WO2023182336A1 - Chemical-vapor-deposition compound and metal-containing film forming method - Google Patents

Chemical-vapor-deposition compound and metal-containing film forming method Download PDF

Info

Publication number
WO2023182336A1
WO2023182336A1 PCT/JP2023/011156 JP2023011156W WO2023182336A1 WO 2023182336 A1 WO2023182336 A1 WO 2023182336A1 JP 2023011156 W JP2023011156 W JP 2023011156W WO 2023182336 A1 WO2023182336 A1 WO 2023182336A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
vapor deposition
chemical vapor
organic
compound
Prior art date
Application number
PCT/JP2023/011156
Other languages
French (fr)
Japanese (ja)
Inventor
ヴィタリ ネステロヴ
ラファエル ロシャ
梨絵 野上
ジャン-マルク ジラール
ヴェンカテスワラ パレム
Original Assignee
レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
日本エア・リキード合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード, 日本エア・リキード合同会社 filed Critical レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Publication of WO2023182336A1 publication Critical patent/WO2023182336A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/22Tin compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/28Deposition of only one other non-metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present disclosure relates to chemical vapor deposition compounds and methods of forming metal-containing films.
  • Ge and Sn have unique properties such as high electron mobility, low effective hole mass, high hole mobility, moderate energy band gap, and optical properties. Films containing these metals are widely used in various technical fields. Typical applications include semiconductor applications such as next-generation logic devices and memory devices, and optoelectronic applications including integrated photonic circuits.
  • a vapor deposition method such as vapor deposition is being considered as a viable technique for forming a film containing the above-mentioned materials on a substrate (Japanese Patent Laid-Open No. 2005-116203).
  • the present disclosure provides chemical vapor deposition compounds and methods for forming metal-containing films that are suitable for low-temperature, low-carbon pollution chemical vapor deposition processes that can also be formed on glass (SiO 2 ) substrates.
  • the purpose is to
  • the present disclosure provides, in one embodiment, The present invention relates to a chemical vapor deposition compound represented by the following formula (1).
  • M is Ge or Sn.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • X 1 and X 2 are each independently a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, a cyano group, an isocyanate group, an organic oxy group, an organic silyl group, an organic stannyl group, an organic An amide group or an organic sulfanyl group, or X 1 and X 2 represent a heterocyclic structure having 4 to 10 ring members formed together with M to which they are bonded. )
  • the present disclosure provides, in one embodiment, The present invention relates to a chemical vapor deposition film of the chemical vapor deposition compound described above.
  • the present disclosure provides, in one embodiment, The present invention relates to chemical vapor deposition nanowires of the chemical vapor deposition compound described above.
  • the present disclosure provides, in one embodiment, an introduction step of introducing the chemical vapor deposition compound into a reactor in which a substrate is disposed; and depositing at least a portion of the chemical vapor deposition compound on the substrate.
  • the abbreviation “Me” means a methyl group; the abbreviation “Et” means an ethyl group; the abbreviation “Pr” means propyl; “nPr”
  • the abbreviation “iPr” means an isopropyl group; the abbreviation “Bu” means a butyl group; the abbreviation “nBu” means a "normal” or straight chain propyl group; the abbreviation “Bu” means a butyl group;
  • the abbreviation “tBu” refers to a tert-butyl group, also known as 1,1-dimethylethyl;
  • the abbreviation “sBu” refers to a tert-butyl group, also known as 1-methylpropyl; the abbreviation “iBu” refers to the isobutyl group, also known as 2-methylpropyl.
  • the chemical vapor deposition compound according to the present disclosure has vapor phase compatibility, stability, and low melting point (or liquid state), so it is suitable for forming a metal film containing germanium or tin by vapor phase deposition.
  • a chemical vapor deposited film or a chemical vapor deposited film nanowire can be suitably produced.
  • the method for forming a metal-containing film according to the present disclosure uses a specific compound for chemical vapor deposition as a precursor for the vapor deposition method, the metal-containing film can be formed efficiently.
  • thermogravimetric analysis results for 3,4-dimethyl-1-germacyclopent-3-ene.
  • DSC differential scanning calorimetry
  • TGA thermogravimetric analysis
  • DSC differential scanning calorimetry
  • thermogravimetric analysis results for 1,1-dichloro-1-germacyclopent-3-ene.
  • DSC differential scanning calorimetry results for 1,1-dichloro-1-germacyclopent-3-ene.
  • 1 is a graph showing the vapor pressure of 1,1-dichloro-1-germacyclopent-3-ene by thermogravimetric analysis (TGA).
  • the chemical vapor deposition compound according to this embodiment is represented by the following formula (1), and is used to form a metal-containing film by chemical vapor deposition.
  • the chemical vapor deposition compound is a stable substance having an appropriate vapor pressure and is liquid at room temperature.
  • the chemical vapor deposition compound can be directly introduced into the reactor as a gas or liquid during vapor deposition, and the butene-like structure bonded to Ge or Sn can be rapidly desorbed at low temperatures. can provide a low temperature, low carbon pollution vapor deposition process.
  • M is Ge or Sn.
  • R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • X 1 and X 2 are each independently a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, a cyano group, an isocyanate group, an organic oxy group, an organic silyl group, an organic stannyl group, an organic An amide group or an organic sulfanyl group, or X 1 and X 2 represent a heterocyclic structure having 4 to 10 ring members formed together with M to which they are bonded. )
  • Examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 , R 2 , R 3 and R 4 include a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, and a monovalent hydrocarbon group having 3 carbon atoms. Examples include a monovalent alicyclic hydrocarbon group having 1 to 10 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms, or a combination thereof.
  • hydrocarbon group includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • This "hydrocarbon group” includes a saturated hydrocarbon group and an unsaturated hydrocarbon group.
  • chain hydrocarbon group means a hydrocarbon group that does not contain a ring structure and is composed only of a chain structure, and includes both a straight chain hydrocarbon group and a branched hydrocarbon group.
  • Alicyclic hydrocarbon group means a hydrocarbon group that contains only an alicyclic structure as a ring structure and does not contain an aromatic ring structure, and includes monocyclic alicyclic hydrocarbon groups and polycyclic alicyclic (However, it does not need to be composed only of an alicyclic structure, and may include a chain structure as part of it.)
  • "Aromatic hydrocarbon group” means a hydrocarbon group containing an aromatic ring structure as a ring structure (however, it does not need to be composed only of an aromatic ring structure, and some of it may have an alicyclic structure or a chain structure). structure).
  • Examples of the monovalent chain hydrocarbon group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, tert-butyl group, etc. Alkyl groups; alkenyl groups such as ethenyl, propenyl and butenyl; alkynyl groups such as ethynyl, propynyl and butynyl; and the like.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 10 carbon atoms include cycloalkyl groups such as cyclopentyl group, cyclobutyl group, cyclopentyl group, and cyclohexyl group; cycloalkyl groups such as cyclopropenyl group, cyclopentenyl group, and cyclohexenyl group; Examples include alkenyl groups; bridged ring saturated hydrocarbon groups such as norbornyl, adamantyl and tricyclodecyl groups; bridged ring unsaturated hydrocarbon groups such as norbornenyl and tricyclodecenyl groups.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms include phenyl group, tolyl group, naphthyl group, and the like.
  • R 1 and R 2 are each independently preferably a hydrogen atom or a monovalent linear hydrocarbon group having 1 to 10 carbon atoms; A hydrocarbon group is more preferred, and a hydrogen atom or a methyl group is even more preferred.
  • R 3 and R 4 are each independently preferably a hydrogen atom or a monovalent linear hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrogen atom or a methyl group, and both are hydrogen atoms. More preferably, it is an atom.
  • halogen atom represented by X 1 and X 2 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the halogen atom is preferably a chlorine atom.
  • the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by X 1 and X 2 preferably employ the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 , etc. I can do it.
  • the organic oxy group represented by X 1 and X 2 is a monovalent group in which the hydrogen atom of a hydroxy group is substituted with a monovalent hydrocarbon group. That is, the organic oxy group is represented by -OR a1 .
  • R a1 is a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group in the organic oxy group a monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 or the like described above can be suitably employed.
  • the organic oxy group is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably a methoxy group, an ethoxy group, or an n-propoxy group.
  • the organic silyl group represented by X 1 and X 2 is a monovalent group obtained by removing one hydrogen atom from silane and replacing the remaining three hydrogen atoms with a monovalent hydrocarbon group. That is, the organic silyl group is represented by -Si(R a2 ) 3 . Each R a2 is independently a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group in the organic silyl group a monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 or the like described above can be suitably employed.
  • the organic silyl group is preferably a trialkylsilyl group, more preferably a trimethylsilyl group or a triethylsilyl group.
  • the organic stannyl group represented by X 1 and X 2 is represented by -Sn(R a3 ) 3 .
  • Each R a3 is independently a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group in the organic stannyl group a monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 or the like described above can be suitably employed.
  • the organic stannyl group is preferably a trialkylstannyl group, more preferably a trimethylstannyl group or a triethylstannyl group.
  • the organic amide group represented by X 1 and X 2 is represented by -N(R a4 ) 2 .
  • Each R a4 is independently a hydrogen atom or a monovalent hydrocarbon group.
  • a monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 or the like described above can be suitably employed.
  • each R a4 is preferably independently a hydrogen atom or a methyl group.
  • the organic sulfanyl group represented by X 1 and X 2 is a monovalent group in which the oxygen atom of the organic oxy group is replaced with a sulfur atom. That is, the organic sulfanyl group is represented by -SR a5 .
  • R a5 is a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group in the organic sulfanyl group a monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 or the like described above can be suitably employed.
  • the organic sulfanyl group is preferably an alkylsulfanyl group having 1 to 10 carbon atoms, and more preferably a methylsulfanyl group or an ethylsulfanyl group.
  • a heterocyclic structure having 4 to 10 ring members formed by combining X 1 and A structure in which two or more divalent heteroatom-containing groups are interposed at different positions can be suitably employed.
  • divalent heteroatom-containing groups include -O-, -S-, -CO-, and -NR a6 -.
  • R a6 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • the monovalent hydrocarbon group having 1 to 10 carbon atoms in R a6 the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 and the like described above can be suitably employed.
  • the heterocyclic structure is preferably represented by the following formula (i).
  • M has the same meaning as in formula (1) above.
  • Y 1 and Y 2 each independently have the same meaning as the divalent hetero atom-containing group.
  • the value of n is 1 to 6)
  • Y 1 and Y 2 are preferably -O-.
  • n is preferably 2 to 4, more preferably 2 or 3.
  • X 1 and X 2 are each independently preferably a hydrogen atom, a halogen atom, an organic silyl group or an organic amide group, more preferably a hydrogen atom or a halogen atom, and a hydrogen atom or a chlorine atom. It is even more preferable.
  • the chemical vapor deposition compound represented by the above formula (1) is, for example, a compound represented by the following formulas (1-1) to (1-12).
  • the chemical vapor deposition compound is liquid at room temperature (for example, 25° C.), or that the temperature at which the vapor pressure is 133.3 Pa is 60° C. or lower. It is more preferable that the temperature at which the vapor pressure shows 133.3 Pa is 50° C. or lower. This allows the chemical vapor deposition compound to exist as a liquid at room temperature or as a low melting point solid, allowing efficient vapor deposition processes for forming metal-containing films.
  • the temperature at which the mass of the residue becomes 20% or less is preferably 200°C or lower, more preferably 190°C or lower, and preferably 180°C or lower. More preferred. Thereby, the low temperature vapor deposition process using the chemical vapor deposition compound can be promoted.
  • the chemical vapor deposition compound can be suitably used for thin film vapor deposition due to the above properties.
  • suitable vapor deposition methods include, but are not limited to, chemical vapor deposition (CVD), atomic layer deposition (ALD), plasma enhanced atomic layer deposition (PE-ALD), pulsed chemical vapor deposition (P-CVD). ), thermal, plasma, or remote plasma processes in low pressure chemical vapor deposition (LPCVD), or combinations thereof.
  • the chemical vapor deposition compound can be manufactured according to the following formula scheme.
  • a 5-membered ring intermediate is obtained by a cyclization reaction between the starting material Ge or Sn halide and (substituted) butadiene. Note that this cyclization reaction proceeds, for example, by heating at 60 to 100°C.
  • an organometallic reagent or hydrogenating agent having a predetermined substituent structure, a desired compound for chemical vapor deposition can be produced.
  • M, R 1 , R 2 , R 3 , R 4 and X 1 have the same meanings as in formula (1) above.
  • Z is a halogen atom.
  • M' is Li, Na, MgBr or MgI.
  • LAH is LiAlH4 .
  • an organometallic reagent X 2 M' having a different substituent structure may be used together with the organometallic reagent X 1 M'.
  • the 5-membered ring intermediate can also be used as is as a compound for chemical vapor deposition.
  • the method for forming a metal-containing film according to the present embodiment includes an introduction step of introducing the chemical vapor deposition compound into a reactor in which a substrate is disposed, and at least a portion of the chemical vapor deposition compound on the substrate. and a deposition step of depositing on top.
  • the chemical vapor deposition compound is introduced into a reactor in which a substrate is placed.
  • the type of substrate on which the metal-containing film is deposited is appropriately selected depending on the end use.
  • the substrate is a Si substrate, an oxide used as an insulating material in MIM, DRAM, or FeRam technology (e.g., HfO 2 -based material, TiO 2 -based material, ZrO 2 -based material, rare earth oxide). base materials, ternary oxide-based materials, etc.) or nitride-based films (eg, TaN) used as oxygen barriers between copper and low-k films.
  • oxides used as an insulating material in MIM, DRAM, or FeRam technology
  • base materials e.g., ternary oxide-based materials, etc.
  • nitride-based films eg, TaN
  • Other substrates can be used in the manufacture of semiconductors, photovoltaic cells, LCD-TFTs, or flat panel devices.
  • Such substrates include, but are not limited to, solid substrates such as metal nitride-containing substrates (e.g., TaN, TiN, WN, TaCN, TiCN, TaSiN, and TiSiN); insulators (e.g., SiO2 , Si3N4 , SiON, HfO2 , Ta2O5 , ZrO2 , TiO2 , Al2O3 , and barium strontium titanate ) ; or other substrates containing some combination of these materials . Can be mentioned. The actual substrate utilized may also depend on the specific chemical vapor deposition compound embodiment utilized.
  • metal nitride-containing substrates e.g., TaN, TiN, WN, TaCN, TiCN, TaSiN, and TiSiN
  • insulators e.g., SiO2 , Si3N4 , SiON, HfO2 , Ta2O5 , ZrO2 , TiO2 , Al2O3
  • the reactor may be any closed vessel or chamber of the device in which the vapor deposition method is carried out. Examples include, but are not limited to, parallel plate type reactors, cold wall type reactors, hot wall type reactors, sheet style reactors, multi-wafer reactors, or other types of deposition systems.
  • a gas containing the vaporized chemical vapor deposition compound is introduced into the reactor.
  • the pure (single) compound or the blended compound(s) may be fed in liquid state to the vaporizer, where it is vaporized before being introduced into the reactor.
  • the chemical vapor deposition compound can be vaporized by passing a carrier gas through a container containing the chemical vapor deposition compound or by bubbling a carrier gas through the chemical vapor deposition compound.
  • a carrier gas and a gas containing the vaporized compound are introduced into the reactor. If necessary, the container may be heated to a temperature that allows the chemical vapor deposition compound to have sufficient vapor pressure.
  • Carrier gases can include, but are not limited to, Ar, He, N2 , and mixtures thereof.
  • the compound may be vaporized using direct liquid injection (DLI).
  • a co-reactant may be further introduced into the reactor.
  • the coreactant is selected from the group consisting of O 2 , O 3 , H 2 O, H 2 O 2 , NO, N 2 O, NO 2 , trimethyl phosphate, oxygen radicals thereof, and mixtures thereof. is preferred.
  • Alcohols, ammonia, polyamines, hydrazine, dimethylethylphosphoramidate, sulfates, and the like can also be used as other co-reactants.
  • the container may be maintained at a temperature within the range of, for example, about 0°C to about 150°C. Those skilled in the art will appreciate that the temperature of the vessel can be adjusted in well known manner to control the amount of compound vaporized.
  • Chemical vapor deposition compounds may be supplied in pure form (eg, liquid or low melting solid) or in a blend with a suitable solvent.
  • exemplary solvents include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, heterocyclic hydrocarbons, ethers, glymes, glycols, amines, polyamines, cyclicamines, alkylated amines, alkylated polyamines, and Mixtures of these may be mentioned.
  • Preferred solvents include ethylbenzene, diglyme, triglyme, tetraglyme, pyridine, xylene, mesitylene, decane, dodecane, and mixtures thereof.
  • the concentration of the compound typically ranges from about 0.02 to about 2.0M, and preferably from about 0.05 to about 0.2M.
  • the gas containing the vaporized chemical vapor deposition compound may be mixed with the reactive species within the reactor.
  • exemplary reactive species include, but are not limited to, metal precursors such as strontium-containing precursors, barium-containing precursors, aluminum-containing precursors such as TMA, and any combinations thereof.
  • the reactor may be maintained at a pressure ranging from about 0.5 mTorr to about 20 Torr.
  • the temperature in the reactor is preferably maintained at a temperature within the range of room temperature to 600 °C or less, more preferably within the range of 300 °C or more and 500 °C or less. sell.
  • the chemical vapor deposition compound contains Sn
  • the temperature can be maintained preferably within a range of room temperature to 400°C or less, more preferably 80°C or more and 250°C or less.
  • the substrate can be heated to a temperature sufficient to obtain the desired Ge- or Sn-containing film with sufficient growth rate and desired physical state and composition.
  • a temperature range in which the substrate can be heated the temperature within the reactor can be suitably employed.
  • Deposition process In this step, at least a portion of the chemical vapor deposition compound is deposited on the substrate.
  • a vapor phase of a chemical vapor deposition compound is introduced into a reactor where it is contacted with a suitable substrate. Excess chemical vapor deposition material can then be removed from the reactor by purging and/or evacuating the reactor.
  • the co-reactant is introduced into the reactor where it reacts with the absorbed chemical vapor deposition material in a self-terminating manner. Excess co-reactant is removed from the reactor by purging and/or venting the reactor. If the desired film is a metal oxide film, this two-step process may provide the desired film thickness or may be repeated until a film of the required thickness is obtained.
  • the two-step process can be followed by the introduction of metal precursor vapor into the reactor.
  • the metal precursor is selected based on the nature of the metal oxide being deposited.
  • the compound contacts the substrate.
  • Excess compound is removed from the reactor by purging and/or venting the reactor.
  • co-reactants may be introduced into the reactor and reacted with the metal precursor.
  • Excess co-reactant is removed from the reactor by purging and/or venting the reactor.
  • the process may be terminated. However, if a thicker film is desired, the entire four-step process may be repeated. By alternating the feeding of the compound, metal precursor, and coreactant, a film of desired composition and thickness can be deposited.
  • the metal-containing film obtained from the present production method may be a single M film, an MO film, or an MO 2 film.
  • M is Ge or Sn.
  • a person skilled in the art can obtain the desired membrane composition by appropriate selection of appropriate compounds and reactive species.
  • the formation mechanism of the metal-containing film by the chemical vapor deposition compound is not limited to any theory, it is inferred as follows.
  • the chemical vapor deposition compounds can undergo pyrolytic heterocycle cleavage with release of the corresponding germylene (L 2 Ge:) or stanylene (L 2 Sn:).
  • germylene and stannylene are thought to have high reactivity toward the Si or SiO 2 surfaces and are often considered intermediates in the formation of pure Ge (and Sn) films.
  • thermal ring cleavage in the heterocycle of the compound for chemical vapor deposition is ideally carried out with the corresponding butadiene ligand and the M(II) compound (germylene or stanylene). ) appears to follow a [2+4] reverse cycloaddition mechanism with release of .
  • This thermodynamically favorable process requires lower temperatures (80-200 °C) compared to related acyclic dialkyl germanes (and tri- and tetraalkyl germanes) and is not incorporated into the resulting film and under process conditions.
  • the volatile butadiene ligands and their respective surface-reactive M(II) species can be cleanly formed and removed in vacuo.
  • Rational selection of the ligand L allows control of the deposition mechanism and, importantly, allows for a self-limiting surface reaction, i.e. the ALD process. This is in contrast to the conventional approach of using stable Ge(II) compounds with low reactivity as precursors.
  • the deposited layer is further reduced to pure metal using a reducing agent (e.g. H 2 , 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine, 1,1,3,3-tetramethyldisiloxane, etc.). or react with another reactive precursor to give another reactive monolayer.
  • a reducing agent e.g. H 2 , 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine, 1,1,3,3-tetramethyldisiloxane, etc.
  • composition of the deposited film depends on the application.
  • metal-containing films can be used in applications such as next-generation semiconductors, optoelectronics, and photonic devices.
  • Metal-containing nanowires can be manufactured by performing at least one of the introduction step and the deposition step in the presence of metal nanoparticles.
  • Metal nanoparticles can be introduced into the reactor by placing the metal nanoparticles on a substrate provided with impurities and catalysts.
  • gold nanoparticles are preferred.
  • the diameter of the obtained metal-containing nanowire is preferably 1 nm or more and 200 nm or less, and the length thereof is preferably 10 nm or more and 3 ⁇ m or less.
  • XPS results of Ge thin film of 3,4-dimethyl-1-germacyclopent-3-ene on Si substrate 3,4-dimethyl-1-germacyclopent-3 as a compound for chemical vapor deposition A thin Ge film was deposited on a Si substrate using -ene. The chemical vapor deposition compound was deposited using an N 2 carrier gas (N 2 flow 60 sccm, chemical vapor deposition compound flow 2 sccm) at 350° C. and 1 Torr for 40 minutes to form a 62.5 nm thick pure Ge. A film (carbon content was below the lower limit of measurement by XPS) was produced.
  • FIG. 1 shows the XPS results for a Ge-containing film formed on a Si substrate by chemical vapor deposition using 3,4-dimethyl-1-germacyclopent-3-ene.
  • Figure 3 is an SEM photograph (magnification: 3,500x) of a Ge-containing film formed in a SiO2 groove by chemical vapor deposition using 3,4-dimethyl-1-germacyclopent-3-ene.
  • Figure 4 shows an SEM photograph (magnification: 100,000x (aspect ratio (“AR” shown in FIG. 4, hereinafter referred to as “AR”) is 20) and magnification: 30,000 times (when AR is 6)).
  • AR aspect ratio
  • FIG. 4 the SEM photograph when AR is 20 shows the groove at the right end in FIG.
  • the SEM photograph when AR is 6 shows the groove at the left end in FIG.
  • SEM photographs of the top, middle, and bottom of each groove are summarized in FIG.
  • the CD shown in FIG. 4 is a critical dimension.
  • FIG. 6 shows the thermogravimetric analysis (TGA) results for 3,4-dimethyl-1-germacyclopent-3-ene.
  • FIG. 7 shows differential scanning calorimetry (DSC) results for 3,4-dimethyl-1-germacyclopent-3-ene.
  • FIG. 8 shows the thermogravimetric analysis (TGA) results for 1,1-dichloro-3,4-dimethyl-1-germacyclopent-3-ene.
  • FIG. 9 shows differential scanning calorimetry (DSC) results for 1,1-dichloro-3,4-dimethyl-1-germacyclopent-3-ene.
  • FIG. 10 shows the thermogravimetric analysis (TGA) results for 1,1-dichloro-1-germacyclopent-3-ene.
  • FIG. 11 shows differential scanning calorimetry (DSC) results for 1,1-dichloro-1-germacyclopent-3-ene.
  • FIG. 12 is a graph showing the vapor pressure of 1,1-dichloro-1-germacyclopent-3-ene by thermogravimetric analysis (TGA).
  • Chemical vapor deposition compounds having other structures can be synthesized, for example, by the following procedure.

Abstract

Provided are: a chemical-vapor-deposition compound with which it is possible to form a film on a glass (SiO2) substrate and that is suitable for a low-temperature, low-carbon polluting chemical vapor deposition process; and a metal-containing film forming method. A chemical-vapor-deposition compound represented by formula (1). (In formula (1), M is Ge or Sn. Each of R1, R2, R3, and R4 is independently a hydrogen atom or a monovalent hydrocarbon group having 1-10 carbon atoms. Each of X1 and X2 is independently a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1-10 carbon atoms, a cyano group, an isocyanate group, an organic oxy group, an organic silyl group, an organic stannyl group, an organic amide group, or an organic sulfanyl group, or X1 and X2 represent a heterocyclic structure having a 4 to 10-membered ring, in which X1 and X2 are combined together and form the heterocyclic structure together with M to which X1 and X2 bind.)

Description

化学気相堆積用化合物および金属含有膜の形成方法Method for forming chemical vapor deposition compounds and metal-containing films
 本開示は、化学気相堆積用化合物および金属含有膜の形成方法に関する。 The present disclosure relates to chemical vapor deposition compounds and methods of forming metal-containing films.
 GeやSnは、高電子移動度、軽正孔実効質量、高正孔移動度および適度なエネルギーバンドギャップ、光学特性のような固有の固有特性を有している。これらの金属を含有する膜は様々な技術分野で広く利用されている。代表的な用途としては、次世代ロジック装置やメモリ装置等の半導体用途、集積フォトニック回路を含むオプトエレクトロニクス用途等が挙げられる。 Ge and Sn have unique properties such as high electron mobility, low effective hole mass, high hole mobility, moderate energy band gap, and optical properties. Films containing these metals are widely used in various technical fields. Typical applications include semiconductor applications such as next-generation logic devices and memory devices, and optoelectronic applications including integrated photonic circuits.
 上述のような材料を含有する膜を基板上に形成する実行可能な技術として、蒸着のような気相堆積法が検討されている(特開2005-116203号公報)。 A vapor deposition method such as vapor deposition is being considered as a viable technique for forming a film containing the above-mentioned materials on a substrate (Japanese Patent Laid-Open No. 2005-116203).
特開2005-116203号公報Japanese Patent Application Publication No. 2005-116203
 本開示は、ガラス(SiO)基板への膜形成も可能であり、低温かつ低炭素汚染性の化学気相堆積プロセスに適した化学気相堆積用化合物および金属含有膜の形成方法を提供することを目的とする。 The present disclosure provides chemical vapor deposition compounds and methods for forming metal-containing films that are suitable for low-temperature, low-carbon pollution chemical vapor deposition processes that can also be formed on glass (SiO 2 ) substrates. The purpose is to
 本開示は、一実施形態において、
 下記式(1)で表される化学気相堆積用化合物に関する。
Figure JPOXMLDOC01-appb-C000002
(式(1)中、
 MはGeまたはSnである。
 R、R、RおよびRは、それぞれ独立して、水素原子または炭素数1~10の1価の炭化水素基である。
 XおよびXは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10の1価の炭化水素基、シアノ基、イソシアネート基、有機オキシ基、有機シリル基、有機スタンニル基、有機アミド基もしくは有機スルファニル基であるか、またはXおよびXは互いに合わせられそれらが結合するMとともに形成される環員数4~10の複素環構造を表す。)
The present disclosure provides, in one embodiment,
The present invention relates to a chemical vapor deposition compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000002
(In formula (1),
M is Ge or Sn.
R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
X 1 and X 2 are each independently a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, a cyano group, an isocyanate group, an organic oxy group, an organic silyl group, an organic stannyl group, an organic An amide group or an organic sulfanyl group, or X 1 and X 2 represent a heterocyclic structure having 4 to 10 ring members formed together with M to which they are bonded. )
 本開示は、一実施形態において、
 前記化学気相堆積用化合物の化学気相堆積膜に関する。
The present disclosure provides, in one embodiment,
The present invention relates to a chemical vapor deposition film of the chemical vapor deposition compound described above.
 本開示は、一実施形態において、
 前記化学気相堆積用化合物の化学気相堆積ナノワイヤに関する。
The present disclosure provides, in one embodiment,
The present invention relates to chemical vapor deposition nanowires of the chemical vapor deposition compound described above.
 本開示は、一実施形態において、
 基板を内部に配置した反応器に前記化学気相堆積用化合物を導入する導入工程と、
 前記化学気相堆積用化合物の少なくとも一部を前記基板上に堆積させる堆積工程と
 を含む金属含有膜の形成方法に関する。
The present disclosure provides, in one embodiment,
an introduction step of introducing the chemical vapor deposition compound into a reactor in which a substrate is disposed;
and depositing at least a portion of the chemical vapor deposition compound on the substrate.
 本明細書において、元素の周期表からの元素の標準的な略語が用いられる。従って、元素は、これらの略語によって表され得る。例えば、Geはゲルマニウムを意味し、Snはスズを意味し、Nは窒素を意味し、Cは炭素を意味し、Hは水素を意味する。他の元素についても同様である。 In this specification, standard abbreviations for elements from the Periodic Table of Elements are used. Accordingly, elements may be represented by these abbreviations. For example, Ge means germanium, Sn means tin, N means nitrogen, C means carbon, and H means hydrogen. The same applies to other elements.
 本明細書において、CVDは化学気相堆積法または化学蒸着法を意味し、ALDは原子層堆積法を意味する。なお、ALDはCVDの一種である。 In this specification, CVD means chemical vapor deposition or chemical vapor deposition, and ALD means atomic layer deposition. Note that ALD is a type of CVD.
 本明細書において使用される場合、「Me」という略語は、メチル基を意味し;「Et」という略語は、エチル基を意味し;「Pr」という略語は、プロピルを意味し;「nPr」という略語は、「ノルマル」または直鎖プロピル基を意味し;「iPr」という略語は、イソプロピル基を意味し;「Bu」という略語は、ブチル基を意味し;「nBu」という略語は、「ノルマル」または直鎖ブチル基を意味し;「tBu」という略語は、1,1-ジメチルエチルとしても知られるtert-ブチル基を意味し;「sBu」という略語は、1-メチルプロピルとしても知られるsec-ブチル基を意味し;「iBu」という略語は、2-メチルプロピルとしても知られるイソブチル基を意味する。 As used herein, the abbreviation "Me" means a methyl group; the abbreviation "Et" means an ethyl group; the abbreviation "Pr" means propyl; "nPr" The abbreviation "iPr" means an isopropyl group; the abbreviation "Bu" means a butyl group; the abbreviation "nBu" means a "normal" or straight chain propyl group; the abbreviation "Bu" means a butyl group; the abbreviation “tBu” refers to a tert-butyl group, also known as 1,1-dimethylethyl; the abbreviation “sBu” refers to a tert-butyl group, also known as 1-methylpropyl; the abbreviation “iBu” refers to the isobutyl group, also known as 2-methylpropyl.
 本開示に係る化学気相堆積用化合物は、気相法適合性、安定性および低融点(または液状)を有するので、ゲルマニウムまたはスズを含む金属膜を気相堆積法により形成するのに適している。本開示に係る化学気相堆積用化合物によれば、化学気相堆積膜や化学気相堆積膜ナノワイヤを好適に生成し得る。また、本開示に係る金属含有膜の形成方法は、気相堆積法の前駆体として特定の化学気相堆積用化合物を用いているので、効率良く金属含有膜を形成することができる。 The chemical vapor deposition compound according to the present disclosure has vapor phase compatibility, stability, and low melting point (or liquid state), so it is suitable for forming a metal film containing germanium or tin by vapor phase deposition. There is. According to the compound for chemical vapor deposition according to the present disclosure, a chemical vapor deposited film or a chemical vapor deposited film nanowire can be suitably produced. Further, since the method for forming a metal-containing film according to the present disclosure uses a specific compound for chemical vapor deposition as a precursor for the vapor deposition method, the metal-containing film can be formed efficiently.
3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いた化学気相堆積法によりSi基板上に形成したGe含有膜についてのXPS結果である。These are XPS results for a Ge-containing film formed on a Si substrate by chemical vapor deposition using 3,4-dimethyl-1-germacyclopent-3-ene. 3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いた化学気相堆積法によりSiO基板上に形成したGe含有膜についてのXPS結果である。These are XPS results for a Ge-containing film formed on a SiO 2 substrate by chemical vapor deposition using 3,4-dimethyl-1-germacyclopent-3-ene. 3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いた化学気相堆積法によりSiO溝に形成したGe含有膜のSEM写真である。This is an SEM photograph of a Ge-containing film formed in a SiO 2 groove by chemical vapor deposition using 3,4-dimethyl-1-germacyclopent-3-ene. 3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いた化学気相堆積法によりSiO溝に形成したGe含有膜の拡大SEM写真である。This is an enlarged SEM photograph of a Ge-containing film formed in a SiO 2 groove by chemical vapor deposition using 3,4-dimethyl-1-germacyclopent-3-ene. 3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いた化学気相堆積法によりSiO溝に形成したGeナノワイヤのSEM写真である。This is a SEM photograph of Ge nanowires formed in SiO 2 grooves by chemical vapor deposition using 3,4-dimethyl-1-germacyclopent-3-ene. 3,4-ジメチル-1-ゲルマシクロペント-3-エンについての熱重量分析(TGA)結果である。These are thermogravimetric analysis (TGA) results for 3,4-dimethyl-1-germacyclopent-3-ene. 3,4-ジメチル-1-ゲルマシクロペント-3-エンについての示差走査熱量測定(DSC)結果である。These are differential scanning calorimetry (DSC) results for 3,4-dimethyl-1-germacyclopent-3-ene. 1,1-ジクロロ-3,4-ジメチル-1-ゲルマシクロペント-3-エンについての熱重量分析(TGA)結果である。These are thermogravimetric analysis (TGA) results for 1,1-dichloro-3,4-dimethyl-1-germacyclopent-3-ene. 1,1-ジクロロ-3,4-ジメチル-1-ゲルマシクロペント-3-エンについての示差走査熱量測定(DSC)結果である。These are differential scanning calorimetry (DSC) results for 1,1-dichloro-3,4-dimethyl-1-germacyclopent-3-ene. 1,1-ジクロロ-1-ゲルマシクロペント-3-エンについての熱重量分析(TGA)結果である。These are thermogravimetric analysis (TGA) results for 1,1-dichloro-1-germacyclopent-3-ene. 1,1-ジクロロ-1-ゲルマシクロペント-3-エンについての示差走査熱量測定(DSC)結果である。These are differential scanning calorimetry (DSC) results for 1,1-dichloro-1-germacyclopent-3-ene. 1,1-ジクロロ-1-ゲルマシクロペント-3-エンについての熱重量分析(TGA)による蒸気圧を示すグラフである。1 is a graph showing the vapor pressure of 1,1-dichloro-1-germacyclopent-3-ene by thermogravimetric analysis (TGA).
 本開示の実施形態を以下に説明する。本開示は、これらの実施形態に限定されない。好ましい形態の組み合わせもまた好ましい。 Embodiments of the present disclosure will be described below. This disclosure is not limited to these embodiments. Combinations of preferred forms are also preferred.
《化学気相堆積用化合物》
 本実施形態に係る化学気相堆積用化合物は、下記式(1)で表され、化学気相堆積法により金属含有膜を形成するために用いられる。当該化学気相堆積用化合物は、適度な蒸気圧を有する安定で常温で液状の物質である。また、当該化学気相堆積用化合物は、気相堆積の際に気相または液体として反応器に直接導入可能であるとともに、GeまたはSnに結合するブテン類似構造が低温で速やかに脱離することから、低温かつ低炭素汚染性の気相堆積プロセスを提供可能である。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、
 MはGeまたはSnである。
 R、R、RおよびRは、それぞれ独立して、水素原子または炭素数1~10の1価の炭化水素基である。
 XおよびXは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10の1価の炭化水素基、シアノ基、イソシアネート基、有機オキシ基、有機シリル基、有機スタンニル基、有機アミド基もしくは有機スルファニル基であるか、またはXおよびXは互いに合わせられそれらが結合するMとともに形成される環員数4~10の複素環構造を表す。)
《Compounds for chemical vapor deposition》
The chemical vapor deposition compound according to this embodiment is represented by the following formula (1), and is used to form a metal-containing film by chemical vapor deposition. The chemical vapor deposition compound is a stable substance having an appropriate vapor pressure and is liquid at room temperature. In addition, the chemical vapor deposition compound can be directly introduced into the reactor as a gas or liquid during vapor deposition, and the butene-like structure bonded to Ge or Sn can be rapidly desorbed at low temperatures. can provide a low temperature, low carbon pollution vapor deposition process.
Figure JPOXMLDOC01-appb-C000003
(In formula (1),
M is Ge or Sn.
R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
X 1 and X 2 are each independently a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, a cyano group, an isocyanate group, an organic oxy group, an organic silyl group, an organic stannyl group, an organic An amide group or an organic sulfanyl group, or X 1 and X 2 represent a heterocyclic structure having 4 to 10 ring members formed together with M to which they are bonded. )
 R、R、RおよびRで表される炭素数1~10の1価の炭化水素基としては、例えば、炭素数1~10の1価の鎖状炭化水素基、炭素数3~10の1価の脂環式炭化水素基、炭素数6~10の1価の芳香族炭化水素基またはこれらの組み合わせ等があげられる。 Examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 , R 2 , R 3 and R 4 include a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, and a monovalent hydrocarbon group having 3 carbon atoms. Examples include a monovalent alicyclic hydrocarbon group having 1 to 10 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms, or a combination thereof.
 本明細書において、「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基および芳香族炭化水素基が含まれる。この「炭化水素基」には、飽和炭化水素基および不飽和炭化水素基が含まれる。「鎖状炭化水素基」とは、環構造を含まず、鎖状構造のみで構成された炭化水素基を意味し、直鎖状炭化水素基および分岐鎖状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基を意味し、単環の脂環式炭化水素基および多環の脂環式炭化水素基の両方を含む(ただし、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい)。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基を意味する(ただし、芳香環構造のみで構成されている必要はなく、その一部に脂環構造や鎖状構造を含んでいてもよい)。 In this specification, the "hydrocarbon group" includes a chain hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. This "hydrocarbon group" includes a saturated hydrocarbon group and an unsaturated hydrocarbon group. The term "chain hydrocarbon group" means a hydrocarbon group that does not contain a ring structure and is composed only of a chain structure, and includes both a straight chain hydrocarbon group and a branched hydrocarbon group. "Alicyclic hydrocarbon group" means a hydrocarbon group that contains only an alicyclic structure as a ring structure and does not contain an aromatic ring structure, and includes monocyclic alicyclic hydrocarbon groups and polycyclic alicyclic (However, it does not need to be composed only of an alicyclic structure, and may include a chain structure as part of it.) "Aromatic hydrocarbon group" means a hydrocarbon group containing an aromatic ring structure as a ring structure (however, it does not need to be composed only of an aromatic ring structure, and some of it may have an alicyclic structure or a chain structure). structure).
 炭素数1~10の1価の鎖状炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基等のアルキル基;エテニル基、プロペニル基、ブテニル基等のアルケニル基;エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。 Examples of the monovalent chain hydrocarbon group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, sec-butyl group, tert-butyl group, etc. Alkyl groups; alkenyl groups such as ethenyl, propenyl and butenyl; alkynyl groups such as ethynyl, propynyl and butynyl; and the like.
 炭素数3~10の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基;シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基等のシクロアルケニル基;ノルボルニル基、アダマンチル基、トリシクロデシル基等の橋かけ環飽和炭化水素基;ノルボルネニル基、トリシクロデセニル基等の橋かけ環不飽和炭化水素基などが挙げられる。 Examples of the monovalent alicyclic hydrocarbon group having 3 to 10 carbon atoms include cycloalkyl groups such as cyclopentyl group, cyclobutyl group, cyclopentyl group, and cyclohexyl group; cycloalkyl groups such as cyclopropenyl group, cyclopentenyl group, and cyclohexenyl group; Examples include alkenyl groups; bridged ring saturated hydrocarbon groups such as norbornyl, adamantyl and tricyclodecyl groups; bridged ring unsaturated hydrocarbon groups such as norbornenyl and tricyclodecenyl groups.
 炭素数6~10の1価の芳香族炭化水素基としては、フェニル基、トリル基、ナフチル基等が挙げられる。 Examples of the monovalent aromatic hydrocarbon group having 6 to 10 carbon atoms include phenyl group, tolyl group, naphthyl group, and the like.
 RおよびRは、それぞれ独立して、水素原子または炭素数1~10の1価の鎖状炭化水素基であることが好ましく、水素原子または炭素数1~5の1価の直鎖状炭化水素基がより好ましく、水素原子またはメチル基がさらに好ましい。 R 1 and R 2 are each independently preferably a hydrogen atom or a monovalent linear hydrocarbon group having 1 to 10 carbon atoms; A hydrocarbon group is more preferred, and a hydrogen atom or a methyl group is even more preferred.
 RおよびRは、それぞれ独立して、水素原子または炭素数1~5の1価の直鎖状炭化水素基であることが好ましく、水素原子またはメチル基であることがより好ましく、ともに水素原子であることがさらに好ましい。 R 3 and R 4 are each independently preferably a hydrogen atom or a monovalent linear hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrogen atom or a methyl group, and both are hydrogen atoms. More preferably, it is an atom.
 XおよびXで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。中でも、ハロゲン原子としては、塩素原子であることが好ましい。 Examples of the halogen atom represented by X 1 and X 2 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, the halogen atom is preferably a chlorine atom.
 XおよびXで表される炭素数1~10の1価の炭化水素基としては、前記R等で表される炭素数1~10の1価の炭化水素基を好適に採用することができる。 As the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by X 1 and X 2 , preferably employ the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 , etc. I can do it.
 XおよびXで表される有機オキシ基は、ヒドロキシ基の水素原子を1価の炭化水素基で置換した1価の基である。すなわち、有機オキシ基は、-ORa1で表される。Ra1は1価の炭化水素基である。有機オキシ基における1価の炭化水素基としては、前記R等で表される炭素数1~10の1価の炭化水素基を好適に採用することができる。中でも、有機オキシ基は炭素数1~10のアルコキシ基であることが好ましく、メトキシ基、エトキシ基、n-プロポキシ基がより好ましい。 The organic oxy group represented by X 1 and X 2 is a monovalent group in which the hydrogen atom of a hydroxy group is substituted with a monovalent hydrocarbon group. That is, the organic oxy group is represented by -OR a1 . R a1 is a monovalent hydrocarbon group. As the monovalent hydrocarbon group in the organic oxy group, a monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 or the like described above can be suitably employed. Among these, the organic oxy group is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably a methoxy group, an ethoxy group, or an n-propoxy group.
 XおよびXで表される有機シリル基は、シランから1個の水素原子を除き、残りの3個の水素原子を1価の炭化水素基で置換した1価の基である。すなわち、有機シリル基は、-Si(Ra2で表される。Ra2は、それぞれ独立して、1価の炭化水素基である。有機シリル基における1価の炭化水素基としては、前記R等で表される炭素数1~10の1価の炭化水素基を好適に採用することができる。中でも、有機シリル基は、トリアルキルシリル基であることが好ましく、トリメチルシリル基、トリエチルシリル基であることがより好ましい。 The organic silyl group represented by X 1 and X 2 is a monovalent group obtained by removing one hydrogen atom from silane and replacing the remaining three hydrogen atoms with a monovalent hydrocarbon group. That is, the organic silyl group is represented by -Si(R a2 ) 3 . Each R a2 is independently a monovalent hydrocarbon group. As the monovalent hydrocarbon group in the organic silyl group, a monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 or the like described above can be suitably employed. Among these, the organic silyl group is preferably a trialkylsilyl group, more preferably a trimethylsilyl group or a triethylsilyl group.
 XおよびXで表される有機スタンニル基は、-Sn(Ra3で表される。Ra3は、それぞれ独立して、1価の炭化水素基である。有機スタンニル基における1価の炭化水素基としては、前記R等で表される炭素数1~10の1価の炭化水素基を好適に採用することができる。中でも、有機スタンニル基は、トリアルキルスタンニル基であることが好ましく、トリメチルスタンニル基、トリエチルスタンニル基であることがより好ましい。 The organic stannyl group represented by X 1 and X 2 is represented by -Sn(R a3 ) 3 . Each R a3 is independently a monovalent hydrocarbon group. As the monovalent hydrocarbon group in the organic stannyl group, a monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 or the like described above can be suitably employed. Among these, the organic stannyl group is preferably a trialkylstannyl group, more preferably a trimethylstannyl group or a triethylstannyl group.
 XおよびXで表される有機アミド基は、-N(Ra4で表される。Ra4は、それぞれ独立して、水素原子または1価の炭化水素基である。有機アミド基における1価の炭化水素基としては、前記R等で表される炭素数1~10の1価の炭化水素基を好適に採用することができる。中でも、Ra4は、それぞれ独立して、水素原子またはメチル基であることが好ましい。 The organic amide group represented by X 1 and X 2 is represented by -N(R a4 ) 2 . Each R a4 is independently a hydrogen atom or a monovalent hydrocarbon group. As the monovalent hydrocarbon group in the organic amide group, a monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 or the like described above can be suitably employed. Among these, each R a4 is preferably independently a hydrogen atom or a methyl group.
 XおよびXで表される有機スルファニル基は、前記有機オキシ基の酸素原子を硫黄原子で置換した1価の基である。すなわち、有機スルファニル基は、-SRa5で表される。Ra5は1価の炭化水素基である。有機スルファニル基における1価の炭化水素基としては、前記R等で表される炭素数1~10の1価の炭化水素基を好適に採用することができる。中でも、有機スルファニル基は炭素数1~10のアルキルスルファニル基であることが好ましく、メチルスルファニル基、エチルスルファニル基であることがより好ましい。 The organic sulfanyl group represented by X 1 and X 2 is a monovalent group in which the oxygen atom of the organic oxy group is replaced with a sulfur atom. That is, the organic sulfanyl group is represented by -SR a5 . R a5 is a monovalent hydrocarbon group. As the monovalent hydrocarbon group in the organic sulfanyl group, a monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 or the like described above can be suitably employed. Among these, the organic sulfanyl group is preferably an alkylsulfanyl group having 1 to 10 carbon atoms, and more preferably a methylsulfanyl group or an ethylsulfanyl group.
 XおよびXが互いに合わせられそれらが結合するMとともに形成される環員数4~10の複素環構造としては、炭素数3~8のシクロアルカンまたはシクロアルケンの炭素-炭素間にMと1個以上の2価のヘテロ原子含有基がそれぞれ異なる位置で介在している構造を好適に採用することができる。2価のヘテロ原子含有基としては、-O-、-S-、-CO-、-NRa6-が挙げられる。Ra6は水素原子または炭素数1~10の1価の炭化水素基である。Ra6における炭素数1~10の1価の炭化水素基としては、前記R等で表される炭素数1~10の1価の炭化水素基を好適に採用することができる。 A heterocyclic structure having 4 to 10 ring members formed by combining X 1 and A structure in which two or more divalent heteroatom-containing groups are interposed at different positions can be suitably employed. Examples of divalent heteroatom-containing groups include -O-, -S-, -CO-, and -NR a6 -. R a6 is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. As the monovalent hydrocarbon group having 1 to 10 carbon atoms in R a6 , the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 1 and the like described above can be suitably employed.
 前記複素環構造は、下記式(i)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000004
(式(i)中、Mは前記式(1)と同義である。YおよびYは、それぞれ独立して、前記2価のヘテロ原子含有基と同義である。nの値は1~6である。)
The heterocyclic structure is preferably represented by the following formula (i).
Figure JPOXMLDOC01-appb-C000004
(In formula (i), M has the same meaning as in formula (1) above. Y 1 and Y 2 each independently have the same meaning as the divalent hetero atom-containing group. The value of n is 1 to 6)
 YおよびYとしては、-O-であることが好ましい。 Y 1 and Y 2 are preferably -O-.
 nの値は2~4であることが好ましく、2または3であることがより好ましい。 The value of n is preferably 2 to 4, more preferably 2 or 3.
 XおよびXは、それぞれ独立して、水素原子、ハロゲン原子、有機シリル基または有機アミド基であることが好ましく、水素原子またはハロゲン原子であることがより好ましく、水素原子または塩素原子であることがさらに好ましい。 X 1 and X 2 are each independently preferably a hydrogen atom, a halogen atom, an organic silyl group or an organic amide group, more preferably a hydrogen atom or a halogen atom, and a hydrogen atom or a chlorine atom. It is even more preferable.
 前記式(1)で表される化学気相堆積用化合物は、例えば下記式(1-1)~(1-12)で表される化合物である。 The chemical vapor deposition compound represented by the above formula (1) is, for example, a compound represented by the following formulas (1-1) to (1-12).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 前記化学気相堆積用化合物は、室温(たとえば、25℃)で液状であるか、または蒸気圧が133.3Paを示す温度が60℃以下であることが好ましい。蒸気圧が133.3Paを示す温度は50℃以下であることがより好ましい。これにより、当該化学気相堆積用化合物が室温で液状、または低融点の固体として存在することができ、金属含有膜の形成のための気相堆積プロセスを効率的に行うことができる。 It is preferable that the chemical vapor deposition compound is liquid at room temperature (for example, 25° C.), or that the temperature at which the vapor pressure is 133.3 Pa is 60° C. or lower. It is more preferable that the temperature at which the vapor pressure shows 133.3 Pa is 50° C. or lower. This allows the chemical vapor deposition compound to exist as a liquid at room temperature or as a low melting point solid, allowing efficient vapor deposition processes for forming metal-containing films.
 前記化学気相堆積用化合物の熱重量分析において、残渣質量が20%以下となる温度が200℃以下であるすることが好ましく、190℃以下であることがより好ましく、180℃以下であることがさらに好ましい。これにより、当該化学気相堆積用化合物による低温気相堆積プロセスを推進することができる。 In thermogravimetric analysis of the compound for chemical vapor deposition, the temperature at which the mass of the residue becomes 20% or less is preferably 200°C or lower, more preferably 190°C or lower, and preferably 180°C or lower. More preferred. Thereby, the low temperature vapor deposition process using the chemical vapor deposition compound can be promoted.
 前記化学気相堆積用化合物は、前記特性により薄膜気相堆積用として好適に用いることができる。好適な気相堆積方法の例としては、限定されないが、化学気相堆積(CVD)、原子層堆積(ALD)、プラズマ強化原子層堆積(PE-ALD)、パルス化学気相堆積(P-CVD)、低圧化学気相堆積(LPCVD)における熱、プラズマ、もしくはリモートプラズマプロセス、またはこれらの組み合わせが挙げられる。 The chemical vapor deposition compound can be suitably used for thin film vapor deposition due to the above properties. Examples of suitable vapor deposition methods include, but are not limited to, chemical vapor deposition (CVD), atomic layer deposition (ALD), plasma enhanced atomic layer deposition (PE-ALD), pulsed chemical vapor deposition (P-CVD). ), thermal, plasma, or remote plasma processes in low pressure chemical vapor deposition (LPCVD), or combinations thereof.
《化学気相堆積用化合物の製造方法》
 前記化学気相堆積用化合物は、下記式スキームに従って製造することができる。出発原料であるGeまたはSnのハロゲン化物と(置換)ブタジエンとの環化反応により、5員環中間体が得られる。なお、この環化反応は、例えば60~100℃の加熱により、進行する。この5員環中間体と、所定の置換基構造を有する有機金属試薬や水素化剤で処理することにより目的の化学気相堆積用化合物を製造することができる。
《Method for producing compounds for chemical vapor deposition》
The chemical vapor deposition compound can be manufactured according to the following formula scheme. A 5-membered ring intermediate is obtained by a cyclization reaction between the starting material Ge or Sn halide and (substituted) butadiene. Note that this cyclization reaction proceeds, for example, by heating at 60 to 100°C. By treating this five-membered ring intermediate with an organometallic reagent or hydrogenating agent having a predetermined substituent structure, a desired compound for chemical vapor deposition can be produced.
Figure JPOXMLDOC01-appb-C000006
(スキーム中、M、R、R、R、RおよびXは、前記式(1)と同義である。Zはハロゲン原子である。M’はLi、Na、MgBrまたはMgIである。LAHは、LiAlHである。)
Figure JPOXMLDOC01-appb-C000006
(In the scheme, M, R 1 , R 2 , R 3 , R 4 and X 1 have the same meanings as in formula (1) above. Z is a halogen atom. M' is Li, Na, MgBr or MgI. (LAH is LiAlH4 .)
 2つのXを互いに異なる置換基とする場合は、有機金属試薬XM’とともに、異なる置換基構造を有する有機金属試薬XM’を用いればよい。5員環中間体をそのまま化学気相堆積用化合物として用いることもできる。 When the two X 1 are different substituents, an organometallic reagent X 2 M' having a different substituent structure may be used together with the organometallic reagent X 1 M'. The 5-membered ring intermediate can also be used as is as a compound for chemical vapor deposition.
《金属含有膜の形成方法》
 本実施形態に係る金属含有膜の形成方法は、基板を内部に配置した反応器に前記化学気相堆積用化合物を導入する導入工程と、前記化学気相堆積用化合物の少なくとも一部を前記基板上に堆積させる堆積工程とを含む。
《Method for forming metal-containing film》
The method for forming a metal-containing film according to the present embodiment includes an introduction step of introducing the chemical vapor deposition compound into a reactor in which a substrate is disposed, and at least a portion of the chemical vapor deposition compound on the substrate. and a deposition step of depositing on top.
 (導入工程)
 本工程では、基板を内部に配置した反応器に前記化学気相堆積用化合物を導入する。金属含有膜を堆積させる基板の種類は、最終用途に応じて適宜選択される。
(Introduction process)
In this step, the chemical vapor deposition compound is introduced into a reactor in which a substrate is placed. The type of substrate on which the metal-containing film is deposited is appropriately selected depending on the end use.
 いくつかの実施形態では、基板は、Si基板、MIM、DRAM、またはFeRam技術における絶縁材料として使用される酸化物(たとえば、HfOベース材料、TiOベース材料、ZrOベース材料、希土類酸化物ベース材料、三元酸化物ベースの材料など)から、または銅とlow-k膜との間の酸素バリアとして使用される窒化物ベース膜(たとえば、TaN)から選択することができる。半導体、光電池、LCD-TFT、またはフラットパネルデバイスの製造において、他の基板を使用することができる。このような基板の例としては、限定されないが、金属窒化物含有基板(たとえば、TaN、TiN、WN、TaCN、TiCN、TaSiN、およびTiSiN)などの中実基板;絶縁体(たとえば、SiO、Si、SiON、HfO、Ta、ZrO、TiO、Al、およびチタン酸バリウムストロンチウム);またはこれらの材料の組み合わせのうちのいくつかを含む他の基板が挙げられる。利用する実際の基板は、利用する具体的な化学気相堆積用化合物の実施形態にも依存し得る。 In some embodiments, the substrate is a Si substrate, an oxide used as an insulating material in MIM, DRAM, or FeRam technology (e.g., HfO 2 -based material, TiO 2 -based material, ZrO 2 -based material, rare earth oxide). base materials, ternary oxide-based materials, etc.) or nitride-based films (eg, TaN) used as oxygen barriers between copper and low-k films. Other substrates can be used in the manufacture of semiconductors, photovoltaic cells, LCD-TFTs, or flat panel devices. Examples of such substrates include, but are not limited to, solid substrates such as metal nitride-containing substrates (e.g., TaN, TiN, WN, TaCN, TiCN, TaSiN, and TiSiN); insulators (e.g., SiO2 , Si3N4 , SiON, HfO2 , Ta2O5 , ZrO2 , TiO2 , Al2O3 , and barium strontium titanate ) ; or other substrates containing some combination of these materials . Can be mentioned. The actual substrate utilized may also depend on the specific chemical vapor deposition compound embodiment utilized.
 反応器は、内部で気相堆積方法が実行されるデバイスの任意の閉鎖容器またはチャンバであればよい。具体例として、限定されないが、平行板タイプリアクタ、コールドウォールタイプリアクタ、ホットウォールタイプリアクタ、枚様式リアクタ、マルチウェハリアクタ、または他のタイプの堆積システム等が挙げられる。 The reactor may be any closed vessel or chamber of the device in which the vapor deposition method is carried out. Examples include, but are not limited to, parallel plate type reactors, cold wall type reactors, hot wall type reactors, sheet style reactors, multi-wafer reactors, or other types of deposition systems.
 次いで、気化させた前記化学気相堆積用化合物を含むガスを前記反応器に導入する。純粋な(単一の)化合物またはブレンドされた(複数の)化合物は液体の状態で気化器に供給されてもよく、ここで反応器に導入される前に気化される。あるいは、化学気相堆積用化合物は、この化学気相堆積用化合物を容れた容器にキャリアガスを通すことによって、またはこの化学気相堆積用化合物にキャリアガスをバブリングすることによって気化できる。次に、キャリアガスおよび気化した化合物を含むガスを反応器に導入する。必要であれば、化学気相堆積用化合物が十分な蒸気圧を有することを可能にする温度まで容器を加熱してもよい。キャリアガスとしては、限定はされないが、Ar、He、N、およびこれらの混合物を挙げることができる。また、このようにキャリアガスをバブリングさせる方法(すなわち、バブリング方式)を用いる代わりに、ダイレクトリキッドインジェクション(DLI)を用いて化合物を気化させてもよい。 Next, a gas containing the vaporized chemical vapor deposition compound is introduced into the reactor. The pure (single) compound or the blended compound(s) may be fed in liquid state to the vaporizer, where it is vaporized before being introduced into the reactor. Alternatively, the chemical vapor deposition compound can be vaporized by passing a carrier gas through a container containing the chemical vapor deposition compound or by bubbling a carrier gas through the chemical vapor deposition compound. Next, a carrier gas and a gas containing the vaporized compound are introduced into the reactor. If necessary, the container may be heated to a temperature that allows the chemical vapor deposition compound to have sufficient vapor pressure. Carrier gases can include, but are not limited to, Ar, He, N2 , and mixtures thereof. Moreover, instead of using the method of bubbling the carrier gas (ie, bubbling method), the compound may be vaporized using direct liquid injection (DLI).
 導入工程において、反応器に共反応物をさらに導入してもよい。共反応物としては、O、O、HO、H、NO、NO、NO、トリメチルホスフェート、それらの酸素ラジカル、およびそれらの混合物からなる群から選択されることが好ましい。他の共反応物として、アルコール、アンモニア、ポリアミン、ヒドラジン、ジメチルエチルホスホラミデート、硫酸塩等も用いることができる。 In the introduction step, a co-reactant may be further introduced into the reactor. The coreactant is selected from the group consisting of O 2 , O 3 , H 2 O, H 2 O 2 , NO, N 2 O, NO 2 , trimethyl phosphate, oxygen radicals thereof, and mixtures thereof. is preferred. Alcohols, ammonia, polyamines, hydrazine, dimethylethylphosphoramidate, sulfates, and the like can also be used as other co-reactants.
 容器はたとえば約0℃~約150℃の範囲内の温度に維持されうる。当業者であれば、容器の温度を周知の方法で調節して、気化させる化合物の量を制御できることが分かる。 The container may be maintained at a temperature within the range of, for example, about 0°C to about 150°C. Those skilled in the art will appreciate that the temperature of the vessel can be adjusted in well known manner to control the amount of compound vaporized.
 化学気相堆積用化合物は、純粋な形態(たとえば液体もしくは低融点固体)、または好適な溶媒とのブレンドの形態で供給され得る。例示的な溶媒としては、限定されないが、脂肪族炭化水素、芳香族炭化水素、複素環式炭化水素、エーテル、グリム、グリコール、アミン、ポリアミン、シクリカミン(cyclicamine)、アルキル化アミン、アルキル化ポリアミンおよびこれらの混合物が挙げられる。好ましい溶媒としては、エチルベンゼン、ジグリム、トリグリム、テトラグリム、ピリジン、キシレン、メシチレン、デカン、ドデカン、およびこれらの混合物が挙げられる。化合物の濃度は典型的に約0.02~約2.0Mの範囲内、および好ましくは約0.05~約0.2Mの範囲内にある。 Chemical vapor deposition compounds may be supplied in pure form (eg, liquid or low melting solid) or in a blend with a suitable solvent. Exemplary solvents include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, heterocyclic hydrocarbons, ethers, glymes, glycols, amines, polyamines, cyclicamines, alkylated amines, alkylated polyamines, and Mixtures of these may be mentioned. Preferred solvents include ethylbenzene, diglyme, triglyme, tetraglyme, pyridine, xylene, mesitylene, decane, dodecane, and mixtures thereof. The concentration of the compound typically ranges from about 0.02 to about 2.0M, and preferably from about 0.05 to about 0.2M.
 反応器への導入前の化学気相堆積用化合物と溶媒との任意の混合に加えて、反応器の内で、気化した化学気相堆積用化合物を含むガスを反応種と混合してもよい。例示的な反応種としては、限定はされないが、金属前駆体、たとえばストロンチウム含有前駆体、バリウム含有前駆体、アルミニウム含有前駆体たとえばTMAなど、およびこれらの任意の組み合わせが挙げられる。 In addition to optionally mixing the chemical vapor deposition compound with the solvent prior to introduction into the reactor, the gas containing the vaporized chemical vapor deposition compound may be mixed with the reactive species within the reactor. . Exemplary reactive species include, but are not limited to, metal precursors such as strontium-containing precursors, barium-containing precursors, aluminum-containing precursors such as TMA, and any combinations thereof.
 反応器は、約0.5mTorr~約20Torrの範囲内にある圧力に維持され得る。加えて、反応器内の温度は、化学気相堆積用化合物がGeを含む場合、好ましくは常温から600℃以下の範囲内、より好ましくは300℃以上500℃以下の範囲内、温度に維持されうる。化学気相堆積用化合物がSnを含む場合、好ましくは常温から400℃以下の範囲内、より好ましくは80℃以上250℃以下の温度に維持されうる。当業者であれば、経験によって温度を最適化して所望の結果を達成することができる。 The reactor may be maintained at a pressure ranging from about 0.5 mTorr to about 20 Torr. In addition, when the compound for chemical vapor deposition contains Ge, the temperature in the reactor is preferably maintained at a temperature within the range of room temperature to 600 °C or less, more preferably within the range of 300 °C or more and 500 °C or less. sell. When the chemical vapor deposition compound contains Sn, the temperature can be maintained preferably within a range of room temperature to 400°C or less, more preferably 80°C or more and 250°C or less. Those skilled in the art can, through experience, optimize the temperature to achieve the desired results.
 十分な成長速度ならびに所望の物理的状態および組成で所望のGe含有膜またはSn含有膜を得るのに十分な温度まで、基板を加熱することができる。基板を加熱することができる非限定的例示温度範囲としては、前記反応器内の温度を好適に採用することができる。 The substrate can be heated to a temperature sufficient to obtain the desired Ge- or Sn-containing film with sufficient growth rate and desired physical state and composition. As a non-limiting exemplary temperature range in which the substrate can be heated, the temperature within the reactor can be suitably employed.
 (堆積工程)
 本工程では、前記化学気相堆積用化合物の少なくとも一部を前記基板上に堆積させる。例示的な1つの原子層堆積タイプのプロセスでは、化学気相堆積用化合物の気相を反応器に導入し、ここで好適な基板と接触させる。その後、過剰な化学気相堆積用はリアクタをパージするおよび/または排気することによって反応器から除去できる。共反応物を反応器に導入し、ここでそれは吸収された化学気相堆積用と自己停止方式で反応する。過剰な共反応物は反応器をパージするおよび/または排気することによって反応器から除去される。所望の膜が金属酸化物膜である場合、この二段階プロセスは所望の膜厚を提供する場合もあるし、必要な厚さを有する膜が得られるまで繰り返される場合もある。
(Deposition process)
In this step, at least a portion of the chemical vapor deposition compound is deposited on the substrate. In one exemplary atomic layer deposition type process, a vapor phase of a chemical vapor deposition compound is introduced into a reactor where it is contacted with a suitable substrate. Excess chemical vapor deposition material can then be removed from the reactor by purging and/or evacuating the reactor. The co-reactant is introduced into the reactor where it reacts with the absorbed chemical vapor deposition material in a self-terminating manner. Excess co-reactant is removed from the reactor by purging and/or venting the reactor. If the desired film is a metal oxide film, this two-step process may provide the desired film thickness or may be repeated until a film of the required thickness is obtained.
 あるいは、所望の膜が金属酸化物膜である場合、前記二段階プロセスの後に、反応器への金属前駆体の蒸気の導入を続けることができる。この金属前駆体は、堆積させる金属酸化物の性質に基づいて選択する。反応器への導入後、化合物が基板に接触する。過剰な化合物は反応器をパージするおよび/または排気することによって反応器から除去される。再度、共反応物を反応器に導入して、金属前駆体と反応させてもよい。過剰な共反応物は反応器をパージするおよび/または排気することによって反応器から除去される。所望の膜厚が得られたら、このプロセスを終わりにしてもよい。しかしながら、より厚い膜が所望されるのであれば、4段階プロセスの全てを繰り返してもよい。化合物、金属前駆体および共反応物の供給を交互に行うことにより、所望の組成および厚さの膜を堆積させることができる。 Alternatively, if the desired film is a metal oxide film, the two-step process can be followed by the introduction of metal precursor vapor into the reactor. The metal precursor is selected based on the nature of the metal oxide being deposited. After introduction into the reactor, the compound contacts the substrate. Excess compound is removed from the reactor by purging and/or venting the reactor. Again, co-reactants may be introduced into the reactor and reacted with the metal precursor. Excess co-reactant is removed from the reactor by purging and/or venting the reactor. Once the desired film thickness is achieved, the process may be terminated. However, if a thicker film is desired, the entire four-step process may be repeated. By alternating the feeding of the compound, metal precursor, and coreactant, a film of desired composition and thickness can be deposited.
 本実製造方法から得られる金属含有膜は、M単体膜、MO膜、MO膜であり得る。Mは、GeまたはSnである。当業者であれば、適切な化合物および反応種の適切な選択によって、所望の膜組成を得ることができる。 The metal-containing film obtained from the present production method may be a single M film, an MO film, or an MO 2 film. M is Ge or Sn. A person skilled in the art can obtain the desired membrane composition by appropriate selection of appropriate compounds and reactive species.
 当該化学気相堆積用化合物による金属含有膜の形成メカニズムは、いかなる理論にも限定されないものの、以下のように推察される。 Although the formation mechanism of the metal-containing film by the chemical vapor deposition compound is not limited to any theory, it is inferred as follows.
 当該化学気相堆積用化合物は、対応するゲルミレン(LGe:)またはスタニレン(LSn:)の放出を伴う熱分解性複素環開裂を受けることができる。一方、ゲルミレンおよびスタンニレンは、Si面またはSiO面に対して高い反応性を持つと考えられ、しばしば純水なGe(およびSn)膜の形成における中間体と考えられる。 The chemical vapor deposition compounds can undergo pyrolytic heterocycle cleavage with release of the corresponding germylene (L 2 Ge:) or stanylene (L 2 Sn:). On the other hand, germylene and stannylene are thought to have high reactivity toward the Si or SiO 2 surfaces and are often considered intermediates in the formation of pure Ge (and Sn) films.
 具体的には、下記スキームに示すように、化学気相堆積用化合物が有する複素環における熱分解環開裂は、理想的には、対応するブタジエン配位子およびM(II)化合物(ゲルミレンまたはスタニレン)の放出を伴う[2+4]逆環付加メカニズムに従うと考えられる。この熱力学的に有利なプロセスは、関連する非環状ジアルキルゲルマン(およびトリおよびテトラアルキルゲルマン)と比較してより低い温度(80~200℃)を必要とし、得られるフィルムに組み込まれずプロセス条件下で真空除去される揮発性のブタジエン配位子とそれぞれの表面反応性M(II)種をクリーンに形成し得る。配位子Lの合理的な選択は堆積メカニズムの制御を可能にし、重要なことに、自己制限的な表面反応、すなわちALDプロセスを可能にする。これは従来の反応性の低い安定なGe(II)化合物を前駆体として使用する一般的なアプローチとは対照的である。 Specifically, as shown in the scheme below, thermal ring cleavage in the heterocycle of the compound for chemical vapor deposition is ideally carried out with the corresponding butadiene ligand and the M(II) compound (germylene or stanylene). ) appears to follow a [2+4] reverse cycloaddition mechanism with release of . This thermodynamically favorable process requires lower temperatures (80-200 °C) compared to related acyclic dialkyl germanes (and tri- and tetraalkyl germanes) and is not incorporated into the resulting film and under process conditions. The volatile butadiene ligands and their respective surface-reactive M(II) species can be cleanly formed and removed in vacuo. Rational selection of the ligand L allows control of the deposition mechanism and, importantly, allows for a self-limiting surface reaction, i.e. the ALD process. This is in contrast to the conventional approach of using stable Ge(II) compounds with low reactivity as precursors.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 堆積層は還元剤(例えば、H、1,4-ビス(トリメチルシリル)-1,4-ジヒドロピラジン、1,1,3,3-テトラメチルジシロキサン等)を使用して純金属にさらに還元されるか、または別の反応性単分子層を与える別の反応性前駆物質と反応する。 The deposited layer is further reduced to pure metal using a reducing agent (e.g. H 2 , 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine, 1,1,3,3-tetramethyldisiloxane, etc.). or react with another reactive precursor to give another reactive monolayer.
 堆積される膜の組成は用途に依存する。たとえば、金属含有膜を次世代半導体、光電子、フォトニックデバイス等の用途に使用できる。 The composition of the deposited film depends on the application. For example, metal-containing films can be used in applications such as next-generation semiconductors, optoelectronics, and photonic devices.
《金属含有ナノワイヤの製造方法》
 金属含有ナノワイヤは、前記導入工程及び前記堆積工程のうちの少なくとも一方を金属ナノ粒子の存在下で行うことで製造することができる。金属ナノ粒子は、不純物や触媒が設けられている基板に金属ナノ粒子を載せることにより反応器内に投入し得る。金属ナノ粒子としては、金ナノ粒子が好ましい。得られる金属含有ナノワイヤの直径は、好ましくは1nm以上200nm以下であり、その長さは好ましくは10nm以上3μm以下である。
《Method for producing metal-containing nanowires》
Metal-containing nanowires can be manufactured by performing at least one of the introduction step and the deposition step in the presence of metal nanoparticles. Metal nanoparticles can be introduced into the reactor by placing the metal nanoparticles on a substrate provided with impurities and catalysts. As the metal nanoparticles, gold nanoparticles are preferred. The diameter of the obtained metal-containing nanowire is preferably 1 nm or more and 200 nm or less, and the length thereof is preferably 10 nm or more and 3 μm or less.
 本明細書の開示の適用を例示するために、以下の実施例が記載されるが、本明細書に記載されるプロセスの利点のすべてが、本発明の特定の実施形態または実施形態のグループに包含され得るわけではないことを十分に理解されたい。特定の実施形態および実施例が以下に開示されるが、本発明は明白な修正を含む、本発明の具体的に開示された実施形態および/または使用を超えて拡張することが、当業者によって理解されるのであろう。したがって、開示される本発明の範囲は、以下に記載される特定の実施形態によって限定されるべきではないことが理解されるべきである。 The following examples are provided to illustrate the application of the disclosure herein, but all of the advantages of the processes described herein may be demonstrated in a particular embodiment or group of embodiments of the invention. It should be fully understood that it cannot be included. Although specific embodiments and examples are disclosed below, it will be appreciated by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments and/or uses of the invention, including obvious modifications. I hope it will be understood. Therefore, it should be understood that the scope of the disclosed invention should not be limited by the specific embodiments described below.
<実施例1>
[1,1-ジクロロ-3,4-ジメチル-1-ゲルマシクロペント-3-エンの合成]
 2,3-ジメチル-1,3-ブタジエン(1.3当量)を、ジクロロメタン中のGeClの撹拌懸濁液に添加した。さらに室温で数時間攪拌した。溶媒を減圧下で除去し、得られた液体材料を減圧下で蒸留することで1,1-ジクロロ-3,4-ジメチル-1-ゲルマシクロペント-3-エンを得た。反応および後処理は、不活性雰囲気下で行った。
<Example 1>
[Synthesis of 1,1-dichloro-3,4-dimethyl-1-germacyclopent-3-ene]
2,3-Dimethyl-1,3-butadiene (1.3 eq.) was added to a stirred suspension of GeCl 2 in dichloromethane. The mixture was further stirred at room temperature for several hours. The solvent was removed under reduced pressure, and the resulting liquid material was distilled under reduced pressure to obtain 1,1-dichloro-3,4-dimethyl-1-germacyclopent-3-ene. Reactions and work-up were carried out under an inert atmosphere.
<実施例2>
[3,4-ジメチル-1-ゲルマシクロペント-3-エンの合成]
 実施例1で得られた1,1-ジクロロ-3,4-ジメチル-1-ゲルマシクロペント-3-エンの-20~0℃の無水トルエンまたはEtOの溶液に、LiAlHのEtOまたはトルエンの溶液を滴下した。混合物を室温で24時間さらに撹拌した。反応物を飽和塩化アンモニウム水溶液で加水分解し、水性画分をジエチルエーテルで抽出した。合わせた有機画分を水および5%重炭酸ナトリウム水溶液で洗浄した。無水硫酸マグネシウムで乾燥した後、溶媒を減圧下で除去した。得られた油を真空下で蒸留することで3,4-ジメチル-1-ゲルマシクロペント-3-エンを得た。反応および後処理は、不活性雰囲気下で行った。
<Example 2>
[Synthesis of 3,4-dimethyl-1-germacyclopent-3-ene]
A solution of 1,1-dichloro-3,4-dimethyl-1-germacyclopent-3-ene obtained in Example 1 in anhydrous toluene or Et 2 O at -20 to 0°C was added with Et 2 of LiAlH 4 . A solution of O or toluene was added dropwise. The mixture was further stirred at room temperature for 24 hours. The reaction was hydrolyzed with saturated aqueous ammonium chloride solution and the aqueous fraction was extracted with diethyl ether. The combined organic fractions were washed with water and 5% aqueous sodium bicarbonate. After drying over anhydrous magnesium sulfate, the solvent was removed under reduced pressure. The obtained oil was distilled under vacuum to obtain 3,4-dimethyl-1-germacyclopent-3-ene. Reactions and work-up were carried out under an inert atmosphere.
<実施例3>
[1,1-ジクロロ-1-ゲルマシクロペント-3-エンの合成]
 2,3-ジメチル-1,3-ブタジエンを1,3-ブタジエンに変えたこと以外は、実施例1と同様にして1,1-ジクロロ-1-ゲルマシクロペント-3-エンを得た。反応および後処理は、不活性雰囲気下で行った。
<Example 3>
[Synthesis of 1,1-dichloro-1-germacyclopent-3-ene]
1,1-dichloro-1-germacyclopent-3-ene was obtained in the same manner as in Example 1 except that 2,3-dimethyl-1,3-butadiene was changed to 1,3-butadiene. Reactions and work-up were carried out under an inert atmosphere.
<評価>
 上記実施例1~3で得られた化学気相堆積用化合物について以下の手順で評価した。以下、SEM写真の取得には、Hitachi社製 S-5200 Ultrahigh resolutionを用いた。
<Evaluation>
The chemical vapor deposition compounds obtained in Examples 1 to 3 above were evaluated according to the following procedure. Hereinafter, S-5200 Ultrahigh resolution manufactured by Hitachi was used to obtain SEM photographs.
(1)3,4-ジメチル-1-ゲルマシクロペント-3-エンのSi基板上でのGe薄膜についてのXPS結果
 化学気相堆積用化合物として3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いたSi基板上へのGe薄膜の蒸着を行った。蒸着は、この化学気相堆積用化合物をNキャリアガス(N流60sccm、化学気相堆積用化合物流2sccm)で350℃、1Torrで40分間蒸着することで、62.5nm厚の純Ge膜(炭素はXPSの測定下限値以下であった。)を生成した。図1は、3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いた化学気相堆積法によりSi基板上に形成したGe含有膜についてのXPS結果である。
(1) XPS results of Ge thin film of 3,4-dimethyl-1-germacyclopent-3-ene on Si substrate 3,4-dimethyl-1-germacyclopent-3 as a compound for chemical vapor deposition A thin Ge film was deposited on a Si substrate using -ene. The chemical vapor deposition compound was deposited using an N 2 carrier gas (N 2 flow 60 sccm, chemical vapor deposition compound flow 2 sccm) at 350° C. and 1 Torr for 40 minutes to form a 62.5 nm thick pure Ge. A film (carbon content was below the lower limit of measurement by XPS) was produced. FIG. 1 shows the XPS results for a Ge-containing film formed on a Si substrate by chemical vapor deposition using 3,4-dimethyl-1-germacyclopent-3-ene.
(2)3,4-ジメチル-1-ゲルマシクロペント-3-エンのSiO基板上でのGe薄膜についてのXPS結果およびSEM写真
 化学気相堆積用化合物として3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いたSiO基板(溝あり)上へのGe薄膜の蒸着を行った。蒸着は、この化学気相堆積用化合物をNキャリアガス(N流60sccm、化学気相堆積用化合物流2sccm)で400℃、1Torrで30分間蒸着することで、162nm厚の純Ge膜を生成した。図2は、3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いた化学気相堆積法によりSiO基板上に形成したGe含有膜についてのXPS結果である。
(2) XPS results and SEM photographs of Ge thin film of 3,4-dimethyl-1-germacyclopent-3-ene on SiO2 substrate. 3,4-dimethyl-1-germa as a compound for chemical vapor deposition A Ge thin film was deposited on a SiO 2 substrate (with grooves) using cyclopent-3-ene. The chemical vapor deposition compound was deposited using an N 2 carrier gas (N 2 flow 60 sccm, chemical vapor deposition compound flow 2 sccm) at 400°C and 1 Torr for 30 minutes to form a 162 nm thick pure Ge film. generated. FIG. 2 shows the XPS results for a Ge-containing film formed on a SiO 2 substrate by chemical vapor deposition using 3,4-dimethyl-1-germacyclopent-3-ene.
 図3は、3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いた化学気相堆積法によりSiO溝に形成したGe含有膜のSEM写真(倍率:3,500倍)である。図4は、3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いた化学気相堆積法によりSiO溝に形成したGe含有膜のSEM写真(倍率:100,000倍(アスペクト比(図4に記載の“AR”である。以下“AR”という。)が20の場合)及び倍率:30,000倍(ARが6の場合))である。図4において、ARが20の場合のSEM写真は、図3における右端の溝を示す。図4において、ARが6の場合のSEM写真は、図3における左端の溝を示す。それぞれの溝の上部、中間部及び下部のSEM写真が、図4にまとめられている。図4に記載のCDとは、限界寸法(Critical Dimension)のことである。図4に記載のSCとは、ステップカバレッジ(step coverage)のことである。SCは、下記式により算出される。
    SC(%)=(最も薄い部分での膜厚/平坦部分での膜厚)×100
Figure 3 is an SEM photograph (magnification: 3,500x) of a Ge-containing film formed in a SiO2 groove by chemical vapor deposition using 3,4-dimethyl-1-germacyclopent-3-ene. . Figure 4 shows an SEM photograph (magnification: 100,000x (aspect ratio (“AR” shown in FIG. 4, hereinafter referred to as “AR”) is 20) and magnification: 30,000 times (when AR is 6)). In FIG. 4, the SEM photograph when AR is 20 shows the groove at the right end in FIG. In FIG. 4, the SEM photograph when AR is 6 shows the groove at the left end in FIG. SEM photographs of the top, middle, and bottom of each groove are summarized in FIG. The CD shown in FIG. 4 is a critical dimension. SC described in FIG. 4 refers to step coverage. SC is calculated by the following formula.
SC (%) = (film thickness at the thinnest part/film thickness at the flat part) x 100
(3)3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いた化学気相堆積法によるGeナノワイヤの形成
 図5は、3,4-ジメチル-1-ゲルマシクロペント-3-エンを用いた化学気相堆積法によりSiO溝に形成したGeナノワイヤのSEM写真(倍率:100,000倍)である。
(3) Formation of Ge nanowires by chemical vapor deposition using 3,4-dimethyl-1-germacyclopent-3-ene. This is a SEM photograph (magnification: 100,000 times) of Ge nanowires formed in SiO 2 grooves by chemical vapor deposition using a chemical vapor deposition method.
(4)3,4-ジメチル-1-ゲルマシクロペント-3-エンの熱特性
 3,4-ジメチル-1-ゲルマシクロペント-3-エンについて熱重量測定および示差走査熱量測定を行った。図6は、3,4-ジメチル-1-ゲルマシクロペント-3-エンについての熱重量分析(TGA)結果である。図7は、3,4-ジメチル-1-ゲルマシクロペント-3-エンについての示差走査熱量測定(DSC)結果である。
(4) Thermal properties of 3,4-dimethyl-1-germacyclopent-3-ene Thermogravimetry and differential scanning calorimetry were performed on 3,4-dimethyl-1-germacyclopent-3-ene. FIG. 6 shows the thermogravimetric analysis (TGA) results for 3,4-dimethyl-1-germacyclopent-3-ene. FIG. 7 shows differential scanning calorimetry (DSC) results for 3,4-dimethyl-1-germacyclopent-3-ene.
(5)1,1-ジクロロ-3,4-ジメチル-1-ゲルマシクロペント-3-エンの熱特性
 1,1-ジクロロ-3,4-ジメチル-1-ゲルマシクロペント-3-エンについて熱重量測定および示差走査熱量測定を行った。図8は、1,1-ジクロロ-3,4-ジメチル-1-ゲルマシクロペント-3-エンについての熱重量分析(TGA)結果である。図9は、1,1-ジクロロ-3,4-ジメチル-1-ゲルマシクロペント-3-エンについての示差走査熱量測定(DSC)結果である。
(5) Thermal properties of 1,1-dichloro-3,4-dimethyl-1-germacyclopent-3-ene Thermal properties of 1,1-dichloro-3,4-dimethyl-1-germacyclopent-3-ene Gravimetry and differential scanning calorimetry were performed. FIG. 8 shows the thermogravimetric analysis (TGA) results for 1,1-dichloro-3,4-dimethyl-1-germacyclopent-3-ene. FIG. 9 shows differential scanning calorimetry (DSC) results for 1,1-dichloro-3,4-dimethyl-1-germacyclopent-3-ene.
(6)1,1-ジクロロ-1-ゲルマシクロペント-3-エンの熱特性
 1,1-ジクロロ-1-ゲルマシクロペント-3-エンについて熱重量測定および示差走査熱量測定を行った。図10は、1,1-ジクロロ-1-ゲルマシクロペント-3-エンについての熱重量分析(TGA)結果である。図11は、1,1-ジクロロ-1-ゲルマシクロペント-3-エンについての示差走査熱量測定(DSC)結果である。
(6) Thermal properties of 1,1-dichloro-1-germacyclopent-3-ene Thermogravimetry and differential scanning calorimetry were performed on 1,1-dichloro-1-germacyclopent-3-ene. FIG. 10 shows the thermogravimetric analysis (TGA) results for 1,1-dichloro-1-germacyclopent-3-ene. FIG. 11 shows differential scanning calorimetry (DSC) results for 1,1-dichloro-1-germacyclopent-3-ene.
(7)1,1-ジクロロ-1-ゲルマシクロペント-3-エンの蒸気圧
 1,1-ジクロロ-1-ゲルマシクロペント-3-エンの熱重量分析(TGA)結果に基づいて、1,1-ジクロロ-1-ゲルマシクロペント-3-エンの蒸気圧を算出した。図12は、1,1-ジクロロ-1-ゲルマシクロペント-3-エンについての熱重量分析(TGA)による蒸気圧を示すグラフである。
(7) Vapor pressure of 1,1-dichloro-1-germacyclopent-3-ene Based on the thermogravimetric analysis (TGA) results of 1,1-dichloro-1-germacyclopent-3-ene, 1, The vapor pressure of 1-dichloro-1-germacyclopent-3-ene was calculated. FIG. 12 is a graph showing the vapor pressure of 1,1-dichloro-1-germacyclopent-3-ene by thermogravimetric analysis (TGA).
 他の構造を有する化学気相堆積用化合物については、例えば、以下の手順で合成することができる。 Chemical vapor deposition compounds having other structures can be synthesized, for example, by the following procedure.
<合成例1>
[1,1-ジハロゲノ-1-スタンナシクロペント-3-エンの合成]
 1,3-ブタジエン(1.3当量)を、ジクロロメタン中のSnX(X=Cl、Br、I)の撹拌懸濁液に添加する。さらに室温で6~12時間攪拌する。溶媒を減圧下で除去し、得られた液体材料を減圧下で蒸留することで1,1-ジハロゲノ-1-スタンナシクロペント-3-エンが得られる。反応および後処理は、不活性雰囲気下で行う。これに代えて、SnX(X=Cl、Br、I)の沸騰懸濁液にブタジエンを加えることによって、反応をテトラヒドロフラン(THF)中で行うことができる。
<Synthesis example 1>
[Synthesis of 1,1-dihalogeno-1-stannacyclopent-3-ene]
1,3-Butadiene (1.3 eq.) is added to a stirred suspension of SnX 2 (X=Cl, Br, I) in dichloromethane. Further stir at room temperature for 6 to 12 hours. The solvent is removed under reduced pressure and the resulting liquid material is distilled under reduced pressure to yield 1,1-dihalogeno-1-stannacyclopent-3-ene. The reaction and work-up are carried out under an inert atmosphere. Alternatively, the reaction can be carried out in tetrahydrofuran (THF) by adding butadiene to a boiling suspension of SnX 2 (X=Cl, Br, I).
<合成例2>
[1,1-ビス(ジメチルアミン)-1-スタンナシクロペント-3-エンの合成]
 1,3-ブタジエン(1.3当量)を、ジクロロメタン中のテトラキス(ジメチルアミド)二スズ(II)[Sn(NMeの撹拌懸濁液に添加する。さらに室温で6~12時間攪拌する。溶媒を減圧下で除去し、得られた液体材料を減圧下で蒸留することで1,1-ビス(ジメチルアミン)-1-スタンナシクロペント-3-エンが得られる。反応および後処理は、不活性雰囲気下で行う。これに代えて、[Sn(NMeの沸騰懸濁液にブタジエンを加えることによって、反応をTHFで行うこともできる。
<Synthesis example 2>
[Synthesis of 1,1-bis(dimethylamine)-1-stannacyclopent-3-ene]
1,3-Butadiene (1.3 eq.) is added to a stirred suspension of tetrakis(dimethylamido)distin(II) [Sn(NMe 2 ) 2 ] 2 in dichloromethane. Further stir at room temperature for 6 to 12 hours. The solvent is removed under reduced pressure and the resulting liquid material is distilled under reduced pressure to obtain 1,1-bis(dimethylamine)-1-stannacyclopent-3-ene. The reaction and work-up are carried out under an inert atmosphere. Alternatively, the reaction can also be carried out in THF by adding butadiene to a boiling suspension of [Sn(NMe 2 ) 2 ] 2 .
<合成例3>
[1,1-ビス(トリメチルシリル)-1-スタンナシクロペント-3-エンの合成]
 合成例1で得られる1,1-ジハロゲノ-1-スタンナシクロペント-3-エンの-20~0℃の無水トルエンまたはEtOの溶液に、グリニャール試薬(前記合成スキーム中のX=SiMe)のEtOまたはトルエンの溶液を滴下する。混合物を室温で24時間さらに撹拌する。反応物を飽和塩化アンモニウム水溶液で加水分解し、水性画分をジエチルエーテルで抽出する。合わせた有機画分を水および5%重炭酸ナトリウム水溶液で洗浄する。無水硫酸マグネシウムで乾燥した後、溶媒を減圧下で除去する。得られた油を真空下で蒸留することで1,1-ビス(トリメチルシリル)-1-スタンナシクロペント-3-エンが得られる。
 
 
 
<Synthesis example 3>
[Synthesis of 1,1-bis(trimethylsilyl)-1-stannacyclopent-3-ene]
A Grignard reagent (X 1 = A solution of SiMe 3 ) in Et 2 O or toluene is added dropwise. The mixture is further stirred at room temperature for 24 hours. The reaction is hydrolyzed with saturated aqueous ammonium chloride solution and the aqueous fraction is extracted with diethyl ether. Wash the combined organic fractions with water and 5% aqueous sodium bicarbonate solution. After drying over anhydrous magnesium sulfate, the solvent is removed under reduced pressure. The resulting oil is distilled under vacuum to obtain 1,1-bis(trimethylsilyl)-1-stannacyclopent-3-ene.


Claims (11)

  1.  下記式(1)で表される化学気相堆積用化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、
     MはGeまたはSnである。
     R、R、RおよびRは、それぞれ独立して、水素原子または炭素数1~10の1価の炭化水素基である。
     XおよびXは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~10の1価の炭化水素基、シアノ基、イソシアネート基、有機オキシ基、有機シリル基、有機スタンニル基、有機アミド基もしくは有機スルファニル基であるか、またはXおよびXは互いに合わせられそれらが結合するMとともに形成される環員数4~10の複素環構造を表す。)
    A chemical vapor deposition compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1),
    M is Ge or Sn.
    R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
    X 1 and X 2 are each independently a hydrogen atom, a halogen atom, a monovalent hydrocarbon group having 1 to 10 carbon atoms, a cyano group, an isocyanate group, an organic oxy group, an organic silyl group, an organic stannyl group, an organic An amide group or an organic sulfanyl group, or X 1 and X 2 represent a heterocyclic structure having 4 to 10 ring members formed together with M to which they are bonded. )
  2.  RおよびRは水素原子である、請求項1に記載の化学気相堆積用化合物。 The chemical vapor deposition compound according to claim 1, wherein R3 and R4 are hydrogen atoms.
  3.  RおよびRは、それぞれ独立して、水素原子または炭素数1~5の鎖状炭化水素基である、請求項1または2に記載の化学気相堆積用化合物。 The compound for chemical vapor deposition according to claim 1 or 2, wherein R 1 and R 2 are each independently a hydrogen atom or a chain hydrocarbon group having 1 to 5 carbon atoms.
  4.  XおよびXは、それぞれ独立して、水素原子、ハロゲン原子、有機シリル基または有機アミド基である、請求項1~3のいずれか1項に記載の化学気相堆積用化合物。 The compound for chemical vapor deposition according to any one of claims 1 to 3, wherein X 1 and X 2 are each independently a hydrogen atom, a halogen atom, an organic silyl group, or an organic amide group.
  5.  請求項1~4のいずれか1項に記載の化学気相堆積用化合物の化学気相堆積膜。 A chemical vapor deposition film of the chemical vapor deposition compound according to any one of claims 1 to 4.
  6.  請求項1~4のいずれか1項に記載の化学気相堆積用化合物の化学気相堆積ナノワイヤ。 Chemical vapor deposition nanowires of the chemical vapor deposition compound according to any one of claims 1 to 4.
  7.  基板を内部に配置した反応器に請求項1~4のいずれか1項に記載の化学気相堆積用化合物を導入する導入工程と、
     前記化学気相堆積用化合物の少なくとも一部を前記基板上に堆積させる堆積工程と
     を含む金属含有膜の形成方法。
    an introduction step of introducing the chemical vapor deposition compound according to any one of claims 1 to 4 into a reactor in which a substrate is disposed;
    and depositing at least a portion of the chemical vapor deposition compound on the substrate.
  8.  前記導入工程において、前記反応器に共反応物をさらに導入する、請求項7に記載の金属含有膜の形成方法。 The method for forming a metal-containing film according to claim 7, wherein in the introducing step, a co-reactant is further introduced into the reactor.
  9.  前記共反応物は、O、O、HO、H、NO、NO、NO、トリメチルホスフェート、それらの酸素ラジカル、およびそれらの混合物からなる群から選択される、請求項8に記載の金属含有膜の形成方法。 The coreactant is selected from the group consisting of O 2 , O 3 , H 2 O, H 2 O 2 , NO, N 2 O, NO 2 , trimethyl phosphate, oxygen radicals thereof, and mixtures thereof. The method for forming a metal-containing film according to claim 8.
  10.  前記堆積工程を原子層堆積法により行う、請求項7~9のいずれか1項に記載の金属含有膜の形成方法。 The method for forming a metal-containing film according to any one of claims 7 to 9, wherein the deposition step is performed by an atomic layer deposition method.
  11.  前記基板がSiO基板である、請求項7~10のいずれか1項に記載の金属含有膜の形成方法。
     
     
     
    The method for forming a metal-containing film according to any one of claims 7 to 10, wherein the substrate is a SiO 2 substrate.


PCT/JP2023/011156 2022-03-23 2023-03-22 Chemical-vapor-deposition compound and metal-containing film forming method WO2023182336A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-046378 2022-03-23
JP2022046378 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023182336A1 true WO2023182336A1 (en) 2023-09-28

Family

ID=88101142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011156 WO2023182336A1 (en) 2022-03-23 2023-03-22 Chemical-vapor-deposition compound and metal-containing film forming method

Country Status (2)

Country Link
TW (1) TW202402766A (en)
WO (1) WO2023182336A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009141A1 (en) * 2006-07-05 2008-01-10 International Business Machines Corporation Methods to form SiCOH or SiCNH dielectrics and structures including the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080009141A1 (en) * 2006-07-05 2008-01-10 International Business Machines Corporation Methods to form SiCOH or SiCNH dielectrics and structures including the same

Also Published As

Publication number Publication date
TW202402766A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
KR101656890B1 (en) Method for forming a titanium-containing layer on a substrate using an atomic layer deposition (ald) process
CN107636198B (en) Vapor deposition method for forming silicon and oxygen containing thin film
JP6242026B2 (en) Organosilane precursor for ALD / CVD silicon-containing films
KR100862263B1 (en) Ti, ta, hf, zr and related metal silicon amides for ald/cvd of metal-silicon nitrides, oxides or oxynitrides
JP2016525119A (en) Hexacoordinate silicon-containing precursors for ALD / CVD silicon-containing films
KR20150013082A (en) Volatile dihydropyrazinyl and dihydropyrazine metal complexes
KR101787204B1 (en) Organic metal precursor compound for atomic layer deposition and ald deposition using the same
WO2022246140A1 (en) Stable bis (alkyl-arene) transition metal complexes and methods of film deposition using the same
WO2022187616A1 (en) Reagents to remove oxygen from metal oxyhalide precursors in thin film deposition processes
WO2023182336A1 (en) Chemical-vapor-deposition compound and metal-containing film forming method
US20210032275A1 (en) Cyclic germanium silylamido precursors for ge-containing film depositions and methods of using the same
JP7232307B2 (en) Rare earth precursor, method for producing same, and method for forming thin film using same
KR102537665B1 (en) Method for forming a silicon-containing film and silicon-containing film formed thereby
JP7400120B2 (en) Silicon hydrazide precursor compounds
US20230088079A1 (en) Silicon precursors
WO2016094711A2 (en) Organosilane precursors for ald/cvd silicon-containing film applications and methods of using the same
JP2023545900A (en) Group 4 metal element-containing compound, precursor composition containing the same, and method for producing a thin film using the same
CN117940440A (en) Silicon precursor
KR20160062675A (en) Nickel Bis beta-ketoiminate precusor and the method for nickel containing film deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774931

Country of ref document: EP

Kind code of ref document: A1