WO2023182282A1 - Water splitting apparatus using photocatalyst, and water splitting system provided with same - Google Patents

Water splitting apparatus using photocatalyst, and water splitting system provided with same Download PDF

Info

Publication number
WO2023182282A1
WO2023182282A1 PCT/JP2023/010934 JP2023010934W WO2023182282A1 WO 2023182282 A1 WO2023182282 A1 WO 2023182282A1 JP 2023010934 W JP2023010934 W JP 2023010934W WO 2023182282 A1 WO2023182282 A1 WO 2023182282A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
hydrogen
oxygen
water splitting
water
Prior art date
Application number
PCT/JP2023/010934
Other languages
French (fr)
Japanese (ja)
Inventor
竜 阿部
肇 鈴木
輝 松岡
朝葉 城内
冬樹 八木
浩平 浦崎
宏 八木
Original Assignee
千代田化工建設株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社, 国立大学法人京都大学 filed Critical 千代田化工建設株式会社
Publication of WO2023182282A1 publication Critical patent/WO2023182282A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia

Definitions

  • the present invention relates to a water splitting device using a photocatalyst that utilizes light energy, and a water splitting system equipped with the same.
  • Patent Documents 1 to 6 technologies have been developed to decompose water (that is, to produce hydrogen) using photocatalysts and photoelectrodes that utilize solar energy. If hydrogen production using renewable energy such as solar energy is put into practical use, it will be possible to obtain energy from hydrogen when needed while suppressing the generation of carbon dioxide during hydrogen production.
  • the key to improving the conversion efficiency of solar energy is to expand the usage efficiency of the sunlight spectrum (i.e., lengthen the usable wavelength) and improve the usage efficiency of the light (photons) absorbed by the photocatalyst (i.e., (improvement of quantum yield).
  • a solar energy conversion efficiency of about 5-10% is required for its practical use.
  • the conversion efficiency of solar energy remains at about 2% at maximum.
  • the photocatalyst absorbs all of the photons and water is decomposed with a quantum yield of 100% (the proportion of photons that contributed to the reaction among the absorbed photons).
  • high conversion efficiency cannot be expected.
  • the wavelength range used by photocatalysts could be expanded to about 600 nm in the visible light range, the maximum conversion efficiency would increase to 16% due to a significant increase in the number of photons in the sunlight spectrum. In that case, even if the average quantum yield is 30%, a solar energy conversion efficiency of about 5% can be expected.
  • Z-scheme type two-step excitation type
  • water splitting is effective as a hydrogen production technology to expand the wavelength range used in photocatalysts. Ta.
  • two types of photocatalysts hydrogen generation photocatalyst and oxygen generation photocatalyst
  • an aspect of the present invention is a water decomposition device (3) using a photocatalyst that decomposes water into hydrogen and oxygen using light energy, the photocatalyst panel (7, 207, 307 ) and a reaction vessel (9, 209) that accommodates the photocatalyst panel and a reaction solution and performs a water decomposition reaction in the reaction solution, and the photocatalyst panel includes a light-transmitting substrate (11, 311). ), a first photocatalyst layer (13, 313) formed to overlap the first surface (11A) of the substrate, and a second surface (11B) that is paired with the first surface of the substrate.
  • the configuration is as follows.
  • the incident light that has passed through the first photocatalyst layer and the substrate can be used in the second photocatalyst layer, light different from the light incident on the first photocatalyst layer is transmitted to the second photocatalyst layer.
  • Z-scheme water splitting using a photocatalyst can be realized with a simple configuration.
  • the substrate can be either electrically conductive or non-conductive (non-conductive), but is more preferably non-conductive.
  • the light absorption spectrum of the second semiconductor is preferably located on the longer wavelength side compared to the light absorption spectrum of the first semiconductor.
  • the incident light (particularly light in the visible light region) that has passed through the first photocatalyst layer and the substrate can be used more effectively in the second photocatalyst layer.
  • the first semiconductor particles are one or more selected from metal oxides, metal oxynitrides, nitrides, metal oxysulfides, metal oxyhalides, and metal-organic structures.
  • the second semiconductor includes a combination of metal oxynitride, metal nitride, metal oxysulfide, metal sulfide, metal oxyhalide, metal halide, organometallic halide, metal oxide, metal phosphorus. It may contain one or a combination of two or more selected from compounds, silicon, organic semiconductors, metal-organic structures, and covalent organic structures.
  • the photocatalyst panel can be configured by the first and second semiconductors that can effectively utilize light energy.
  • the first photocatalyst layer and the substrate portion of the photocatalyst panel have a transmission of 40% or more of the light incident on the first photocatalyst layer in a visible light region of at least 500 nm or more. It is good to have a rate.
  • the reaction solution includes a redox medium
  • the redox medium is an ion pair that stably repeats redox in an aqueous solution, such as an iron ion pair, an ion pair containing iodine, and an ion containing vanadium. It may contain one type or a combination of two or more types selected from ion pairs, complex ion pairs, and polyoxometalate ion pairs.
  • photocatalytic Z-scheme water splitting can be effectively performed using an appropriate redox medium.
  • a communication portion (G) may be formed between the reaction container and the photocatalyst panel to allow the reaction solution in the oxygen generation tank and the hydrogen generation tank to flow.
  • light may be incident on the reaction vessel only from the light entrance wall.
  • the amount of light incident on the reaction vessel can be easily controlled, and as a result, the water splitting reaction (that is, the production of oxygen and hydrogen) can be easily controlled.
  • Another aspect of the present invention is a water splitting system including the water splitting device and a water storage tank (36, 236) that stores water supplied to the water splitting device.
  • Z-scheme type water splitting using a photocatalyst can be realized with a simple configuration.
  • a first circulation line (5, 105) that circulates a part of the reaction solution discharged together with oxygen from the oxygen generation tank to the hydrogen generation tank;
  • a second circulation line (6, 106) for circulating a part of the reaction solution to the oxygen generation tank may be provided.
  • the products (redox medium, etc.) generated in one of the oxygen generation tank and the hydrogen generation tank are sent to the other and used for the water splitting reaction, so that the Z-scheme type photocatalyst is used in the reaction vessel.
  • the water splitting reaction can be carried out continuously.
  • the first circulation line is connected to an oxygen separation line (5D) that transports the oxygen separated from the reaction solution
  • the second circulation line is connected to the oxygen separation line (5D) that transports the oxygen separated from the reaction solution
  • a hydrogen separation line (6D) for transporting the hydrogen may be connected.
  • each of oxygen and hydrogen produced in the reaction vessel can be easily obtained.
  • the water storage tank may be provided in at least one of the first circulation line and the second circulation line.
  • water can be supplied to the water splitting device with a simple configuration.
  • a gas-liquid separator (35) may be provided upstream of the water storage tank.
  • a part of the reaction solution discharged together with oxygen or hydrogen can be circulated to the water splitting apparatus with a simple configuration.
  • a configuration diagram showing a water splitting system according to the first embodiment An explanatory diagram of the water splitting reaction by the water splitting device in Figure 1 Diagram showing a modification of the water splitting device in Figure 1
  • a configuration diagram showing a water splitting system according to the second embodiment A configuration diagram showing a water splitting system according to the third embodiment Configuration diagram of the evaluation device (water splitting device) used in each example, each comparative example, and each reference example Graph showing the UV-visible diffuse reflectance spectra of various semiconductors
  • Graph showing the transmittance to the hydrogen generation catalyst layer side in the photocatalyst panel of Example 1 Graph showing the transmittance of the photocatalyst panel of Comparative Example 1
  • Graph showing the transmittance of the photocatalyst panel of Comparative Example 3 Graph showing the transmittance to the hydrogen generation catalyst layer side in the photocatalyst panel of Comparative Example 8 Graph showing temporal changes in water splitting reaction in Example 1
  • FIG. 1 is a configuration diagram showing a water splitting system 1 according to the first embodiment.
  • FIG. 2 is an explanatory diagram of a water splitting reaction by the water splitting apparatus 3 in FIG.
  • the water splitting system 1 includes a water splitting device 3 that splits water into hydrogen and oxygen using solar energy, and a first circulation line 5 and a second circulation line connected to the water splitting device 3, respectively. 2 circulation lines 6.
  • the water decomposition device 3 includes a photocatalyst panel 7 that uses a photocatalyst, and a reaction container 9 that accommodates the photocatalyst panel 7 and a reaction solution (aqueous solution) and performs a decomposition reaction of water in the reaction solution.
  • a photocatalyst panel 7 that uses a photocatalyst
  • a reaction container 9 that accommodates the photocatalyst panel 7 and a reaction solution (aqueous solution) and performs a decomposition reaction of water in the reaction solution.
  • the photocatalyst panel 7 includes a substrate 11 having optical transparency, a photocatalytic layer 13 for oxygen generation (first photocatalyst layer) formed so as to overlap the front surface 11A (first surface) of the substrate 11, and It includes a hydrogen generation photocatalyst layer 14 (second photocatalyst layer) formed so as to overlap the rear surface 11B (second surface) that is paired with the front surface 11A.
  • the substrate 11 has a rectangular flat plate shape and is made of a transparent material with high light transmittance.
  • the transparent material for example, glass, acrylic resin, polycarbonate, etc. can be used.
  • the substrate 11 is preferably insulating or non-conductive.
  • the volume resistivity (see JIS C 2139-3-1 Part 3-1) is 10 10 ⁇ m or more. Note that the shape and size of the substrate 11 can be changed as appropriate.
  • the oxygen generation photocatalyst layer 13 is formed so as to overlap the front surface 11A of the substrate 11. As will be described in detail later, the oxygen generation photocatalyst layer 13 includes an oxygen generation semiconductor (first semiconductor) that constitutes the oxygen generation photocatalyst.
  • first semiconductor oxygen generation semiconductor
  • the hydrogen generation photocatalyst layer 14 is formed so as to overlap the rear surface 11B of the substrate 11. As will be described in detail later, the hydrogen generation photocatalyst layer 14 includes a hydrogen generation semiconductor (second semiconductor) that constitutes the hydrogen generation photocatalyst.
  • a hydrogen generation semiconductor second semiconductor
  • oxygen-generating semiconductors and hydrogen-generating semiconductors are fixed on the substrate 11 as particles (groups) or thin films.
  • the shape of such particles is not particularly limited, and examples include spherical, ellipsoidal, plate-like, fibrous, scale-like, and porous shapes.
  • such thin films include, but are not particularly limited to, dense films of semiconductors, porous films formed by depositing semiconductor particles, porous films with regular structures, and the like.
  • the oxygen generating semiconductor absorbs visible light by having a band gap of 3.0 eV or less or an energy gap derived from an impurity level.
  • the upper end of the valence band of the oxygen generating semiconductor is on the positive side of the oxidation potential of water (O 2 /H 2 O: +1.23V).
  • the oxygen generating semiconductor is not particularly limited as long as it can decompose water and generate oxygen.
  • Examples of the semiconductor for oxygen generation include metal oxides, metal oxynitrides, metal nitrides, metal oxysulfides, metal oxyhalides, metal organic frameworks (MOF), and the like.
  • MOF metal organic frameworks
  • the water splitting device 3 one kind or a combination of two or more kinds selected from these materials can be used as the oxygen generating semiconductor.
  • metal oxide examples include WO 3 , BiVO 4 , H 2 WO 4 and the like.
  • metal oxynitride examples include TaON and BaTaO 2 N.
  • metal nitride examples include Ta 3 N 5 and the like.
  • metal oxysulfide examples include Sm 2 Ti 2 S 2 O 5 and the like.
  • Examples of the acid halides include Bi 4 NbO 8 Cl and Ba 2 Bi 3 Nb 2 O 11 Br 1- x I x (0 ⁇ x ⁇ 1).
  • Examples of the above-mentioned metal-organic framework include MOF containing iron (III) oxo cluster and terephthalic acid as constituent elements.
  • the oxygen generating semiconductor may be a material doped with impurities or may be a material not doped with impurities. By doping the oxygen-generating semiconductor with an impurity to form an impurity level, electrons can be excited from the impurity level to the conduction band or from the valence band to the impurity level.
  • a semiconductor for hydrogen generation absorbs visible light by having a band gap of 3.0 eV or less or an energy gap derived from an impurity level.
  • the lower end of the conduction band of the hydrogen generating semiconductor is on the negative side of the proton reduction potential (H + /H 2 : 0V).
  • the hydrogen generating semiconductor is not particularly limited as long as it can decompose water and generate hydrogen.
  • Semiconductors for hydrogen generation include metal oxynitrides, metal nitrides, metal oxysulfides, metal sulfides, metal oxyhalides, metal halides, organometallic halides, metal oxides, metal phosphides, silicon, and organic Examples include semiconductors, MOFs, and covalent organic frameworks (COFs).
  • the water splitting device 3 one kind or a combination of two or more kinds selected from these materials can be used as the hydrogen generating semiconductor.
  • metal oxynitride examples include TaON, BaTaO 2 N, CaTaO 2 N, and SrTaO 2 N.
  • metal nitride examples include Ta 3 N 5 and the like.
  • metal oxysulfide examples include Sm 2 Ti 2 S 2 O 5 and the like.
  • metal sulfides examples include CdS and Cu x Ag x In 2x Zn 2-2x S 2 (0 ⁇ x ⁇ 1).
  • Examples of the metal acid halides include Bi 4 NbO 8 Cl and Ba 2 Bi 3 Nb 2 O 11 Br 1-x I x (0 ⁇ x ⁇ 1).
  • Examples of the metal halide include Cs 2 AgBiBr 6 and the like.
  • Examples of the organometallic halide include CH 3 NH 3 PbI 3 and the like.
  • Examples of the metal oxide include Cu 2 O and SnNb 2 O 6 .
  • Examples of the metal phosphide include GaP.
  • organic semiconductor examples include carbon nitride (g-C 3 N 4 ) and dibenzothiophene polymer.
  • Examples of the metal-organic framework include aminobenzenedicarboxylic acid titanium MOF.
  • covalent organic structure examples include COF, which has 1,3,5-triformylphloroglucinol and 4,4''-diamino-p-terphenyl as constituent elements.
  • the hydrogen generating semiconductor may be a material doped with impurities or may be a material not doped with impurities.
  • a hydrogen generating semiconductor is doped with an impurity to form an impurity level, electrons can be excited from the impurity level to the conduction band or from the valence band to the impurity level.
  • the oxygen-generating photocatalyst may further include an oxygen-generating co-catalyst.
  • the oxygen generation co-catalyst is supported on the oxygen generation semiconductor and promotes a reaction that generates oxygen from water and holes generated in the oxygen generation semiconductor when the oxygen generation semiconductor is irradiated with visible light.
  • the oxygen generation activity of the oxygen generation photocatalyst is significantly improved.
  • oxygen generation promoter examples include metal oxides, metal hydroxides, metal phosphates, and the like.
  • the cocatalyst for oxygen generation may include at least one transition metal or noble metal. Transition metals include Mn, Fe, Ni, and Co. Examples of noble metals include Ru and Ir.
  • the photocatalyst for hydrogen generation may further contain a co-catalyst for hydrogen generation.
  • a hydrogen generation co-catalyst is supported on a hydrogen generation semiconductor, and is a reaction that generates hydrogen from excited electrons and protons (or water) generated in the hydrogen generation semiconductor when the hydrogen generation semiconductor is irradiated with visible light. promote.
  • the hydrogen generation co-catalyst is included in the hydrogen generation photocatalyst, the hydrogen generation activity of the hydrogen generation photocatalyst is significantly improved.
  • the hydrogen generation promoter examples include metals, metal oxides, and metal sulfides.
  • the hydrogen production promoter may contain at least one noble metal.
  • the hydrogen generation co-catalyst may contain Cr in addition to the noble metal.
  • Noble metals include Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au. Among them, Pt and/or Rh are preferred.
  • the hydrogen generation promoter may include at least one member selected from the group consisting of a core-shell type material having a noble metal core and a chromium oxide (CrO x ) shell, and a mixed oxide of a noble metal and Cr.
  • the mixed oxide of noble metal and Cr is, for example, an oxide containing rhodium (III) and chromium (III) (Rh x Cr 2-x O 3 ).
  • co-catalysts can be supported on semiconductor particles in the form of particles.
  • the particle size of the promoter is not particularly limited.
  • the average particle diameter of the cocatalyst particles is usually 0.1 nm or more and 100 nm or less.
  • the oxygen generating semiconductor uses sunlight incident on the water splitting device 3
  • the hydrogen generating semiconductor uses oxygen generating semiconductor (hydrogen generating photocatalyst) to generate oxygen.
  • the light that has passed through the photocatalyst layer 13 and the substrate 11 is used. Therefore, it is preferable that the oxygen generation semiconductor and the hydrogen generation semiconductor used in the water splitting device 3 have different absorption wavelength regions with respect to sunlight (particularly light in the visible light region).
  • the light absorption spectrum of the semiconductor for hydrogen generation is preferably located on the longer wavelength side compared to the light absorption spectrum of the semiconductor for oxygen generation used in combination.
  • the oxygen-generating semiconductor mainly absorbs light in a wavelength range with a shorter upper limit (e.g., 200-500 nm), and the hydrogen-generating semiconductor mainly absorbs light in a wavelength range with a longer upper limit (e.g., 200-650 nm). can be mainly absorbed.
  • Table 1 shows examples of suitable combinations of oxygen generating semiconductors and hydrogen generating semiconductors in the water splitting apparatus 3 according to the present embodiment.
  • oxygen generating semiconductors have a lower upper limit on the usable wavelength (i.e., they mainly absorb light in the shorter wavelength range) and semiconductors have a higher upper limit on the usable wavelength (i.e., they mainly absorb light in the shorter wavelength range).
  • a combination with a hydrogen generating semiconductor (which mainly absorbs light in a wavelength region with a longer upper limit) is suitable.
  • the usable wavelength of WO 3 as a semiconductor for oxygen generation is approximately 450 nm or less, and TaON, Ta 3 N 5 , Sm 2 Ti 2 S 2 O 5 ,
  • the available wavelengths of BaTaO 2 N and BaTaO 2 N are about 500 nm or less, about 600 nm or less, about 600 nm or less, and about 650 nm or less, respectively.
  • Such a combination of the oxygen generation semiconductor and the hydrogen generation semiconductor allows the energy of the incident light to be effectively used in both the oxygen generation photocatalyst layer 13 and the hydrogen generation photocatalyst layer 14.
  • the reaction container 9 has a box shape and holds a reaction solution containing water as a main component in its internal space.
  • the reaction solution includes a redox medium (combination of oxidant and reductant).
  • a Fe 3+ /Fe 2+ ion pair is used as the redox medium.
  • Fe 2+ may be present in both the reaction solutions of the oxygen generation tank 21 and the hydrogen generation tank 22 at the time of start-up (at the start of the water splitting reaction).
  • Fe 3+ may be present in both the reaction solutions of the oxygen generation tank 21 and the hydrogen generation tank 22 at startup.
  • Fe 2+ and Fe 3+ may be present in the reaction solutions of the oxygen generation tank 21 and the hydrogen generation tank 22, respectively, at startup.
  • Z scheme type two-step excitation type
  • Z-scheme water splitting two different types of photocatalysts (i.e., oxygen generation photocatalyst layer 13 and hydrogen generation photocatalyst layer 14) are used, and electron transfer between both photocatalysts is performed via a redox medium in the reaction solution. It will be done.
  • the redox reaction of the Fe 3+ /Fe 2+ ion pair is a one-electron process involving one electron. Therefore, when the Fe 3+ /Fe 2+ ion pair is used, electron transfer between the oxygen generation photocatalyst and the hydrogen generation photocatalyst proceeds smoothly. Furthermore, light absorption by Fe 3+ /Fe 2+ ion pairs is also small. Furthermore, since the redox potential of Fe 3+ /Fe 2+ ion pair is 0.77 V (vs. SHE), if Fe 3+ /Fe 2+ ion pair is used as a redox medium, many semiconductors for hydrogen generation and oxygen generation Transfer of electrons between the semiconductor and the redox medium can proceed smoothly.
  • iron ions, iodine-containing ions, vanadium-containing ions and complex ions, polyoxometalate ions, and the like may be used as redox media.
  • iron ions include the above-mentioned Fe 3+ /Fe 2+ ion pair.
  • iodine-containing ions include the IO 3 ⁇ /I ⁇ ion pair and the I 3 ⁇ /I ⁇ ion pair.
  • ions containing vanadium include VO 2 + /VO 2+ and the like.
  • Complex ions include [Fe(CN) 6 ] 3- / [Fe(CN) 6 ] 4- ion pair, [Co(bpy) 3 ] 3+ /[Co(bpy) 3 ] 2+ ion pair, and [Co Examples include (phen) 3 ] 3+ /[Co(phen) 3 ] 2+ ion pair.
  • polyoxometalate ions include the [SiW 11 O 39 Mn(H 2 O)] 5- /[SiW 11 O 39 Mn(H 2 O)] 6- ion pair. In the water splitting device 3, one or more ion pairs selected from these can be used as a redox medium.
  • the above-mentioned photocatalyst for oxygen production may further include a reduction co-catalyst for redox media.
  • the reduction co-catalyst for the redox medium is supported on the semiconductor for oxygen generation, and promotes the reduction reaction of the redox medium by excited electrons generated in the semiconductor for oxygen generation when the semiconductor for oxygen generation is irradiated with visible light.
  • the reduction promoter for redox media is included in the oxygen generation photocatalyst, recombination by excited electrons and holes generated in the oxygen generation semiconductor is suppressed, and the oxygen generation activity of the oxygen generation photocatalyst is significantly improved. .
  • reduction promoters for redox media include metals and metal oxides.
  • the reduction cocatalyst for the redox medium may include at least one transition metal or noble metal.
  • transition metals include Fe.
  • Noble metals include Ru, Ir, and Pt.
  • the above-mentioned photocatalyst for hydrogen production may further contain an oxidation promoter for redox media.
  • the oxidation promoter for a redox medium is supported on a semiconductor for hydrogen generation, and promotes the oxidation reaction of the redox medium by holes generated in the semiconductor for hydrogen generation when the semiconductor for hydrogen generation is irradiated with visible light.
  • the oxidation cocatalyst for redox media is included in the photocatalyst for hydrogen generation, recombination by holes generated in the semiconductor for hydrogen generation and excited electrons is suppressed, and the hydrogen generation activity of the photocatalyst for hydrogen generation is significantly improved. .
  • Examples of the oxidation promoter for redox media include oxides containing Ir or metal cyanometalates.
  • metal cyanometalates include indium (III) hexacyanoferrate.
  • the reaction container 9 has a front wall 9A (light incidence wall) arranged to face the oxygen-generating photocatalyst layer 13.
  • the front wall 9A is arranged diagonally upward so that its outer surface is generally orthogonal to the direction of incidence of sunlight.
  • the internal space of the reaction vessel 9 is partitioned by a photocatalyst panel 7 arranged substantially parallel to the front wall 9A. More specifically, the upper edge of the photocatalyst panel 7 is in close contact with the upper wall 9C of the reaction vessel 9, and the lower edge of the photocatalyst panel 7 is in close contact with the lower wall 9D of the reaction vessel 9.
  • the oxygen generation tank 21 is formed on the front side of the photocatalyst panel 7 (on the side of the oxygen generation photocatalyst layer 13).
  • the oxygen generation photocatalyst layer 13 forms a part of the inner surface of the oxygen generation tank 21 .
  • a hydrogen generation tank 22 is formed on the rear side of the photocatalyst panel 7 (on the side of the hydrogen generation photocatalyst layer 14).
  • the hydrogen generation photocatalyst layer 14 forms part of the inner surface of the hydrogen generation tank 22 .
  • the outer wall of the reaction vessel 9 is made of a transparent material with high light transmittance, similar to the substrate 11 described above. However, in the outer wall of the reaction container 9, it is sufficient that at least the light incidence part (here, the front wall 9A serving as the light incidence wall) through which sunlight enters is made of a transparent material. For example, only the light incident area is made of a transparent material (for example, the outer wall other than the light incident area has no transparency, or the transmittance of the area other than the light incident area is higher than the transmittance of the light incident area). In this configuration, the amount of light incident on the reaction vessel 9 (and thus the water splitting reaction) can be easily controlled.
  • the shape and size of the reaction container 9 can be changed as appropriate.
  • the oxygen generation photocatalyst layer 13 is arranged on the sunlight incident side (that is, facing the front wall 9A).
  • the photocatalyst layer 14 for hydrogen generation may be arranged on the light incident side.
  • the oxygen generation semiconductor in the oxygen generation photocatalyst layer 13 absorbs light, so that electrons (e - ) are generated in the conduction band and holes (e - ) are generated in the valence band. h + ) occurs.
  • O 2 is generated from H 2 O (or OH - ) by holes, and a reductant (Red) is generated from an oxidant (Ox) by electrons.
  • the hydrogen generation semiconductor (semiconductor photocatalyst) in the hydrogen generation photocatalyst layer 14 absorbs light, thereby generating electrons (e - ) and holes (h + ).
  • H 2 is generated from H + (or H 2 O) by electrons
  • oxidant (Ox) is generated from reductant (Red) by holes.
  • the first circulation line 5 is provided with a first gas-liquid separator 25, a first water storage tank 26, and a first circulation pump 27.
  • the first circulation line 5 includes an oxygen discharge line 5A made up of piping that connects an upper opening 29 located at the upper part of the oxygen generation tank 21 and the first gas-liquid separator 25. Oxygen discharged from the upper opening 29 is transported to the first gas-liquid separator 25 through the oxygen discharge line 5A.
  • the fluid transported by the oxygen discharge line 5A contains a portion of the reaction solution along with oxygen.
  • the reaction solution (containing Fe 2+ ) is separated from the oxygen flowing through the oxygen discharge line 5A.
  • the oxygen separated in the first gas-liquid separator 25 is supplied to an oxygen storage tank (not shown) through an oxygen separation line 5D connected to its upper part (for example, a portion corresponding to the gas phase in the drum body of the knockout drum). Ru.
  • the oxygen separated by the first gas-liquid separator 25 may be released to the atmosphere.
  • the first circulation line 5 is composed of piping that connects the bottom of the first gas-liquid separator 25 (for example, the portion corresponding to the liquid phase in the drum body of the knockout drum) and the first water storage tank 26. It includes a water discharge line 5B.
  • the reaction solution discharged from the first gas-liquid separator 25 is transported to the first water storage tank 26 through the water discharge line 5B.
  • the reaction solution discharged from the first gas-liquid separator 25 is stored.
  • the first water storage tank 26 can be replenished with water, a redox medium (or a redox source as its raw material), etc. from the outside as necessary.
  • the first circulation line 5 includes a first water supply line 5C that is constituted by piping that connects the first water storage tank 26 and the lower opening 31 located at the lower part of the hydrogen generation tank 22.
  • a first circulation pump 27 is provided in the first water supply line 5C. The reaction solution stored in the first water storage tank 26 is transported to the reaction container 9 through the first water supply line 5C by the first circulation pump 27.
  • the second circulation line 6 is provided with a second gas-liquid separator 35, a second water storage tank 36, and a second circulation pump 37.
  • the second circulation line 6 includes a hydrogen discharge line 6A formed of a pipe connecting between an upper opening 39 located at the upper part of the hydrogen generation tank 22 and the second gas-liquid separator 35. Hydrogen discharged from the upper opening 39 is transported to the second gas-liquid separator 35 through the hydrogen discharge line 6A.
  • the fluid transported by the hydrogen discharge line 6A contains hydrogen and a portion of the reaction solution.
  • the reaction solution (containing Fe 3+ ) is separated from the hydrogen flowing through the hydrogen discharge line 6A.
  • the hydrogen separated by the second gas-liquid separator 35 is supplied to a hydrogen storage tank (not shown) through a hydrogen separation line 6D connected to the upper part of the hydrogen separation line 6D.
  • the second circulation line 6 includes a second water discharge line 6B that is configured from a pipe that connects the lower part of the second gas-liquid separator 35 and the second water storage tank 36.
  • the reaction solution discharged from the second gas-liquid separator 35 is transported to the second water storage tank 36 through the second water discharge line 6B.
  • the reaction solution discharged from the second gas-liquid separator 35 is stored.
  • the second water storage tank 36 can be replenished with water, a redox medium (or a redox source as a raw material thereof), etc. from the outside as necessary.
  • the second circulation line 6 includes a second water supply line 6C that is constituted by piping that connects the second water storage tank 36 and the lower opening 41 located at the lower part of the oxygen generation tank 21.
  • a second circulation pump 37 is provided in the second water supply line 6C. The water stored in the second water storage tank 36 is transported to the reaction vessel 9 through the second water supply line 6C by the second circulation pump 37.
  • the upstream end of the first circulation line 5 is connected to the oxygen generation tank 21, and the downstream end of the first circulation line 5 is connected to the hydrogen generation tank 22.
  • the reductant (here, Fe 2+ ) generated in the oxygen generation tank 21 is supplied to the hydrogen generation tank 22 .
  • the upstream end of the second circulation line 6 is connected to the hydrogen generation tank 22, and the downstream end of the second circulation line 6 is connected to the oxygen generation tank 21.
  • the oxidant (here, Fe 3+ ) generated in the hydrogen generation tank 22 is supplied to the oxygen generation tank 21 . Therefore, in the water splitting system 1, even if the oxygen generation tank 21 and the hydrogen generation tank 22 are completely separated by the photocatalyst panel 7, it is possible to sequentially supply the redox medium required by one tank from the other tank. can.
  • the water splitting system 1 when sunlight is incident on the front wall 9A of the reaction container 9, the water in the container is decomposed into oxygen and hydrogen by the photocatalyst panel 7 that utilizes the light energy.
  • the sunlight that has entered the oxygen generation photocatalyst layer 13 through the front wall 9A further passes through the substrate 11 and reaches the hydrogen generation photocatalyst layer 14.
  • the photocatalyst layer for hydrogen generation 14 it is possible to generate hydrogen using the light not absorbed by the photocatalyst layer for oxygen generation 13. Therefore, in the reaction vessel 9, there is no need to input sunlight for water splitting from the side of the photocatalyst layer for hydrogen generation 14 (that is, from the rear wall 9B side of the reaction vessel 9), and a simple configuration is realized.
  • the water splitting system 1 can function as a hydrogen production system whose main purpose is to produce hydrogen.
  • Fe 2+ exists as a redox medium in the initial reaction vessel 9
  • Fe 3+ generated together with hydrogen in the hydrogen generation tank 22 is supplied to the oxygen generation tank 21 through the second circulation line 6.
  • oxygen generation tank 21 oxygen is generated, and Fe 2+ is generated again from Fe 3+ by the electrons of the oxygen generation photocatalyst layer 13.
  • FIG. 3 is a diagram showing a modification of the water splitting apparatus 3 shown in FIG. 1.
  • the same components as those in the water splitting apparatus 3 shown in FIG. 1 are designated by the same reference numerals. Further, regarding the modification, matters that are not particularly mentioned below are the same as those in the first embodiment, so detailed explanations will be omitted.
  • the reaction container 9 shown in FIG. 3 has a cylindrical shape with a bottom, and light enters from one side of the peripheral wall (here, the side of the oxygen-generating photocatalyst layer 13). In this way, by using the light condensing plate 45, it is possible to use sunlight more effectively without increasing the size of the water splitting device 3.
  • FIG. 4 is a configuration diagram showing a water splitting system 1 according to the second embodiment.
  • the same components as those of the water splitting apparatus 3 shown in FIG. 1 are designated by the same reference numerals.
  • matters not specifically mentioned below are the same as those in the first embodiment, so detailed explanations will be omitted.
  • the water splitting system 1 according to the second embodiment has the same reaction vessel 9 as the first embodiment.
  • the configurations of the first circulation line 105 and the second circulation line 106 are different from the first circulation line 5 and the second circulation line 6 in the first embodiment, respectively.
  • the first circulation line 105 includes an oxygen discharge line 5A and a water discharge line 5B.
  • the first water supply line 5C, the first water storage tank 26, and the first circulation pump 27 in the first embodiment (see FIG. 1) are omitted.
  • the first gas-liquid separator 25 is arranged at a higher position than the reaction vessel 9.
  • the downstream end of the oxygen discharge line 5A is connected to the first gas-liquid separator 25.
  • the upstream end of the water discharge line 5B is connected to the bottom of the first gas-liquid separator 25.
  • the downstream end of the water discharge line 5B is connected to the upper opening 39 of the hydrogen generation tank 22.
  • the fluid flowing through the oxygen discharge line 5A is pushed out from the oxygen generation tank 21 side by the second circulation pump 37 provided in the second circulation line 106 and sent to the first gas-liquid separator 25.
  • the reaction solution (containing Fe 2+ ) separated by the first gas-liquid separator 25 flows under its own weight from its upstream end to its downstream end.
  • the first circulation line 105 can supply the reaction solution (containing Fe 2+ ) separated by the first gas-liquid separator 25 to the hydrogen generation tank 22 without the need for a pump. can.
  • a degassing device for example, a degassing valve having a known configuration can be provided at least one of the upper part of the reaction vessel 9 and the oxygen exhaust line 5A.
  • the first gas-liquid separator 25 can be omitted.
  • the water discharge line 5B is omitted, and the downstream end of the oxygen discharge line 5A is connected to the upper opening 39 of the hydrogen generation tank 22.
  • the upstream portion of the hydrogen discharge line 6A is connected to the lower opening 31 located at the lower part of the hydrogen generation tank 22.
  • the upstream end (hydrogen discharge port) of the hydrogen discharge line 6A is preferably located at the upper part of the hydrogen generation tank 22 through the lower opening 31.
  • the upstream end of the first circulation line 105 is connected to the oxygen generation tank 21, and the downstream end of the first circulation line 105 is connected to the hydrogen generation tank 22.
  • the reductant (here, Fe 2+ ) generated in the oxygen generation tank 21 is supplied to the hydrogen generation tank 22 .
  • the upstream end of the second circulation line 106 is connected to the hydrogen generation tank 22, and the downstream end of the second circulation line 106 is connected to the oxygen generation tank 21.
  • the oxidant (here, Fe 3+ ) generated in the hydrogen generation tank 22 is supplied to the oxygen generation tank 21 . Therefore, in the water splitting system 1, even if the oxygen generation tank 21 and the hydrogen generation tank 22 are completely separated by the photocatalyst panel 7, it is possible to sequentially supply the redox medium required by one tank from the other tank. can.
  • FIG. 5 is a configuration diagram showing a water splitting system 1 according to the third embodiment.
  • the same reference numerals are given to the same components as those of the water splitting apparatus 3 shown in FIG.
  • matters not specifically mentioned below are the same as those in the first embodiment, so detailed explanations will be omitted.
  • the configurations of a photocatalyst panel 207 and a reaction container 209 are different from those of the photocatalyst panel 7 and reaction container 9 in the first embodiment (see FIG. 1). Furthermore, in the water splitting system 1 according to the third embodiment, a circulation line for circulating the reaction solution between the oxygen generation tank 21 and the hydrogen generation tank 22 is omitted.
  • the internal space of the reaction vessel 9 is partitioned by the photocatalyst panel 7, so that the oxygen generation tank 21 and the hydrogen generation tank 22 that do not communicate with each other can be formed. That is, inside the reaction vessel 9, movement of fluid between the oxygen generation tank 21 and the hydrogen generation tank 22 is not essential.
  • the internal space of the reaction container 209 is not completely partitioned by the photocatalyst panel 207, and the lower edge 207A of the photocatalyst panel 207 is spaced apart from the lower wall 209D of the reaction container 209.
  • the oxygen generation tank 21 and the hydrogen generation tank 22 are in a state of communication with each other via the space G (communication portion) between the photocatalyst panel 207 and the lower wall 209D.
  • the upper opening 29 of the oxygen generation tank 21 is connected to the upstream end of the oxygen separation line 205D. Oxygen discharged from the oxygen generation tank 21 through the oxygen separation line 205D is either supplied to an oxygen storage tank (not shown) or released to the atmosphere.
  • the upper opening 39 of the hydrogen generation tank 22 is connected to the upstream end of the hydrogen separation line 206D. Hydrogen discharged from the hydrogen generation tank 22 through the hydrogen separation line 206D is supplied to a hydrogen storage tank (not shown).
  • the water splitting device 3 is provided with a water storage tank 236 and a water supply line 206C whose upstream end is connected to the water storage tank 236.
  • a water supply pump 227 is provided in the water supply line 206C.
  • the reaction solution stored in the water storage tank 236 is transported to the reaction container 209 by the water supply pump 227 through the water supply line 206C.
  • the downstream end of the water supply line 206C is connected to a lower opening 231 provided in the lower wall 209D of the reaction vessel 209.
  • the lower opening 231 is arranged at a position facing the lower end of the photocatalyst panel 207 (that is, near the communication section).
  • the reaction solution (including the redox medium) in the reaction container 209 is can be moved between both tanks.
  • the reductant (here, Fe 2+ ) generated in the oxygen generation tank 21 moves to the hydrogen generation tank 22, and the oxidant (here, Fe 3+ ) generated in the hydrogen generation tank 22 moves to the oxygen generation tank 22.
  • the circulation line for circulating the reaction solution in the reaction container 209 as in the first and second embodiments can be omitted.
  • UV-visible spectroscopy measurement The light absorption properties of the samples were evaluated using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, V-650). Measurement was performed using an integrating sphere using a standard reflector (BaSO 4 ) as a reference, and the UV-visible diffuse reflectance spectrum of the sample powder was measured under the conditions of a scanning range of 200 to 800 nm, a scanning speed of 1000 nm/min, and a sampling interval of 0.5 nm. did.
  • ⁇ Shape observation> The particle shape of the powder sample was observed using a transmission electron microscope (manufactured by JEOL Ltd., JEM-2100F). The sample was immobilized on a mesh attached to a microgrid and observed.
  • FIG. 6 is a configuration diagram of the evaluation device 303 (water splitting device) used in each Example, each Comparative Example, and each Reference Example.
  • the evaluation device 303 includes a photocatalyst panel 307 that uses a photocatalyst, and a downward irradiation type reaction cell 51 (reaction container) that accommodates the photocatalyst panel 307 and a reaction solution and performs a water decomposition reaction.
  • the evaluation device 303 has the same configuration as the water splitting device 3 described above, except for matters specifically mentioned below.
  • the photocatalyst panel 307 includes a light-transmitting substrate 311, an oxygen-generating photocatalytic layer 313 formed so as to overlap a lower surface 311A (first surface) of the substrate 311, and an upper surface of the substrate 311 that is paired with the lower surface 311A.
  • a photocatalyst layer 314 for hydrogen generation formed so as to overlap 311B (second surface).
  • Photocatalyst panel 307 is supported by spacer 53. In the evaluation device 303, light from a xenon lamp was used instead of sunlight.
  • the evaluation device 303 was prepared as follows. After adding 40 mL of various reaction solutions to a downward irradiation type reaction cell 51 with a Pyrex (registered trademark) window (circular with a diameter of 7.0 cm), photocatalyst panels 307 of each example, each comparative example, and each reference example were added. was placed horizontally against a Pyrex window. Spacers 53 made of carbon tape were attached to all sides of the photocatalyst-uncoated portion of the photocatalyst panel 307 to separate the bottom surface of the photocatalyst panel 307 from the bottom surface of the cell 51. The reaction cell 51 containing the reaction solution and the photocatalyst panel 307 was attached to a closed circulation system evaluation device, and after evacuation was performed, Ar gas was introduced.
  • a Pyrex registered trademark
  • the water splitting reaction in the evaluation device 303 was carried out as follows. Visible light was directed vertically from the Pyrex window side of the reaction cell 51 (from the bottom to the top in Figure 6) using a 300W xenon lamp with a CM-1 cold mirror and a cutoff filter (L42, ⁇ >400nm). ) irradiated. The distance between the xenon lamp (light irradiation port) and the irradiation window was 10 mm or less.
  • the temperature of the reaction solution was controlled by a cooling water circulation device so that the temperature of the reaction solution was maintained at 288K.
  • the amount of generated gas was analyzed and measured using a gas chromatograph analyzer (manufactured by Shimadzu Corporation, GC-8A, Molecular sieve 5A column) using Ar gas as a carrier gas.
  • the oxygen-generating photocatalyst powder used for the oxygen-generating photocatalyst layer 313 was prepared as follows.
  • the photocatalyst powder for hydrogen generation used in the photocatalyst layer 314 for hydrogen generation was prepared as follows.
  • TaON modified with ZrO 2 was filled into an alumina boat and placed inside a quartz tube.
  • the quartz tube was connected to a tube furnace, and the ZrO 2 modified TaON was heated in a 12 mL/min ammonia flow.
  • the alumina boat was heated to 850°C at a rate of 10°C/min and held at that temperature for 15 hours. After holding for 15 hours, the product was naturally cooled to room temperature.
  • the alumina boat was taken out of the furnace and the ZrO 2 modified TaON powder was collected.
  • the average particle size of the particles of ZrO 2 modified TaON was in the range of 200-500 nm.
  • ZrO2 /TaON means TaON modified with ZrO2 .
  • ZrO 2 suppresses the generation of reduced species of Ta (Ta IV ) during the nitriding process of Ta 2 O 5 .
  • Ta IV serves as a recombination center for electrons and holes and reduces the activity of the photocatalyst.
  • the generation of Ta IV is suppressed, thereby obtaining TaON particles with higher photocatalytic activity.
  • InHCF was a nanoparticle having an average particle size of 80 nm or less.
  • ZrO 2 /TaON powder was dispersed in 150 mL of an aqueous methanol solution in which Na 3 RhCl 6 .nH 2 O and K 2 CrO 4 were dissolved to obtain a dispersion.
  • the methanol aqueous solution was prepared such that the concentration of methanol was 20 vol%, the amount of Rh was 1% by mass relative to TaON, and the amount of Cr was 1.5% by mass relative to TaON.
  • Rh x Cr 2-x O 3 /ZrO 2 /TaON was suspended in a small amount of water in which InHCF was dispersed to obtain a suspension.
  • the amount of InHCF was adjusted so that the amount of Fe in InHCF was 10 mol% relative to TaON.
  • the suspension was uniformly mixed by ultrasonication for 30 seconds. Thereafter, water was evaporated from the suspension to dry the sample.
  • the sample was fired at 100° C. for 1 hour in an Ar flow at a flow rate of 20 mL/min.
  • InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON which is a photocatalyst for hydrogen generation in Example 1 to be described later, was obtained.
  • the Ru promoter was sequentially supported on ZrO 2 /TaON by the following method.
  • a dispersion liquid was obtained by dispersing SrTiO 3 :Rh powder in 150 mL of an aqueous methanol solution in which RuCl 3 .nH 2 O was dissolved.
  • the methanol aqueous solution was prepared such that the methanol concentration was 20 vol % and the Ru amount was 0.7 mass % based on TaON.
  • dissolved oxygen in the dispersion was removed by Ar bubbling at a flow rate of 200 mL/min. Ar bubbling was continued at a flow rate of 50 mL/min during light irradiation.
  • the dispersion was irradiated with visible light ( ⁇ >400 nm) for 6 hours using a 300 W xenon lamp equipped with an L-42 cutoff filter and a CM-1 cold mirror. After light irradiation, the powder was collected by suction filtration, washed with ultrapure water, and vacuum dried at 35° C. overnight.
  • this sample will be referred to as "Ru/SrTiO 3 :Rh.”
  • FIG. 7 is a diagram showing the ultraviolet-visible diffuse reflection spectra of various synthesized semiconductors (ZrO 2 /TaON, SrTiO 3 :Rh, WO 3 ).
  • the vertical axis indicates the value of the diffuse reflectance obtained by Kubelka-Munk transformation.
  • the absorption edge wavelength is located on the longer wavelength side compared to other semiconductors.
  • BiVO 4 was applied as a photocatalyst for oxygen generation onto one side of a quartz glass substrate (3.8 cm x 5 cm x thickness 1.0 mm). The coating area was 11.4 cm 2 (3.8 cm x 3 cm).
  • the amount of BiVO 4 deposited can be controlled by repeating the cycle of spin coating the precursor solution and baking on a hot plate. In Example 1, this cycle was repeated four times to deposit 2.5 mg of BiVO 4 on the quartz glass substrate.
  • FIG. 8 shows the transmittance of the glass substrate on which BiVO 4 of Example 1 was deposited (that is, the transmittance toward the hydrogen generation catalyst layer side in the photocatalyst panel).
  • the transmittance of the substrate 311 on which the oxygen generation photocatalyst layer 313 is formed is in the wavelength region of 500 nm or more (at least 500 to 650 nm) of the light incident on the oxygen generation photocatalyst layer 313. , preferably at least 40% or more.
  • the optical energy in the visible light range that has passed through the oxygen generation photocatalyst layer 313 and the substrate 311 can be used more effectively in the hydrogen generation photocatalyst layer 314.
  • InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON was applied as a photocatalyst for hydrogen generation on the surface opposite to the surface coated with BiVO 4 , with a coating area of 11.4 cm 2 (3.8 cm x 3 cm), and the amount of deposition was 6.6 mg, according to the following procedure.
  • InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON was well dispersed in a small amount of ultrapure water. This dispersion liquid was dropped onto the surface opposite to the BiVO 4 -coated surface of the glass substrate coated with BiVO 4 and spread uniformly with a glass rod. After coating, it was dried at room temperature.
  • this photocatalyst panel will be referred to as "InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON
  • BiVO 4 photocatalyst panel of Example 1 was evaluated in an aqueous FeCl 2 solution.
  • the evaluation method was as described above.
  • the Fe 2+ cation concentration in the FeCl 2 aqueous solution was 2 mM, and the pH before reaction (before light irradiation) was 2.3.
  • Example 2 In Example 2, a photocatalyst panel was created using the same method as in Example 1. The water-splitting activity of the photocatalyst panel of Example 2 was evaluated by the same method as in Example 1, except that the pH before the reaction in the FeCl 2 aqueous solution was changed to 2.5.
  • Example 3 In Example 3, a photocatalyst panel was created by the same method as in Example 2. The water-splitting activity of the photocatalyst panel of Example 3 was evaluated by the same method as in Example 1, except that the FeCl 2 aqueous solution in the reaction solution was changed to an Fe(NO 3 ) 3 aqueous solution.
  • Example 4 BiVO 4 was applied as a photocatalyst for oxygen generation onto a quartz glass substrate by the same method as in Example 1.
  • the coating area was 11.4 cm 2 (3.8 cm x 3 cm).
  • the amount applied was 2.7 mg.
  • Ru/SrTiO 3 :Rh was applied as a photocatalyst for hydrogen generation to the surface opposite to the surface coated with BiVO 4 , with a coating area of 11.4 cm 2 (3.8 cm x 3 cm) and a deposited amount of 6.0 mg. It was applied according to the following procedure. Ru/SrTiO 3 :Rh was well dispersed in a small amount of ultrapure water using an agate mortar. This dispersion liquid was dropped onto the surface opposite to the BiVO 4 -coated surface of the glass substrate coated with BiVO 4 and spread uniformly with a glass rod. After coating, it was dried at room temperature.
  • this photocatalyst panel will be referred to as "SrTiO 3
  • Example 5 First, apply Fe-H-Cs-WO 3 as a photocatalyst for oxygen generation to a quartz glass substrate using the following procedure so that the coating area is 11.4 cm 2 (3.8 cm x 3 cm) and the deposit amount is 6.0 mg. It was coated with. Ru/SrTiO 3 :Rh was well dispersed in a small amount of ultrapure water using an agate mortar. This dispersion was dropped onto a quartz glass substrate and spread uniformly with a glass rod. After coating, it was dried at room temperature.
  • InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON was applied as a photocatalyst for hydrogen generation on the surface opposite to the surface coated with Fe-H-Cs-WO 3 using the same method as in Example 1. It was applied by. The coating area was 11.4 cm 2 (3.8 cm x 3 cm), and the amount deposited was 6.0 mg.
  • this photocatalyst panel will be referred to as "InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON
  • Fe-H-Cs-WO 3 which is the photocatalyst panel of Example 5, was evaluated in an aqueous FeCl 2 solution.
  • the Fe 2+ cation concentration in the FeCl 2 aqueous solution was 2 mM, and the pH before reaction (before light irradiation) was 2.5.
  • FIG. 9 shows the transmittance of the obtained free
  • FIG. 10 shows the transmittance of the obtained free
  • FIG. 11 shows the transmittance of the obtained free
  • InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON was coated on one side of a glass substrate as a photocatalyst for hydrogen generation using the same method as in Example 1. The amount applied was 6.5 mg. None was applied to the opposite side.
  • this photocatalyst panel will be referred to as "InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON
  • None photocatalyst panel of Comparative Example 4 was evaluated in an aqueous FeCl 2 solution.
  • the evaluation method was as described above.
  • the Fe 2+ cation concentration in the FeCl 2 aqueous solution was 2 mM, and the pH before reaction (before light irradiation) was 2.5.
  • FIG. 12 shows the transmittance of an alumina substrate and a glass substrate not coated with a photocatalyst. As shown in FIG. 12, the alumina substrate has lower light transmittance than the glass substrate.
  • InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON was applied as a photocatalyst for hydrogen generation on the opposite side to the side on which BiVO 4 was applied.
  • the coating area was 15 cm 2 (3 cm x 5 cm), and the amount deposited was 5.7 mg.
  • this photocatalyst panel will be referred to as "InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON
  • BiVO 4 photocatalyst panel of Comparative Example 8 was evaluated in an aqueous FeCl 2 solution.
  • the evaluation method was as described above.
  • the Fe 2+ cation concentration in the FeCl 2 aqueous solution was 2 mM, and the pH before reaction (before light irradiation) was 2.3.
  • a photocatalyst panel of Reference Example 1 was created by the same method as the photocatalyst panel of Example 2.
  • the water-splitting activity of the photocatalyst panel of Reference Example 1 was evaluated by the same method as in Example 2, except that the reaction solution of FeCl 2 aqueous solution was changed to FeSO 4 aqueous solution.
  • a photocatalyst panel of Reference Example 2 was created by the same method as the photocatalyst panel of Example 2.
  • the water-splitting activity of the photocatalyst panel of Reference Example 2 was evaluated in the same manner as in Example 2, except that the FeCl 2 aqueous solution in the reaction solution was changed to an Fe(ClO 4 ) 2 aqueous solution.
  • Table 2 shows a simplified description of the oxygen-generating photocatalyst and hydrogen-generating photocatalyst in each Example, each Comparative Example, and each Reference Example, and the details thereof are as described above.
  • Table 3 summarizes the results of the water splitting reaction (hydrogen and oxygen production rate) and the initial pH of the reaction solution in Examples 1-5, Comparative Examples 1-8, and Reference Examples 1 and 2 described above.
  • the gas production rates (hydrogen production rate, oxygen production rate) of Examples 1-5 show that the ratio of the hydrogen production rate to the oxygen production rate is approximately 2:1 (that is, the gas production rate corresponds to the complete decomposition of water). stoichiometric ratio).
  • the gas generation rate in Comparative Examples 1-8 and Reference Examples 1 and 2 is based on the amount of gas generated from the start of light irradiation to the time point when one hour has passed.
  • Example 1 Necessity of a photocatalyst for hydrogen production and a photocatalyst for oxygen production.
  • Example 1 photocatalyst panel containing a photocatalyst for hydrogen production and a photocatalyst for oxygen production. It was done.
  • FIG. 13 is a graph showing changes over time in the water splitting reaction in Example 1.
  • FIG. 13 shows changes over time in the hydrogen production rate, oxygen production rate, and their ratio (oxygen production rate/hydrogen production rate).
  • Example 1 the amount of hydrogen produced after 6.0 hr of light irradiation time exceeded the stoichiometric amount (40 ⁇ mol). Further, in Example 1, the ratio of the oxygen production rate to the hydrogen production rate finally approached 0.5 (stoichiometric ratio corresponding to complete decomposition of water). These results indicate that the hydrogen generation photocatalyst in the upper hydrogen generation photocatalyst layer 314 generates hydrogen while oxidizing Fe 2+ to generate Fe 3+ , and the oxygen generation photocatalyst in the lower oxygen generation photocatalyst layer 313 generates hydrogen. This shows that the photocatalyst generated oxygen while reducing Fe 3+ to generate Fe 2+ . That is, in Example 1, it was shown that photocatalytic water splitting progressed by the Z scheme mechanism.
  • Comparative Example 1-3 photocatalyst panel not containing a photocatalyst for hydrogen generation
  • Comparative Example 4-6 a photocatalyst panel not containing an oxygen-generating photocatalyst
  • no oxygen generation could be confirmed. This shows that both photocatalysts are necessary for Z-scheme water splitting.
  • FIG. 14 The components of the graph in FIG. 14 are the same as those in the graph in FIG. 13.
  • FIG. 15 is a graph showing changes over time in the water splitting reaction in Comparative Example 8 (photocatalyst panel using an alumina substrate). It was confirmed that the water-splitting activity when using the alumina substrate was very low compared to the water-splitting activity when using the glass substrate (Example 1). As shown in FIG. 12, the alumina substrate has lower light transmittance than the glass substrate (less than 40% in the visible light region).
  • the substrate material is required to have sufficient light transmittance so that the photocatalyst can be photoexcited and exhibit its photocatalytic activity.
  • FIG. 16 shows the change over time in the water splitting reaction of Example 4 (a photocatalyst panel containing Ru/SrTiO 3 :Rh as a photocatalyst for hydrogen production).
  • Example 4 the amount of hydrogen produced after 30 hours of light irradiation exceeded the stoichiometric amount (40 ⁇ mol).
  • Example 4 the ratio of the oxygen production rate to the hydrogen production rate finally approached 0.5.
  • FIG. 17 shows the change over time in the water splitting reaction of Example 5 (a photocatalyst panel containing Fe-H-Cs-WO 3 as a photocatalyst for oxygen generation).
  • Example 5 the amount of hydrogen produced after 6.5 hours of light irradiation exceeded the stoichiometric amount (40 ⁇ mol). Further, in Example 5, the ratio of the oxygen production rate to the hydrogen production rate finally approached 0.5.
  • FIG. 18 is a graph showing changes over time in the water splitting reaction of Example 3 (Fe(NO 3 ) 3 aqueous solution).
  • FIG. 19 is a graph showing changes over time in the water decomposition reaction of Reference Example 1 (FeSO 4 aqueous solution).
  • FIG. 20 is a graph showing changes over time in the water decomposition reaction of Reference Example 2 (Fe(ClO 4 ) 2 aqueous solution).
  • Water splitting system 3 Water splitting device 5: First circulation line 5A: Oxygen discharge line 5B: Water discharge line 5C: First water supply line 5D: Oxygen separation line 6: Second circulation line 6A: Hydrogen discharge line 6B : Second water discharge line 6C : Second water supply line 6D : Hydrogen separation line 7 : Photocatalyst panel 9 : Reaction vessel 9A : Front wall (light incidence wall) 9B: Rear wall 9C: Upper wall 9D: Lower wall 11: Substrate 11A: Front (first surface) 11B: Rear surface (second surface) 13: Oxygen generation photocatalyst layer (first photocatalyst layer) 14: Hydrogen generation photocatalyst layer (second photocatalyst layer) 21: Oxygen generation tank 22: Hydrogen generation tank 25: First gas-liquid separator 26: First water storage tank 27: First circulation pump 29: Upper opening 31: Lower opening 35: Second gas-liquid separator 36: Second Water storage tank 37: Second circulation pump 39: Upper opening

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

[Problem] To realize Z scheme-type water splitting by means of a photocatalyst with a simple configuration. [Solution] This water splitting apparatus 3 comprises a photocatalyst panel 7 and a reaction container 9 for performing a water splitting reaction, wherein: the photocatalyst panel 7 includes a light transmitting substrate 11, a first photocatalyst layer 13 formed to overlap a first surface 11A of the substrate 11, and a second photocatalyst layer 13 formed to overlap a second surface 11B of the substrate 11; one among the first photocatalyst layer 13 and the second photocatalyst layer 13 is a photocatalyst layer which is for oxygen generation and includes a first semiconductor, and the other is a photocatalyst layer which is for hydrogen generation and includes a second semiconductor; and the reaction container 9 has an internal space divided by the photocatalyst panel 7, an oxygen generation tank 21 formed on the side of the photocatalyst layer for oxygen generation, a hydrogen generation tank 22 formed on the side of the photocatalyst layer for hydrogen generation, and a light incidence wall 9A through which light incident toward the first photocatalyst layer 13 of the photocatalyst panel 7 is transmitted.

Description

光触媒を用いた水分解装置及びこれを備えた水分解システムWater splitting device using photocatalyst and water splitting system equipped with the same
 本発明は、光エネルギーを利用する光触媒を用いた水分解装置並びにこれを備えた水分解システムに関する。 The present invention relates to a water splitting device using a photocatalyst that utilizes light energy, and a water splitting system equipped with the same.
 近年、エネルギーを効率的に貯蔵及び運搬可能なエネルギー媒体として水素が注目されている。水素は、電気と比べて貯蔵性に優れ、また、化石燃料とは異なり燃焼時に二酸化炭素を発生しない。従来、水素を利用する燃料電池自動車や燃料電池コジェネレーションシステムなどが実用化されているが、水素社会の実現のためには更なる水素利用の拡大が望まれている。化石燃料に代わる水素の利用は、国連で採択された持続可能な開発目標に関する取り組みの1つである二酸化炭素の排出削減にも寄与する。 In recent years, hydrogen has attracted attention as an energy medium that can efficiently store and transport energy. Hydrogen has superior storability compared to electricity, and unlike fossil fuels, it does not produce carbon dioxide when burned. Up until now, fuel cell vehicles and fuel cell cogeneration systems that use hydrogen have been put into practical use, but further expansion of hydrogen use is desired in order to realize a hydrogen society. The use of hydrogen to replace fossil fuels also contributes to reducing carbon dioxide emissions, which is one of the initiatives related to the Sustainable Development Goals adopted by the United Nations.
 一方で、水素は、単体では自然界にほとんど存在しないため、他の化合物から取り出して使用する必要がある。従来、工業用の水素の多くは、化石燃料(例えば、メタン、プロパンなど)の水蒸気改質によって生産される。しかし、化石燃料から水素を製造する場合には、その製造過程において大量の二酸化炭素が排出される。 On the other hand, since hydrogen hardly exists alone in nature, it must be extracted from other compounds and used. Traditionally, much of industrial hydrogen is produced by steam reforming of fossil fuels (eg, methane, propane, etc.). However, when hydrogen is produced from fossil fuels, a large amount of carbon dioxide is emitted during the production process.
 これに対し、太陽光エネルギーを利用する光触媒や光電極によって水を分解する(すなわち、水素を製造する)技術が開発されている(特許文献1-6)。太陽光エネルギーのような再生エネルギーを利用した水素の製造が実用化されれば、水素製造時の二酸化炭素の発生を抑制しつつ、必要な時に水素からエネルギーを得ることが可能となる。 In response, technologies have been developed to decompose water (that is, to produce hydrogen) using photocatalysts and photoelectrodes that utilize solar energy (Patent Documents 1 to 6). If hydrogen production using renewable energy such as solar energy is put into practical use, it will be possible to obtain energy from hydrogen when needed while suppressing the generation of carbon dioxide during hydrogen production.
国際公開第2017/221866号International Publication No. 2017/221866 特開2017-124393号公報JP 2017-124393 Publication 国際公開第2012/008838号International Publication No. 2012/008838 特開2018-89589号公報JP 2018-89589 Publication 特開2006-89336号公報Japanese Patent Application Publication No. 2006-89336 特開2007-117811号公報Japanese Patent Application Publication No. 2007-117811
 しかしながら、従来の光触媒を利用した水素製造では、太陽光エネルギーの変換効率(すなわち、水素エネルギーへの変換効率)が低い(例えば、1%以下)という問題がある。したがって、従来の技術は、少なくとも太陽光エネルギーの変換効率、延いては水素の製造コストの観点から実用に耐えるレベルにない。例えば、日本の経済産業省による水素戦略基本シナリオでは、水素製造コストは、現状で1Nmあたり100円程度であり、2030年頃には1Nmあたり30円程度まで大幅に低減する必要があるとされている。また、米国エネルギー省においても同等の目標が掲げられている。したがって、水素社会の実現には、太陽光エネルギーの変換効率を向上させるための更なる技術革新が必要である。 However, hydrogen production using conventional photocatalysts has a problem in that the conversion efficiency of solar energy (that is, the conversion efficiency into hydrogen energy) is low (for example, 1% or less). Therefore, the conventional technology is not at a level that can withstand practical use, at least from the viewpoint of solar energy conversion efficiency and hydrogen production cost. For example, in the hydrogen strategy basic scenario by Japan's Ministry of Economy, Trade and Industry, the cost of hydrogen production is currently around 100 yen per 1Nm3 , and it is said that it will need to be significantly reduced to around 30 yen per 1Nm3 by around 2030. ing. Similar goals have also been set by the US Department of Energy. Therefore, realizing a hydrogen society requires further technological innovation to improve the conversion efficiency of solar energy.
 太陽光エネルギーの変換効率向上のための鍵は、太陽光スペクトルの利用効率拡大(すなわち、利用可能な波長の長波長化)と、光触媒に吸収された光(光子)の利用効率向上(すなわち、量子収率の向上)にある。光触媒を利用した水素製造については、その実用化に向けて5-10%程度の太陽光エネルギーの変換効率が必要とされている。 The key to improving the conversion efficiency of solar energy is to expand the usage efficiency of the sunlight spectrum (i.e., lengthen the usable wavelength) and improve the usage efficiency of the light (photons) absorbed by the photocatalyst (i.e., (improvement of quantum yield). For hydrogen production using photocatalysts, a solar energy conversion efficiency of about 5-10% is required for its practical use.
 光触媒が紫外光領域(例えば、200nm~400nm)の光を主として利用する場合、太陽光エネルギーの変換効率は最大でも2%程度にとどまる。つまり、紫外光領域の光の利用によっては、光触媒がその全光子を吸収し、かつ100%の量子収率(吸収された光子のうち反応に寄与した光子の割合)で水が分解されても、大きな変換効率は期待できない。これに対し、光触媒で利用する波長域を可視光領域の600nm程度まで拡大できれば、太陽光スペクトル中の光子数の大幅な増加により、最大変換効率は16%まで向上する。その場合、仮に量子収率の平均を30%としても5%程度の太陽光エネルギーの変換効率を期待できる。 When a photocatalyst mainly uses light in the ultraviolet region (for example, 200 nm to 400 nm), the conversion efficiency of solar energy remains at about 2% at maximum. In other words, depending on the use of light in the ultraviolet region, even if the photocatalyst absorbs all of the photons and water is decomposed with a quantum yield of 100% (the proportion of photons that contributed to the reaction among the absorbed photons). , high conversion efficiency cannot be expected. On the other hand, if the wavelength range used by photocatalysts could be expanded to about 600 nm in the visible light range, the maximum conversion efficiency would increase to 16% due to a significant increase in the number of photons in the sunlight spectrum. In that case, even if the average quantum yield is 30%, a solar energy conversion efficiency of about 5% can be expected.
 そこで、本発明者らが鋭意研究を重ねた結果、光触媒で利用する波長域の拡大を図るための水素製造技術としては、Zスキーム型(二段階励起型)水分解が有効であることを見出した。Zスキーム型水分解では、2種類の光触媒(水素生成用光触媒、酸素生成用光触媒)がそれぞれ水素生成および酸素生成に用いられ、発生した水素および酸素を個別に回収することも容易である。一方で、水素製造コストを抑制するためには、Zスキーム型水分解をより簡易な構成によって実現することが望まれる。 As a result of intensive research, the present inventors discovered that Z-scheme type (two-step excitation type) water splitting is effective as a hydrogen production technology to expand the wavelength range used in photocatalysts. Ta. In Z-scheme water splitting, two types of photocatalysts (hydrogen generation photocatalyst and oxygen generation photocatalyst) are used for hydrogen generation and oxygen generation, respectively, and it is also easy to separately recover the generated hydrogen and oxygen. On the other hand, in order to suppress hydrogen production costs, it is desirable to implement Z-scheme water splitting with a simpler configuration.
 本発明は、以上の背景に鑑み、光触媒によるZスキーム型水分解を簡易な構成により実現する光触媒を用いた水分解装置及びこれを備えた水分解システムを提供することを課題とする。 In view of the above background, it is an object of the present invention to provide a water splitting device using a photocatalyst that realizes Z-scheme type water splitting using a photocatalyst with a simple configuration, and a water splitting system equipped with the same.
 上記課題を解決するために本発明のある態様は、光エネルギーを利用して水を水素および酸素に分解する光触媒を用いた水分解装置(3)であって、光触媒パネル(7、207、307)と、前記光触媒パネル及び反応溶液を収容し、前記反応溶液における水の分解反応を行う反応容器(9、209)と、を備え、前記光触媒パネルは、光透過性を有する基板(11、311)と、前記基板の第1の面(11A)に重なるように形成された第1の光触媒層(13、313)と、前記基板の前記第1の面と対をなす第2の面(11B)に重なるように形成された第2の光触媒層(14、314)と、を含み、前記第1の光触媒層および前記第2の光触媒層の一方は第1の半導体を含む酸素生成用光触媒層であり、他方は第2の半導体を含む水素生成用光触媒層であり、前記反応容器は、前記光触媒パネルによって内部スペースを仕切られ、前記酸素生成用光触媒層側に形成された酸素生成槽(21)と、前記水素生成用光触媒層側に形成された水素生成槽(22)と、前記光触媒パネルにおける前記第1の光触媒層に向けて入射する光を透過させる光入射壁(9A)と、を有する構成とする。 In order to solve the above problems, an aspect of the present invention is a water decomposition device (3) using a photocatalyst that decomposes water into hydrogen and oxygen using light energy, the photocatalyst panel (7, 207, 307 ) and a reaction vessel (9, 209) that accommodates the photocatalyst panel and a reaction solution and performs a water decomposition reaction in the reaction solution, and the photocatalyst panel includes a light-transmitting substrate (11, 311). ), a first photocatalyst layer (13, 313) formed to overlap the first surface (11A) of the substrate, and a second surface (11B) that is paired with the first surface of the substrate. ), one of the first photocatalyst layer and the second photocatalyst layer containing a first semiconductor. and the other is a hydrogen generation photocatalyst layer containing a second semiconductor, and the reaction vessel has an internal space partitioned by the photocatalyst panel, and an oxygen generation tank (21) formed on the side of the oxygen generation photocatalyst layer. ), a hydrogen generation tank (22) formed on the side of the hydrogen generation photocatalyst layer, and a light incidence wall (9A) that transmits light incident on the first photocatalyst layer in the photocatalyst panel. The configuration is as follows.
 この態様によれば、第1の光触媒層および基板を透過した入射光を、第2の光触媒層で利用できるため、第1の光触媒層への入射光とは別の光を第2の光触媒層に入射させる必要はなく、光触媒によるZスキーム型水分解を簡易な構成により実現することができる。 According to this aspect, since the incident light that has passed through the first photocatalyst layer and the substrate can be used in the second photocatalyst layer, light different from the light incident on the first photocatalyst layer is transmitted to the second photocatalyst layer. Z-scheme water splitting using a photocatalyst can be realized with a simple configuration.
 上記の態様において、前記基板は、導電性を有するもの、非導電性を有するもの(導電性を有さないもの)のいずれも使用可能であるが、非導電性を有するものがより好ましい。 In the above embodiment, the substrate can be either electrically conductive or non-conductive (non-conductive), but is more preferably non-conductive.
 この態様によれば、一般的に高価な導電性を有する基板を用いる場合に比べて、大幅なコスト削減が可能になるとともに、導電性を有する基板よりも可視光の透過率が高いことから裏面に配置された第2の光触媒層での光の利用効率が向上する。 According to this aspect, it is possible to significantly reduce costs compared to using a generally expensive conductive substrate, and since the transmittance of visible light is higher than that of a conductive substrate, the back side The light utilization efficiency in the second photocatalyst layer arranged in the second photocatalyst layer is improved.
 上記の態様において、前記第2の半導体の光吸収スペクトルは、前記第1の半導体の光吸収スペクトルと比べてより長い波長側に位置するとよい。 In the above aspect, the light absorption spectrum of the second semiconductor is preferably located on the longer wavelength side compared to the light absorption spectrum of the first semiconductor.
 この態様によれば、第1の光触媒層および基板を透過した入射光(特に、可視光領域の光)を、第2の光触媒層においてより効果的に利用することが可能となる。 According to this aspect, the incident light (particularly light in the visible light region) that has passed through the first photocatalyst layer and the substrate can be used more effectively in the second photocatalyst layer.
 上記の態様において、前記第1の半導体粒子は、金属酸化物、金属酸窒化物、窒化物、金属酸硫化物、金属酸ハロゲン化物、金属有機構造体の中から選ばれる1種又は2種以上の組み合わせを含み、前記第2の半導体は、金属酸窒化物、金属窒化物、金属酸硫化物、金属硫化物、金属酸ハロゲン化物、金属ハロゲン化物、有機金属ハロゲン化物、金属酸化物、金属リン化物、シリコン、有機半導体、金属有機構造体、及び共有結合性有機構造体の中から選ばれる1種又は2種以上の組み合わせを含んでもよい。 In the above aspect, the first semiconductor particles are one or more selected from metal oxides, metal oxynitrides, nitrides, metal oxysulfides, metal oxyhalides, and metal-organic structures. The second semiconductor includes a combination of metal oxynitride, metal nitride, metal oxysulfide, metal sulfide, metal oxyhalide, metal halide, organometallic halide, metal oxide, metal phosphorus. It may contain one or a combination of two or more selected from compounds, silicon, organic semiconductors, metal-organic structures, and covalent organic structures.
 この態様によれば、光エネルギーを効果的に利用可能な第1及び第2の半導体によって光触媒パネルを構成することができる。 According to this aspect, the photocatalyst panel can be configured by the first and second semiconductors that can effectively utilize light energy.
 上記の態様において、前記光触媒パネルにおける前記第1の光触媒層および前記基板の部分は、前記第1の光触媒層に入射する光のうち少なくとも500nm以上の範囲の可視光領域に関し、40%以上の透過率を有するとよい。 In the above aspect, the first photocatalyst layer and the substrate portion of the photocatalyst panel have a transmission of 40% or more of the light incident on the first photocatalyst layer in a visible light region of at least 500 nm or more. It is good to have a rate.
 この態様によれば、第1の光触媒層および基板を透過した可視光領域の光エネルギーを、第2の光触媒層においてより効果的に利用することが可能となる。 According to this aspect, it becomes possible to more effectively utilize the optical energy in the visible light range that has passed through the first photocatalyst layer and the substrate in the second photocatalyst layer.
 上記の態様において、前記反応溶液には、レドックス媒体が含まれ、前記レドックス媒体は、水溶液中で安定に酸化還元を繰り返すイオン対であり、鉄イオン対、ヨウ素を含むイオン対、バナジウムを含むイオン対、錯イオン対、ポリオキソメタレートイオン対の中から選ばれる1種又は2種以上の組み合わせを含んでもよい。 In the above aspect, the reaction solution includes a redox medium, and the redox medium is an ion pair that stably repeats redox in an aqueous solution, such as an iron ion pair, an ion pair containing iodine, and an ion containing vanadium. It may contain one type or a combination of two or more types selected from ion pairs, complex ion pairs, and polyoxometalate ion pairs.
 この態様によれば、光触媒によるZスキーム型水分解を、適切なレドックス媒体を用いて効果的に行うことができる。 According to this aspect, photocatalytic Z-scheme water splitting can be effectively performed using an appropriate redox medium.
 上記の態様において、前記反応容器と前記光触媒パネルとの間には、前記酸素生成槽および前記水素生成槽の前記反応溶液の流通を可能にする連通部(G)が形成されてもよい。 In the above embodiment, a communication portion (G) may be formed between the reaction container and the photocatalyst panel to allow the reaction solution in the oxygen generation tank and the hydrogen generation tank to flow.
 この態様によれば、酸素生成槽および水素生成槽の反応溶液を循環させる構成を、反応容器の外部に設ける必要はなくなり、光触媒によるZスキーム型水分解をより簡易な構成により実現することができる。 According to this aspect, there is no need to provide a structure for circulating the reaction solution in the oxygen generating tank and the hydrogen generating tank outside the reaction container, and Z-scheme type water splitting using a photocatalyst can be realized with a simpler structure. .
 上記の態様において、前記反応容器には、前記光入射壁のみから光が入射されてもよい。 In the above embodiment, light may be incident on the reaction vessel only from the light entrance wall.
 この態様によれば、反応容器への入射光量の制御が容易となり、その結果、水分解反応(すなわち、酸素および水素の生成)を容易に制御することができる。 According to this aspect, the amount of light incident on the reaction vessel can be easily controlled, and as a result, the water splitting reaction (that is, the production of oxygen and hydrogen) can be easily controlled.
 また、本発明のある態様は、前記水分解装置と、前記水分解装置に供給される水を貯留する貯水タンク(36、236)と、を備えた水分解システムである。 Another aspect of the present invention is a water splitting system including the water splitting device and a water storage tank (36, 236) that stores water supplied to the water splitting device.
 この態様によれば、光触媒によるZスキーム型水分解を簡易な構成により実現することができる。 According to this aspect, Z-scheme type water splitting using a photocatalyst can be realized with a simple configuration.
 上記の態様において、前記酸素生成槽から酸素と共に排出される前記反応溶液の一部を、前記水素生成槽に循環させる第1循環ライン(5、105)と、前記水素生成槽から水素と共に排出される前記反応溶液の一部を、前記酸素生成槽に循環させる第2循環ライン(6、106)と、を備えてもよい。 In the above aspect, a first circulation line (5, 105) that circulates a part of the reaction solution discharged together with oxygen from the oxygen generation tank to the hydrogen generation tank; A second circulation line (6, 106) for circulating a part of the reaction solution to the oxygen generation tank may be provided.
 この態様によれば、酸素生成槽および水素生成槽の一方で生成された生成物(レドックス媒体等)が、他方に送られて水分解反応に利用されるため、反応容器において光触媒によるZスキーム型水分解の反応を連続的に行うことができる。 According to this aspect, the products (redox medium, etc.) generated in one of the oxygen generation tank and the hydrogen generation tank are sent to the other and used for the water splitting reaction, so that the Z-scheme type photocatalyst is used in the reaction vessel. The water splitting reaction can be carried out continuously.
 上記の態様において、前記第1循環ラインには、前記反応溶液から分離された前記酸素を輸送する酸素分離ライン(5D)が接続され、前記第2循環ラインには、前記反応溶液から分離された前記水素を輸送する水素分離ライン(6D)が接続されてもよい。 In the above aspect, the first circulation line is connected to an oxygen separation line (5D) that transports the oxygen separated from the reaction solution, and the second circulation line is connected to the oxygen separation line (5D) that transports the oxygen separated from the reaction solution. A hydrogen separation line (6D) for transporting the hydrogen may be connected.
 この態様によれば、反応容器で生成された酸素および水素を、それぞれ容易に取得することができる。 According to this aspect, each of oxygen and hydrogen produced in the reaction vessel can be easily obtained.
 上記の態様において、前記貯水タンクは、前記第1循環ライン及び前記第2循環ラインの少なくとも一方に設けられてもよい。 In the above aspect, the water storage tank may be provided in at least one of the first circulation line and the second circulation line.
 この態様によれば、簡易な構成によって水分解装置に水を供給することができる。 According to this aspect, water can be supplied to the water splitting device with a simple configuration.
 上記の態様において、前記貯水タンクの上流側に気液分離器(35)が設けられてもよい。 In the above embodiment, a gas-liquid separator (35) may be provided upstream of the water storage tank.
 この態様によれば、酸素または水素と共に排出される反応溶液の一部を、簡易な構成によって水分解装置に循環させることができる。 According to this aspect, a part of the reaction solution discharged together with oxygen or hydrogen can be circulated to the water splitting apparatus with a simple configuration.
 以上の態様によれば、光触媒によるZスキーム型水分解を簡易な構成により実現することが可能となる。 According to the above embodiments, it becomes possible to realize Z-scheme type water splitting using a photocatalyst with a simple configuration.
第1実施形態に係る水分解システムを示す構成図A configuration diagram showing a water splitting system according to the first embodiment 図1中の水分解装置による水分解反応の説明図An explanatory diagram of the water splitting reaction by the water splitting device in Figure 1 図1中の水分解装置の変形例を示す図Diagram showing a modification of the water splitting device in Figure 1 第2実施形態に係る水分解システムを示す構成図A configuration diagram showing a water splitting system according to the second embodiment 第3実施形態に係る水分解システムを示す構成図A configuration diagram showing a water splitting system according to the third embodiment 各実施例、各比較例、及び各参考例に用いた評価用装置(水分解装置)の構成図Configuration diagram of the evaluation device (water splitting device) used in each example, each comparative example, and each reference example 各種半導体の紫外可視拡散反射スペクトルを示すグラフGraph showing the UV-visible diffuse reflectance spectra of various semiconductors 実施例1の光触媒パネルにおける水素生成触媒層側への透過率を示すグラフGraph showing the transmittance to the hydrogen generation catalyst layer side in the photocatalyst panel of Example 1 比較例1の光触媒パネルの透過率を示すグラフGraph showing the transmittance of the photocatalyst panel of Comparative Example 1 比較例2の光触媒パネルの透過率を示すグラフGraph showing the transmittance of the photocatalyst panel of Comparative Example 2 比較例3の光触媒パネルの透過率を示すグラフGraph showing the transmittance of the photocatalyst panel of Comparative Example 3 比較例8の光触媒パネルにおける水素生成触媒層側への透過率を示すグラフGraph showing the transmittance to the hydrogen generation catalyst layer side in the photocatalyst panel of Comparative Example 8 実施例1における水分解反応の経時変化を示すグラフGraph showing temporal changes in water splitting reaction in Example 1 比較例7における水分解反応の経時変化を示すグラフGraph showing changes over time in water splitting reaction in Comparative Example 7 比較例8における水分解反応の経時変化を示すグラフGraph showing changes over time in water splitting reaction in Comparative Example 8 実施例4における水分解反応の経時変化を示すグラフGraph showing time-dependent changes in water splitting reaction in Example 4 実施例5における水分解反応の経時変化を示すグラフGraph showing changes over time in water splitting reaction in Example 5 実施例3における水分解反応の経時変化を示すグラフGraph showing changes over time in water splitting reaction in Example 3 参考例1における水分解反応の経時変化を示すグラフGraph showing time-dependent changes in water splitting reaction in Reference Example 1 参考例2における水分解反応の経時変化を示すグラフGraph showing changes over time in water splitting reaction in Reference Example 2
 以下、図面を参照して、実施形態に係る光触媒を用いた水分解装置及びこれを備えた水分解システムについて説明する。 Hereinafter, a water splitting device using a photocatalyst according to an embodiment and a water splitting system equipped with the same will be described with reference to the drawings.
(第1実施形態)
 図1は、第1実施形態に係る水分解システム1を示す構成図である。図2は、図1中の水分解装置3による水分解反応の説明図である。
(First embodiment)
FIG. 1 is a configuration diagram showing a water splitting system 1 according to the first embodiment. FIG. 2 is an explanatory diagram of a water splitting reaction by the water splitting apparatus 3 in FIG.
 図1に示すように、水分解システム1は、太陽光エネルギーを利用して水を水素および酸素に分解する水分解装置3と、水分解装置3にそれぞれ接続された第1循環ライン5および第2循環ライン6と、を備える。 As shown in FIG. 1, the water splitting system 1 includes a water splitting device 3 that splits water into hydrogen and oxygen using solar energy, and a first circulation line 5 and a second circulation line connected to the water splitting device 3, respectively. 2 circulation lines 6.
 水分解装置3は、光触媒を利用した光触媒パネル7と、光触媒パネル7及び反応溶液(水溶液)を収容し、反応溶液中の水の分解反応を行う反応容器9と、を含む。 The water decomposition device 3 includes a photocatalyst panel 7 that uses a photocatalyst, and a reaction container 9 that accommodates the photocatalyst panel 7 and a reaction solution (aqueous solution) and performs a decomposition reaction of water in the reaction solution.
 光触媒パネル7は、光透過性を有する基板11と、基板11の前面11A(第1の面)に重なるように形成された酸素生成用光触媒層13(第1の光触媒層)と、基板11において前面11Aと対をなす後面11B(第2の面)に重なるように形成された水素生成用光触媒層14(第2の光触媒層)と、を含む。 The photocatalyst panel 7 includes a substrate 11 having optical transparency, a photocatalytic layer 13 for oxygen generation (first photocatalyst layer) formed so as to overlap the front surface 11A (first surface) of the substrate 11, and It includes a hydrogen generation photocatalyst layer 14 (second photocatalyst layer) formed so as to overlap the rear surface 11B (second surface) that is paired with the front surface 11A.
 基板11は、矩形の平板状をなし、光透過性の高い透明材料から構成される。透明材料としては、例えば、ガラス、アクリル樹脂、及びポリカーボネートなどを用いることができる。また、基板11は、絶縁性または非導電性を有するとよい。基板11の絶縁性または非導電性については、体積抵抗率(JIS C 2139-3-1 第3-1部を参照)が1010Ω・m以上であることが好ましい。なお、基板11の形状やサイズは、適宜変更することが可能である。 The substrate 11 has a rectangular flat plate shape and is made of a transparent material with high light transmittance. As the transparent material, for example, glass, acrylic resin, polycarbonate, etc. can be used. Further, the substrate 11 is preferably insulating or non-conductive. Regarding the insulation or non-conductivity of the substrate 11, it is preferable that the volume resistivity (see JIS C 2139-3-1 Part 3-1) is 10 10 Ω·m or more. Note that the shape and size of the substrate 11 can be changed as appropriate.
 酸素生成用光触媒層13は、基板11の前面11Aに重なるように形成される。後に詳述するように、酸素生成用光触媒層13は、酸素発生用光触媒を構成する酸素生成用半導体(第1の半導体)を含む。 The oxygen generation photocatalyst layer 13 is formed so as to overlap the front surface 11A of the substrate 11. As will be described in detail later, the oxygen generation photocatalyst layer 13 includes an oxygen generation semiconductor (first semiconductor) that constitutes the oxygen generation photocatalyst.
 水素生成用光触媒層14は、基板11の後面11Bに重なるように形成される。後に詳述するように、水素生成用光触媒層14は、水素発生用光触媒を構成する水素生成用半導体(第2の半導体)を含む。 The hydrogen generation photocatalyst layer 14 is formed so as to overlap the rear surface 11B of the substrate 11. As will be described in detail later, the hydrogen generation photocatalyst layer 14 includes a hydrogen generation semiconductor (second semiconductor) that constitutes the hydrogen generation photocatalyst.
 それらの酸素生成用半導体および水素生成用半導体は、粒子(群)または薄膜として基板11上に固定される。そのような粒子の形状としては、特に限定されないが、球状、楕円球状、板状、繊維状、鱗片状、及び多孔質形状などが挙げられる。また、そのような薄膜としては、特に限定されないが、半導体の緻密膜、半導体粒子の堆積による多孔質膜、及び規則的構造を持つ多孔質膜などが挙げられる。 These oxygen-generating semiconductors and hydrogen-generating semiconductors are fixed on the substrate 11 as particles (groups) or thin films. The shape of such particles is not particularly limited, and examples include spherical, ellipsoidal, plate-like, fibrous, scale-like, and porous shapes. Further, such thin films include, but are not particularly limited to, dense films of semiconductors, porous films formed by depositing semiconductor particles, porous films with regular structures, and the like.
 酸素生成用半導体は、3.0eV以下のバンドギャップまたは不純物準位由来のエネルギーギャップを有することで可視光を吸収する。酸素生成用半導体の価電子帯の上端は、水の酸化電位(O/HO:+1.23V)よりも正側にある。電位の基準は、pH=0における標準水素電極の電位である。 The oxygen generating semiconductor absorbs visible light by having a band gap of 3.0 eV or less or an energy gap derived from an impurity level. The upper end of the valence band of the oxygen generating semiconductor is on the positive side of the oxidation potential of water (O 2 /H 2 O: +1.23V). The reference potential is the potential of a standard hydrogen electrode at pH=0.
 酸素生成用半導体は、水を分解して酸素を発生させることができる限りにおいて特に限定されない。酸素生成用半導体としては、金属酸化物、金属酸窒化物、金属窒化物、金属酸硫化物、金属酸ハロゲン化物、金属有機構造体(MOF:Metal Organic Framework)などが挙げられる。水分解装置3では、これらの材料から選ばれる1種又は2種以上の組み合わせを酸素生成用半導体として使用することができる。 The oxygen generating semiconductor is not particularly limited as long as it can decompose water and generate oxygen. Examples of the semiconductor for oxygen generation include metal oxides, metal oxynitrides, metal nitrides, metal oxysulfides, metal oxyhalides, metal organic frameworks (MOF), and the like. In the water splitting device 3, one kind or a combination of two or more kinds selected from these materials can be used as the oxygen generating semiconductor.
 上記金属酸化物としては、WO、BiVO、HWOなどが挙げられる。 Examples of the metal oxide include WO 3 , BiVO 4 , H 2 WO 4 and the like.
 上記金属酸窒化物としては、TaON及びBaTaONなどが挙げられる。上記金属窒化物としては、Taなどが挙げられる。 Examples of the metal oxynitride include TaON and BaTaO 2 N. Examples of the metal nitride include Ta 3 N 5 and the like.
 上記金属酸硫化物としては、SmTiなどが挙げられる。 Examples of the metal oxysulfide include Sm 2 Ti 2 S 2 O 5 and the like.
 上記酸ハロゲン化物としては、BiNbOCl及びBaBiNb11Br1-x(0≦x≦1)などが挙げられる。 Examples of the acid halides include Bi 4 NbO 8 Cl and Ba 2 Bi 3 Nb 2 O 11 Br 1- x I x (0≦x≦1).
 上記金属有機構造体としては、鉄(III)オキソクラスターとテレフタル酸とを構成要素とするMOFなどが挙げられる。 Examples of the above-mentioned metal-organic framework include MOF containing iron (III) oxo cluster and terephthalic acid as constituent elements.
 酸素生成用半導体は、不純物がドープされた材料であってもよく、不純物がドープされていない材料であってもよい。酸素生成用半導体に不純物をドープして不純物準位を形成させることにより、不純物準位から伝導帯に電子が励起される、または価電子帯から不純物準位に電子が励起されうる。 The oxygen generating semiconductor may be a material doped with impurities or may be a material not doped with impurities. By doping the oxygen-generating semiconductor with an impurity to form an impurity level, electrons can be excited from the impurity level to the conduction band or from the valence band to the impurity level.
 水素生成用半導体は、3.0eV以下のバンドギャップまたは不純物準位由来のエネルギーギャップを有することで可視光を吸収する。水素生成用半導体の伝導帯の下端は、プロトンの還元電位(H/H:0V)よりも負側にある。 A semiconductor for hydrogen generation absorbs visible light by having a band gap of 3.0 eV or less or an energy gap derived from an impurity level. The lower end of the conduction band of the hydrogen generating semiconductor is on the negative side of the proton reduction potential (H + /H 2 : 0V).
 水素生成用半導体は、水を分解して水素を発生させることができる限りにおいて特に限定されない。水素生成用半導体としては、金属酸窒化物、金属窒化物、金属酸硫化物、金属硫化物、金属酸ハロゲン化物、金属ハロゲン化物、有機金属ハロゲン化物、金属酸化物、金属リン化物、シリコン、有機半導体、MOF、及び共有結合性有機構造体(COF:Covalent Organic Framework)などが挙げられる。水分解装置3では、これらの材料から選ばれる1種又は2種以上の組み合わせを水素生成用半導体として使用することができる。 The hydrogen generating semiconductor is not particularly limited as long as it can decompose water and generate hydrogen. Semiconductors for hydrogen generation include metal oxynitrides, metal nitrides, metal oxysulfides, metal sulfides, metal oxyhalides, metal halides, organometallic halides, metal oxides, metal phosphides, silicon, and organic Examples include semiconductors, MOFs, and covalent organic frameworks (COFs). In the water splitting device 3, one kind or a combination of two or more kinds selected from these materials can be used as the hydrogen generating semiconductor.
 上記金属酸窒化物としては、TaON、BaTaON、CaTaON、及びSrTaONなどが挙げられる。上記金属窒化物としては、Taなどが挙げられる。 Examples of the metal oxynitride include TaON, BaTaO 2 N, CaTaO 2 N, and SrTaO 2 N. Examples of the metal nitride include Ta 3 N 5 and the like.
 上記金属酸硫化物としては、SmTiなどが挙げられる。上記金属硫化物としては、CdS及びCuAgIn2xZn2-2x(0≦x≦1)などが挙げられる。 Examples of the metal oxysulfide include Sm 2 Ti 2 S 2 O 5 and the like. Examples of the metal sulfides include CdS and Cu x Ag x In 2x Zn 2-2x S 2 (0≦x≦1).
 上記金属酸ハロゲン化物としては、BiNbOCl及びBaBiNb11Br1-x(0≦x≦1)などが挙げられる。上記金属ハロゲン化物としては、CsAgBiBrなどが挙げられる。上記有機金属ハロゲン化物としては、CHNHPbIなどが挙げられる。 Examples of the metal acid halides include Bi 4 NbO 8 Cl and Ba 2 Bi 3 Nb 2 O 11 Br 1-x I x (0≦x≦1). Examples of the metal halide include Cs 2 AgBiBr 6 and the like. Examples of the organometallic halide include CH 3 NH 3 PbI 3 and the like.
 上記金属酸化物としては、CuO及びSnNbなどが挙げられる。 Examples of the metal oxide include Cu 2 O and SnNb 2 O 6 .
 上記金属リン化物としては、GaPなどが挙げられる。 Examples of the metal phosphide include GaP.
 上記有機半導体としては、窒化炭素(g-C)及びジベンゾチオフェンポリマーなどが挙げられる。 Examples of the organic semiconductor include carbon nitride (g-C 3 N 4 ) and dibenzothiophene polymer.
 上記金属有機構造体としては、アミノベンゼン二カルボン酸チタンMOFなどが挙げられる。 Examples of the metal-organic framework include aminobenzenedicarboxylic acid titanium MOF.
 上記共有結合性有機構造体としては、1,3,5-トリホルミルフロログルシノールと4,4"-ジアミノ-p-テルフェニルとを構成要素とするCOFなどが挙げられる。 Examples of the covalent organic structure include COF, which has 1,3,5-triformylphloroglucinol and 4,4''-diamino-p-terphenyl as constituent elements.
 水素生成用半導体は、不純物がドープされた材料であってもよく、不純物がドープされていない材料であってもよい。水素生成用半導体に不純物をドープして不純物準位を形成させれば、不純物準位から伝導帯に電子が励起される、または価電子帯から不純物準位に電子が励起されうる。 The hydrogen generating semiconductor may be a material doped with impurities or may be a material not doped with impurities. When a hydrogen generating semiconductor is doped with an impurity to form an impurity level, electrons can be excited from the impurity level to the conduction band or from the valence band to the impurity level.
 なお、酸素生成用光触媒は、酸素生成用助触媒をさらに含んでいてもよい。酸素生成用助触媒は、酸素生成用半導体に担持され、酸素生成用半導体に可視光が照射されたときに酸素生成用半導体で発生する正孔と水とから酸素を生成する反応を促進する。酸素生成用助触媒が酸素生成用光触媒に含まれていると、酸素生成用光触媒の酸素生成活性が大幅に向上する。 Note that the oxygen-generating photocatalyst may further include an oxygen-generating co-catalyst. The oxygen generation co-catalyst is supported on the oxygen generation semiconductor and promotes a reaction that generates oxygen from water and holes generated in the oxygen generation semiconductor when the oxygen generation semiconductor is irradiated with visible light. When the oxygen generation co-catalyst is included in the oxygen generation photocatalyst, the oxygen generation activity of the oxygen generation photocatalyst is significantly improved.
 酸素生成用助触媒としては、金属酸化物、金属水酸化物、及び金属リン酸塩などが挙げられる。酸素生成用助触媒は、少なくとも1種の遷移金属又は貴金属を含んでもよい。遷移金属としてはMn、Fe、Ni、及びCoが挙げられる。貴金属としてはRuおよびIrが挙げられる。 Examples of the oxygen generation promoter include metal oxides, metal hydroxides, metal phosphates, and the like. The cocatalyst for oxygen generation may include at least one transition metal or noble metal. Transition metals include Mn, Fe, Ni, and Co. Examples of noble metals include Ru and Ir.
 また、水素生成用光触媒は、水素生成用助触媒をさらに含んでいてもよい。水素生成用助触媒は、水素生成用半導体に担持され、水素生成用半導体に可視光が照射されたときに水素生成用半導体で発生する励起電子とプロトン(又は水)とから水素を生成する反応を促進する。水素生成用助触媒が水素生成用光触媒に含まれていると、水素生成用光触媒の水素生成活性が大幅に向上する。 Moreover, the photocatalyst for hydrogen generation may further contain a co-catalyst for hydrogen generation. A hydrogen generation co-catalyst is supported on a hydrogen generation semiconductor, and is a reaction that generates hydrogen from excited electrons and protons (or water) generated in the hydrogen generation semiconductor when the hydrogen generation semiconductor is irradiated with visible light. promote. When the hydrogen generation co-catalyst is included in the hydrogen generation photocatalyst, the hydrogen generation activity of the hydrogen generation photocatalyst is significantly improved.
 水素生成用助触媒としては、金属、金属酸化物、及び金属硫化物などが挙げられる。水素生成用助触媒は、少なくとも1種の貴金属を含んでいてもよい。水素生成用助触媒は、貴金属に加え、Crを含んでいてもよい。貴金属としては、Ru、Rh、Pd、Ag、Os、Ir、Pt、及びAuが挙げられる。その中でもPt及び/又はRhが好ましい。 Examples of the hydrogen generation promoter include metals, metal oxides, and metal sulfides. The hydrogen production promoter may contain at least one noble metal. The hydrogen generation co-catalyst may contain Cr in addition to the noble metal. Noble metals include Ru, Rh, Pd, Ag, Os, Ir, Pt, and Au. Among them, Pt and/or Rh are preferred.
 水素生成用助触媒は、貴金属コアと酸化クロム(CrO)シェルとを有するコアシェル型の材料、及び、貴金属とCrとの混合酸化物からなる群より選ばれる少なくとも1つを含んでいてもよい。貴金属とCrとの混合酸化物は、例えば、ロジウム(III)とクロム(III)とを含む酸化物(RhCr2-x)である。これらの水素生成用助触媒は、例えば、後述するレドックス媒体の酸化体が存在する条件においても、励起電子とプロトン(又は水)とから水素を生成する反応を促進することができるため、レドックス媒体の酸化体が還元されることで励起電子が水素生成に使われずに消失することを抑制する。その結果、レドックス媒体が存在する条件において、プロトン(又は水)の還元が選択的且つ円滑に進行し、高い太陽光エネルギー変換効率を達成することができる。 The hydrogen generation promoter may include at least one member selected from the group consisting of a core-shell type material having a noble metal core and a chromium oxide (CrO x ) shell, and a mixed oxide of a noble metal and Cr. . The mixed oxide of noble metal and Cr is, for example, an oxide containing rhodium (III) and chromium (III) (Rh x Cr 2-x O 3 ). These cocatalysts for hydrogen production can promote the reaction of producing hydrogen from excited electrons and protons (or water) even in the presence of an oxidized form of the redox medium, which will be described later. By reducing the oxidized form of hydrogen, the excited electrons are prevented from disappearing without being used for hydrogen production. As a result, in the presence of a redox medium, the reduction of protons (or water) proceeds selectively and smoothly, making it possible to achieve high solar energy conversion efficiency.
 これら助触媒は粒子の形で半導体の粒子に担持されうる。助触媒の粒子の大きさは特に限定されない。助触媒の粒子の平均粒径は、通常0.1nm以上100nm以下である。 These co-catalysts can be supported on semiconductor particles in the form of particles. The particle size of the promoter is not particularly limited. The average particle diameter of the cocatalyst particles is usually 0.1 nm or more and 100 nm or less.
 本実施形態に係る水分解システム1では、酸素生成用半導体(酸素発生用光触媒)は、水分解装置3に入射した太陽光を利用し、水素生成用半導体(水素発生用光触媒)は、酸素生成用光触媒層13及び基板11を通過した光を利用する。そのため、水分解装置3に用いられる酸素生成用半導体と水素生成用半導体とは、太陽光(特に、可視光領域の光)に対して互いに吸収波長領域が異なるとよい。例えば、水素生成用半導体の光吸収スペクトルは、それに組み合わせて用いられる酸素生成用半導体の光吸収スペクトルと比べてより長い波長側に位置するとよい。これにより、酸素生成用半導体は、上限がより短い波長領域(例えば、200-500nm)の光を主として吸収し、水素生成用半導体は、上限がより長い波長領域(例えば、200-650nm)の光を主として吸収することができる。 In the water splitting system 1 according to the present embodiment, the oxygen generating semiconductor (oxygen generating photocatalyst) uses sunlight incident on the water splitting device 3, and the hydrogen generating semiconductor (hydrogen generating photocatalyst) uses oxygen generating semiconductor (hydrogen generating photocatalyst) to generate oxygen. The light that has passed through the photocatalyst layer 13 and the substrate 11 is used. Therefore, it is preferable that the oxygen generation semiconductor and the hydrogen generation semiconductor used in the water splitting device 3 have different absorption wavelength regions with respect to sunlight (particularly light in the visible light region). For example, the light absorption spectrum of the semiconductor for hydrogen generation is preferably located on the longer wavelength side compared to the light absorption spectrum of the semiconductor for oxygen generation used in combination. As a result, the oxygen-generating semiconductor mainly absorbs light in a wavelength range with a shorter upper limit (e.g., 200-500 nm), and the hydrogen-generating semiconductor mainly absorbs light in a wavelength range with a longer upper limit (e.g., 200-650 nm). can be mainly absorbed.
 本実施形態に係る水分解装置3において、酸素生成用半導体と水素生成用半導体の好適な組み合わせの例を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows examples of suitable combinations of oxygen generating semiconductors and hydrogen generating semiconductors in the water splitting apparatus 3 according to the present embodiment.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、利用可能な波長の上限がより低い(すなわち、上限がより短い波長領域の光を主として吸収する)酸素生成用半導体と、利用可能な波長の上限がより高い(すなわち、上限がより長い波長領域の光を主として吸収する)水素生成用半導体との組み合わせが好適である。例えば、酸素生成用半導体としてのWOの利用可能波長は、約450nm以下であり、また、これに組み合わされる水素生成用半導体としてのTaON、Ta、SmTi、及びBaTaONの利用可能波長は、それぞれ約500nm以下、約600nm以下、約600nm以下、及び約650nm以下である。このような酸素生成用半導体と水素生成用半導体との組み合わせにより、入射した光のエネルギーを酸素生成用光触媒層13及び水素生成用光触媒層14の双方において有効に利用することが可能となる。 As shown in Table 1, oxygen generating semiconductors have a lower upper limit on the usable wavelength (i.e., they mainly absorb light in the shorter wavelength range) and semiconductors have a higher upper limit on the usable wavelength (i.e., they mainly absorb light in the shorter wavelength range). A combination with a hydrogen generating semiconductor (which mainly absorbs light in a wavelength region with a longer upper limit) is suitable. For example, the usable wavelength of WO 3 as a semiconductor for oxygen generation is approximately 450 nm or less, and TaON, Ta 3 N 5 , Sm 2 Ti 2 S 2 O 5 , The available wavelengths of BaTaO 2 N and BaTaO 2 N are about 500 nm or less, about 600 nm or less, about 600 nm or less, and about 650 nm or less, respectively. Such a combination of the oxygen generation semiconductor and the hydrogen generation semiconductor allows the energy of the incident light to be effectively used in both the oxygen generation photocatalyst layer 13 and the hydrogen generation photocatalyst layer 14.
 反応容器9は、箱状をなし、内部スペースに水を主成分とする反応溶液を保持する。反応溶液には、レドックス媒体(酸化体および還元体の組み合わせ)が含まれる。本実施形態では、レドックス媒体として、Fe3+/Fe2+イオン対が用いられた例を示す。立ち上げ時(水分解反応の開始時)の酸素生成槽21及び水素生成槽22の反応溶液中には、ともにFe2+が存在するようにしてもよい。あるいは、立ち上げ時の酸素生成槽21及び水素生成槽22の反応溶液中にはともにFe3+が存在するようにしてもよい。あるいは、立ち上げ時の酸素生成槽21及び水素生成槽22の反応溶液中にそれぞれFe2+およびFe3+が存在するようにしてもよい。以下、立ち上げ時の反応容器9には、レドックス源としてFeClが溶解した水が注入され、酸素生成槽21及び水素生成槽22の反応溶液中にはともにFe2+が存在する条件で説明する。なお、図1では、反応容器9の配置に関し、図面の上下方向が概ね鉛直方向に相当する。 The reaction container 9 has a box shape and holds a reaction solution containing water as a main component in its internal space. The reaction solution includes a redox medium (combination of oxidant and reductant). In this embodiment, an example is shown in which a Fe 3+ /Fe 2+ ion pair is used as the redox medium. Fe 2+ may be present in both the reaction solutions of the oxygen generation tank 21 and the hydrogen generation tank 22 at the time of start-up (at the start of the water splitting reaction). Alternatively, Fe 3+ may be present in both the reaction solutions of the oxygen generation tank 21 and the hydrogen generation tank 22 at startup. Alternatively, Fe 2+ and Fe 3+ may be present in the reaction solutions of the oxygen generation tank 21 and the hydrogen generation tank 22, respectively, at startup. The following explanation will be given under the condition that water in which FeCl 2 is dissolved as a redox source is injected into the reaction vessel 9 at startup, and Fe 2+ is present in the reaction solutions in both the oxygen generation tank 21 and the hydrogen generation tank 22. . In addition, in FIG. 1, regarding the arrangement of the reaction vessels 9, the vertical direction of the drawing generally corresponds to the vertical direction.
 反応容器9では、いわゆるZスキーム型(二段階励起型)水分解が行われる。Zスキーム型水分解では、2種類の異なる光触媒(すなわち、酸素生成用光触媒層13、水素生成用光触媒層14)が用いられ、両光触媒間の電子伝達が反応溶液中のレドックス媒体を介して行なわれる。 In the reaction vessel 9, so-called Z scheme type (two-step excitation type) water splitting is performed. In Z-scheme water splitting, two different types of photocatalysts (i.e., oxygen generation photocatalyst layer 13 and hydrogen generation photocatalyst layer 14) are used, and electron transfer between both photocatalysts is performed via a redox medium in the reaction solution. It will be done.
 Fe3+/Fe2+イオン対の酸化還元反応は、1電子が関与する1電子過程である。そのため、Fe3+/Fe2+イオン対を使用すると、酸素生成用光触媒と水素生成用光触媒との間の電子伝達が円滑に進行する。また、Fe3+/Fe2+イオン対による光吸収も少ない。さらに、Fe3+/Fe2+イオン対の酸化還元電位は0.77V(vs.SHE)にあるので、Fe3+/Fe2+イオン対をレドックス媒体として使用すれば、多くの水素生成用半導体及び酸素生成用半導体とレドックス媒体との間の電子の授受が円滑に進行しうる。 The redox reaction of the Fe 3+ /Fe 2+ ion pair is a one-electron process involving one electron. Therefore, when the Fe 3+ /Fe 2+ ion pair is used, electron transfer between the oxygen generation photocatalyst and the hydrogen generation photocatalyst proceeds smoothly. Furthermore, light absorption by Fe 3+ /Fe 2+ ion pairs is also small. Furthermore, since the redox potential of Fe 3+ /Fe 2+ ion pair is 0.77 V (vs. SHE), if Fe 3+ /Fe 2+ ion pair is used as a redox medium, many semiconductors for hydrogen generation and oxygen generation Transfer of electrons between the semiconductor and the redox medium can proceed smoothly.
 水分解装置3では、鉄イオン、ヨウ素を含むイオン、バナジウムを含むイオン及び錯イオン、ポリオキソメタレートイオンなどがレドックス媒体として用いられうる。鉄イオンとしては、上述のFe3+/Fe2+イオン対が挙げられる。ヨウ素を含むイオンとしては、IO /Iイオン対、及びI /Iイオン対が挙げられる。バナジウムを含むイオンとしては、VO /VO2+などが挙げられる。錯イオンとしては、[Fe(CN)3-/[Fe(CN)4-イオン対、[Co(bpy)3+/[Co(bpy)2+イオン対、及び[Co(phen)3+/[Co(phen)2+イオン対などが挙げられる。ポリオキソメタレートイオンとしては、[SiW1139Mn(HO)]5-/[SiW1139Mn(HO)]6-イオン対などが挙げられる。水分解装置3では、これらから選ばれる1種又は2種以上のイオン対をレドックス媒体として用いることができる。 In the water splitting device 3, iron ions, iodine-containing ions, vanadium-containing ions and complex ions, polyoxometalate ions, and the like may be used as redox media. Examples of iron ions include the above-mentioned Fe 3+ /Fe 2+ ion pair. Examples of iodine-containing ions include the IO 3 /I ion pair and the I 3 /I ion pair. Examples of ions containing vanadium include VO 2 + /VO 2+ and the like. Complex ions include [Fe(CN) 6 ] 3- / [Fe(CN) 6 ] 4- ion pair, [Co(bpy) 3 ] 3+ /[Co(bpy) 3 ] 2+ ion pair, and [Co Examples include (phen) 3 ] 3+ /[Co(phen) 3 ] 2+ ion pair. Examples of polyoxometalate ions include the [SiW 11 O 39 Mn(H 2 O)] 5- /[SiW 11 O 39 Mn(H 2 O)] 6- ion pair. In the water splitting device 3, one or more ion pairs selected from these can be used as a redox medium.
 なお、上述の酸素生成用光触媒は、レドックス媒体用還元助触媒をさらに含んでいてもよい。レドックス媒体用還元助触媒は、酸素生成用半導体に担持され、酸素生成用半導体に可視光が照射されたときに酸素生成用半導体で発生する励起電子によるレドックス媒体の還元反応を促進する。レドックス媒体用還元助触媒が酸素生成用光触媒に含まれていると、酸素生成用半導体で発生する励起電子と正孔による再結合が抑制され、酸素生成用光触媒の酸素生成活性が大幅に向上する。 Note that the above-mentioned photocatalyst for oxygen production may further include a reduction co-catalyst for redox media. The reduction co-catalyst for the redox medium is supported on the semiconductor for oxygen generation, and promotes the reduction reaction of the redox medium by excited electrons generated in the semiconductor for oxygen generation when the semiconductor for oxygen generation is irradiated with visible light. When the reduction promoter for redox media is included in the oxygen generation photocatalyst, recombination by excited electrons and holes generated in the oxygen generation semiconductor is suppressed, and the oxygen generation activity of the oxygen generation photocatalyst is significantly improved. .
 レドックス媒体用還元助触媒としては、金属および金属酸化物などが挙げられる。レドックス媒体用還元助触媒は少なくとも1種の遷移金属または貴金属を含んでもよい。遷移金属としてはFeが挙げられる。貴金属としてはRu、Ir、及びPtが挙げられる。 Examples of reduction promoters for redox media include metals and metal oxides. The reduction cocatalyst for the redox medium may include at least one transition metal or noble metal. Examples of transition metals include Fe. Noble metals include Ru, Ir, and Pt.
 また、上述の水素生成用光触媒には、レドックス媒体用酸化助触媒をさらに含んでいてもよい。レドックス媒体用酸化助触媒は、水素生成用半導体に担持され、水素生成用半導体に可視光が照射されたときに水素生成用半導体で発生する正孔によるレドックス媒体の酸化反応を促進する。レドックス媒体用酸化助触媒が水素生成用光触媒に含まれていると、水素生成用半導体で発生する正孔と励起電子による再結合が抑制され、水素生成用光触媒の水素生成活性が大幅に向上する。 Moreover, the above-mentioned photocatalyst for hydrogen production may further contain an oxidation promoter for redox media. The oxidation promoter for a redox medium is supported on a semiconductor for hydrogen generation, and promotes the oxidation reaction of the redox medium by holes generated in the semiconductor for hydrogen generation when the semiconductor for hydrogen generation is irradiated with visible light. When the oxidation cocatalyst for redox media is included in the photocatalyst for hydrogen generation, recombination by holes generated in the semiconductor for hydrogen generation and excited electrons is suppressed, and the hydrogen generation activity of the photocatalyst for hydrogen generation is significantly improved. .
 レドックス媒体用酸化助触媒としては、Irを含む酸化物又はメタルシアノメタレートなどが挙げられる。メタルシアノメタレートとしては、インジウム(III)ヘキサシアノフェレートなどが挙げられる。 Examples of the oxidation promoter for redox media include oxides containing Ir or metal cyanometalates. Examples of metal cyanometalates include indium (III) hexacyanoferrate.
 反応容器9は、酸素生成用光触媒層13に対向するように配置された前壁9A(光入射壁)を有する。前壁9Aは、その外面が太陽光の入射方向に対して概ね直交するように斜め上方に向けて配置される。反応容器9の内部スペースは、前壁9Aと略並行に配置された光触媒パネル7によって仕切られる。より詳細には、光触媒パネル7の上縁は、反応容器9の上壁9Cに密接し、また、光触媒パネル7の下縁は、反応容器9の下壁9Dに密接する。 The reaction container 9 has a front wall 9A (light incidence wall) arranged to face the oxygen-generating photocatalyst layer 13. The front wall 9A is arranged diagonally upward so that its outer surface is generally orthogonal to the direction of incidence of sunlight. The internal space of the reaction vessel 9 is partitioned by a photocatalyst panel 7 arranged substantially parallel to the front wall 9A. More specifically, the upper edge of the photocatalyst panel 7 is in close contact with the upper wall 9C of the reaction vessel 9, and the lower edge of the photocatalyst panel 7 is in close contact with the lower wall 9D of the reaction vessel 9.
 これにより、反応容器9において、光触媒パネル7の前側(酸素生成用光触媒層13側)には酸素生成槽21が形成される。酸素生成用光触媒層13は、酸素生成槽21の内面の一部を形成する。また、反応容器9において、光触媒パネル7の後側(水素生成用光触媒層14側)には水素生成槽22が形成される。水素生成用光触媒層14は、水素生成槽22の内面の一部を形成する。 Thereby, in the reaction vessel 9, the oxygen generation tank 21 is formed on the front side of the photocatalyst panel 7 (on the side of the oxygen generation photocatalyst layer 13). The oxygen generation photocatalyst layer 13 forms a part of the inner surface of the oxygen generation tank 21 . Further, in the reaction vessel 9, a hydrogen generation tank 22 is formed on the rear side of the photocatalyst panel 7 (on the side of the hydrogen generation photocatalyst layer 14). The hydrogen generation photocatalyst layer 14 forms part of the inner surface of the hydrogen generation tank 22 .
 反応容器9の外壁は、上述の基板11と同様に光透過性の高い透明材料から形成される。ただし、反応容器9の外壁においては、太陽光が入射する光入射部位(ここでは、光入射壁としての前壁9A)が少なくとも透明材料から形成されていればよい。例えば、光入射部位のみが透明材料から形成される(例えば、外壁において光入射部位以外の部分が透過性を有しない、または光入射部位以外の部分の透過率が光入射部位の透過率よりも低い)構成では、反応容器9への入射光量(延いては水分解反応)の制御が容易となる。 The outer wall of the reaction vessel 9 is made of a transparent material with high light transmittance, similar to the substrate 11 described above. However, in the outer wall of the reaction container 9, it is sufficient that at least the light incidence part (here, the front wall 9A serving as the light incidence wall) through which sunlight enters is made of a transparent material. For example, only the light incident area is made of a transparent material (for example, the outer wall other than the light incident area has no transparency, or the transmittance of the area other than the light incident area is higher than the transmittance of the light incident area). In this configuration, the amount of light incident on the reaction vessel 9 (and thus the water splitting reaction) can be easily controlled.
 なお、反応容器9の形状やサイズは、適宜変更することが可能である。また、図1に示す反応容器9では、太陽光の入射側に(すなわち、前壁9Aと対向するように)酸素生成用光触媒層13が配置されるが、光触媒パネル7を反転させて、太陽光の入射側に水素生成用光触媒層14が配置されてもよい。 Note that the shape and size of the reaction container 9 can be changed as appropriate. In the reaction vessel 9 shown in FIG. 1, the oxygen generation photocatalyst layer 13 is arranged on the sunlight incident side (that is, facing the front wall 9A). The photocatalyst layer 14 for hydrogen generation may be arranged on the light incident side.
 図2に示すように、酸素生成槽21では、酸素生成用光触媒層13における酸素生成用半導体が光を吸収することによって、伝導帯に電子(e)が生じ、価電子帯に正孔(h)が生じる。これにより、酸素生成用光触媒層13では、正孔によってHO(またはOH)からOが生成され、また、電子によって酸化体(Ox)から還元体(Red)が生成される。同様に、水素生成槽22では、水素生成用光触媒層14における水素生成用半導体(半導体光触媒)が光を吸収することによって、電子(e-)と正孔(h)が生じる。これにより、水素生成用光触媒層14では、電子によってH(またはHO)からHが生成され、また、正孔によって還元体(Red)から酸化体(Ox)が生成される。 As shown in FIG. 2, in the oxygen generation tank 21, the oxygen generation semiconductor in the oxygen generation photocatalyst layer 13 absorbs light, so that electrons (e - ) are generated in the conduction band and holes (e - ) are generated in the valence band. h + ) occurs. As a result, in the oxygen generation photocatalyst layer 13, O 2 is generated from H 2 O (or OH - ) by holes, and a reductant (Red) is generated from an oxidant (Ox) by electrons. Similarly, in the hydrogen generation tank 22, the hydrogen generation semiconductor (semiconductor photocatalyst) in the hydrogen generation photocatalyst layer 14 absorbs light, thereby generating electrons (e - ) and holes (h + ). As a result, in the hydrogen generation photocatalyst layer 14, H 2 is generated from H + (or H 2 O) by electrons, and oxidant (Ox) is generated from reductant (Red) by holes.
 再び図1を参照すると、第1循環ライン5には、第1気液分離器25、第1貯水タンク26、及び第1循環ポンプ27が設けられている。 Referring to FIG. 1 again, the first circulation line 5 is provided with a first gas-liquid separator 25, a first water storage tank 26, and a first circulation pump 27.
 第1循環ライン5は、酸素生成槽21の上部に位置する上部開口29と第1気液分離器25との間を接続する配管から構成される酸素排出ライン5Aを含む。上部開口29から排出された酸素は、酸素排出ライン5Aを通して第1気液分離器25に輸送される。酸素排出ライン5Aで輸送される流体には、酸素と共に反応溶液の一部が含まれている。第1気液分離器25では、酸素排出ライン5Aを流れる酸素から反応溶液(Fe2+を含む)が分離される。第1気液分離器25で分離された酸素は、その上部(例えば、ノックアウトドラムのドラム本体内の気相に対応する部分)に接続された酸素分離ライン5Dを通して図示しない酸素貯留タンクに供給される。ただし、第1気液分離器25で分離された酸素は、大気に放出されてもよい。 The first circulation line 5 includes an oxygen discharge line 5A made up of piping that connects an upper opening 29 located at the upper part of the oxygen generation tank 21 and the first gas-liquid separator 25. Oxygen discharged from the upper opening 29 is transported to the first gas-liquid separator 25 through the oxygen discharge line 5A. The fluid transported by the oxygen discharge line 5A contains a portion of the reaction solution along with oxygen. In the first gas-liquid separator 25, the reaction solution (containing Fe 2+ ) is separated from the oxygen flowing through the oxygen discharge line 5A. The oxygen separated in the first gas-liquid separator 25 is supplied to an oxygen storage tank (not shown) through an oxygen separation line 5D connected to its upper part (for example, a portion corresponding to the gas phase in the drum body of the knockout drum). Ru. However, the oxygen separated by the first gas-liquid separator 25 may be released to the atmosphere.
 また、第1循環ライン5は、第1気液分離器25の底部(例えば、ノックアウトドラムのドラム本体内の液相に対応する部分)と第1貯水タンク26とを接続する配管から構成される水排出ライン5Bを含む。第1気液分離器25から排出された反応溶液は、水排出ライン5Bを通して第1貯水タンク26に輸送される。第1貯水タンク26では、第1気液分離器25から排出された反応溶液が貯留される。第1貯水タンク26には、必要に応じて外部から水やレドックス媒体(またはその原料であるレドックス源)等を補充可能である。 Further, the first circulation line 5 is composed of piping that connects the bottom of the first gas-liquid separator 25 (for example, the portion corresponding to the liquid phase in the drum body of the knockout drum) and the first water storage tank 26. It includes a water discharge line 5B. The reaction solution discharged from the first gas-liquid separator 25 is transported to the first water storage tank 26 through the water discharge line 5B. In the first water storage tank 26, the reaction solution discharged from the first gas-liquid separator 25 is stored. The first water storage tank 26 can be replenished with water, a redox medium (or a redox source as its raw material), etc. from the outside as necessary.
 また、第1循環ライン5は、第1貯水タンク26と水素生成槽22の下部に位置する下部開口31とを接続する配管から構成される第1水供給ライン5Cを含む。第1水供給ライン5Cには、第1循環ポンプ27が設けられている。第1貯水タンク26に貯留された反応溶液は、第1循環ポンプ27によって第1水供給ライン5Cを通して反応容器9に輸送される。 Furthermore, the first circulation line 5 includes a first water supply line 5C that is constituted by piping that connects the first water storage tank 26 and the lower opening 31 located at the lower part of the hydrogen generation tank 22. A first circulation pump 27 is provided in the first water supply line 5C. The reaction solution stored in the first water storage tank 26 is transported to the reaction container 9 through the first water supply line 5C by the first circulation pump 27.
 第2循環ライン6には、第2気液分離器35、第2貯水タンク36、及び第2循環ポンプ37が設けられている。 The second circulation line 6 is provided with a second gas-liquid separator 35, a second water storage tank 36, and a second circulation pump 37.
 第2循環ライン6は、水素生成槽22の上部に位置する上部開口39と第2気液分離器35との間を接続する配管から構成される水素排出ライン6Aを含む。上部開口39から排出された水素は、水素排出ライン6Aを通して第2気液分離器35に輸送される。水素排出ライン6Aで輸送される流体には、水素と共に反応溶液の一部が含まれている。第2気液分離器35では、水素排出ライン6Aを流れる水素から反応溶液(Fe3+を含む)が分離される。第2気液分離器35で分離された水素は、その上部に接続された水素分離ライン6Dを通して図示しない水素貯留タンクに供給される。 The second circulation line 6 includes a hydrogen discharge line 6A formed of a pipe connecting between an upper opening 39 located at the upper part of the hydrogen generation tank 22 and the second gas-liquid separator 35. Hydrogen discharged from the upper opening 39 is transported to the second gas-liquid separator 35 through the hydrogen discharge line 6A. The fluid transported by the hydrogen discharge line 6A contains hydrogen and a portion of the reaction solution. In the second gas-liquid separator 35, the reaction solution (containing Fe 3+ ) is separated from the hydrogen flowing through the hydrogen discharge line 6A. The hydrogen separated by the second gas-liquid separator 35 is supplied to a hydrogen storage tank (not shown) through a hydrogen separation line 6D connected to the upper part of the hydrogen separation line 6D.
 また、第2循環ライン6は、第2気液分離器35の下部と第2貯水タンク36とを接続する配管から構成される第2水排出ライン6Bを含む。第2気液分離器35から排出された反応溶液は、第2水排出ライン6Bを通して第2貯水タンク36に輸送される。第2貯水タンク36では、第2気液分離器35から排出された反応溶液が貯留される。第2貯水タンク36には、必要に応じて外部から水やレドックス媒体(またはその原料であるレドックス源)等を補充可能である。 Further, the second circulation line 6 includes a second water discharge line 6B that is configured from a pipe that connects the lower part of the second gas-liquid separator 35 and the second water storage tank 36. The reaction solution discharged from the second gas-liquid separator 35 is transported to the second water storage tank 36 through the second water discharge line 6B. In the second water storage tank 36, the reaction solution discharged from the second gas-liquid separator 35 is stored. The second water storage tank 36 can be replenished with water, a redox medium (or a redox source as a raw material thereof), etc. from the outside as necessary.
 また、第2循環ライン6は、第2貯水タンク36と酸素生成槽21の下部に位置する下部開口41とを接続する配管から構成される第2水供給ライン6Cを含む。第2水供給ライン6Cには、第2循環ポンプ37が設けられている。第2貯水タンク36に貯留された水は、第2循環ポンプ37によって第2水供給ライン6Cを通して反応容器9に輸送される。 Further, the second circulation line 6 includes a second water supply line 6C that is constituted by piping that connects the second water storage tank 36 and the lower opening 41 located at the lower part of the oxygen generation tank 21. A second circulation pump 37 is provided in the second water supply line 6C. The water stored in the second water storage tank 36 is transported to the reaction vessel 9 through the second water supply line 6C by the second circulation pump 37.
 このように、水分解システム1では、第1循環ライン5の上流端が酸素生成槽21に接続される共に、第1循環ライン5の下流端が水素生成槽22に接続される。これにより、酸素生成槽21で生成された還元体(ここでは、Fe2+)が水素生成槽22に供給される。また、第2循環ライン6の上流端が水素生成槽22に接続される共に、第2循環ライン6の下流端が酸素生成槽21に接続される。これにより、水素生成槽22で生成された酸化体(ここでは、Fe3+)が酸素生成槽21に供給される。したがって、水分解システム1では、酸素生成槽21および水素生成槽22が光触媒パネル7によって完全に分離された場合でも、一方の槽で必要とされるレドックス媒体を他方の槽から順次供給することができる。 Thus, in the water splitting system 1, the upstream end of the first circulation line 5 is connected to the oxygen generation tank 21, and the downstream end of the first circulation line 5 is connected to the hydrogen generation tank 22. Thereby, the reductant (here, Fe 2+ ) generated in the oxygen generation tank 21 is supplied to the hydrogen generation tank 22 . Further, the upstream end of the second circulation line 6 is connected to the hydrogen generation tank 22, and the downstream end of the second circulation line 6 is connected to the oxygen generation tank 21. As a result, the oxidant (here, Fe 3+ ) generated in the hydrogen generation tank 22 is supplied to the oxygen generation tank 21 . Therefore, in the water splitting system 1, even if the oxygen generation tank 21 and the hydrogen generation tank 22 are completely separated by the photocatalyst panel 7, it is possible to sequentially supply the redox medium required by one tank from the other tank. can.
 水分解システム1では、反応容器9の前壁9Aに太陽光を入射させると、その光エネルギーを利用する光触媒パネル7によって、容器内の水が酸素と水素に分解される。前壁9Aを通って酸素生成用光触媒層13に入射した太陽光は、さらに基板11を通過し、水素生成用光触媒層14に到達する。これにより、水素生成用光触媒層14では、酸素生成用光触媒層13で吸収されなかった光を利用して水素を生成することが可能である。したがって、反応容器9では、水素生成用光触媒層14側(すなわち、反応容器9の後壁9B側)から水分解のための太陽光を入射させる必要はなく、簡易な構成が実現される。水分解システム1は、水素の生成を主目的とする水素製造システムとして機能し得る。 In the water splitting system 1, when sunlight is incident on the front wall 9A of the reaction container 9, the water in the container is decomposed into oxygen and hydrogen by the photocatalyst panel 7 that utilizes the light energy. The sunlight that has entered the oxygen generation photocatalyst layer 13 through the front wall 9A further passes through the substrate 11 and reaches the hydrogen generation photocatalyst layer 14. Thereby, in the photocatalyst layer for hydrogen generation 14, it is possible to generate hydrogen using the light not absorbed by the photocatalyst layer for oxygen generation 13. Therefore, in the reaction vessel 9, there is no need to input sunlight for water splitting from the side of the photocatalyst layer for hydrogen generation 14 (that is, from the rear wall 9B side of the reaction vessel 9), and a simple configuration is realized. The water splitting system 1 can function as a hydrogen production system whose main purpose is to produce hydrogen.
 なお、初期の反応容器9には、レドックス媒体としてFe2+しか存在しないが、水素生成槽22において水素と共に生成されたFe3+が第2循環ライン6を通して酸素生成槽21に供給される。これにより、酸素生成槽21では、酸素が生成されると共に、酸素生成用光触媒層13の電子によってFe3+から再びFe2+が生成される。 Note that although only Fe 2+ exists as a redox medium in the initial reaction vessel 9, Fe 3+ generated together with hydrogen in the hydrogen generation tank 22 is supplied to the oxygen generation tank 21 through the second circulation line 6. Thereby, in the oxygen generation tank 21, oxygen is generated, and Fe 2+ is generated again from Fe 3+ by the electrons of the oxygen generation photocatalyst layer 13.
(第1実施形態の変形例)
 図3は、図1に示した水分解装置3の変形例を示す図である。図3では、図1に示した水分解装置3と同様の構成要素については、同一の符号が付されている。また、変形例に関し、以下で特に言及しない事項については、上述の第1実施形態と同様であるため、詳細な説明を省略する。
(Modified example of the first embodiment)
FIG. 3 is a diagram showing a modification of the water splitting apparatus 3 shown in FIG. 1. In FIG. 3, the same components as those in the water splitting apparatus 3 shown in FIG. 1 are designated by the same reference numerals. Further, regarding the modification, matters that are not particularly mentioned below are the same as those in the first embodiment, so detailed explanations will be omitted.
 第1実施形態では、反応容器9に対して太陽光を直接入射させる構成としたが、これに限らず、図3に示すように集光板45によって集光された太陽光を反応容器9に入射させてもよい。図3に示す反応容器9は、有底の円筒状をなし、周壁の一方側(ここでは、酸素生成用光触媒層13側)から光が入射する。このように、集光板45を用いることで、水分解装置3を大型化することなく、太陽光をより有効に利用することが可能である。 In the first embodiment, sunlight is directly incident on the reaction container 9, but the invention is not limited to this, and as shown in FIG. You may let them. The reaction container 9 shown in FIG. 3 has a cylindrical shape with a bottom, and light enters from one side of the peripheral wall (here, the side of the oxygen-generating photocatalyst layer 13). In this way, by using the light condensing plate 45, it is possible to use sunlight more effectively without increasing the size of the water splitting device 3.
(第2実施形態)
 図4は、第2実施形態に係る水分解システム1を示す構成図である。図4では、図1に示した水分解装置3と同様の構成要素については、同一の符号が付されている。また、第2実施形態に関し、以下で特に言及しない事項については、上述の第1実施形態と同様であるため、詳細な説明を省略する。
(Second embodiment)
FIG. 4 is a configuration diagram showing a water splitting system 1 according to the second embodiment. In FIG. 4, the same components as those of the water splitting apparatus 3 shown in FIG. 1 are designated by the same reference numerals. Furthermore, regarding the second embodiment, matters not specifically mentioned below are the same as those in the first embodiment, so detailed explanations will be omitted.
 第2実施形態に係る水分解システム1は、第1実施形態と同様の反応容器9を有する。一方、第2実施形態に係る水分解システム1では、第1循環ライン105および第2循環ライン106の構成が、それぞれ第1実施形態における第1循環ライン5および第2循環ライン6とは異なる。 The water splitting system 1 according to the second embodiment has the same reaction vessel 9 as the first embodiment. On the other hand, in the water splitting system 1 according to the second embodiment, the configurations of the first circulation line 105 and the second circulation line 106 are different from the first circulation line 5 and the second circulation line 6 in the first embodiment, respectively.
 第1循環ライン105は、酸素排出ライン5Aおよび水排出ライン5Bを含む。一方、第1循環ライン105では、第1実施形態(図1参照)における第1水供給ライン5C、第1貯水タンク26、及び第1循環ポンプ27が省略されている。 The first circulation line 105 includes an oxygen discharge line 5A and a water discharge line 5B. On the other hand, in the first circulation line 105, the first water supply line 5C, the first water storage tank 26, and the first circulation pump 27 in the first embodiment (see FIG. 1) are omitted.
 第1循環ライン105において、第1気液分離器25は、反応容器9よりも高い位置に配置されている。酸素排出ライン5Aの下流端は、第1気液分離器25に接続される。水排出ライン5Bの上流端は、第1気液分離器25の底部に接続される。一方、水排出ライン5Bの下流端は、水素生成槽22の上部開口39に接続される。酸素排出ライン5Aを流れる流体は、第2循環ライン106に設けられた第2循環ポンプ37によって酸素生成槽21側から押し出されるようにして、第1気液分離器25に送られる。また、水排出ライン5Bでは、第1気液分離器25によって分離された反応溶液(Fe2+を含む)がその上流端から下流端に向けて自重で流れる。 In the first circulation line 105, the first gas-liquid separator 25 is arranged at a higher position than the reaction vessel 9. The downstream end of the oxygen discharge line 5A is connected to the first gas-liquid separator 25. The upstream end of the water discharge line 5B is connected to the bottom of the first gas-liquid separator 25. On the other hand, the downstream end of the water discharge line 5B is connected to the upper opening 39 of the hydrogen generation tank 22. The fluid flowing through the oxygen discharge line 5A is pushed out from the oxygen generation tank 21 side by the second circulation pump 37 provided in the second circulation line 106 and sent to the first gas-liquid separator 25. Further, in the water discharge line 5B, the reaction solution (containing Fe 2+ ) separated by the first gas-liquid separator 25 flows under its own weight from its upstream end to its downstream end.
 このような構成によって、第1循環ライン105では、ポンプを必要とすることなく、第1気液分離器25によって分離された反応溶液(Fe2+を含む)を水素生成槽22に供給することができる。 With this configuration, the first circulation line 105 can supply the reaction solution (containing Fe 2+ ) separated by the first gas-liquid separator 25 to the hydrogen generation tank 22 without the need for a pump. can.
 なお、第1循環ライン105では、反応容器9の上部および酸素排出ライン5Aの少なくとも一方に、公知の構成を有するガス抜き用の装置(例えば、ガス抜き弁)を設けることができる。これにより、第1循環ライン5では、第1気液分離器25を省略することができる。その場合、水排出ライン5Bは省略され、酸素排出ライン5Aの下流端が、水素生成槽22の上部開口39に接続される。 Note that in the first circulation line 105, a degassing device (for example, a degassing valve) having a known configuration can be provided at least one of the upper part of the reaction vessel 9 and the oxygen exhaust line 5A. Thereby, in the first circulation line 5, the first gas-liquid separator 25 can be omitted. In that case, the water discharge line 5B is omitted, and the downstream end of the oxygen discharge line 5A is connected to the upper opening 39 of the hydrogen generation tank 22.
 第2循環ライン106では、水素排出ライン6Aの上流部分は、水素生成槽22の下部に位置する下部開口31に接続される。ただし、水素生成槽22では、生成された水素が槽内の上方に滞留する可能性がある。したがって、水素生成槽22から水素を円滑に排出させるために、水素排出ライン6Aの上流端(水素の排出口)は、下部開口31を通して水素生成槽22内の上部に位置させるとよい。 In the second circulation line 106, the upstream portion of the hydrogen discharge line 6A is connected to the lower opening 31 located at the lower part of the hydrogen generation tank 22. However, in the hydrogen generation tank 22, there is a possibility that the generated hydrogen will stay in the upper part of the tank. Therefore, in order to smoothly discharge hydrogen from the hydrogen generation tank 22, the upstream end (hydrogen discharge port) of the hydrogen discharge line 6A is preferably located at the upper part of the hydrogen generation tank 22 through the lower opening 31.
 第2実施形態に係る水分解システム1では、第1循環ライン105の上流端が酸素生成槽21に接続される共に、第1循環ライン105の下流端が水素生成槽22に接続される。これにより、酸素生成槽21で生成された還元体(ここでは、Fe2+)が水素生成槽22に供給される。また、第2循環ライン106の上流端が水素生成槽22に接続される共に、第2循環ライン106の下流端が酸素生成槽21に接続される。これにより、水素生成槽22で生成された酸化体(ここでは、Fe3+)が酸素生成槽21に供給される。したがって、水分解システム1では、酸素生成槽21および水素生成槽22が光触媒パネル7によって完全に分離された場合でも、一方の槽で必要とされるレドックス媒体を他方の槽から順次供給することができる。 In the water splitting system 1 according to the second embodiment, the upstream end of the first circulation line 105 is connected to the oxygen generation tank 21, and the downstream end of the first circulation line 105 is connected to the hydrogen generation tank 22. Thereby, the reductant (here, Fe 2+ ) generated in the oxygen generation tank 21 is supplied to the hydrogen generation tank 22 . Further, the upstream end of the second circulation line 106 is connected to the hydrogen generation tank 22, and the downstream end of the second circulation line 106 is connected to the oxygen generation tank 21. As a result, the oxidant (here, Fe 3+ ) generated in the hydrogen generation tank 22 is supplied to the oxygen generation tank 21 . Therefore, in the water splitting system 1, even if the oxygen generation tank 21 and the hydrogen generation tank 22 are completely separated by the photocatalyst panel 7, it is possible to sequentially supply the redox medium required by one tank from the other tank. can.
(第3実施形態)
 図5は、第3実施形態に係る水分解システム1を示す構成図である。図5では、図1に示した水分解装置3と同様の構成要素については、同一の符号が付されている。また、第3実施形態に関し、以下で特に言及しない事項については、上述の第1実施形態と同様であるため、詳細な説明を省略する。
(Third embodiment)
FIG. 5 is a configuration diagram showing a water splitting system 1 according to the third embodiment. In FIG. 5, the same reference numerals are given to the same components as those of the water splitting apparatus 3 shown in FIG. Furthermore, regarding the third embodiment, matters not specifically mentioned below are the same as those in the first embodiment, so detailed explanations will be omitted.
 第3実施形態に係る水分解システム1は、光触媒パネル207及び反応容器209の構成が、第1実施形態(図1参照)における光触媒パネル7及び反応容器9とは異なる。また、第3実施形態に係る水分解システム1では、酸素生成槽21と水素生成槽22との間で反応溶液を循環させるための循環ラインは省略されている。 In the water splitting system 1 according to the third embodiment, the configurations of a photocatalyst panel 207 and a reaction container 209 are different from those of the photocatalyst panel 7 and reaction container 9 in the first embodiment (see FIG. 1). Furthermore, in the water splitting system 1 according to the third embodiment, a circulation line for circulating the reaction solution between the oxygen generation tank 21 and the hydrogen generation tank 22 is omitted.
 上述の第1及び第2実施形態では、反応容器9の内部スペースは、光触媒パネル7によって仕切られることにより、互いに連通しない酸素生成槽21及び水素生成槽22が形成されうる。すなわち、反応容器9内部において、酸素生成槽21及び水素生成槽22の間の流体の移動は必須ではない。 In the first and second embodiments described above, the internal space of the reaction vessel 9 is partitioned by the photocatalyst panel 7, so that the oxygen generation tank 21 and the hydrogen generation tank 22 that do not communicate with each other can be formed. That is, inside the reaction vessel 9, movement of fluid between the oxygen generation tank 21 and the hydrogen generation tank 22 is not essential.
 一方、反応容器209の内部スペースは、光触媒パネル207によって完全には仕切られておらず、光触媒パネル207の下縁207Aは、反応容器209の下壁209Dから離間している。これにより、反応容器209では、酸素生成槽21および水素生成槽22が光触媒パネル207と下壁209Dとの間の空間G(連通部)を介して互いに連通した状態にある。 On the other hand, the internal space of the reaction container 209 is not completely partitioned by the photocatalyst panel 207, and the lower edge 207A of the photocatalyst panel 207 is spaced apart from the lower wall 209D of the reaction container 209. Thereby, in the reaction vessel 209, the oxygen generation tank 21 and the hydrogen generation tank 22 are in a state of communication with each other via the space G (communication portion) between the photocatalyst panel 207 and the lower wall 209D.
 酸素生成槽21の上部開口29には、酸素分離ライン205Dの上流端が接続されている。酸素生成槽21から酸素分離ライン205Dを通して排出された酸素は、図示しない酸素貯留タンクに供給されるか、或いは大気に放出される。 The upper opening 29 of the oxygen generation tank 21 is connected to the upstream end of the oxygen separation line 205D. Oxygen discharged from the oxygen generation tank 21 through the oxygen separation line 205D is either supplied to an oxygen storage tank (not shown) or released to the atmosphere.
 水素生成槽22の上部開口39には、水素分離ライン206Dの上流端が接続されている。水素生成槽22から水素分離ライン206Dを通して出された水素は、図示しない水素貯留タンクに供給される。 The upper opening 39 of the hydrogen generation tank 22 is connected to the upstream end of the hydrogen separation line 206D. Hydrogen discharged from the hydrogen generation tank 22 through the hydrogen separation line 206D is supplied to a hydrogen storage tank (not shown).
 また、水分解装置3には、貯水タンク236と、貯水タンク236に上流端を接続された水供給ライン206Cと、が設けられている。水供給ライン206Cには、給水ポンプ227が設けられている。貯水タンク236に貯留された反応溶液は、給水ポンプ227によって水供給ライン206Cを通して反応容器209に輸送される。水供給ライン206Cの下流端は、反応容器209の下壁209Dに設けられた下部開口231に接続される。下部開口231は、光触媒パネル207の下端に対向する位置(すなわち、連通部の近傍)に配置される。 Additionally, the water splitting device 3 is provided with a water storage tank 236 and a water supply line 206C whose upstream end is connected to the water storage tank 236. A water supply pump 227 is provided in the water supply line 206C. The reaction solution stored in the water storage tank 236 is transported to the reaction container 209 by the water supply pump 227 through the water supply line 206C. The downstream end of the water supply line 206C is connected to a lower opening 231 provided in the lower wall 209D of the reaction vessel 209. The lower opening 231 is arranged at a position facing the lower end of the photocatalyst panel 207 (that is, near the communication section).
 このように、第3実施形態に係る水分解システム1では、酸素生成槽21及び水素生成槽22を反応容器9内で連通させる構成としたため、反応容器209内の反応溶液(レドックス媒体を含む)は、両槽間を移動可能である。これにより、酸素生成槽21で生成された還元体(ここでは、Fe2+)が水素生成槽22に移動し、水素生成槽22で生成された酸化体(ここでは、Fe3+)は、酸素生成槽21に移動する。したがって、第1及び第2実施形態のような反応容器209の反応溶液を循環させるための循環ラインを省略できる。 As described above, in the water splitting system 1 according to the third embodiment, since the oxygen generation tank 21 and the hydrogen generation tank 22 are configured to communicate with each other in the reaction container 9, the reaction solution (including the redox medium) in the reaction container 209 is can be moved between both tanks. As a result, the reductant (here, Fe 2+ ) generated in the oxygen generation tank 21 moves to the hydrogen generation tank 22, and the oxidant (here, Fe 3+ ) generated in the hydrogen generation tank 22 moves to the oxygen generation tank 22. Move to tank 21. Therefore, the circulation line for circulating the reaction solution in the reaction container 209 as in the first and second embodiments can be omitted.
 以下、いくつかの実施例、比較例、及び参考例に基づいて、上記水分解システム1および水分解装置3に用いられる光触媒パネルの具体例を説明する。ただし、本発明はこれらの実施例に限定されるものではなく、本発明の範囲を逸脱しない限り種々の変更が可能である。 Hereinafter, specific examples of photocatalyst panels used in the water splitting system 1 and the water splitting device 3 will be described based on some examples, comparative examples, and reference examples. However, the present invention is not limited to these examples, and various changes can be made without departing from the scope of the present invention.
 各実施例、各比較例、及び各参考例において、光触媒およびその光触媒活性の評価は以下の方法で行った。 In each Example, each Comparative Example, and each Reference Example, the photocatalyst and its photocatalytic activity were evaluated by the following method.
(光触媒の評価)
 <粉末X線回折測定>
 試料の結晶構造解析は、X線回折装置(リガク社製、MiniFlexII)を用いて行った。30kV及び15mAの条件で発生したCuKα線を炭素モノクロメーターで単色化し、10deg/minの走査速度で2θ=3~70degの範囲を測定した。
(Evaluation of photocatalyst)
<Powder X-ray diffraction measurement>
Crystal structure analysis of the sample was performed using an X-ray diffraction device (Rigaku Corporation, MiniFlex II). The CuKα rays generated under the conditions of 30 kV and 15 mA were made monochromatic using a carbon monochromator, and the range of 2θ=3 to 70 deg was measured at a scanning speed of 10 deg/min.
 <紫外可視分光測定>
 試料の光吸収特性は、紫外可視分光光度計(日本分光社製、V-650)を用いて評価した。標準反射板(BaSO)を参照として積分球を用いて測定を行い、走査範囲200~800nm、走査速度1000nm/min、サンプリング間隔0.5nmの条件にて試料粉末の紫外可視拡散反射スペクトルを測定した。
<UV-visible spectroscopy measurement>
The light absorption properties of the samples were evaluated using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, V-650). Measurement was performed using an integrating sphere using a standard reflector (BaSO 4 ) as a reference, and the UV-visible diffuse reflectance spectrum of the sample powder was measured under the conditions of a scanning range of 200 to 800 nm, a scanning speed of 1000 nm/min, and a sampling interval of 0.5 nm. did.
 <形状観察>
 粉末試料の粒子形状は、透過型電子顕微鏡(日本電子社製、JEM-2100F)を使用して観察した。マイクログリッド貼付メッシュに試料を固定化して観察を行った。
<Shape observation>
The particle shape of the powder sample was observed using a transmission electron microscope (manufactured by JEOL Ltd., JEM-2100F). The sample was immobilized on a mesh attached to a microgrid and observed.
(光触媒活性の評価)
 <評価用装置>
 図6は、各実施例、各比較例、及び各参考例に用いた評価用装置303(水分解装置)の構成図である。評価用装置303は、光触媒を利用した光触媒パネル307と、光触媒パネル307及び反応溶液を収容し、水の分解反応を行う下方照射型反応セル51(反応容器)と、を備える。
(Evaluation of photocatalytic activity)
<Evaluation device>
FIG. 6 is a configuration diagram of the evaluation device 303 (water splitting device) used in each Example, each Comparative Example, and each Reference Example. The evaluation device 303 includes a photocatalyst panel 307 that uses a photocatalyst, and a downward irradiation type reaction cell 51 (reaction container) that accommodates the photocatalyst panel 307 and a reaction solution and performs a water decomposition reaction.
 評価用装置303は、以下で特に言及する事項を除いて、上述の水分解装置3と同様の構成を有する。光触媒パネル307は、光透過性を有する基板311と、基板311の下面311A(第1の面)に重なるように形成された酸素生成用光触媒層313と、基板311において下面311Aと対をなす上面311B(第2の面)に重なるように形成された水素生成用光触媒層314と、を含む。光触媒パネル307は、スペーサー53によって支持される。評価用装置303では、太陽光の代わりにキセノンランプの光を用いた。 The evaluation device 303 has the same configuration as the water splitting device 3 described above, except for matters specifically mentioned below. The photocatalyst panel 307 includes a light-transmitting substrate 311, an oxygen-generating photocatalytic layer 313 formed so as to overlap a lower surface 311A (first surface) of the substrate 311, and an upper surface of the substrate 311 that is paired with the lower surface 311A. A photocatalyst layer 314 for hydrogen generation formed so as to overlap 311B (second surface). Photocatalyst panel 307 is supported by spacer 53. In the evaluation device 303, light from a xenon lamp was used instead of sunlight.
 評価用装置303は、次のように準備した。パイレックス(登録商標)製窓(直径7.0cmの円形)付きの下方照射型の反応セル51に各種反応溶液40mLを加えた後、各実施例、各比較例、及び各参考例の光触媒パネル307をパイレックス製窓に対して水平に静置した。光触媒パネル307における光触媒無塗布部分にカーボンテープで作製したスペーサー53を四方に取り付け、光触媒パネル307の下面をセル51の底面から離間させた。反応溶液および光触媒パネル307を入れた反応セル51を閉鎖循環系評価装置に装着し、真空排気を行った後、Arガスを導入した。 The evaluation device 303 was prepared as follows. After adding 40 mL of various reaction solutions to a downward irradiation type reaction cell 51 with a Pyrex (registered trademark) window (circular with a diameter of 7.0 cm), photocatalyst panels 307 of each example, each comparative example, and each reference example were added. was placed horizontally against a Pyrex window. Spacers 53 made of carbon tape were attached to all sides of the photocatalyst-uncoated portion of the photocatalyst panel 307 to separate the bottom surface of the photocatalyst panel 307 from the bottom surface of the cell 51. The reaction cell 51 containing the reaction solution and the photocatalyst panel 307 was attached to a closed circulation system evaluation device, and after evacuation was performed, Ar gas was introduced.
 <水分解反応及びその評価>
 評価用装置303での水分解反応は、次のように実施した。CM-1コールドミラー及びカットオフフィルター(L42、λ>400nm)を備えた300Wのキセノンランプを用いて、可視光を反応セル51のパイレックス製窓側から垂直に(図6の下側から上側に向けて)照射した。キセノンランプ(光照射口)と照射窓との距離は10mm以下であった。反応溶液の温度が288Kに保たれるように冷却水循環装置で反応溶液の温度を制御した。生成ガスの量は、キャリアガスとしてArガスを使用し、ガスクロマトグラフ分析装置(島津製作所社製、GC-8A、Molecular sieve 5Aカラム)で分析及び測定した。
<Water splitting reaction and its evaluation>
The water splitting reaction in the evaluation device 303 was carried out as follows. Visible light was directed vertically from the Pyrex window side of the reaction cell 51 (from the bottom to the top in Figure 6) using a 300W xenon lamp with a CM-1 cold mirror and a cutoff filter (L42, λ>400nm). ) irradiated. The distance between the xenon lamp (light irradiation port) and the irradiation window was 10 mm or less. The temperature of the reaction solution was controlled by a cooling water circulation device so that the temperature of the reaction solution was maintained at 288K. The amount of generated gas was analyzed and measured using a gas chromatograph analyzer (manufactured by Shimadzu Corporation, GC-8A, Molecular sieve 5A column) using Ar gas as a carrier gas.
<酸素生成用光触媒粉末の調製>
 酸素生成用光触媒層313に用いられる酸素生成用光触媒粉末は、次のように調製した。
<Preparation of photocatalyst powder for oxygen generation>
The oxygen-generating photocatalyst powder used for the oxygen-generating photocatalyst layer 313 was prepared as follows.
 《Fe-H-Cs-WOの合成》
 WOの粉末を分級し、粗大粒子を採取した。分級及び採取した1gのWOを蒸発皿に加え、CsCl水溶液(0.1M)950μLを滴下した後、水分を蒸発させて試料を乾固させた。CsCl水溶液の滴下量は、WOに対してCsが2.1mol%となるように調節した。蒸発皿のまま試料を電気炉に入れて空気中500℃で30分間焼成した。FeSO水溶液(濃度50mM)を含むHSO水溶液(濃度1M)50mLに回収した試料0.5gを懸濁させ、30分間撹拌した。その後、生成物を吸引ろ過で回収し、超純水で洗浄後、室温で乾燥させた。これにより、Fe-H-Cs-WOの粉末を得た。
《Synthesis of Fe-H-Cs-WO 3
The WO 3 powder was classified and coarse particles were collected. 1 g of the classified and collected WO 3 was added to an evaporating dish, and 950 μL of a CsCl aqueous solution (0.1 M) was added dropwise, and the water was evaporated to dry the sample. The amount of CsCl aqueous solution added dropwise was adjusted so that Cs was 2.1 mol % relative to WO 3 . The sample, still in the evaporating dish, was placed in an electric furnace and fired in air at 500°C for 30 minutes. 0.5 g of the collected sample was suspended in 50 mL of an aqueous H 2 SO 4 solution (concentration 1M) containing an aqueous FeSO 4 solution (concentration 50 mM) and stirred for 30 minutes. Thereafter, the product was collected by suction filtration, washed with ultrapure water, and then dried at room temperature. As a result, a powder of Fe-H-Cs-WO 3 was obtained.
 <水素生成用光触媒粉末の調製>
 水素生成用光触媒層314に用いられる水素生成用光触媒粉末は、次のように調製した。
<Preparation of photocatalyst powder for hydrogen generation>
The photocatalyst powder for hydrogen generation used in the photocatalyst layer 314 for hydrogen generation was prepared as follows.
 《ZrO/TaONの合成》
 原料として、Taの粉末試薬及びZrO(NO・2HOの粉末試薬を用いた。Ta及びZrO(NO・2HOは、モル比でZr/Ta=0.1となるように秤量した。これらの粉末試料と少量のメタノールとを乳鉢に入れて混合し、混合粉末を得た。混合粉末をアルミナるつぼに充填し、70℃で1時間乾燥させた後、空気中800℃で2時間焼成した。これにより、ZrOで修飾されたTaONを得た。
《Synthesis of ZrO 2 /TaON》
As raw materials, a powder reagent of Ta 2 O 5 and a powder reagent of ZrO(NO 3 ) 2.2H 2 O were used. Ta2O5 and ZrO ( NO3 ) 2.2H2O were weighed so that the molar ratio of Zr/Ta = 0.1. These powder samples and a small amount of methanol were placed in a mortar and mixed to obtain a mixed powder. The mixed powder was filled into an alumina crucible, dried at 70°C for 1 hour, and then fired in air at 800°C for 2 hours. Thereby, TaON modified with ZrO 2 was obtained.
 ZrOで修飾されたTaONをアルミナボートに充填し、石英管内に設置した。石英管を管状炉に接続し、12mL/minのアンモニア気流中にてZrOで修飾されたTaONを加熱した。10℃/minの速度で850℃までアルミナボートを昇温し、その温度で15時間保持した。15時間の保持終了後、室温まで生成物を自然冷却した。アルミナボートを炉から取り出し、ZrOで修飾されたTaONの粉末を回収した。ZrOで修飾されたTaONの粒子の平均粒径は、200~500nmの範囲にあった。 TaON modified with ZrO 2 was filled into an alumina boat and placed inside a quartz tube. The quartz tube was connected to a tube furnace, and the ZrO 2 modified TaON was heated in a 12 mL/min ammonia flow. The alumina boat was heated to 850°C at a rate of 10°C/min and held at that temperature for 15 hours. After holding for 15 hours, the product was naturally cooled to room temperature. The alumina boat was taken out of the furnace and the ZrO 2 modified TaON powder was collected. The average particle size of the particles of ZrO 2 modified TaON was in the range of 200-500 nm.
 なお、本明細書において、用語「ZrO/TaON」は、ZrOで修飾されたTaONを意味する。ZrOは、Taの窒化過程におけるTaの還元種(TaIV)の生成を抑制する。TaIVは、電子と正孔との再結合中心となり、光触媒の活性を低下させる。TaONの粒子の表面をZrOで修飾することによって、TaIVの生成が抑制され、これにより、より光触媒活性の高いTaON粒子が得られる。 In addition, in this specification, the term " ZrO2 /TaON" means TaON modified with ZrO2 . ZrO 2 suppresses the generation of reduced species of Ta (Ta IV ) during the nitriding process of Ta 2 O 5 . Ta IV serves as a recombination center for electrons and holes and reduces the activity of the photocatalyst. By modifying the surface of TaON particles with ZrO 2 , the generation of Ta IV is suppressed, thereby obtaining TaON particles with higher photocatalytic activity.
 《InHCFナノ粒子の合成》
 InCl・4HO(30mmol)を超純水に溶解させて30mLの溶液を得た。K[Fe(CN)]・3HO(30mmol)を超純水に溶解させて60mLの溶液を得た。これらの溶液を混合して5分間激しく撹拌した。得られた沈殿物を超純水で3回洗浄し、メタノールで1回洗浄し、遠心分離を行った。その後、沈殿物を35℃の真空乾燥機で乾燥させた。これにより、インジウム(III)ヘキサシアノフェレートの粉末を得た。
《Synthesis of InHCF nanoparticles》
InCl 3.4H 2 O (30 mmol) was dissolved in ultrapure water to obtain a 30 mL solution. K 4 [Fe(CN) 6 ].3H 2 O (30 mmol) was dissolved in ultrapure water to obtain a 60 mL solution. These solutions were mixed and stirred vigorously for 5 minutes. The obtained precipitate was washed three times with ultrapure water, once with methanol, and centrifuged. Thereafter, the precipitate was dried in a vacuum dryer at 35°C. As a result, a powder of indium (III) hexacyanoferrate was obtained.
 沈殿物の粉末X線回折測定及び赤外分光測定から、インジウム(III)ヘキサシアノフェレート(KIn[Fe(CN)・nHO、0≦x≦1、0.75≦y≦1、0≦n)が得られたことを確認した。なお、本明細書において、用語「InHCF」は、インジウム(III)ヘキサシアノフェレートを意味する。 Powder X-ray diffraction and infrared spectroscopy measurements of the precipitate revealed that indium (III) hexacyanoferrate (K x In[Fe(CN) 6 ] y ·nH 2 O, 0≦x≦1, 0.75≦y ≦1, 0≦n). In addition, in this specification, the term "InHCF" means indium (III) hexacyanoferrate.
 透過型電子顕微鏡による観察から、InHCFは80nm以下の平均粒径を有するナノ粒子であることを確認した。 From observation using a transmission electron microscope, it was confirmed that InHCF was a nanoparticle having an average particle size of 80 nm or less.
 《ZrO/TaONへの助触媒の担持》
 以下の方法によって、RhCr2-x(還元助触媒)及びInHCF(酸化助触媒)をZrO/TaONに逐次的に担持させた。
《Supporting co-catalyst on ZrO 2 /TaON》
Rh x Cr 2-x O 3 (reduction co-catalyst) and InHCF (oxidation co-catalyst) were sequentially supported on ZrO 2 /TaON by the following method.
 NaRhCl・nHO及びKCrOが溶解した150mLのメタノール水溶液にZrO/TaONの粉末を分散させて分散液を得た。メタノール水溶液は、メタノールの濃度が20vol%となり、Rhの量がTaONに対して1質量%となり、Crの量がTaONに対して1.5質量%となるように調製した。 ZrO 2 /TaON powder was dispersed in 150 mL of an aqueous methanol solution in which Na 3 RhCl 6 .nH 2 O and K 2 CrO 4 were dissolved to obtain a dispersion. The methanol aqueous solution was prepared such that the concentration of methanol was 20 vol%, the amount of Rh was 1% by mass relative to TaON, and the amount of Cr was 1.5% by mass relative to TaON.
 光照射前において、分散液の溶存酸素を200mL/minの流量のArバブリングで除去した。光照射中も50mL/minの流量でArバブリングを続けた。L-42カットオフフィルター及びCM-1コールドミラーを装着した300Wのキセノンランプを用いて分散液に可視光(λ>400nm)を6時間照射した。光照射後、吸引濾過にて粉末を回収し、超純水で洗浄後、35℃で一晩真空乾燥させた。以後、この試料を「RhCr2-x/ZrO/TaON」と表記する。 Before light irradiation, dissolved oxygen in the dispersion was removed by Ar bubbling at a flow rate of 200 mL/min. Ar bubbling was continued at a flow rate of 50 mL/min during light irradiation. The dispersion was irradiated with visible light (λ>400 nm) for 6 hours using a 300 W xenon lamp equipped with an L-42 cutoff filter and a CM-1 cold mirror. After light irradiation, the powder was collected by suction filtration, washed with ultrapure water, and vacuum dried at 35° C. overnight. Hereinafter, this sample will be referred to as "Rh x Cr 2-x O 3 /ZrO 2 /TaON".
 次に、RhCr2-x/ZrO/TaONをInHCFが分散した少量の水に懸濁させて懸濁液を得た。InHCF中のFeの量がTaONに対して10mol%となるようにInHCFの量を調節した。懸濁液は、30秒間の超音波処理を行うことで均一に混合した。その後、懸濁液から水分を蒸発させて試料を乾固させた。20mL/minの流量のAr気流中、100℃で試料を1時間焼成した。これにより、後述する実施例1の水素発生用光触媒であるInHCF/RhCr2-x/ZrO/TaONを得た。 Next, Rh x Cr 2-x O 3 /ZrO 2 /TaON was suspended in a small amount of water in which InHCF was dispersed to obtain a suspension. The amount of InHCF was adjusted so that the amount of Fe in InHCF was 10 mol% relative to TaON. The suspension was uniformly mixed by ultrasonication for 30 seconds. Thereafter, water was evaporated from the suspension to dry the sample. The sample was fired at 100° C. for 1 hour in an Ar flow at a flow rate of 20 mL/min. As a result, InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON, which is a photocatalyst for hydrogen generation in Example 1 to be described later, was obtained.
 《SrTiO:Rhの合成》
 原料としてSrCOの粉末試薬、TiOの粉末試薬、及びRhの粉末試薬を用いた。粉末試薬は、モル比でSr:Ti:Rh=1.07:1.00:0.01となるように秤量した。これらの粉末試薬と少量のメタノールとを乳鉢に入れて混合し、混合粉末を得た。混合粉末をアルミナるつぼに充填し、空気中600℃で2時間焼成した後、さらに空気中1000℃で10時間焼成した。これにより、RhがドープされたSrTiOを得た。なお、本明細書において、用語「SrTiO:Rh」は、RhがドープされたSrTiOを意味する。
《Synthesis of SrTiO 3 :Rh》
A SrCO 3 powder reagent, a TiO 2 powder reagent, and a Rh 2 O 3 powder reagent were used as raw materials. The powder reagent was weighed so that the molar ratio of Sr:Ti:Rh=1.07:1.00:0.01. These powder reagents and a small amount of methanol were placed in a mortar and mixed to obtain a mixed powder. The mixed powder was filled into an alumina crucible and fired in air at 600°C for 2 hours, and then further fired in air at 1000°C for 10 hours. As a result, Rh-doped SrTiO 3 was obtained. Note that in this specification, the term "SrTiO 3 :Rh" means Rh-doped SrTiO 3 .
 《SrTiO:RhへのRu助触媒の担持》
 以下の方法によって、Ru助触媒をZrO/TaONに逐次的に担持させた。RuCl・nHOが溶解した150mLのメタノール水溶液にSrTiO:Rhの粉末を分散させて分散液を得た。メタノール水溶液は、メタノールの濃度が20vol%となり、Ruの量がTaONに対して0.7質量%となるように調製した。
《SrTiO 3 :Supporting Ru co-catalyst on Rh》
The Ru promoter was sequentially supported on ZrO 2 /TaON by the following method. A dispersion liquid was obtained by dispersing SrTiO 3 :Rh powder in 150 mL of an aqueous methanol solution in which RuCl 3 .nH 2 O was dissolved. The methanol aqueous solution was prepared such that the methanol concentration was 20 vol % and the Ru amount was 0.7 mass % based on TaON.
 光照射前において、分散液の溶存酸素を200mL/minの流量のArバブリングで除去した。光照射中も50mL/minの流量でArバブリングを続けた。L-42カットオフフィルター及びCM-1コールドミラーを装着した300Wのキセノンランプを用いて分散液に可視光(λ>400nm)を6時間照射した。光照射後、吸引濾過にて粉末を回収し、超純水で洗浄後、35℃で一晩真空乾燥させた。以後、この試料を「Ru/SrTiO:Rh」と表記する。 Before light irradiation, dissolved oxygen in the dispersion was removed by Ar bubbling at a flow rate of 200 mL/min. Ar bubbling was continued at a flow rate of 50 mL/min during light irradiation. The dispersion was irradiated with visible light (λ>400 nm) for 6 hours using a 300 W xenon lamp equipped with an L-42 cutoff filter and a CM-1 cold mirror. After light irradiation, the powder was collected by suction filtration, washed with ultrapure water, and vacuum dried at 35° C. overnight. Hereinafter, this sample will be referred to as "Ru/SrTiO 3 :Rh."
 図7は、合成した各種半導体(ZrO/TaON、SrTiO:Rh、WO)の紫外可視拡散反射スペクトルを示す図である。図7において、縦軸は、クベルカ・ムンク変換によって得られた拡散反射率の値を示している。特に、ZrO/TaONでは、他の半導体と比べて吸収端波長がより長波長側に位置している。 FIG. 7 is a diagram showing the ultraviolet-visible diffuse reflection spectra of various synthesized semiconductors (ZrO 2 /TaON, SrTiO 3 :Rh, WO 3 ). In FIG. 7, the vertical axis indicates the value of the diffuse reflectance obtained by Kubelka-Munk transformation. In particular, in ZrO 2 /TaON, the absorption edge wavelength is located on the longer wavelength side compared to other semiconductors.
 次に、実施例1-5の詳細について説明する。 Next, details of Examples 1-5 will be explained.
[実施例1]
 まず、石英ガラス基板(3.8cm×5cm×厚さ1.0mm)上の片面に、酸素生成用光触媒としてBiVOを塗布した。塗布面積は11.4cm(3.8cm×3cm)とした。前駆体溶液として、Bi(NO・5HOを溶解させた酢酸溶液(1M)及び、VO(acac)を溶解させたメタノール溶液(0.15M)を調製した。これら2種類の溶液をモル比でBi/V=1となるように混合し、前駆体溶液を得た。この前駆体溶液を石英ガラス基板上に100μL滴下した後、750rpmで2分間スピンコートした。その後、500℃のホットプレートで30分間焼成した。前駆体溶液のスピンコート及びホットプレートでの焼成のサイクルを繰り返すことで、BiVOの堆積量を制御できる。実施例1においては、このサイクルを4回繰り返すことで2.5mgのBiVOを石英ガラス基板上に堆積させた。
[Example 1]
First, BiVO 4 was applied as a photocatalyst for oxygen generation onto one side of a quartz glass substrate (3.8 cm x 5 cm x thickness 1.0 mm). The coating area was 11.4 cm 2 (3.8 cm x 3 cm). As precursor solutions, an acetic acid solution (1M) in which Bi(NO 3 ) 3.5H 2 O was dissolved and a methanol solution (0.15M) in which VO(acac) 2 was dissolved were prepared. These two types of solutions were mixed at a molar ratio of Bi/V=1 to obtain a precursor solution. After dropping 100 μL of this precursor solution onto a quartz glass substrate, spin coating was performed at 750 rpm for 2 minutes. Thereafter, it was baked for 30 minutes on a hot plate at 500°C. The amount of BiVO 4 deposited can be controlled by repeating the cycle of spin coating the precursor solution and baking on a hot plate. In Example 1, this cycle was repeated four times to deposit 2.5 mg of BiVO 4 on the quartz glass substrate.
 図8は、実施例1のBiVOを堆積させたガラス基板の透過率(すなわち、光触媒パネルにおける水素生成触媒層側への透過率)を示す。図8に示すように、酸素生成用光触媒層313を形成した基板311の透過率については、酸素生成用光触媒層313に入射する光のうち500nm以上(少なくとも500~650nm)の範囲の波長領域において、少なくとも40%以上であるとよい。これにより、酸素生成用光触媒層313及び基板311を透過した可視光領域の光エネルギーを、水素生成用光触媒層314においてより効果的に利用することが可能となる。 FIG. 8 shows the transmittance of the glass substrate on which BiVO 4 of Example 1 was deposited (that is, the transmittance toward the hydrogen generation catalyst layer side in the photocatalyst panel). As shown in FIG. 8, the transmittance of the substrate 311 on which the oxygen generation photocatalyst layer 313 is formed is in the wavelength region of 500 nm or more (at least 500 to 650 nm) of the light incident on the oxygen generation photocatalyst layer 313. , preferably at least 40% or more. Thereby, the optical energy in the visible light range that has passed through the oxygen generation photocatalyst layer 313 and the substrate 311 can be used more effectively in the hydrogen generation photocatalyst layer 314.
 次に、BiVOを塗布した面とは反対の面に、水素生成用光触媒としてInHCF/RhCr2-x/ZrO/TaONを、塗布面積が11.4cm(3.8cm×3cm)、堆積量が6.6mgとなるように、以下の手順で塗布した。メノウ乳鉢を用いて、InHCF/RhCr2-x/ZrO/TaONを少量の超純水によく分散させた。上記のBiVOを塗布したガラス基板におけるBiVO塗布面とは反対の面にこの分散液を滴下し、ガラス棒で均一になるように塗り広げた。塗布後、室温にて乾燥させた。以後、この光触媒パネルを「InHCF/RhCr2-x/ZrO/TaON|ガラス|BiVO」と表記する。 Next, InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON was applied as a photocatalyst for hydrogen generation on the surface opposite to the surface coated with BiVO 4 , with a coating area of 11.4 cm 2 (3.8 cm x 3 cm), and the amount of deposition was 6.6 mg, according to the following procedure. Using an agate mortar, InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON was well dispersed in a small amount of ultrapure water. This dispersion liquid was dropped onto the surface opposite to the BiVO 4 -coated surface of the glass substrate coated with BiVO 4 and spread uniformly with a glass rod. After coating, it was dried at room temperature. Hereinafter, this photocatalyst panel will be referred to as "InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON|Glass|BiVO 4 ".
 実施例1の光触媒パネルであるInHCF/RhCr2-x/ZrO/TaON|ガラス|BiVOの水分解活性をFeCl水溶液中で評価した。評価方法は先に説明した通りである。FeCl水溶液におけるFe2+カチオン濃度は2mM、反応前(光照射前)のpHは2.3であった。 The water-splitting activity of the InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON|Glass|BiVO 4 photocatalyst panel of Example 1 was evaluated in an aqueous FeCl 2 solution. The evaluation method was as described above. The Fe 2+ cation concentration in the FeCl 2 aqueous solution was 2 mM, and the pH before reaction (before light irradiation) was 2.3.
[実施例2]
 実施例2では、実施例1と同じ方法によって光触媒パネルを作成した。FeCl水溶液における反応前のpHを2.5に変更したことを除き、実施例1と同じ方法によって実施例2の光触媒パネルの水分解活性を評価した。
[Example 2]
In Example 2, a photocatalyst panel was created using the same method as in Example 1. The water-splitting activity of the photocatalyst panel of Example 2 was evaluated by the same method as in Example 1, except that the pH before the reaction in the FeCl 2 aqueous solution was changed to 2.5.
[実施例3]
 実施例3では、実施例2と同じ方法によって光触媒パネルを作成した。反応溶液のFeCl水溶液をFe(NO水溶液に変更したことを除き、実施例1と同じ方法によって実施例3の光触媒パネルの水分解活性を評価した。
[Example 3]
In Example 3, a photocatalyst panel was created by the same method as in Example 2. The water-splitting activity of the photocatalyst panel of Example 3 was evaluated by the same method as in Example 1, except that the FeCl 2 aqueous solution in the reaction solution was changed to an Fe(NO 3 ) 3 aqueous solution.
[実施例4]
 まず、石英ガラス基板に酸素生成用光触媒としてBiVOを、実施例1と同じ方法によって塗布した。塗布面積は11.4cm(3.8cm×3cm)とした。塗布量は2.7mgであった。
[Example 4]
First, BiVO 4 was applied as a photocatalyst for oxygen generation onto a quartz glass substrate by the same method as in Example 1. The coating area was 11.4 cm 2 (3.8 cm x 3 cm). The amount applied was 2.7 mg.
 次に、BiVOを塗布した面とは反対の面に、水素生成用光触媒としてRu/SrTiO:Rhを、塗布面積が11.4cm(3.8cm×3cm)、堆積量が6.0mgとなるように、以下の手順で塗布した。メノウ乳鉢を用いて、Ru/SrTiO:Rhを少量の超純水によく分散させた。上記のBiVOを塗布したガラス基板におけるBiVO塗布面とは反対の面にこの分散液を滴下し、ガラス棒で均一になるように塗り広げた。塗布後、室温にて乾燥させた。以後、この光触媒パネルを「SrTiO|ガラス|BiVO」と表記する。 Next, Ru/SrTiO 3 :Rh was applied as a photocatalyst for hydrogen generation to the surface opposite to the surface coated with BiVO 4 , with a coating area of 11.4 cm 2 (3.8 cm x 3 cm) and a deposited amount of 6.0 mg. It was applied according to the following procedure. Ru/SrTiO 3 :Rh was well dispersed in a small amount of ultrapure water using an agate mortar. This dispersion liquid was dropped onto the surface opposite to the BiVO 4 -coated surface of the glass substrate coated with BiVO 4 and spread uniformly with a glass rod. After coating, it was dried at room temperature. Hereinafter, this photocatalyst panel will be referred to as "SrTiO 3 |Glass|BiVO 4 ".
 実施例1と同じ方法によって実施例4の光触媒パネルであるSrTiO|ガラス|BiVOの水分解活性を評価した。 The water splitting activity of the photocatalyst panel of Example 4, SrTiO 3 |Glass|BiVO 4 , was evaluated by the same method as in Example 1.
[実施例5]
 まず、石英ガラス基板に酸素生成用光触媒としてFe-H-Cs-WOを、塗布面積が11.4cm(3.8cm×3cm)、堆積量が6.0mgとなるように、以下の手順で塗布した。メノウ乳鉢を用いて、Ru/SrTiO:Rhを少量の超純水によく分散させた。石英ガラス基板上にこの分散液を滴下し、ガラス棒で均一になるように塗り広げた。塗布後、室温にて乾燥させた。
[Example 5]
First, apply Fe-H-Cs-WO 3 as a photocatalyst for oxygen generation to a quartz glass substrate using the following procedure so that the coating area is 11.4 cm 2 (3.8 cm x 3 cm) and the deposit amount is 6.0 mg. It was coated with. Ru/SrTiO 3 :Rh was well dispersed in a small amount of ultrapure water using an agate mortar. This dispersion was dropped onto a quartz glass substrate and spread uniformly with a glass rod. After coating, it was dried at room temperature.
 次に、Fe-H-Cs-WOを塗布した面とは反対の面に、水素生成用光触媒としてInHCF/RhCr2-x/ZrO/TaONを、実施例1と同じ方法によって塗布した。塗布面積は11.4cm(3.8cm×3cm)、堆積量は6.0mgであった。以後、この光触媒パネルを「InHCF/RhCr2-x/ZrO/TaON|ガラス|Fe-H-Cs-WO」と表記する。 Next, InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON was applied as a photocatalyst for hydrogen generation on the surface opposite to the surface coated with Fe-H-Cs-WO 3 using the same method as in Example 1. It was applied by. The coating area was 11.4 cm 2 (3.8 cm x 3 cm), and the amount deposited was 6.0 mg. Hereinafter, this photocatalyst panel will be referred to as "InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON|Glass|Fe-H-Cs-WO 3. "
 実施例5の光触媒パネルであるInHCF/RhCr2-x/ZrO/TaON|ガラス|Fe-H-Cs-WOの水分解活性をFeCl水溶液中で評価した。FeCl水溶液におけるFe2+カチオン濃度は2mM、反応前(光照射前)のpHは2.5であった。 The water splitting activity of InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON|Glass|Fe-H-Cs-WO 3 , which is the photocatalyst panel of Example 5, was evaluated in an aqueous FeCl 2 solution. The Fe 2+ cation concentration in the FeCl 2 aqueous solution was 2 mM, and the pH before reaction (before light irradiation) was 2.5.
 次に、比較例1-8及び各参考例1、2の詳細について説明する。 Next, details of Comparative Examples 1-8 and Reference Examples 1 and 2 will be explained.
[比較例1]
 実施例1と同じ方法にて、ガラス基板の片面に、酸素生成用光触媒としてBiVOを塗布した。塗布量は1.2mgであった。裏面には何も塗布しなかった。以後、この光触媒パネルを「無|ガラス|BiVO(1)」と表記する。図9は、得られた無|ガラス|BiVO(1)の透過率(すなわち、光触媒パネルの透過率)を示す。
[Comparative example 1]
In the same manner as in Example 1, BiVO 4 was applied as a photocatalyst for oxygen generation onto one side of a glass substrate. The amount applied was 1.2 mg. Nothing was applied to the back side. Hereinafter, this photocatalyst panel will be referred to as "No | Glass | BiVO 4 (1)." FIG. 9 shows the transmittance of the obtained free|glass|BiVO 4 (1) (ie, the transmittance of the photocatalyst panel).
 比較例1の光触媒パネルである無|ガラス|BiVO(1)の酸素生成活性をFeCl水溶液中で評価した。評価方法は先に説明した通りである。FeCl水溶液におけるFe2+カチオン濃度は2mM、反応前(光照射前)のpHは2.5であった。 The oxygen production activity of the photocatalytic panel of Comparative Example 1, ie, the non-glass |BiVO 4 (1), was evaluated in an aqueous FeCl 3 solution. The evaluation method was as described above. The Fe 2+ cation concentration in the FeCl 3 aqueous solution was 2 mM, and the pH before reaction (before light irradiation) was 2.5.
[比較例2]
 実施例1と同じ方法にて、ガラス基板の片面に、酸素生成用光触媒としてBiVOを塗布した。塗布量は2.4mgであった。裏面には何も塗布しなかった。以後、この光触媒パネルを「無|ガラス|BiVO(2)」と表記する。図10は、得られた無|ガラス|BiVO(2)の透過率(すなわち、光触媒パネルの透過率)を示す。
[Comparative example 2]
In the same manner as in Example 1, BiVO 4 was applied as a photocatalyst for oxygen generation onto one side of a glass substrate. The amount applied was 2.4 mg. Nothing was applied to the back side. Hereinafter, this photocatalyst panel will be referred to as "No | Glass | BiVO 4 (2)." FIG. 10 shows the transmittance of the obtained free|glass|BiVO 4 (2) (ie, the transmittance of the photocatalyst panel).
 比較例2の光触媒パネルである無|ガラス|BiVO(2)の酸素生成活性をFeCl水溶液中で評価した。評価方法は先に説明した通りである。FeCl水溶液におけるFe2+カチオン濃度は2mM、反応前(光照射前)のpHは2.5であった。 The oxygen production activity of the photocatalytic panel of Comparative Example 2, ie, non-glass |BiVO 4 (2), was evaluated in an aqueous FeCl 3 solution. The evaluation method was as described above. The Fe 2+ cation concentration in the FeCl 3 aqueous solution was 2 mM, and the pH before reaction (before light irradiation) was 2.5.
[比較例3]
 実施例1と同じ方法にて、ガラス基板の片面に、酸素生成用光触媒としてBiVOを塗布した。塗布量は3.6mgであった。裏面には何も塗布しなかった。以後、この光触媒パネルを「無|ガラス|BiVO(3)」と表記する。図11は、得られた無|ガラス|BiVO(3)の透過率(すなわち、光触媒パネルの透過率)を示す。
[Comparative example 3]
In the same manner as in Example 1, BiVO 4 was applied as a photocatalyst for oxygen generation onto one side of a glass substrate. The amount applied was 3.6 mg. Nothing was applied to the back side. Hereinafter, this photocatalyst panel will be referred to as "No | Glass | BiVO 4 (3)." FIG. 11 shows the transmittance of the obtained free|glass|BiVO 4 (3) (ie, the transmittance of the photocatalyst panel).
 比較例3の光触媒パネルである無|ガラス|BiVO(3)の酸素生成活性をFeCl水溶液中で評価した。評価方法は先に説明した通りである。FeCl水溶液におけるFe2+カチオン濃度は2mM、反応前(光照射前)のpHは2.5であった。 The oxygen production activity of the photocatalytic panel of Comparative Example 3, ie, glass-free |BiVO 4 (3), was evaluated in an aqueous FeCl 3 solution. The evaluation method was as described above. The Fe 2+ cation concentration in the FeCl 3 aqueous solution was 2 mM, and the pH before reaction (before light irradiation) was 2.5.
[比較例4]
 実施例1と同じ方法にて、ガラス基板の片面に、水素生成用光触媒としてInHCF/RhCr2-x/ZrO/TaONを塗布した。塗布量は6.5mgとした。反対の面には何も塗布しなかった。以後、この光触媒パネルを「InHCF/RhCr2-x/ZrO/TaON|ガラス|無」と表記する。
[Comparative example 4]
InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON was coated on one side of a glass substrate as a photocatalyst for hydrogen generation using the same method as in Example 1. The amount applied was 6.5 mg. Nothing was applied to the opposite side. Hereinafter, this photocatalyst panel will be referred to as "InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON|Glass|None."
 比較例4の光触媒パネルであるInHCF/RhCr2-x/ZrO/TaON|ガラス|無の水素生成活性をFeCl水溶液中で評価した。評価方法は先に説明した通りである。FeCl水溶液におけるFe2+カチオン濃度は2mM、反応前(光照射前)のpHは2.5であった。 The hydrogen production activity of the InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON|Glass|None photocatalyst panel of Comparative Example 4 was evaluated in an aqueous FeCl 2 solution. The evaluation method was as described above. The Fe 2+ cation concentration in the FeCl 2 aqueous solution was 2 mM, and the pH before reaction (before light irradiation) was 2.5.
[比較例5]
 比較例5の光触媒パネルとして、比較例4の光触媒パネルと同じ方法によって光触媒パネルを作成した。FeCl水溶液における反応前のpHを2.3に変更したことを除き、比較例4と同じ方法によって比較例5の光触媒パネルの水分解活性を評価した。
[Comparative example 5]
As a photocatalyst panel of Comparative Example 5, a photocatalyst panel was created by the same method as the photocatalyst panel of Comparative Example 4. The water-splitting activity of the photocatalyst panel of Comparative Example 5 was evaluated by the same method as Comparative Example 4, except that the pH before the reaction in the FeCl 2 aqueous solution was changed to 2.3.
[比較例6]
 比較例6の光触媒パネルとして、比較例4の光触媒パネルと同じ方法によって光触媒パネルを作成した。FeCl水溶液における反応前のpHを2.1に変更したことを除き、比較例4と同じ方法によって比較例6の光触媒パネルの水分解活性を評価した。
[Comparative example 6]
As a photocatalyst panel of Comparative Example 6, a photocatalyst panel was created by the same method as the photocatalyst panel of Comparative Example 4. The water-splitting activity of the photocatalyst panel of Comparative Example 6 was evaluated by the same method as Comparative Example 4, except that the pH of the FeCl 2 aqueous solution before the reaction was changed to 2.1.
[比較例7]
 比較例7の光触媒パネルとして、実施例2の光触媒パネルと同じ方法によって光触媒パネルを作成した。水分解活性を評価するための反応溶液に、レドックス媒体源であるFeClを添加しなかったことを除き、実施例2と同じ方法によって比較例7の光触媒パネルの水分解活性を評価した。
[Comparative Example 7]
As a photocatalyst panel of Comparative Example 7, a photocatalyst panel was created by the same method as the photocatalyst panel of Example 2. The water-splitting activity of the photocatalyst panel of Comparative Example 7 was evaluated in the same manner as in Example 2, except that FeCl 2 as a redox medium source was not added to the reaction solution for evaluating the water-splitting activity.
[比較例8]
 実施例1と同様の手順にて、アルミナ基板(3.8cm×5cm×厚さ1.0mm)の片面に、酸素生成用光触媒としてBiVOを堆積させた。塗布面積は11.4cm(3.8cm×3cm)とした。塗布量は2.9mgであった。図12は、光触媒を塗布していないアルミナ基板およびガラス基板の透過率を示す。図12に示すように、アルミナ基板はガラス基板よりも光透過性が低い。
[Comparative example 8]
BiVO 4 was deposited as a photocatalyst for oxygen generation on one side of an alumina substrate (3.8 cm x 5 cm x thickness 1.0 mm) using the same procedure as in Example 1. The coating area was 11.4 cm 2 (3.8 cm x 3 cm). The amount applied was 2.9 mg. FIG. 12 shows the transmittance of an alumina substrate and a glass substrate not coated with a photocatalyst. As shown in FIG. 12, the alumina substrate has lower light transmittance than the glass substrate.
 次に、実施例1と同じ方法にて、BiVOを塗布した面とは反対の面に、水素生成用光触媒としてInHCF/RhCr2-x/ZrO/TaONを塗布した。塗布面積が15cm(3cm×5cm)、堆積量が5.7mgとなった。以後、この光触媒パネルを「InHCF/RhCr2-x/ZrO/TaON|アルミナ|BiVO」と表記する。 Next, in the same manner as in Example 1, InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON was applied as a photocatalyst for hydrogen generation on the opposite side to the side on which BiVO 4 was applied. The coating area was 15 cm 2 (3 cm x 5 cm), and the amount deposited was 5.7 mg. Hereinafter, this photocatalyst panel will be referred to as "InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON|Alumina|BiVO 4 ".
 比較例8の光触媒パネルであるInHCF/RhCr2-x/ZrO/TaON|アルミナ|BiVOの水素生成活性をFeCl水溶液中で評価した。評価方法は先に説明した通りである。FeCl水溶液におけるFe2+カチオン濃度は2mM、反応前(光照射前)のpHは2.3であった。 The hydrogen production activity of the InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON|alumina|BiVO 4 photocatalyst panel of Comparative Example 8 was evaluated in an aqueous FeCl 2 solution. The evaluation method was as described above. The Fe 2+ cation concentration in the FeCl 2 aqueous solution was 2 mM, and the pH before reaction (before light irradiation) was 2.3.
[参考例1]
 参考例1の光触媒パネルとして実施例2の光触媒パネルと同じ方法によって光触媒パネルを作成した。反応溶液のFeCl水溶液をFeSO水溶液に変更したことを除き、実施例2と同じ方法によって参考例1の光触媒パネルの水分解活性を評価した。
[Reference example 1]
A photocatalyst panel of Reference Example 1 was created by the same method as the photocatalyst panel of Example 2. The water-splitting activity of the photocatalyst panel of Reference Example 1 was evaluated by the same method as in Example 2, except that the reaction solution of FeCl 2 aqueous solution was changed to FeSO 4 aqueous solution.
[参考例2]
 参考例2の光触媒パネルとして実施例2の光触媒パネルと同じ方法によって光触媒パネルを作成した。反応溶液のFeCl水溶液をFe(ClO水溶液に変更したことを除き、実施例2と同じ方法によって参考例2の光触媒パネルの水分解活性を評価した。
[Reference example 2]
A photocatalyst panel of Reference Example 2 was created by the same method as the photocatalyst panel of Example 2. The water-splitting activity of the photocatalyst panel of Reference Example 2 was evaluated in the same manner as in Example 2, except that the FeCl 2 aqueous solution in the reaction solution was changed to an Fe(ClO 4 ) 2 aqueous solution.
 上述の実施例1-5、比較例1-8、及び参考例1、2に用いられた光触媒パネルの構成およびレドックス源を表2にまとめた。表2では、各実施例、各比較例、及び各参考例における酸素生成用光触媒および水素生成用光触媒に関する記載を簡略化して示しているが、それらの詳細については上述の通りである。 The configurations and redox sources of the photocatalyst panels used in Examples 1-5, Comparative Examples 1-8, and Reference Examples 1 and 2 described above are summarized in Table 2. Table 2 shows a simplified description of the oxygen-generating photocatalyst and hydrogen-generating photocatalyst in each Example, each Comparative Example, and each Reference Example, and the details thereof are as described above.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上述の実施例1-5、比較例1-8、及び参考例1、2による水分解反応の結果(水素および酸素の生成速度)及び反応溶液の初期pHを表3にまとめた。表3において、実施例1-5の気体生成速度(水素生成速度、酸素生成速度)は、水素生成速度と酸素生成速度との比が約2:1(すなわち、水の完全分解に相当する化学量論比)になったときの値である。また、比較例1-8、及び参考例1、2の気体生成速度は、光照射の開始時から1時間が経過した時点までに生成した気体の量に基づくものである。 Table 3 summarizes the results of the water splitting reaction (hydrogen and oxygen production rate) and the initial pH of the reaction solution in Examples 1-5, Comparative Examples 1-8, and Reference Examples 1 and 2 described above. In Table 3, the gas production rates (hydrogen production rate, oxygen production rate) of Examples 1-5 show that the ratio of the hydrogen production rate to the oxygen production rate is approximately 2:1 (that is, the gas production rate corresponds to the complete decomposition of water). stoichiometric ratio). Further, the gas generation rate in Comparative Examples 1-8 and Reference Examples 1 and 2 is based on the amount of gas generated from the start of light irradiation to the time point when one hour has passed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(1)水素生成用光触媒および酸素生成用光触媒の必要性
 表3に示すように、実施例1(水素生成用光触媒および酸素生成用光触媒を含む光触媒パネル)では、水素と酸素の同時生成が確認された。図13は、実施例1における水分解反応の経時変化を示すグラフである。図13では、水素生成速度、酸素生成速度、及びそれらの比(酸素生成速度/水素生成速度)の経時変化が示されている。
(1) Necessity of a photocatalyst for hydrogen production and a photocatalyst for oxygen production As shown in Table 3, simultaneous production of hydrogen and oxygen was confirmed in Example 1 (photocatalyst panel containing a photocatalyst for hydrogen production and a photocatalyst for oxygen production). It was done. FIG. 13 is a graph showing changes over time in the water splitting reaction in Example 1. FIG. 13 shows changes over time in the hydrogen production rate, oxygen production rate, and their ratio (oxygen production rate/hydrogen production rate).
 実施例1では、光照射時間が6.0hr経過した後の水素生成量は、量論量(40μmol)を超えた。また、実施例1では、最終的には水素生成速度に対する酸素生成速度の比は0.5(水の完全分解に相当する化学量論比)に漸近した。これらの結果は、上側の水素生成用光触媒層314における水素生成用光触媒が、Fe2+を酸化してFe3+を生成しながら水素を発生し、下側の酸素生成用光触媒層313における酸素生成用光触媒が、Fe3+を還元してFe2+を生成しながら酸素を発生したことを示す。すなわち、実施例1では、Zスキーム機構によって光触媒水分解が進行していることが示された。 In Example 1, the amount of hydrogen produced after 6.0 hr of light irradiation time exceeded the stoichiometric amount (40 μmol). Further, in Example 1, the ratio of the oxygen production rate to the hydrogen production rate finally approached 0.5 (stoichiometric ratio corresponding to complete decomposition of water). These results indicate that the hydrogen generation photocatalyst in the upper hydrogen generation photocatalyst layer 314 generates hydrogen while oxidizing Fe 2+ to generate Fe 3+ , and the oxygen generation photocatalyst in the lower oxygen generation photocatalyst layer 313 generates hydrogen. This shows that the photocatalyst generated oxygen while reducing Fe 3+ to generate Fe 2+ . That is, in Example 1, it was shown that photocatalytic water splitting progressed by the Z scheme mechanism.
 比較例1-3(水素生成用光触媒を含まない光触媒パネル)では、水素の発生を確認できなかった。また、比較例4-6(酸素生成用光触媒を含まない光触媒パネル)では、酸素の発生を確認できなかった。これにより、Zスキーム型水分解には両光触媒が必要であることがわかる。 In Comparative Example 1-3 (photocatalyst panel not containing a photocatalyst for hydrogen generation), no hydrogen generation could be confirmed. Furthermore, in Comparative Example 4-6 (a photocatalyst panel not containing an oxygen-generating photocatalyst), no oxygen generation could be confirmed. This shows that both photocatalysts are necessary for Z-scheme water splitting.
(2)レドックス媒体の必要性
 図14は、比較例7(レドックス媒体(Fe2+)非存在下でのInHCF/RhCr2-x/ZrO/TaON|ガラス|BiVOを含む光触媒パネル)における水分解反応の経時変化を示すグラフである。図14のグラフの構成要素は、図13のグラフと同様である。
( 2 ) Need for a redox medium FIG. The components of the graph in FIG. 14 are the same as those in the graph in FIG. 13.
 レドックス媒体(Fe2+)の存在下または非存在下の水分解活性を比較すると、Fe2+非存在下の条件(比較例7)よりもFe2+存在下の条件(実施例1)において明確な水分解活性が確認された。このことから反応溶液に存在するレドックス媒体(Fe3+/Fe2+)は、上側(後側)の水素生成用光触媒と下側(前側)の酸素生成用光触媒の間の電子伝達を担い、Zスキーム機構による水分解を進行させるために必須であることがわかる。また、水素生成用光触媒および酸素生成用光触媒の少なくとも一方が基板から剥離し、互いに直接接触した際に電子の授受を行うことで進行する水分解は、ここではほとんど進行していないことがわかった。 Comparing the water splitting activities in the presence and absence of redox medium (Fe 2+ ), it was found that clear water was observed in the presence of Fe 2+ (Example 1) than in the absence of Fe 2+ (Comparative Example 7). Degradation activity was confirmed. From this, the redox medium (Fe 3+ /Fe 2+ ) present in the reaction solution is responsible for electron transfer between the upper (rear) photocatalyst for hydrogen production and the lower (front) photocatalyst for oxygen production, and the Z-scheme It can be seen that this is essential for the mechanism to proceed with water splitting. In addition, it was found that water splitting, which occurs when at least one of the hydrogen generation photocatalyst and the oxygen generation photocatalyst peels off from the substrate and transfers electrons when they come into direct contact with each other, hardly progresses here. .
(3)基板材料の影響
 図15は、比較例8(アルミナ基板を用いた光触媒パネル)における水分解反応の経時変化を示すグラフである。アルミナ基板を用いた場合の水分解活性は、ガラス基板を用いた場合(実施例1)の水分解活性と比較して非常に低いことが確認された。図12に示したように、アルミナ基板はガラス基板よりも光透過性が低い(可視光領域において40%未満)。このことから、アルミナ基板を用いた場合には、下側の酸素生成用光触媒層313から基板311(アルミナ基板)を通じて上側の水素生成用光触媒層314に入射する光がほとんどなく、水素生成用光触媒を十分に光励起できなかったと考えられる。したがって、基板材料には、光触媒が光励起し、その光触媒活性を示すことができるのに十分な光透過性を有していることが求められる。
(3) Influence of substrate material FIG. 15 is a graph showing changes over time in the water splitting reaction in Comparative Example 8 (photocatalyst panel using an alumina substrate). It was confirmed that the water-splitting activity when using the alumina substrate was very low compared to the water-splitting activity when using the glass substrate (Example 1). As shown in FIG. 12, the alumina substrate has lower light transmittance than the glass substrate (less than 40% in the visible light region). From this, when an alumina substrate is used, almost no light enters the upper photocatalytic layer 314 for hydrogen generation from the lower photocatalytic layer 313 for oxygen generation through the substrate 311 (alumina substrate), and the photocatalyst layer 314 for hydrogen generation It is thought that the light could not be excited sufficiently. Therefore, the substrate material is required to have sufficient light transmittance so that the photocatalyst can be photoexcited and exhibit its photocatalytic activity.
(4)光触媒の種類の影響
 図16は、実施例4(水素生成用光触媒としてRu/SrTiO:Rhを含む光触媒パネル)の水分解反応の経時変化を示す。実施例4では、光照射時間が30hr経過した後の水素生成量は量論量(40μmol)を超えた。また、実施例4では、最終的には水素の生成速度に対する酸素の生成速度の比は0.5に漸近した。これらの結果から、水素生成用光触媒としてRu/SrTiO:Rhを用いた場合でも、Zスキーム機構によって光触媒水分解が進行していることが示された。
(4) Influence of the type of photocatalyst FIG. 16 shows the change over time in the water splitting reaction of Example 4 (a photocatalyst panel containing Ru/SrTiO 3 :Rh as a photocatalyst for hydrogen production). In Example 4, the amount of hydrogen produced after 30 hours of light irradiation exceeded the stoichiometric amount (40 μmol). Further, in Example 4, the ratio of the oxygen production rate to the hydrogen production rate finally approached 0.5. These results showed that even when Ru/SrTiO 3 :Rh was used as a photocatalyst for hydrogen generation, photocatalytic water splitting proceeded by the Z-scheme mechanism.
 図17は、実施例5(酸素生成用光触媒としてFe-H-Cs-WOを含む光触媒パネル)の水分解反応の経時変化を示す。実施例5では、光照射時間が6.5hr経過した後の水素生成量は量論量(40μmol)を超えた。また、実施例5では、最終的には水素の生成速度に対する酸素の生成速度の比は0.5に漸近した。これらの結果から、酸素生成用光触媒としてFe-H-Cs-WOを用いた場合でも、Zスキーム機構によって光触媒水分解が進行していることが示された。 FIG. 17 shows the change over time in the water splitting reaction of Example 5 (a photocatalyst panel containing Fe-H-Cs-WO 3 as a photocatalyst for oxygen generation). In Example 5, the amount of hydrogen produced after 6.5 hours of light irradiation exceeded the stoichiometric amount (40 μmol). Further, in Example 5, the ratio of the oxygen production rate to the hydrogen production rate finally approached 0.5. These results showed that even when Fe-H-Cs-WO 3 was used as a photocatalyst for oxygen production, photocatalytic water splitting proceeded by the Z-scheme mechanism.
(5)レドックス源におけるカウンターアニオンの種類の影響
 図18は、実施例3(Fe(NO水溶液)の水分解反応の経時変化を示すグラフである。図19は、参考例1(FeSO水溶液)の水分解反応の経時変化を示すグラフである。図20は、参考例2(Fe(ClO水溶液)の水分解反応の経時変化を示すグラフである。
(5) Influence of the type of counter anion in the redox source FIG. 18 is a graph showing changes over time in the water splitting reaction of Example 3 (Fe(NO 3 ) 3 aqueous solution). FIG. 19 is a graph showing changes over time in the water decomposition reaction of Reference Example 1 (FeSO 4 aqueous solution). FIG. 20 is a graph showing changes over time in the water decomposition reaction of Reference Example 2 (Fe(ClO 4 ) 2 aqueous solution).
 図8及び図18-図20に示すように、実施例1、3及び参考例1、2では、レドックス源におけるアニオンの種類(Cl、NO 、SO 2ー、ClO )に応じて水分解活性が変動した。水素と酸素が同時かつ継続的に生成したのは、カウンターアニオンがCl、NO の場合(実施例1、3)のみであった。これらの結果から、光触媒層の最適化だけではなく、レドックス源のカウンターアニオンの種類も最適化することにより、光触媒活性(水分解活性)を最適化できると考えられる。 As shown in FIG. 8 and FIGS . 18 to 20, in Examples 1 and 3 and Reference Examples 1 and 2, the types of anions ( Cl− , NO 3− , SO 4 2− , ClO 4− ) in the redox source The water-splitting activity varied accordingly. Hydrogen and oxygen were generated simultaneously and continuously only when the counter anion was Cl- or NO 3- (Examples 1 and 3). From these results, it is considered that photocatalytic activity (water splitting activity) can be optimized by optimizing not only the photocatalytic layer but also the type of counter anion in the redox source.
(6)反応溶液のpHの影響
 実施例2における反応初期のpHが2.5の条件では、反応後の光触媒パネル307上に茶色沈殿物の副生成物が確認された。これは、局所的なpHの上昇によって、レドックス媒体として加えたFe源がFe(OH)等として沈殿したことが考えられる。
(6) Influence of pH of reaction solution When the pH at the initial stage of the reaction in Example 2 was 2.5, brown precipitate by-products were observed on the photocatalyst panel 307 after the reaction. This is probably because the Fe source added as a redox medium precipitated as Fe(OH) 3 etc. due to the local pH increase.
 比較例5、6のように、反応初期のpHを2.3又は2.1として、InHCF/RhCr2-x/ZrO/TaON|ガラス|無を用いて水素生成反応を行ったところ、茶色沈殿物を生成せずに水素生成活性を示した。さらに、実施例1のように、反応初期のpHを2.3としてInHCF/RhCr2-x/ZrO/TaON|ガラス|BiVOを用いて水分解反応を行うと、茶色沈殿物は確認されないまま、水分解活性を示した。これらの結果より、実用的な観点から副生成物を生成せずにZスキーム水分解を進行させるためには、適切なpHの制御が重要であることが示された。 As in Comparative Examples 5 and 6, the pH at the initial stage of the reaction was set to 2.3 or 2.1, and the hydrogen production reaction was performed using InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON | glass | As a result, it showed hydrogen production activity without producing any brown precipitate. Furthermore, as in Example 1, when a water splitting reaction is carried out using InHCF/Rh x Cr 2-x O 3 /ZrO 2 /TaON | glass | BiVO 4 with the initial pH of the reaction set to 2.3, a brown precipitate is formed. The substance showed water-splitting activity without being confirmed. These results showed that from a practical standpoint, appropriate pH control is important in order to proceed with Z-scheme water decomposition without producing by-products.
 以上で具体的な実施例を含めた実施形態の説明を終えるが、本発明は上記実施形態や変形例に限定されることなく、幅広く変形実施することができる。上述の実施形態(各実施例を含む)に示した光触媒を用いた水分解装置及びこれを備えた水分解システムの各構成要素は、必ずしも全てが必須ではなく、少なくとも当業者であれば本発明の範囲を逸脱しない限りにおいて適宜取捨選択することが可能である。 Although the description of the embodiments including specific examples is completed above, the present invention is not limited to the above-described embodiments and modifications, and can be implemented in a wide range of modifications. All of the components of the water splitting apparatus using a photocatalyst and the water splitting system equipped with the same shown in the embodiments (including each example) described above are not necessarily essential, and at least those skilled in the art will understand the present invention. As long as it does not deviate from the above range, it is possible to make a selection as appropriate.
1   :水分解システム
3   :水分解装置
5   :第1循環ライン
5A  :酸素排出ライン
5B  :水排出ライン
5C  :第1水供給ライン
5D  :酸素分離ライン
6   :第2循環ライン
6A  :水素排出ライン
6B  :第2水排出ライン
6C  :第2水供給ライン
6D  :水素分離ライン
7   :光触媒パネル
9   :反応容器
9A  :前壁(光入射壁)
9B  :後壁
9C  :上壁
9D  :下壁
11  :基板
11A :前面(第1の面)
11B :後面(第2の面)
13  :酸素生成用光触媒層(第1の光触媒層)
14  :水素生成用光触媒層(第2の光触媒層)
21  :酸素生成槽
22  :水素生成槽
25  :第1気液分離器
26  :第1貯水タンク
27  :第1循環ポンプ
29  :上部開口
31  :下部開口
35  :第2気液分離器
36  :第2貯水タンク
37  :第2循環ポンプ
39  :上部開口
41  :下部開口
45  :集光板
51  :下方照射型反応セル
53  :スペーサー
105 :第1循環ライン
106 :第2循環ライン
205D:酸素分離ライン
206C:水供給ライン
206D:水素分離ライン
207 :光触媒パネル
207A:下縁
209 :反応容器
209D:下壁
226 :貯水タンク
227 :給水ポンプ
231 :下部開口
303 :評価用装置
307 :光触媒パネル
311 :基板
311A:下面
311B:上面
313 :酸素生成用光触媒層
314 :水素生成用光触媒層
1: Water splitting system 3: Water splitting device 5: First circulation line 5A: Oxygen discharge line 5B: Water discharge line 5C: First water supply line 5D: Oxygen separation line 6: Second circulation line 6A: Hydrogen discharge line 6B : Second water discharge line 6C : Second water supply line 6D : Hydrogen separation line 7 : Photocatalyst panel 9 : Reaction vessel 9A : Front wall (light incidence wall)
9B: Rear wall 9C: Upper wall 9D: Lower wall 11: Substrate 11A: Front (first surface)
11B: Rear surface (second surface)
13: Oxygen generation photocatalyst layer (first photocatalyst layer)
14: Hydrogen generation photocatalyst layer (second photocatalyst layer)
21: Oxygen generation tank 22: Hydrogen generation tank 25: First gas-liquid separator 26: First water storage tank 27: First circulation pump 29: Upper opening 31: Lower opening 35: Second gas-liquid separator 36: Second Water storage tank 37: Second circulation pump 39: Upper opening 41: Lower opening 45: Light collecting plate 51: Downward illumination type reaction cell 53: Spacer 105: First circulation line 106: Second circulation line 205D: Oxygen separation line 206C: Water Supply line 206D: Hydrogen separation line 207: Photocatalyst panel 207A: Lower edge 209: Reaction container 209D: Lower wall 226: Water storage tank 227: Water supply pump 231: Lower opening 303: Evaluation device 307: Photocatalyst panel 311: Substrate 311A: Lower surface 311B: Top surface 313: Photocatalytic layer for oxygen generation 314: Photocatalytic layer for hydrogen generation

Claims (13)

  1.  光エネルギーを利用する光触媒を用いた水分解装置であって、
     光触媒パネルと、
     前記光触媒パネル及び反応溶液を収容し、前記反応溶液における水の分解反応を行う反応容器と、
    を備え、
     前記光触媒パネルは、
     光透過性を有する基板と、
     前記基板の第1の面に重なるように形成された第1の光触媒層と、
     前記基板の前記第1の面と対をなす第2の面に重なるように形成された第2の光触媒層と、
    を含み、
     前記第1の光触媒層および前記第2の光触媒層の一方は第1の半導体を含む酸素生成用光触媒層であり、他方は第2の半導体を含む水素生成用光触媒層であり、
     前記反応容器は、
     前記光触媒パネルによって内部スペースを仕切られ、
     前記酸素生成用光触媒層側に形成された酸素生成槽と、
     前記水素生成用光触媒層側に形成された水素生成槽と、
     前記光触媒パネルにおける前記第1の光触媒層に向けて入射する光を透過させる光入射壁と、を有する、水分解装置。
    A water splitting device using a photocatalyst that uses light energy,
    photocatalyst panel,
    a reaction vessel that accommodates the photocatalyst panel and the reaction solution and performs a water decomposition reaction in the reaction solution;
    Equipped with
    The photocatalyst panel is
    a substrate having optical transparency;
    a first photocatalyst layer formed to overlap the first surface of the substrate;
    a second photocatalyst layer formed to overlap a second surface of the substrate that is paired with the first surface;
    including;
    One of the first photocatalyst layer and the second photocatalyst layer is an oxygen generation photocatalyst layer containing a first semiconductor, and the other is a hydrogen generation photocatalyst layer containing a second semiconductor,
    The reaction vessel is
    The interior space is partitioned by the photocatalyst panel,
    an oxygen generation tank formed on the side of the oxygen generation photocatalyst layer;
    a hydrogen generation tank formed on the side of the hydrogen generation photocatalyst layer;
    A water splitting device, comprising: a light entrance wall that transmits light incident toward the first photocatalyst layer in the photocatalyst panel.
  2.  前記基板は、非導電性を有する、請求項1に記載の水分解装置。 The water splitting device according to claim 1, wherein the substrate is non-conductive.
  3.  前記第2の半導体の光吸収スペクトルは、前記第1の半導体の光吸収スペクトルと比べてより長い波長側に位置する、請求項1または請求項2に記載の水分解装置。 The water splitting device according to claim 1 or 2, wherein the light absorption spectrum of the second semiconductor is located on a longer wavelength side compared to the light absorption spectrum of the first semiconductor.
  4.  前記第1の半導体は、金属酸化物、金属酸窒化物、窒化物、金属酸硫化物、金属酸ハロゲン化物、金属有機構造体の中から選ばれる1種又は2種以上の組み合わせを含み、
     前記第2の半導体は、金属酸窒化物、金属窒化物、金属酸硫化物、金属硫化物、金属酸ハロゲン化物、金属ハロゲン化物、有機金属ハロゲン化物、金属酸化物、金属リン化物、シリコン、有機半導体、金属有機構造体、及び共有結合性有機構造体の中から選ばれる1種又は2種以上の組み合わせを含む、請求項1から請求項3のいずれか1項に記載の水分解装置。
    The first semiconductor includes one or a combination of two or more selected from metal oxides, metal oxynitrides, nitrides, metal oxysulfides, metal oxyhalides, and metal organic structures,
    The second semiconductor is a metal oxynitride, a metal nitride, a metal oxysulfide, a metal sulfide, a metal oxyhalide, a metal halide, an organometallic halide, a metal oxide, a metal phosphide, silicon, an organic The water splitting device according to any one of claims 1 to 3, comprising one or a combination of two or more selected from semiconductors, metal-organic structures, and covalent organic structures.
  5.  前記光触媒パネルにおける前記第1の光触媒層および前記基板の部分は、前記第1の光触媒層に入射する光のうち少なくとも500nm以上の範囲の可視光領域に関し、40%以上の透過率を有する、請求項1から請求項4のいずれか1項に記載の水分解装置。 A portion of the first photocatalyst layer and the substrate in the photocatalyst panel has a transmittance of 40% or more in the visible light region of at least 500 nm or more of the light incident on the first photocatalyst layer. The water splitting apparatus according to any one of claims 1 to 4.
  6.  前記反応溶液には、レドックス媒体が含まれ、
     前記レドックス媒体は、鉄イオン対、ヨウ素を含むイオン対、バナジウムを含むイオン対、錯イオン対、ポリオキソメタレートイオン対の中から選ばれる1種又は2種以上の組み合わせを含む、請求項1から請求項5のいずれか1項に記載の水分解装置。
    The reaction solution includes a redox medium,
    Claim 1, wherein the redox medium contains one or a combination of two or more selected from iron ion pairs, iodine-containing ion pairs, vanadium-containing ion pairs, complex ion pairs, and polyoxometalate ion pairs. The water splitting apparatus according to claim 5.
  7.  前記反応容器と前記光触媒パネルとの間には、前記酸素生成槽および前記水素生成槽の前記反応溶液の流通を可能にする連通部が形成されている、請求項1から請求項6のいずれか1項に記載の水分解装置。 Any one of claims 1 to 6, wherein a communication portion is formed between the reaction container and the photocatalyst panel to allow the reaction solution of the oxygen generation tank and the hydrogen generation tank to flow. The water splitting device according to item 1.
  8.  前記反応容器には、前記光入射壁のみから光が入射される、請求項1から請求項7のいずれか1項に記載の水分解装置。 The water decomposition apparatus according to any one of claims 1 to 7, wherein light is incident on the reaction vessel only from the light entrance wall.
  9.  請求項1から請求項8のいずれか1項に記載された前記水分解装置と、前記水分解装置に供給される水を貯留する貯水タンクと、を備えた水分解システム。 A water splitting system comprising the water splitting device according to any one of claims 1 to 8, and a water storage tank that stores water supplied to the water splitting device.
  10.  前記酸素生成槽から酸素と共に排出される前記反応溶液の一部を、前記水素生成槽に循環させる第1循環ラインと、前記水素生成槽から水素と共に排出される前記反応溶液の一部を、前記酸素生成槽に循環させる第2循環ラインと、
    を備える、請求項9に記載の水分解システム。
    a first circulation line for circulating a part of the reaction solution discharged from the oxygen generation tank together with oxygen to the hydrogen generation tank; and a first circulation line for circulating a part of the reaction solution discharged together with hydrogen from the hydrogen generation tank; a second circulation line that circulates to the oxygen generation tank;
    The water splitting system according to claim 9, comprising:
  11.  前記第1循環ラインには、前記反応溶液から分離された前記酸素を輸送する酸素分離ラインが接続され、
     前記第2循環ラインには、前記反応溶液から分離された前記水素を輸送する水素分離ラインが接続される、請求項10に記載の水分解システム。
    An oxygen separation line for transporting the oxygen separated from the reaction solution is connected to the first circulation line,
    The water splitting system according to claim 10, wherein a hydrogen separation line that transports the hydrogen separated from the reaction solution is connected to the second circulation line.
  12.  前記貯水タンクは、前記第1循環ライン及び前記第2循環ラインの少なくとも一方に設けられる、請求項10または請求項11に記載の水分解システム。 The water splitting system according to claim 10 or 11, wherein the water storage tank is provided in at least one of the first circulation line and the second circulation line.
  13.  前記貯水タンクの上流側に気液分離器が設けられた、請求項12に記載の水分解システム。 The water splitting system according to claim 12, wherein a gas-liquid separator is provided upstream of the water storage tank.
PCT/JP2023/010934 2022-03-22 2023-03-20 Water splitting apparatus using photocatalyst, and water splitting system provided with same WO2023182282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022045443A JP2023139749A (en) 2022-03-22 2022-03-22 Water decomposition device using photocatalyst and water decomposition system equipped with the same
JP2022-045443 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023182282A1 true WO2023182282A1 (en) 2023-09-28

Family

ID=88100999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010934 WO2023182282A1 (en) 2022-03-22 2023-03-20 Water splitting apparatus using photocatalyst, and water splitting system provided with same

Country Status (2)

Country Link
JP (1) JP2023139749A (en)
WO (1) WO2023182282A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199187A (en) * 2004-01-16 2005-07-28 Tokyo Univ Of Science Novel z-scheme type visible light active photocatalyst system for perfectly decomposing water and water perfectly decomposing method using the same
JP2011094194A (en) * 2009-10-30 2011-05-12 Toyota Central R&D Labs Inc Photochemical reaction device
JP2012188683A (en) * 2011-03-08 2012-10-04 Mitsui Chemicals Inc Gas generation apparatus, and gas generation method
WO2016017225A1 (en) * 2014-08-01 2016-02-04 富士フイルム株式会社 Water splitting apparatus and water splitting method
WO2017221866A1 (en) * 2016-06-23 2017-12-28 富士フイルム株式会社 Artificial photosynthesis module and artificial photosynthesis device
JP2020012134A (en) * 2018-07-13 2020-01-23 富士フイルム株式会社 Artificial photosynthesis module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199187A (en) * 2004-01-16 2005-07-28 Tokyo Univ Of Science Novel z-scheme type visible light active photocatalyst system for perfectly decomposing water and water perfectly decomposing method using the same
JP2011094194A (en) * 2009-10-30 2011-05-12 Toyota Central R&D Labs Inc Photochemical reaction device
JP2012188683A (en) * 2011-03-08 2012-10-04 Mitsui Chemicals Inc Gas generation apparatus, and gas generation method
WO2016017225A1 (en) * 2014-08-01 2016-02-04 富士フイルム株式会社 Water splitting apparatus and water splitting method
WO2017221866A1 (en) * 2016-06-23 2017-12-28 富士フイルム株式会社 Artificial photosynthesis module and artificial photosynthesis device
JP2020012134A (en) * 2018-07-13 2020-01-23 富士フイルム株式会社 Artificial photosynthesis module

Also Published As

Publication number Publication date
JP2023139749A (en) 2023-10-04

Similar Documents

Publication Publication Date Title
Sun et al. A comparative perspective of electrochemical and photochemical approaches for catalytic H 2 O 2 production
Miyoshi et al. Water splitting on rutile TiO2‐based photocatalysts
Tanaka et al. Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO 2 photocatalyst with metal co-catalysts
Yuan et al. Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride
Kato et al. Synthesis of highly active rhodium-doped SrTiO 3 powders in Z-scheme systems for visible-light-driven photocatalytic overall water splitting
Ikeda et al. Preparation of K2La2Ti3O10 by polymerized complex method and photocatalytic decomposition of water
Maeda et al. Comparison of two-and three-layer restacked Dion–Jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution
Manwar et al. Ceria supported Pt/PtO-nanostructures: Efficient photocatalyst for sacrificial donor assisted hydrogen generation under visible-NIR light irradiation
CN113398994B (en) Keggin type heteropolyacid indissolvable salt heterojunction catalyst and preparation method and application thereof
US20160271589A1 (en) Photocatalytic hydrogen production from water, and photolysis system for the same
Wu et al. Assembling Bi2MoO6/Ru/g-C3N4 for highly effective oxygen generation from water splitting under visible-light irradiation
Nishioka et al. Surface-modified, dye-sensitized niobate nanosheets enabling an efficient solar-driven Z-scheme for overall water splitting
Cai et al. The solvent-driven formation of multi-morphological Ag–CeO 2 plasmonic photocatalysts with enhanced visible-light photocatalytic reduction of CO 2
Xu et al. Insight into facet-dependent photocatalytic H 2 O 2 production on BiOCl nanosheets
Fresno et al. Selectivity in UV photocatalytic CO2 conversion over bare and silver-decorated niobium-tantalum perovskites
Tabe et al. Utilization of core-shell nanoparticles to evaluate subsurface contribution to water oxidation catalysis of [CoII (H2O) 2] 1.5 [CoIII (CN) 6] nanoparticles
Hermans et al. Sunlight Selective Photodeposition of CoO x (OH) y and NiO x (OH) y on Truncated Bipyramidal BiVO4 for Highly Efficient Photocatalysis
Das et al. Synergistic effect of metal complex and dual doped graphitic carbon nitride for superior photocatalytic hydrogen evolution
Dong et al. Independent Cr2O3 functions as efficient cocatalyst on the crystal facets engineered TiO2 for photocatalytic CO2 reduction
Liu et al. Nitrogen doped graphene quantum dots as a cocatalyst of SrTiO 3 (Al)/CoO x for photocatalytic overall water splitting
Thangamuthu et al. Tungsten oxide-based Z-scheme for visible light-driven hydrogen production from water splitting
Verma et al. Autonomous self-optimizing defects by refining energy levels through hydrogenation in CeO 2–x polymorphism: a walking mobility of oxygen vacancy with enhanced adsorption capabilities and photocatalytic stability
EP2656912A1 (en) Photocatalyst, method for preparation, photolysis system
Wang et al. Effect of Zn in Ag-loaded Zn-modified ZnTa2O6 for photocatalytic conversion of CO2 by H2O
Lian et al. A band-to-band transition visible-light-responsive anatase titania photocatalyst by N, F-codoping for water splitting and CO 2 reduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774877

Country of ref document: EP

Kind code of ref document: A1