WO2023182180A1 - Cementing composition containing aluminum-atom-containing silica particles, and cementing method - Google Patents
Cementing composition containing aluminum-atom-containing silica particles, and cementing method Download PDFInfo
- Publication number
- WO2023182180A1 WO2023182180A1 PCT/JP2023/010444 JP2023010444W WO2023182180A1 WO 2023182180 A1 WO2023182180 A1 WO 2023182180A1 JP 2023010444 W JP2023010444 W JP 2023010444W WO 2023182180 A1 WO2023182180 A1 WO 2023182180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cement
- cementing
- cementing composition
- silica particles
- silica
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 147
- 239000000203 mixture Substances 0.000 title claims abstract description 106
- 238000000034 method Methods 0.000 title claims abstract description 46
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title description 2
- 239000004568 cement Substances 0.000 claims abstract description 105
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 83
- 150000003839 salts Chemical class 0.000 claims abstract description 60
- 239000002245 particle Substances 0.000 claims abstract description 54
- 239000007789 gas Substances 0.000 claims abstract description 18
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000013535 sea water Substances 0.000 claims abstract description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000001179 sorption measurement Methods 0.000 claims abstract description 10
- 229910001873 dinitrogen Inorganic materials 0.000 claims abstract description 8
- 238000004898 kneading Methods 0.000 claims abstract description 6
- 239000007864 aqueous solution Substances 0.000 claims abstract description 5
- 238000011049 filling Methods 0.000 claims abstract description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 35
- 239000007787 solid Substances 0.000 claims description 22
- 239000000654 additive Substances 0.000 claims description 21
- 239000003921 oil Substances 0.000 claims description 20
- 238000012360 testing method Methods 0.000 claims description 20
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 17
- 239000003795 chemical substances by application Substances 0.000 claims description 16
- 238000002296 dynamic light scattering Methods 0.000 claims description 12
- 230000005484 gravity Effects 0.000 claims description 12
- 238000005553 drilling Methods 0.000 claims description 11
- 239000003129 oil well Substances 0.000 claims description 9
- 230000018044 dehydration Effects 0.000 claims description 7
- 238000006297 dehydration reaction Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 239000010802 sludge Substances 0.000 claims description 6
- 239000002518 antifoaming agent Substances 0.000 claims description 5
- 239000002270 dispersing agent Substances 0.000 claims description 5
- 239000012798 spherical particle Substances 0.000 claims description 5
- 239000003381 stabilizer Substances 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 4
- 230000000996 additive effect Effects 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000011800 void material Substances 0.000 claims description 3
- 230000001112 coagulating effect Effects 0.000 claims description 2
- 239000002002 slurry Substances 0.000 abstract description 20
- 239000000243 solution Substances 0.000 abstract description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 34
- 229910004298 SiO 2 Inorganic materials 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 13
- 238000004438 BET method Methods 0.000 description 10
- 239000011398 Portland cement Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000011164 primary particle Substances 0.000 description 7
- 208000005156 Dehydration Diseases 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 6
- 239000002956 ash Substances 0.000 description 5
- 239000010881 fly ash Substances 0.000 description 5
- 239000003208 petroleum Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000003513 alkali Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 235000019353 potassium silicate Nutrition 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000010755 BS 2869 Class G Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 150000004645 aluminates Chemical class 0.000 description 3
- 239000011400 blast furnace cement Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- -1 gilsonite Chemical compound 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229920001732 Lignosulfonate Polymers 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 239000012615 aggregate Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- JHLNERQLKQQLRZ-UHFFFAOYSA-N calcium silicate Chemical compound [Ca+2].[Ca+2].[O-][Si]([O-])([O-])[O-] JHLNERQLKQQLRZ-UHFFFAOYSA-N 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003818 cinder Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical group O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- NVVZQXQBYZPMLJ-UHFFFAOYSA-N formaldehyde;naphthalene-1-sulfonic acid Chemical compound O=C.C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 NVVZQXQBYZPMLJ-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 description 1
- YWXYYJSYQOXTPL-SLPGGIOYSA-N isosorbide mononitrate Chemical compound [O-][N+](=O)O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 YWXYYJSYQOXTPL-SLPGGIOYSA-N 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-N naphthalene-1-sulfonic acid Chemical class C1=CC=C2C(S(=O)(=O)O)=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 125000004436 sodium atom Chemical group 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010455 vermiculite Substances 0.000 description 1
- 229910052902 vermiculite Inorganic materials 0.000 description 1
- 235000019354 vermiculite Nutrition 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/06—Oxides, Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B22/00—Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
- C04B22/08—Acids or salts thereof
- C04B22/12—Acids or salts thereof containing halogen in the anion
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/42—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
- C09K8/46—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
- C09K8/467—Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
- C09K8/487—Fluid loss control additives; Additives for reducing or preventing circulation loss
Definitions
- the present invention provides an excellent cement slurry (cementing composition) for cementing used during field well drilling in oil and gas fields in high temperature and high pressure environments by suppressing the generation of free water from the slurry.
- cementing composition cementing composition
- the present invention relates to a cementing composition that achieves fluidity.
- cementing pipes When drilling wells in oil fields, gas fields, etc., when finishing the well, casing pipes are used to fix and reinforce the casing pipe inserted into the well as an inner frame, to prevent corrosion, and to prevent groundwater from flowing into the well. Cementing work is performed in which cement slurry is injected into a gap (an annular gap: sometimes referred to as an annulus) between the ground layer (pit wall). Cementing refers to the application of a cement slurry made of cement and water or dissolved water containing additives to various locations within a wellbore or inside or outside the casing, and is divided into primary and secondary cementing.
- primary cementing refers to cementing in which the casing annulus (outside) is filled with cement after the casing has been lowered, and is always performed in normal casing.
- secondary cementing refers to subsequent secondary cementing, and refers to cementing that is locally performed as necessary.
- cement slurry for cementing is designed according to the well conditions described above, and in addition to cement and water, it contains cement fast hardening agent, cement slow hardening agent, low specific gravity aggregate, high specific gravity aggregate, cement dispersant, cement It is prepared by adding additives such as dehydration regulators, cement strength stabilizers, and sludge prevention agents.
- the cement used for cementing also referred to as oil well cement, geothermal well cement, etc.
- API standards (petroleum standards established by the American Petroleum Institute) take these required performances into consideration, and various oil well cements are defined by class and sulfate resistance.
- Class G cement is It is the most used cement for oil well drilling.
- the amount of free water generated from cement slurry increases in environments where salt water such as seawater is used, or in environments with high temperatures and pressures, and as a result, the fluidity of cement slurry deteriorates.
- cement strength is impaired, and there is a need for a means that can suppress the generation of free water even under the above-mentioned well environment.
- the specific surface area value (BET (N 2 )) due to nitrogen adsorption is 10 to 500 m 2 /g
- the specific surface area value (BET (H 2 )) due to water vapor adsorption is 10 to 500 m 2 /g.
- a cementing composition containing silica particles having an O)) of 5 to 65 m 2 /g has been disclosed (see Patent Document 1).
- a seawater-blended mortar in which cement, seawater, aggregate, and a mortar admixture having a specific composition are mixed is disclosed. (See Patent Document 2).
- An object of the present invention is to provide a cementing composition that can be used in oil fields and gas fields and can suppress the generation of free water from cement slurry even in high-temperature environments of 100°C or higher, particularly 150°C or higher. Furthermore, when salt water is used when kneading the cementing composition, sufficient fluidity is ensured until it reaches the filling point underground, and the generation of free water is suppressed, resulting in sufficient stability.
- An object of the present invention is to provide a cementing composition that has the following properties.
- a first aspect of the present invention is a salt water kneading cementing composition for use in oil fields and gas oil fields, comprising cement, silica particles, and salt water, wherein the silica particles have aluminum atoms relative to the mass of silica (SiO 2 ).
- the above cementing composition which is silica particles contained in a proportion of 0.1 to 4.0% by mass in terms of Al 2 O 3 ;
- the cementing composition according to the first aspect wherein the silica particles are particles having a specific surface area diameter (equivalent spherical particle diameter) of 5 to 200 nm as measured by a nitrogen gas adsorption method;
- the cementing composition according to the first aspect or the second aspect wherein the salt water is an aqueous solution containing 0.1 to 4.0% by mass of salt;
- the ratio expressed by (average particle diameter by dynamic light scattering method)/(average particle diameter by dynamic light scattering method of silica particles before the test) is 1.0 to 100.
- the cementing composition according to any one of the first to fifth aspects, as a seventh aspect, it further includes a cement retardant and other additives, and the silica particles are added to the cement at a ratio of 0.01% to 10% BWOC as a silica solid content, and the salt water is added to the cement in an amount of 30 to 60%.
- the other additives are at least selected from the group consisting of dehydration regulators, antifoaming agents, quick hardening agents, low specific gravity aggregates, high specific gravity aggregates, cement dispersants, cement strength stabilizers, and sludge prevention agents.
- the cementing composition according to any one of the first to fifth aspects which is one type of additive;
- the eighth aspect is that in drilling oil or gas fields, when extracting oil or gas from a high temperature and high pressure environment of 100°C or more and 300°C or less, it is necessary to fill the void between the geological formation and the casing pipe with oil well cement.
- a cementing construction method characterized in that the cementing composition according to any one of the first to seventh aspects is used as a cementing material, and as a ninth aspect, a cementing method according to any one of the first to seventh aspects.
- a cementing method comprising the steps of introducing the cementing composition described in 1. into a wellbore, and coagulating the cementing composition.
- cementing composition of the present invention When the cementing composition of the present invention is used during drilling in a high-temperature oil layer of 100°C or higher, particularly 150°C or higher and 300°C or lower, free water is generated from the cementing composition (cement slurry for cementing), which causes a decrease in strength. It is a composition that can suppress the occurrence of problems, and also achieves excellent fluidity when salt water (especially seawater) is used at the site. casing, resulting in insufficient fixation of the casing). Therefore, by using the cementing composition of the present invention, it is possible to stably finish a wellbore and carry out cementing with high productivity even in a high-temperature environment.
- the present invention is directed to a salt water kneading cementing composition for use in oil and gas fields, comprising cement, silica particles, and salt water.
- a salt water kneading cementing composition for use in oil and gas fields, comprising cement, silica particles, and salt water.
- the silica particles used in the present invention are silica particles containing aluminum atoms in an amount of 0.1 to 4.0% by mass in terms of Al 2 O 3 based on silica (SiO 2 ) (mass), and preferably contain aluminum atoms. These are silica particles containing atoms in an amount of 0.1 to 2.0% by mass, more preferably 0.1 to 1.5% by mass.
- the form in which aluminum atoms are contained is not particularly limited, and may be chemically bonded to silica or silicon atoms, or may form a solid solution at the atomic level.
- Silica particles derived from an aqueous silica sol can be used as the silica particles contained in the cementing composition of the present invention, and can be added in the form of an aqueous silica sol as a component of the cementing composition.
- Aqueous silica sol refers to a colloidal dispersion system in which an aqueous solvent is used as a dispersion medium and colloidal silica particles are used as a dispersoid, and it can be produced by a known method using an aqueous alkali silicate solution such as water glass (aqueous sodium silicate solution) as a raw material. can.
- aqueous silica sol When producing aqueous silica sol using water glass (sodium silicate aqueous solution) as a raw material, active silicic acid is produced by cation exchange of water glass, and a polymer of silicic acid is formed by heating the active silicic acid.
- An aqueous silica sol can be obtained by growing the silica particles into silica particles in an aqueous medium.
- silica particles containing aluminum atoms are formed by adding a compound containing aluminum atoms at the stage where activated silicic acid is obtained or the silica particles are formed.
- an alkali aluminate eg, sodium aluminate
- an alkali aluminate can be used as the compound containing an aluminum atom.
- silica particles containing aluminum atoms are dispersed by adding an aqueous alkali aluminate solution to an aqueous activated silicic acid solution or adding an aqueous alkali aluminate solution to a silica sol and heating the resulting mixture.
- silica sol can be obtained. It is thought that the silica particles (aqueous silica sol) obtained by such a method form an aluminosilicate structure in which some of the silicon in the silica network is replaced with aluminum atoms. Since the aluminum atoms have a positive charge and give a positive charge to the silica particles, the silica particles do not aggregate and disperse even in a medium containing many ionic components such as salt water. It is thought that the particles are highly stable.
- the silica (SiO 2 ) concentration in the aqueous silica sol used as silica particles in the present invention is not particularly limited, but can be, for example, 5 to 55% by mass.
- the average particle diameter of the silica particles used in the present invention is represented by the specific surface area diameter (equivalent spherical particle diameter calculated from BET (N 2 )) obtained by measurement by a nitrogen gas adsorption method. Moreover, the average particle diameter of silica particles can also be expressed by the particle diameter determined by dynamic light scattering method (DLS method).
- DLS method dynamic light scattering method
- the particle size determined by the above dynamic light scattering method (hereinafter referred to as the DLS average particle size) represents the average value of the secondary particle size (dispersed particle size), and represents the average value of the secondary particle size (dispersed particle size).
- the DLS average particle size is said to be about twice the average particle size (specific surface area diameter obtained by measurement by nitrogen gas adsorption method (BET method), which represents the average value of primary particle diameter).
- BET method nitrogen gas adsorption method
- the specific surface area diameter (equivalent spherical particle diameter calculated from BET (N 2 )) of the silica particles used in the present invention is preferably 5 to 200 nm, for example 10 to 100 nm, 10 to 80 nm, or 10 to 70 nm. It can be done.
- the particle diameter of the silica particles used in the present invention as measured by a dynamic light scattering method is preferably 10 to 200 nm, and can be, for example, 10 to 100 nm, 10 to 80 nm, or 10 to 70 nm.
- the silica particles used in the present invention have a rate of change in average particle diameter within a specific range before and after the salt water resistance test shown below.
- the ratio expressed as (average particle diameter measured by light scattering method)/(average particle diameter measured by dynamic light scattering method of silica particles before the test) is 1.0 to 100, preferably 1.0 to 50, or 1.0 to 100, preferably 1.0 to 50.
- silica particles having a particle size of 0 to 30, or 1.0 to 10, or 1.0 to 5.0, more preferably 1.0 to 2.0.
- Silica particles with a small rate of change in particle size before and after the salt water resistance test not only have excellent fluidity but also can suppress the amount of free water in a cementing composition to which they are added.
- the cementing composition (cement slurry for cementing) of the present invention contains cement, silica particles, and salt water as described above.
- the cement used in the present invention is preferably oil well cement.
- the cementing composition of the present invention contains silica particles (for example, in the form of an aqueous sol) relative to the cement, with a silica solid content of 0.1% to 10% BWOC (BWOC is the dry solid content of cement). By Weight of Cement).
- the cementing composition of the present invention may contain, in addition to the cement, silica particles (aqueous silica sol), and salt water, a cement retardant and other additives.
- silica particles aqueous silica sol
- salt water a cement retardant and other additives.
- the blending amounts of each component are as follows: the silica particles are 0.01% to 10% BWOC as silica solid content, the salt water is 30% to 60% BWOC, and the cement retardant is added to the cement. can be blended in a proportion of 0.1 to 5% BWOC, and other additives can be blended in a proportion of 0.001 to 10% BWOC.
- the other additives may be selected from the group consisting of dehydration regulators, antifoaming agents, quick hardening agents, low specific gravity aggregates, high specific gravity aggregates, cement dispersants, cement strength stabilizers, and sludge prevention agents. At least one type of additive can be mentioned.
- the cement used in the present invention is preferably an oil well cement as described above, and the oil well cement conforms to the API (American Petroleum Institute) standard "APISPEC 10A Specification for Cements and “Materials for Well” Class A Cement ⁇ Class Any H cement can be used.
- class G cement and class H cement are more preferable because they can be easily adjusted with additives and can be used at a wide range of depths and temperatures.
- cement retardant is used to maintain proper fluidity of the cementing composition until the end of the work and to adjust the thickening time.
- Cement retardants contain lignin sulfonates, naphthalene sulfonates, borates, etc. as main components.
- the dehydration regulator can be used for the purpose of protecting geological formations that are sensitive to water and preventing early dehydration of slurry (cementing composition), and contains organic polymers and vinylamide vinylsulfonic acid copolymers as main components. Including etc.
- the antifoaming agent contains a silicone compound, a higher alcohol, etc. as a main component.
- the low specific gravity aggregate can be used for the purpose of lowering the specific gravity of the cementing composition when there is a water loss layer or a low pressure layer, and contains bentonite, gilsonite, diatomaceous earth, perlite, and fly ash hollow particles as main components. , alumina silicate glass hollow particles, sodium borosilicate hollow particles, alumina hollow particles, or carbon hollow particles.
- the high specific gravity aggregate can be used for the purpose of increasing the specific gravity of the cementing composition in order to improve the replacement efficiency with the high-pressure layer suppressed mud water, and contains barium sulfate, hematite, ilmenite, etc. as the main component. include.
- the cement dispersant can be used for the purpose of lowering the viscosity of the cementing composition and increasing the muddy water replacement efficiency, and contains naphthalene sulfonic acid formalin condensate, polyacrylic acid condensate, or polyacrylic acid condensate as the main component. Contains sulfonated melamine condensates, etc.
- the cement strength stabilizer contains fly ash, silica powder, etc. as main components.
- the anti-sludge agent is used to prevent sludge, and specifically includes inert granular materials that do not affect the properties of cement.
- the main ingredients include walnut shell, vermiculite, gilsonite, mica, and cellophane. Including scraps, etc.
- the (cement) quick hardening agent is used for the purpose of shortening initial strength and hardening waiting time, and contains calcium chloride, water glass, gypsum, etc. as main components.
- the cementing composition of the present invention also contains various additives used in cement compositions for general structures and concrete compositions. It may contain cement, aggregate, and other additives used in these cement compositions.
- conventional general structural cements include portland cement (for example, ordinary portland cement, early strength portland cement, ultra early strength portland cement, low heat/moderate heat portland cement, sulfate resistant portland cement, etc.), various mixed cements (blast furnace cement, silica cement, fly ash cement, etc.), white Portland cement, alumina cement, super fast hardening cement (1 clinker fast hardening cement, 2 clinker fast hardening cement, magnesium phosphate cement), cement for grout, low heat generation cement (low heat buildup) type blast furnace cement, fly ash mixed low heat generation blast furnace cement, high Belite content cement), ultra-high strength cement, cement solidifying agent, ecocement (manufactured using one or more types of municipal waste incineration ash, sewage sludge incineration ash) Furthermore, fine powders such as blast furnace slag, fly ash, cinder ash, clinker ash, husk ash, silica fume, silica powder, limestone
- cementing compositions for general structures mentioned above include high-performance AE water-reducing agents, high-performance water-reducing agents, AE water-reducing agents, water-reducing agents, air-entraining agents (AE agents), foaming agents, and separation agents.
- AE agents air-entraining agents
- foaming agents and separation agents.
- cement/concrete additives such as reducing agents, thickening agents, shrinkage reducing agents, curing agents, water repellents, etc. can be mentioned, and these can also be blended into the cementing composition of the present invention.
- salt water used in the cementing composition of the present invention for example, an aqueous solution containing 0.1 to 4.0% by mass of salt can be used.
- salt water for example, salt-containing land water or sea water can be used.
- seawater contains 96.5 to 97% by mass of water and salt, and the salt contains sodium ions, magnesium ions, calcium ions, potassium ions, etc. as alkali metal ions, and chloride ions, sulfate ions, etc. as anions. things can be used.
- These salts include, for example, 78% by mass of sodium chloride, 9.6% by mass of magnesium chloride, 6.0% by mass of magnesium sulfate, 4.0% by mass of calcium sulfate, 2.0% by mass of potassium chloride, etc. may be included in the
- the present invention also targets a cementing method using the above-mentioned cementing composition.
- the cementing method of the present invention is used to remove the void between the stratum and the casing pipe when extracting oil or gas from a high temperature and high pressure environment of 100°C or higher, particularly 150°C or higher and 300°C or lower, in the excavation of an oil or gas field. It is characterized in that the above-described cementing composition according to the present invention is used as a cementing material for filling with oil well cement.
- the present invention is also directed to a cementing method comprising the steps of introducing a cementing composition as described above into a wellbore and allowing said cementing composition to set.
- the cementing composition containing silica particles according to the present invention has excellent fluidity until it reaches the construction site when the composition is used in an environment of 100°C or higher, particularly 150°C or higher and 300°C or lower. It has high stability by suppressing agglomeration and syneresis, and it can be expected that a cured product with high hardness will be obtained by curing after reaching the construction site.
- the silica solid content concentration After removing the alkali content of the aqueous silica sol using a hydrogen-type cation exchange resin, the silica solid content concentration was determined from the residue after drying at 1000°C. As will be described later, the "silica solid content" of this "silica solid content concentration" includes not only silica (SiO 2 ) but also aluminum atoms and sodium atoms contained in the silica particles of the aqueous silica sol.
- DLS average particle diameter Average particle diameter determined by dynamic light scattering method
- DLS average particle diameter DLS particle diameter
- Zetersizer Nano manufactured by Spectris Corporation, Malvern Division
- Specific surface area diameter determined by BET method also referred to as average primary particle diameter determined by BET method, BET particle diameter
- the sol was dried at 290°C and used as a measurement sample.
- Monosorb manufactured by Quantachrome Instruments Japan LLC
- BET method nitrogen gas adsorption method
- Al 2 O 3 /SiO 2 mass ratio of silica particles After dissolving the aqueous silica sol in an aqueous nitric acid solution, the amount of Na 2 O was measured using an atomic absorption spectrophotometer (manufactured by Shimadzu Corporation), and the amount of Al 2 O was measured using an ICP emission spectrometer (manufactured by PerkinElmer Corporation). Each was measured at The amount of SiO 2 was determined by calculating the silica solid content from the above-mentioned silica solid content concentration, and removing the above-mentioned Na 2 O amount and the above-mentioned Al 2 O 3 amount from there. From the obtained SiO 2 amount and Al 2 O 3 amount, the mass ratio (%) of Al 2 O 3 /SiO 2 was calculated by [(Al 2 O 3 amount/SiO 2 amount) ⁇ 100].
- salt water resistance evaluation (DLS average particle diameter change rate)
- the aqueous silica sol was diluted with salt water (Marine Art SF-1 artificial seawater for test and research, manufactured by Tomita Pharmaceutical Co., Ltd.) so that the silica solid content concentration was 1.0% by mass, and the salt concentration was 3.6% by mass. This was used as a salt water resistance evaluation sample.
- a salt water resistance test was carried out by stirring the salt water resistance evaluation sample at 20° C. for 1 hour and storing it at 20° C. for 1 hour.
- the average particle diameter of the salt water resistance evaluation samples before and after the test was measured by the DLS method, and the rate of change in the average particle diameter of the silica particles in the salt water dispersion by the DLS method was determined by performing the salt water resistance test (after the test). Calculated as (average particle diameter of silica particles measured by dynamic light scattering method)/(average particle diameter of silica particles measured by dynamic light scattering method before the test).
- Silica Sol C manufactured by Nissan Chemical Co., Ltd.: Specific surface area diameter (average primary particle diameter) 22.1 nm by BET method, silica solid content concentration 40.4% by mass, Al 2 O 3 /SiO 2 mass ratio 0.92% by mass , average particle diameter 40.7 nm by DLS method Silica Sol D manufactured by Nissan Chemical
- the cementing composition was prepared in accordance with API Standard 10B-2 (petroleum standard established by the American Petroleum Institute) using a dedicated device and the materials and amounts shown in Table 1. That is, salt water (Marine Art SF-1, artificial seawater for test and research use, manufactured by Tomita Pharmaceutical Co., Ltd., salt concentration 3.6% by mass) was put into a special mixer, and while rotating the stirring blade at 4,000 rpm. , a commercially available dehydration regulator, aqueous silica sol A to E, a commercially available retardant and antifoaming agent, class G cement (manufactured by Ube Mitsubishi Cement Co., Ltd.), and silica in the amounts shown in Table 1 for 90 seconds.
- API Standard 10B-2 petroleum standard established by the American Petroleum Institute
- a cementing composition ( cement slurry) was prepared.
- the aqueous silica sol was added so that the surface area amount was 275 m 2 per 1000 g of the cementing composition.
- a cementing composition to which no aqueous silica sol was added was prepared.
- the fluidity of the cementing composition was evaluated according to the following procedure, and the amount of free water (free water) was also evaluated in accordance with API standards.
- Fluidity evaluation of cementing composition 150 cc of the prepared cementing composition was taken out, put into a 300 mL stirring autoclave (manufactured by Pressure Glass Industry Co., Ltd.), heated to 180°C over 1 hour, and then kept at the same temperature for 30 minutes. It was maintained and conditioned (cured at a predetermined temperature). After maintaining the high temperature for 30 minutes, the cementing composition was cooled down to 88°C over 30 minutes, and when the cementing composition was taken out of the apparatus, the amount of fluid, unsolidified cementing composition was confirmed, and the following evaluation criteria were determined. It was evaluated. Note that the amount of unsolidified cementing composition is the volume ratio to the cementing composition charged into the autoclave. ⁇ Fluidity evaluation criteria for cementing compositions ⁇ A: 80% or more of fluid unsolidified cementing composition (most cementing composition maintains fluidity) B: Less than 80% of fluid unsolidified cementing composition (some cementing composition is solidified)
- Table 1 shows the formulations of the cementing compositions of Examples 1 to 5 and Comparative Example 1
- Table 2 shows the physical properties of the silica particles of the aqueous silica sols A to E used in Examples 1 to 5
- Table 3 shows the physical properties of the silica particles of the aqueous silica sols A to E used in Examples 1 to 5.
- the results of evaluation (fluidity evaluation and measurement of free water amount) of each cementing composition are shown, respectively.
- the unit of the blending amount of each component in the cementing composition in Table 1 is shown in %BWOC, and in Table 1, "-" indicates that the component is not added.
- Examples 1 to 2 were carried out using silica sols A to E containing silica particles having an Al 2 O 3 /SiO 2 mass ratio of 0.23% by mass or more and 1.70% by mass or less. All of Example 5 had excellent fluidity and exhibited a free water amount of 2% by volume or less.
- the Al 2 O 3 /SiO 2 mass ratio in the silica particles according to the present invention is 0.1 to 4.0% by mass, preferably 0.1 to 2.0% by mass, more preferably 0.1 to 1% by mass. It was confirmed that by setting the amount to .5% by mass, it is possible to reduce the amount of free water to less than 1.0% by volume, which is a more preferable embodiment.
- silica sols A, B, and C were used in which the rate of change expressed by the ratio of the DLS average particle size after the salt water resistance test (storage at 20°C for 1 hour) to the DLS average particle size before the test was less than 2.0.
- Examples 1, 2, and 3 all had excellent fluidity and exhibited a very small amount of free water of 0.80 to 0.40% by volume.
- aqueous silica sol is not used (Comparative Example 1), the curing reaction of cement particles or other cement additives proceeds unevenly in a salt water environment and a high temperature environment, resulting in 5.0% by volume of free water. It was confirmed that the composition was unsuitable as a cementing composition.
- silica particles having an Al 2 O 3 /SiO 2 mass ratio of 0.1 to 4.0 mass% suppresses the generation of free water from cement slurry in salt water environments and high temperature environments. It was confirmed that this cementing composition can be used.
- An object of the present invention is to provide a cementing composition that can be used in oil fields and gas fields and can suppress the generation of free water from cement slurry even in high-temperature environments of 100°C or higher, particularly 150°C or higher. Even when salt water is used when kneading materials, a stable cementing composition that ensures sufficient fluidity until it reaches the filling point underground and suppresses the generation of free water. provide something.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
[Problem] To provide a cementing composition used in oil fields and gas fields, the cementing composition being capable of suppressing the generation of free water from a cement slurry even in a high-temperature environment of 100°C or higher, especially even 150°C or higher, moreover ensuring sufficient fluidity until an underground filling point is reached even if saltwater is used when kneading the cementing composition, and having sufficient stability achieved by suppressing the generation of free water. [Solution] A composition for saltwater-kneaded cementing used in oil fields and gas fields, the composition containing cement, silica particles, and saltwater, wherein the silica particles contain aluminum atoms in a proportion of 0.1-4.0 mass% in terms of Al2O3 relative to the mass of silica (SiO2). In a preferred embodiment of the cementing composition, the silica particles have a specific surface area diameter (particle diameter calculated for equivalent sphere) of 5-200 nm as measured using a nitrogen gas adsorption method, the saltwater is an aqueous solution containing 0.1-4.0 mass% of salt, and the saltwater is salt-containing land water or seawater.
Description
本発明は、高温・高圧の環境にある油田及びガス油田においてフィールドの坑井掘削時に使用するセメンチング用セメントスラリー(セメンチング組成物)において、該スラリーからの遊離水の発生を抑制することにより優れた流動性を実現するセメンチング組成物に関する。
The present invention provides an excellent cement slurry (cementing composition) for cementing used during field well drilling in oil and gas fields in high temperature and high pressure environments by suppressing the generation of free water from the slurry. The present invention relates to a cementing composition that achieves fluidity.
油田やガス田等の坑井掘削では、坑井仕上の際、坑井内に内枠として挿入したケーシングパイプの固定や補強、腐食防止、また地下水の坑井内への流入防止のため、ケーシングパイプと地層(坑壁)との空隙(環状の間隙:annulas(アニュラス)などとも称されることがある)にセメントスラリーを注入するセメンチング作業が実施される。セメンチングとは、坑井内の様々な箇所、あるいはケーシング内・外に、セメント及び水あるいは添加剤を含む溶解水で作られたセメントスラリーを適用すること指し、プライマリー及びセカンダリーセメンチングに分別される。プライマリーセメンチングは、前述したように、ケーシング降下後にケーシングアニュラス部(外側)にセメントを充填するセメンチングを指し、通常のケーシングに際しては必ず実施される。またセカンダリーセメンチングは、その後の二次的なセメンチングであり、必要に応じて局所的に実施されるセメンチングを指す。
When drilling wells in oil fields, gas fields, etc., when finishing the well, casing pipes are used to fix and reinforce the casing pipe inserted into the well as an inner frame, to prevent corrosion, and to prevent groundwater from flowing into the well. Cementing work is performed in which cement slurry is injected into a gap (an annular gap: sometimes referred to as an annulus) between the ground layer (pit wall). Cementing refers to the application of a cement slurry made of cement and water or dissolved water containing additives to various locations within a wellbore or inside or outside the casing, and is divided into primary and secondary cementing. As mentioned above, primary cementing refers to cementing in which the casing annulus (outside) is filled with cement after the casing has been lowered, and is always performed in normal casing. Further, secondary cementing refers to subsequent secondary cementing, and refers to cementing that is locally performed as necessary.
油田やガス田等の坑井掘削は、ビット(削孔用具)による掘削作業と上記のセメンチング作業が繰り返し実施され、油井が深くなるに従い、作業現場の温度は上昇し、圧力も上昇することとなる。近年、掘削技術が向上し、深さ500~1000m以上の深層の油田及びガス油田層の掘削が行われており、高温・高圧環境下においてもセメンチングが可能となるセメントスラリーの設計が求められる。また近年、油田及びガス油田層の生産層を水平に掘り進んで生産量を増やすことができる、水平坑井の頻度が増している。水平坑井は、従来の垂直井、傾斜井と異なり、掘削中の泥水性状やセメンチングに使用するセメントスラリーデザインに注意を払う必要が生じている。
When drilling wells in oil fields, gas fields, etc., the drilling work with a bit (drilling tool) and the above-mentioned cementing work are repeatedly performed, and as the well becomes deeper, the temperature and pressure at the work site rise. Become. In recent years, drilling technology has improved, and deep oil and gas fields with a depth of 500 to 1000 m or more are being drilled, and there is a need for a cement slurry design that can be cemented even under high temperature and high pressure environments. Also, in recent years, horizontal wells, which can horizontally drill into the producing layers of oil and gas fields to increase production, have become more frequent. Unlike conventional vertical wells and inclined wells, horizontal wells require careful consideration of the properties of the mud during drilling and the design of the cement slurry used for cementing.
セメンチング用セメントスラリーは、上述したような坑井条件に合わせて設計され、セメントと水に加え、セメント速硬剤、セメント遅硬剤、低比重骨材、高比重骨材、セメント分散剤、セメント脱水調整剤、セメント強度安定剤、逸泥防止剤などの添加剤を加えて調製される。
またセメンチングに使用されるセメント(油井セメント、地熱井セメントなどとも称する)は、一般構造用のセメントとは異なる要求性能を有し、例えば高温・高圧下でもスラリー流動性や強度発現性といった施工性と耐久性を備えることが要求される。
こうした要求性能を考慮した規格として、API規格(American Petroleum Institute(アメリカ石油協会)が定めた石油に関する規格)では、各種の油井セメントがクラス別・耐硫酸塩別に規定され、中でもクラスGセメントは、油井掘削用として最も使用されているセメントである。
しかし、上記のAPI規格を満たしていても、海水などの塩水使用環境下や高温及び高圧の環境下では、セメントスラリーからの遊離水の発生量が増大し、その結果、セメントスラリーの流動性やセメント強度が損なわれるといった問題があり、上記の坑井環境下においても遊離水の発生を抑制できる手段が求められている。 Cement slurry for cementing is designed according to the well conditions described above, and in addition to cement and water, it contains cement fast hardening agent, cement slow hardening agent, low specific gravity aggregate, high specific gravity aggregate, cement dispersant, cement It is prepared by adding additives such as dehydration regulators, cement strength stabilizers, and sludge prevention agents.
Furthermore, the cement used for cementing (also referred to as oil well cement, geothermal well cement, etc.) has different performance requirements from general structural cement, such as workability such as slurry fluidity and strength development even under high temperature and high pressure. and durability.
API standards (petroleum standards established by the American Petroleum Institute) take these required performances into consideration, and various oil well cements are defined by class and sulfate resistance. Among them, Class G cement is It is the most used cement for oil well drilling.
However, even if the above API standards are met, the amount of free water generated from cement slurry increases in environments where salt water such as seawater is used, or in environments with high temperatures and pressures, and as a result, the fluidity of cement slurry deteriorates. There is a problem that cement strength is impaired, and there is a need for a means that can suppress the generation of free water even under the above-mentioned well environment.
またセメンチングに使用されるセメント(油井セメント、地熱井セメントなどとも称する)は、一般構造用のセメントとは異なる要求性能を有し、例えば高温・高圧下でもスラリー流動性や強度発現性といった施工性と耐久性を備えることが要求される。
こうした要求性能を考慮した規格として、API規格(American Petroleum Institute(アメリカ石油協会)が定めた石油に関する規格)では、各種の油井セメントがクラス別・耐硫酸塩別に規定され、中でもクラスGセメントは、油井掘削用として最も使用されているセメントである。
しかし、上記のAPI規格を満たしていても、海水などの塩水使用環境下や高温及び高圧の環境下では、セメントスラリーからの遊離水の発生量が増大し、その結果、セメントスラリーの流動性やセメント強度が損なわれるといった問題があり、上記の坑井環境下においても遊離水の発生を抑制できる手段が求められている。 Cement slurry for cementing is designed according to the well conditions described above, and in addition to cement and water, it contains cement fast hardening agent, cement slow hardening agent, low specific gravity aggregate, high specific gravity aggregate, cement dispersant, cement It is prepared by adding additives such as dehydration regulators, cement strength stabilizers, and sludge prevention agents.
Furthermore, the cement used for cementing (also referred to as oil well cement, geothermal well cement, etc.) has different performance requirements from general structural cement, such as workability such as slurry fluidity and strength development even under high temperature and high pressure. and durability.
API standards (petroleum standards established by the American Petroleum Institute) take these required performances into consideration, and various oil well cements are defined by class and sulfate resistance. Among them, Class G cement is It is the most used cement for oil well drilling.
However, even if the above API standards are met, the amount of free water generated from cement slurry increases in environments where salt water such as seawater is used, or in environments with high temperatures and pressures, and as a result, the fluidity of cement slurry deteriorates. There is a problem that cement strength is impaired, and there is a need for a means that can suppress the generation of free water even under the above-mentioned well environment.
セメントスラリーからの遊離水の抑制を図った提案として、例えば、窒素吸着による比表面積値(BET(N2))が10~500m2/gであり、水蒸気吸着による比表面積値(BET(H2O))が5~65m2/gであるシリカ粒子を含有するセメンチング組成物が開示されている(特許文献1参照)。
また、海水を使用したモルタルにおいて初期強度と長期強度の発現を図った提案として、例えば、セメントと海水と骨材と特定組成を有するモルタル混和剤とを混合させた海水配合モルタルが開示されている(特許文献2参照)。 As a proposal aimed at suppressing free water from cement slurry, for example, the specific surface area value (BET (N 2 )) due to nitrogen adsorption is 10 to 500 m 2 /g, and the specific surface area value (BET (H 2 )) due to water vapor adsorption is 10 to 500 m 2 /g. A cementing composition containing silica particles having an O)) of 5 to 65 m 2 /g has been disclosed (see Patent Document 1).
In addition, as a proposal for developing initial strength and long-term strength in mortar using seawater, for example, a seawater-blended mortar in which cement, seawater, aggregate, and a mortar admixture having a specific composition are mixed is disclosed. (See Patent Document 2).
また、海水を使用したモルタルにおいて初期強度と長期強度の発現を図った提案として、例えば、セメントと海水と骨材と特定組成を有するモルタル混和剤とを混合させた海水配合モルタルが開示されている(特許文献2参照)。 As a proposal aimed at suppressing free water from cement slurry, for example, the specific surface area value (BET (N 2 )) due to nitrogen adsorption is 10 to 500 m 2 /g, and the specific surface area value (BET (H 2 )) due to water vapor adsorption is 10 to 500 m 2 /g. A cementing composition containing silica particles having an O)) of 5 to 65 m 2 /g has been disclosed (see Patent Document 1).
In addition, as a proposal for developing initial strength and long-term strength in mortar using seawater, for example, a seawater-blended mortar in which cement, seawater, aggregate, and a mortar admixture having a specific composition are mixed is disclosed. (See Patent Document 2).
本発明は、油田及びガス油田に用いられ、100℃以上、特に150℃以上もの高温環境下においても、セメントスラリーからの遊離水の発生を抑制できるセメンチング組成物を提供することを課題とするものであり、更にセメンチング組成物を混練する際に塩水を使用した場合に、地下の充填箇所に到達するまでの間において十分な流動性を確保し、遊離水の発生を抑制してなる十分な安定性を有するセメンチング組成物を提供することを課題とするものである。
An object of the present invention is to provide a cementing composition that can be used in oil fields and gas fields and can suppress the generation of free water from cement slurry even in high-temperature environments of 100°C or higher, particularly 150°C or higher. Furthermore, when salt water is used when kneading the cementing composition, sufficient fluidity is ensured until it reaches the filling point underground, and the generation of free water is suppressed, resulting in sufficient stability. An object of the present invention is to provide a cementing composition that has the following properties.
本発明は第1観点として、セメント、シリカ粒子、及び塩水を含み、油田及びガス油田に用いる塩水混練セメンチング用組成物であって、該シリカ粒子はアルミニウム原子がシリカ(SiO2)の質量に対してAl2O3換算で0.1~4.0質量%の割合で含有されるシリカ粒子である、上記セメンチング組成物、
第2観点として、前記シリカ粒子が、窒素ガス吸着法により測定して得られる比表面積径(等価球換算粒子径)が5~200nmの粒子である、第1観点に記載のセメンチング組成物、
第3観点として、前記塩水が、塩分を0.1~4.0質量%含有する水溶液である、第1観点又は第2観点に記載のセメンチング組成物、
第4観点として、前記塩水が、塩分含有陸水、又は海水である、第1観点乃至第3観点のいずれか一つに記載のセメンチング組成物、
第5観点として、塩分濃度3.6質量%、シリカ濃度1質量%に設定した前記シリカ粒子の塩水分散液を20℃、1時間保管する塩水耐性試験において、(該試験後におけるシリカ粒子の動的光散乱法による平均粒子径)/(該試験前におけるシリカ粒子の動的光散乱法による平均粒子径)で表される比が1.0~100である、第1観点乃至第4観点の何れか一つに記載のセメンチング組成物、
第6観点として、前記シリカ粒子が、セメントに対して、シリカ固形分として0.01%~10%BWOC(BWOCは、セメントの乾燥固形分に基づく質量%を意味する)の割合にて含有される、第1観点乃至第5観点のいずれか一つに記載のセメンチング組成物、
第7観点として、さらにセメント遅硬剤及びその他添加剤を含み、前記セメントに対して、前記シリカ粒子をシリカ固形分として0.01%~10%BWOCの割合で、前記塩水を30~60%BWOCの割合で、前記セメント遅硬剤を0.1~5%BWOCの割合で、及びその他の添加剤を0.001~10%BWOCの割合で、それぞれ含有するセメンチング組成物であって、前記その他の添加剤は、脱水調整剤、消泡剤、速硬剤、低比重骨材、高比重骨材、セメント分散剤、セメント強度安定剤、及び逸泥防止剤からなる群より選ばれた少なくとも1種の添加剤である、第1観点乃至第5観点のいずれか一つに記載のセメンチング組成物、
第8観点として、油田又はガス油田の掘削において、100℃以上300℃以下の高温・高圧環境下から石油又はガスを採掘するにあたり、地層とケーシングパイプとの空隙部を油井セメントで充填するためのセメンチング材料として、第1観点乃至第7観点のいずれか一つに記載のセメンチング組成物を用いることを特徴とする、セメンチング工法、及び
第9観点として、第1観点乃至第7観点のいずれか一つに記載のセメンチング組成物を坑井中に導入する工程、及び前記セメンチング組成物を凝結させる工程、を含む、セメンチング方法である。 A first aspect of the present invention is a salt water kneading cementing composition for use in oil fields and gas oil fields, comprising cement, silica particles, and salt water, wherein the silica particles have aluminum atoms relative to the mass of silica (SiO 2 ). The above cementing composition, which is silica particles contained in a proportion of 0.1 to 4.0% by mass in terms of Al 2 O 3 ;
As a second aspect, the cementing composition according to the first aspect, wherein the silica particles are particles having a specific surface area diameter (equivalent spherical particle diameter) of 5 to 200 nm as measured by a nitrogen gas adsorption method;
As a third aspect, the cementing composition according to the first aspect or the second aspect, wherein the salt water is an aqueous solution containing 0.1 to 4.0% by mass of salt;
As a fourth aspect, the cementing composition according to any one of the first to third aspects, wherein the salt water is salt-containing land water or sea water.
As a fifth point of view, in a salt water resistance test in which a salt water dispersion of the silica particles set at a salt concentration of 3.6% by mass and a silica concentration of 1% by mass was stored at 20°C for 1 hour, (the movement of silica particles after the test) According to the first to fourth aspects, the ratio expressed by (average particle diameter by dynamic light scattering method)/(average particle diameter by dynamic light scattering method of silica particles before the test) is 1.0 to 100. The cementing composition according to any one of the above,
As a sixth aspect, the silica particles are contained in cement at a ratio of 0.01% to 10% BWOC (BWOC means mass % based on dry solid content of cement) as silica solid content. The cementing composition according to any one of the first to fifth aspects,
As a seventh aspect, it further includes a cement retardant and other additives, and the silica particles are added to the cement at a ratio of 0.01% to 10% BWOC as a silica solid content, and the salt water is added to the cement in an amount of 30 to 60%. A cementing composition containing the cement retardant in a proportion of 0.1 to 5% BWOC and other additives in a proportion of 0.001 to 10% BWOC, comprising: The other additives are at least selected from the group consisting of dehydration regulators, antifoaming agents, quick hardening agents, low specific gravity aggregates, high specific gravity aggregates, cement dispersants, cement strength stabilizers, and sludge prevention agents. The cementing composition according to any one of the first to fifth aspects, which is one type of additive;
The eighth aspect is that in drilling oil or gas fields, when extracting oil or gas from a high temperature and high pressure environment of 100°C or more and 300°C or less, it is necessary to fill the void between the geological formation and the casing pipe with oil well cement. A cementing construction method characterized in that the cementing composition according to any one of the first to seventh aspects is used as a cementing material, and as a ninth aspect, a cementing method according to any one of the first to seventh aspects. A cementing method comprising the steps of introducing the cementing composition described in 1. into a wellbore, and coagulating the cementing composition.
第2観点として、前記シリカ粒子が、窒素ガス吸着法により測定して得られる比表面積径(等価球換算粒子径)が5~200nmの粒子である、第1観点に記載のセメンチング組成物、
第3観点として、前記塩水が、塩分を0.1~4.0質量%含有する水溶液である、第1観点又は第2観点に記載のセメンチング組成物、
第4観点として、前記塩水が、塩分含有陸水、又は海水である、第1観点乃至第3観点のいずれか一つに記載のセメンチング組成物、
第5観点として、塩分濃度3.6質量%、シリカ濃度1質量%に設定した前記シリカ粒子の塩水分散液を20℃、1時間保管する塩水耐性試験において、(該試験後におけるシリカ粒子の動的光散乱法による平均粒子径)/(該試験前におけるシリカ粒子の動的光散乱法による平均粒子径)で表される比が1.0~100である、第1観点乃至第4観点の何れか一つに記載のセメンチング組成物、
第6観点として、前記シリカ粒子が、セメントに対して、シリカ固形分として0.01%~10%BWOC(BWOCは、セメントの乾燥固形分に基づく質量%を意味する)の割合にて含有される、第1観点乃至第5観点のいずれか一つに記載のセメンチング組成物、
第7観点として、さらにセメント遅硬剤及びその他添加剤を含み、前記セメントに対して、前記シリカ粒子をシリカ固形分として0.01%~10%BWOCの割合で、前記塩水を30~60%BWOCの割合で、前記セメント遅硬剤を0.1~5%BWOCの割合で、及びその他の添加剤を0.001~10%BWOCの割合で、それぞれ含有するセメンチング組成物であって、前記その他の添加剤は、脱水調整剤、消泡剤、速硬剤、低比重骨材、高比重骨材、セメント分散剤、セメント強度安定剤、及び逸泥防止剤からなる群より選ばれた少なくとも1種の添加剤である、第1観点乃至第5観点のいずれか一つに記載のセメンチング組成物、
第8観点として、油田又はガス油田の掘削において、100℃以上300℃以下の高温・高圧環境下から石油又はガスを採掘するにあたり、地層とケーシングパイプとの空隙部を油井セメントで充填するためのセメンチング材料として、第1観点乃至第7観点のいずれか一つに記載のセメンチング組成物を用いることを特徴とする、セメンチング工法、及び
第9観点として、第1観点乃至第7観点のいずれか一つに記載のセメンチング組成物を坑井中に導入する工程、及び前記セメンチング組成物を凝結させる工程、を含む、セメンチング方法である。 A first aspect of the present invention is a salt water kneading cementing composition for use in oil fields and gas oil fields, comprising cement, silica particles, and salt water, wherein the silica particles have aluminum atoms relative to the mass of silica (SiO 2 ). The above cementing composition, which is silica particles contained in a proportion of 0.1 to 4.0% by mass in terms of Al 2 O 3 ;
As a second aspect, the cementing composition according to the first aspect, wherein the silica particles are particles having a specific surface area diameter (equivalent spherical particle diameter) of 5 to 200 nm as measured by a nitrogen gas adsorption method;
As a third aspect, the cementing composition according to the first aspect or the second aspect, wherein the salt water is an aqueous solution containing 0.1 to 4.0% by mass of salt;
As a fourth aspect, the cementing composition according to any one of the first to third aspects, wherein the salt water is salt-containing land water or sea water.
As a fifth point of view, in a salt water resistance test in which a salt water dispersion of the silica particles set at a salt concentration of 3.6% by mass and a silica concentration of 1% by mass was stored at 20°C for 1 hour, (the movement of silica particles after the test) According to the first to fourth aspects, the ratio expressed by (average particle diameter by dynamic light scattering method)/(average particle diameter by dynamic light scattering method of silica particles before the test) is 1.0 to 100. The cementing composition according to any one of the above,
As a sixth aspect, the silica particles are contained in cement at a ratio of 0.01% to 10% BWOC (BWOC means mass % based on dry solid content of cement) as silica solid content. The cementing composition according to any one of the first to fifth aspects,
As a seventh aspect, it further includes a cement retardant and other additives, and the silica particles are added to the cement at a ratio of 0.01% to 10% BWOC as a silica solid content, and the salt water is added to the cement in an amount of 30 to 60%. A cementing composition containing the cement retardant in a proportion of 0.1 to 5% BWOC and other additives in a proportion of 0.001 to 10% BWOC, comprising: The other additives are at least selected from the group consisting of dehydration regulators, antifoaming agents, quick hardening agents, low specific gravity aggregates, high specific gravity aggregates, cement dispersants, cement strength stabilizers, and sludge prevention agents. The cementing composition according to any one of the first to fifth aspects, which is one type of additive;
The eighth aspect is that in drilling oil or gas fields, when extracting oil or gas from a high temperature and high pressure environment of 100°C or more and 300°C or less, it is necessary to fill the void between the geological formation and the casing pipe with oil well cement. A cementing construction method characterized in that the cementing composition according to any one of the first to seventh aspects is used as a cementing material, and as a ninth aspect, a cementing method according to any one of the first to seventh aspects. A cementing method comprising the steps of introducing the cementing composition described in 1. into a wellbore, and coagulating the cementing composition.
本発明のセメンチング組成物は、100℃以上、特に150℃以上300℃以下の高温油層における掘削時に使用したとき、強度低下の原因になるセメンチング組成物(セメンチング用セメントスラリー)からの遊離水の発生を抑制することができる組成物であり、且つ、現場で塩水(特には海水)を使用する場合に優れた流動性を実現し、また施工不備(例えば、セメントがやせ細って地層との隙間が埋められず、ケーシングの固定が不十分になる)を抑制することができる。
従って、本発明のセメンチング組成物を用いることにより、高温環境下であっても、坑井仕上を安定して、生産性よくセメンチングを実施することができる。 When the cementing composition of the present invention is used during drilling in a high-temperature oil layer of 100°C or higher, particularly 150°C or higher and 300°C or lower, free water is generated from the cementing composition (cement slurry for cementing), which causes a decrease in strength. It is a composition that can suppress the occurrence of problems, and also achieves excellent fluidity when salt water (especially seawater) is used at the site. casing, resulting in insufficient fixation of the casing).
Therefore, by using the cementing composition of the present invention, it is possible to stably finish a wellbore and carry out cementing with high productivity even in a high-temperature environment.
従って、本発明のセメンチング組成物を用いることにより、高温環境下であっても、坑井仕上を安定して、生産性よくセメンチングを実施することができる。 When the cementing composition of the present invention is used during drilling in a high-temperature oil layer of 100°C or higher, particularly 150°C or higher and 300°C or lower, free water is generated from the cementing composition (cement slurry for cementing), which causes a decrease in strength. It is a composition that can suppress the occurrence of problems, and also achieves excellent fluidity when salt water (especially seawater) is used at the site. casing, resulting in insufficient fixation of the casing).
Therefore, by using the cementing composition of the present invention, it is possible to stably finish a wellbore and carry out cementing with high productivity even in a high-temperature environment.
本発明はセメント、シリカ粒子、及び塩水を含み、油田及びガス油田に用いる塩水混練セメンチング用組成物を対象とする。
以下、本発明のセメンチング組成物に使用される各成分について詳述する。 The present invention is directed to a salt water kneading cementing composition for use in oil and gas fields, comprising cement, silica particles, and salt water.
Each component used in the cementing composition of the present invention will be described in detail below.
以下、本発明のセメンチング組成物に使用される各成分について詳述する。 The present invention is directed to a salt water kneading cementing composition for use in oil and gas fields, comprising cement, silica particles, and salt water.
Each component used in the cementing composition of the present invention will be described in detail below.
<シリカ粒子>
本発明で使用するシリカ粒子は、アルミニウム原子がシリカ(SiO2)(質量)に対してAl2O3換算で0.1~4.0質量%で含有されるシリカ粒子であり、好ましくはアルミニウム原子が同0.1~2.0質量%、更に好ましくは同0.1~1.5質量%の割合で含有されるシリカ粒子である。
上記シリカ粒子において、アルミニウム原子の含有形態は特に限定されず、シリカやケイ素原子と化学的な結合をしていてもよいし、また原子レベルで固溶体を形成していてもよい。 <Silica particles>
The silica particles used in the present invention are silica particles containing aluminum atoms in an amount of 0.1 to 4.0% by mass in terms of Al 2 O 3 based on silica (SiO 2 ) (mass), and preferably contain aluminum atoms. These are silica particles containing atoms in an amount of 0.1 to 2.0% by mass, more preferably 0.1 to 1.5% by mass.
In the above-mentioned silica particles, the form in which aluminum atoms are contained is not particularly limited, and may be chemically bonded to silica or silicon atoms, or may form a solid solution at the atomic level.
本発明で使用するシリカ粒子は、アルミニウム原子がシリカ(SiO2)(質量)に対してAl2O3換算で0.1~4.0質量%で含有されるシリカ粒子であり、好ましくはアルミニウム原子が同0.1~2.0質量%、更に好ましくは同0.1~1.5質量%の割合で含有されるシリカ粒子である。
上記シリカ粒子において、アルミニウム原子の含有形態は特に限定されず、シリカやケイ素原子と化学的な結合をしていてもよいし、また原子レベルで固溶体を形成していてもよい。 <Silica particles>
The silica particles used in the present invention are silica particles containing aluminum atoms in an amount of 0.1 to 4.0% by mass in terms of Al 2 O 3 based on silica (SiO 2 ) (mass), and preferably contain aluminum atoms. These are silica particles containing atoms in an amount of 0.1 to 2.0% by mass, more preferably 0.1 to 1.5% by mass.
In the above-mentioned silica particles, the form in which aluminum atoms are contained is not particularly limited, and may be chemically bonded to silica or silicon atoms, or may form a solid solution at the atomic level.
本発明のセメンチング組成物に含まれるシリカ粒子は、水性シリカゾルに由来するシリカ粒子を用いることができ、セメンチング組成物の一成分として、水性シリカゾルの形態にて添加することができる。
水性シリカゾルは、水性溶媒を分散媒とし、コロイダルシリカ粒子を分散質とするコロイド分散系をいい、水ガラス(ケイ酸ナトリウム水溶液)等のケイ酸アルカリ水溶液を原料として公知の方法により製造することができる。
水ガラス(ケイ酸ナトリウム水溶液)を原料にして水性シリカゾルを製造する場合、水ガラスを陽イオン交換して活性ケイ酸を製造し、その活性ケイ酸を加熱することによりケイ酸の重合体を形成させ、水性媒体中でシリカ粒子に成長させることにより、水性シリカゾルを得ることができる。この製造工程において、活性ケイ酸が得られる段階、又はシリカ粒子が形成される段階でアルミニウム原子を含有する化合物を添加することにより、アルミニウム原子を含むシリカ粒子が形成される。このアルミニウム原子を含有する化合物は例えば、アルミン酸アルカリ(例えばアルミン酸ナトリウム)を用いることができる。
より具体的には、アルミン酸アルカリ水溶液を活性ケイ酸水溶液に添加し、あるいは、アルミン酸アルカリ水溶液をシリカゾルに添加し、得られた混合液を加熱することにより、アルミニウム原子を含むシリカ粒子が分散したシリカゾルを得ることができる。
このような方法にて得られたシリカ粒子(水性シリカゾル)は、シリカのネットワーク中のケイ素の一部がアルミニウム原子に置き換えられたアルミノシリケート構造を形成していると考えられる。該アルミニウム原子がプラスの電荷を有し、シリカ粒子に対してプラスの電荷を与えることとなるため、該シリカ粒子は塩水等のイオン成分を多く含む媒体中においても、凝集などが生じず、分散安定性が高い粒子となっていると考えられる。
本発明においてシリカ粒子として使用する水性シリカゾルにおけるシリカ(SiO2)濃度は特に限定されないが、例えば5~55質量%とすることができる。 Silica particles derived from an aqueous silica sol can be used as the silica particles contained in the cementing composition of the present invention, and can be added in the form of an aqueous silica sol as a component of the cementing composition.
Aqueous silica sol refers to a colloidal dispersion system in which an aqueous solvent is used as a dispersion medium and colloidal silica particles are used as a dispersoid, and it can be produced by a known method using an aqueous alkali silicate solution such as water glass (aqueous sodium silicate solution) as a raw material. can.
When producing aqueous silica sol using water glass (sodium silicate aqueous solution) as a raw material, active silicic acid is produced by cation exchange of water glass, and a polymer of silicic acid is formed by heating the active silicic acid. An aqueous silica sol can be obtained by growing the silica particles into silica particles in an aqueous medium. In this manufacturing process, silica particles containing aluminum atoms are formed by adding a compound containing aluminum atoms at the stage where activated silicic acid is obtained or the silica particles are formed. For example, an alkali aluminate (eg, sodium aluminate) can be used as the compound containing an aluminum atom.
More specifically, silica particles containing aluminum atoms are dispersed by adding an aqueous alkali aluminate solution to an aqueous activated silicic acid solution or adding an aqueous alkali aluminate solution to a silica sol and heating the resulting mixture. silica sol can be obtained.
It is thought that the silica particles (aqueous silica sol) obtained by such a method form an aluminosilicate structure in which some of the silicon in the silica network is replaced with aluminum atoms. Since the aluminum atoms have a positive charge and give a positive charge to the silica particles, the silica particles do not aggregate and disperse even in a medium containing many ionic components such as salt water. It is thought that the particles are highly stable.
The silica (SiO 2 ) concentration in the aqueous silica sol used as silica particles in the present invention is not particularly limited, but can be, for example, 5 to 55% by mass.
水性シリカゾルは、水性溶媒を分散媒とし、コロイダルシリカ粒子を分散質とするコロイド分散系をいい、水ガラス(ケイ酸ナトリウム水溶液)等のケイ酸アルカリ水溶液を原料として公知の方法により製造することができる。
水ガラス(ケイ酸ナトリウム水溶液)を原料にして水性シリカゾルを製造する場合、水ガラスを陽イオン交換して活性ケイ酸を製造し、その活性ケイ酸を加熱することによりケイ酸の重合体を形成させ、水性媒体中でシリカ粒子に成長させることにより、水性シリカゾルを得ることができる。この製造工程において、活性ケイ酸が得られる段階、又はシリカ粒子が形成される段階でアルミニウム原子を含有する化合物を添加することにより、アルミニウム原子を含むシリカ粒子が形成される。このアルミニウム原子を含有する化合物は例えば、アルミン酸アルカリ(例えばアルミン酸ナトリウム)を用いることができる。
より具体的には、アルミン酸アルカリ水溶液を活性ケイ酸水溶液に添加し、あるいは、アルミン酸アルカリ水溶液をシリカゾルに添加し、得られた混合液を加熱することにより、アルミニウム原子を含むシリカ粒子が分散したシリカゾルを得ることができる。
このような方法にて得られたシリカ粒子(水性シリカゾル)は、シリカのネットワーク中のケイ素の一部がアルミニウム原子に置き換えられたアルミノシリケート構造を形成していると考えられる。該アルミニウム原子がプラスの電荷を有し、シリカ粒子に対してプラスの電荷を与えることとなるため、該シリカ粒子は塩水等のイオン成分を多く含む媒体中においても、凝集などが生じず、分散安定性が高い粒子となっていると考えられる。
本発明においてシリカ粒子として使用する水性シリカゾルにおけるシリカ(SiO2)濃度は特に限定されないが、例えば5~55質量%とすることができる。 Silica particles derived from an aqueous silica sol can be used as the silica particles contained in the cementing composition of the present invention, and can be added in the form of an aqueous silica sol as a component of the cementing composition.
Aqueous silica sol refers to a colloidal dispersion system in which an aqueous solvent is used as a dispersion medium and colloidal silica particles are used as a dispersoid, and it can be produced by a known method using an aqueous alkali silicate solution such as water glass (aqueous sodium silicate solution) as a raw material. can.
When producing aqueous silica sol using water glass (sodium silicate aqueous solution) as a raw material, active silicic acid is produced by cation exchange of water glass, and a polymer of silicic acid is formed by heating the active silicic acid. An aqueous silica sol can be obtained by growing the silica particles into silica particles in an aqueous medium. In this manufacturing process, silica particles containing aluminum atoms are formed by adding a compound containing aluminum atoms at the stage where activated silicic acid is obtained or the silica particles are formed. For example, an alkali aluminate (eg, sodium aluminate) can be used as the compound containing an aluminum atom.
More specifically, silica particles containing aluminum atoms are dispersed by adding an aqueous alkali aluminate solution to an aqueous activated silicic acid solution or adding an aqueous alkali aluminate solution to a silica sol and heating the resulting mixture. silica sol can be obtained.
It is thought that the silica particles (aqueous silica sol) obtained by such a method form an aluminosilicate structure in which some of the silicon in the silica network is replaced with aluminum atoms. Since the aluminum atoms have a positive charge and give a positive charge to the silica particles, the silica particles do not aggregate and disperse even in a medium containing many ionic components such as salt water. It is thought that the particles are highly stable.
The silica (SiO 2 ) concentration in the aqueous silica sol used as silica particles in the present invention is not particularly limited, but can be, for example, 5 to 55% by mass.
本発明で使用するシリカ粒子の平均粒子径は、窒素ガス吸着法により測定して得られる比表面積径(BET(N2)から算出された等価球換算粒子径)によって表される。また、シリカ粒子の平均粒子径は、動的光散乱法(DLS法)による粒子径によって表すこともできる。水性シリカゾルの形態にてシリカ粒子を用いる場合、「シリカ粒子の平均粒子径」とは、分散質であるコロイダルシリカ粒子の平均粒子径を指す。
上記動的光散乱法(DLS法)による粒子径(以下、DLS平均粒子径と称する)は、2次粒子径(分散粒子径)の平均値を表しており、完全に分散している状態のDLS平均粒子径は、平均粒子径(窒素ガス吸着法(BET法)により測定して得られる比表面積径であり、1次粒子径の平均値を表す)の2倍程度あると言われている。そして、DLS平均粒子径が大きくなるほど、例えば水性シリカゾル中のシリカ粒子が凝集状態になっていると判断できる。 The average particle diameter of the silica particles used in the present invention is represented by the specific surface area diameter (equivalent spherical particle diameter calculated from BET (N 2 )) obtained by measurement by a nitrogen gas adsorption method. Moreover, the average particle diameter of silica particles can also be expressed by the particle diameter determined by dynamic light scattering method (DLS method). When using silica particles in the form of an aqueous silica sol, the "average particle size of silica particles" refers to the average particle size of colloidal silica particles that are dispersoids.
The particle size determined by the above dynamic light scattering method (DLS method) (hereinafter referred to as the DLS average particle size) represents the average value of the secondary particle size (dispersed particle size), and represents the average value of the secondary particle size (dispersed particle size). The DLS average particle size is said to be about twice the average particle size (specific surface area diameter obtained by measurement by nitrogen gas adsorption method (BET method), which represents the average value of primary particle diameter). . As the DLS average particle diameter increases, it can be determined that, for example, the silica particles in the aqueous silica sol are in an agglomerated state.
上記動的光散乱法(DLS法)による粒子径(以下、DLS平均粒子径と称する)は、2次粒子径(分散粒子径)の平均値を表しており、完全に分散している状態のDLS平均粒子径は、平均粒子径(窒素ガス吸着法(BET法)により測定して得られる比表面積径であり、1次粒子径の平均値を表す)の2倍程度あると言われている。そして、DLS平均粒子径が大きくなるほど、例えば水性シリカゾル中のシリカ粒子が凝集状態になっていると判断できる。 The average particle diameter of the silica particles used in the present invention is represented by the specific surface area diameter (equivalent spherical particle diameter calculated from BET (N 2 )) obtained by measurement by a nitrogen gas adsorption method. Moreover, the average particle diameter of silica particles can also be expressed by the particle diameter determined by dynamic light scattering method (DLS method). When using silica particles in the form of an aqueous silica sol, the "average particle size of silica particles" refers to the average particle size of colloidal silica particles that are dispersoids.
The particle size determined by the above dynamic light scattering method (DLS method) (hereinafter referred to as the DLS average particle size) represents the average value of the secondary particle size (dispersed particle size), and represents the average value of the secondary particle size (dispersed particle size). The DLS average particle size is said to be about twice the average particle size (specific surface area diameter obtained by measurement by nitrogen gas adsorption method (BET method), which represents the average value of primary particle diameter). . As the DLS average particle diameter increases, it can be determined that, for example, the silica particles in the aqueous silica sol are in an agglomerated state.
窒素ガス吸着法により測定して得られる比表面積径(BET(N2)から算出された等価球換算粒子径)D(nm)は、窒素ガス吸着法で測定される比表面積S(m2/g)から、D(nm)=2720/Sの式によって与えられる。
本発明で用いるシリカ粒子の比表面積径(BET(N2)から算出された等価球換算粒子径)は、好ましくは5~200nmであり、例えば10~100nm、又は10~80nm、又は10~70nmとすることができる。 The specific surface area diameter (equivalent spherical particle diameter calculated from BET(N 2 )) D (nm) obtained by measurement by the nitrogen gas adsorption method is the specific surface area S (m 2 /nm) measured by the nitrogen gas adsorption method. g), it is given by the formula D(nm)=2720/S.
The specific surface area diameter (equivalent spherical particle diameter calculated from BET (N 2 )) of the silica particles used in the present invention is preferably 5 to 200 nm, for example 10 to 100 nm, 10 to 80 nm, or 10 to 70 nm. It can be done.
本発明で用いるシリカ粒子の比表面積径(BET(N2)から算出された等価球換算粒子径)は、好ましくは5~200nmであり、例えば10~100nm、又は10~80nm、又は10~70nmとすることができる。 The specific surface area diameter (equivalent spherical particle diameter calculated from BET(N 2 )) D (nm) obtained by measurement by the nitrogen gas adsorption method is the specific surface area S (m 2 /nm) measured by the nitrogen gas adsorption method. g), it is given by the formula D(nm)=2720/S.
The specific surface area diameter (equivalent spherical particle diameter calculated from BET (N 2 )) of the silica particles used in the present invention is preferably 5 to 200 nm, for example 10 to 100 nm, 10 to 80 nm, or 10 to 70 nm. It can be done.
また、本発明で用いるシリカ粒子の動的光散乱法による粒子径は、好ましくは10~200nmであり、例えば10~100nm、又は10~80nm、又は10~70nmとすることができる。
Furthermore, the particle diameter of the silica particles used in the present invention as measured by a dynamic light scattering method is preferably 10 to 200 nm, and can be, for example, 10 to 100 nm, 10 to 80 nm, or 10 to 70 nm.
本発明で用いるシリカ粒子は、下記に示す塩水耐性試験の前後において平均粒子径の変化率が特定の範囲にあることが望ましい。
詳細には、塩分濃度3.6質量%、シリカ濃度1質量%に設定したシリカ粒子の塩水分散液を、20℃、1時間保管する塩水耐性試験において、(該試験後におけるシリカ粒子の動的光散乱法による平均粒子径)/(該試験前におけるシリカ粒子の動的光散乱法による平均粒子径)で表される比が1.0~100、好ましくは1.0~50、又は1.0~30、又は1.0~10、又は1.0~5.0、更に好ましくは1.0~2.0となるシリカ粒子を用いることが望ましい。
塩水耐性試験前後の粒子径の変化の割合が小さいシリカ粒子は、これを添加したセメンチング組成物において、流動性が優れるだけでなく、遊離水量を低く抑えることができる。 It is desirable that the silica particles used in the present invention have a rate of change in average particle diameter within a specific range before and after the salt water resistance test shown below.
In detail, in a salt water resistance test in which a salt water dispersion of silica particles with a salt concentration of 3.6% by mass and a silica concentration of 1% was stored at 20°C for 1 hour, (the dynamics of silica particles after the test) The ratio expressed as (average particle diameter measured by light scattering method)/(average particle diameter measured by dynamic light scattering method of silica particles before the test) is 1.0 to 100, preferably 1.0 to 50, or 1.0 to 100, preferably 1.0 to 50. It is desirable to use silica particles having a particle size of 0 to 30, or 1.0 to 10, or 1.0 to 5.0, more preferably 1.0 to 2.0.
Silica particles with a small rate of change in particle size before and after the salt water resistance test not only have excellent fluidity but also can suppress the amount of free water in a cementing composition to which they are added.
詳細には、塩分濃度3.6質量%、シリカ濃度1質量%に設定したシリカ粒子の塩水分散液を、20℃、1時間保管する塩水耐性試験において、(該試験後におけるシリカ粒子の動的光散乱法による平均粒子径)/(該試験前におけるシリカ粒子の動的光散乱法による平均粒子径)で表される比が1.0~100、好ましくは1.0~50、又は1.0~30、又は1.0~10、又は1.0~5.0、更に好ましくは1.0~2.0となるシリカ粒子を用いることが望ましい。
塩水耐性試験前後の粒子径の変化の割合が小さいシリカ粒子は、これを添加したセメンチング組成物において、流動性が優れるだけでなく、遊離水量を低く抑えることができる。 It is desirable that the silica particles used in the present invention have a rate of change in average particle diameter within a specific range before and after the salt water resistance test shown below.
In detail, in a salt water resistance test in which a salt water dispersion of silica particles with a salt concentration of 3.6% by mass and a silica concentration of 1% was stored at 20°C for 1 hour, (the dynamics of silica particles after the test) The ratio expressed as (average particle diameter measured by light scattering method)/(average particle diameter measured by dynamic light scattering method of silica particles before the test) is 1.0 to 100, preferably 1.0 to 50, or 1.0 to 100, preferably 1.0 to 50. It is desirable to use silica particles having a particle size of 0 to 30, or 1.0 to 10, or 1.0 to 5.0, more preferably 1.0 to 2.0.
Silica particles with a small rate of change in particle size before and after the salt water resistance test not only have excellent fluidity but also can suppress the amount of free water in a cementing composition to which they are added.
<セメンチング用組成物>
本発明のセメンチング組成物(セメンチング用セメントスラリー)は、上述のようにセメント、シリカ粒子及び塩水を含む。本発明で使用するセメントとしては油井セメントが好ましい。
詳細には、本発明のセメンチング組成物は、セメントに対してシリカ粒子(例えば水性ゾルの形態にて含む)を、シリカ固形分として0.1%~10%BWOC(BWOCは、セメントの乾燥固形分に基づく質量%(By Weight of Cement)を意味する)の割合で含有する。 <Cementing composition>
The cementing composition (cement slurry for cementing) of the present invention contains cement, silica particles, and salt water as described above. The cement used in the present invention is preferably oil well cement.
Specifically, the cementing composition of the present invention contains silica particles (for example, in the form of an aqueous sol) relative to the cement, with a silica solid content of 0.1% to 10% BWOC (BWOC is the dry solid content of cement). By Weight of Cement).
本発明のセメンチング組成物(セメンチング用セメントスラリー)は、上述のようにセメント、シリカ粒子及び塩水を含む。本発明で使用するセメントとしては油井セメントが好ましい。
詳細には、本発明のセメンチング組成物は、セメントに対してシリカ粒子(例えば水性ゾルの形態にて含む)を、シリカ固形分として0.1%~10%BWOC(BWOCは、セメントの乾燥固形分に基づく質量%(By Weight of Cement)を意味する)の割合で含有する。 <Cementing composition>
The cementing composition (cement slurry for cementing) of the present invention contains cement, silica particles, and salt water as described above. The cement used in the present invention is preferably oil well cement.
Specifically, the cementing composition of the present invention contains silica particles (for example, in the form of an aqueous sol) relative to the cement, with a silica solid content of 0.1% to 10% BWOC (BWOC is the dry solid content of cement). By Weight of Cement).
また本発明のセメンチング組成物は、前記セメントとシリカ粒子(水性シリカゾル)、塩水に加え、セメント遅硬剤、並びにその他の添加剤を含有していてもよい。このとき、各成分の配合量は、セメントに対して、前記シリカ粒子をシリカ固形分として0.01%~10%BWOCの割合で、塩水を30~60%BWOCの割合で、セメント遅硬剤を0.1~5%BWOCの割合で、及びその他の添加剤を0.001~10%BWOCの割合で、それぞれ配合することができる。
また前記その他の添加剤としては、脱水調整剤、消泡剤、速硬剤、低比重骨材、高比重骨材、セメント分散剤、セメント強度安定剤、及び逸泥防止剤からなる群より選ばれた少なくとも1種類の添加剤を挙げることができる。 Further, the cementing composition of the present invention may contain, in addition to the cement, silica particles (aqueous silica sol), and salt water, a cement retardant and other additives. At this time, the blending amounts of each component are as follows: the silica particles are 0.01% to 10% BWOC as silica solid content, the salt water is 30% to 60% BWOC, and the cement retardant is added to the cement. can be blended in a proportion of 0.1 to 5% BWOC, and other additives can be blended in a proportion of 0.001 to 10% BWOC.
The other additives may be selected from the group consisting of dehydration regulators, antifoaming agents, quick hardening agents, low specific gravity aggregates, high specific gravity aggregates, cement dispersants, cement strength stabilizers, and sludge prevention agents. At least one type of additive can be mentioned.
また前記その他の添加剤としては、脱水調整剤、消泡剤、速硬剤、低比重骨材、高比重骨材、セメント分散剤、セメント強度安定剤、及び逸泥防止剤からなる群より選ばれた少なくとも1種類の添加剤を挙げることができる。 Further, the cementing composition of the present invention may contain, in addition to the cement, silica particles (aqueous silica sol), and salt water, a cement retardant and other additives. At this time, the blending amounts of each component are as follows: the silica particles are 0.01% to 10% BWOC as silica solid content, the salt water is 30% to 60% BWOC, and the cement retardant is added to the cement. can be blended in a proportion of 0.1 to 5% BWOC, and other additives can be blended in a proportion of 0.001 to 10% BWOC.
The other additives may be selected from the group consisting of dehydration regulators, antifoaming agents, quick hardening agents, low specific gravity aggregates, high specific gravity aggregates, cement dispersants, cement strength stabilizers, and sludge prevention agents. At least one type of additive can be mentioned.
本発明で使用するセメントは、上述したように好ましくは油井セメントであり、前記油井セメントとしては、API(American Petroleum Institute)の規格「APISPEC 10A Specification for Cements and Materials for Well」のクラスAセメント~クラスHセメントのいずれも使用できる。中でも、クラスGセメント及びクラスHセメントは、添加剤により成分調整が容易であり、広範囲の深度や温度に使用できるためより好ましい。
The cement used in the present invention is preferably an oil well cement as described above, and the oil well cement conforms to the API (American Petroleum Institute) standard "APISPEC 10A Specification for Cements and “Materials for Well” Class A Cement ~ Class Any H cement can be used. Among them, class G cement and class H cement are more preferable because they can be easily adjusted with additives and can be used at a wide range of depths and temperatures.
前記セメント遅硬剤は、作業終了までのセメンチング組成物の適正な流動性を保ち、シックニングタイムを調整するために使用される。
セメント遅硬剤は、主成分としてリグニンスルホン酸塩類、ナフタレンスルホン酸塩類、ホウ酸塩類等を含む。 The cement retardant is used to maintain proper fluidity of the cementing composition until the end of the work and to adjust the thickening time.
Cement retardants contain lignin sulfonates, naphthalene sulfonates, borates, etc. as main components.
セメント遅硬剤は、主成分としてリグニンスルホン酸塩類、ナフタレンスルホン酸塩類、ホウ酸塩類等を含む。 The cement retardant is used to maintain proper fluidity of the cementing composition until the end of the work and to adjust the thickening time.
Cement retardants contain lignin sulfonates, naphthalene sulfonates, borates, etc. as main components.
前記脱水調整剤は、水に鋭敏な地層の保護やスラリー(セメンチング組成物)の早期脱水防止などを目的として使用することができ、主成分として有機高分子ポリマー、ビニルアミドビニルスルホン酸共重合物等を含む。
前記消泡剤は、主成分としてシリコン系化合物、高級アルコール等を含む。
前記低比重骨材は、逸水層や低圧層がある場合にセメンチング組成物の比重を下げることなどを目的として使用することができ、主成分としてベントナイト、ギルソナイト、珪藻土、パーライト、フライアッシュ中空粒子、アルミナケイ酸ガラス中空粒子、ホウケイ酸ソーダ中空粒子、アルミナ中空粒子、又はカーボン中空粒子等を含む。
前記高比重骨材は、高圧層抑圧泥水と置換効率を良好にするためにセメンチング組成物の比重を上げることなどを目的として使用することができ、主成分として硫酸バリウム、ヘマタイト、又はイルメナイト等を含む。
また前記セメント分散剤は、セメンチング組成物の粘性を下げ、泥水との置換効率を高めることなどを目的として使用することができ、主成分としてナフタレンスルホン酸ホルマリン縮合物、ポリアクリル酸縮合物、又はスルホン化メラミン縮合物等を含む。
前記セメント強度安定剤は、主成分としてフライアッシュ、ケイ石粉等を含む。
前記逸泥防止剤は、逸泥防止に使用され、具体的にはセメントの性質に影響を与えない不活性粒状のものが挙げられ、主成分としてクルミの殻、ヒル石、ギルソナイト、雲母、セロハン屑等を含む。
そして前記(セメント)速硬剤は、初期強度や硬化待ち時間の短縮等を目的として使用され、主成分として塩化カルシウム、水ガラス、石膏等を含む。 The dehydration regulator can be used for the purpose of protecting geological formations that are sensitive to water and preventing early dehydration of slurry (cementing composition), and contains organic polymers and vinylamide vinylsulfonic acid copolymers as main components. Including etc.
The antifoaming agent contains a silicone compound, a higher alcohol, etc. as a main component.
The low specific gravity aggregate can be used for the purpose of lowering the specific gravity of the cementing composition when there is a water loss layer or a low pressure layer, and contains bentonite, gilsonite, diatomaceous earth, perlite, and fly ash hollow particles as main components. , alumina silicate glass hollow particles, sodium borosilicate hollow particles, alumina hollow particles, or carbon hollow particles.
The high specific gravity aggregate can be used for the purpose of increasing the specific gravity of the cementing composition in order to improve the replacement efficiency with the high-pressure layer suppressed mud water, and contains barium sulfate, hematite, ilmenite, etc. as the main component. include.
Further, the cement dispersant can be used for the purpose of lowering the viscosity of the cementing composition and increasing the muddy water replacement efficiency, and contains naphthalene sulfonic acid formalin condensate, polyacrylic acid condensate, or polyacrylic acid condensate as the main component. Contains sulfonated melamine condensates, etc.
The cement strength stabilizer contains fly ash, silica powder, etc. as main components.
The anti-sludge agent is used to prevent sludge, and specifically includes inert granular materials that do not affect the properties of cement.The main ingredients include walnut shell, vermiculite, gilsonite, mica, and cellophane. Including scraps, etc.
The (cement) quick hardening agent is used for the purpose of shortening initial strength and hardening waiting time, and contains calcium chloride, water glass, gypsum, etc. as main components.
前記消泡剤は、主成分としてシリコン系化合物、高級アルコール等を含む。
前記低比重骨材は、逸水層や低圧層がある場合にセメンチング組成物の比重を下げることなどを目的として使用することができ、主成分としてベントナイト、ギルソナイト、珪藻土、パーライト、フライアッシュ中空粒子、アルミナケイ酸ガラス中空粒子、ホウケイ酸ソーダ中空粒子、アルミナ中空粒子、又はカーボン中空粒子等を含む。
前記高比重骨材は、高圧層抑圧泥水と置換効率を良好にするためにセメンチング組成物の比重を上げることなどを目的として使用することができ、主成分として硫酸バリウム、ヘマタイト、又はイルメナイト等を含む。
また前記セメント分散剤は、セメンチング組成物の粘性を下げ、泥水との置換効率を高めることなどを目的として使用することができ、主成分としてナフタレンスルホン酸ホルマリン縮合物、ポリアクリル酸縮合物、又はスルホン化メラミン縮合物等を含む。
前記セメント強度安定剤は、主成分としてフライアッシュ、ケイ石粉等を含む。
前記逸泥防止剤は、逸泥防止に使用され、具体的にはセメントの性質に影響を与えない不活性粒状のものが挙げられ、主成分としてクルミの殻、ヒル石、ギルソナイト、雲母、セロハン屑等を含む。
そして前記(セメント)速硬剤は、初期強度や硬化待ち時間の短縮等を目的として使用され、主成分として塩化カルシウム、水ガラス、石膏等を含む。 The dehydration regulator can be used for the purpose of protecting geological formations that are sensitive to water and preventing early dehydration of slurry (cementing composition), and contains organic polymers and vinylamide vinylsulfonic acid copolymers as main components. Including etc.
The antifoaming agent contains a silicone compound, a higher alcohol, etc. as a main component.
The low specific gravity aggregate can be used for the purpose of lowering the specific gravity of the cementing composition when there is a water loss layer or a low pressure layer, and contains bentonite, gilsonite, diatomaceous earth, perlite, and fly ash hollow particles as main components. , alumina silicate glass hollow particles, sodium borosilicate hollow particles, alumina hollow particles, or carbon hollow particles.
The high specific gravity aggregate can be used for the purpose of increasing the specific gravity of the cementing composition in order to improve the replacement efficiency with the high-pressure layer suppressed mud water, and contains barium sulfate, hematite, ilmenite, etc. as the main component. include.
Further, the cement dispersant can be used for the purpose of lowering the viscosity of the cementing composition and increasing the muddy water replacement efficiency, and contains naphthalene sulfonic acid formalin condensate, polyacrylic acid condensate, or polyacrylic acid condensate as the main component. Contains sulfonated melamine condensates, etc.
The cement strength stabilizer contains fly ash, silica powder, etc. as main components.
The anti-sludge agent is used to prevent sludge, and specifically includes inert granular materials that do not affect the properties of cement.The main ingredients include walnut shell, vermiculite, gilsonite, mica, and cellophane. Including scraps, etc.
The (cement) quick hardening agent is used for the purpose of shortening initial strength and hardening waiting time, and contains calcium chloride, water glass, gypsum, etc. as main components.
また本発明のセメンチング組成物には、上記のセメント、シリカ粒子(水性シリカゾル)、セメント遅硬剤、並びにその他の添加剤に加えて、一般構造用のセメント組成物やコンクリート組成物に使用する各種セメントや骨材、これらセメント組成物等に使用されるその他添加剤を含有していてもよい。
例えば従来慣用の一般構造用のセメントとして、ポルトランドセメント(例えば普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、低熱・中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント等)、各種混合セメント(高炉セメント、シリカセメント、フライアッシュセメント等)、白色ポルトランドセメント、アルミナセメント、超速硬セメント(1クリンカー速硬性セメント、2クリンカー速硬性セメント、リン酸マグネシウムセメント)、グラウト用セメント、低発熱セメント(低発熱型高炉セメント、フライアッシュ混合低発熱型高炉セメント、ビーライト高含有セメント)、超高強度セメント、セメント系固化材、エコセメント(都市ごみ焼却灰、下水汚泥焼却灰の一種以上を原料として製造されたセメント)などを使用してもよく、さらに、混和材として高炉スラグ、フライアッシュ、シンダーアッシュ、クリンカーアッシュ、ハスクアッシュ、シリカヒューム、シリカ粉末、石灰石粉末等の微粉体や石膏を添加してもよい。
また、骨材としては、砂利、砕石、水砕スラグ、再生骨材等以外に、珪石質、粘土質、ジルコン質、ハイアルミナ質、炭化珪素質、黒鉛質、クロム質、クロマグ質、マグネシア質等の耐火骨材が使用可能である。
上記一般構造用のセメント組成物等に使用されるその他添加剤としては、高性能AE減水剤、高性能減水剤、AE減水剤、減水剤、空気連行剤(AE剤)、起泡剤、分離低減剤、増粘剤、収縮低減剤、養生剤、撥水剤等など、公知のセメント・コンクリート添加剤が挙げられ、これを本発明のセメンチング組成物にも配合することができる。 In addition to the above-mentioned cement, silica particles (aqueous silica sol), cement retardant, and other additives, the cementing composition of the present invention also contains various additives used in cement compositions for general structures and concrete compositions. It may contain cement, aggregate, and other additives used in these cement compositions.
For example, conventional general structural cements include portland cement (for example, ordinary portland cement, early strength portland cement, ultra early strength portland cement, low heat/moderate heat portland cement, sulfate resistant portland cement, etc.), various mixed cements (blast furnace cement, silica cement, fly ash cement, etc.), white Portland cement, alumina cement, super fast hardening cement (1 clinker fast hardening cement, 2 clinker fast hardening cement, magnesium phosphate cement), cement for grout, low heat generation cement (low heat buildup) type blast furnace cement, fly ash mixed low heat generation blast furnace cement, high Belite content cement), ultra-high strength cement, cement solidifying agent, ecocement (manufactured using one or more types of municipal waste incineration ash, sewage sludge incineration ash) Furthermore, fine powders such as blast furnace slag, fly ash, cinder ash, clinker ash, husk ash, silica fume, silica powder, limestone powder, etc., or gypsum may be used as admixtures. good.
In addition to aggregates such as gravel, crushed stone, granulated slag, and recycled aggregate, we also use silica, clay, zircon, high alumina, silicon carbide, graphite, chromium, chromatic, and magnesia. Refractory aggregates such as
Other additives used in the cement compositions for general structures mentioned above include high-performance AE water-reducing agents, high-performance water-reducing agents, AE water-reducing agents, water-reducing agents, air-entraining agents (AE agents), foaming agents, and separation agents. Known cement/concrete additives such as reducing agents, thickening agents, shrinkage reducing agents, curing agents, water repellents, etc. can be mentioned, and these can also be blended into the cementing composition of the present invention.
例えば従来慣用の一般構造用のセメントとして、ポルトランドセメント(例えば普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、低熱・中庸熱ポルトランドセメント、耐硫酸塩ポルトランドセメント等)、各種混合セメント(高炉セメント、シリカセメント、フライアッシュセメント等)、白色ポルトランドセメント、アルミナセメント、超速硬セメント(1クリンカー速硬性セメント、2クリンカー速硬性セメント、リン酸マグネシウムセメント)、グラウト用セメント、低発熱セメント(低発熱型高炉セメント、フライアッシュ混合低発熱型高炉セメント、ビーライト高含有セメント)、超高強度セメント、セメント系固化材、エコセメント(都市ごみ焼却灰、下水汚泥焼却灰の一種以上を原料として製造されたセメント)などを使用してもよく、さらに、混和材として高炉スラグ、フライアッシュ、シンダーアッシュ、クリンカーアッシュ、ハスクアッシュ、シリカヒューム、シリカ粉末、石灰石粉末等の微粉体や石膏を添加してもよい。
また、骨材としては、砂利、砕石、水砕スラグ、再生骨材等以外に、珪石質、粘土質、ジルコン質、ハイアルミナ質、炭化珪素質、黒鉛質、クロム質、クロマグ質、マグネシア質等の耐火骨材が使用可能である。
上記一般構造用のセメント組成物等に使用されるその他添加剤としては、高性能AE減水剤、高性能減水剤、AE減水剤、減水剤、空気連行剤(AE剤)、起泡剤、分離低減剤、増粘剤、収縮低減剤、養生剤、撥水剤等など、公知のセメント・コンクリート添加剤が挙げられ、これを本発明のセメンチング組成物にも配合することができる。 In addition to the above-mentioned cement, silica particles (aqueous silica sol), cement retardant, and other additives, the cementing composition of the present invention also contains various additives used in cement compositions for general structures and concrete compositions. It may contain cement, aggregate, and other additives used in these cement compositions.
For example, conventional general structural cements include portland cement (for example, ordinary portland cement, early strength portland cement, ultra early strength portland cement, low heat/moderate heat portland cement, sulfate resistant portland cement, etc.), various mixed cements (blast furnace cement, silica cement, fly ash cement, etc.), white Portland cement, alumina cement, super fast hardening cement (1 clinker fast hardening cement, 2 clinker fast hardening cement, magnesium phosphate cement), cement for grout, low heat generation cement (low heat buildup) type blast furnace cement, fly ash mixed low heat generation blast furnace cement, high Belite content cement), ultra-high strength cement, cement solidifying agent, ecocement (manufactured using one or more types of municipal waste incineration ash, sewage sludge incineration ash) Furthermore, fine powders such as blast furnace slag, fly ash, cinder ash, clinker ash, husk ash, silica fume, silica powder, limestone powder, etc., or gypsum may be used as admixtures. good.
In addition to aggregates such as gravel, crushed stone, granulated slag, and recycled aggregate, we also use silica, clay, zircon, high alumina, silicon carbide, graphite, chromium, chromatic, and magnesia. Refractory aggregates such as
Other additives used in the cement compositions for general structures mentioned above include high-performance AE water-reducing agents, high-performance water-reducing agents, AE water-reducing agents, water-reducing agents, air-entraining agents (AE agents), foaming agents, and separation agents. Known cement/concrete additives such as reducing agents, thickening agents, shrinkage reducing agents, curing agents, water repellents, etc. can be mentioned, and these can also be blended into the cementing composition of the present invention.
<塩水>
本発明のセメンチング組成物に使用する塩水として、例えば塩分を0.1~4.0質量%含有する水溶液を用いることができる。前記塩水は、例えば塩分含有陸水や、海水を用いることができる。
例えば海水として水分96.5~97質量%と塩分とを含み、塩分中にアルカリ金属イオンとしてナトリウムイオン、マグネシウムイオン、カルシウムイオン、カリウムイオン等を含み、陰イオンとして塩素イオン、硫酸イオン等を含むものを使用することができる。これらの塩分(合計100質量%)は、例えば塩化ナトリウム78質量%、塩化マグネシウム9.6質量%、硫酸マグネシウム6.0質量%、硫酸カルシウム4.0質量%、塩化カリウム2.0質量%などにて含むものとすることができる。 <Salt water>
As the salt water used in the cementing composition of the present invention, for example, an aqueous solution containing 0.1 to 4.0% by mass of salt can be used. As the salt water, for example, salt-containing land water or sea water can be used.
For example, seawater contains 96.5 to 97% by mass of water and salt, and the salt contains sodium ions, magnesium ions, calcium ions, potassium ions, etc. as alkali metal ions, and chloride ions, sulfate ions, etc. as anions. things can be used. These salts (total 100% by mass) include, for example, 78% by mass of sodium chloride, 9.6% by mass of magnesium chloride, 6.0% by mass of magnesium sulfate, 4.0% by mass of calcium sulfate, 2.0% by mass of potassium chloride, etc. may be included in the
本発明のセメンチング組成物に使用する塩水として、例えば塩分を0.1~4.0質量%含有する水溶液を用いることができる。前記塩水は、例えば塩分含有陸水や、海水を用いることができる。
例えば海水として水分96.5~97質量%と塩分とを含み、塩分中にアルカリ金属イオンとしてナトリウムイオン、マグネシウムイオン、カルシウムイオン、カリウムイオン等を含み、陰イオンとして塩素イオン、硫酸イオン等を含むものを使用することができる。これらの塩分(合計100質量%)は、例えば塩化ナトリウム78質量%、塩化マグネシウム9.6質量%、硫酸マグネシウム6.0質量%、硫酸カルシウム4.0質量%、塩化カリウム2.0質量%などにて含むものとすることができる。 <Salt water>
As the salt water used in the cementing composition of the present invention, for example, an aqueous solution containing 0.1 to 4.0% by mass of salt can be used. As the salt water, for example, salt-containing land water or sea water can be used.
For example, seawater contains 96.5 to 97% by mass of water and salt, and the salt contains sodium ions, magnesium ions, calcium ions, potassium ions, etc. as alkali metal ions, and chloride ions, sulfate ions, etc. as anions. things can be used. These salts (total 100% by mass) include, for example, 78% by mass of sodium chloride, 9.6% by mass of magnesium chloride, 6.0% by mass of magnesium sulfate, 4.0% by mass of calcium sulfate, 2.0% by mass of potassium chloride, etc. may be included in the
<セメンチング工法>
本発明は、前述のセメンチング組成物を用いるセメンチング工法も対象とする。
本発明のセメンチング工法は、油田又はガス油田の掘削において、100℃以上、特に150℃以上300℃以下の高温・高圧環境下から石油又はガスを採掘するにあたり、地層とケーシングパイプとの空隙部を油井セメントで充填するためのセメンチング材料として、前述の本発明に係るセメンチング組成物を用いることを特徴とする。 <Cementing method>
The present invention also targets a cementing method using the above-mentioned cementing composition.
The cementing method of the present invention is used to remove the void between the stratum and the casing pipe when extracting oil or gas from a high temperature and high pressure environment of 100°C or higher, particularly 150°C or higher and 300°C or lower, in the excavation of an oil or gas field. It is characterized in that the above-described cementing composition according to the present invention is used as a cementing material for filling with oil well cement.
本発明は、前述のセメンチング組成物を用いるセメンチング工法も対象とする。
本発明のセメンチング工法は、油田又はガス油田の掘削において、100℃以上、特に150℃以上300℃以下の高温・高圧環境下から石油又はガスを採掘するにあたり、地層とケーシングパイプとの空隙部を油井セメントで充填するためのセメンチング材料として、前述の本発明に係るセメンチング組成物を用いることを特徴とする。 <Cementing method>
The present invention also targets a cementing method using the above-mentioned cementing composition.
The cementing method of the present invention is used to remove the void between the stratum and the casing pipe when extracting oil or gas from a high temperature and high pressure environment of 100°C or higher, particularly 150°C or higher and 300°C or lower, in the excavation of an oil or gas field. It is characterized in that the above-described cementing composition according to the present invention is used as a cementing material for filling with oil well cement.
<セメンチング方法>
本発明はまた、前述のセメンチング組成物を坑井中に導入する工程、及び前記セメンチング組成物を凝結させる工程を含む、セメンチング方法も対象とする。 <Cementing method>
The present invention is also directed to a cementing method comprising the steps of introducing a cementing composition as described above into a wellbore and allowing said cementing composition to set.
本発明はまた、前述のセメンチング組成物を坑井中に導入する工程、及び前記セメンチング組成物を凝結させる工程を含む、セメンチング方法も対象とする。 <Cementing method>
The present invention is also directed to a cementing method comprising the steps of introducing a cementing composition as described above into a wellbore and allowing said cementing composition to set.
本発明に係るシリカ粒子を含むセメンチング組成物は、該組成物を100℃以上、特に150℃以上300℃以下の環境下で使用した場合において、該組成物が施工箇所に到達するまで優れた流動性を有し、凝集や離水が抑制され高い安定性を有し、施工箇所へ到達した後は硬化により硬度の高い硬化物が得られることが期待できる。
The cementing composition containing silica particles according to the present invention has excellent fluidity until it reaches the construction site when the composition is used in an environment of 100°C or higher, particularly 150°C or higher and 300°C or lower. It has high stability by suppressing agglomeration and syneresis, and it can be expected that a cured product with high hardness will be obtained by curing after reaching the construction site.
以下、実施例、及び比較例に基づいてさらに詳述するが、本発明はこれらの実施例により何ら限定されるものではない。
Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to these Examples in any way.
[測定装置・方法]
評価に用いた水性シリカゾルの分析(シリカ固形分濃度、DLS法による平均粒子径、BET法による比表面積径、Al2O3/SiO2比、塩水耐性評価)は、以下の手順及び装置を用いて行なった。 [Measuring device/method]
Analysis of the aqueous silica sol used in the evaluation (silica solid content concentration, average particle diameter by DLS method, specific surface area diameter by BET method, Al 2 O 3 /SiO 2 ratio, salt water resistance evaluation) was conducted using the following procedure and equipment. I did it.
評価に用いた水性シリカゾルの分析(シリカ固形分濃度、DLS法による平均粒子径、BET法による比表面積径、Al2O3/SiO2比、塩水耐性評価)は、以下の手順及び装置を用いて行なった。 [Measuring device/method]
Analysis of the aqueous silica sol used in the evaluation (silica solid content concentration, average particle diameter by DLS method, specific surface area diameter by BET method, Al 2 O 3 /SiO 2 ratio, salt water resistance evaluation) was conducted using the following procedure and equipment. I did it.
(シリカ固形分濃度)
水素型陽イオン交換樹脂で水性シリカゾルのアルカリ分を除いた後、乾燥したものの1000℃焼成残分から、シリカ固形分濃度を求めた。なお後述するように、この“シリカ固形分濃度”の“シリカ固形分”には、シリカ(SiO2)だけでなく、水性シリカゾルのシリカ粒子に含まれるアルミニウム原子やナトリウム原子が含まれる。 (Silica solid content concentration)
After removing the alkali content of the aqueous silica sol using a hydrogen-type cation exchange resin, the silica solid content concentration was determined from the residue after drying at 1000°C. As will be described later, the "silica solid content" of this "silica solid content concentration" includes not only silica (SiO 2 ) but also aluminum atoms and sodium atoms contained in the silica particles of the aqueous silica sol.
水素型陽イオン交換樹脂で水性シリカゾルのアルカリ分を除いた後、乾燥したものの1000℃焼成残分から、シリカ固形分濃度を求めた。なお後述するように、この“シリカ固形分濃度”の“シリカ固形分”には、シリカ(SiO2)だけでなく、水性シリカゾルのシリカ粒子に含まれるアルミニウム原子やナトリウム原子が含まれる。 (Silica solid content concentration)
After removing the alkali content of the aqueous silica sol using a hydrogen-type cation exchange resin, the silica solid content concentration was determined from the residue after drying at 1000°C. As will be described later, the "silica solid content" of this "silica solid content concentration" includes not only silica (SiO 2 ) but also aluminum atoms and sodium atoms contained in the silica particles of the aqueous silica sol.
(DLS法による平均粒子径(動的光散乱法による平均粒子径):DLS平均粒子径、DLS粒子径とも称する)
動的光散乱法粒子径測定装置 ゼーターサイザー ナノ(スペクトリス(株)マルバーン事業部製)を用い、DLS平均粒子径を求めた。 (Average particle diameter determined by DLS method (average particle diameter determined by dynamic light scattering method): Also referred to as DLS average particle diameter or DLS particle diameter)
The DLS average particle size was determined using a dynamic light scattering particle size measuring device Zetersizer Nano (manufactured by Spectris Corporation, Malvern Division).
動的光散乱法粒子径測定装置 ゼーターサイザー ナノ(スペクトリス(株)マルバーン事業部製)を用い、DLS平均粒子径を求めた。 (Average particle diameter determined by DLS method (average particle diameter determined by dynamic light scattering method): Also referred to as DLS average particle diameter or DLS particle diameter)
The DLS average particle size was determined using a dynamic light scattering particle size measuring device Zetersizer Nano (manufactured by Spectris Corporation, Malvern Division).
(BET法による比表面積径:BET法による平均一次粒子径、BET粒子径とも称する)
陽イオン交換樹脂で水性シリカゾルにおける水溶性の陽イオン分を除去した後、290℃乾燥したものを測定試料とした。比表面積測定装置 Monosorb(カンタクローム・インスツルメンツ・ジャパン合同会社製)を用い、窒素ガス吸着法(BET法)により測定試料の比表面積値を測定し、得られた比表面積値より比表面積径を求めた。 (Specific surface area diameter determined by BET method: Also referred to as average primary particle diameter determined by BET method, BET particle diameter)
After removing water-soluble cations from the aqueous silica sol using a cation exchange resin, the sol was dried at 290°C and used as a measurement sample. Using the specific surface area measuring device Monosorb (manufactured by Quantachrome Instruments Japan LLC), measure the specific surface area value of the measurement sample by the nitrogen gas adsorption method (BET method), and calculate the specific surface area diameter from the obtained specific surface area value. Ta.
陽イオン交換樹脂で水性シリカゾルにおける水溶性の陽イオン分を除去した後、290℃乾燥したものを測定試料とした。比表面積測定装置 Monosorb(カンタクローム・インスツルメンツ・ジャパン合同会社製)を用い、窒素ガス吸着法(BET法)により測定試料の比表面積値を測定し、得られた比表面積値より比表面積径を求めた。 (Specific surface area diameter determined by BET method: Also referred to as average primary particle diameter determined by BET method, BET particle diameter)
After removing water-soluble cations from the aqueous silica sol using a cation exchange resin, the sol was dried at 290°C and used as a measurement sample. Using the specific surface area measuring device Monosorb (manufactured by Quantachrome Instruments Japan LLC), measure the specific surface area value of the measurement sample by the nitrogen gas adsorption method (BET method), and calculate the specific surface area diameter from the obtained specific surface area value. Ta.
(シリカ粒子のAl2O3/SiO2質量比)
硝酸水溶液に水性シリカゾルを溶解させた後、Na2O量を原子吸光分光光度計(島津製作所(株)製)にて、Al2O3量をICP発光分析装置(パーキンエルマー(株)製)にて、それぞれ測定した。SiO2量は、前述のシリカ固形分濃度よりシリカ固形分量を算出し、ここから上記Na2O量と上記Al2O3量を除いた量とした。得られたSiO2量とAl2O3量より、Al2O3/SiO2の質量比(%)を[(Al2O3量/SiO2量)×100]にて算出した。 (Al 2 O 3 /SiO 2 mass ratio of silica particles)
After dissolving the aqueous silica sol in an aqueous nitric acid solution, the amount of Na 2 O was measured using an atomic absorption spectrophotometer (manufactured by Shimadzu Corporation), and the amount of Al 2 O was measured using an ICP emission spectrometer (manufactured by PerkinElmer Corporation). Each was measured at The amount of SiO 2 was determined by calculating the silica solid content from the above-mentioned silica solid content concentration, and removing the above-mentioned Na 2 O amount and the above-mentioned Al 2 O 3 amount from there. From the obtained SiO 2 amount and Al 2 O 3 amount, the mass ratio (%) of Al 2 O 3 /SiO 2 was calculated by [(Al 2 O 3 amount/SiO 2 amount)×100].
硝酸水溶液に水性シリカゾルを溶解させた後、Na2O量を原子吸光分光光度計(島津製作所(株)製)にて、Al2O3量をICP発光分析装置(パーキンエルマー(株)製)にて、それぞれ測定した。SiO2量は、前述のシリカ固形分濃度よりシリカ固形分量を算出し、ここから上記Na2O量と上記Al2O3量を除いた量とした。得られたSiO2量とAl2O3量より、Al2O3/SiO2の質量比(%)を[(Al2O3量/SiO2量)×100]にて算出した。 (Al 2 O 3 /SiO 2 mass ratio of silica particles)
After dissolving the aqueous silica sol in an aqueous nitric acid solution, the amount of Na 2 O was measured using an atomic absorption spectrophotometer (manufactured by Shimadzu Corporation), and the amount of Al 2 O was measured using an ICP emission spectrometer (manufactured by PerkinElmer Corporation). Each was measured at The amount of SiO 2 was determined by calculating the silica solid content from the above-mentioned silica solid content concentration, and removing the above-mentioned Na 2 O amount and the above-mentioned Al 2 O 3 amount from there. From the obtained SiO 2 amount and Al 2 O 3 amount, the mass ratio (%) of Al 2 O 3 /SiO 2 was calculated by [(Al 2 O 3 amount/SiO 2 amount)×100].
(塩水耐性評価(DLS平均粒子径変化率))
水性シリカゾルをシリカ固形分濃度が1.0質量%になるように塩水(マリンアートSF-1 試験研究用・人工海水、富田製薬(株)製)で希釈し、塩分濃度を3.6質量%に調整して、これを塩水耐性評価サンプルとした。該塩水耐性評価サンプルを20℃で1時間撹拌することで、20℃、1時間保管する塩水耐性試験を実施した。試験前後の塩水耐性評価サンプルについて、DLS法による平均粒子径測定を実施し、塩水耐性試験の実施による、塩水分散液中のシリカ粒子のDLS法による平均粒子径の変化率を、(試験後におけるシリカ粒子の動的光散乱法による平均粒子径)/(試験前におけるシリカ粒子の動的光散乱法による平均粒子径)にて算出した。 (Salt water resistance evaluation (DLS average particle diameter change rate))
The aqueous silica sol was diluted with salt water (Marine Art SF-1 artificial seawater for test and research, manufactured by Tomita Pharmaceutical Co., Ltd.) so that the silica solid content concentration was 1.0% by mass, and the salt concentration was 3.6% by mass. This was used as a salt water resistance evaluation sample. A salt water resistance test was carried out by stirring the salt water resistance evaluation sample at 20° C. for 1 hour and storing it at 20° C. for 1 hour. The average particle diameter of the salt water resistance evaluation samples before and after the test was measured by the DLS method, and the rate of change in the average particle diameter of the silica particles in the salt water dispersion by the DLS method was determined by performing the salt water resistance test (after the test). Calculated as (average particle diameter of silica particles measured by dynamic light scattering method)/(average particle diameter of silica particles measured by dynamic light scattering method before the test).
水性シリカゾルをシリカ固形分濃度が1.0質量%になるように塩水(マリンアートSF-1 試験研究用・人工海水、富田製薬(株)製)で希釈し、塩分濃度を3.6質量%に調整して、これを塩水耐性評価サンプルとした。該塩水耐性評価サンプルを20℃で1時間撹拌することで、20℃、1時間保管する塩水耐性試験を実施した。試験前後の塩水耐性評価サンプルについて、DLS法による平均粒子径測定を実施し、塩水耐性試験の実施による、塩水分散液中のシリカ粒子のDLS法による平均粒子径の変化率を、(試験後におけるシリカ粒子の動的光散乱法による平均粒子径)/(試験前におけるシリカ粒子の動的光散乱法による平均粒子径)にて算出した。 (Salt water resistance evaluation (DLS average particle diameter change rate))
The aqueous silica sol was diluted with salt water (Marine Art SF-1 artificial seawater for test and research, manufactured by Tomita Pharmaceutical Co., Ltd.) so that the silica solid content concentration was 1.0% by mass, and the salt concentration was 3.6% by mass. This was used as a salt water resistance evaluation sample. A salt water resistance test was carried out by stirring the salt water resistance evaluation sample at 20° C. for 1 hour and storing it at 20° C. for 1 hour. The average particle diameter of the salt water resistance evaluation samples before and after the test was measured by the DLS method, and the rate of change in the average particle diameter of the silica particles in the salt water dispersion by the DLS method was determined by performing the salt water resistance test (after the test). Calculated as (average particle diameter of silica particles measured by dynamic light scattering method)/(average particle diameter of silica particles measured by dynamic light scattering method before the test).
[評価に供したシリカゾルA~E]
日産化学(株)製シリカゾルA:BET法による比表面積径(平均一次粒子径)11.5nm、シリカ固形分濃度20.1質量%、Al2O3/SiO2質量比=0.23質量%、DLS法による平均粒子径19.6nm
日産化学(株)製シリカゾルB:BET法による比表面積径(平均一次粒子径)11.2nm、シリカ固形分濃度20.4質量%、Al2O3/SiO2質量比=0.88質量%、DLS法による平均粒子径21.5nm
日産化学(株)製シリカゾルC:BET法による比表面積径(平均一次粒子径)22.1nm、シリカ固形分濃度40.4質量%、Al2O3/SiO2質量比=0.92質量%、DLS法による平均粒子径40.7nm
日産化学(株)製シリカゾルD:BET法による比表面積径(平均一次粒子径)11.6nm、シリカ固形分濃度19.34質量%、Al2O3/SiO2質量比=1.70質量%、DLS法による平均粒子径23.3nm
日産化学(株)製シリカゾルE:BET法による比表面積径(平均一次粒子径)22.5nm、シリカ固形分濃度31.0質量%、Al2O3/SiO2質量比=1.70質量%、DLS法による平均粒子径40.8nm [Silica sols A to E used for evaluation]
Silica sol A manufactured by Nissan Chemical Co., Ltd.: specific surface area diameter (average primary particle diameter) 11.5 nm by BET method, silica solid content concentration 20.1% by mass, Al 2 O 3 /SiO 2 mass ratio = 0.23% by mass , average particle diameter 19.6 nm by DLS method
Silica sol B manufactured by Nissan Chemical Co., Ltd.: specific surface area diameter (average primary particle diameter) 11.2 nm by BET method, silica solid content concentration 20.4% by mass, Al 2 O 3 /SiO 2 mass ratio = 0.88% by mass , average particle diameter 21.5 nm by DLS method
Silica Sol C manufactured by Nissan Chemical Co., Ltd.: Specific surface area diameter (average primary particle diameter) 22.1 nm by BET method, silica solid content concentration 40.4% by mass, Al 2 O 3 /SiO 2 mass ratio = 0.92% by mass , average particle diameter 40.7 nm by DLS method
Silica Sol D manufactured by Nissan Chemical Co., Ltd.: Specific surface area diameter (average primary particle diameter) 11.6 nm by BET method, silica solid content concentration 19.34% by mass, Al 2 O 3 /SiO 2 mass ratio = 1.70% by mass , average particle diameter 23.3 nm by DLS method
Silica Sol E manufactured by Nissan Chemical Co., Ltd.: Specific surface area diameter (average primary particle diameter) 22.5 nm by BET method, silica solid content concentration 31.0% by mass, Al 2 O 3 /SiO 2 mass ratio = 1.70% by mass , average particle diameter 40.8 nm by DLS method
日産化学(株)製シリカゾルA:BET法による比表面積径(平均一次粒子径)11.5nm、シリカ固形分濃度20.1質量%、Al2O3/SiO2質量比=0.23質量%、DLS法による平均粒子径19.6nm
日産化学(株)製シリカゾルB:BET法による比表面積径(平均一次粒子径)11.2nm、シリカ固形分濃度20.4質量%、Al2O3/SiO2質量比=0.88質量%、DLS法による平均粒子径21.5nm
日産化学(株)製シリカゾルC:BET法による比表面積径(平均一次粒子径)22.1nm、シリカ固形分濃度40.4質量%、Al2O3/SiO2質量比=0.92質量%、DLS法による平均粒子径40.7nm
日産化学(株)製シリカゾルD:BET法による比表面積径(平均一次粒子径)11.6nm、シリカ固形分濃度19.34質量%、Al2O3/SiO2質量比=1.70質量%、DLS法による平均粒子径23.3nm
日産化学(株)製シリカゾルE:BET法による比表面積径(平均一次粒子径)22.5nm、シリカ固形分濃度31.0質量%、Al2O3/SiO2質量比=1.70質量%、DLS法による平均粒子径40.8nm [Silica sols A to E used for evaluation]
Silica sol A manufactured by Nissan Chemical Co., Ltd.: specific surface area diameter (average primary particle diameter) 11.5 nm by BET method, silica solid content concentration 20.1% by mass, Al 2 O 3 /SiO 2 mass ratio = 0.23% by mass , average particle diameter 19.6 nm by DLS method
Silica sol B manufactured by Nissan Chemical Co., Ltd.: specific surface area diameter (average primary particle diameter) 11.2 nm by BET method, silica solid content concentration 20.4% by mass, Al 2 O 3 /SiO 2 mass ratio = 0.88% by mass , average particle diameter 21.5 nm by DLS method
Silica Sol C manufactured by Nissan Chemical Co., Ltd.: Specific surface area diameter (average primary particle diameter) 22.1 nm by BET method, silica solid content concentration 40.4% by mass, Al 2 O 3 /SiO 2 mass ratio = 0.92% by mass , average particle diameter 40.7 nm by DLS method
Silica Sol D manufactured by Nissan Chemical Co., Ltd.: Specific surface area diameter (average primary particle diameter) 11.6 nm by BET method, silica solid content concentration 19.34% by mass, Al 2 O 3 /SiO 2 mass ratio = 1.70% by mass , average particle diameter 23.3 nm by DLS method
Silica Sol E manufactured by Nissan Chemical Co., Ltd.: Specific surface area diameter (average primary particle diameter) 22.5 nm by BET method, silica solid content concentration 31.0% by mass, Al 2 O 3 /SiO 2 mass ratio = 1.70% by mass , average particle diameter 40.8 nm by DLS method
[セメンチング組成物の調製]
セメンチング組成物の調製は、API規格(アメリカ石油協会が定めた石油に関する規格)10B-2に準拠して、専用の装置及び表1に示す材料及び仕込量で行った。即ち、専用ミキサーに塩水(マリンアートSF-1、試験研究用・人工海水、富田製薬(株)製、塩分濃度が3.6質量%)を投入し、撹拌翼を4,000rpmで回転させながら、90秒間で表1に示す配合量にて、市販の脱水調整剤、水性シリカゾルA~E、市販の遅硬剤及び消泡剤、クラスGセメント(宇部三菱セメント(株)製)、並びにシリカフラワー(シリカパウダーであり粒子径は2~7.5μm、(有)竹折砿業所製)を投入した後、撹拌翼の回転数を12,000rpmに上げ、35秒間撹拌してセメンチング組成物(セメントスラリー)を調製した。
尚、水性シリカゾルはシリカゾルの性能を評価するため、セメンチング組成物1000gあたりの表面積量が275m2になるように添加した。また、比較例として、水性シリカゾルを添加していないセメンチング組成物を調製した。
調製した各セメンチング組成物について、下記手順によりセメンチング組成物の流動性を評価するとともに、さらにAPI規格に準拠して遊離水量(フリーウォーター)について評価した。 [Preparation of cementing composition]
The cementing composition was prepared in accordance with API Standard 10B-2 (petroleum standard established by the American Petroleum Institute) using a dedicated device and the materials and amounts shown in Table 1. That is, salt water (Marine Art SF-1, artificial seawater for test and research use, manufactured by Tomita Pharmaceutical Co., Ltd., salt concentration 3.6% by mass) was put into a special mixer, and while rotating the stirring blade at 4,000 rpm. , a commercially available dehydration regulator, aqueous silica sol A to E, a commercially available retardant and antifoaming agent, class G cement (manufactured by Ube Mitsubishi Cement Co., Ltd.), and silica in the amounts shown in Table 1 for 90 seconds. After adding flour (silica powder with a particle size of 2 to 7.5 μm, manufactured by Takeoori Kogyo Co., Ltd.), the rotation speed of the stirring blade was increased to 12,000 rpm, and the mixture was stirred for 35 seconds to form a cementing composition ( cement slurry) was prepared.
In addition, in order to evaluate the performance of the silica sol, the aqueous silica sol was added so that the surface area amount was 275 m 2 per 1000 g of the cementing composition. Furthermore, as a comparative example, a cementing composition to which no aqueous silica sol was added was prepared.
For each of the prepared cementing compositions, the fluidity of the cementing composition was evaluated according to the following procedure, and the amount of free water (free water) was also evaluated in accordance with API standards.
セメンチング組成物の調製は、API規格(アメリカ石油協会が定めた石油に関する規格)10B-2に準拠して、専用の装置及び表1に示す材料及び仕込量で行った。即ち、専用ミキサーに塩水(マリンアートSF-1、試験研究用・人工海水、富田製薬(株)製、塩分濃度が3.6質量%)を投入し、撹拌翼を4,000rpmで回転させながら、90秒間で表1に示す配合量にて、市販の脱水調整剤、水性シリカゾルA~E、市販の遅硬剤及び消泡剤、クラスGセメント(宇部三菱セメント(株)製)、並びにシリカフラワー(シリカパウダーであり粒子径は2~7.5μm、(有)竹折砿業所製)を投入した後、撹拌翼の回転数を12,000rpmに上げ、35秒間撹拌してセメンチング組成物(セメントスラリー)を調製した。
尚、水性シリカゾルはシリカゾルの性能を評価するため、セメンチング組成物1000gあたりの表面積量が275m2になるように添加した。また、比較例として、水性シリカゾルを添加していないセメンチング組成物を調製した。
調製した各セメンチング組成物について、下記手順によりセメンチング組成物の流動性を評価するとともに、さらにAPI規格に準拠して遊離水量(フリーウォーター)について評価した。 [Preparation of cementing composition]
The cementing composition was prepared in accordance with API Standard 10B-2 (petroleum standard established by the American Petroleum Institute) using a dedicated device and the materials and amounts shown in Table 1. That is, salt water (Marine Art SF-1, artificial seawater for test and research use, manufactured by Tomita Pharmaceutical Co., Ltd., salt concentration 3.6% by mass) was put into a special mixer, and while rotating the stirring blade at 4,000 rpm. , a commercially available dehydration regulator, aqueous silica sol A to E, a commercially available retardant and antifoaming agent, class G cement (manufactured by Ube Mitsubishi Cement Co., Ltd.), and silica in the amounts shown in Table 1 for 90 seconds. After adding flour (silica powder with a particle size of 2 to 7.5 μm, manufactured by Takeoori Kogyo Co., Ltd.), the rotation speed of the stirring blade was increased to 12,000 rpm, and the mixture was stirred for 35 seconds to form a cementing composition ( cement slurry) was prepared.
In addition, in order to evaluate the performance of the silica sol, the aqueous silica sol was added so that the surface area amount was 275 m 2 per 1000 g of the cementing composition. Furthermore, as a comparative example, a cementing composition to which no aqueous silica sol was added was prepared.
For each of the prepared cementing compositions, the fluidity of the cementing composition was evaluated according to the following procedure, and the amount of free water (free water) was also evaluated in accordance with API standards.
1.セメンチング組成物の流動性評価
調製したセメンチング組成物150ccを分取し、300mL撹拌オートクレーブ(耐圧硝子工業(株)製)に投入後、1時間かけて180℃まで昇温し、同温度で30分間保持してコンディショニング(所定温度での養生)を行った。
30分間の高温保持後、30分間かけて88℃までセメンチング組成物を冷却した後にセメンチング組成物を装置から取り出した時、流動性のある未固化セメンチング組成物の量を確認し、以下の評価基準にて評価した。なお未固化セメンチング組成物の量とは、オートクレーブ内に投入したセメンチング組成物に対する体積割合である。
《セメンチング組成物の流動性評価基準》
A:流動性のある未固化セメンチング組成物が8割以上(大半のセメンチング組成物が流動性を保っている状態)
B:流動性のある未固化セメンチング組成物が8割未満(一部のセメンチング組成物が固化している状態) 1. Fluidity evaluation of cementing composition 150 cc of the prepared cementing composition was taken out, put into a 300 mL stirring autoclave (manufactured by Pressure Glass Industry Co., Ltd.), heated to 180°C over 1 hour, and then kept at the same temperature for 30 minutes. It was maintained and conditioned (cured at a predetermined temperature).
After maintaining the high temperature for 30 minutes, the cementing composition was cooled down to 88°C over 30 minutes, and when the cementing composition was taken out of the apparatus, the amount of fluid, unsolidified cementing composition was confirmed, and the following evaluation criteria were determined. It was evaluated. Note that the amount of unsolidified cementing composition is the volume ratio to the cementing composition charged into the autoclave.
《Fluidity evaluation criteria for cementing compositions》
A: 80% or more of fluid unsolidified cementing composition (most cementing composition maintains fluidity)
B: Less than 80% of fluid unsolidified cementing composition (some cementing composition is solidified)
調製したセメンチング組成物150ccを分取し、300mL撹拌オートクレーブ(耐圧硝子工業(株)製)に投入後、1時間かけて180℃まで昇温し、同温度で30分間保持してコンディショニング(所定温度での養生)を行った。
30分間の高温保持後、30分間かけて88℃までセメンチング組成物を冷却した後にセメンチング組成物を装置から取り出した時、流動性のある未固化セメンチング組成物の量を確認し、以下の評価基準にて評価した。なお未固化セメンチング組成物の量とは、オートクレーブ内に投入したセメンチング組成物に対する体積割合である。
《セメンチング組成物の流動性評価基準》
A:流動性のある未固化セメンチング組成物が8割以上(大半のセメンチング組成物が流動性を保っている状態)
B:流動性のある未固化セメンチング組成物が8割未満(一部のセメンチング組成物が固化している状態) 1. Fluidity evaluation of cementing composition 150 cc of the prepared cementing composition was taken out, put into a 300 mL stirring autoclave (manufactured by Pressure Glass Industry Co., Ltd.), heated to 180°C over 1 hour, and then kept at the same temperature for 30 minutes. It was maintained and conditioned (cured at a predetermined temperature).
After maintaining the high temperature for 30 minutes, the cementing composition was cooled down to 88°C over 30 minutes, and when the cementing composition was taken out of the apparatus, the amount of fluid, unsolidified cementing composition was confirmed, and the following evaluation criteria were determined. It was evaluated. Note that the amount of unsolidified cementing composition is the volume ratio to the cementing composition charged into the autoclave.
《Fluidity evaluation criteria for cementing compositions》
A: 80% or more of fluid unsolidified cementing composition (most cementing composition maintains fluidity)
B: Less than 80% of fluid unsolidified cementing composition (some cementing composition is solidified)
2.遊離水量(フリーウォーター)の測定
前記<1.セメンチング組成物の流動性評価>に記載した方法でセメンチング組成物をコンディショニングした後、30分間かけて88℃までセメンチング組成物を冷却した。冷却後、セメンチング組成物を装置から取り出し、そのセメンチング組成物100ccを対象容量100ccの樹脂製メスシリンダーに投入し、該メスシリンダーを45度に傾けて、2時間静置した。静置後2時間の時点でセメンチング組成物(スラリー)上部に遊離した水をスポイトで採取し、その量(100ccのセメンチング組成物に対する体積%)を遊離水量とした。
なおAPI規格には、遊離水量の数値範囲に関する特段の規定はないものの、2体積%以下が好適とされる。 2. Measurement of free water amount (free water) <1. Evaluation of Fluidity of Cementing Composition> After conditioning the cementing composition according to the method described in 1., the cementing composition was cooled to 88° C. over 30 minutes. After cooling, the cementing composition was taken out from the apparatus, 100 cc of the cementing composition was put into a resin graduated cylinder with a target capacity of 100 cc, the graduated cylinder was tilted at 45 degrees, and left standing for 2 hours. At the time point of 2 hours after standing, the water released on the top of the cementing composition (slurry) was collected with a dropper, and the amount (volume % with respect to 100 cc of cementing composition) was defined as the amount of free water.
Although the API standard does not specify a specific numerical range for the amount of free water, it is preferably 2% by volume or less.
前記<1.セメンチング組成物の流動性評価>に記載した方法でセメンチング組成物をコンディショニングした後、30分間かけて88℃までセメンチング組成物を冷却した。冷却後、セメンチング組成物を装置から取り出し、そのセメンチング組成物100ccを対象容量100ccの樹脂製メスシリンダーに投入し、該メスシリンダーを45度に傾けて、2時間静置した。静置後2時間の時点でセメンチング組成物(スラリー)上部に遊離した水をスポイトで採取し、その量(100ccのセメンチング組成物に対する体積%)を遊離水量とした。
なおAPI規格には、遊離水量の数値範囲に関する特段の規定はないものの、2体積%以下が好適とされる。 2. Measurement of free water amount (free water) <1. Evaluation of Fluidity of Cementing Composition> After conditioning the cementing composition according to the method described in 1., the cementing composition was cooled to 88° C. over 30 minutes. After cooling, the cementing composition was taken out from the apparatus, 100 cc of the cementing composition was put into a resin graduated cylinder with a target capacity of 100 cc, the graduated cylinder was tilted at 45 degrees, and left standing for 2 hours. At the time point of 2 hours after standing, the water released on the top of the cementing composition (slurry) was collected with a dropper, and the amount (volume % with respect to 100 cc of cementing composition) was defined as the amount of free water.
Although the API standard does not specify a specific numerical range for the amount of free water, it is preferably 2% by volume or less.
表1に、実施例1~5及び比較例1のセメンチング組成物の処方を、また表2に、実施例1~5で使用した水性シリカゾルA~Eのシリカ粒子の物性を、そして表3に、各セメンチング組成物の評価(流動性評価及び遊離水量の測定)結果を夫々示す。
なお表1のセメンチング組成物における各成分の配合量の単位を%BWOCで示し、表1中、“-”は成分未添加であることを示す。 Table 1 shows the formulations of the cementing compositions of Examples 1 to 5 and Comparative Example 1, Table 2 shows the physical properties of the silica particles of the aqueous silica sols A to E used in Examples 1 to 5, and Table 3 shows the physical properties of the silica particles of the aqueous silica sols A to E used in Examples 1 to 5. , the results of evaluation (fluidity evaluation and measurement of free water amount) of each cementing composition are shown, respectively.
Note that the unit of the blending amount of each component in the cementing composition in Table 1 is shown in %BWOC, and in Table 1, "-" indicates that the component is not added.
なお表1のセメンチング組成物における各成分の配合量の単位を%BWOCで示し、表1中、“-”は成分未添加であることを示す。 Table 1 shows the formulations of the cementing compositions of Examples 1 to 5 and Comparative Example 1, Table 2 shows the physical properties of the silica particles of the aqueous silica sols A to E used in Examples 1 to 5, and Table 3 shows the physical properties of the silica particles of the aqueous silica sols A to E used in Examples 1 to 5. , the results of evaluation (fluidity evaluation and measurement of free water amount) of each cementing composition are shown, respectively.
Note that the unit of the blending amount of each component in the cementing composition in Table 1 is shown in %BWOC, and in Table 1, "-" indicates that the component is not added.
表1~表3に示すように、Al2O3/SiO2質量比が0.23質量%以上1.70質量%以下のシリカ粒子を含有するシリカゾルA~Eを使用した実施例1~実施例5は、何れも流動性に優れ、2体積%以下の遊離水量を示した。本発明に係るシリカ粒子におけるAl2O3/SiO2質量比は0.1~4.0質量%であるが、好ましくは0.1~2.0質量%、更に好ましくは0.1~1.5質量%とすることにより、遊離水量を1.0体積%未満にする事が可能であり、より好ましい態様となることが確認された。
特に塩水耐性試験(20℃、1時間保管)後のDLS平均粒子径と試験前のDLS平均粒子径との比で表される変化率が2.0未満のシリカゾルA、B及びCを使用した実施例1、2及び3は、何れも流動性に優れ、0.80~0.40体積%の非常に少ない遊離水量を示した。
なお、水性シリカゾルを使用しない場合(比較例1)、セメント粒子乃至その他のセメント添加剤が塩水使用環境かつ高温環境下にて硬化反応が不均一に進み、5.0体積%の遊離水を示すことが確認され、セメンチング用の組成物としては不適であった。 As shown in Tables 1 to 3, Examples 1 to 2 were carried out using silica sols A to E containing silica particles having an Al 2 O 3 /SiO 2 mass ratio of 0.23% by mass or more and 1.70% by mass or less. All of Example 5 had excellent fluidity and exhibited a free water amount of 2% by volume or less. The Al 2 O 3 /SiO 2 mass ratio in the silica particles according to the present invention is 0.1 to 4.0% by mass, preferably 0.1 to 2.0% by mass, more preferably 0.1 to 1% by mass. It was confirmed that by setting the amount to .5% by mass, it is possible to reduce the amount of free water to less than 1.0% by volume, which is a more preferable embodiment.
In particular, silica sols A, B, and C were used in which the rate of change expressed by the ratio of the DLS average particle size after the salt water resistance test (storage at 20°C for 1 hour) to the DLS average particle size before the test was less than 2.0. Examples 1, 2, and 3 all had excellent fluidity and exhibited a very small amount of free water of 0.80 to 0.40% by volume.
In addition, when aqueous silica sol is not used (Comparative Example 1), the curing reaction of cement particles or other cement additives proceeds unevenly in a salt water environment and a high temperature environment, resulting in 5.0% by volume of free water. It was confirmed that the composition was unsuitable as a cementing composition.
特に塩水耐性試験(20℃、1時間保管)後のDLS平均粒子径と試験前のDLS平均粒子径との比で表される変化率が2.0未満のシリカゾルA、B及びCを使用した実施例1、2及び3は、何れも流動性に優れ、0.80~0.40体積%の非常に少ない遊離水量を示した。
なお、水性シリカゾルを使用しない場合(比較例1)、セメント粒子乃至その他のセメント添加剤が塩水使用環境かつ高温環境下にて硬化反応が不均一に進み、5.0体積%の遊離水を示すことが確認され、セメンチング用の組成物としては不適であった。 As shown in Tables 1 to 3, Examples 1 to 2 were carried out using silica sols A to E containing silica particles having an Al 2 O 3 /SiO 2 mass ratio of 0.23% by mass or more and 1.70% by mass or less. All of Example 5 had excellent fluidity and exhibited a free water amount of 2% by volume or less. The Al 2 O 3 /SiO 2 mass ratio in the silica particles according to the present invention is 0.1 to 4.0% by mass, preferably 0.1 to 2.0% by mass, more preferably 0.1 to 1% by mass. It was confirmed that by setting the amount to .5% by mass, it is possible to reduce the amount of free water to less than 1.0% by volume, which is a more preferable embodiment.
In particular, silica sols A, B, and C were used in which the rate of change expressed by the ratio of the DLS average particle size after the salt water resistance test (storage at 20°C for 1 hour) to the DLS average particle size before the test was less than 2.0. Examples 1, 2, and 3 all had excellent fluidity and exhibited a very small amount of free water of 0.80 to 0.40% by volume.
In addition, when aqueous silica sol is not used (Comparative Example 1), the curing reaction of cement particles or other cement additives proceeds unevenly in a salt water environment and a high temperature environment, resulting in 5.0% by volume of free water. It was confirmed that the composition was unsuitable as a cementing composition.
以上の結果より、0.1~4.0質量%のAl2O3/SiO2質量比を有するシリカ粒子の添加により、塩水使用環境かつ高温環境下でセメントスラリーからの遊離水の発生を抑制できるセメンチング組成物となることが確認された。
From the above results, the addition of silica particles having an Al 2 O 3 /SiO 2 mass ratio of 0.1 to 4.0 mass% suppresses the generation of free water from cement slurry in salt water environments and high temperature environments. It was confirmed that this cementing composition can be used.
本発明は、油田及びガス油田に用いられ、100℃以上、特に150℃以上もの高温環境下においてもセメントスラリーからの遊離水の発生を抑制できるセメンチング組成物を提供することであり、更にセメンチング組成物を混練する際に塩水を使用した場合であっても、地下の充填箇所に到達するまでの間において十分な流動性を確保し、遊離水の発生を抑制してなる安定性を有するセメンチング組成物を提供する。
An object of the present invention is to provide a cementing composition that can be used in oil fields and gas fields and can suppress the generation of free water from cement slurry even in high-temperature environments of 100°C or higher, particularly 150°C or higher. Even when salt water is used when kneading materials, a stable cementing composition that ensures sufficient fluidity until it reaches the filling point underground and suppresses the generation of free water. provide something.
An object of the present invention is to provide a cementing composition that can be used in oil fields and gas fields and can suppress the generation of free water from cement slurry even in high-temperature environments of 100°C or higher, particularly 150°C or higher. Even when salt water is used when kneading materials, a stable cementing composition that ensures sufficient fluidity until it reaches the filling point underground and suppresses the generation of free water. provide something.
Claims (9)
- セメント、シリカ粒子、及び塩水を含み、油田及びガス油田に用いる塩水混練セメンチング用組成物であって、
該シリカ粒子はアルミニウム原子がシリカ(SiO2)の質量に対してAl2O3換算で0.1~4.0質量%の割合で含有されるシリカ粒子である、上記セメンチング組成物。 A salt water kneading cementing composition for use in oil fields and gas oil fields, comprising cement, silica particles, and salt water,
The cementing composition described above, wherein the silica particles contain aluminum atoms in a proportion of 0.1 to 4.0% by mass in terms of Al 2 O 3 based on the mass of silica (SiO 2 ). - 前記シリカ粒子が、窒素ガス吸着法により測定して得られる比表面積径(等価球換算粒子径)が5~200nmの粒子である、請求項1に記載のセメンチング組成物。 The cementing composition according to claim 1, wherein the silica particles have a specific surface area diameter (equivalent spherical particle diameter) of 5 to 200 nm as measured by a nitrogen gas adsorption method.
- 前記塩水が、塩分を0.1~4.0質量%含有する水溶液である、請求項1又は請求項2に記載のセメンチング組成物。 The cementing composition according to claim 1 or 2, wherein the salt water is an aqueous solution containing 0.1 to 4.0% by mass of salt.
- 前記塩水が、塩分含有陸水、又は海水である、請求項1乃至請求項3のいずれか1項に記載のセメンチング組成物。 The cementing composition according to any one of claims 1 to 3, wherein the salt water is salt-containing land water or sea water.
- 塩分濃度3.6質量%、シリカ濃度1質量%に設定した前記シリカ粒子の塩水分散液を20℃、1時間保管する塩水耐性試験において、(該試験後におけるシリカ粒子の動的光散乱法による平均粒子径)/(該試験前におけるシリカ粒子の動的光散乱法による平均粒子径)で表される比が1.0~100である、請求項1乃至請求項4のいずれか1項に記載のセメンチング組成物。 In a salt water resistance test in which a salt water dispersion of the silica particles with a salt concentration of 3.6% by mass and a silica concentration of 1% was stored at 20°C for 1 hour, (by dynamic light scattering method of silica particles after the test) Any one of claims 1 to 4, wherein the ratio expressed by (average particle diameter) / (average particle diameter measured by dynamic light scattering of silica particles before the test) is 1.0 to 100. Cementing composition as described.
- 前記シリカ粒子が、セメントに対して、シリカ固形分として0.01%~10%BWOC(BWOCは、セメントの乾燥固形分に基づく質量%を意味する)の割合にて含有される、請求項1乃至請求項5のいずれか1項に記載のセメンチング組成物。 Claim 1, wherein the silica particles are contained in a ratio of 0.01% to 10% BWOC (BWOC means mass % based on dry solid content of cement) as silica solid content based on cement. The cementing composition according to any one of claims 5 to 6.
- さらにセメント遅硬剤及びその他添加剤を含み、
前記セメントに対して、前記シリカ粒子をシリカ固形分として0.01%~10%BWOCの割合で、前記塩水を30~60%BWOCの割合で、前記セメント遅硬剤を0.1~5%BWOCの割合で、及びその他の添加剤を0.001~10%BWOCの割合で、それぞれ含有するセメンチング組成物であって、
前記その他の添加剤は、脱水調整剤、消泡剤、速硬剤、低比重骨材、高比重骨材、セメント分散剤、セメント強度安定剤、及び逸泥防止剤からなる群より選ばれた少なくとも1種の添加剤である、請求項1乃至請求項5のいずれか1項に記載のセメンチング組成物。 In addition, it contains cement retardants and other additives,
To the cement, the silica particles are silica solids at a ratio of 0.01% to 10% BWOC, the salt water is 30% to 60% BWOC, and the cement retardant is 0.1% to 5%. A cementing composition containing BWOC and other additives in a proportion of 0.001 to 10% BWOC, respectively,
The other additives are selected from the group consisting of a dehydration regulator, an antifoaming agent, a quick hardening agent, a low specific gravity aggregate, a high specific gravity aggregate, a cement dispersant, a cement strength stabilizer, and an anti-sludge agent. 6. A cementing composition according to any one of claims 1 to 5, which is at least one additive. - 油田又はガス油田の掘削において、100℃以上300℃以下の高温・高圧環境下から石油又はガスを採掘するにあたり、地層とケーシングパイプとの空隙部を油井セメントで充填するためのセメンチング材料として、請求項1乃至請求項7のいずれか1項に記載のセメンチング組成物を用いることを特徴とする、セメンチング工法。 Claimed as a cementing material for filling the void between the geological formation and the casing pipe with oil well cement when extracting oil or gas from a high temperature and high pressure environment of 100°C or more and 300°C or less during drilling of oil or gas oil fields. A cementing method characterized by using the cementing composition according to any one of claims 1 to 7.
- 請求項1乃至請求項7のいずれか1項に記載のセメンチング組成物を坑井中に導入する工程、及び前記セメンチング組成物を凝結させる工程、を含む、
セメンチング方法。
Introducing the cementing composition according to any one of claims 1 to 7 into a wellbore, and coagulating the cementing composition,
Cementing method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-047140 | 2022-03-23 | ||
JP2022047140 | 2022-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023182180A1 true WO2023182180A1 (en) | 2023-09-28 |
Family
ID=88100863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010444 WO2023182180A1 (en) | 2022-03-23 | 2023-03-16 | Cementing composition containing aluminum-atom-containing silica particles, and cementing method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023182180A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4146719B2 (en) * | 2000-06-22 | 2008-09-10 | アクゾ ノーベル エヌ.ブイ. | Building materials |
JP2012017215A (en) * | 2010-07-06 | 2012-01-26 | Eiken:Kk | Seawater-blended mortar |
JP2017511779A (en) * | 2014-02-28 | 2017-04-27 | ハリバートン エナジー サヴィシーズ インコーポレイテッド | Tunable control of pozzolanic lime cement composition |
WO2020059213A1 (en) * | 2018-09-18 | 2020-03-26 | 日産化学株式会社 | Silica-based additive for cementing composition, cementing composition, and cementing method |
-
2023
- 2023-03-16 WO PCT/JP2023/010444 patent/WO2023182180A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4146719B2 (en) * | 2000-06-22 | 2008-09-10 | アクゾ ノーベル エヌ.ブイ. | Building materials |
JP2012017215A (en) * | 2010-07-06 | 2012-01-26 | Eiken:Kk | Seawater-blended mortar |
JP2017511779A (en) * | 2014-02-28 | 2017-04-27 | ハリバートン エナジー サヴィシーズ インコーポレイテッド | Tunable control of pozzolanic lime cement composition |
WO2020059213A1 (en) * | 2018-09-18 | 2020-03-26 | 日産化学株式会社 | Silica-based additive for cementing composition, cementing composition, and cementing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7425414B2 (en) | Silica additive for cementing composition, cementing composition and cementing method | |
CA2350545C (en) | Cementation product and use for cementing oil wells or the like | |
RU2464408C2 (en) | Cement compositions with low-temperature hydration and their applications | |
CA2851539C (en) | Slag compositions comprising latex and methods of use | |
US20060048683A1 (en) | Methods, cement compositions and oil suspensions of powder | |
US20210253932A1 (en) | Geopolymer cement for use in subterranean operations | |
WO2007107779A1 (en) | Cements for use across formations containing gas hydrates | |
CN108463438B (en) | Chemical composition for producing hollow spherical glass particles with high compressive strength | |
WO2004094337A2 (en) | Cement compositions with improved mechanical properties and methods of cementing in a subterranean formation | |
US7238733B2 (en) | Storable water-silica suspensions and methods | |
US20180148628A1 (en) | Low density cementitious compositions for use at low and high temperatures | |
WO2020217966A1 (en) | Additive for cement slurry for well and method for producing said additive, cement slurry for well, and cementing method for well | |
CN104312558B (en) | Metakaolin waterborne suspension and its preparation method and application and reinforcing oil well cement mortar | |
WO2023182180A1 (en) | Cementing composition containing aluminum-atom-containing silica particles, and cementing method | |
US11680197B2 (en) | Pozzolanic by-product for slurry yield enhancement | |
JP7518482B2 (en) | Additive for cement slurry for boreholes and storage method thereof, cement slurry for boreholes, and cementing method for boreholes | |
JPH0699171B2 (en) | Geothermal well cement composition | |
CN105016667A (en) | Concrete for float collars and float shoes | |
JPH1036825A (en) | Low-specific-gravity geothermal well cement slurry for use at high temperature | |
CN115872649A (en) | Oil-gas well cementing anti-corrosion additive and multi-component anti-corrosion cement paste system for ultra-high temperature acid gas well |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23774776 Country of ref document: EP Kind code of ref document: A1 |