming the magnetic marker 1 is polystyrene, which is an example of a resin material.
  • the magnetic marker 1 is, for example, a molded article made of a material in which granular magnets 10 are mixed into a material obtained by primarily foaming raw material beads made of polystyrene and a hydrocarbon foaming agent.
  • the magnetic marker 1 can be manufactured by filling a mold (not shown) with this material and molding it into a columnar shape.
  • an inter-magnet region 100 forming a gap between the granular magnets 10 is formed of styrene foam (foamed plastic, foamed resin), which is an example of a porous foam.
  • adjacent granular magnets 10 are connected using expanded polystyrene as a connecting material.
  • Styrofoam as a connecting material is less brittle than the magnet 10, which is an isotropic ferrite plastic magnet.
  • the styrene foam that is the connecting material breaks, and as a result, the magnetic marker 1 can separate into a plurality of small pieces and decompose.
  • the magnetic marker 1 of this example has magnetic properties such that the surface magnetic flux density is 45 mT (millitesla) and the magnetic flux density reaching a height of 250 mm is about 8 ⁇ T.
  • the height of 250 mm is an example of a height that corresponds to the upper limit of the expected range of mounting heights of the magnetic sensor in a vehicle.
  • the inter-magnet region 100 is a porous region formed of expanded polystyrene. Styrofoam has a lower breaking strength than paving materials and can break relatively easily. As described above, the magnetic marker 1 of this example has the characteristic that it is easily separated into small pieces when the polystyrene foam forming the inter-magnet region 100 between the granular magnets 10 breaks.
  • the magnetic marker 1 exposed on the road surface 3S remains in one piece, the magnetic marker 1 will fall off the road as a whole due to the occurrence of potholes, and the magnetic function of the magnetic marker 1 will be lost all at once. It turns out. If the magnetic marker 1 of this example has a structure that can be separated into a plurality of small pieces, it is possible to separate a part according to the enlargement of a pothole or the like, and the remaining part may remain on the road side. Therefore, there is a high possibility that the magnetic marker 1 can maintain its magnetic function to some extent.
  • the magnetic marker 1 is illustrated in which granular magnets 10 each having a diameter of 1 mm are arranged in a dispersed manner.
  • the size of the granular magnet 10 is preferably 0.2 mm or more and 3.0 mm or less.
  • a spherical magnet with a diameter of 1 mm is exemplified, but it may also be a granular shape of a rectangular parallelepiped or a cube, or a granular shape having a plurality of protrusions, such as confetti.
  • the size of the magnet 10 may vary.
  • the magnet 10 may be in the form of powder or in the form of irregularly shaped pieces.
  • a resin material such as polyethylene, polypropylene, or polyurethane may be used instead of polystyrene in this example.
  • the magnets 10 may be dispersed in a foamed resin (foamed body) made of these resin materials.
  • a polyurethane stock solution may be poured into a mold pre-filled with granular magnets 10 and foamed.
  • a magnetic marker in which the magnets 10 are dispersed in polyurethane foam which is an example of a foam, can be obtained.
  • a degradable material may also be used as the resin material forming the foam.
  • the granular magnet 10 may be a ferrite rubber magnet or a sintered magnet instead of the isotropic ferrite plastic magnet of this example.
  • a columnar magnetic marker with a circular cross section is exemplified.
  • the cross-sectional shape is not limited to a circular shape.
  • a columnar magnetic marker having a cross-sectional shape such as a triangular, square, or pentagonal shape may be used.
  • Example 2 This example is an example in which the manner in which the granular magnets 10 are gathered is changed based on the magnetic marker 1 of Example 1. The contents will be explained with reference to FIGS. 4 to 6.
  • the magnetic marker 1 of this example is an aggregate of granular magnets 10 with a diameter of 1 mm, as in Example 1 (FIG. 4).
  • the granular magnets 10 are bonded to each other at locations where they circumscribe each other, and a columnar outer shape is realized as a whole. Note that the broken line in FIG. 4 indicates a substantially cylindrical outer shape.
  • asphalt which is a polymeric material
  • the adhesive material in the magnetic marker 1 is located in the gap between adjacent magnets 10 and serves as an example of a connecting material that connects the adjacent magnets 10.
  • Asphalt as an adhesive material is arranged so as to cover the outer peripheral surface of the spherical granular magnets 10, but does not fill the gaps between adjacent granular magnets 10. As a result, an inter-magnet region 100 including holes 108 is formed between adjacent granular magnets 10 .
  • FIG. 5 After filling a granular magnet 10 (FIG. 5) with a diameter of 1 mm with a coating layer 107 made of asphalt on the outer peripheral surface into a mold (not shown) having a space of 30 mm in diameter and 20 mm in depth, the asphalt is heated and softened. let The magnets 10 in the mold are bonded and joined by softened asphalt at their mutually circumscribing locations, thereby connecting them to form a columnar shape with a diameter of 30 mm and a height of 20 mm.
  • the substantially spherical magnets 10 circumscribe each other, while gaps are created between adjacent magnets 10 to form holes 108.
  • the area where adjacent magnets 10 are in contact with each other and bonded together is small. Therefore, the magnetic marker 1 is easily broken and easily separated into small pieces.
  • Asphalt is also a road pavement material.
  • the gaps between adjacent aggregates are filled with asphalt.
  • the magnetic marker 1 of this example the gaps between the granular magnets 10 instead of aggregate are not filled with asphalt, and holes 108 are formed. Therefore, the magnetic marker 1 is less brittle and has lower breaking strength than pavement made of asphalt.
  • the magnet 10 a granular magnet in which magnetic powder is dispersed in asphalt that forms the base material may be adopted. In this case, by heating the magnet 10, the outer periphery of the magnet 10 can be softened, thereby allowing adjacent magnets 10 to be bonded together.
  • a bottomed cylindrical guide member 111 (FIG. 6), fill the inside of the guide member 111 with granular magnets 10, and then heat it. After the magnets 10 are bonded to each other by heating, the guide member 111 may be removed or may be used as a part of the magnetic marker 1 as it is.
  • asphalt is used as an adhesive material for bonding the magnets 10 together.
  • Adhesive materials are not limited to asphalt. It is also good to use rubber, PPS (Poly Phenylene Sulfide), nylon 66, nylon 12, etc. Note that the other configurations and effects are the same as in Example 1.
  • Example 3 This example is an example in which the molding material was changed based on the magnetic marker of Example 1. This content will be explained with reference to FIG.
  • This example is an example in which a degradable material that decomposes over time is used as the molding material for the magnetic marker 1.
  • an inter-magnet region 100 forming a gap between magnets 10 is filled with a degradable material.
  • the inter-magnet region 100 is a region where the degradable material decomposes over time and pores and cracks can be formed.
  • the molding material in the inter-magnet region 100 decomposes to form holes or cracks, the fracture strength of the magnetic marker 1 itself will decrease.
  • degradable materials that decompose over time examples include polymeric materials that decompose under the action of at least one of heat, light, and water, and biodegradable materials that decompose into low-molecular compounds due to the involvement of microorganisms in nature. materials, etc.
  • the molding material for the magnetic marker 1 it is also possible to use an adhesive material, an adhesive material, or the like, which has high strength initially, but whose strength gradually decreases due to changes over time.
  • the adhesive material is an adhesive material in a narrow sense that is in a liquid state before use and becomes solid over time.
  • the adhesive material is a semi-solid and viscous adhesive material that has both liquid and solid properties. It can also be considered that the concept of adhesive material in a broad sense includes adhesive materials and adhesive materials in a narrow sense.
  • the adhesive material or adhesive material for example, it is also possible to use an adhesive material that has relatively high strength immediately after bonding, but whose bonding strength gradually decreases due to changes over time. Further, for example, it is also possible to employ a disassembly adhesive material or a disassembly adhesive material that has some kind of disassembly factor and has the property that the bonding force decreases or the adhesive material peels off due to a disassembly operation that activates the disassembly factor.
  • the bonding strength of the adhesive material, etc. in the inter-magnet region 100 is reduced, the bond between adjacent magnets 10 will become weaker, making it easier for cracks to occur.
  • Ultraviolet release tape is a tape called dicing tape in semiconductor processes.
  • it may be a water-absorbing resin-containing adhesive material that has a disassembly factor such as expansion of the water-absorbing resin and whose bonding strength is reduced by a disassembly operation such as immersion in water.
  • it may be a thermally expandable microcapsule-containing adhesive material that has a disintegration factor of microcapsule expansion and whose bonding strength is reduced by heating.
  • it may be a thermosetting/thermoplastic adhesive material that has disassembly factors such as softening and melting, and whose bonding strength is reduced by the disassembly operation of heating.
  • it may be an adhesive material that has a disassembly factor of embrittlement of the adhesive material and whose bonding strength decreases due to the embrittlement caused by heating or ultraviolet irradiation.
  • it may be a hydrolyzable adhesive material or adhesive material that has a disassembly factor called hydrolysis and whose bonding strength is reduced by the disassembly operation of supplying moisture.
  • It may be a moisture-absorbing and peelable adhesive material that has disintegration factors such as moisture absorption and softening/melting of the adhesive material, and whose bonding strength decreases when immersed in hot water.
  • it may be an electromagnetic induction/thermoplastic adhesive material that has disintegration factors such as softening and melting, and whose bonding strength is reduced by electromagnetic induction heating.
  • it may be an easily peelable adhesive material that has a disassembly factor of mechanical fracture and whose bonding strength is reduced by a disassembly operation of applying a vertical load.
  • it may be an adhesive material that has a disassembly factor called mechanical destruction and whose bonding strength is reduced by the disassembly operation called action of shear load.
  • a biodegradable material may be used as the molding material for the magnetic marker.
  • a biodegradable adhesive material or adhesive material may also be used.
  • the bonding force can be gradually reduced after the magnetic marker 1 is embedded.
  • the adhesive material is biodegradable, the magnetic marker 1 can be easily disposed of, and the cost required for disposing of the magnetic marker 1 can be reduced. Note that the other configurations and effects are the same as in Example 1.
  • Example 4 This example is an example in which the shape of the magnet constituting the magnetic marker 1 is changed based on the magnetic marker of Example 1.
  • the outer shape and installation manner of the magnetic marker 1 are the same as in the first embodiment. The contents will be explained with reference to FIGS. 8 to 11.
  • the magnetic marker 1 of this example is the magnetic marker shown in FIGS. 8 and 9.
  • FIG. 8 is a perspective view showing the appearance of the magnetic marker 1.
  • FIG. 9 is a cross-sectional view showing the structure of a cross section including the central axis of the columnar shape. The cross section in this figure is taken along line AA in FIG.
  • the magnetic marker 1 (FIG. 8) of this example is a columnar magnetic marker in which disc-shaped magnet sheets (an example of magnet pieces) 11 each having a diameter of 30 mm are laminated using an adhesive material or an adhesive material. That is, the magnetic marker 1 of this example is an assembly of magnet sheets 11 that are disk-shaped permanent magnets.
  • This magnetic marker 1 is a permanent magnet having a columnar outer shape with a diameter of 30 mm and a height of 20 mm, similar to the magnetic marker of Example 1.
  • the magnet sheet 11 is a sheet-shaped isotropic ferrite rubber magnet in which iron oxide magnetic powder, which is a magnetic material, is dispersed in a polymeric material, which is a base material. Note that the magnetic performance of this magnetic marker 1 is almost the same as that of the magnetic marker of Example 1. Note that it is also good to laminate magnet sheets made of isotropic ferrite plastic magnets.
  • a bonding layer 12 made of an adhesive material or an adhesive material is formed in the gap between adjacent magnet sheets 11.
  • an adhesive material or adhesive material that does not harden over time is used as the adhesive material or adhesive material, adjacent pieces can be easily separated via the bonding layer 12.
  • an adhesive material that hardens but easily causes the bonding layer 12 to break is also possible to use an adhesive material that hardens but easily causes the bonding layer 12 to break. If the bonding layer 12 breaks, cracks will occur between adjacent magnet sheets 11 and the bonding layer 12 will break, making it easy for the magnetic marker 1 to separate into a plurality of small pieces.
  • the adhesive material or adhesive material the materials exemplified in Example 2 and Example 3 can be employed.
  • the magnetic marker 1 After accommodating the magnetic marker 1 in the accommodating hole 30 (see FIG. 1), if the accommodating hole 30 is filled with a polymeric material such as asphalt or a resin material, the shape of the magnetic marker 1 is maintained by the polymeric material. obtain. Therefore, even if the bonding force of the bonding layer 12 is lost over time, as long as the magnetic marker 1 remains in the accommodation hole 30, the magnetic marker 1 will not separate into a plurality of small pieces and will remain in an integrated state.
  • a polymeric material such as asphalt or a resin material
  • concave grooves 112 may be provided in a grid pattern on the surface of the magnet sheet 11 constituting the magnetic marker 1 in FIG. 8, as shown in FIG. 10.
  • This magnet sheet 11 is easily divided into pieces because the concave grooves 112 serve as cuts.
  • the groove 112 of each magnet sheet piece serves as a cut in the magnetic marker in which the magnet sheets 11 are stacked, making it easy to separate into a plurality of small pieces.
  • the adhesive material or the like may be applied only to the X-shaped region 113 indicated by dot hatching in the figure on the surface of the magnet sheet 11. In this case, by suppressing the bonding area between adjacent magnet sheet pieces, the magnetic marker 1 can be easily separated into a plurality of small pieces.
  • the stacked state of the magnetic markers 1 can be maintained by the magnetic attraction force generated between adjacent magnet sheets 11.
  • the magnet sheet 11 constituting the magnetic marker 1 has a north pole on one side and a south pole on the other side. Adjacent magnet sheets 11 are laminated with the N-pole surface and the S-pole surface facing each other. Therefore, adjacent magnet sheets 11 are magnetically attracted to each other.
  • a magnetic marker may be an assembly in which a plurality of magnet sheets 11 are magnetically connected to each other by the magnetic force of each magnet sheet 11, which is a permanent magnet. Note that the other configurations and effects are the same as in Example 1.
  • Example 5 The magnetic marker 1 of this example is based on Example 4 and employs a guide member for maintaining the stacked state of the magnet sheets (an example of magnet pieces) 11. This content will be explained with reference to FIGS. 12 and 13.
  • the stacked state of magnetic sheets 11 similar to the magnetic marker of Example 4 is held by a cylindrical guide member 115 extending in the axial direction (an example of a predetermined direction). It is.
  • the guide member 115 is, for example, a sheet of paper, a metal foil such as aluminum foil, or a resin film wound into a cylindrical shape.
  • the guide member 115 is preferably one that is easily torn to some extent rather than one that has high strength.
  • the magnetic marker 1 becomes easily separated into a plurality of small pieces.
  • the two adjacent pieces of magnet sheets 11 in the magnetic marker 1 may be bonded to each other using an adhesive material with a weak bonding force, or may be attracted to each other only by the magnetic force of the magnet sheets 11. .
  • the cylindrical guide member 115 may be a molded layer formed on the outer peripheral surface of a columnar body on which the magnet sheets 11 are laminated.
  • the mold layer is, for example, a layer made of a polymeric material such as asphalt or a resin material. Examples of the resin material include rubber, PPS (Poly Phenylene Sulfide), nylon 66, and nylon 12. Note that the magnet sheet 11 may be one illustrated in FIG. 10 .
  • the guide member 115 may lose its shape by melting due to the action of moisture such as water or humidity or heat.
  • the mold layer which is an example of the guide member 115, may be one that extends in the axial direction, as shown in FIG. 13, and does not necessarily have a cylindrical shape.
  • strip-shaped mold layers 116 extending in the axial direction may be provided at multiple locations in the circumferential direction on the outer peripheral surface of the cylindrical magnetic marker 1.
  • Such a mold layer 116 is effective in maintaining the laminated state of the magnet sheets 11.
  • it is also possible to use a strip-shaped tape such as paper, metal foil such as aluminum foil, or resin film. It is preferable that the mold layer or tape be easily broken rather than having high strength.
  • the mold layer 116 may lose its shape by melting due to the action of moisture such as water or moisture or heat. Note that the other configurations and effects are the same as in Example 4.
  • Example 6 This example is an example of a magnetic marker based on Example 4, which employs a shaft-shaped guide member 117 for maintaining the stacked state of the magnet sheets (an example of magnet pieces) 11. The contents will be explained with reference to FIG. 14.
  • a disc-shaped magnet sheet 11 with a small hole in the center is held by a rod-shaped guide member 117 extending in the axial direction (an example of a predetermined direction).
  • the magnet sheet 11 is the same as the magnet sheet of the magnetic marker of Example 4 except for the small hole in the center.
  • the rod-shaped guide member 117 may be, for example, a stick made of paper or wood, or a polymer material hardened into a rod shape.
  • the paper or wood rod used as the guide member 117 is preferably one that is easy to break, such as a thin rod or a rod with cuts at multiple locations in the axial direction.
  • the rod made of a polymeric material may be a rod made of solidified asphalt, or a rod made of a resin material such as rubber, PPS (Poly Phenylene Sulfide), nylon 66, nylon 12, or the like. It is best to choose a material and thickness that is easy to break.
  • the guide member 117 may lose its shape by melting due to moisture such as water or moisture or the action of heat.
  • the guide member 117 may be an elongated magnetic bar with magnetic poles disposed at both ends. Note that the other configurations and effects are the same as in Example 4.
  • the magnetic marker 1 of this example is a magnetic marker in which a plurality of columnar magnet pieces 13 having a fan-shaped cross section are combined to form a columnar shape similar to the other embodiments. The contents will be explained with reference to FIGS. 15 and 16.
  • the magnet pieces 13 may be joined to each other using, for example, the adhesive material or adhesive material illustrated in Example 2 or Example 3, or a belt-like belt, string, etc. You may use it to bind.
  • the cylindrical guide member illustrated in Example 5 may be used.
  • the belt may be a ring of paper, metal foil, or resin film, or may be a molded layer made of a polymeric material.
  • the string may be made of paper, metal, natural fiber, or chemical fiber, or may be a string-like string formed by printing a polymeric material on the outer peripheral surface.
  • the columnar shape of the magnetic marker 1 can be maintained as long as it is accommodated in the accommodation hole 30 and the outer periphery is filled with asphalt or the like.
  • the members such as belts, strings, guide members, etc. that bind the columnar magnet pieces 13 with fan-shaped cross sections may lose their shape due to melting due to moisture such as water or moisture or heat. good.
  • a magnet piece 131 may be employed in which a columnar body having a similar shape to the magnet piece 13 of FIG. 15 is divided into a plurality of pieces in the axial direction.
  • the magnet piece 131 may be a fan-shaped thin magnetic sheet piece (an example of a magnet piece) like a piece of pizza. By stacking fan-shaped thin magnetic sheet pieces, a columnar body having a fan-shaped cross section can be formed.
  • the magnetic marker 1 shown in FIG. 16 is a combination of these columnar bodies.
  • the columnar bodies may be joined together using a method such as the following.
  • the guide members such as mold layers and foils as exemplified in Example 5 may be used, while in combining the columnar bodies, the columnar bodies may be joined using an adhesive material or the like. It is also good to bind with belts, strings, or cylindrical guide members.
  • the columnar body having a fan-shaped cross section may be formed by magnetically attracting fan-shaped magnetic sheet pieces like a piece of pizza to each other.
  • the magnetic marker 1 of this example is a magnetic component having a structure that can be separated into a plurality of small pieces.
  • this magnetic marker 1 when a pothole occurs due to damage to the pavement, it is possible to separate a portion according to the spread of the pothole. Therefore, even if a pothole occurs nearby, there is a high possibility that a part of the magnetic marker 1 will remain on the road side, and it is possible to maintain the magnetic function of the magnetic marker 1 to some extent. There is sex.
  • the coarse aggregate 331 forming the surface layer of the pavement has a particle size of, for example, 2.5 to 5 mm, while the magnetic marker 1 has a diameter of 30 mm and a height of 20 mm. If the magnetic marker is integrated, there is a possibility that when a pothole occurs, the magnetic marker larger than the coarse aggregate 331 may roll out onto the road surface. On the other hand, if the magnetic marker 1 of this example has a structure that can be separated into a plurality of small pieces, there is little risk of it rolling out onto the road surface while remaining as one piece. Since this magnetic marker 1 can be separated into a plurality of small pieces, it only rolls out onto the road surface as small pieces that are the same size or smaller than the coarse aggregate 331.
  • a columnar magnetic marker with a circular cross section is illustrated.
  • the cross-sectional shape is not limited to a circular shape.
  • a columnar magnetic marker having a cross-sectional shape such as a triangular, square, or pentagonal shape may be used. Note that the other configurations and effects are the same as in the other embodiments.
  • Example 8 This example is an example of an embodiment in which a plurality of magnetic markers can be handled integrally by utilizing a structure that can be separated into a plurality of small pieces. This example relates to a marker rod 1R in which a plurality of magnetic markers 1 of Example 1 are connected. This content will be explained using FIGS. 17 to 19(d).
  • the marker rod 1R (FIG. 17) has a connecting surface 100C that connects two magnetic markers 1 in the axial direction, and is composed of a plurality of magnetic markers 1 as a whole.
  • the connection strength between the two magnetic markers 1 on the connection surface 100C is set to be smaller than the strength required to separate each magnetic marker 1 into small pieces.
  • the connecting surface 100C becomes a cutting surface and the marker rod 1R
  • the magnetic marker 1 can be cut out from. If the amount of protrusion of the tip from the edge of the worktable 105 is set to slightly exceed the height (total length) of the magnetic marker 1, the magnetic markers 1 can be efficiently cut out one by one.
  • the marker rod 1R it is also possible to use the marker rod 1R to accommodate the magnetic markers 1 one by one in the accommodation hole 30, as shown in FIGS. 19(a) to 19(d), for example.
  • the tip of the marker rod 1R is inserted, for example, about 13 to 18 mm (less than the height of the magnetic marker 1) into the accommodation hole 30 with a diameter of 38 mm and a depth of 30 mm (Fig. 19(a))
  • the marker rod 1R is inserted.
  • By rotating the rear end side FIG. 19(b)
  • one magnetic marker 1 can be easily separated (FIG. 19(c)).
  • the magnetic marker 1 separated from the marker rod 1R in this manner falls to the bottom of the accommodation hole 30 due to its own weight and is accommodated (FIG. 19(d)).
  • a horizontal hole or slit may be formed along the connecting surface 100C after producing a rod-shaped body.
  • the strength of the connecting surface 100C can be suppressed.
  • the amount of adhesive material applied on the connecting surface 100C is set to be lower than the amount of adhesive material applied for joining adjacent magnet sheets 11 in the magnetic marker 1. It is also good to have less.
  • an adhesive material with lower bonding strength may be used as the adhesive material on the connecting surface 100C. By selecting the amount and type of adhesive material applied in this way, the strength of the connecting surface 100C can be suppressed.
  • a guide member to hold the entire marker rod 1R, while reducing the breaking strength of the guide member at a location corresponding to the connecting surface 100C.
  • Various methods can be considered to reduce the breaking strength of the guide member, such as providing a cut in the guide member, reducing the thickness of the guide member, and the like.
  • a low-strength connection structure may be provided at a location where a guide member corresponding to one of the adjacent magnetic markers 1 and a guide member corresponding to the other magnetic marker 1 are connected. .
  • Example 9 This example is an example in which a wireless tag 18 is added based on the magnetic markers of Examples 1 to 8. The contents will be explained with reference to FIGS. 20 and 21.
  • the magnetic marker 1 of this example (FIG. 20) is based on the magnetic marker of Example 1, with a wireless tag 18 attached to the end face. With respect to the end face of the magnetic marker 1 having a diameter of 30 mm, the wireless tag 18 has a cross-sectional shape of approximately 10 mm x 2 mm and a length of approximately 25 mm.
  • the wireless tag 18 is an electronic component in which an IC chip, an antenna for wireless communication, and the like are housed in a case made of a resin material or the like.
  • the wireless tag 18 operates by external power supply using wireless radio waves, and wirelessly outputs pre-stored information.
  • the information output by the wireless tag 18 is, for example, information such as location information and road type.
  • a secondary antenna 19 that amplifies radio waves transmitted and received by the wireless tag 18 is provided on the outer peripheral surface and end surface of the magnetic marker 1 of this example.
  • the secondary antenna 19 is formed by printing conductive ink on the outer surface of the magnetic marker 1.
  • the secondary antenna 19 has hook-shaped portions 194 bent at right angles at both ends, as shown in FIG. 21, which is shown unfolded on a plane.
  • the hook-shaped portions 194 at both ends are bent opposite to the straight portion 191 in the middle.
  • the straight portion 191 extends in the radial direction on the end surface, which is the mounting surface of the wireless tag 18, to reach the outer circumferential surface of the magnetic marker 1, and extends along the axial direction on the outer circumferential surface.
  • the hook-shaped portion 194 is provided along the circumferential direction on the outer peripheral surface of the magnetic marker 1 .
  • the wireless tag 18 is attached in contact with the straight portion 191 of the secondary antenna 19. Due to the electromagnetic coupling between the communication antenna built into the wireless tag 18 and the secondary antenna 19, the radio waves transmitted and received by the wireless tag 18 are amplified.
  • the secondary antenna 19 may be an antenna made of copper foil, aluminum foil, or the like instead of a printed antenna made of conductive ink. If the antenna is made of metal foil, it should be sufficiently thin so that it does not interfere with the feature of the magnetic marker 1 that it can be separated into small pieces, or it can be easily peeled off from the outer peripheral surface of the magnetic marker 1. It is best to configure it like this.
  • the secondary antenna 19 may also be used as a guide member that maintains the shape of the magnetic marker, which is an assembly of magnets. In this case, it is preferable that the straight portion 191 of the secondary antenna 19 be formed over the entire area in the axial direction on the outer peripheral surface of the magnetic marker 1. Note that the other configurations and effects are the same as in the other embodiments.
  • Magnetic marker 10 Magnet 100 Area between magnets 108 Hole 111, 115, 117 Guide member 18 Wireless tag 19 Secondary antenna 3 Road 3A Surface layer 3S Road surface 30 Accommodation hole 331 Coarse aggregate 332 Fine aggregate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Road Signs Or Road Markings (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Road Paving Structures (AREA)

Abstract

This magnetic marker (1) that is embedded in a road surface for use in vehicle driving assistance such as lane-associated autonomous steering or lane departure warnings is an assembly of a plurality of granular magnets (10) having a diameter of 1 mm. In the magnetic marker (1), adjacent magnets (10) among the plurality of magnets (10) are linked to one another using a foamed resin as a linking material. The magnetic marker (1) is provided with exceptional characteristics such that there is a possibility that a given extent of magnetic functionality can be maintained even when pavement is damaged, such as when potholes, which are holes in the road surface, are produced.

Description

磁気マーカmagnetic marker
 本発明は、車両の運転を支援するために道路に配設される磁気マーカに関する。 The present invention relates to magnetic markers placed on roads to assist vehicle driving.
 従来、道路に配設された磁気マーカを利用する車両用の磁気マーカシステムが知られている(例えば、特許文献1参照。)。このような磁気マーカシステムは、磁気センサが取り付けられた車両を対象としている。車線に沿って配設された磁気マーカを車両が検出することにより、自動操舵制御や車線逸脱警報等、各種の運転支援が実現される。 Conventionally, magnetic marker systems for vehicles that utilize magnetic markers placed on roads have been known (for example, see Patent Document 1). Such magnetic marker systems are intended for vehicles equipped with magnetic sensors. When a vehicle detects magnetic markers placed along the lane, various types of driving support, such as automatic steering control and lane departure warning, are realized.
特開2019-214844号公報JP2019-214844A
 しかしながら、道路の舗装の劣化が生じたときに磁気マーカが道路から脱落し、磁気マーカの機能が一気に失われるおそれがある。 However, when the road pavement deteriorates, the magnetic marker may fall off the road and the function of the magnetic marker may be lost all at once.
 本発明は、前記従来の問題点に鑑みてなされたものであり、舗装が傷んだ際にも磁気マーカの機能を維持できる可能性を有する磁気マーカを提供しようとするものである。 The present invention has been made in view of the above-mentioned conventional problems, and aims to provide a magnetic marker that has the possibility of maintaining its function even when pavement is damaged.
 本発明は、車両の運転支援に利用するために路面に埋設される磁気マーカであって、
 該磁気マーカは、複数の磁石の集合体であって、当該複数の磁石が柱状をなすように連結されたものである磁気マーカにある。
The present invention is a magnetic marker buried in a road surface for use in vehicle driving support,
The magnetic marker is an aggregate of a plurality of magnets, and the plurality of magnets are connected to form a column.
 本発明の磁気マーカは、柱状をなすように複数の磁石が連結されている集合体である。この磁気マーカは、磁石間の連結が損なわれることにより、複数に分割されて相互に分離し易くなっている。例えば、舗装された路面では、路面のひび割れの進行に応じて、ポットホールと呼ばれる穴が生じることがある。例えば、磁気マーカ近くのポットホールが次第に拡大し、その内周面に磁気マーカが露出するに至ったようなとき、上記のごとく一部を分離できれば、磁気マーカの全体が直ちに道路から脱落するおそれを少なくできる。磁気マーカの一部でも道路側に残れば、磁気マーカが備える磁気的な機能を一部、維持できる。 The magnetic marker of the present invention is an assembly in which a plurality of magnets are connected to form a column. This magnetic marker is divided into a plurality of parts and becomes easy to separate from each other because the connection between the magnets is impaired. For example, on a paved road surface, holes called potholes may occur as cracks in the road surface progress. For example, when a pothole near a magnetic marker gradually expands and the magnetic marker is exposed on its inner circumferential surface, if a portion can be separated as described above, there is a risk that the entire magnetic marker will immediately fall off the road. can be reduced. If even part of the magnetic marker remains on the road side, some of the magnetic functions of the magnetic marker can be maintained.
 このように本発明の磁気マーカは、舗装された路面に損傷が生じた場合であっても、磁気的な性能をある程度、維持できる可能性を有するという優れた特性を有する。 As described above, the magnetic marker of the present invention has an excellent property that it has the possibility of maintaining its magnetic performance to some extent even if damage occurs to the paved road surface.
実施例1における、道路に配設された磁気マーカを示す説明図。FIG. 3 is an explanatory diagram showing magnetic markers placed on a road in Example 1. FIG. 実施例1における、道路の舗装構造を示す断面図。1 is a sectional view showing a road pavement structure in Example 1. FIG. 実施例1における、磁気マーカの内部構造の説明図。FIG. 2 is an explanatory diagram of the internal structure of a magnetic marker in Example 1. 実施例2における、磁気マーカの内部構造の説明図。FIG. 7 is an explanatory diagram of the internal structure of a magnetic marker in Example 2. 実施例2における、粒状の磁石の断面図。FIG. 3 is a cross-sectional view of a granular magnet in Example 2. 実施例2における、ガイド部材の説明図。FIG. 7 is an explanatory diagram of a guide member in Example 2. 実施例3における、磁気マーカの内部構造の説明図。FIG. 7 is an explanatory diagram of the internal structure of a magnetic marker in Example 3. 実施例4における、磁気マーカを示す斜視図。FIG. 7 is a perspective view showing a magnetic marker in Example 4. 実施例4における、磁気マーカの断面構造の説明図(図8中のA-A線矢視図)。FIG. 8 is an explanatory diagram of the cross-sectional structure of the magnetic marker in Example 4 (view taken along the line AA in FIG. 8). 実施例4における、他の磁石シートの説明図。FIG. 7 is an explanatory diagram of another magnet sheet in Example 4. 実施例4における、磁石シートの他の接合方法の説明図。FIG. 7 is an explanatory diagram of another method of joining magnet sheets in Example 4. 実施例5における、磁気マーカの斜視図。FIG. 7 is a perspective view of a magnetic marker in Example 5. 実施例5における、他の磁気マーカの斜視図。FIG. 7 is a perspective view of another magnetic marker in Example 5. 実施例6における、磁気マーカの断面図。FIG. 7 is a cross-sectional view of a magnetic marker in Example 6. 実施例7における、磁気マーカの斜視図。FIG. 7 is a perspective view of a magnetic marker in Example 7. 実施例7における、他の磁気マーカの斜視図。FIG. 7 is a perspective view of another magnetic marker in Example 7. 実施例8における、マーカ棒の説明図。FIG. 7 is an explanatory diagram of a marker bar in Example 8. 実施例8における、マーカ棒から磁気マーカを切り出す様子の説明図。FIG. 9 is an explanatory diagram showing how a magnetic marker is cut out from a marker rod in Example 8. 実施例8における、マーカ棒の先端を収容孔に差し入れた状態の説明図。FIG. 9 is an explanatory diagram of the state in which the tip of the marker rod is inserted into the accommodation hole in Example 8. 実施例8における、マーカ棒の先端の磁気マーカを分離する手順その1の説明図。FIG. 9 is an explanatory diagram of step 1 of separating the magnetic marker at the tip of the marker rod in Example 8. 実施例8における、マーカ棒の先端の磁気マーカを分離する手順その2の説明図。FIG. 7 is an explanatory diagram of the second procedure for separating the magnetic marker at the tip of the marker rod in Example 8. 実施例8における、マーカ棒の先端の磁気マーカを切り離して収容孔に配置する手順の説明図。FIG. 9 is an explanatory diagram of the procedure for cutting off the magnetic marker at the tip of the marker rod and placing it in the accommodation hole in Example 8. 実施例9における、無線タグを備える磁気マーカの斜視図。FIG. 9 is a perspective view of a magnetic marker including a wireless tag in Example 9. 実施例9における、2次アンテナの展開形状の正面図。FIG. 9 is a front view of the developed shape of the secondary antenna in Example 9.
(実施例1)
 本例は、車両に取り付けられた磁気センサ(図示略)で検出できるように道路3に配設される磁気マーカ1の例である。この磁気マーカ1によれば、運転者による車両の運転操作の支援、あるいは運転者の操作に依らない自動運転を実現するための車両側の制御を実現できる。この内容について、図1~図3を参照して説明する。
(Example 1)
This example is an example of a magnetic marker 1 arranged on a road 3 so as to be detected by a magnetic sensor (not shown) attached to a vehicle. According to the magnetic marker 1, it is possible to support the driving operation of the vehicle by the driver or to control the vehicle to realize automatic driving that does not depend on the driver's operation. The contents will be explained with reference to FIGS. 1 to 3.
 本例の磁気マーカ1(図1)は、埋設型の磁気マーカであり、路面3Sに設けられた深さ30mmの収容孔30に収容された状態で配設(埋設)される。磁気マーカ1は、直径30mm、高さ20mmの柱状を呈する。収容孔の深さ30mmに対して、磁気マーカ1の高さが20mmであるので、収容孔30に配置された磁気マーカ1の上面は、路面から10mmほど奥まった位置となる。収容孔30には、磁気マーカ1を収容した後、アスファルトや樹脂材料等の高分子材料が充填される。これにより、磁気マーカ1の上面側には、アスファルトや樹脂材料等によりなる蓋31が形成される。 The magnetic marker 1 (FIG. 1) of this example is a buried type magnetic marker, and is installed (buried) in a state of being accommodated in a 30 mm deep accommodation hole 30 provided in the road surface 3S. The magnetic marker 1 has a columnar shape with a diameter of 30 mm and a height of 20 mm. Since the height of the magnetic marker 1 is 20 mm with respect to the depth of the accommodation hole 30 mm, the upper surface of the magnetic marker 1 placed in the accommodation hole 30 is set back about 10 mm from the road surface. After accommodating the magnetic marker 1, the accommodating hole 30 is filled with a polymeric material such as asphalt or a resin material. As a result, a lid 31 made of asphalt, resin material, or the like is formed on the upper surface side of the magnetic marker 1.
 アスファルト等で舗装された道路3の断面構造(図2)は、大まかに、土を押し固めた路床3C、砕石やクラッシャランなどの粒状材料による路盤3B(基層の一例。)、加熱アスファルト混合物よりなる表層3A、という三層構造を有する。加熱アスファルト混合物は、粗骨材331、細骨材332、フィラーおよびアスファルトが、加熱状態で混合されたアスファルト混合物である。表層3Aの層厚は、例えば10cm程度である。 The cross-sectional structure (Fig. 2) of a road 3 paved with asphalt etc. roughly consists of a subgrade 3C made of compacted soil, a subgrade 3B made of granular materials such as crushed stone or crush run (an example of a base layer), and a heated asphalt mixture. It has a three-layer structure: a surface layer 3A. The heated asphalt mixture is an asphalt mixture in which coarse aggregate 331, fine aggregate 332, filler, and asphalt are mixed in a heated state. The layer thickness of the surface layer 3A is, for example, about 10 cm.
 粗骨材331は、例えば、粒径2.5~5mmの砕石である。細骨材332は、例えば、2.36mmのふるいを通過し、0.075mmのふるいに留まる骨材である。細骨材332は、例えば、0.075~2.36mmの粒径の砂である。図示を省略するフィラーは、0.075mmのふるいを通過する鉱物質粉末である。フィラーは、例えば、石灰岩を粉末にした石粉である。 The coarse aggregate 331 is, for example, crushed stone with a particle size of 2.5 to 5 mm. Fine aggregate 332 is, for example, aggregate that passes through a 2.36 mm sieve and remains on a 0.075 mm sieve. The fine aggregate 332 is, for example, sand with a particle size of 0.075 to 2.36 mm. The filler, which is not shown, is a mineral powder that passes through a 0.075 mm sieve. The filler is, for example, stone powder made from powdered limestone.
 道路3の舗装は、経年に応じて、ポットホールなどの傷みが不可避である。ポットホールは、加熱アスファルト混合物からなる表層3Aの一部が路面3Sから剥離して起こる穴である。ポットホールは、例えば、表層3Aをなす加熱アスファルト混合物中の粗骨材331同士の連結構造が損なわれて生じる。 The pavement of Road 3 inevitably suffers damage such as potholes as it ages. A pothole is a hole that occurs when a part of the surface layer 3A made of the heated asphalt mixture peels off from the road surface 3S. Potholes occur, for example, when the connection structure between the coarse aggregates 331 in the heated asphalt mixture forming the surface layer 3A is impaired.
 磁気マーカ1(図3)は、直径1mm程度の粒状の磁石10(以下、単に磁石10という。)が成形材料中に分散配置された略円柱状の成形品である。つまり、この磁気マーカ1は、複数の粒状の磁石10の集合体であって、成形材料を連結材料として、複数の磁石10が全体として柱状をなすように連結されたものである。上記のごとく、磁気マーカ1の外寸は、直径30mm、高さ20mmである。磁気マーカ1は、成形後に着磁され、これにより、各磁石10の磁極の向きが一定となっている。なお、図3は、柱状の磁気マーカ1の中心軸を含む断面を示す斜視図である。 The magnetic marker 1 (FIG. 3) is a substantially cylindrical molded product in which granular magnets 10 (hereinafter simply referred to as magnets 10) having a diameter of about 1 mm are dispersed in a molding material. That is, this magnetic marker 1 is an aggregate of a plurality of granular magnets 10, and the plurality of magnets 10 are connected so as to form a columnar shape as a whole using a molding material as a connecting material. As mentioned above, the outer dimensions of the magnetic marker 1 are 30 mm in diameter and 20 mm in height. The magnetic marker 1 is magnetized after molding, so that the direction of the magnetic pole of each magnet 10 is constant. Note that FIG. 3 is a perspective view showing a cross section including the central axis of the columnar magnetic marker 1.
 磁石10は、磁性材料である酸化鉄の磁粉を、基材をなす高分子材料中に分散させた等方性フェライトプラスチックマグネットである。高分子材料は、例えばナイロン12である。高分子材料としては、ナイロン12のほか、例えば、ゴム、PPS(Poly Phenylene Sulfide)、ナイロン66等を採用することも良い。 The magnet 10 is an isotropic ferrite plastic magnet in which iron oxide magnetic powder, which is a magnetic material, is dispersed in a polymeric material that forms a base material. The polymer material is, for example, nylon 12. As the polymer material, in addition to nylon 12, for example, rubber, PPS (Poly Phenylene Sulfide), nylon 66, etc. may also be used.
 この磁石10は、最大エネルギー積(BHmax)=12kJ/立方mという磁気的な特性を備えている。永久磁石である等方性フェライトプラスチックマグネットは、磁性材料が酸化鉄であるため腐食に強い。それ故、この磁石10を含む磁気マーカ1は、腐食による磁力低下のおそれが少なく、路面3Sに設けた収容孔30に直接、収容可能である。 This magnet 10 has a magnetic property of maximum energy product (BHmax)=12 kJ/m3. Isotropic ferrite plastic magnets, which are permanent magnets, are resistant to corrosion because their magnetic material is iron oxide. Therefore, the magnetic marker 1 including this magnet 10 is less likely to have a lower magnetic force due to corrosion, and can be directly accommodated in the accommodation hole 30 provided in the road surface 3S.
 磁気マーカ1をなす成形材料は、樹脂材料の一例であるポリスチレンである。磁気マーカ1は、例えば、ポリスチレンと炭化水素系の発泡剤からなる原料ビーズを1次発泡させた材料中に粒状の磁石10を混合した材料の成形品である。磁気マーカ1は、図示しない金型にこの材料を充填して柱状に成形することにより作製できる。本例の磁気マーカ1では、多孔性の発泡体の一例をなす発泡スチロール(発泡プラスチック、発泡樹脂)により、粒状の磁石10の間隙をなす磁石間領域100が形成されている。つまり、磁気マーカ1では、発泡スチロールを連結材料として、隣り合う粒状の磁石10が連結された状態にある。連結材料としての発泡スチロールは、等方性フェライトプラスチックマグネットである磁石10よりも低脆性である。磁気マーカ1に対して過大な外力が作用したとき、連結材料である発泡スチロールが破断し、これにより、磁気マーカ1が複数の小片に分離し分解し得る。 The molding material forming the magnetic marker 1 is polystyrene, which is an example of a resin material. The magnetic marker 1 is, for example, a molded article made of a material in which granular magnets 10 are mixed into a material obtained by primarily foaming raw material beads made of polystyrene and a hydrocarbon foaming agent. The magnetic marker 1 can be manufactured by filling a mold (not shown) with this material and molding it into a columnar shape. In the magnetic marker 1 of this example, an inter-magnet region 100 forming a gap between the granular magnets 10 is formed of styrene foam (foamed plastic, foamed resin), which is an example of a porous foam. That is, in the magnetic marker 1, adjacent granular magnets 10 are connected using expanded polystyrene as a connecting material. Styrofoam as a connecting material is less brittle than the magnet 10, which is an isotropic ferrite plastic magnet. When an excessive external force is applied to the magnetic marker 1, the styrene foam that is the connecting material breaks, and as a result, the magnetic marker 1 can separate into a plurality of small pieces and decompose.
 本例の磁気マーカ1は、表面の磁束密度が45mT(ミリテスラ)であって、高さ250mmに到達する磁束密度が8μT程度という磁気的な特性を有する。なお、高さ250mmは、車両における磁気センサの取付高さの想定範囲のうちの上限に当たる高さの一例である。 The magnetic marker 1 of this example has magnetic properties such that the surface magnetic flux density is 45 mT (millitesla) and the magnetic flux density reaching a height of 250 mm is about 8 μT. Note that the height of 250 mm is an example of a height that corresponds to the upper limit of the expected range of mounting heights of the magnetic sensor in a vehicle.
 本例の磁気マーカ1は、磁石間領域100が、発泡スチロールによって形成された多孔性の領域である点に技術的特徴のひとつを有する。発泡スチロールは、舗装材料よりも破壊強度が低く、比較的容易に破断し得る。このように本例の磁気マーカ1は、粒状の磁石10の間隙の磁石間領域100をなす発泡スチロールの破断により、小片に分離し易いという特徴を有する。 One of the technical features of the magnetic marker 1 of this example is that the inter-magnet region 100 is a porous region formed of expanded polystyrene. Styrofoam has a lower breaking strength than paving materials and can break relatively easily. As described above, the magnetic marker 1 of this example has the characteristic that it is easily separated into small pieces when the polystyrene foam forming the inter-magnet region 100 between the granular magnets 10 breaks.
 仮に、路面3Sに露出した磁気マーカ1が一体のままであると、ポットホール等の発生に応じて磁気マーカ1が一体的に道路から脱落し、磁気マーカ1の磁気的な機能が一気に失われることになる。複数の小片に分離可能な構造を備える本例の磁気マーカ1であれば、ポットホール等の拡大に応じて一部を分離でき、残りの一部が道路側に残存できる可能性がある。そのため、磁気マーカ1は、その磁気的な機能をある程度、維持できる可能性が高い。 If the magnetic marker 1 exposed on the road surface 3S remains in one piece, the magnetic marker 1 will fall off the road as a whole due to the occurrence of potholes, and the magnetic function of the magnetic marker 1 will be lost all at once. It turns out. If the magnetic marker 1 of this example has a structure that can be separated into a plurality of small pieces, it is possible to separate a part according to the enlargement of a pothole or the like, and the remaining part may remain on the road side. Therefore, there is a high possibility that the magnetic marker 1 can maintain its magnetic function to some extent.
 なお、本例では、直径1mmの粒状の磁石10が分散配置された磁気マーカ1を例示している。粒状の磁石10の大きさは、0.2mm以上3.0mm以下とすると良い。磁石10として、直径1mmの球体状の磁石を例示したが、直方体形状や立方体形状の粒状であっても良いし、例えば金平糖のように複数の突起を有する粒状であっても良い。磁石10の大きさは様々であっても良い。さらに、磁石10は、粉状であっても良く、不定形の小片状であっても良い。 In this example, the magnetic marker 1 is illustrated in which granular magnets 10 each having a diameter of 1 mm are arranged in a dispersed manner. The size of the granular magnet 10 is preferably 0.2 mm or more and 3.0 mm or less. As the magnet 10, a spherical magnet with a diameter of 1 mm is exemplified, but it may also be a granular shape of a rectangular parallelepiped or a cube, or a granular shape having a plurality of protrusions, such as confetti. The size of the magnet 10 may vary. Furthermore, the magnet 10 may be in the form of powder or in the form of irregularly shaped pieces.
 成形材料は、本例のポリスチレンに代えて、ポリエチレン、ポリプロピレン、ポリウレタンなどの樹脂材料を採用することも良い。本例の磁気マーカ1と同様、これらの樹脂材料よりなる発泡樹脂(発泡体)中に、磁石10が分散配置されていれば良い。例えば、粒状の磁石10が予め充填された金型内に、ポリウレタン原液を流し込み、発泡させることも良い。これにより、発泡体の一例をなすポリウレタンフォーム中に磁石10が分散する磁気マーカを得ることができる。なお、発泡体をなす樹脂材料として、分解性の材料を採用することも良い。 As the molding material, a resin material such as polyethylene, polypropylene, or polyurethane may be used instead of polystyrene in this example. As with the magnetic marker 1 of this example, the magnets 10 may be dispersed in a foamed resin (foamed body) made of these resin materials. For example, a polyurethane stock solution may be poured into a mold pre-filled with granular magnets 10 and foamed. Thereby, a magnetic marker in which the magnets 10 are dispersed in polyurethane foam, which is an example of a foam, can be obtained. Note that a degradable material may also be used as the resin material forming the foam.
 粒状の磁石10は、本例の等方性フェライトプラスチックマグネットに代えて、フェライトラバーマグネットや、焼結磁石であっても良い。
 なお、本例では、断面円形状の柱状の磁気マーカを例示している。断面形状は、円形状に限定されない。三角形状、四角形状、五角形状等の断面形状を有する柱状の磁気マーカであっても良い。
The granular magnet 10 may be a ferrite rubber magnet or a sintered magnet instead of the isotropic ferrite plastic magnet of this example.
Note that in this example, a columnar magnetic marker with a circular cross section is exemplified. The cross-sectional shape is not limited to a circular shape. A columnar magnetic marker having a cross-sectional shape such as a triangular, square, or pentagonal shape may be used.
(実施例2)
 本例は、実施例1の磁気マーカ1に基づき、粒状の磁石10が集合する態様を変更した例である。この内容について、図4~図6を参照して説明する。
 本例の磁気マーカ1は、実施例1と同様、直径1mmの粒状の磁石10の集合体である(図4)。この磁気マーカ1では、粒状の磁石10同士が外接する箇所で相互に接着され、全体として柱状の外形状が実現されている。なお、図4中の破線が、略円柱状の外形状を示している。
(Example 2)
This example is an example in which the manner in which the granular magnets 10 are gathered is changed based on the magnetic marker 1 of Example 1. The contents will be explained with reference to FIGS. 4 to 6.
The magnetic marker 1 of this example is an aggregate of granular magnets 10 with a diameter of 1 mm, as in Example 1 (FIG. 4). In this magnetic marker 1, the granular magnets 10 are bonded to each other at locations where they circumscribe each other, and a columnar outer shape is realized as a whole. Note that the broken line in FIG. 4 indicates a substantially cylindrical outer shape.
 磁石10を相互に接合する接着材料として、本例では、高分子材料であるアスファルトを採用している。磁気マーカ1における接着材料は、隣り合う磁石10の間隙に所在し、隣り合う磁石10を連結する連結材料の一例となっている。接着材料としてのアスファルトは、球体状をなす粒状の磁石10の外周面を覆うように配置されている一方、隣接する粒状の磁石10の間隙には満たされていない。これにより、隣接して隣り合う粒状の磁石10の間隙に、孔108を含む磁石間領域100が形成されている。 In this example, asphalt, which is a polymeric material, is used as the adhesive material for bonding the magnets 10 to each other. The adhesive material in the magnetic marker 1 is located in the gap between adjacent magnets 10 and serves as an example of a connecting material that connects the adjacent magnets 10. Asphalt as an adhesive material is arranged so as to cover the outer peripheral surface of the spherical granular magnets 10, but does not fill the gaps between adjacent granular magnets 10. As a result, an inter-magnet region 100 including holes 108 is formed between adjacent granular magnets 10 .
 ここで、本例の磁気マーカ1の作製方法の一例を示す。アスファルトよりなるコーティング層107を外周面に設けた直径1mmの粒状の磁石10(図5)を、直径30mm、深さ20mmの空間を有する図示しない型内に充填した後、アスファルトを加熱して軟化させる。型内の磁石10は、相互に外接する箇所において軟化アスファルトにより接着されて接合され、これにより直径30mm、高さ20mmの柱状をなすように連結される。 Here, an example of a method for manufacturing the magnetic marker 1 of this example will be shown. After filling a granular magnet 10 (FIG. 5) with a diameter of 1 mm with a coating layer 107 made of asphalt on the outer peripheral surface into a mold (not shown) having a space of 30 mm in diameter and 20 mm in depth, the asphalt is heated and softened. let The magnets 10 in the mold are bonded and joined by softened asphalt at their mutually circumscribing locations, thereby connecting them to form a columnar shape with a diameter of 30 mm and a height of 20 mm.
 本例の磁気マーカ1では、略球状の磁石10が相互に外接する一方、隣り合う磁石10の間に隙間が生じて孔108が形成されている。この磁気マーカ1では、隣り合う磁石10が互いに接触して接着されている面積が少ない。そのため、磁気マーカ1は破断し易く、小片に分離し易くなっている。 In the magnetic marker 1 of this example, the substantially spherical magnets 10 circumscribe each other, while gaps are created between adjacent magnets 10 to form holes 108. In this magnetic marker 1, the area where adjacent magnets 10 are in contact with each other and bonded together is small. Therefore, the magnetic marker 1 is easily broken and easily separated into small pieces.
 アスファルトは、路面の舗装材料でもある。路面の舗装では、隣接する骨材の間隙がアスファルトによって満たされている。一方、本例の磁気マーカ1は、骨材に代わる粒状の磁石10の間隙にアスファルトが満たされておらず孔108が形成された状態にある。それ故、磁気マーカ1は、アスファルトよりなる舗装よりも低脆性であり、破壊強度が低くなっている。 Asphalt is also a road pavement material. In road pavements, the gaps between adjacent aggregates are filled with asphalt. On the other hand, in the magnetic marker 1 of this example, the gaps between the granular magnets 10 instead of aggregate are not filled with asphalt, and holes 108 are formed. Therefore, the magnetic marker 1 is less brittle and has lower breaking strength than pavement made of asphalt.
 磁石10として、基材をなすアスファルト中に磁粉を分散させた粒状の磁石を採用しても良い。この場合には、磁石10を加熱することで、磁石10の外周を軟化させることができ、これにより隣り合う磁石10同士を接着できる。 As the magnet 10, a granular magnet in which magnetic powder is dispersed in asphalt that forms the base material may be adopted. In this case, by heating the magnet 10, the outer periphery of the magnet 10 can be softened, thereby allowing adjacent magnets 10 to be bonded together.
 有底筒状のガイド部材111(図6)を用意し、ガイド部材111の内部に、粒状の磁石10を充填し、その後、加熱することも良い。加熱により磁石10が相互に接着された後、ガイド部材111を取り外しても良いし、そのまま、磁気マーカ1の一部としても良い。 It is also possible to prepare a bottomed cylindrical guide member 111 (FIG. 6), fill the inside of the guide member 111 with granular magnets 10, and then heat it. After the magnets 10 are bonded to each other by heating, the guide member 111 may be removed or may be used as a part of the magnetic marker 1 as it is.
 本例では、磁石10同士を接着させるための接着材料としてアスファルトを例示している。接着材料は、アスファルトに限定されない。ゴム、PPS(Poly Phenylene Sulfide)、ナイロン66、ナイロン12等を採用することも良い。
 なお、その他の構成及び作用効果については実施例1と同様である。
In this example, asphalt is used as an adhesive material for bonding the magnets 10 together. Adhesive materials are not limited to asphalt. It is also good to use rubber, PPS (Poly Phenylene Sulfide), nylon 66, nylon 12, etc.
Note that the other configurations and effects are the same as in Example 1.
(実施例3)
 本例は、実施例1の磁気マーカに基づき、成形材料を変更した例である。この内容について、図7を参照して説明する。
(Example 3)
This example is an example in which the molding material was changed based on the magnetic marker of Example 1. This content will be explained with reference to FIG.
 本例は、磁気マーカ1の成形材料として、経時変化によって分解する分解性の材料を採用した例である。この磁気マーカ1では、磁石10の間隙をなす磁石間領域100が分解性の材料によって満たされている。磁石間領域100は、分解性の材料が経時変化により分解して孔や亀裂が形成され得る領域となっている。当然に、磁石間領域100の成形材料が分解して孔や亀裂が生じれば、磁気マーカ1自体の破壊強度が低下する。 This example is an example in which a degradable material that decomposes over time is used as the molding material for the magnetic marker 1. In this magnetic marker 1, an inter-magnet region 100 forming a gap between magnets 10 is filled with a degradable material. The inter-magnet region 100 is a region where the degradable material decomposes over time and pores and cracks can be formed. Naturally, if the molding material in the inter-magnet region 100 decomposes to form holes or cracks, the fracture strength of the magnetic marker 1 itself will decrease.
 経時変化によって分解する分解性の材料としては、例えば、熱、光、水のうちの少なくともいずれかの作用により分解する高分子材料や、自然界において微生物の関与により低分子化合物に分解される生分解性材料、などがある。 Examples of degradable materials that decompose over time include polymeric materials that decompose under the action of at least one of heat, light, and water, and biodegradable materials that decompose into low-molecular compounds due to the involvement of microorganisms in nature. materials, etc.
 さらに、磁気マーカ1の成形材料として、当初は強度が高い一方、経時変化等により、強度が次第に低下する接着材料や粘着材料等を採用することも良い。
 なお、接着材料は、使用前は液体の状態にあって、経時変化により個体となる狭義の接着材料である。粘着材料は、液体と固体の両方の性質を有し、半固形で粘性を持つ粘着材料である。広義の接着材料の概念に、狭義の接着材料および粘着材料が含まれると考えることもできる。
Further, as the molding material for the magnetic marker 1, it is also possible to use an adhesive material, an adhesive material, or the like, which has high strength initially, but whose strength gradually decreases due to changes over time.
Note that the adhesive material is an adhesive material in a narrow sense that is in a liquid state before use and becomes solid over time. The adhesive material is a semi-solid and viscous adhesive material that has both liquid and solid properties. It can also be considered that the concept of adhesive material in a broad sense includes adhesive materials and adhesive materials in a narrow sense.
 接着材料あるいは粘着材料としては、例えば、接合直後には比較的強度が高い一方、経時変化等により、接合強度が次第に低下する接着材料等を採用することも良い。また、例えば、何らかの解体因子を有し、解体因子を活性化させる解体操作により接合力が低下したり剥離したりする特性を有する解体性接着材料あるいは解体性粘着材料を採用することも良い。 As the adhesive material or adhesive material, for example, it is also possible to use an adhesive material that has relatively high strength immediately after bonding, but whose bonding strength gradually decreases due to changes over time. Further, for example, it is also possible to employ a disassembly adhesive material or a disassembly adhesive material that has some kind of disassembly factor and has the property that the bonding force decreases or the adhesive material peels off due to a disassembly operation that activates the disassembly factor.
 磁石間領域100の接着材料等の接合力等が低下すれば、隣り合う磁石10間の結合が弱くなり亀裂等が生じ易くなる。 If the bonding strength of the adhesive material, etc. in the inter-magnet region 100 is reduced, the bond between adjacent magnets 10 will become weaker, making it easier for cracks to occur.
 例えば、粘着界面でのガス発生という解体因子を備えており、紫外線照射という解体操作により接合力を喪失する粘着材料であっても良い。この粘着材料は、例えば、紫外線剥離テープの粘着材料として利用される。紫外線剥離テープは、半導体プロセスにおいてダイシングテープと呼ばれるテープである。例えば、吸水性樹脂の膨張という解体因子を備え、水浸漬といった解体操作により接合力が低下する吸水性樹脂混入接着材料であっても良い。例えば、マイクロカプセルの膨張という解体因子を備え、加熱によって接合力が低下する熱膨張性マイクロカプセル混入粘着材料であっても良い。例えば、軟化・溶融という解体因子を備えており、加熱という解体操作によって接合力が低下する熱硬化・熱可塑性接着材料であっても良い。例えば、粘着材料の脆性化という解体因子を備えており、加熱、紫外性照射によって脆性化し接合力が低下する粘着材料であっても良い。例えば、加水分解という解体因子を備えており、水分の供給という解体操作により接合力が低下する加水分解性の接着材料あるいは粘着材料であっても良い。接着材料の吸湿及び軟化・溶融という解体因子を備えており、温水浸漬によって接合力が低下する吸湿剥離接着材料であっても良い。例えば、軟化・溶融という解体因子を備えており、電磁誘導加熱によって接合力が低下する電磁誘導・熱可塑性接着材料であっても良い。例えば、力学的破壊という解体因子を備えており、垂直負荷を作用するという解体操作により接合力が低下する易剥離接着材料であっても良い。例えば、力学的破壊という解体因子を備えており、せん断負荷の作用という解体操作により接合力が低下する粘着材料であっても良い。 For example, it may be an adhesive material that has a disassembly factor such as gas generation at the adhesive interface and loses its bonding strength by the disassembly operation of ultraviolet irradiation. This adhesive material is used, for example, as an adhesive material for ultraviolet release tape. Ultraviolet release tape is a tape called dicing tape in semiconductor processes. For example, it may be a water-absorbing resin-containing adhesive material that has a disassembly factor such as expansion of the water-absorbing resin and whose bonding strength is reduced by a disassembly operation such as immersion in water. For example, it may be a thermally expandable microcapsule-containing adhesive material that has a disintegration factor of microcapsule expansion and whose bonding strength is reduced by heating. For example, it may be a thermosetting/thermoplastic adhesive material that has disassembly factors such as softening and melting, and whose bonding strength is reduced by the disassembly operation of heating. For example, it may be an adhesive material that has a disassembly factor of embrittlement of the adhesive material and whose bonding strength decreases due to the embrittlement caused by heating or ultraviolet irradiation. For example, it may be a hydrolyzable adhesive material or adhesive material that has a disassembly factor called hydrolysis and whose bonding strength is reduced by the disassembly operation of supplying moisture. It may be a moisture-absorbing and peelable adhesive material that has disintegration factors such as moisture absorption and softening/melting of the adhesive material, and whose bonding strength decreases when immersed in hot water. For example, it may be an electromagnetic induction/thermoplastic adhesive material that has disintegration factors such as softening and melting, and whose bonding strength is reduced by electromagnetic induction heating. For example, it may be an easily peelable adhesive material that has a disassembly factor of mechanical fracture and whose bonding strength is reduced by a disassembly operation of applying a vertical load. For example, it may be an adhesive material that has a disassembly factor called mechanical destruction and whose bonding strength is reduced by the disassembly operation called action of shear load.
 また、例えば、生分解性の材料を、磁気マーカの成形材料として採用することも良い。
 また、例えば、生分解性の接着材料あるいは粘着材料を採用することも良い。自然界の中で分解する生分解性の接着材料等を利用すれば、磁気マーカ1の埋設後に接合力を次第に低下させることができる。さらに、生分解性の接着材料等であれば、磁気マーカ1の廃棄が容易になり、磁気マーカ1の廃棄に要するコストを低減できる。
 なお、その他の構成及び作用効果については実施例1と同様である。
Furthermore, for example, a biodegradable material may be used as the molding material for the magnetic marker.
Further, for example, a biodegradable adhesive material or adhesive material may also be used. By using a biodegradable adhesive material that decomposes in nature, the bonding force can be gradually reduced after the magnetic marker 1 is embedded. Furthermore, if the adhesive material is biodegradable, the magnetic marker 1 can be easily disposed of, and the cost required for disposing of the magnetic marker 1 can be reduced.
Note that the other configurations and effects are the same as in Example 1.
(実施例4)
 本例は、実施例1の磁気マーカに基づき、磁気マーカ1を構成する磁石の形状を変更した例である。磁気マーカ1の外形状や敷設態様については、実施例1と共通である。この内容について、図8~図11を参照して説明する。
(Example 4)
This example is an example in which the shape of the magnet constituting the magnetic marker 1 is changed based on the magnetic marker of Example 1. The outer shape and installation manner of the magnetic marker 1 are the same as in the first embodiment. The contents will be explained with reference to FIGS. 8 to 11.
 本例の磁気マーカ1は、図8及び図9に示す磁気マーカである。図8は、磁気マーカ1の外観を示す斜視図である。図9は、柱状の中心軸を含む断面の構造を示す断面図である。同図の断面は、図8中のA-A線の断面である。 The magnetic marker 1 of this example is the magnetic marker shown in FIGS. 8 and 9. FIG. 8 is a perspective view showing the appearance of the magnetic marker 1. FIG. 9 is a cross-sectional view showing the structure of a cross section including the central axis of the columnar shape. The cross section in this figure is taken along line AA in FIG.
 本例の磁気マーカ1(図8)は、直径30mmの円板状の磁石シート(磁石片の一例。)11が、接着材料あるいは粘着材料を利用して積層された柱状の磁気マーカである。つまり、本例の磁気マーカ1は、円板状の永久磁石である磁石シート11の集合体である。この磁気マーカ1は、実施例1の磁気マーカと同様、直径30mm、高さ20mmの柱状の外形状を呈する永久磁石である。磁石シート11は、磁性材料である酸化鉄の磁粉を基材である高分子材料中に分散させた等方性フェライトラバーマグネットを、シート状に形成したものである。なお、この磁気マーカ1の磁気的な性能は、実施例1の磁気マーカとほぼ同様である。なお、等方性フェライトプラスチックマグネットよりなる磁石シートを積層することも良い。 The magnetic marker 1 (FIG. 8) of this example is a columnar magnetic marker in which disc-shaped magnet sheets (an example of magnet pieces) 11 each having a diameter of 30 mm are laminated using an adhesive material or an adhesive material. That is, the magnetic marker 1 of this example is an assembly of magnet sheets 11 that are disk-shaped permanent magnets. This magnetic marker 1 is a permanent magnet having a columnar outer shape with a diameter of 30 mm and a height of 20 mm, similar to the magnetic marker of Example 1. The magnet sheet 11 is a sheet-shaped isotropic ferrite rubber magnet in which iron oxide magnetic powder, which is a magnetic material, is dispersed in a polymeric material, which is a base material. Note that the magnetic performance of this magnetic marker 1 is almost the same as that of the magnetic marker of Example 1. Note that it is also good to laminate magnet sheets made of isotropic ferrite plastic magnets.
 磁気マーカ1(図8及び図9)では、隣り合う磁石シート11間の隙間に、接着材料あるいは粘着材料等による接合層12が形成されている。接着材料あるいは粘着材料として、例えば、時間が経過しても硬化しない接着材料あるいは粘着材料を採用すれば、接合層12を介して隣り合う小片が分離し易くなる。あるいは硬化する一方、接合層12の破断が生じやすい接着材料等を採用することも良い。接合層12が破断すれば、隣り合う磁石シート11の間で亀裂が生じて破断し、磁気マーカ1が複数の小片に分離し易くなる。接着材料あるいは粘着材料としては、実施例2や実施例3で例示した材料を採用できる。 In the magnetic marker 1 (FIGS. 8 and 9), a bonding layer 12 made of an adhesive material or an adhesive material is formed in the gap between adjacent magnet sheets 11. For example, if an adhesive material or adhesive material that does not harden over time is used as the adhesive material or adhesive material, adjacent pieces can be easily separated via the bonding layer 12. Alternatively, it is also possible to use an adhesive material that hardens but easily causes the bonding layer 12 to break. If the bonding layer 12 breaks, cracks will occur between adjacent magnet sheets 11 and the bonding layer 12 will break, making it easy for the magnetic marker 1 to separate into a plurality of small pieces. As the adhesive material or adhesive material, the materials exemplified in Example 2 and Example 3 can be employed.
 収容孔30(図1参照。)に磁気マーカ1を収容した後、アスファルト等や樹脂材料等の高分子材料を収容孔30に充填すれば、その高分子材料によって磁気マーカ1の形状が保持され得る。そのため、経時的に接合層12の接合力が失われても、収容孔30に磁気マーカ1が留まる限り、磁気マーカ1が複数の小片に分離することなく、一体の状態が保持され得る。 After accommodating the magnetic marker 1 in the accommodating hole 30 (see FIG. 1), if the accommodating hole 30 is filled with a polymeric material such as asphalt or a resin material, the shape of the magnetic marker 1 is maintained by the polymeric material. obtain. Therefore, even if the bonding force of the bonding layer 12 is lost over time, as long as the magnetic marker 1 remains in the accommodation hole 30, the magnetic marker 1 will not separate into a plurality of small pieces and will remain in an integrated state.
 なお、図8の磁気マーカ1を構成する磁石シート11の表面に、図10のごとく、凹状の溝112を格子状に設けることも良い。この磁石シート11は、凹状の溝112が切れ目となって細分化され易くなっている。この磁石シート11を積層した磁気マーカは、接合層12に加えて、各磁石シート片の溝112が切れ目となり、複数の小片に分離し易くなる。また、図8の磁石シート片を積層するに当たっては、凹状の溝112以外の表面にのみ、あるいは凹状の溝112のみ、に接着材料等を塗布することも良い。この場合には、隣り合う磁石シート11間の接合面積を抑制でき、接合強度を低下させることができる。 Incidentally, concave grooves 112 may be provided in a grid pattern on the surface of the magnet sheet 11 constituting the magnetic marker 1 in FIG. 8, as shown in FIG. 10. This magnet sheet 11 is easily divided into pieces because the concave grooves 112 serve as cuts. In addition to the bonding layer 12, the groove 112 of each magnet sheet piece serves as a cut in the magnetic marker in which the magnet sheets 11 are stacked, making it easy to separate into a plurality of small pieces. Furthermore, when stacking the magnet sheet pieces shown in FIG. 8, it is also possible to apply an adhesive material or the like only to the surfaces other than the concave grooves 112, or only to the concave grooves 112. In this case, the bonding area between adjacent magnet sheets 11 can be suppressed, and the bonding strength can be reduced.
 図11のごとく、磁石シート11の表面のうち、同図中、ドットハッチで示すX字状の領域113のみに接着材料等を塗布することも良い。この場合には、隣り合う磁石シート片間の接合面積を抑制することで、磁気マーカ1が複数の小片に分離し易くなる。 As shown in FIG. 11, the adhesive material or the like may be applied only to the X-shaped region 113 indicated by dot hatching in the figure on the surface of the magnet sheet 11. In this case, by suppressing the bonding area between adjacent magnet sheet pieces, the magnetic marker 1 can be easily separated into a plurality of small pieces.
 さらに、接着材料等を省略することも良い。隣り合う磁石シート11の間に生じる磁気的な吸着力によって磁気マーカ1の積層状態が保持され得る。磁気マーカ1を構成する磁石シート11は、片面がN極であり片面がS極である。隣り合う磁石シート11は、N極の表面とS極の表面とが対面する状態で積層される。そのため、隣り合う磁石シート11は、互いに磁気的に吸着される。永久磁石である各磁石シート11の磁力により、複数の磁石シート11が磁気的に相互に連結している集合体が、磁気マーカであっても良い。
 なお、その他の構成及び作用効果については実施例1と同様である。
Furthermore, it is also possible to omit adhesive materials and the like. The stacked state of the magnetic markers 1 can be maintained by the magnetic attraction force generated between adjacent magnet sheets 11. The magnet sheet 11 constituting the magnetic marker 1 has a north pole on one side and a south pole on the other side. Adjacent magnet sheets 11 are laminated with the N-pole surface and the S-pole surface facing each other. Therefore, adjacent magnet sheets 11 are magnetically attracted to each other. A magnetic marker may be an assembly in which a plurality of magnet sheets 11 are magnetically connected to each other by the magnetic force of each magnet sheet 11, which is a permanent magnet.
Note that the other configurations and effects are the same as in Example 1.
(実施例5)
 本例の磁気マーカ1は、実施例4に基づき、磁石シート(磁石片の一例。)11の積層状態を保持するためのガイド部材を採用した磁気マーカである。この内容について、図12及び図13を参照して説明する。
 図12の磁気マーカ1は、実施例4の磁気マーカと同様の磁石シート11の積層状態が、軸方向(所定の方向の一例。)に延在する円筒状のガイド部材115によって保持されたものである。ガイド部材115は、例えば、シート状の紙、アルミ箔などの金属箔、あるいは樹脂フィルムなどを円筒状に巻いたものである。ガイド部材115は、高強度のものよりも、ある程度、破れ易いものが好ましい。ガイド部材115が破れる等、破断することで、磁気マーカ1が複数の小片に分離し易くなる。なお、磁気マーカ1において隣り合う2片の磁石シート11は、接合力の弱い接着材料等を利用して相互に接合されていても良く、磁石シート11の磁力のみによって互いに吸着していても良い。
(Example 5)
The magnetic marker 1 of this example is based on Example 4 and employs a guide member for maintaining the stacked state of the magnet sheets (an example of magnet pieces) 11. This content will be explained with reference to FIGS. 12 and 13.
In the magnetic marker 1 of FIG. 12, the stacked state of magnetic sheets 11 similar to the magnetic marker of Example 4 is held by a cylindrical guide member 115 extending in the axial direction (an example of a predetermined direction). It is. The guide member 115 is, for example, a sheet of paper, a metal foil such as aluminum foil, or a resin film wound into a cylindrical shape. The guide member 115 is preferably one that is easily torn to some extent rather than one that has high strength. When the guide member 115 breaks or breaks, the magnetic marker 1 becomes easily separated into a plurality of small pieces. Note that the two adjacent pieces of magnet sheets 11 in the magnetic marker 1 may be bonded to each other using an adhesive material with a weak bonding force, or may be attracted to each other only by the magnetic force of the magnet sheets 11. .
 円筒状のガイド部材115は、磁石シート11が積層された柱状体の外周面に形成されたモールド層であっても良い。モールド層は、例えば、アスファルトや樹脂材料などの高分子材料よりなる層である。樹脂材料としては、例えば、ゴム、PPS(Poly Phenylene Sulfide)、ナイロン66、ナイロン12等を例示できる。なお、磁石シート11は、図10に例示するものであっても良い。ガイド部材115は、水や湿気等の水分や熱の作用により溶ける等、その形状が失われるものであっても良い。 The cylindrical guide member 115 may be a molded layer formed on the outer peripheral surface of a columnar body on which the magnet sheets 11 are laminated. The mold layer is, for example, a layer made of a polymeric material such as asphalt or a resin material. Examples of the resin material include rubber, PPS (Poly Phenylene Sulfide), nylon 66, and nylon 12. Note that the magnet sheet 11 may be one illustrated in FIG. 10 . The guide member 115 may lose its shape by melting due to the action of moisture such as water or humidity or heat.
 ガイド部材115の一例をなすモールド層は、図13のごとく、軸方向に延在するものであれば良く、円筒状を呈することは必須ではない。同図のごとく、円柱状の磁気マーカ1の外周面のうち周方向の複数箇所に、軸方向に延在する短冊状のモールド層116を設けることも良い。このようなモールド層116は、磁石シート11の積層状態を保持するのに有効である。図13のモールド層116に代えて、紙、アルミ箔などの金属箔、樹脂フィルムなどの短冊状のテープを利用することも良い。モールド層あるいはテープは、強度の高いものよりも、破断し易いものが好適である。モールド層116は、水や湿気等の水分や熱の作用により溶ける等、その形状が失われるものであっても良い。
 なお、その他の構成及び作用効果については、実施例4と同様である。
The mold layer, which is an example of the guide member 115, may be one that extends in the axial direction, as shown in FIG. 13, and does not necessarily have a cylindrical shape. As shown in the figure, strip-shaped mold layers 116 extending in the axial direction may be provided at multiple locations in the circumferential direction on the outer peripheral surface of the cylindrical magnetic marker 1. Such a mold layer 116 is effective in maintaining the laminated state of the magnet sheets 11. Instead of the mold layer 116 in FIG. 13, it is also possible to use a strip-shaped tape such as paper, metal foil such as aluminum foil, or resin film. It is preferable that the mold layer or tape be easily broken rather than having high strength. The mold layer 116 may lose its shape by melting due to the action of moisture such as water or moisture or heat.
Note that the other configurations and effects are the same as in Example 4.
(実施例6)
 本例は、実施例4に基づき、磁石シート(磁石片の一例。)11の積層状態を保持するための軸状のガイド部材117を採用した磁気マーカの例である。この内容について、図14を参照して説明する。
(Example 6)
This example is an example of a magnetic marker based on Example 4, which employs a shaft-shaped guide member 117 for maintaining the stacked state of the magnet sheets (an example of magnet pieces) 11. The contents will be explained with reference to FIG. 14.
 図14の磁気マーカ1は、中心に小孔が設けられた円板状の磁石シート11が、軸方向(所定の方向の一例。)に延在する棒状のガイド部材117により保持されたものである。磁石シート11は、中心の小孔を除いて実施例4の磁気マーカの磁石シートと同様である。棒状のガイド部材117は、例えば、紙や木材の棒のほか、高分子材料を棒状に固めたものであっても良い。 In the magnetic marker 1 shown in FIG. 14, a disc-shaped magnet sheet 11 with a small hole in the center is held by a rod-shaped guide member 117 extending in the axial direction (an example of a predetermined direction). be. The magnet sheet 11 is the same as the magnet sheet of the magnetic marker of Example 4 except for the small hole in the center. The rod-shaped guide member 117 may be, for example, a stick made of paper or wood, or a polymer material hardened into a rod shape.
 ガイド部材117としての紙や木材の棒は、細い棒や、軸方向の複数箇所に切れ目が設けられている棒など、折れ易いものが良い。高分子材料よりなる棒としては、アスファルトが固まった棒であっても良く、ゴム、PPS(Poly Phenylene Sulfide)、ナイロン66、ナイロン12等の樹脂材料よりなる棒であっても良い。折れ易い材料や、太さを選定すると良い。ガイド部材117は、水や湿気等の水分や熱の作用により溶ける等、その形状が失われるものであっても良い。 The paper or wood rod used as the guide member 117 is preferably one that is easy to break, such as a thin rod or a rod with cuts at multiple locations in the axial direction. The rod made of a polymeric material may be a rod made of solidified asphalt, or a rod made of a resin material such as rubber, PPS (Poly Phenylene Sulfide), nylon 66, nylon 12, or the like. It is best to choose a material and thickness that is easy to break. The guide member 117 may lose its shape by melting due to moisture such as water or moisture or the action of heat.
 さらに、ガイド部材117は、細長く、磁極が両端に配置された磁石の棒であっても良い。
 なお、その他の構成及び作用効果については、実施例4と同様である。
Furthermore, the guide member 117 may be an elongated magnetic bar with magnetic poles disposed at both ends.
Note that the other configurations and effects are the same as in Example 4.
(実施例7)
 本例の磁気マーカ1は、断面扇形状の柱状の磁石片13を、他の実施例と同様の円柱状をなすように複数、組み合わせた磁気マーカである。この内容について、図15及び図16を参照して説明する。
(Example 7)
The magnetic marker 1 of this example is a magnetic marker in which a plurality of columnar magnet pieces 13 having a fan-shaped cross section are combined to form a columnar shape similar to the other embodiments. The contents will be explained with reference to FIGS. 15 and 16.
 図15の磁気マーカ1において、磁石片13同士は、例えば、実施例2や実施例3で例示した接着材料や粘着材料等を利用して接合しても良いし、帯状のベルトやひも等を用いて結束しても良い。あるいは実施例5で例示した筒状のガイド部材を用いても良い。ベルトは、紙、金属箔、樹脂フィルムを環状に巻いたものであっても良く、高分子材料よりなるモールド層であっても良い。ひもは、紙、金属、天然繊維、化学繊維であっても良く、高分子材料を外周面に印刷して形成された紐状のものであっても良い。 In the magnetic marker 1 shown in FIG. 15, the magnet pieces 13 may be joined to each other using, for example, the adhesive material or adhesive material illustrated in Example 2 or Example 3, or a belt-like belt, string, etc. You may use it to bind. Alternatively, the cylindrical guide member illustrated in Example 5 may be used. The belt may be a ring of paper, metal foil, or resin film, or may be a molded layer made of a polymeric material. The string may be made of paper, metal, natural fiber, or chemical fiber, or may be a string-like string formed by printing a polymeric material on the outer peripheral surface.
 例えば、ごく薄い鉄製のベルトやひもであれば、道路に配設された後の酸化等の経年変化により、結束する機能を失わせることができる。ベルトやひもによる結束機能が失われた場合であっても、収容孔30に収容され、外周にアスファルト等が充填された状態であれば、磁気マーカ1の柱状が保持され得る。なお、ベルトやひもやガイド部材等、断面扇形状の柱状の磁石片13を結束する部材は、水や湿気等の水分や熱等の作用により溶ける等、その形状が失われるものであっても良い。 For example, if a very thin iron belt or string is placed on a road, it can lose its binding function due to aging such as oxidation. Even if the binding function of the belt or string is lost, the columnar shape of the magnetic marker 1 can be maintained as long as it is accommodated in the accommodation hole 30 and the outer periphery is filled with asphalt or the like. Note that the members such as belts, strings, guide members, etc. that bind the columnar magnet pieces 13 with fan-shaped cross sections may lose their shape due to melting due to moisture such as water or moisture or heat. good.
 さらに、図16のごとく、図15の磁石片13と同様の形状の柱状体を、軸方向に複数に分割した磁石片131を採用しても良い。この磁石片131は、ピザの一片のような扇形状の薄い磁石シート片(磁石片の一例。)であっても良い。扇形状の薄い磁石シート片を積層することにより断面扇形状の柱状体を形成できる。図16の磁気マーカ1は、この柱状体を組み合わせたものである。 Furthermore, as shown in FIG. 16, a magnet piece 131 may be employed in which a columnar body having a similar shape to the magnet piece 13 of FIG. 15 is divided into a plurality of pieces in the axial direction. The magnet piece 131 may be a fan-shaped thin magnetic sheet piece (an example of a magnet piece) like a piece of pizza. By stacking fan-shaped thin magnetic sheet pieces, a columnar body having a fan-shaped cross section can be formed. The magnetic marker 1 shown in FIG. 16 is a combination of these columnar bodies.
 断面扇形状の柱状体を形成するに当たって接着材料等を利用する一方、この柱状体を組み合わせて磁気マーカ1とするに当たっては、ベルトやひもや円筒状のガイド部材で結束することも良く、接着材料等を利用して柱状体同士を接合しても良い。あるいは、柱状体を形成するに当たって、実施例5で例示したモールド層や箔等のガイド部材を利用する一方、柱状体の組合せに当たって、接着材料等を利用して柱状体同士を接合しても良く、ベルトやひもや円筒状のガイド部材で結束することも良い。断面扇形状の柱状体は、ピザの一片のような扇形状の磁石シート片が互いに磁気的に吸着されたものであっても良い。 While an adhesive material or the like is used to form a columnar body with a fan-shaped cross section, when combining these columnar bodies to form the magnetic marker 1, it is also possible to bind them together with a belt, string, or cylindrical guide member. The columnar bodies may be joined together using a method such as the following. Alternatively, in forming the columnar bodies, the guide members such as mold layers and foils as exemplified in Example 5 may be used, while in combining the columnar bodies, the columnar bodies may be joined using an adhesive material or the like. It is also good to bind with belts, strings, or cylindrical guide members. The columnar body having a fan-shaped cross section may be formed by magnetically attracting fan-shaped magnetic sheet pieces like a piece of pizza to each other.
 以上のように、本例の磁気マーカ1は、複数の小片に分離可能な構造を有する磁性部品である。この磁気マーカ1であれば、舗装が傷んでポットホールが生じたとき、ポットホールの拡がりに応じて一部を分離可能である。それ故、ポットホールが近くで生じた場合であっても、磁気マーカ1の一部が道路側に残存できる可能性が高くなっており、磁気マーカ1の磁気的な機能をある程度、維持できる可能性がある。 As described above, the magnetic marker 1 of this example is a magnetic component having a structure that can be separated into a plurality of small pieces. With this magnetic marker 1, when a pothole occurs due to damage to the pavement, it is possible to separate a portion according to the spread of the pothole. Therefore, even if a pothole occurs nearby, there is a high possibility that a part of the magnetic marker 1 will remain on the road side, and it is possible to maintain the magnetic function of the magnetic marker 1 to some extent. There is sex.
 また、舗装の表層をなす粗骨材331が、例えば、粒径2.5~5mmである一方、磁気マーカ1の大きさは直径30mm高さ20mmである。仮に磁気マーカが一体的であると、ポットホールが生じたとき、粗骨材331よりも大きなサイズの磁気マーカが路面に転がり出る可能性がある。一方、複数の小片に分離可能な構造を有する本例の磁気マーカ1であれば、一体のままで路面に転がり出るおそれが少ない。この磁気マーカ1は、複数の小片に分離可能であるため、粗骨材331とサイズ的に同等、あるいはサイズ的により小さな小片となって路面に転がり出るのみである。 Further, the coarse aggregate 331 forming the surface layer of the pavement has a particle size of, for example, 2.5 to 5 mm, while the magnetic marker 1 has a diameter of 30 mm and a height of 20 mm. If the magnetic marker is integrated, there is a possibility that when a pothole occurs, the magnetic marker larger than the coarse aggregate 331 may roll out onto the road surface. On the other hand, if the magnetic marker 1 of this example has a structure that can be separated into a plurality of small pieces, there is little risk of it rolling out onto the road surface while remaining as one piece. Since this magnetic marker 1 can be separated into a plurality of small pieces, it only rolls out onto the road surface as small pieces that are the same size or smaller than the coarse aggregate 331.
 本例では、断面円形状の柱状の磁気マーカを例示している。断面形状は、円形状に限定されない。三角形状、四角形状、五角形状等の断面形状を有する柱状の磁気マーカであっても良い。
 なお、その他の構成及び作用効果については、他の実施例と同様である。
In this example, a columnar magnetic marker with a circular cross section is illustrated. The cross-sectional shape is not limited to a circular shape. A columnar magnetic marker having a cross-sectional shape such as a triangular, square, or pentagonal shape may be used.
Note that the other configurations and effects are the same as in the other embodiments.
(実施例8)
 本例は、複数の小片に分離可能な構造を活用し、複数の磁気マーカを一体的に取り扱い可能とした態様の例である。本例は、実施例1の磁気マーカ1が複数、連結されたマーカ棒1Rに関する。この内容について、図17~図19(d)を用いて説明する。
(Example 8)
This example is an example of an embodiment in which a plurality of magnetic markers can be handled integrally by utilizing a structure that can be separated into a plurality of small pieces. This example relates to a marker rod 1R in which a plurality of magnetic markers 1 of Example 1 are connected. This content will be explained using FIGS. 17 to 19(d).
 マーカ棒1R(図17)は、2つの磁気マーカ1を軸方向に連結する連結面100Cを有し、全体として、複数の磁気マーカ1により構成されている。連結面100Cにおける2つの磁気マーカ1の連結強度は、個々の磁気マーカ1を小片に分離するのに要する強度よりもさらに小さく設定されている。 The marker rod 1R (FIG. 17) has a connecting surface 100C that connects two magnetic markers 1 in the axial direction, and is composed of a plurality of magnetic markers 1 as a whole. The connection strength between the two magnetic markers 1 on the connection surface 100C is set to be smaller than the strength required to separate each magnetic marker 1 into small pieces.
 例えば図18に示すごとく、縁から先端が突き出すようにマーカ棒1Rを作業台105に載置し、その先端に直交方向の力を作用すれば、連結面100Cが切断面となってマーカ棒1Rから磁気マーカ1を切り出しできる。作業台105の縁からの先端の突き出し量を、磁気マーカ1の高さ(全長)を若干超える程度に設定しておけば、磁気マーカ1を1個ずつ効率的に切り出しできる。 For example, as shown in FIG. 18, if the marker rod 1R is placed on the workbench 105 so that the tip protrudes from the edge and a force in the orthogonal direction is applied to the tip, the connecting surface 100C becomes a cutting surface and the marker rod 1R The magnetic marker 1 can be cut out from. If the amount of protrusion of the tip from the edge of the worktable 105 is set to slightly exceed the height (total length) of the magnetic marker 1, the magnetic markers 1 can be efficiently cut out one by one.
 マーカ棒1Rを利用し、例えば図19(a)~(d)に示すごとく、収容孔30に磁気マーカ1を1個ずつ収容することも良い。直径38mm深さ30mmの収容孔30に、マーカ棒1Rの先端を例えば13~18mm程度(磁気マーカ1の高さ寸法以下。)、差し入れた状態で(図19(a))、マーカ棒1Rの後端側を回動させれば(図19(b))、1個の磁気マーカ1を容易に分離できる(図19(c))。このようにしてマーカ棒1Rから分離された磁気マーカ1は、自重により収容孔30の底に落下して収容される(図19(d))。 It is also possible to use the marker rod 1R to accommodate the magnetic markers 1 one by one in the accommodation hole 30, as shown in FIGS. 19(a) to 19(d), for example. When the tip of the marker rod 1R is inserted, for example, about 13 to 18 mm (less than the height of the magnetic marker 1) into the accommodation hole 30 with a diameter of 38 mm and a depth of 30 mm (Fig. 19(a)), the marker rod 1R is inserted. By rotating the rear end side (FIG. 19(b)), one magnetic marker 1 can be easily separated (FIG. 19(c)). The magnetic marker 1 separated from the marker rod 1R in this manner falls to the bottom of the accommodation hole 30 due to its own weight and is accommodated (FIG. 19(d)).
 例えば、実施例1や実施例2の磁気マーカ(図3、図4)であれば、棒状体を作製した後、連結面100Cに沿うように横孔やスリットを穿設することも良い。横孔やスリット等によれば、連結面100Cの強度を抑制できる。 For example, in the case of the magnetic marker of Example 1 or Example 2 (FIGS. 3 and 4), a horizontal hole or slit may be formed along the connecting surface 100C after producing a rod-shaped body. By using horizontal holes, slits, etc., the strength of the connecting surface 100C can be suppressed.
 例えば、実施例4の磁気マーカ(図8)であれば、連結面100Cにおける接着材料等の塗布量を、磁気マーカ1において隣り合う磁石シート11を接合するための接着材料等の塗布量よりも少なくすることも良い。あるいは、連結面100Cにおける接着材料等として、より接合力の低い接着材料等を採用することも良い。このように接着材料等の塗布量や種類を選定すれば、連結面100Cの強度を抑制できる。 For example, in the case of the magnetic marker of Example 4 (FIG. 8), the amount of adhesive material applied on the connecting surface 100C is set to be lower than the amount of adhesive material applied for joining adjacent magnet sheets 11 in the magnetic marker 1. It is also good to have less. Alternatively, an adhesive material with lower bonding strength may be used as the adhesive material on the connecting surface 100C. By selecting the amount and type of adhesive material applied in this way, the strength of the connecting surface 100C can be suppressed.
 例えば、実施例5の磁気マーカ(図12)であれば、マーカ棒1R全体を保持するためのガイド部材を採用する一方、連結面100Cに当たる箇所において、ガイド部材の破断強度を小さくすると良い。ガイド部材の破断強度を小さくする方法としては、例えば、ガイド部材に切れ目を設ける、ガイド部材の厚さを薄くする、等の様々な方法が考えられる。さらに、隣り合う磁気マーカ1のうちの一方の磁気マーカ1に対応するガイド部材と、他方の磁気マーカ1に対応するガイド部材と、を連結する箇所に、低強度の連結構造を設けることも良い。 For example, in the case of the magnetic marker of Example 5 (FIG. 12), it is preferable to employ a guide member to hold the entire marker rod 1R, while reducing the breaking strength of the guide member at a location corresponding to the connecting surface 100C. Various methods can be considered to reduce the breaking strength of the guide member, such as providing a cut in the guide member, reducing the thickness of the guide member, and the like. Furthermore, a low-strength connection structure may be provided at a location where a guide member corresponding to one of the adjacent magnetic markers 1 and a guide member corresponding to the other magnetic marker 1 are connected. .
 なお、連結面100Cの強度を抑制することは、必須の構成ではない。マーカ棒1Rから磁気マーカ1を1個ずつ切り出すための治具等を利用すると良い。治具等を利用すれば、軸方向における破断強度が略一定であるマーカ棒1Rから効率良く磁気マーカ1を切り出しできる。
 なお、他の構成及び作用効果については実施例1と同様である。
Note that it is not an essential configuration to suppress the strength of the connecting surface 100C. It is preferable to use a jig or the like to cut out the magnetic markers 1 one by one from the marker rod 1R. By using a jig or the like, the magnetic marker 1 can be efficiently cut out from the marker rod 1R whose breaking strength in the axial direction is substantially constant.
Note that the other configurations and effects are the same as in the first embodiment.
(実施例9)
 本例は、実施例1~実施例8の磁気マーカに基づき、無線タグ18を追加した例である。この内容について、図20及び図21を参照して説明する。
 本例の磁気マーカ1(図20)では、実施例1の磁気マーカに基づき、端面に無線タグ18が取り付けられたものである。磁気マーカ1の直径30mmの端面に対して、無線タグ18は、断面形状が約10mm×2mm、長さ約25mmである。
(Example 9)
This example is an example in which a wireless tag 18 is added based on the magnetic markers of Examples 1 to 8. The contents will be explained with reference to FIGS. 20 and 21.
The magnetic marker 1 of this example (FIG. 20) is based on the magnetic marker of Example 1, with a wireless tag 18 attached to the end face. With respect to the end face of the magnetic marker 1 having a diameter of 30 mm, the wireless tag 18 has a cross-sectional shape of approximately 10 mm x 2 mm and a length of approximately 25 mm.
 無線タグ18は、ICチップや無線通信用のアンテナ等が、樹脂材料等によるケースに収容された電子部品である。無線タグ18は、無線電波による外部給電により動作し、予め記憶している情報を無線出力する。無線タグ18が出力する情報は、例えば、位置情報や道路種別などの情報である。 The wireless tag 18 is an electronic component in which an IC chip, an antenna for wireless communication, and the like are housed in a case made of a resin material or the like. The wireless tag 18 operates by external power supply using wireless radio waves, and wirelessly outputs pre-stored information. The information output by the wireless tag 18 is, for example, information such as location information and road type.
 本例の磁気マーカ1の外周面及び端面には、無線タグ18が送受信する電波を増幅する2次アンテナ19が設けられている。2次アンテナ19は、導電性を有するインクを磁気マーカ1の外表面に印刷して形成されている。2次アンテナ19は、平面に展開して示す図21のごとく、直角に折れ曲がるかぎ状部194を両端に有している。両端のかぎ状部194は、中間の直線部191に対して逆側に折り曲げられている。直線部191は、無線タグ18の取付面である端面において径方向に延設されて磁気マーカ1の外周面に達し、外周面において軸方向に沿って延設されている。かぎ状部194は、磁気マーカ1の外周面において、周方向に沿うように設けられる。 A secondary antenna 19 that amplifies radio waves transmitted and received by the wireless tag 18 is provided on the outer peripheral surface and end surface of the magnetic marker 1 of this example. The secondary antenna 19 is formed by printing conductive ink on the outer surface of the magnetic marker 1. The secondary antenna 19 has hook-shaped portions 194 bent at right angles at both ends, as shown in FIG. 21, which is shown unfolded on a plane. The hook-shaped portions 194 at both ends are bent opposite to the straight portion 191 in the middle. The straight portion 191 extends in the radial direction on the end surface, which is the mounting surface of the wireless tag 18, to reach the outer circumferential surface of the magnetic marker 1, and extends along the axial direction on the outer circumferential surface. The hook-shaped portion 194 is provided along the circumferential direction on the outer peripheral surface of the magnetic marker 1 .
 図20の磁気マーカ1では、2次アンテナ19の直線部191に接する状態で無線タグ18が取り付けられている。無線タグ18が内蔵する通信用のアンテナと、2次アンテナ19と、の電磁気的な結合により、無線タグ18が送受信する電波が増幅される。2次アンテナ19は、導電性を有するインクによるプリントアンテナに代えて、銅箔やアルミ箔等によるアンテナであっても良い。金属箔のアンテナである場合には、十分に薄いものを採用することで、小片に分離可能という磁気マーカ1の特徴を阻害しないものを採用するか、あるいは磁気マーカ1の外周面から容易に剥がれるように構成すると良い。 In the magnetic marker 1 in FIG. 20, the wireless tag 18 is attached in contact with the straight portion 191 of the secondary antenna 19. Due to the electromagnetic coupling between the communication antenna built into the wireless tag 18 and the secondary antenna 19, the radio waves transmitted and received by the wireless tag 18 are amplified. The secondary antenna 19 may be an antenna made of copper foil, aluminum foil, or the like instead of a printed antenna made of conductive ink. If the antenna is made of metal foil, it should be sufficiently thin so that it does not interfere with the feature of the magnetic marker 1 that it can be separated into small pieces, or it can be easily peeled off from the outer peripheral surface of the magnetic marker 1. It is best to configure it like this.
 なお、磁石の集合体である磁気マーカの形状を保持するガイド部材として、2次アンテナ19を利用することも良い。この場合には、磁気マーカ1の外周面において、軸方向の全域に亘って2次アンテナ19の直線部191が形成されるようにすると良い。
 なお、その他の構成及び作用効果については、他の実施例と同様である。
Note that the secondary antenna 19 may also be used as a guide member that maintains the shape of the magnetic marker, which is an assembly of magnets. In this case, it is preferable that the straight portion 191 of the secondary antenna 19 be formed over the entire area in the axial direction on the outer peripheral surface of the magnetic marker 1.
Note that the other configurations and effects are the same as in the other embodiments.
 以上、実施例のごとく本発明の具体例を詳細に説明したが、これらの具体例は、特許請求の範囲に包含される技術の一例を開示しているにすぎない。言うまでもなく、具体例の構成や数値等によって、特許請求の範囲が限定的に解釈されるべきではない。特許請求の範囲は、公知技術や当業者の知識等を利用して前記具体例を多様に変形、変更あるいは適宜組み合わせた技術を包含している。 Although specific examples of the present invention have been described above in detail as in the embodiments, these specific examples merely disclose an example of technology included in the scope of the claims. Needless to say, the scope of the claims should not be interpreted to be limited by the configurations, numerical values, etc. of the specific examples. The scope of the claims includes techniques in which the specific examples described above are variously modified, changed, or appropriately combined using known techniques and the knowledge of those skilled in the art.
 1 磁気マーカ
 10 磁石
 100 磁石間領域
 108 孔
 111、115、117 ガイド部材
 18 無線タグ
 19 2次アンテナ
 3 道路
 3A 表層
 3S 路面
 30 収容孔
 331 粗骨材
 332 細骨材
1 Magnetic marker 10 Magnet 100 Area between magnets 108 Hole 111, 115, 117 Guide member 18 Wireless tag 19 Secondary antenna 3 Road 3A Surface layer 3S Road surface 30 Accommodation hole 331 Coarse aggregate 332 Fine aggregate

Claims (8)

  1.  車両の運転支援に利用するために路面に埋設される磁気マーカであって、
     該磁気マーカは、複数の磁石の集合体であって、当該複数の磁石が柱状をなすように連結されたものである磁気マーカ。
    A magnetic marker buried in the road surface for use in vehicle driving support,
    The magnetic marker is an aggregate of a plurality of magnets, and the plurality of magnets are connected to form a column.
  2.  請求項1において、前記複数の磁石のうちの隣り合う磁石の間隙に所在する材料は、前記複数の磁石のうちの隣り合う磁石を連結する連結材料であって、当該連結材料が、前記複数の磁石のうちの各磁石よりも低脆性の材料である磁気マーカ。 In claim 1, the material located in the gap between adjacent magnets among the plurality of magnets is a connecting material that connects adjacent magnets among the plurality of magnets, and the connecting material is a connecting material that connects adjacent magnets among the plurality of magnets. A magnetic marker that is a less brittle material than each of the magnets.
  3.  請求項2において、前記連結材料は、発泡樹脂である磁気マーカ。 3. The magnetic marker according to claim 2, wherein the connecting material is a foamed resin.
  4.  請求項1~3のいずれか1項において、前記複数の磁石のうちの隣り合う磁石の間隙に所在する材料は、前記複数の磁石のうちの隣り合う磁石を連結する連結材料であって、当該連結材料は、接着材料あるいは粘着材料であって、
     当該接着材料あるいは粘着材料は、所定の解体操作によって解体因子を活性化させることで接合力が低下する解体性接着材料あるいは解体性粘着材料である磁気マーカ。
    In any one of claims 1 to 3, the material located in the gap between adjacent magnets among the plurality of magnets is a connecting material that connects adjacent magnets among the plurality of magnets, and The connecting material is an adhesive material or an adhesive material,
    The adhesive material or the adhesive material is a magnetic marker that is a disassembly adhesive material or a disassembly adhesive material whose bonding force is reduced by activating a disassembly factor through a predetermined disassembly operation.
  5.  請求項1~3のいずれか1項において、前記複数の磁石のうちの隣り合う磁石の間隙に所在する材料は、前記複数の磁石のうちの隣り合う磁石を連結する連結材料であって、当該連結材料は、生分解性材料である磁気マーカ。 In any one of claims 1 to 3, the material located in the gap between adjacent magnets among the plurality of magnets is a connecting material that connects adjacent magnets among the plurality of magnets, and The connecting material is a magnetic marker, which is a biodegradable material.
  6.  請求項1において、前記複数の磁石は、各磁石の磁力により磁気的に相互に連結されて前記集合体を形成している磁気マーカ。 2. The magnetic marker according to claim 1, wherein the plurality of magnets are magnetically interconnected by the magnetic force of each magnet to form the aggregate.
  7.  請求項1~6のいずれか1項において、所定の方向に延在するガイド部材により、複数の磁石片が柱状をなす状態で保持されている磁気マーカ。 The magnetic marker according to any one of claims 1 to 6, wherein the plurality of magnet pieces are held in a columnar state by a guide member extending in a predetermined direction.
  8.  請求項7において、前記ガイド部材は、柱状をなす磁気マーカの外周面に形成された高分子材料よりなるモールド層である磁気マーカ。 8. The magnetic marker according to claim 7, wherein the guide member is a mold layer made of a polymeric material formed on the outer peripheral surface of a columnar magnetic marker.
PCT/JP2023/011654 2022-03-25 2023-03-23 Magnetic marker WO2023182462A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-049412 2022-03-25
JP2022049412A JP2023142473A (en) 2022-03-25 2022-03-25 magnetic marker

Publications (1)

Publication Number Publication Date
WO2023182462A1 true WO2023182462A1 (en) 2023-09-28

Family

ID=88101703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011654 WO2023182462A1 (en) 2022-03-25 2023-03-23 Magnetic marker

Country Status (2)

Country Link
JP (1) JP2023142473A (en)
WO (1) WO2023182462A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190023680A (en) * 2017-08-30 2019-03-08 전자부품연구원 Multi-layered ferrite film and manufacturing method thereof
JP2020159115A (en) * 2019-03-27 2020-10-01 日本ゼオン株式会社 On-road laid object
JP2021077907A (en) * 2021-01-28 2021-05-20 愛知製鋼株式会社 Magnetic marker manufacturing method, laminate, and holder
WO2021106878A1 (en) * 2019-11-26 2021-06-03 愛知製鋼株式会社 Magnetic marker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190023680A (en) * 2017-08-30 2019-03-08 전자부품연구원 Multi-layered ferrite film and manufacturing method thereof
JP2020159115A (en) * 2019-03-27 2020-10-01 日本ゼオン株式会社 On-road laid object
WO2021106878A1 (en) * 2019-11-26 2021-06-03 愛知製鋼株式会社 Magnetic marker
JP2021077907A (en) * 2021-01-28 2021-05-20 愛知製鋼株式会社 Magnetic marker manufacturing method, laminate, and holder

Also Published As

Publication number Publication date
JP2023142473A (en) 2023-10-05

Similar Documents

Publication Publication Date Title
CA2555000A1 (en) Device and method for encapsulation and mounting of rfid devices
WO2023182462A1 (en) Magnetic marker
KR101484964B1 (en) Shock absorbing pad, Turf structure and Pavement comprising the same
JP7151192B2 (en) Installation method of magnetic marker
IL173520A0 (en) Method for the production of dual-layer slab or board-like articles and slab or board-like articles which can be obtained by the method
WO2023182461A1 (en) Magnetic marker, and construction method for magnetic marker
KR102060861B1 (en) Stiffener for asphalt construction
CN114746916A (en) Magnetic marker
RU2002134191A (en) METHOD AND MEANS FOR PREVENTING HUNGER FORMATION ON ROAD PARTS OF CAR ROADS IN THE WINTER PERIOD
IT1297285B1 (en) PROCEDURE FOR THE PRODUCTION OF SLABS OF GRANULES AND/OR SANDS OF STONE MATERIAL BONDED WITH A HARDINABLE RESIN AND SHAPED SHEET
JP2007277899A (en) Water-permeable elastic paving material
HUP0204404A2 (en) Method for preventing slipperiness in winter of traffic surfaces and composition for this method
WO2023182463A1 (en) Magnetic marker
KR101012968B1 (en) Non-slip panel by using bottom ash aggregate and method of manufact- uring for the same
JP2010180678A (en) Load reducing configuration for structure
MD4160B1 (en) Motorroad
JP5560957B2 (en) Method for producing elastic pavement and elastic pavement
CN114761963A (en) Magnetic marker and method for manufacturing magnetic marker
JP2000215391A (en) Magnetic marker
JP2023166788A (en) Power supply device burying structure and power supply device burying method
JP3009872U (en) Gravel flooring structure
JP2004257003A (en) Marker device and its burial method
JP3171104U (en) Car stop pole
US20220048224A1 (en) A method of recycling tires
IL143827A (en) Rubber sheet structure for use in the production of slabs of granulate or fine particles of stone material bonded with hardening resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775055

Country of ref document: EP

Kind code of ref document: A1